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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Whole-body CT is used for multi-trauma patients in the
search of any and all injuries. Since an initial assessment needs to be
rapid and the search for lesions is done for the whole body, very lit-
tle time can be allocated for the inspection of a specific anatomy. In
particular, intracranial hemorrhages are still missed, especially by clin-
ical students. In this work, we present a Deep Learning approach for
highlighting such lesions to improve the diagnostic accuracy. While most
works on intracranial hemorrhages perform segmentation, detection only
requires bounding boxes for the localization of the bleeding. In this paper,
we propose a novel Voxel-Complete IoU (VC-IoU) loss that encourages
the network to learn the 3D aspect ratios of bounding boxes and leads
to more precise detections. We extensively experiment on brain bleeding
detection using a publicly available dataset, and validate it on a private
cohort, where we achieve 0.877 AR30, 0.728 AP30 and 0.653 AR30, 0.514
AP30 respectively. These results constitute a relative +5% improvement
in Average Recall for both datasets compared to other loss functions.
Finally, as there is little data currently publicly available for 3D object
detection and as annotation resources are limited in the clinical set-
ting, we evaluate the cost of different annotation methods, as well as the
impact of imprecise bounding boxes in the training data on the detection
performance.

Keywords: 3D voxel object detection · Intracranial Hemorrhage ·
Multi-Trauma

1 Introduction

Trauma remains one of the leading causes of death around the world, despite
recent improvement in treatment protocols [3]. The latest protocol consists of
doing a whole-body CT of multi-trauma patients. However, this also means that
the radiologist has more anatomies to review and less time can be allocated for
specific body parts.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Insights into the challenges of brain hemorrhage detection with examples of
hard cases. A) The patient suffers both from a bleeding and a thrombosis further
below. While the thrombosis has a similar appearance to the bleeding, the blood is
still in a blood vessel and is not considered a bleeding. B and C) Both images show
hyperdensities near the ventricle system. While the spot in image B is a bleeding, the
two spots in C are simple calcifications of the brain tissue.

Medical students are often left alone to do these readings due to staff short-
ages and will often miss lesions [2] or will struggle on hard cases (see Fig. 1). In
particular, missed intracranial hemorrhages can have devastating effects on the
patient’s odds of survival and future physical autonomy [14]. As a result, there
is a clear utility in having expert tools that can focus on a specific part of the
whole-body CT and highlight relevant areas.

When it comes to stroke, the majority of previous work on 3D data has been
dedicated to semantic segmentation [13]. Segmentation masks take a long time
to annotate and only experts have the required skills. Further, given the diversity
of strokes in terms of lesion size, location, and shape [15], state-of-the-art models
only achieve 0.6 to 0.7 Dice score, which is not yet clinically sufficient [9].

Additionally, Dice score as a metric is ill-suited for detection, as it only
captures the proportion of blood volume detected. Similarly, a high Hausdorff
distance could be due to a badly segmented bleeding or by a missed one. Both
metrics provide no information on how many bleedings are completely missed.
In contrast, bleeding detection aims to detect and localize individual bleeding to
aid the clinician in finding relevant injuries or complication in a patient. This is
particularly important for multi-trauma patients, as they will frequently suffer
from multiple ailments and hemorrhages. As there are multiple solutions for
annotating 3D voxel data, we take a deep dive into the pros and cons of different
methods. As this process is often tedious, one can be tempted to choose a fast
but inaccurate solution. As such, we also analyze the effect of various annotation
errors on the model performance.

Detecting bleeding of vastly different size, shape, and position requires a
multiscale approach. Inspired by Feature Pyramid Network (FPN) strategy of
Retina-Net [1,10], we introduce an anisotropic-resolution-aware method leverag-
ing features from 5 different, axis-independent scales. Additionally, we introduce
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a family of anchors based on the distribution of the bleeding aspect ratio in train-
ing data, that also respect the anatomical structure of the brain. However, the
network still needs to be able to learn these bleeding-specific shapes. To this end
and inspired by the Complete Iou loss [17], we propose a novel Voxel-Complete
IoU (VC-IoU) loss that encourages the network to learn the 3D aspect ratios
of bounding boxes. This loss specifically penalizes deviations in aspect ratios
along all three planes in the volume. We evaluate our proposed method on the
publicly available INSTANCE2022 dataset [9], as well as on a private cohort for
external validation. Our contributions in this work include:

1. A novel loss (VC-IoU) for object detection in 3D voxel images1, which leads
to more precise detections.

2. An in depth comparison of annotation effort of multiple methods and an
assessment of the impact of noisy bounding box annotation on the model’s
performance. These insights can help research groups to select the most ade-
quate solution for other applications.

2 Methodology

In this section, we introduce our method for bleeding detection. More precisely,
we introduce our backbone architecture, then define our novel Voxel-Complete
IoU (VC-IoU) loss and finally go over challenges with sampling.

2.1 Backbone Architecture

The proposed 3D object detection method consists of a 3D Retina-Net with a
Resnet-50-based FPN. This architecture has already proved its usefulness for
3D medical imaging [8] as its FPN allows to leverage multiscale features. In
particular, it is very flexible regarding the pyramid levels used. We choose to
not only use levels P2 to P5, but to also include P6 for detection (see
Fig. 2). This is crucial as the volume of the bleeding can range from only 0.1 cm3

to more than 100 cm3. Additionally thanks to the convolutional nature of this
architecture, we can customize the in-slice and depth-wise resolution scaling used
to compute the next pyramid level. For instance, we use an in-slice downscaling
factor of 2 from P0 to P1 and from P1 to P2. So if input slices have a 512× 512 px
size, their shape will already be shrunk to 128× 128 px at P2. We only reduce the
depth-wise resolution from P3 to P4 and from P4 to P5, since the slice thickness
is 10× greater than the in-slice resolution.

One also has to consider the great diversity in bleeding shape when designing
the shape of the anchors at a 5mm slice thickness. Indeed, small bleeding may
appear in one up to four slices. This range in object depth is problematic for
matching, as the Intersection over Union (IoU) of a potential match with a
ground truth box can be excessively penalized by an inadequately chosen depth
for the designed anchors. While the ATSS matching algorithm [16] does not
1 Code available at https://github.com/MECLabTUDA/VoxelSceneGraph.

https://github.com/MECLabTUDA/VoxelSceneGraph
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Fig. 2. Our method for bleeding detection. Anchor sizes are given for level P2.

require a hard IoU threshold for matching, the convergence rate of the box
regression head can still suffer from misshapen anchors. Increasing the number of
anchors can potentially improve matching results, but also increases the memory
needed for computation. We have iteratively selected a family of 5 anchors. These
are representative of the diverse 3D aspect ratios of bleeding within the datasets,
while limiting the hardware requirements.

2.2 Voxel-Complete IoU Loss

Learning these specific shapes is not trivial. For 2D boxes, the aspect ratio
is commonly defined as the proportion between the box’s width and its height.
However, no single ratio can be defined for a given 3D box (see Fig. 3). Inspired by
Zheng et al. [17], we design a novel Voxel-Complete IoU (VC-IoU) loss by
measuring the consistency of all three aspect ratios for a predicted box B =
(w, h, d) and a ground truth box Bgt = (wgt, hgt, dgt):

v =
4
π2

⎡
⎢⎢⎢⎢⎢⎢⎣

(arctan
wgt

hgt
− arctan

w

h
)2

+(arctan
hgt

dgt
− arctan

h

d
)2

+(arctan
dgt

wgt
− arctan

d

w
)2

⎤
⎥⎥⎥⎥⎥⎥⎦

Similarly to the C-IoU loss [17], we define a trade-off factor α as

α =
v

1 − IoU + v
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Fig. 3. In 2D, the aspect ratio φ gives a scale-independent representation of a given
bounding box. However, no such representation exists for 3D bounding boxes. We can
instead consider the three aspect ratios {φax, φsag, φcor} in the three natural planes of
the 3D space (axial, sagittal and coronal). In particular, bleeding have a wide variety
of shapes even within a single individual.

to ensure that the overlap factor is given priority. The VC-IoU loss can then be
defined as

LV C−IoU = LDIoU + αv

where LDIoU is the Distance IoU [17]. There are of course multiple options to
aggregate the regularization term for all three aspect ratios when defining v.
We choose to compute a sum rather than a mean, as we consider each of these
penalties to be as important as the single penalty that would be observed in
a 2D setting. Besides, the acceptable IoU threshold is typically much lower in
3D applications than in 2D ones (e.g. 10% vs 50%). So, having higher values of
v allows the trade-off factor α to be in a comparable range compared to a 2D
CIoU loss.

2.3 Sampling of Bleeding

The sampling algorithm for the classification head has to be tuned to avoid
detecting all hyperdensities within the head. In particular, the transverse sig-
moid sinuses are large veins along the back of the skull that has a texture close
to bleeding in CT imaging. It is critical that a model learns to distinguish such
structures. As such, it is critical to select negative samples from the most confi-
dently predicted false positives. Qualitative examples are shown in Fig. 1.

3 Data

While whole-body CT are acquired for trauma patients, the focus for this appli-
cation is exclusively on the patient’s head. Handling the head region of whole-
body CT or directly using a head CT are equivalent, as converting the former
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to the latter only requires a rough localization of the patient’s neck. Since it is
not a hard task, we consider it out of scope of this study and directly use head
CTs for this study.

3.1 Source Images

The first dataset is the publicly available INSTANCE2022 challenge dataset [9].
It contains 130 non-contrast head CTs with 0.42× 0.42× 5 mm3 voxel spacing
from patients diagnosed with intracranial hemorrhage. Additionally, we use a
private dataset for the purpose of external validation. It is constituted of 18
head CTs of patients diagnosed with intracranial hemorrhage between 2021 and
2022. As shown in Fig. 4, this dataset contains out-of-distribution cases, both in
terms of bleeding size and number. These images are high-resolution head CTs
and have a native voxel spacing of 0.41×0.41×0.3 mm3. As such, we resampled
them to a voxel spacing of 0.41× 0.41× 5 mm3 for inference (see Fig. 5), to match
the resolution of the training data.

Fig. 4. Distribution shift of the number of bleeding per image (left) and volume per
bleeding (right) between the INSTANCE2022 dataset and our private cohort.

3.2 Data Annotation

Of the 130 images from INSTANCE2022, 100 were released as training cases
along with their corresponding segmentation of the bleeding. We derived the
object annotation by generating the 3D connected components from the masks
and computed the bounding box of each component. All other images were
annotated internally by a senior radiologist from the University Medical Center
Mainz using 3D Slicer [4]. In particular, we chose to annotate the objects as
rough label maps (see Sect. 5.4).

4 Experimental Setup

In this section, we introduce the base images used and their annotation process.
We then describe our evaluation setup for the different stages of our method.
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Fig. 5. Visualization of head CTs, axial (top) and sagittal (bottom). INSTANCE2022
data (left). Downscaling (middle) of the original private cohort data (right).

4.1 Bounding Box Prediction

We compare our method to the state-of-the-art nnDetection framework [1]. To
train the detection models, we split the first 100 cases from the INSTANCE2022
dataset [9] for training and validation in an 80/20 fashion. The 30 remaining
cases are used for in-distribution testing. Finally, the private cohort is used for
external validation.

4.2 Segmentation for Object Detection

To evaluate segmentation for bleeding detection, we use a nnU-Net [7] trained
with 5-fold cross-validation. This architecture performed well in the test phase
of INSTANCE2022 with a Dice score of 0.69 [9]. We then utilize the sister frame-
work nnDetection [1] to ensemble and convert the predicted segmentations to
bounding boxes. The in-distribution testing and external validation are done in
the same manner as for bounding box prediction.

4.3 Metrics

We evaluate methods for bleeding detection using average precision (AP) and
average recall (AR) at IoU thresholds of 10% and 30%. Prior studies [1] suggest
that using a threshold of 10% IoU is sufficient, as IoU is more penalizing in 3D
and clinical applications only require a coarse localization. However, having such
a low threshold is problematic for bleeding detection, as their volume can vary



8 A. P. Sanner et al.

greatly. In particular, a bounding box predicted for a given bleeding could easily
overlap with a smaller neighboring bleeding. At a low 10% IoU threshold, this
bounding box can often sufficiently overlap the second bleeding to be counted
as a positive match for both objects. This can be particularly troublesome if the
first larger bleeding was in fact a false positive (see Fig. 1A)). To mitigate this
issue, we also provide all results at a 30% IoU threshold.

4.4 Implementation Details

Our framework is implemented in Python 3.10 and PyTorch 1.13 [12]. All con-
figuration files including hyperparameters and data splits will be made available
with the code. All models are trained on a single RTX3090 GPU. The training
for our method takes approximately 7 h and requires up to 16 GB of VRAM.
As a comparison, nnDetection [1] takes 24 h to train over 5 folds and requires
24 GB of VRAM. This increased memory usage compared to our method can
mainly be attributed to the higher number of anchors that nnDetection uses.

5 Results

In this section, we first compare our method to the existing state-of-the-art
methods. We then further evaluate our method through ablation studies. Finally,
since annotating data is performed under heavy resource constraints in the clin-
ical world, we perform a comparison of different annotation solutions and study
the impact of imprecise boxes on model performances.

5.1 Bleeding Detection

Table 1. Detection rates at 10% and 30% IoU using our method, nnDetection [1] and
1nnU-Net for detection [1].

Method INSTANCE2022 Private Cohort

AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑ AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑
nnU-Net1 0.789 0.600 0.708 0.522 0.561 0.378 0.416 0.257

nnDetection 0.815 0.631 0.672 0.549 0.704 0.439 0.494 0.263

Ours 0.892 0.877 0.760 0.728 0.724 0.653 0.590 0.514

We first evaluate our method against state-of-the-art solutions. As shown in
Table 1, our method significantly outperforms both nnDetection and
nnU-Net on both datasets. nnU-Net comes last, showing how segmenta-
tion is inadequate for object detection. While there is a drop in performance
on the private cohort for all methods, ours is more robust against distribution
shifts. The FROC analysis (Fig. 6) sheds some further light on the difference in
performance between datasets for each method. Additionally, we provide some
qualitative results for our method in Fig. 7.
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Fig. 6. FROC analysis of our method, nnDetection [1] and 1nnU-Net for detection
[1] on the INSTANCE2022 dataset (top), and our private cohort (bottom) at 10% IoU
(left) and 30% IoU (right).

5.2 Ablation: Loss Function

To detail the influence of the additional loss term in our VC-IoU loss, we plug
commonly-used losses in our model architecture and compare the results. Table 2
confirms that our VC-IoU allows the network to detect more bleeding more
precisely, with a relative increase of 5% Average Recall for both IoU thresholds
and for both datasets.

5.3 Ablation: Bleeding Size

This ablation aims to shed light on the drop of performance of our method on the
private cohort. In particular, one might recall that the bleeding size distribution
is significantly different from the distribution in the training set. As such, we
additionally give the performance of our method on each size group (Table 3).
We can observe the steepest drop in performance from INSTANCE2022 to the
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Fig. 7. Detection examples using our method on A) INSTANCE2022 and B) the private
cohort. Ground truth boxes are also provided for comparison. In A), the model correctly
identifies the three bleeding present. In particular, the smaller center bleeding is in the
patient’s ventricle system, which can cause serious complications if left untreated [5].
The model also manages to detect the diffuse bleeding to the right. In B), the model
again detects relevant bleeding. Please note that ground truth boxes appear larger
than the bleeding within this slice, as these expand further in neighboring slices. The
bleeding to the bottom right also highlights the challenges of non-maxima suppression,
as it gets detected twice but with little overlap between predictions.

Table 2. Ablation: Detection rates at 30% IoU using our method and different loss
functions for bounding box regression.

Loss INSTANCE2022 Private Cohort

AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑ AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑
Smooth L1 [6] 0.846 0.754 0.660 0.532 0.724 0.531 0.460 0.311

DIoU [17] 0.877 0.815 0.758 0.692 0.684 0.622 0.592 0.515

VC-IoU (Ours)0.892 0.877 0.760 0.728 0.724 0.653 0.590 0.514

private cohort for both the smallest and largest bleeding. The former can be
expected, as smaller bleeding are harder to detect and are more prevalent in
the private cohort. However, the latter phenomenon is due to a strong distribu-
tion shift of the cerebral scene. Indeed, the private cohort also contains trauma
patients with severe hemorrhages but also fractures or even an open skull. No
similar cases are present in the training set.
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Table 3. Detection rates at 10% and 30% IoU using our method for each bleeding size
group.

Bleeding size (cm3) INSTANCE2022 Private Cohort

AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑ AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑
all 0.892 0.877 0.760 0.728 0.724 0.653 0.590 0.514

<1 0.824 0.765 0.605 0.585 0.611 0.528 0.521 0.481

[1−10] 0.895 0.895 0.857 0.836 0.788 0.727 0.713 0.637

[10−50] 0.867 0.867 0.784 0.771 0.571 0.571 0.475 0.466

>50 0.929 0.929 0.896 0.865 0.588 0.471 0.497 0.373

5.4 Comparison of Annotation Methods

Annotating 3D medical images is a time intensive task. Tools like 3D Slicer [4]
offer multiple solutions, both for bounding box annotation and segmentation.
We consider the 4 following methods:

1. Directly placing bounding boxes within 3D Slicer.
2. Segmenting a rough and sparse label map, from which bounding boxes are

computed for each segment. This method does not require the complete seg-
mentation of a bleeding, only a bleeding’s extremities have to be segmented
for the resulting bounding box to be accurate.

3. Precisely segmenting the bleeding.
4. Using a Deep Learning model to pre-segment the images and manually cor-

recting the resulting masks.

Fig. 8. Annotation effort in seconds to annotate 5 downsampled images from our pri-
vate cohort using 3D Slicer with 4 different methods. 1) Annotating bounding boxes
directly 2) Annotating bounding boxes through rough label maps 3) Segmenting from
scratch 4) Refining of automatically-generated pre-segmentation.

We evaluate these 4 methods on 5 images of our private cohort with 5mm
slice-thickness and use the model described in Sect. 4 for the pre-segmentation.
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It is critical to choose a single method before starting the annotation process, as
discrepancies can arise, resulting in lower detection rates [11]. As shown in Fig. 8,
bounding boxes are 2 to 6 times faster to annotate than segmentation masks.
Annotating a label map is slightly slower but more precise, as object bounds are
still accurately annotated. Additionally, it provides a clearer overview of which
objects have been annotated.

In contrast, segmenting images is always much slower, even for smaller bleed-
ing. However, it is now unrealistic to expect the expert to annotate images from
scratch, when Deep Learning models can pre-segment to an extent. The most
tedious part of segmenting is making sure that the object boundaries are accu-
rate. As such, the speed-up offered by the pre-segmentation is not determined
by the volume of the pre-segmented mask. The pre-segmentation of image 3 is
a good example of this. Even though 70% of the bleeding volume was already
pre-segmented, many boundaries still had to be adjusted.

5.5 Impact of Noisy Annotation

Annotating images is a task often done after work hours. As such, it is unsur-
prising when some noise is introduced in the annotated bounding boxes. We
evaluate its impact on the detection rate by simulating the following scenarios:

1. Bounding boxes are too small. We randomly shrink all bounding boxes by up
to 10%. The resulting boxes have on average 78.5% IoU with their original
counterparts.

2. Bounding boxes are too large. We randomly enlarge all bounding boxes by
up to 10%. The resulting boxes have on average 82.2% IoU with their original
counterparts.

3. Bounding boxes are off center. We randomly move all bounding boxes’ center
by up to 10% of their size. The resulting boxes have on average 79.9% IoU
with their original counterparts.

4. Some bleeding are not annotated, especially smaller ones. We randomly
remove 20% of bleeding under 1 cm3 and 10% of bleeding under 10 cm3.

Table 4. Detection rates at 10% and 30% IoU using our method under different anno-
tation noise regimes in the training data (bottom, see Sect. 5.5).

Noise INSTANCE2022 Private Cohort

AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑ AR10 ↑ AR30 ↑ AP10 ↑ AP30 ↑
None 0.892 0.877 0.760 0.728 0.724 0.653 0.590 0.514

Smaller 0.862 0.815 0.763 0.706 0.735 0.643 0.586 0.463

Larger 0.862 0.785 0.767 0.682 0.704 0.602 0.584 0.464

Moved 0.862 0.831 0.758 0.710 0.724 0.622 0.605 0.500

Missing 0.862 0.831 0.766 0.732 0.643 0.571 0.528 0.453
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The results in Table 4 show that even slight annotation errors in bounding
box size will hinder the network from the learning precise detections. Addi-
tionally, missing bleeding during the annotation process is most detrimental to
the robustness of the network. Nevertheless, these models still outperform both
nnDetection and nnU-Net [1].

In particular, if we consider which annotation method to use, one can better
understand the trade-off of annotating bounding boxes directly. While images
can be swiftly annotated, even slight errors can be detrimental to the final model
performance. In contrast, annotating rough label maps solves these risks with
only little effort overhead.

6 Conclusion

Detecting bleeding of vastly different size, shape, and position in 3D voxel imag-
ing requires a multiscale approach. We introduce an anisotropic-resolution-aware
method and a family of anchors that respect the anatomical structure of the
brain. Additionally, we propose a novel Voxel-Complete IoU (VC-IoU) loss that
encourages the network to learn the 3D aspect ratios of bounding boxes, which
we evaluate our method on two datasets for brain hemorrhage detection. We
demonstrate that our model significantly outperforms state-of-the-art methods
[1] and that our loss yields a relative increase in Average Recall of 5% compared
to other loss functions. Our method has the potential to provide a second level of
security to the neuro-radiologist when reading the CT scan of a newly admitted
multi-trauma patient and to help ensure that no bleeding is missed.

As little data is currently publicly available for 3D object detection, training
this method for any new applications would require to annotate new data. As
annotation resources are limited in the clinical setting, we evaluate the cost of
different annotation methods, as well as the impact of imprecise bounding boxes
in the training data on the detection performance. These results can help shed
light on whether segmentation or pure object detection is the better approach
for new applications. With this work, we pave the way towards automated tools
to offer strong decision support.

Compliance with Ethical Standards. This study was performed in line with the
principles of the Declaration of Helsinki. The retrospective evaluation of imaging data
from the University Medical Center Mainz was approved by the local ethics boards
(Project 2021-15948-retrospektiv). Ethical approval was not required, as confirmed by
the license attached with the open access data.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. Time series neural networks have been shown to be weak
against adversarial attacks. This study aims to enhance the robustness
of time series neural networks in order to defend against such attacks.
To do so, we introduce a new defense method called a Random Warping
Self-Ensemble (RWSE). The RWSE has two main components. First, a
novel random time warping layer to add randomness to trained models in
order to disrupt the adversarial attack. Second, the use of self-ensembling
increases robustness and maintains the accuracy of the network. The pro-
posed RWSE does not require any special or extra training, can be used
with most time series neural networks, including already trained ones,
and does not require any extra trainable parameters. We demonstrate
that the RWSE is effective in helping reduce the effects of four gradient-
based adversarial attacks on five time series datasets.

Keywords: Adversarial Attacks · Robust Neural Networks · Time
Warping

1 Introduction

Deep neural networks have had many successes in pattern recognition and clas-
sification [29], including time series recognition and classification [2,35], fore-
casting [33], and signal processing [20]. However, recent research has shown
that neural networks are weak against adversarial examples [32], including time
series [12]. Adversarial examples are patterns that would normally be correctly
classified by a trained recognition system but are subjected to adversarial attacks
which intentionally cause misclassifications. These adversarial attack algorithms
create such adversarial examples by adding adversarial noise or perturbations
that are typically hardly perceivable to humans. Since the presence of an attack
is difficult to detect, there are security concerns for the use of neural networks
in security-sensitive systems [23].
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In response to adversarial attacks on time series neural networks, various
defense mechanisms have been proposed. These algorithms aim to automati-
cally protect neural networks from such attacks, regardless of whether there
is knowledge of an attack or not. One prevalent approach involves employ-
ing ensemble networks as a defense strategy [15,31]. However, utilizing ensem-
ble networks often demands multiple trained models, which might pose con-
straints on resource-limited systems and may not be universally applicable across
all network architectures. Therefore, methods such as Random Self-Ensemble
(RSE) [25] have been proposed to create ensembles but using only one network.
To do this, RSE uses noise layers so that the output of the network changes and
can be ensembled.

However, most defense methods, including RSE, are proposed for image-
based neural networks. Little research exists on adversarial attack and defense
algorithms for time series neural networks [12]. Time series and sequence recog-
nition are important due to their wide range of applications, such as signals,
biometrics, speech, etc. Accordingly, it is important to ensure the robustness of
time series recognition models.

In this paper, we propose a new defense algorithm, specifically suitable
for time series called Random Warp Self-Ensemble (RWSE). Given adversarial
examples created from adversarial perturbation, the proposed RWSE can add
robustness to trained models. Specifically, we introduce a new time warping-
based layer that adds randomness to the features by warping the time steps of
the internal representation of each input. Not only does this remove some of
the effects of the specifically designed adversarial noise due to the randomness,
but it also allows for the network to be used with self-ensembling. We show that
the proposed RWSE makes temporal neural networks more robust to adversarial
noise without sacrificing accuracy on non-attacked data.

Furthermore, the proposed method is only applied in the test step. It does
not require specific training and can be used for any trained neural network
with a fully connected layer. It also does not increase the number of trainable
parameters. Thus, the proposed method can be widely applicable to time series
neural networks.

The contributions of this paper are as follows.

– We propose a new warping layer that randomly warps the time steps of the
internal representation within a time series neural network. The warping layer
is only used during the test time and can be widely used with many neural
networks, including already trained networks.

– We use the proposed random warping layer to add randomness for a self-
ensemble network. The randomness allows for different outputs to be pre-
dicted given the same network with the same weights.

– We demonstrate that the proposed RWSE outperforms similar defense algo-
rithms on four time series datasets. The RWSE is able to protect a temporal
Convolutional Neural Network (CNN) from well-known adversarial attacks.

– The code for the proposed method can be found at https://github.com/
uchidalab/random-warping-self-ensemble.

https://github.com/uchidalab/random-warping-self-ensemble.
https://github.com/uchidalab/random-warping-self-ensemble.
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2 Related Work

2.1 Adversarial Attacks

Most of the research on adversarial attacks has focused on image recognition.
Szegedy et al. [32] demonstrated the vulnerability of well-known image bench-
marks to adversarial attacks. They generated adversarial examples by minimiz-
ing the perturbation needed to misclassify images. Similarly, DeepFool [27] per-
turbs the image toward the nearest class of hyperplanes. Other methods include
using gradient information, such as the Fast Gradient Sign Method (FGSM) [14],
Basic Iterative Method (BIM) [22], and Projected Gradient Descent (PGD) [26].
There are also ensemble attacks such as AutoAttack [9] that use multiple attack
methods.

However, there is much less research on adversarial attacks in the field of
time series recognition. Carlini et al. [4] showed that it is possible to encode
hidden commands in speech recognition systems. Fawaz et al. [12] assess the
performance of FGSM and BIM techniques using the time series classification
datasets. There has also been work to create adversarial examples in time series
classification without neural networks [28].

2.2 Defense Against Attacks

Defense algorithms are designed to enhance the robustness of neural networks
against attackers. There are various methods for defending against adversarial
attacks, each with differing levels of success [23]. For instance, training with
adversarial examples can improve robustness [14]. Another approach is to limit
the impact of adversarial perturbations by using defensive techniques such as
defense distillation [16], feature squeezing [36], and denoising [24]. Additionally,
employing ensembles and modular networks can be effective in avoiding attacks
trained for specific gradients [15,25,31,37].

3 Adversarial Attacks

3.1 Threat Model

This paper focuses on white-box attacks, or attacks with full knowledge of the
trained model. Specifically, given a neural network model f(x) with input x, a
white-box attack has access to all information about f(x), including its param-
eters, gradients, etc.

The objective of the attack is to find an adversarial sample xadv that is similar
to x but is misclassified by f(x). Furthermore, the similarity between xadv and
x must be within a budget ε, in order to be undetectable by an untrained eye.
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Fig. 1. A diagram of the proposed method. In this example, the input is fed to the
network three times, and each time the random warping layer warps the time steps
differently. The output of each prediction added to form the self-ensemble. The red
arrows in the random warping layer represent the knots. (Color figure online)

3.2 Gradient-Based Adversarial Attacks

A gradient-based attack is a type of adversarial attack on neural networks where
the attacker manipulates the model’s input data by adding a small amount of
carefully crafted adversarial noise. The noise is created by utilizing information
about the gradient of the model’s loss function.

In our experiments, we use the five most popular gradient-based attacks:
FGSM [14], BIM [22], PGD [26], CW [5], and AutoAttack [9]. FGSM perturbs
the input data in the direction of the sign of the gradient of the loss function
with respect to the input. BIM takes this idea and uses FGSM in an iterative
manner. PGD is similar to BIM, but it aims to minimize perceptibility and CW
formulates the adversarial noise as an optimization problem between moving
the classification and ensuring the perturbed noise is within a constraint. The
CW attack is generally respected as one of the most difficult attacks for neural
networks [25].

Finally, the last adversarial attack used is AutoAttack. AutoAttack uses an
ensemble of four attacks including, two different Auto-PGD methods, Square
Attack [1], and Fast Adaptive Boundary (FAB) attack [8].
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Fig. 2. Processing image of time warp layer.

4 Random Warping Self-Ensemble (RWSE)

The proposed method has two main components. The first is the use of a pro-
posed random warping layer. The random warping layer is a layer that can be
included in the structure of a trained neural network. The purpose of the layer is
to randomly warp the time steps of the internal representation. Second, we use
networks with the random warping layer in a self-ensemble [25]. An overview of
the proposed model is shown in Fig. 1.

4.1 Random Warping Layer

Since the adversarial perturbation added to x is based on the specific gradi-
ent of the loss given x, we propose a nonlinear random time warping layer in
an attempt to reduce the impact of the adversarial perturbations. The idea is
that the adversarial perturbations are specific to the gradients of the network.
By warping the internal representation, it is possible to disturb the alignment
between the perturbations in the input and the attacked gradients. At the same
time, we aim to only warp in the time dimension enough to disturb the alignment
without affecting the overall accuracy.

The proposed random warping layer is based on the time warping data aug-
mentation technique [34], but unlike data augmentation, the time warping occurs
within the first fully-connected layer of the network. The input features of the
random warping layer are treated as a time series and a time warping algorithm
is used to warp the time steps based on a smooth curve with I number of knots,
or:

x′ = xτ(1), . . . , xτ(t), . . . , xτ(T ), (1)

where τ(·) is a warping function defined by a cubic spline S(u) with knots u =
u1, . . . , ui, . . . , uI . The magnitude of the knots ui are taken from ui ∼ N (1, σ2).
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Fig. 3. A diagram of a self-ensemble method. Self-ensemble uses the same input with
the same model, and ensembles the results. However, due to a random factor in the
model, the output of each model is different for the ensemble.

Using the knots, the time steps xτ(t) are moved. Then, the rest of the times steps
are resampled based on a smooth cubic spline-based curve (Fig. 3).

The result is a warped time series with a smooth transition between the knots
as shown in the Fig. 2. This random warping layer is used between the convolu-
tion and the flattening before the first fully connected layer of the network. The
purpose of the random warping is to disrupt the adversarial perturbations. In
gradient-based adversarial attacks, adversarial perturbations are added to the
data in the original input space. However, due to the warping within the rep-
resentation, the gradients specific to the input no longer correspond directly to
the input elements. Furthermore, while warping is occurring, the characteristics
of the local features of original data remains intact.

During training, any standard temporal neural network can be used and the
random warping layer is only used during testing. The neural network can be
any architecture as long as the features are represented structurally for the fully
connected layer (i.e. the model does not remove the spatial information using
Global Average Pooling).

4.2 Self-ensemble

Ensemble methods combine multiple different classifiers to form the prediction.
By combining multiple predictions, the robustness can be increased over any
of the single classifiers [11]. Furthermore, ensemble methods have been shown
to help defend against adversarial attacks [31]. To have a meaningful ensemble,
classifiers should be able to produce different predictions from each other. In
order to do this, ensemble methods can be constructed using different classifiers
or models [21] or models can be constructed using bagging [3].

However, using multiple models increases the computational requirements.
Having multiple models means that each model must be trained and the weights
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stored. Consequently, self-ensemble methods were proposed. self-ensemble meth-
ods are methods that use a single classifier but with added randomness to create
distinct predictions. The previous self-ensemble methods use test time Gaussian
noise within the networks [25,31].

The random warping layer adds test time randomness which allows for the
proposed method to utilize self-ensembling. This is because given the same
trained network, different predictions is possible. Specifically, during testing,
the same input is fed to the RWSE N number of times. Each time, the ran-
dom warping layer randomly warps the time steps of the features and a slightly
different prediction will be obtained.

Finally, as shown in Algorithm 1, the output of each prediction is summed,
or:

ŷ = argmax

(
N∑

n=1

fn(x)

)
, (2)

where fn(·) is the post-softmax output of the network and x is the input that
may or may not be attacked. It should be noted that we use the addition of the
outputs instead of voting like some ensemble methods.

Algorithm 1. Random Warping Self Ensemble
1: function RWSE(x)
2: sum ← 0
3: for n = 1, N do
4: ŷn ← DNNRW(x)
5: sum ← sum + ŷn

6: end for
7: ŷ ← argmax(sum)
8: return ŷ
9: end function

10: function DNNRW(x)
11: z ← f(x) � Feature Extraction Layers (e.g. Convolutional Layers)
12: u ← u1, . . . , ui, . . . , uI |ui ∼ N (1, σ2)
13: τ ← S(u) � Cubic Spline
14: τ ′ ← clip(τ(1), . . . , τ(t), . . . , τ(T ), 0, T )
15: z′ ← zτ ′(1), . . . , zτ ′(t), . . . , zτ ′(T )

16: z′ ← FC(z′) � Fully Connected Layers
17: ŷn ← softmax(z′)
18: return ŷn

19: end function
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5 Experimental Results

5.1 Datasets

To evaluate the proposed method, experiments were conducted on five datasets,
ElectricDevices [10], FordA [10], InsectSound [6], RightWhaleCalls [7], and Fruit-
Flies [13]. The datasets were selected as time series datasets that had sufficiently
large training sets suitable for neural networks and that represent a range of sig-
nals and time series.

Table 1. Comparison of the Datasets

Dataset Type Class Length Train Test

ElectricDevices [10] Device 7 96 8,926 7,711

FordA [10] Sensor 2 500 3,601 1,320

InsectSound [6] Audio 10 600 25,000 25,000

RightWhaleCalls [7] Audio 2 4,000 10,934 1,962

FruitFlies [13] Audio 3 5,000 17,259 17,259

5.2 Architecture and Settings

In the experiments, a temporal CNN is used as the backbone for defense methods.
This temporal CNN consists of four 1D convolutions, each followed by batch
normalization [17], rectified linear unit (ReLU) activation, and max pooling. The
first block has 64 filters, and the subsequent blocks have 128 filters. Following the
convolutional layers, two fully connected layers are used. The first fully connected
layer comprises 512 nodes with ReLU activation, while the second serves as the
output layer with a number of nodes equal to the number of classes and softmax
activation. Between the two fully connected layers, dropout with a probability
of 0.5 is applied.

To train all networks, we use the Adam optimizer [19] with an initial learning
rate of 0.001. The network is trained for 10,000 iterations with a batch size of
256. A single CNN is trained, and six test sets (original test set, test sets with
AutoAttack, FGSM, BIM, PGD, and CW attacks) are used. The trained CNN
is used with defense methods only during testing.

5.3 Adversarial Attacks

For the adversarial attack methods, we used AutoAttack, FGSM, BIM, PGD,
and CW. As for the hyperparameters, FGSM and BIM have a maximum distor-
tion of ε = 0.2, while for BIM and PGD use a step size of α = 0.05 with I = 10
iterations.
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Table 2. Accuracy (%) Without Attacks

Method ElectricDevices FordA InsectSound RightWhaleCalls FruitFlies

No Defense 67.2 93.9 76.6 87.0 96.4

Input Noise 65.3 93.9 77.2 87.0 96.4

RSE 56.0 93.6 55.6 86.9 93.6

TTA 62.9 91.9 72.9 87.3 96.5

Median Filter 45.0 93.9 68.7 73.2 95.9

RW (Proposed) 67.4 95.2 74.7 85.9 96.1

RWSE (Proposed) 67.4 94.9 76.0 85.6 96.7

5.4 Defense Methods

To evaluate the proposed method, we compare it to similar methods to defend
against adversarial attacks. The following models were used in the evaluation:

– No Defense: This trial is the original CNN that is attacked by the adversarial
attacks.

– Input Noise: This evaluation adds Gaussian noise to the input in an attempt
to cancel the adversarial noise [31]. A standard deviation of σ = 0.15 was
used for the noise.

– Random Self-Ensemble (RSE): Adapted from an image-based defense
method, RSE [25] adds a noise layer after every convolutional layer in the
CNN. For the self-ensemble, five networks are used. For the experiments, a
standard deviation of σ = 0.15 was used.

– Test Time Augmentation (TTA): TTA [30] is an ensemble of networks with
each network using a different augmentation method during test time. To
match the proposed method and RSE, five networks in the ensemble is used.
The inputs of the five networks are the original time series features, jittering,
magnitude warping, time warping, and window warping with the parameters
suggested by Iwana and Uchida [18].

– Median Filter : The median filter is a smoothing filter that removes noise by
taking the median of a sliding window. In the experiment, the filter size was
set to 3.

– Random Warping (RW): Random Warping uses the proposed random warp-
ing layer but no ensemble. This trial demonstrates the benefits of self-
ensembling. The time warping path is defined by a smooth cubic spline-based
curve with four knots with random magnitudes with a σ = 0.2.

– Random Warping Self-Ensemble (RWSE): RWSE uses five networks with
random warping layers and ensembles the results through addition.

In all of the evaluations, a normal CNN is used for training. The defense methods
are only applied in the testing step.

5.5 Results

Accuracy in the no-attack case is shown in Table 2. Ideally, defense methods
should not decrease the accuracy of the unmodified test set in the ideal case.
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Table 3. Accuracy (%) Under Adversarial Attacks

Method ElectricDevices FordA InsectSoundRightWhaleCalls FruitFlies

Under FGSM Attack

No Defense 46.4 59.2 50.0 22.5 66.5

Input Noise 46.5 63.7 41.2 22.9 66.7

RSE 44.7 63.7 41.2 22.9 71.6

TTA 48.1 63.9 52.2 44.9 74.1

Median Filter 38.3 60.5 48.7 32.5 68.8

RW (Proposed) 47.8 63.9 52.2 44.9 76.1

RWSE (Proposed) 48.1 72.6 56.1 57.5 75.9

Under BIM Attack

No Defense 35.8 50.5 20.3 21.8 57.8

Input Noise 36.0 51.4 21.0 22.4 58.0

RSE 40.8 57.5 31.4 21.8 64.7

TTA 38.8 56.0 29.5 38.5 68.3

Median Filter 32.4 52.1 35.2 27.3 61.1

RW (Proposed) 37.5 62.9 32.4 48.0 67.9

RWSE (Proposed) 37.8 63.6 32.7 50.5 67.7

Under PGD Attack

No Defense 33.6 50.5 18.7 22.1 57.0

Input Noise 33.9 51.1 19.4 22.3 57.1

RSE 39.8 61.0 30.7 21.9 63.8

TTA 37.9 56.1 28.4 38.2 67.8

Median Filter 30.6 52.1 35.2 27.4 60.5

RW (Proposed) 35.6 64.3 31.2 49.9 67.4

RWSE (Proposed) 35.7 64.7 31.9 51.4 67.3

Under CW Attack

No Defense 33.4 12.2 30.8 26.1 6.94

Input Noise 38.8 30.6 62.0 21.0 59.3

RSE 46.8 72.2 42.7 60.1 73.7

TTA 46.0 56.5 58.3 73.1 81.9

Median Filter 39.9 50.2 63.4 55.2 80.8

RW (Proposed) 46.6 80.3 63.6 81.0 86.1

RWSE (Proposed) 46.6 84.2 68.1 83.0 87.7

Under AutoAttack

No Defense 24.0 53.8 12.9 22.4 16.3

Input Noise 25.2 53.6 13.2 22.4 19.9

RSE 26.9 55.5 13.9 21.6 43.4

TTA 25.4 54.6 13.5 22.2 20.2

Median Filter 27.3 52.7 15.7 25.0 23.2

RW (Proposed) 24.4 56.7 16.4 49.5 50.4

RWSE (Proposed) 24.3 56.8 16.7 48.5 50.9
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Fig. 4. Confusion matrix of RSE and RWSE for dataset InsectSound under an FGSM
attack.

The experimental results show that the accuracy remains comparable to that
of the CNN under normal conditions. This is a good result, because in the
problem set, it is unknown whether an attack is taking place or not. Thus, it is
important to maintain the accuracy on normal data.

Next, we conduct AutoAttack, FGSM, BIM, PGD, and CW attacks, and
the results are shown in Table 3. All four sections of the table have the same
method, and for these sections, a robust method would close the gap between
the accuracy of the CNNs under attack and those not under attack. As a result,
for all attacks, all datasets show an improvement in accuracy with the proposed
method over the normal case. Overall, the proposed RWSE outperforms the
main competitor, RSE, for all datasets in each attack except ElectricDevices.
Furthermore, RWSE outperforms RW without the ensemble. This indicates that
the self-ensemble method also contributes to the improvement in robustness.
Attempts to remove the adversarial noise in the input space directly, such as
Input Noise and Median Filter, rarely improved accuracy by significant amounts
in normal conditions. These operations proved ineffective against adversarial
attacks.

5.6 Discussion

From the results shown in Tables 2 and 3, it can be concluded that the pro-
posed RWSE is effective as a defense method against time-series data, since it
can improve the accuracy against attacks while maintaining the original accu-
racy. In particular, the InsectSound dataset showed a significant improvement
in accuracy over the no-protection condition, and was more accurate than the
RSE of the competing method. The confusion matrices of RSE and the pro-
posed method RWSE for the FGSM attack are shown in Fig. 4 in the confusion
matrix of RSE, most of the model’s predictions output Class 2. On the other
hand, the RWSE confusion matrix shows a only slight increase in Class 2. This
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Fig. 5. Example data from InsectSound for each attack and their predictions with
robustness measures.

shows one instance that warping instead of noise is better suited at disrupting
the adversarial perturbations that would cause the network to overfit to Class 2.

Figure 5 shows the model predictions for each defense method for the attack
data. In comparison methods such as Input Noise, RSE, and TTA, the misclas-
sified results are nearly identical to the output of the no attack condition. This
indicates that processing in the input space alone leaves residual effects of the
attack. The importance of the warp layer inserted before the FC layer can be
seen in the reduction of the effect of the perturbation caused by the attack.

Next, in order to see the difference between the proposed RWSE and the
main competitor, RSE, we visualized the results by dividing them into those
that could be correctly classified only by RSE, those that could be correctly
classified only by RWSE, those that could be correctly classified by both, and
those that could not be correctly classified by either, as shown in Fig. 6. This
figure shows that the data that neither RSE nor RWSE could protect, were
generally shorter regions of interest in length. On the other hand, the cases that
had longer region of interests were correctly protected by the defenses. The data
that could be correctly classified using only RSE tended to be relatively short in
length, and the data that could be correctly classified using only RWSE included
data of various lengths. This indicates that while RWSE can handle a large range
of region of interests, the RSE model was able to handle smaller patterns slightly
better.

5.7 Limitations

The proposed method did not work well with ElectricDevices. For ElectricDe-
vices, the main competitor, RSE, was more accurate than RWSE for all attacks
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Fig. 6. Examples of data from InsectSound where models have been improved by RSE
or RWSE under a CW attack.

except the FGSM attack. ElectricDevices has unusually noisy Class 2 data. This
perturbation would have caused most of the data to be classified as class 2, which
would have prevented the proposed method from destroying the perturbation.
Another factor is the length of the data. As shown in Table 1, the ElectricDevices
data set is made of time series that are shorter than the other data sets. In this
experiment, all parameters in the warp layer were the same. Therefore, the same
warping process used for the short data set as for the other long data sets may
have resulted in a loss of original characteristics.

Adversarial attacks add noise to change the class. Therefore, the ensemble
may have contributed to erroneous output as a result of a large number of
data distributed near the class boundaries. By ensembling, a more generalized
prediction is possible.

5.8 Ablation

In this section, we examine the effects that the parameters have on the proposed
method. Specifically, we conducted experiments on the relationship between the
number of networks and accuracy in self-ensemble, and on the parameters of
random warping used in the proposed method.

First, we conducted experiments on the parameter σ in the time warping
process. This parameter corresponds to the degree of warp movement in the
time warp process. In other words, if σ is small, it is equivalent to warping to
data that is close to the adversarial data, so no improvement in accuracy can
be expected. Figure 7 shows the results of the experiment. For all datasets, the
lowest accuracy was observed for small values of σ. After an upward trend, the
accuracy decreased again for larger values of σ. Each attack had the highest
accuracy when σ = 0.2 for all data sets. This indicates that σ = 0.2 is the best
for the time warp used in the proposed RWSE method, regardless of the attack
method.
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Fig. 7. Effect of the amount of time warping.

Fig. 8. Accuracy of the ensemble with different number of networks.

Experiments were then conducted on the relationship between the number
of networks used in the RWSE self-ensemble and accuracy. Figure 8 shows the
results. The number of networks corresponds to RW when the number of net-
works is 1. Figure 8 shows that for each attack, the number of networks tends
to increase slightly up to 5, while it does not change much for larger numbers.
Although the ensemble method increased accuracy, the improvement in accu-
racy was small. This is because the ensemble method increases the confidence
of ambiguous data, such as those at class boundaries, by majority voting. The
ensemble did not function strongly because data distributed near the boundary
of another class in the feature space due to adversarial attacks were pulled back
to the original class domain due to the destruction of adversarial perturbations
by the time warp.

6 Conclusion

In this paper, we proposed a method to improve the robustness of time series
neural networks against adversarial perturbations, called a Random Warping
Self-Ensemble (RWSE). The RWSE uses a self-ensemble of networks with a
random warping layer. It does not require training models or parameters and can
be easily incorporated into any already trained time series neural network that
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contains a fully connected layer. To evaluate the proposed RWSE, we compared it
to other test-time defenses against five adversarial attacks, AutoAttack, FGSM,
BIM, PGD, and CW on five time series datasets.
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Abstract. Online signature analysis plays a vital role in today’s dig-
ital landscape, where the number of digital transactions and the need
for identity verification are constantly increasing. The signature encom-
passes various aspects of an individual’s unique characteristics, includ-
ing both structural and behavioural elements. Researchers have been
intrigued by the intricacies surrounding signature verification and gener-
ation for quite some time. The main objective of this study is to present
a fresh approach for creating online signatures that improves security in
digital transactions and signature verification systems. This is accom-
plished by utilising the proposed Sign-Diffusion framework. Traditional
approaches to signature recognition often lack the required resilience, as
they are trained on datasets that include fraudulent attempts to repli-
cate the original signature. To overcome the challenges and limitations
generated because of manual mimicking capability, we propose a solu-
tion that has conditional diffusion as a building block aided with a state
space model to capture long-term structural forecasting for online sig-
nature generation. This method tackles the task of extracting detailed
features that capture the intricate spatial and temporal characteristics of
signature dynamics. It also ensures adaptability to various signing styles.
The approach we have developed introduces a foundational model that is
capable of generating near-equal user dependent online signatures. This
will also help to identify deepfakes in the area of online signature gen-
eration. The above mentioned facts highlights the prospects for further
exploration in the area of online signature verification methods, specifi-
cally for detection of system-generated forgeries that are more advanced
and sophisticated than manually created forgeries.

Keywords: Diffusion · Biometric · GenAI · Identity Verification ·
Signature

1 Introduction

The emergence of online signature generation has become a crucial technol-
ogy in the ever-expanding digital era, bringing about substantial implications.
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Generating online signatures involves the creation of electronic versions of hand-
written signatures. This approach is widely used for various purposes, including
document authentication, digital agreements, and identity verification [11]. This
technology holds immense importance, as it has the potential to enhance security
and optimize various aspects of our digital existence. It guarantees the integrity
of digital documents, safeguarding against unauthorized modifications or coun-
terfeits. Online signature generation enhances security by integrating with iden-
tity verification systems. This ensures that the signer’s identity is verified and
compared, reducing the risk of fraudulent activities. The growing prominence of
online transactions, remote work, and e-commerce has underscored the need for
a reliable and secure method of verifying identities and authorizing documents.
Furthermore, this technology not only offers convenience, but also finds relevance
in crucial sectors like finance, legal affairs, and healthcare [3]. By implementing
a robust online signature generation system, the risk of fraudulent activities can
be significantly reduced. This strengthens forgery detection systems and reduces
the need for traditional paper-based procedures, ultimately accelerating the pace
of digital transformation.

The process of online signature involves capturing structural information in
(x, y) coordinates, along with behavioral information like the pressure (p) applied
to each coordinate and the time elapsed (τ) during the signing process. Exist-
ing online signature verification systems heavily rely on datasets that contain
both genuine signatures and forgeries, which are created by individuals with
varying levels of expertise in i mitating genuine signatures. The current system
has certain limitations when it comes to detecting manual forgeries and is not
very effective in identifying system-generated forgeries. It is crucial to create a
system that can detect both manual and system-generated forgeries. In order to
accomplish this, it is crucial to possess a system that is capable of generating
genuine online signature data.

Diffusion

Reverse

Fig. 1. Diffusion process for generating structural online signature data as x and y
coordinates.

This research work aims to introduce a new framework called Sign-Diffusion,
which utilizes a conditional diffusion model to generate online signatures for
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structural forecasting. The implementation of diffusion and reverse process on
input data i.e., x and y coordinates is illustrated in Fig. 1, providing a compre-
hensive flow of online signature generation. The system can generate structural
data, which is represented by coordinates x and y. Sign-Diffusion explores the
complete range of signature dynamics by utilizing conditional diffusion.

The length of online signature data can vary significantly, as it is influenced
by the individual’s preference for shorter or longer signatures. In order to tackle
this issue, we have implemented an approach called conditional diffusion, as
proposed by Kong et al. [14]. Additionally, we have incorporated a state space
model (SSM), as suggested by Gu et al. [5], to effectively handle long tem-
poral dependencies. In this paper, we introduce the Sign-Diffusion framework,
which is designed for online signature generation. Through our experiments, we
showcase the remarkable performance of the proposed framework in compari-
son to two other models: Sign-Diffusion-1, which includes one transformer and
one SSM block, and Sign-Diffusion-2, which consists of two transformer blocks
without an SSM block. The results of our study demonstrate that Sign-Diffusion,
when combined with SSM, surpasses other models in terms of performance. This
emphasizes the effectiveness and reliability of Sign-Diffusion in generating online
signatures. In order to assess the system’s robustness, we have conducted a thor-
ough analysis of the mean square error between the original signatures and both
manually forged signatures and system-generated forged signatures. Our find-
ings indicate that the system-generated signatures closely resemble the original
signatures.

Our network has been trained using publicly available datasets, including
MCYT [19], e-BioSign(EBDS1) [22], BioSecure-DS2 (EBDS2) [20], Biosecure-
ID [2]. To evaluate its performance, we have calculated various similarity and
distance-based metrics. The model is trained using a limited number of original
signatures from the datasets, and its accuracy is evaluated by providing initial
prompts of different lengths to estimate its generation accuracy. Thus, the system
exemplifies impressive capabilities in few shot learning.

2 Related Work

Through an extensive review of the literature, the goal is to gain a thorough
understanding of the methodologies that influence the generation of online sig-
natures. In the arena of handwriting generation, the pioneering work was carried
out by Graves et al. [4]. They employed a Recurrent Neural Network (RNN) [21]
to synthesize online handwriting, marking a significant milestone in this area.
On the contrary, when it comes to generating offline handwriting, the empha-
sis has been given to employing a generative adversarial network (GAN) [1].
RNN-based models, such as Variational RNN, have been utilized by Kotani et
al. [15] in their work. These models, incorporating a Variational Autoencoder
[12], are known for their simplicity in training and sampling. However, a major
challenge they encounter is the necessity for the writer-style data to be in an
online format. Recording the user’s pen strokes during sampling presents a chal-
lenge when it comes to incorporating stylistic information. In their respective
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studies, Kang et al. [10] utilize the GAN framework to enhance the quality of
generated samples compared to the work done in the literature. Moreover, both
studies demonstrate the ability to condition the generation process on specific
writer stylistic features. In their study, Lian et al. [16] explore the application
of Chinese fonts to create a wide range of handwriting styles using only a small
number of samples.

This study presents a new approach called Sign-Diffusion, which aims to
generate online signature data. The approach captures both the structural x and
y coordinates, as well as the behavioral pen tip pressure data, using a specific
framework.

To the best of our knowledge following are the contribution of this research
work:

• To best of authors knowledge this is the first attempt to create a foundational
framework to generate online signatures using conditional diffusion aided with
state space model.

• We validated the generation using publicly available online signature datasets
for various similarity measures with original signature and found generated
signatures are near equal to original signatures.
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Fig. 2. Sign-Diffusion architecture is proposed for generating online signature data,
specifically focusing on the x and y coordinates. Each coordinate is trained indepen-
dently using mean square error loss.

3 Proposed Methodology

In this method, a conditional diffusion model aided with SSM is used to cater
the long temporal dependencies present in online signature dataset as shown in
Fig. 2. Unlike other approaches of 1D Convolution [13] and bidirectional dilated
convolution [9], which may struggle in capturing long-range dependencies effec-
tively, the SSM offers a more nuanced approach for handling the long temporal
dependencies.

The Sign-Diffusion framework further enhances the temporal modeling capa-
bilities of the system. It improves the generation process by allowing the model
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to iteratively refine its predictions based on the context of the entire signature
sequence. This iterative refinement process is crucial for generating realistic and
coherent signatures, especially when dealing with complex and varied signature
patterns. Additionally, Sign-Diffusion provides a probabilistic framework for gen-
erating signatures, allowing for uncertainty estimation in the generated samples.
This is particularly useful in online signature generation, where the model needs
to produce diverse and natural-looking signatures while maintaining the indi-
viduality of the user’s style.

In this approach we have taken signature data from signature time-series
captures on e-pads. Coordinates x(t) and y(t) are utilized after removing the
redundant information weighted by p(t). Here zero/non-zero pressure value indi-
cates that the pen tip is up/down from the e-pad. After passing the signature
coordinates x(t) and y(t) through the 1D convolution, they are concatenated
with diffusion embeddings and subsequently a signature forecast mask (SFM) as
a condition to be executed through SSM. Here SFM refrains the system to look
forward into the future. This mask can have forward masking, backward masking,
and imputation masking thus, making the system work for forward forecasting,
backward forecasting, and imputation generation. The network is trained using
the mean square error loss function to get the best-desired outcomes.

By combining the strengths of the conditional diffusion model and SSM
mechanism, the proposed approach achieves prominent performance in online
signature generation tasks. The ability of conditional diffusion model to cater
complex temporal dependencies, coupled with the SSM’s mechanism, enables
the system to generate high-quality signatures that closely resemble the input
data, regardless of the signature length or complexity.

Table 1. Datasets details used for training the proposed SignGPT network

Dataset MCYT EBDS1 EBDS2 BiosecureID

User Count 231 30 46 268

Original Sample Per User 25 40 8 16

3.1 Dataset Preparation

This approach utilizes four online signature datasets: MCYT [19], EBDS1 [22],
EBDS2 [20], and Biosecure-ID [2]. The specific information regarding these
datasets can be found in Table 1. The data captured in online signature records
includes the (x, y) coordinates, the pressure at each coordinate, and the corre-
sponding time of capture. During the data preparation process, any coordinates
with zero pressure values are removed. This is because zero pressure values indi-
cate that the pen tip is not in contact with the e-pad, resulting in the absence
of a signature stroke. In addition, the e-pads have a high sampling frequency of
200 Hz, which can lead to repetitive coordinate capture. However, this issue has
been addressed to minimize redundancy in the signature data.
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Forward

Reverse

Fig. 3. An illustration of forward reverse diffusion probabilistic model.

Fig. 4. An illustration of forward reverse conditional (SFM) diffusion probabilistic
model

3.2 Conditional Diffusion

Generative models known as diffusion models have demonstrated exceptional
performance across various modalities such as images, videos, and speech [23].
These models aim to optimize their performance by operating on the latent space
of the signal and effectively eliminating any unwanted noise during the backward
process. The noise is incorporated into the diffusion process in a Markovian
manner, as described by Gurvich et al. [7]. The process described is independent
of any conditions and can be represented by the following Eq. 1:

m(n1, .......nT |n0) =
T∏

t=1

m(nt|n(t − 1)) (1)

where m(nt|nt−1 = N(
√

1 − βtnt−1, βt1)[nt] and the (fixed or learnable)
forward-process variances βt adjust the noise level. Equivalently, nt can be
expressed in closed form as nt =

√
αtn0 + (1 − αt)ε for ε ∼ N(0, 1) where

αt =
∑t

i=1(1 − βt). The backward process is parameterized as Eq. 2:

lΘ(n0, ........nt−1|nT ) = l(nT )
T∏

t=1

lΘ(nt−1|nt) (2)

where nt N(0, 1). Again, lTheta(nt−1|nt) is assumed as normal-distributed (with
diagonal covariance matrix) with learnable parameters. In the context of signa-
ture generation x and y coordinates. In addition to the aforementioned process,
the backward process incorporates additional condition information, resulting
in a conditional diffusion model [18]. Figure 3, shows the illustration of forward
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reverse diffusion probabilistic model flow. Figure 4, describes forward reverse
conditional (SFM) diffusion probabilistic model flow.

Our approach involves incorporating SFM into the concatenation of input
data, effectively preventing the model from accessing future information. This
mask has the capability to generate signatures in both directions, making it
bidirectional. These can also fill in the gaps when added to the signature, creating
similar strokes in the process.

3.3 Signature Forecast Mask (SFM)

Masking can be defined as Random Missing (RM), Random Batch missing
(RBM), and Forecasting (FM). These masks when included with input data
are treated as conditions while generating the signature sequences hence mak-
ing generation a conditional diffusion process. In the context of online signature
generation, we used FM known as Signature Forecast Mask (SFM). This plays
a crucial role in determining which parts of the sequence to generate. The input
signature is first processed to create the SFM, which involves modifying the sig-
nature with Gaussian noise to introduce variability. This modified signature is
then multiplied with the generated mask, resulting in the SFM. During the gen-
eration process, the SFM is used as a binary mask, where ones indicate values to
condition on for forecasting, and zeros indicate values to forecast. By focusing
the generation process on relevant parts of the sequence, the SFM helps enhance
the model’s ability to generate realistic and accurate online signatures.

3.4 State Space Model (SSM)

In contrast to the use of bidirectional directional convolution [5], we have intro-
duced SSMs to address the long-range dependencies present in signature data.
Signatures, as a form of behavioral biometrics, can consist of a few hundred to
several thousand points. In essence, SSMs can be described as linear state space
transition equations that map a 1D input sequence a(t) to an n-dimensional
output sequence c(t) before projecting it to a 1D output sequence b(t). This
mapping is represented by Eq. 3 and Eq. 4:

c′(t) = A c(t) + B a(t) (3)

b(t) = C c(t) + D a(t) (4)

In this paper, we present the representation of transition matrices obtained
through gradient descent as A, B, C, and D. In this approach SSM is used as
a black box in a discrete convolution manner as shown in Eq. 5, 6 and 7. Its
purpose is to capture long-term dependencies, in line with the HiPPO theory [6]
for online signature generation.

ck = CA
k
Ba0 + CA

k−1
Ba1 + · · · + CABak−1 + CBak (5)
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Table 2. Sign-Diffusion Hyperparameters

Hyperparameter Value Hyperparameter Value

Diffusion embedding dim. 1, 2, 3 128, 512, 512 Training Epochs 10000

Diffusion steps T 200 Loss Function MSE

β0, β 1 0.0001, 0.02 Learning Rate 0.0002

S4 Dropout 0.01 Batch Size 8

S4-Lmax 180 Optimizer Adam

a = K ∗ a (6)

K ∈ R
L (7)

In our online signature generation approach, the initial step involves augmenting
the input signature coordinate data with noise. This noisy data is then fed into
the diffusion model, where it undergoes processing in each residual layer. Within
each residual layer, the input is combined with the condition mask and diffusion
hyperparameters. These layers consist of a 1D convolutional layer followed by a
State Space Model (SSM) layer.

The SSM is a key component that maps the input signature sequence to
an n-dimensional output sequence, as described above, capturing the intricate
patterns and dynamics of the signature data. This mapping process involves
bidirectional layers with layer normalization, no dropout, and an internal state
with a gated linear unit in each layer. After the diffusion embedding is added,
a convolutional layer is applied to double the channel dimension of the input,
preparing it for the subsequent SSM block computation. Notably, a single three-
layer diffusion embedding is utilized in all residual layers. The diffusion process
is applied selectively to the signature coordinate sequence that is intended to be
generated, ensuring that the model focuses on relevant parts of the sequence for
accurate generation.

By incorporating these components into our approach, we are able to generate
online signatures that closely resemble real-world signatures.

Table 3. Online Signature Data Generation Result Across Different Metrics for Dif-
ferent Initial Coordinate Lengths

Metrics MSE ED Cosine

Initial Points 50 100 50 100 50 100

MCYT X: 2.438
Y: 4.837

X: 2.124
Y: 4.256

0.9854 0.9763 0.9926 0.9996

EBDS1 X: 2.638
Y: 4.168

X: 2.467
Y: 4.013

1.134 1.081 0.993 0.9992

EBDS2 X: 2.534
Y: 4.790

X: 2.345
Y: 4.621

1.142 1.098 0.9995 0.9994

Biosecure-ID X: 2.376
Y: 4.721

X: 2.267
Y: 4.653

0.9938 0.9728 0.9997 0.9998
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3.5 Evaluation Strategy

Understanding the quality of the generated signatures is crucial in justifying the
model’s decision. It is crucial that the generated signatures are of high quality
and closely resemble the original signatures. This aligns with the concept of
developing a stronger system in the future to detect forgeries generated by the
system. In order to accomplish this, the generated signature data was compared
with the manual forgery data available in different datasets using similarity-
based metrics.

Original vs Generated: The evaluation of the model generation performance
involved the utilization of Cosine and Euclidean as similarity metrics. In addi-
tion, we have computed the mean square error (MSE) between the original and
generated signature.

Original vs Manual Forgery: Our evaluation of the signature generation
process involved comparing it to manual forgery data found in datasets. We
found that the signature generation was highly realistic and closely resembled
the original signature. In order to highlight the model decision process, we have
conducted calculations on the Euclidean Distance and Cosine similarity.

The computed values are standardized based on the signing area resolution
of the e-pad for both the x and y coordinates.

Evaluation Metrics. In this section, we will discuss the evaluation metrics that
were employed to assess the effectiveness of the proposed approach in handling
online signature generation.

Mean Squared Error (MSE). Mean Squared Error [8] quantifies the aver-
age squared difference between the original signature points and the generated
signatures. The formula for MSE between two sets of values, Y and Ŷ , each
comprising n observations, is:

MSE =
1
n

n∑

i=1

(Yi − Ŷi)2 (8)

where Yi and Ŷi denote the i-th observations in the original and generated sig-
nature sets respectively.

Fréchet Inception Distance (FID). FID measures similarity between two
data distribution sets, like original and generated signature points, using:

FID = ‖μ1 − μ2‖2 + Tr(Σ1 + Σ2 − 2
√

Σ1Σ2) (9)

Lower FID values suggest higher similarity.

Euclidean Distance (ED). ED computes the straight-line distance between
two points in Euclidean space, such as original and generated signature points,
using:

ED =

√√√√
n∑

i=1

(P1i − P2i)2 (10)



40 A. Pandey et al.

where P1i and P2i are the coordinates of points P1 and P2 along the i-th dimen-
sion respectively.

Cosine Similarity (CS). CS measures similarity between two vectors, like
original and generated signature points, using:

CS =
A · B

‖A‖ × ‖B‖ (11)

Normalized values consider the e-pad’s signing area resolution for x and y coor-
dinates and the maximum pressure value for p.

4 Empirical Evaluation

In this section, we will discuss the experimental setup and provide a comprehen-
sive analysis of the benchmarks using publicly available datasets. These datasets
include MCYT [19], EBDS1 [22], EBDS2 [20], Biosecure-ID [2] dataset. The fol-
lowing sections will cover the training and testing protocols, as well as the results
obtained.

4.1 Experiment Protocol

We collected five unique signatures from each user in the MCYT, EBDS1,
EBDS2, and Biosecure-ID datasets to train the Sign-Diffusion model. The
dataset addresses the issue of variability between sessions by including data
from multiple sessions conducted at different times to capture the unique char-
acteristics of each user. During the system training process, the training set is
divided into two parts: 80% for training and 20% for validation. The model
undergoes extensive training over a significant number of epochs, employing the
mean square error loss function. The hyperparameters are finalized after a series
of experiments as shown in Table 2. We trained the model from scratch using
random weight initialization and these hyperparameters.

The model was developed in the Python (3.9) environment and experimented
on a state-of-the-art Nvidia DGX-1 supercomputer. This supercomputer features
the advanced NVIDIA Volta architecture and cuDNN, a GPU-accelerated library
tailored for deep neural networks. This makes it easier to deploy deep learning
models whose complexity is increasing at a rapid pace and to provide solutions
in a fair amount of time. The signatures are generated by giving different initial
coordinate values as 50 and 100.

4.2 Experimental Results

This section presents the evaluation results obtained across various metrics for
analyzing the generated online signatures in comparison to the original signatures.

Figures 5, 6, 7, 8 depicts the generation of x, y coordinates w.r.t original
x, y coordinates of signature datasets. In all of the above-mentioned Fig. 5, 6,
7, 8 orange stroke shows initial points given to the model and blue strokes is
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Fig. 5. Illustration of x coordinates generated through Sign-Diffusion.

Fig. 6. Illustration of y coordinates generated through Sign-Diffusion.

Fig. 7. Comparison between original and generated signatures - Sample 1.

Fig. 8. Comparison between original and generated signatures - Sample 2.
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Fig. 9. Convergence of training loss of Sign-Diffusion Network while training on MCYT
dataset

generated output. orange stroke is generated using the initial prompt value i.e.,
100 points given to the model, and blue strokes are generated from the generated
output of the model.

Figure 9, represents the loss convergence while training on the MCYT
dataset. The loss curve represents the convergence separately for x and y
coordinates while training the model. In Table 3, the calculated metrics MSE,
Euclidean, and cosine similarity for X and Y coordinates are presented for 100
initial points to generate the signature. Table 4, represents the MSE, ED, and
Cosine values between the original and generated signature as well as original
and manual forgery samples already present in datasets. It has been observed
that oscillation across the y axis is more than x axis, as behavioral traits of

Table 4. Comparison of Original Signature w.r.t System Generated Signature and
Manual Forgeries.

Dataset Original v/s Generated Original v/s Manual Forgery

MSE ED Cosine MSE ED Cosine

MCYT
X:2.768

Y : 4.773
1.1760 0.9934

X:70.432

Y:75.956
4.6707 0.9757

EBDS1
X:1.884

Y:4.546
1.9432 0.9956

X:83.433

Y:84.909
3.9680 0.9681

EBDS2
X:1.772

Y:4.833
1.7890 0.9914

X:84.915

Y:82.178
4.8206 0.9747

Biosecure-ID
X:2.575

Y:5.906
0.9901 0.9978

X:75.991

Y:70.123
4.9218 0.9601
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Table 5. FID Comparision for existing SOTA in handwriting generation w.r.t SOTA
values achieved for signature generation.

Approach Dataset Mode Data Type FID

Luhman et al. [17] IAM Offline Handwriting 7.10

Sign-Diffusion MCYT Online Signatures 6.65

EBDS1 Online Signatures 6.45

EBDS2 Online Signatures 6.52

Biosecure-ID Online Signatures 6.48

signature, hence values observed are high against y axis. The results of online
signature generation demonstrate a close match with the original online signa-
ture data. Additionally, the online signature data generated by Sign-Diffusion
shows a higher degree of similarity to the original data compared to manually
forged data present in the datasets.

As stated earlier Sign-Diffusion presents the foundational approach in online
signature generation although we have compared it with existing offline hand-
writing generation techniques and represented it in Table 5. This comparison is
done between original and generated online signature data versus original and
generated offline handwriting data. This doesn’t provide an exact SOTA compar-
ison but gives a good view of the presented approach being capable of generating
near-equal results. As Sign-Diffusion is a foundational model for online signa-
ture generation and no other existing approach is present in the literature, given
comparison seems to be the best fit to evaluate the robustness of the proposed
approach.

4.3 Ablation Study

To see the effect of different components of the proposed approach Sign-
Diffusion, we also perform the following ablation studies by removing certain
components. We have experimented on multiple combinations of network archi-
tectures as shown in Table 6. Ablation study includes following versions:

• Sign-Diffusion proposed approach with two SSM blocks.
• Sign-Diffusion-1 corresponds to Sign-Diffusion with one transformer and

one SSM block.
• Sign-Diffusion-2 corresponds to Sign-Diffusion with two transformer blocks

and no SSM block.

It is evident from the results, that having two SSM blocks as present in Sign-
Diffusion, gives the best results because the network learns spatial and long
spatio-temporal features at the same time. As signature length is highly variable
in nature, possesses long temporal information to be catered during genera-
tion. Time series imputation generation model using convolution or attention
mechanism lacks in longer time series forecasting. SSM approach overcomes this
problem and presents a robust approach to handle longer time series sequence
generation such as signatures and handwriting.
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Table 6. Ablation study across different Sign-Diffusion architectures with 50 initial
coordinates as points

Approach Average MSE of coordinate x and y

MCYT EBDS1 EBDS2 Biosecure-ID

Sign-Diffusion 3.637 3.240 3.483 3.460

Sign-Diffusion-1 5.890 5.587 5.665 5.560

Sign-Diffusion-2 8.833 8.562 8.692 8.681

Sign-Diffusion’s superior performance over the ablation models Sign-
Diffusion-1 and Sign-Diffusion-2 can be attributed to several technical factors.
Firstly, the incorporation of conditional diffusion enables Sign-Diffusion to itera-
tively refine its predictions based on the context of the entire signature sequence,
facilitating the generation of realistic and coherent signatures, especially with
complex patterns. Additionally, the use of two-state space models in Sign-
Diffusion allows for more effective modeling of temporal dependencies in sig-
nature data, which is crucial for handling signatures of varied lengths. Unlike
bidirectional dilated convolution, which may struggle with capturing long-range
dependencies, the state space models in Sign-Diffusion provide better temporal
dependency handling for longer sequences. This capability enables Sign-Diffusion
to capture intricate signature details, leading to more realistic and coherent gen-
erated signatures. Furthermore, Sign-Diffusion’s probabilistic framework allows
for uncertainty estimation in generated samples, ensuring the generation of
diverse and natural-looking signatures while preserving the individuality of the
signer’s style.

5 Conclusion

This paper introduces the foundational model for generating online signature
data, known as Sign-Diffusion, which is based on the conditional diffusion model.
It demonstrates the efficacy of using conditional diffusion and SSM for generat-
ing signatures of varying lengths without requiring additional modalities. The
Sign-Diffusion architecture is shown to have applications beyond time series
imputation generation. This work also opens up avenues for research in deep
fake identification within online signatures and handwriting.
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Abstract. Continuous monitoring of multi-channel blood pressure dur-
ing the perioperative period is crucial for predicting complications. Pro-
toPNet has garnered attention as powerful tools for providing inter-
pretable support for complication prediction, enabling clinicians to better
understand the impact of blood pressure trajectories on complications.
However, existing prototype-based models for complication prediction
tasks based on channel-wise blood pressure fail to recognize the unique
characteristics of individual channels such as systolic pressure, diastolic
pressure, and mean arterial pressure. Instead, they treat them as a unified
entity for prediction and interpretation, resulting in performance degra-
dation. To address this issue, we proposed the Channel-wise Prototypical
Part Transformer (C-PPT). Firstly, we match the encoded data indepen-
dently for each channel using a ProtoPNet, allowing for the extraction of
unique features. Secondly, we enhance the prototypes by incorporating
distance information between prototypes in the loss function. Finally, we
optimize the influence of different channels on the results using pre-set
weights. Experimental results conducted on a real dataset of periop-
erative blood pressure and cardiovascular adverse events classification
tasks in a hospital setting demonstrate that our proposed method effec-
tively interprets the relationship between blood pressure trajectories in
different channels and the occurrence of cardiovascular adverse events,
outperforming other benchmark models on relevant metrics.

Keywords: blood pressure · interpretable · prototype · multivariate
time series

1 Introduction

Cardiovascular disease is the leading cause of death worldwide, claiming more
lives each year than any other cause. Blood pressure is a key indicator of car-
diovascular health [7]. It consists of multiple channels, including systolic pres-
sure, diastolic pressure, and mean arterial pressure, each of which has distinct
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15314, pp. 46–60, 2025.
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physiological significance and clinical relevance, varying in its importance for
different types of cardiovascular diseases [14]. As such, continuous monitoring of
multi-channel blood pressure during surgical procedures is crucial. Research has
demonstrated that significant fluctuations in blood pressure during surgery can
trigger adverse cardiovascular events, such as stroke, which in turn increase the
risk of postoperative mortality [11]. By carefully analyzing blood pressure data
from these different channels during surgery, clinicians are better positioned to
intervene in a timely manner, potentially preventing serious complications.

During clinical surgical procedures, clinicians typically predict potential com-
plications by monitoring blood pressure levels that deviate from normal thresh-
olds [15]. For instance, when blood pressure values consistently exceed or fall
below a certain threshold, clinicians may perceive health risks and anticipate
impending complications [9]. However, this approach struggles to comprehen-
sively capture the underlying connections between the trajectory of blood pres-
sure changes and the onset of complications.

To provide clinicians with a more comprehensive understanding of the rela-
tionship between blood pressure trajectories and complications, ProtoPNet [1],
an interpretable tool, has been introduced for this task. Originally designed
for interpretable fine-grained image recognition, ProtoPNet has since been
extended to other domains, demonstrating strong performance.

However, existing prototype-based models for predicting complications using
multi-channel time-series blood pressure data fail to fully account for the unique
information inherent in each blood pressure channel. Instead, they treat all chan-
nels as a unified entity for both prediction and interpretation, which ultimately
leads to suboptimal performance. This highlights the urgent need for methods
that emphasize the independence of different channels to enhance prediction
accuracy and interpretability.

To address these challenges, we proposed C-PPT, a novel interpretable
prototype-based network designed for end-to-end fine-grained complication
detection. C-PPT leverages a transformer as the backbone network and intro-
duces a channel-wise prototype network that accounts for the unique charac-
teristics of multi-channel blood pressure data, providing interpretable insights.
This approach allows for the precise identification of representative prototypes
specific to each channel. Furthermore, we conduct targeted optimizations on the
channel-wise prototype network.

In summary, the main contributions of this paper are as follows:

(1) We proposed the Channel-wise Prototypical Part Transformer (C-PPT),
an end-to-end model designed for perioperative multi-channel time-series
blood pressure data, which enhances the accuracy and interpretability of
perioperative complication prediction tasks.

(2) To address the characteristics of multi-channel time-series data, we devel-
oped a channel-wise prototype network. This network identifies key blood
pressure trajectory regions influencing model predictions, enabling detailed
monitoring of different channel data in complication manifestation. By ana-
lyzing prototype features from both global and local perspectives, the model
demonstrates comprehensive interpretability.
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(3) To optimize the interpretability of the model, we introduce a novel loss
mechanism that enhances prototype distinctiveness by computing distances
between different prototypes. Additionally, considering the varying contri-
butions of blood pressure channels to complication prediction, we adjust the
influence of each channel in the model through preset weights, optimizing
the accuracy and relevance of predictions.

(4) Experimental validation on real datasets demonstrates that the C-PPT
model not only exhibits excellent performance but also possesses high accu-
racy and interpretability. Visual analysis of global and local prototype visu-
alization provides transparent and intuitive explanations for the reasoning
process between different channels and classifications.

2 Related Work

2.1 Complication Prediction Task Based on Blood Pressure Data

Early machine learning-based methods often extract relevant features through
some metric relationships and then input these features into a model for train-
ing. For example, Wijnberge et al. [19] utilized 23 variables extracted from the
arterial pressure waveform to calculate an alert value, predicting the likelihood
of hypotension occurring in the next few minutes. Song et al. [16] addressed the
problem of historical information loss by proposing an improved Long Short-
Term Memory - Convolutional Neural Network (LSM-CNN) combined with
attention mechanisms, thereby improving the accuracy of hypertension predic-
tion. With the widespread application of Transformer [17] models in time series
classification tasks and their impressive performance, further exploration in this
field has been prompted. Liu et al. [12] proposed Gated Transformer Networks
(GTN), which combine two Transformer towers with gating mechanisms-one
modeling channel-wise correlations and the other modeling step-wise correla-
tions. This approach has been effectively applied to multivariate time series
classification tasks. This approach has been effectively applied to multivariate
time series classification tasks. These characteristics of GTN make it well-suited
for tasks such as predicting complications from multi-channel blood pressure
data. Therefore, we chose GTN as the backbone network for C-PPT.

2.2 Interpretability of the Time Series Classification Methods

To enhance physicians’ understanding of predictive models for complications,
recent research has made significant strides in enhancing model interpretabil-
ity [13]. Current interpretable methods often employ bottom-up approaches, such
as using saliency methods to ascertain the importance of input features. How-
ever, due to the time-dependency of feature importance, such methods typically
perform poorly on data with strong temporal dependencies [6,10]. Consequently,
these methods struggle to effectively capture the dynamic importance of data
like blood pressure over time, limiting their practicality in clinical applications.



C-PPT: A Channel-Wise Prototypical Part Transformer 49

Hence, ProtoPNet [1] has been introduced to address interpretability in this
task. ProtoPNet was initially developed primarily for interpretable methods in
fine-grained image recognition, achieved by combining the model with sample-
based methods. Xue et al. [20] were the first to combine Transformer with Pro-
toPNet, improving interpretive recognition for images. In subsequent research,
ProtoPNet was attempted to be applied to relevant tasks in time-series classi-
fication. Despite improvements by Gao et al. [3] to adapt ProtoPNet for time
series data, this approach still fails to fully consider the independence between
different channels of data, instead treating them collectively for prediction and
interpretation. When handling data such as multi-channel blood pressure data,
where each channel holds distinct physiological significance, this approach may
impact model performance. For instance, if the current channel’s prototype fails
to consider the distinctiveness of other channels and is directly used for match-
ing, it may result in reduced prototype similarity, thus diminishing overall model
interpretability.

Therefore, by specifically enhancing the prototype network, we have improved
the interpretability of our model for predicting complications using multi-channel
perioperative blood pressure data. This enhancement enables accurate match-
ing of representative prototypes for each channel while also improving model
performance.

3 Method

Our proposed method primarily consists of three components: 1) The Gated
Transformer Multivariate Time-Series Encoder Network, which is responsible for
extracting features from multi-channel blood pressure data. 2) The channel-wise
Prototype Network, which learns representative blood pressure trajectories for
different channels and classes from the training data. Subsequently, it utilizes the
similarity between unknown samples and corresponding channel prototypes as
evidence for decision-making in interpreting blood pressure trajectories during
complication occurrences. 3) We have improved the loss mechanism to facili-
tate the acquisition of more distinctive prototypes for different classifications of
samples and to better capture the impact of each channel on complication out-
comes, thereby enhancing model performance. Our model structure is illustrated
in Fig. 1.

3.1 Gated Transformer Encoder Network

Encoder-decoder is a common model framework in deep learning, utilized to
transform input sequences into a fixed-length vector or convert previously gen-
erated fixed vectors into output sequences. In our model, the input sequence
consists of a set of multivariate, multi-channel time-series physiological signal
data. Through this encoder, our input sequence undergoes feature extraction,
transforming into a fixed-length vector used for fine-grained complication detec-
tion and subsequent interpretability tasks.
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Fig. 1. Our C-PPT model structure consists of (1) The Encoder part of the model
is the feature selection of the input sequence using the time series model, (2) The
channel-wise ProtoPNet corresponds to the characteristics of the respective channels
and contributes to the final prediction.

Due to the presence of multiple channels in blood pressure sequences, our
encoder network needs to effectively extract features from multi-channel time-
series data. Gated Transformer Network [12], as a variant of the Transformer,
demonstrates superior performance in handling multi-channel time-series data.
It can simultaneously capture temporal features of blood pressure data and inter-
channel information, effectively addressing the issue of long-term data dependen-
cies. This paper utilizes an existing Gated Transformer network as an encoder to
achieve improved feature extraction for multivariate time-series data.

3.2 Channel-Wise Prototypical Part Network

Due to the inadequate consideration of the unique information among differ-
ent channels in existing ProtoPNet-based models for predicting complications
from multi-channel time-series blood pressure data, we optimized the network
structure to better match multi-channel time-series data while preserving the
distinctive features of each channel. As illustrated in Fig. 1, after encoding by
the Encoder Network, multi-channel blood pressure data is matched with their
respective channel-specific prototypes, ensuring that each prototype adequately
captures the representative segments of its respective channel.

For example, in this blood pressure task, for the blood pressure sequence,
we input 3 × 700 time-series data into the network. Here, 3 represents the
different channels of blood pressure, and 700 indicates a total duration of
350 min, with data sampled at intervals of 30 s. Let f(x) represent the fea-
ture map of input data x after passing through the encoder network, where
f(x) = Z ∈ R

D×H×W . To enable the prototypes to fully capture the blood pres-
sure trajectories, the dimensions of the feature map for the blood pressure data
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are set to D = 1406,H = 3,W = 23, where D represents the feature dimension,
H denotes the number of channels, and W corresponds to the encoded sequence
length.

In other words, the original blood pressure sequence of length 700 is com-
pressed into a feature sequence of length 23, with each feature representing
approximately 30 time points of the original data. The network will learn
M = H × m pre-determined prototypes P = {{ph,j}mj=1}Hh=1, where the m
denotes the number of prototypes per channel, the k denotes the number of
classes. In this task, to adequately capture prototypes for different classifica-
tions of samples, the quantity of m is set as 6 × k (six prototypes are assigned
for each of the k classifications). The shape of each prototype is D × 1 × 1.

By computing the reciprocal of the squared L2 distance between the feature
mapping matrix of the test data and each prototype within the corresponding
channel, we obtain the similarity scores between the features and prototypes for
each respective channel. After performing max-pooling on these similarity scores,
we obtain the similarity score matrix. Upsampling the similarity score matrix
enables us to obtain a corresponding matrix of the same length as the input
sample, with each data point corresponding one-to-one with the data points in
the input sample.

By identifying the regions with the highest similarity in the corresponding
matrix, we can obtain the prototypes that best match the current sample chan-
nel. Further visualization processing of these captured prototype regions can be
used to support interpretive analysis.

To visualize the prototypes, during the training process, we map each proto-
type ph,j to the corresponding channel of the training sample with the highest
similarity and of the same classification as ph,j , thereby obtaining an equivalent
prototype projection. Mathematically, we need to perform the following updates:

ph,j ← arg min
z∈Zh,j

‖z − ph,j‖2, (1)

where Zh,j = {z̃h : z̃h ∈ patches(f(xh,i))∀is.t.yi = k}, ph.j ∈ Ph,k.
After passing through the channel-wise prototypical parts network, the data

is processed by fully connected layers to produce the final sample classification
results.

3.3 Training and Inference

During the process of prototype matching, it is possible for prototypes from dif-
ferent classifications to have distances that are too close, or even overlap. This
can result in prototypes being matched to the same regions, leading to a decrease
in the quality of interpretability. Additionally, the varying contributions of dif-
ferent channels of multi-channel blood pressure to complications can also hinder
the model from fully realizing its potential. In this paper, considering the char-
acteristics of multi-channel time-series data and prototypes, we proposed a new
loss mechanism to mitigate the occurrence of this issue. The first part of the loss
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function is a cross-entropy loss, which penalizes misclassifications in the training
data:

Lpred(ytrue, ypred) = − 1
n

n∑

i=1

yi
true log (yi

pred), (2)

where n represents the total number of data batches.
In addition, we have integrated distance information between channel proto-

types and different targets into the loss function, denoted as Lclus(P ):

Lclus(P ) =
1
H

H∑

h=1

(λh · Lclst(Ph) + λh · Lsep(Ph) + Ldist(Ph)), (3)

where Lclst(Ph), Lsep(Ph) and Ldist(Ph) are defined by

Lclst(Ph) =
1
n

n∑

i=1

min
j:ph,j∈Ph,yi

min
zh∈patches(f(xi)))

‖z − ph,j‖22; (4)

Lsep(Ph) = − 1
n

n∑

i=1

min
j:ph,j /∈Ph,yi

min
zh∈patches(f(xi))

‖z − ph,j‖22, (5)

Ldist(Ph) = − 1
n

n∑

i=1

‖ph,j − ph,l‖22, (6)

where Lclst and Lsep represent the distances between the sample and the nearest
prototype of the same class, p1, and the nearest prototype of a different class, p2,
respectively, which were originally existing information. We multiplied Lclst and
Lsep for different channels by λh as weights to adjust their contributions to
predicting complications. The value of λh can be set based on the experience of
medical professionals. Additionally, we introduced Ldist to capture the distance
information between p1 and p2.

In this process, within the same channel, the distance information between
the sample and prototype with the same classification is utilized, along with the
distance information of different classifications, as a penalty. This encourages
each training sample’s temporal feature sequence to be close to its assigned cat-
egory and simultaneously distant from categories to which it does not belong.
Meanwhile, the distance information between the prototype of the same classifi-
cation nearest to the current sample and the prototype of different classification
also serves as a penalty, enhancing the interpretability of the prototypes. By
adjusting the weights assigned to different channels, we optimize the influence
of each channel on the results, thereby further improving the performance of our
network in predicting complications. This helps to address the issue of prototype
overlap and further promotes the accuracy and interpretability of our network
in classification results.

In the initial stages of the model, our loss function is updated using only
Lpred. After the model has been running for some time, the prototype matching
mechanism of the prototype network comes into play. At this point, the loss
function is modified to Lpred + Lclus for updates. The complete training and
inference procedure of C-PPT is shown in Algorithm 1.
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Algorithm 1: Training and Inference Procedure of C-PPT
Input: The perioperative multi-channel time-series blood pressure dataset X
Output: The output of classification and prototype P.

Transform the training data to the shape (N, 3, 700), where N means the
number of samples, 3 means the number of channels, and 700 means the length
of the time-series blood pressure.
for epoch from 1 to 100 do

For each sample, learn the feature matrix Z through the encoder network
for h from 1 to H do

Extract the current channel features : z = Zh.
Calculate similarity scores with prototypes using the squared L2

distance and invert it.
Maxpolling the similarity scores to get the activation map and softmax.
Obtain the final similarity matrix Scoresh.

Concatenate the similarity matrices of each channel to obtain Scores.
ypred = FC(Scores)
Lossall = Lpred.
if epoch >= 10 and epoch%5 == 0 then

for h from 1 to H do
Iterate over all prototypes Ph to project with the nearest training
features of the same channel.

if epoch >= 10 then
Lclus = λh · Lclst(Ph) + λh · Lsep(Ph) + Ldist(Ph)
Lossall+ = Lclus

Update the Lossall loss function

Return ypred

4 Experiments

4.1 Datasets

To demonstrate the feasibility of the proposed method in real-world scenarios, we
utilized authentic intraoperative blood pressure data. The dataset was obtained
from the Chinese People’s Liberation Army (PLA) General Hospital and includes
time-series blood pressure data from patients during clinical surgeries, along
with the classification of major adverse cardiac events (MACE) occurring after
surgery. The blood pressure data consists of systolic pressure, diastolic pressure,
mean arterial pressure, etc. All three types of blood pressure data were collected
at a frequency of 0.5 min and have a duration of 350 min each, resulting in
a data length of 700 for each channel. The dataset comprises a total of 7489 data
instances, with a positive-to-negative ratio of 1:9. We partitioned the dataset
into training and testing sets in an 8:2 ratio. Before the model was executed,
we normalized the data. The weight λ for the loss functions mentioned in the
text was pre-set to [0.1, 0.1, 1].
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4.2 Technical Detail

We constructed our model based on the PyTorch library. In the experiments,
all models were trained using the Adam optimizer with a batch size of 32 and
scheduled for training over 100 epochs using the ReduceLROnPlateau sched-
uler. Through the experiments, we ultimately established 6 prototypes of size
1406 * 1 * 1 for each class in every channel of the data. Due to the blood pressure
dataset containing a total of 3 channels and having 2 categories for the outcome
variable, there are a total of 36 prototypes here. Our experiments were con-
ducted on Intel(R) Xeon(R) Bronze 3204 CPU @1.90 GHz and 2 NVIDIA RTX
3090 graphics cards on Ubuntu 64-bit.

4.3 Comparison Methods

We evaluated the C-PPT model, simultaneously listing several baseline models
and conducting comparisons:

– LSTM [5]: Introducing three gates (input gate, forget gate, output gate) and
a cell state, this deep learning model is designed to better handle long-term
dependencies in sequential data.

– FCN [18]: A deep learning model utilizes CNN to automatically discover
and extract the internal structures of input time-series data, generating deep
features for classification.

– ResNet [4,18]: A deep convolutional neural network addressing the perfor-
mance degradation caused by increasing CNN depth through the utilization
of residual modules.

– ProtoPLSTM [3]: A model that combines CNN-LSTM with ProtoPNet to
achieve interpretable results for time series data.

– TapNet [21]: A deep learning model for multi-dimensional time-series clas-
sification learns low-dimensional feature representations and interactive fea-
tures through an attentional prototype network and multi-layer convolutional
networks.

– LSTMFCN [8]: A multi-dimensional time-series classification model is real-
ized by extending a fully convolutional block with a squeeze-excitation block.

– InceptionTime [2]: A deep learning model for time-series classification
inspired by the Inception network structure.

– Gated Transformer Network(GTN) [12]: A multivariate time series clas-
sification model that captures channel-specific and step-wise dependencies by
merging two Transformer towers with gating mechanisms.

4.4 Performance Comparison

In Table 1, we present the comprehensive results of C-PPT and related time-
series classification methods on the blood pressure dataset. It is evident that
our proposed C-PPT demonstrates outstanding performance, showing significant
improvements in key metrics such as prediction accuracy, precision, F1 score, and
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AUC compared to baseline models. These results not only validate the effective-
ness of C-PPT in analyzing perioperative blood pressure data but also demon-
strate its advantage in maintaining efficient discriminative power when dealing
with highly imbalanced datasets. Furthermore, this underscores the potential
wide applicability and excellent generalization ability of our model in clinical
settings.

Table 1. Prediction scores of all models on blood pressure data.

Methods Acc (%) Pre (%) F1 (%) Spe (%) AUC (%)

LSTM 84.03 29.01 38.87 86.40 77.62

FCN 84.24 30.55 41.58 86.04 80.44

ResNet 84.17 28.74 38.12 86.77 77.22

ProtoPLSTM 76.29 22.44 34.14 76.75 80.44

TapNet 77.10 22.80 34.40 77.80 79.20

LSTMFCN 88.58 36.88 40.83 92.62 71.58

InceptionTime 69.94 17.18 27.18 70.39 70.92

GTN 79.96 24.32 35.06 81.58 77.89

C-PPT 89.65 40.71 42.38 92.84 80.96

In Table 2, we conducted ablation experiments on the proposed channel-wise
prototype network using the following symbols: a) C-PPTone−channel employs a
single-channel prototype network structure; b) C-PPTno−channel represents the
basic network when the prototype network module is removed; c) C-PPT rep-
resents the original model using a channel-wise prototype network. It can be
observed that the AUC with a single-channel prototype network is not signifi-
cantly different from the case without the prototype module. However, our pro-
posed C-PPT outperforms other methods in terms of precision and AUC. This
indicates that adding the prototype network enhances the interpretability of the
model without adversely affecting its performance. In fact, it may even improve
the model’s performance. The optimization of the C-PPT model for the multi-
channel characteristics of blood pressure data results in particularly noticeable
improvements in model performance.

Table 2. The C-PPT model on blood pressure data underwent ablation experiments
with different channel prototype networks.

Methods Acc (%) Pre (%) F1 (%) Spe (%) AUC (%)

C-PPTone−channel 77.22 24.52 37.43 77.05 77.92

C-PPTno−channel 79.96 24.32 35.06 81.58 77.89

C-PPT 89.65 40.71 42.38 92.84 80.96
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4.5 Comparison of Different Loss Mechanisms

We evaluated the impact of the optimized loss functions on model performance
through ablation experiments. With other parameters fixed, we compared the
following scenarios in Table 3: a) using only the cross-entropy loss function Lpred;
b) using both Lpred + Lclst + Lsep; c) C-PPT, where the loss function is Lpred +
Lclst + Lsep + Ldist. Furthermore, to assess the influence of different channel
weights on model performance, we compared the following scenarios in Table 4:
a) Not setting the λ value; b) setting the λ. The results from Table 3 and Table 4
indicate that by optimizing the loss mechanism, the model’s metrics such as
accuracy, precision, F1 score, and AUC have been improved to varying degrees.
This enhancement contributes to an overall improvement in model performance
and aids in achieving more balanced results.

Table 3. The C-PPT model on blood pressure data underwent ablation experiments
with different channel prototype networks.

Methods Acc (%) Pre (%) F1 (%) Spe (%) AUC (%)

C-PPTLpred 82.97 28.42 39.43 84.72 80.37

C-PPTLpred+Lclst+Lsep 87.64 35.86 43.43 90.72 79.34

C-PPT 89.65 40.71 42.38 92.84 80.96

Table 4. The C-PPT model on blood pressure data underwent ablation experiments
with different channel loss weights.

Methods Acc (%) Pre (%) F1 (%) Spe (%) AUC (%)

C-PPT (no λ) 83.77 29.50 40.29 85.67 80.42

C-PPT 89.65 40.71 42.38 92.84 80.96

4.6 Visualization Analysis

In order to assess the interpretability of perioperative complication prediction
based on continuous blood pressure, we conducted a visual analysis by post-
training and marking, with bounding boxes, the parts of each test sample that
were most similar to the corresponding prototypes. For ease of analysis, the
marked region width was set to 15 min.

The C-PPT model utilizes representative prototypes trained from the entire
training set as global prototypes and references them when verifying local inter-
pretability on test samples. To demonstrate the model’s global interpretability
in perioperative complication prediction, we conducted an evaluative analysis in
Fig. 2. As shown in the figure, by comparing the global prototypes across three
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channels and their corresponding test samples, the proposed C-PPT model intu-
itively allows doctors to identify key regions contributing to complication deci-
sions. This region represents common features found by the model when similar
blood pressure waveforms occur in the corresponding results from a large number
of samples in the training set. It indicates that this region has a more signifi-
cant association with complication decisions compared to other regions. From
the graph, it is evident that the corresponding region in the test sample also
matches a similar area and maintains high similarity with the global prototype,
demonstrating the effectiveness of the global prototype.

Prototype for Systolic Blood Pressure
Test sample138

Test sample240

Prototype for Mean Arterial Pressure
Test sample1022

Test sample1308

Prototype for Diastolic Blood Pressure

Test sample41

Test sample5

Fig. 2. The global prototypes constructed by C-PPT, encompassing perioperative sys-
tolic pressure, diastolic pressure, and mean arterial pressure, serve as the basis for
decision-making in test samples.

In Figure 3, we demonstrate the locally interpretable effects of the C-PPT
model. We verify interpretability by matching the local prototypes, obtained by
selecting the prototype with the highest similarity in each respective channel
of the test samples to the corresponding channel, with the global prototypes
trained from the training samples. In the test samples, each channel of each
sample will have a set of local prototypes for the respective channel. We take
one sample from this to evaluate. We can see that for this test sample, sys-
tolic blood pressure and mean arterial pressure play a more important role in
the decision of this cardiovascular adverse event. Furthermore, we can observe
that the prototype region in the test sample corresponds to the corresponding
region of the global prototype with the same semantic concept. This indicates
that the C-PPT model can successfully capture representative prototypes from
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Prototype for Systolic Blood Pressure

Prototype for Mean Arterial Pressure

Prototype for Diastolic Blood Pressure

Test Sample

Fig. 3. The three rows in the test sample represent systolic pressure, diastolic pressure,
and mean arterial pressure during the perioperative period. These are matched with
the corresponding global prototypes obtained from the training set to achieve the
interpretability effect.

the test samples. By comparing the local prototypes with the global prototypes,
doctors can better capture the detailed features in blood pressure. Providing
this as a reference to doctors can effectively improve the efficiency of clinical
decision-making for them.

5 Conclusion

In this study, we proposed the Channel-wise Prototypical Part Transformer (C-
PPT), a novel fine-grained interpretable method specifically tailored for pre-
dicting complications based on multi-channel time-series blood pressure data
during the perioperative period. We systematically address the characteristics
of multi-channel blood pressure by developing a multi-channel prototype net-
work. This network is designed to capture the unique manifestations of each
channel in complication prediction tasks while effectively reducing unnecessary
interference between channels. Furthermore, we introduce a novel loss optimiza-
tion mechanism that significantly enhances the interpretability of prototypes by
considering the distances between different prototypes and incorporating them
into the loss function. We also pay particular attention to the contributions of
different channels to the prediction results by weighting the distance informa-
tion of different channels and integrating it into the loss function to optimize
model performance. Also conduct experiments on a real perioperative dataset,
where C-PPT outperforms all baseline models in all relevant metrics. The exper-
imental results not only demonstrate the superiority of our approach but also
showcase its potential in practical clinical applications. In future work, we plan
to explore the application potential of C-PPT in other key areas, such as emo-
tion recognition and behavior recognition, to further validate its wide-ranging
applicability.
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Abstract. Person search aims to simultaneously localize and identify a
query person from realistic and uncropped images, which consists of per-
son detection and re-identification (Re-ID). Existing person search meth-
ods and datasets predominantly focus on the visible light domain, and
have difficulty in alleviating modality discrepancies. Furthermore, exist-
ing visible-infrared person Re-ID methods struggle to adequately address
occlusions and handle background interference effectively. To address
the above issues simultaneously, we first construct a new large-scale
dataset, Multi-Modality Person Search (MMPS), which tackles the lack
of suitable benchmarks for person search in the visible-infrared domain.
Encompassing challenges of complex background interferences and occlu-
sions under modality discrepancies, MMPS includes 21,470 images and
1,012 identities across six different cameras. Furthermore, we propose
a novel visible-infrared person search method that integrates detection
and Re-ID into a progressive process. Specifically, Progressive Inclusion
(PI) is proposed to explore backgrounds and provide adaptive propos-
als. To better tackle the complex occlusions under significant modality
discrepancies, we present Discriminative Mix (DM) to synthesize more
diverse samples, leveraging specific pattern map embedding. This strat-
egy ensures that our model is not overfitted to specific patterns and is
capable of identifying diverse and distinctive human parts. Extensive
experiments demonstrate that our method (PI-DM) achieves state-of-
the-art performance on the task of visible-infrared person search. Our
dataset has been released on https://github.com/sysuchx/MMPS.

Keywords: Person search · Visible-Infrared · Novel benchmark

1 Introduction

Person search [22] aims to find specific pedestrians in scene images or video
frames obtained under different cameras. This task needs to simultaneously
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address the tasks of person detection [26] and re-identification (Re-ID) [5,29,31],
and has emerged as an important task with real-world applications [8]. Existing
methods [11,25] primarily focus on person search in visible light scenes. More-
over, the mainstream datasets CUHK-SYSU [19] and PRW [32] contain images
from a single modality. This presents environmental limitations, as in dark condi-
tions we may only acquire infrared images. On the other hand, in visible-infrared
scenarios, existing work [13,24,30] concentrates on person Re-ID (as shown in
Fig. 1a). In real life, infrared images usually encompass a substantial amount of
unrelated backgrounds and occlusions, as shown in Fig. 1b. This presents signif-
icant challenges to researchers, which we summarize as follows. First, existing
person search methods struggle to adequately alleviate modality discrepancies,
resulting in unsatisfactory performance in visible-infrared applications. More-
over, existing methods for visible-infrared person Re-ID can not handle occlu-
sions and background interference well. Even other strategies specifically for
occlusions struggle to effectively extract discriminative pedestrian features in
infrared scenarios. Besides, there is a lack of large-scale benchmark datasets in
the field of visible-infrared person search.

Fig. 1. Introduction of the task of (a) visible-infrared person Re-ID and (b) visible-
infrared person search in real-life cross-modality scenarios.

To address above issues, we construct a new large-scale dataset Multi-
Modality Person Search (MMPS), which effectively promotes the progress of
research and application in the cross-modality domain. Specifically, MMPS
includes challenges such as complex occlusions, scale variations, background
noise, and perspective distortion. This dataset comprises 21,470 images, which
surpasses that of existing person search datasets. These images contain 1,012
different pedestrian identities captured by six cameras. Our constructed MMPS
dataset can be used as an important benchmark for visible-infrared person
search.

Furthermore, we propose a novel method for visible-infrared person search.
Our method incorporates Progressive Inclusion (PI) and Discriminative Mix
(DM), which effectively handles the complex occlusions and background inter-
ferences under significant modality discrepancies. We first observe that the back-
ground information present in raw frames serves as a rich source of potential
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variations within the scene. By selectively integrating the information from
the foreground (person) and the background, we are able to construct more
diverse samples, simulating occlusion problems. These enhanced samples assist
the model in capturing a wide range of distinct human body parts, thereby
improving its robustness. PI incorporates an exponentially decaying threshold,
which applies heightened restrictions on background samples during the early
stage of training. This strategy effectively curtails the excessive introduction
of these samples, safeguarding the stability of early-stage training. As training
progresses, PI dynamically expands the search scope. Upon acquiring these pro-
gressive samples, we adopt a feature-tiered augmentation strategy DM, merging
the pattern maps of pedestrian samples with those of the backgrounds. Based
on the more diversified sample repository, DM constructs a dual-task harmo-
nization loss that tackles modality discrepancies under complex occlusions. In
comparison with existing data augmentation methods based on random strate-
gies [24,27], DM employs targeted augmentation, selectively mixing the specific
pattern map from the chosen samples. This empowers the extraction of finer and
more diverse discriminative pedestrian features under different modalities.

The main contributions can be summarized as follows:

– We first construct a new visible-infrared person search dataset Multi-Modality
Person Search (MMPS). This dataset encompasses challenges such as com-
plex background interferences and occlusions under modality discrepancies,
serving as a new benchmark.

– We propose a novel visible-infrared person search method that utilizes Pro-
gressive Inclusion (PI) strategy to adaptively filter proposals for our subse-
quent Discriminative Mix (DM) processing.

– Our DM mixes the specific pattern map of particular samples and employs
a dual-task harmonization loss, thereby effectively addressing complex occlu-
sions under modality variations and focusing on more diverse human parts.

– Results of extensive experiments demonstrate that our method achieves state-
of-the-art performance on visible-infrared person search.

2 Related Work

2.1 Person Search

Since two large-scale datasets CUHK-SYSU [19] and PRW [32] are introduced,
person search has garnered significant interest within the computer vision com-
munity. Most existing methods for this task can be roughly grouped into two-
stage and end-to-end approaches. Two-stage methods [3,7,32] separately train
the detection and Re-ID models. For end-to-end methods, OIM [19] first employs
the Faster R-CNN [15] as the detector, and shares base layers with the person
Re-ID network. Based on OIM, NAE [4] segregates the person embedding into
norm and angle components, which are respectively employed for detection and
Re-ID. Based on NAE, SeqNet [11] considers detection and Re-ID as a pro-
gressive process and tackles two sub-networks sequentially. Some approaches



64 H. Chen et al.

(COAT [25], PSTR [1]) employ an end-to-end architecture based on trans-
former [16]. COAT emulates the influence of external objects occluding a person
of interest at the token level. PSTR introduces a specialized module for person
search, which includes a detection encoder-decoder for detection and a distinctive
Re-ID decoder for person Re-ID. In the weakly supervised domain, CGPS [22]
utilizes two sub-networks to investigate different levels of context clues. Other
research efforts, such as AlignPS [23], first utilize an anchor-free basis. However,
most person search studies primarily focus on visible images, which limits the
applicability of these methods. In this paper, we expand the scope by incorpo-
rating the use of infrared scenarios.

2.2 Visible-Infrared Person Re-identification

Infrared imagery is a critical component in a majority of surveillance systems. A
large-scale visible-infrared person Re-ID dataset SYSU-MM01 [17] is proposed as
an important benchmark. And the authors who constructed this dataset present
a deep zero-padding strategy, which trains a single-stream network toward auto-
matically evolving domain-specific nodes. XIV-ReID [10] introduces an auxil-
iary X modality, serving as an assistant, and reconceptualizes infrared-visible
dual-mode cross-modality learning as a tri-modal learning problem. Using a
single-stream network structure, MPANet [18] identifies cross-modality nuances
in various patterns and jointly extracts discriminative features. To take the gray-
scale images as an auxiliary modality, a progressive modality-shared transformer
PMT [13] is proposed. Besides the single-stream methods, some methods employ
a dual-stream network. FMCNet [28] compensates for missing modality-specific
information at the feature level. A transformer-based visible-infrared network [2]
captures the long-range dependencies of person images and modality-specific rep-
resentations. CMTR [12] explicitly mines the information from various modali-
ties to deal with the insufficient perception of modality information. Other meth-
ods, such as CAJL [24], employ data augmentation strategies through random
color channel exchanging and random erasing. These methods typically work on
pre-cropped images, whereas our method processes raw frames directly and is
more attuned to real-world applications with complex occlusions.

3 Multi-modality Person Search Dataset

3.1 Motivation

At present, person search datasets mainly focus on retrievals in visible light
images, with relatively less exploration in the infrared domain. In the visible-
infrared field, existing datasets focus on cropped pedestrian images, excluding
full video frames, which somewhat hampers the advancement of person search
technology. Thus, there is a pressing need for a dataset that aligns closer with
practical application scenarios, enabling the establishment of relevant bench-
marks. Moreover, the task of visible-infrared person search needs to confront
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challenges such as background interference and member occlusion in cross-
modality scenarios, which presents greater complexity. Considering these emerg-
ing challenges, we propose Multi-Modality Person Search (MMPS) dataset to
promote the development of cross-modality person search research and applica-
tions.

Table 1. Statistical comparison of datasets on person search.

Dataset #Images #Cameras #Person ID #B-Box Modality

CUHK-SYSU [19] 18184 Vary 8432 96143 Visible

PRW [32] 11816 6 932 43110 Visible

MMPS 21470 6 1012 50142 Visible, Infrared

Fig. 2. Illustration of diverse challenges in our MMPS dataset.

3.2 Dataset Description

Before releasing the dataset, we ensure that every individual appearing in the
dataset has signed a consent letter for video recording and data collection for
academic use. The video frames in our dataset are derived from the original
videos of another dataset CM-Group [20]. Differing from CM-Group, we increase
the time intervals between adjacent frames within the same video, allowing for
larger relative position changes of pedestrians across different images and thus
increasing the complexity. We also select video frames with more complex sce-
narios for person search tasks. Our MMPS dataset contains more images than
the existing mainstream person search datasets, with detailed statistics and com-
parisons shown in Table 1. Moreover, compared to other visible-infrared person
Re-ID datasets, MMPS is more challenging. First, visible-infrared person search
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needs to handle issues of occlusion. These occlusions may arise from the back-
ground (Fig. 2a) or from other pedestrians (Fig. 2b). Second, the interference
of irrelevant backgrounds is also a challenge, as some backgrounds are quite
similar to real pedestrians, and we need to eliminate such disturbances (Fig. 2c).
Third, our dataset also contains some perspective distortion challenges (Fig. 2d).
Besides these challenges, visible-infrared person search also faces similar chal-
lenges to person Re-ID, such as scale variations (Fig. 2a) and clothes changes
(Fig. 2b). For the selected video frames, we employ PP-YOLOE [21] to obtain
preliminary pedestrian bounding boxes. Subsequently, we manually correct any
erroneous or missed bounding boxes. Finally, we perform cross-camera associa-
tions for pedestrians and provide labels.

3.3 Evaluation Protocol

Our MMPS dataset is randomly divided into a training set and a test set, with
a near 1:1 ratio. There is no overlap in identities between the training and test
sets, and the ratio of the number of identities in the training set to that in the
testing set is approximately 1:1. The test set is further divided into two subsets:
one composed of infrared images, and the other of visible images. MMPS has two
different evaluation settings: the Infrared-Visible mode and the Visible-Infrared
mode. In the Infrared-Visible mode, all cropped pedestrian images from the
infrared subset serve as the query, while all original images from the visible
subset form the gallery for search operations. In the Visible-Infrared mode, the
roles of the subsets are swapped. To evaluate the performance of the models, we
utilize the Cumulative Matching Characteristics (CMC) curve at Rank-1 (R1),
Rank-5 (R5), Rank-10 (R10), and the mean Average Precision (mAP) metric.
For each pedestrian query, a match is deemed successful only when the identity
of the pedestrian located by the algorithm in the retrieved frame corresponds
with the query.

4 Method

4.1 Preliminary

In this work, we adopt the typical person search framework SeqNet [11], which
achieves sequential person search with two sub-networks. Specifically, this frame-
work is developed upon the Faster R-CNN architecture [15], as shown in Fig. 3a.
The first sub-network, a standard Faster R-CNN head, is used as a Region Pro-
posal Network (RPN). This can generate a set of proposals, including positive
samples for each pedestrian and some negative samples corresponding to the
background. The second head NAE [4] is utilized to further refine these bound-
ing boxes and extract their distinctive features.
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Fig. 3. Introduction of the (a) SeqNet and (b) our method PI-DM. Our method pre-
serves part of the SeqNet (gray part), then incorporates Progressive Inclusion (PI) and
Discriminative Mix (DM). (Color figure online)

4.2 Progressive Inclusion

Our motivation is that during training, the model’s comprehension of pedestrian
and background features evolves progressively. As shown in Fig. 3b, we keep part
of the SeqNet (gray part). This part generates a substantial number of proposals
that could potentially contain pedestrians or backgrounds. For each proposal,
the network provides a prediction score (Cls) with respect to person detection.
During the initial stages of training, the model might not be adequately robust.
To lay the groundwork for a stable feature space, we meticulously filter the pro-
posals. This prevents the excessive inclusion of background samples from com-
promising the learning of pedestrian features. As the training advances to the
later stages, our model develops a refined understanding of pedestrian features.
To enhance the feature discrimination capabilities within complex backgrounds
and to emulate the genuine environmental feature distribution, we progressively
introduce more background proposals for subsequent mixing. Our method initi-
ates by mapping the predicted values within the [0, 1] range, with higher values
suggesting a higher likelihood that the proposal contains a real pedestrian. To
facilitate the progressive inclusion of background samples, we then set a thresh-
old τ that gradually adjusts, allowing for background samples exceeding this
threshold to be forwarded for subsequent network processing:

τ = η0e
−γ/Γ , (1)

where γ/Γ represents the current/total training epoch and η0 is the hyperpa-
rameter. We feed both the background proposals that meet the condition and
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other positive proposals into the subsequent network for processing. While main-
taining a comprehensive understanding of pedestrian features, our method also
enhances its capability to handle backgrounds, thereby improving the overall
performance of the model. For the sake of clarity, we denote the visible and
infrared modalities as t ∈ {v, r}, except when specified otherwise. Suppose our
preceding network generates two sets of proposals V and R:

V = {Xi
v}Nv

i=1 = {P i
v}Nv(p)

i=1 ∪ {Bi
v}Nv(b)

i=1 , (2)

R = {Xi
r}Nr

i=1 = {P i
r}Nr(p)

i=1 ∪ {Bi
r}Nr(b)

i=1 . (3)

In Eq. 2 and Eq. 3, X represents all obtained proposals. V contains Nv(p) visi-
ble pedestrian proposals (P i

v) and Nv(b) visible background proposals (Bi
v). R

contains Nr(p) infrared pedestrian proposals (P i
r) and Nr(b) infrared background

proposals (Bi
r). The features F corresponding to these proposals are:

F = {f i
v}Nv(p)+Nv(b)

i=1 ∪ {f i
r}Nr(p)+Nr(b)

i=1 . (4)

4.3 Discriminative Mix

We utilize the proposals from our Progressive Inclusion as samples for Discrim-
inative Mix. We first split the proposal feature maps into l patterns. Different
patterns focus on the distinctive features of various parts of pedestrians. Specifi-
cally, we use P(·) to generate initial human pattern maps. These are subsequently
passed through a sigmoid function σ(·), which yields the corresponding pattern
map probabilities F i

t (k). This process can be mathematically represented as:

{F i
t (k)}l

k=1 = σ(P(f i
t )), (5)

where P is a convolution with kernel size 1. Following this, the pattern map
embeddings xi

t are computed as below:

xi
t = [xi

t(k)]lk=1 = [G(F i
t (k) � f i

t )]
l
k=1. (6)

Herein, � denotes element-wise multiplication, G(·) denotes Global Average
Pooling, and [·] is concatenate operation. Note that x in Eq. 6 is not the same as
X in Eq. 2 and Eq. 3. The pattern map embeddings xi

t refer to features, whereas
X in Eq. 2 and Eq. 3 represent proposals. During training, within the current
batch, we define the multi-pattern distance descriptor Θ̃(xi

t,x
j
t ) between two

embeddings xi
t and xj

t :

Θ̃(xi
t,x

j
t ) = [Θ(xi

t(1),xj
t (1)), · · · , Θ(xi

t(l),x
j
t (l))], (7)

where Θ(·, ·) represents the Euclidean distance between two features. Then our
method creates new positive and negative samples by exchanging the specified
pattern map between particular samples. This not only simulates occlusions,
but also enables the model to capture discriminative features of diverse human
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body parts. For the given pedestrian pattern map embeddings xi
t = pi

t, we first
identify the most similar one βi′

t within the background samples (similarity is
determined by the Euclidean distance between the entire embeddings). Upon
identifying the corresponding βi′

t for pi
t, we delve into exploring the specific

pattern map between them:

ωi
t = arg max

k∈{1,2,...,l}
Θ̃(pi

t,β
i′
t )[k], (8)

where ωi
t is the index of the pattern map that we aim to mix. Mixing the most

dissimilar pattern enables the model in focusing on more diverse human parts.
Then we seek out the hardest positive sample pi+

t (the most dissimilar pedestrian
sample with the same ID as pi

t) within the current batch. We conduct following
exchanges to construct new samples:

pi
t′ = [pi

t(1), · · · ,βi′
t (ωi

t), · · · ,pi
t(l)],

pi+
t ′ = [pi+

t (1), · · · ,pi
t(ω

i
t), · · · ,pi+

t (l)],

βi′
t ′ = [βi′

t (1), · · · ,pi+
t (ωi

t), · · · ,βi′
t (l)].

(9)

To distinguish different pedestrians while simultaneously differentiating between
foreground and background, we employ a dual-task harmonization loss Ldual,
which is designed to better address the challenge of person search.

Ldual = αL1 + (1 − α)L2, (10)

L1 =
[∥∥pi

t′ − p�
t ′

∥∥ −
∥∥∥pi

t′ − βi′
t ′

∥∥∥ + m
]
+

, (11)

L2 =
[∥∥pi

t′ − pi+
t ′∥∥ − ∥∥pi

t′ − pi−
t ′∥∥ + m

]
+

, (12)

where m controls the margin and α is the hyperparameter to balance two terms.
[·]+ means max(·, 0). ‖·‖ denotes the Euclidean norm of the features. pi−

t ′ is the
pedestrian sample from other pedestrian identities that is most similar to pi

t′,
while p�

t ′ is the most dissimilar pedestrian sample to pi
t′ among all pedestrian

samples. This can effectively leverage a diverse range of complex positive and
negative samples, thereby mitigating overfitting to specific parts and modalities.
Our Discriminative Mix can be categorized into two types: intra-modality and
inter-modality. With pi

v as an example, for inter-modality mix, we identify βi′
r

and pi+
r in another modality and then execute the mix. Similarly, for pi

v′ in
Eq. 11 and Eq. 12, we search in another modality to find corresponding p�

r ′ and
pi−

r ′.
Besides the above optimizations, in C of Fig. 3b, we also apply center cluster

loss Lcc, identity classification loss Lid, separation loss Lsep, modality-specific
ID loss Lsid, and modality learning loss LMM in MPANet [18] with coefficients
of 1, 1, 0.5, 0.5, 2.5. These five losses are combined into Lo, and together with
our specially designed Ldual, they jointly optimize the model.
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Table 2. Comparison of CMC (%) and mAP (%) performance with state-of-the-art
person search methods on our MMPS dataset.

Methods Publication Visible-Infrared Infrared-Visible

mAP R1 R5 R10 mAP R1 R5 R10

SeqNet [11] AAAI 2021 17.2 28.7 41.6 49.4 17.4 31.2 43.6 50.8

COAT [25] CVPR 2022 18.0 32.3 44.3 50.7 18.2 33.0 48.1 52.3

PI-DM − 36.1 51.2 70.6 77.1 36.7 51.9 71.6 77.9

5 Experiment

5.1 Implementation and Performance

Our model implementation utilizes PyTorch [14], with all experiments carried
out on a single NVIDIA RTX 8000 GPU. The backbone network comprises
a ResNet50 architecture [9] pre-trained on the ImageNet dataset [6]. During
training, we follow SeqNet [11] and train for 25 epochs. As shown in Table 2,
we have conducted a comparison of the performance with current mainstream
person search methods on the MMPS dataset. It is evident that our method PI-
DM achieves substantial improvement compared to state-of-the-art techniques.
Methods such as SeqNet largely limit themselves to comparing Re-ID features
corresponding to the input pedestrian proposals with those stored in the memory
bank, without sufficiently exploring the relationship with Re-ID features within
the same batch. However, in the cross-modality context, we need to deeply asso-
ciate instances of different modalities within the same batch, effectively mini-
mizing inter-modality discrepancies. Compared to the current occlusion-handling
method COAT [25], our method demonstrates significant improvements in both
Visible-Infrared mode and Infrared-Visible mode, as observed in the R1/mAP
metrics. Infrared images exhibit lower contrast, making occlusions and back-
ground interference more challenging to address; as a result, method COAT
underperforms. In contrast, our proposed PI-DM method progressively explores
background information, mixing specific pattern map of particular proposals.
Through our designed dual-task harmonization loss, PI-DM can focus on a
broader range of human parts and capture more precise discriminative features
under modality discrepancies.

5.2 Ablation Study

To further demonstrate the effectiveness of our method, we conduct ablation
experiments in Table 3. In the first row of Table 3, S* indicates that we retain
the gray part of SeqNet in Fig. 3 and apply the loss Lo. S* does not utilize our
Progressive Inclusion strategy (PI) and Discriminative Mix strategy (DM). The
effectiveness of each component is revealed. The comparison between the third
and fifth rows indicates that our PI strategy respectively improves the mAP/R1
accuracy by 0.6%/1.2% on Visible-Infrared mode, 0.4%/0.4% on Infrared-Visible
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Table 3. Ablation experiments for different components on our MMPS dataset.

Methods MMPS

Visible-Infrared Infrared-Visible

mAP R1 mAP R1

S* 33.6 48.0 34.3 49.2

PI-DM w/o DM 34.9 49.3 35.2 50.1

PI-DM w/o PI 35.5 50.0 36.3 51.5

PI-DM (intra) 35.4 50.0 36.1 51.4

PI-DM 36.1 51.2 36.7 51.9

mode. The comparison between the second and fifth rows demonstrates that our
DM strategy also enhances the model’s performance. Specifically, on Visible-
Infrared mode, DM improves the mAP/R1 accuracy by 1.2%/1.9%; on Infrared-
Visible mode, DM improves the mAP/R1 accuracy by 1.5%/1.8%. To compare
the effectiveness of intra-modality and inter-modality strategies within our DM
approach, we conduct an experiment on the intra-modality strategy, as shown
in the fourth row (whereas other rows utilized the inter-modality strategy if
using DM). The results from the fourth and fifth rows reveal that employing the
inter-modality strategy leads to a more substantial improvement in performance.
This is attributable to the fact that inter-modality exploration is more effective
at generating diverse samples for visible-infrared person search, enabling the
model to better learn distinctive features from different human parts.

5.3 Discriminative Mix

We also compare the performance of our Discriminative Mix (DM) strategy on
the visible-infrared person Re-ID task. We conduct experiments on the main-
stream visible-infrared dataset SYSU-MM01 [17]. This dataset has two different
evaluation settings: the All-search(A) mode and the Indoor-search(I) mode.

Since it is difficult for us to obtain appropriate background samples on this
dataset, we set α in Eq. 10 to 0. Moreover, during the mix operation, we only
consider exchanges between pedestrian pattern maps, that is, we replace βi′

t in
Eq. 8 with hard negative pedestrian samples pi−

t . In Eq. 9, we only consider the
mix between pi

t and pi−
t , after which we proceed with subsequent operations.

As shown in Table 4, our strategy achieves satisfactory performance on both two
modes, surpassing methods such as CAJL [24], MPANet [18], CMTR [12], and
PMT [13]. This demonstrates that our DM strategy can also effectively extend to
gain richer samples on the visible-infrared person Re-ID task, enabling the model
to better learn discriminative features in different pattern maps. In contrast, the
features learned by other methods lack robustness. For instance, CAJL may
introduce potential information loss and significant uncertainty with its random
strategy on data augmentation. This hinders the model from stably learning
modality-specific features.
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Table 4. Comparison with other person Re-ID methods on SYSU-MM01 dataset. This
dataset has two testing modes: A (All-search) mode and I (Indoor-search) mode.

CAJL [24] MPANet [18] FMCNet [28] CMTR [12] TransVI [2] PMT [13]Ours

mAP(A) 66.9 68.2 62.5 62.9 68.6 65.0 69.9

R1(A) 69.9 70.6 66.3 65.5 71.4 67.5 73.1

mAP(I) 80.4 81.0 74.1 76.7 81.3 76.5 81.6

R1(I) 76.3 76.7 68.2 71.5 77.4 71.7 77.9

5.4 Hyperparameter Analysis

Influence of l. l represents the total number of pattern maps. We test our
method using different number of pattern maps, and the results of mAP and
R1 are shown in Fig. 4a and Fig. 4b. Our evaluations are also divided into two
modes: Visible-Infrared (V-I) mode and Infrared-Visible (I-V) mode. When l is
relatively small, the performance of the model tends to be unsatisfactory. As l
increases gradually, there is a corresponding enhancement in the accuracy of the
model. The model reaches optimal performance when l = 6, after which point
there is a slight decrease. Hence, we set l to 6 for all remaining experiments in
our paper.

Influence of α. We investigate the impact of the hyperparameter α in Eq. 10,
which is tasked with striking a balance between the L1 and L2 losses. We exper-
iment with a series of candidate values, namely {0.1, 0.3, 0.5, 0.7, 0.9}, in order
to scrutinize their effects on the metric of R1 and mAP, as presented in Fig. 4c
and Fig. 4d. We conduct tests on both two modes: V-I mode and I-V mode.
Our observations reveal that both losses contribute positively to the learning of
Re-ID features, with α = 0.5 culminating in the most effective performance.

Influence of η0. In Fig. 4e and Fig. 4f, we compare different initial threshold
values of η0, set to 0.6, 0.8, 1.0, respectively. Experiment results indicate that
when η0 is set to 0.8, the model performance is optimal on V-I mode and I-V
mode. Excessively high thresholds may result in insufficient background sam-
ples being introduced, lacking adequate background information to construct a
richer sample set. When the threshold is set too low, too much noise may be
introduced in the early stages of training, undermining the model’s stability.
Additionally, we compare the effects of setting the threshold to a fixed value of
0.8, as represented by the horizontal coordinate marked with 0.8* in Fig. 4e and
Fig. 4f. Setting a constant threshold might lead to an insufficient diversity of
samples in the later stages. When the threshold is set to a fixed value, the model
is unable to progressively explore the background samples. In the latter stages
of training, once the model has stabilized, the background samples cannot be
properly expanded, preventing the model from exploring a richer set of samples
to enhance its robustness.
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Fig. 4. Influence of hyperparameter.

Fig. 5. Visualizing of the top five retrieval results in two modes. Each row represents
a different method. Green/red bounding boxes represent correct/wrong matchings.
(Color figure online)

5.5 Visualization

In Fig. 5, we enumerate two visual retrieval examples of different methods
(SeqNet [11] and COAT [25]) on person search. It is evident that our approach
performs better in terms of search compared to existing methods. The SeqNet
and COAT methods struggle to effectively address the differences between
modalities and are unable to capture more precise discriminative information for
search purposes. In Fig. 5b, these methods fail to properly deal with occlusions
under different modalities. Likewise, in Fig. 5a, these methods show limitations
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when different pedestrian features are in close spatial proximity. In contrast,
our approach is capable of overcoming these challenges. Furthermore, the com-
parative results in the third and fourth rows of Fig. 5a and Fig. 5b validate the
efficacy of our DM strategy.

6 Conclusion

In this paper, we propose a novel method for person search, integrating detection
and Re-ID into a progressive process. Specifically, we first construct a new large-
scale visible-infrared person search dataset MMPS. Furthermore, we propose
Progressive Inclusion to adaptively provide proposals. The Discriminative Mix
strategy is proposed to mix specific feature pattern maps, simulating occlusions
and providing a more diverse sample pool. This enables our model to effec-
tively identify a variety of human parts and learn discriminative features better.
Extensive experiments demonstrate that our method achieves state-of-the-art
performance on visible-infrared person search.
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Abstract. Multiple datasets have been created for training and testing
appearance-based gaze estimators. Intuitively, more data should lead to
better performance. However, combining datasets to train a single esti-
mator rarely improves gaze estimation performance. One reason may be
differences in the experimental protocols used to obtain the gaze samples,
resulting in differences in the distributions of head poses, gaze angles, illu-
mination, etc. Another reason may be the inconsistency between meth-
ods used to define gaze angles (label mismatch). We propose two inno-
vations to improve the performance of gaze estimation by leveraging
multiple datasets, a change in the estimator architecture and the intro-
duction of a gaze adaptation module. Most state-of-the-art estimators
merge information extracted from images of the two eyes and the entire
face either in parallel or combine information from the eyes first then
with the face. Our proposed Two-stage Transformer-based Gaze-feature
Fusion (TTGF) method uses transformers to merge information from
each eye and the face separately and then merge across the two eyes.
We argue that this improves head pose invariance since changes in head
pose affect left and right eye images in different ways. Our proposed
Gaze Adaptation Module (GAM) method handles annotation inconsis-
tency by applying a Gaze Adaption Module for each dataset to correct
gaze estimates from a single shared estimator. This enables us to combine
information across datasets despite differences in labeling. Our experi-
ments show that these innovations improve gaze estimation performance
over the SOTA both individually and collectively (by 10%–20%). Our
code is available at https://github.com/HKUST-NISL/GazeSetMerge.

Keywords: gaze estimation · transformers · feature fusion ·
multi-dataset training

1 Introduction

Estimation of human gaze plays important roles in many applications, such as
human-computer interaction [2,3], virtual reality [1], attention analysis [4,5] and
psychological studies [6].

Conventional methods, such as those based on pupil center corneal reflec-
tions (PCCR), use 3D eye models to compute the gaze direction [11]. These
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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require special measurement setups, such as active infrared illumination, to esti-
mate model geometry. In contrast, appearance-based gaze estimators use input
from commonly available RGB web cameras, which are more convenient and
less expensive. Unfortunately, estimates from them are less accurate than those
from PCCR-based systems. The current lowest reported within-person error of
gaze estimation is 4.04◦ [42] on MPIIFaceGaze. In contrast, manufacturers of
PCCR-based systems typically report accuracies of less than one degree.

However, the gap between the two continues to shrink, most recently due
to the use of Convolutional Neural Networks (CNN) [7–9] and transformers.
Many CNN architectures have been proposed for appearance-based gaze esti-
mation. Zhang et al. employed a multi-modal model that used eye images and
an estimated head pose vector as inputs to estimate gaze direction [7]. Later,
they applied spatial weighting to feature maps from the face image to enhance
information from eye regions [8]. Other studies used three separate pipelines
to extract features from images of the head and the two eyes and then fused
them to predict the gaze [9,12]. Merging information from the eyes and the face
improves estimation accuracy.

Since appearance-based gaze estimators rely heavily on training data, many
datasets have been proposed to train gaze estimators. Initial datasets were col-
lected under fairly well-controlled and limited conditions (e.g., ranges of head
poses and gaze angles). More recent datasets have been collected on conditions
of increased diversity. The availability of more data can potentially increase the
performance of appearance-based gaze estimators, but can also introduce new
challenges. This paper seeks to address two of these challenges.

First, increases in the head pose range have spurred the development of new
architectures that combine information from images of the two eye regions (which
primarily indicate gaze direction in head-centric coordinates) and an image of
the entire face (which primarily indicates head pose). Many SOTA (state-of-the-
art) methods combine this information in parallel [9], or combine information
from the eyes first followed by the face image [12].

To improve upon these approaches, we propose a Two-stage Transformer-
based Gaze-feature Fusion (TTGF) architecture, which combines information
from each eye image with the face image separately and then integrates infor-
mation across the two eyes. This approach is motivated by the fact that the head-
centric gaze directions of the two eyes differ and should thus each be merged with
the face image. This may also compensate for situations where the reliability of
information from the two eyes may differ, e.g., due to occlusion.

Second, although intuitively increasing the amount of data by combin-
ing datasets should improve performance, inconsistencies in annotation among
datasets make it difficult to improve accuracy by simply combining multiple
gaze datasets. To provide a normalized gaze annotation, a common scheme is
to rotate the gaze vector from the gaze origin to the target point by a rotation
matrix that depends upon the head pose [31]. Differences between the meth-
ods for head pose estimation and target point estimation lead to inconsistency
among different datasets. Even when the subject’s head is constrained by a chin
rest [29], head pose estimation error can still exist due to the placement of the
subject’s head in the chin rest.
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To address this, we propose the use of a Gaze Adaption Module (GAMs)
for each dataset, which adjusts the gaze label from a shared estimator so it
is consistent with the dataset of the source image. This enables multi-dataset
training by simply adding GAM to the model’s gaze regression head.

Our experimental results demonstrate that these two innovations lead to
state-of-the-art performance on multiple datasets, under training with both sin-
gle datasets and mixed datasets.

2 Related Work

Gaze Estimation Methods. Gaze estimation methods can typically be catego-
rized as either model-based or appearance-based. Model-based methods usually
construct the 3D model of the head and eyes. The gaze direction is calculated by
utilizing geometric information [11,13–15]. Model-based methods usually require
time-consuming personal calibration to fit the subject-specific parameters, such
as cornea radius and kappa angles.

In contrast, appearance-based methods directly learn mapping functions from
a large number of image-gaze sample pairs. Early approaches used conventional
regression to perform the mapping [16–18]. More recently, CNNs have signifi-
cantly improved the performance of appearance-based gaze estimation. Zhang
et al. proposed the first CNN-based network to regress the gaze direction from
a cropped eye image, and a head pose vector [7]. They later proposed to use
the learnable spatial weights to enhance the information from the eye regions in
the face image [8]. Krafka et al. proposed iTracker, a multi-region CNN model,
which takes both the head and eye images as input. To further improve the
accuracy, Chen et al. investigated the dilated convolution layers to efficiently
increase the receptive field sizes of the features [9]. Researchers have now started
to use transformer-based networks, which can further improve gaze estimation
accuracy [19–21].

Transformers. The Transformer architecture was first introduced by Vaswani
et al. for natural language processing [38]. It consists of self-attention layers,
layer normalization, and multi-layer perceptron layers. Compared with recurrent
networks, the global computations and efficient memory of self-attention layers
make transformers more suitable for long sequences.

The Vision Transformer (ViT) was proposed by Dosovitskiy et al. for image
classification tasks [37]. ViT divides one image into non-overlapping patches.
A transformer encoder is applied to the features extracted from the patches.
Transformers have achieved state-of-the-art in large-scale image classification
tasks, leading to their application to many other vision tasks [39–41].

Recently, a few researchers have explored the capability of transformers in
gaze estimation. Cheng et al. proposed GazeTR-Hybrid where they used con-
volutional neural networks to extract the feature map of an input head image,
then treated the features at different positions as a sequence of features input
to a transformer encoder [19]. Cai et al. proposed iTracker-MHSH [21]. Inspired
by iTracker, it uses a transformer to integrate the features of the head and eye
images.
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Mixed Dataset Training. There are two main advantages to mixed dataset
training. First, it provides a single model applicable to multiple datasets. Second,
model training may benefit from the increased amount of data. Mixed dataset
training has been applied to many computer vision tasks, such as person reiden-
tification [22,23], monocular depth estimation [24], semantic image segmentation
[25,26], video quality assessment [27,30] and 3D object detection [28]. Address-
ing the challenges of mixed dataset training is task-specific. For example, to mix
image segmentation datasets, category merging needs were conducted before
training [25,26]. For video quality assessment [27], the challenge was to resolve
inconsistent ranges of subjective quality scores across datasets.

To the best of our knowledge, we are the first to propose mixed dataset
training for gaze estimation. There are two challenges that must be addressed.
First, the distribution of gaze vectors and head poses varies between different
gaze datasets. Second, there exists annotation inconsistency in gaze vectors from
different gaze datasets.

3 Annotation Inconsistency

The gaze vector is defined as the vector starting from the gaze origin to the
gaze target. Gaze dataset collection requires an experimental setup to capture
three types of information in camera coordinates: 1) the position of the visual
target Pt, 2) the position of gaze origin Po, and 3) the head pose R [32]. However,
different datasets utilize different methods to get these values, leading to different
annotations.

Inconsistency in Gaze Target Estimation. Usually, the visual target is indi-
cated by a moving dot on a screens. To determine the position of the dot target,
the intrinsic parameters of the camera must be obtained beforehand. MPIIGaze
uses a mirror-based calibration method [32] to estimate the 3D positions of each
screen plane. Finally, the position of the moving dot is computed based on the
screen size and resolution. In addition to a moving dot on the screen, EYEDIAP
has an additional floating ball visual target. Its position is estimated first in an
RGB-D sensor coordinate system and then transformed to the camera coordinate
system. Imprecision in the RGB-D sensor, errors in the screen-to-camera calibra-
tion and RGB-D to-camera calibration will all contribute to the inconsistency
of the gaze target position pt.

Inconsistency in Gaze Origin and Head Pose Estimation. There are
inconsistencies between datasets in the selection of gaze origin and the estimation
of head pose. In early work, gaze was estimated eye images, where the eye center
defined the gaze origin [7,35,36]. More recently, people estimate gaze from the
whole head image, where the gaze origin is usually set at the center of the
head [10,33,34]. To get the 3D head pose, MPIIGaze and ETH-XGaze detect
landmarks from the 2D head image and fit a 3D morphable model of the head
to the detected landmarks. EYEDIAP directly uses the depth data from the
RGB-D sensor to fit a 3D Morphable Model.
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Fig. 1. The proposed framework contains two modules: 1) TTGF and 2) GAM. The
TTGF applies two-stage feature fusion to the features of the head and eyes with trans-
formers, and the GAM produces a gaze offset to adjust the predicted gaze for mixed
datasets training.

4 Method

Figure 1 shows our framework, which consists of an eye-head transformer-based
feature fusion module for gaze estimation followed by a set of gaze adaptation
modules. We described these in more detail below.

4.1 Feature Fusion with Transformers

A typical transformer encoder contains L transformer blocks, each containing
multi-head self-attention (MHSA) layers, layer normalization (LN), and multi-
layer perceptron layers (MLP). To process an input feature matrix Z ∈ R

n×d,
MHSA projects Z into Q ∈ R

n×dk , keys K ∈ R
n×dk and values V ∈ R

n×dv

where n is the number of tokens and d, dk, dv are the dimension of the feature,
key/query and value.

The attention is computed through the following equation:

Attention(Q;K;V ) = softmax(
QKT

√
dk

V ). (1)

Combined with LN and MLP, the overall equations for the transformer encoder
with L transformer blocks are

z′
l = MSA(LN(zl−1)) + zl−1, l = 1...L, (2)

zl = MLP(LN(z′
l)) + z′

l, l = 1...L, (3)
y = LN(zL). (4)
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Krafka et al. proposed iTracker [12] to estimate gaze by integrating the fea-
tures of the head and eyes using several fully connected layers. To better fuse fea-
tures, we propose the two-stage transformer-based gaze-feature fusion (TTGF)
architecture shown in Fig. 1. This architecture applies three transformer encoders
to fuse the features from the head and eye images in two fusion steps, 1) head-eye
fusion and 2) left-right fusion. The idea of using two-step fusion is based on the
intuition combining information of the head and one eye enable rough inference
of the person’s gaze direction. The second step combines the two rough estimates
into a single more precise estimate.

In our design, the architectures of all three fusion modules are identical. One
TGF module accepts two gaze-related features and produces a fused feature. We
describe the computation in ta TGF formally with the following equation:

TGF(f∗, f†) = CAT(FC(Trans([f∗; f†]))), (5)

where Trans([f∗; f†]) is the transformer used for fusing the head-eye features or
eye-eye features, FC is a linear layer used to project the features to a specific
size, and CAT concatenates the outputs of the transformer to generate fused
features. In the head-eye fusion stage, each eye feature f le or fre is fused with
the head feature fh:

f lh = TGFlh(f le, fh) (6)

frh = TGFrh(fre, fh) (7)

In the second stage, the two fused eye-head features are fed into a third TGF
module to fuse features from left and right:

f lr = TGFlr(f lh, frh) (8)

Finally, the fused feature f lr is fed to an MLP to get the predicted gaze g:

g = MLP(f lr). (9)

4.2 Gaze Adaptation Module

Suppose we have M gaze datasets, D = {D0,D2, ...,DM−1}. Typically, we need
to train M models: one for each dataset to get good performance. A model
trained on Di typically performs poorly on Dj where i �= j.

Instead, our approach trains only one model and M − 1 Gaze Adaptation
Modules (GAMs). The GAM is a module consisting of a M MLPs, one for each
dataset i ∈ {0, . . . , M − 1}. Each MLP, MLPi(·), accepts the extracted feature
f lr and produces a gaze offset assuming the sample comes from dataset i. D0 is
regarded as the anchor dataset, so its offset is always zero, i.e., MLP0(·) = 0 and
does not need to be trained. For the others, the MLP has two layers with GELU
nonlinearities. If the sample comes from dataset i, the corrected gaze vector is
given by ĝ = g + Δg, where Δg = MLPi(f lr).
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4.3 Architecture Details

The whole architecture contains three pipelines for the face and two eye images.
All the backbones are ResNet18 networks, which are initialized from the model
trained on ImageNet. The input face image size is 224 × 224 × 3. We crop the
eye patches according to the landmarks and use RoI align to resize the cropped
patches to 128 × 128 × 3. The estimated gaze contains the yaw and pitch rep-
resenting the 3D gaze direction in the camera coordinate system. We chose L1
loss as the loss function for gaze estimation.

For TTGF, we set the number of heads of all MSAs as 8 and the hidden size
of the MLP is 2048. We use 8 repeated blocks in each transformer encoder. After
each transformer encoder, the features are projected with a linear layer whose
output size is 128. For the MLPs for both gaze regression and the GAMs, the
sizes of the hidden layers are identically set to 128.

5 Experiments

In this section, we introduce the experimental settings and the evaluation
datasets we selected and evaluate our proposed TTGF and GAM in two types
of experiments. We first compare our method with the state-of-the-art methods
for gaze estimation performance. Then we perform ablation studies to determine
the effects due to TTGF and GAM respectively and study the effect of multiple
dataset training.

Dataset for Evaluation. For evaluating gaze estimation performance, we used
three gaze datasets to evaluate the gaze estimation performance as shown in
Table 1: MPIIFaceGaze [8], RT-GENE [10], and EYEDIAP [34]. MPIIFaceGaze
dataset is based on MPIIGaze, but includes face and eye images. It contains 45K
images collected from 15 subjects. We used leave-one-person-out cross-validation
with this dataset. The RT-GENE dataset consists of 123K samples from 15
participants. We used three-fold cross-validation with this dataset. The raw data
of the EYEDIAP dataset has 94 videos collected from 16 subjects. We used the
sampling scheme from [33] to extract face images and four-fold cross-validation.
For our experiments on multi-dataset training, we trained 15 models (one for

Table 1. Overview of the datasets used for evaluation and anchor dataset in our
experiments. We show the number of subjects, the range of gaze, and the head pose in
both horizontal and vertical directions in the camera coordinate systems.

Dataset # Subjects Gaze Head Pose # Data

MPIIFaceGaze [8] 15 ±20◦, ±20◦ ±15◦, 30◦ 45K images

RT-GENE [10] 15 ±40◦, −40◦ ±40◦, ±40◦ 123K images

EYEDIAP [34] 16 ±25◦, 20◦ ±15◦, 30◦ 94 videos

ETH-XGaze [33] 110 ±120◦, ±70◦ ±80◦, ±80◦ 1.1M images
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each subject left out from MPIIFaceGaze), where each person was assigned to
one of the folds in the other two datasets. Performance for each fold in the other
two datasets was computed by averaging the performance of the models from
the MPIIFaceGaze subjects assigned to that fold.

Anchor Dataset and Pre-training. ETH-XGaze [33] is a large-scale gaze
dataset that consists of 1,083,492 image samples from 110 participants (47 female
and 63 male). It has the largest range of head poses compared to the evaluation
dataset and the gaze direction is evenly sampled both horizontally and vertically
as shown in Table 1. The large variation and scale make it a suitable dataset as
the anchor dataset D0 and for pre-training. The whole dataset contains three
parts: the training set, the within-dataset, and the person-specific evaluation
set. The training set has 765K images of 80 subjects. We use this part as the
anchor set and also for pre-training. The person-specific evaluation consists of
15 subjects but is not related to this task. The within-dataset which includes 15
subjects is used for validation of multiple datasets training and the pre-training
model.

Experimental Settings. The optimizer applied for model training is AdamW
with a linear scheduled warm-up strategy. The initial learning rate is set to
0.0001 for all the training and uses the exponential schedule to update it. For
multiple-set training, in each iteration, we randomly sample the same number
of samples from each set to form a batch fed to the model. The batch size is set
to 64. The number of iterations in one training epoch is determined by the size
of the dataset with the smallest number of samples. The number of epochs is 50
and gamma is 0.96. For single-set training for the TTGF-only model, the batch
size is also set to 64. For ETH-XGaze, we train the model for 50 epochs with the
exponential gamma setting to 0.95. For MPIIFaceGaze and RT-GENe, the total
number of epochs is 30 epochs with the exponential gamma setting to 0.95. For
EYEDIAP, the number of epochs is 50 and gamma is 0.096. Our experiments
are all conducted on a single GeForce RTX 3090 GPU.

5.1 Comparison with State-of-the-Art Methods

In this part, we compare the gaze estimation performance of our proposed model
with state-of-the-art methods. Our model is a single model trained on multiple
datasets: one anchor dataset and three evaluation datasets, while the existing
methods were tested with separated models for different evaluation datasets. We
trained our TTGF-only model on ETH-XGaze and got a testing error of 3.58◦

and the proposed TTGF+GAM trained on multiple datasets achieved a slightly
better error of 3.54◦.

Table 2 shows the angular errors of each method on the evaluation datasets:
MPIIFaceGaze, RT-GENE, and EYEDIAP. As iTracker and iTracker-MHSA did
not provide the performance on the evaluation datasets, we re-implemented them
by replacing their backbones with ResNet18 for fair comparison. In the table,
among existing models, FullFace [8], GazeTR [19], and GazeCADSE [42] only
use the full face image as the input for gaze estimation. RT-GENE [10] feeds two
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Fig. 2. Four types of feature fusion for gaze estimation models: (a) two-eyes model
uses the cropped eye patches as inputs. (b) PAR indicates left eye, right eye, and head
features are combined in parallel. (c) LR-EH indicates that left and right eye features
are combined first then combined head features. (d) EH-LR indicates that single eye
and head features are combined first followed by a combination across the left and
right.

Table 2. Comparison with the state-of-the-art methods. The proposed method out-
performs state-of-the-art results in estimation error.

Model Transformer Feature Fusion MPIIFaceGaze RT-GENE EYEDIAP

FullFace [8] NO Face Only 4.93◦ 10.00◦ 6.53◦

RT-GENE [10] NO Two Eyes 4.66◦ 8.00◦ 6.02◦

DilatedNet [9] NO PAR 4.42◦ 8.38◦ 6.19◦

iTracker [12] NO LR-EH 4.33◦ 7.12◦ 5.28◦

iTracker-MHSA [21] YES LR-EH 4.05◦ 7.06◦ 5.17◦

GazeTR-Hybrid [19] YES Face Only 4.18◦ 7.12◦ 5.33◦

GazeCADSE [42] YES Face Only 4.04◦ 7.00◦ 5.25◦

Proposed YES EH-LR 3.88◦ 6.46◦ 4.89◦

cropped eyes to a VGG16 model. DilatedNet [9] fuses the features of the left eye,
right eye, and head directly. iTracker [12], iTracker-MHSA [21] fuse the features
of the left and right eyes first then with the head features. Our proposed method
also uses both the face and the eye images as inputs but has different ways of
feature fusion we fuse the features of each eye and head in the first stage and
then fuse the left and right features in the second stage. In addition, GazeTR,
GazeCADSE, and our proposed methods utilize the transformers in the model.
We show different types of gaze estimation models in Fig. 2.

As shown in Table 2, our proposed methods TTGF with GAM achieved the
state-of-the-art performance of gaze estimation on all the selected evaluation
datasets. Among the methods using the feature fusing, our eye-head first then
left-right combination shows the best performance. Overall the transformer-
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based methods show advantages in the performance of gaze estimation com-
pared with non-transformer methods. Among the transformer-based methods,
our model uses both the face and eye images, we used RoI alignment to resize
the eye region to 128× 128, which enables the model to extract features directly
from the eye patches.

Table 3. Comparison of Computational Costs.

Model Params FLOPs

RT-GENE [10] 82.0M 30.81G

GazeTR-Hybrid [19] 11.4M 1.82G

GazeCADSE [42] 74.8M 12.78G

proposed method 65.3M 3.03G

By using GAM, our proposed model achieves better performance on multiple
datasets using only a single main model. This results in a smaller number of
parameters compared with other methods. Suppose the number of parameters
of the feature extractor is N and that of each gaze regressor is K. For M datasets,
without GAM we need to train M models for each dataset resulting in total MN
parameters. On the contrary, by applying GAM to train on multiple datasets,
we only need one single model with one feature extractor, one gaze regressor
and M − 1 MLPs as the gaze offset for the anchor set is always 0. So the total
number of parameters for our proposed model is N +MK. As K is much smaller
than N , our method needs fewer parameters to achieve better performance.

Table 3 shows the number of parameters and the flops for each model. We
can see that our proposed method has a fairly low computational cost which
we believe is related to two reasons: 1) a relatively smaller model ResNet18 is
applied as the backbone, and 2) a smaller size for the two eye patches as inputs.

5.2 Ablation Study

To study the individual contributions of the TTGF and GAM modules, we con-
ducted ablation experiments by removing one of them from the entire framework.

Effect of TTGF. To study the TTGF, we trained a TTGF-only model on
each evaluation dataset and compared the results with itracker-MHSA. We com-
pare with itracker-MHSA because it also uses a transformer encoder to combine
eye and head features in a different order. The itracker-MHSA fuses features
first from the left and right eyes and then with the head feature. TTGF fuses
features from each eye with head features and then across the two eyesAs we
mentioned before, we re-implemented itracker-MHSA with the same backbone
as our model for a fair comparison. As we mentioned before, we re-implemented
itracker-MHSA with the same backbone as our model for a fair comparison.



Merging Multiple Datasets for Improved Appearance-Based Gaze Estimation 87

Table 4. Ablation study.

Model Multiple Sets MPIIFaceGaze RT-GENE EYEDIAP

itracker-MHSA [21] NO 4.05◦ 7.06◦ 5.17◦

TTGF-Only NO 3.98◦ 6.89◦ 5.11◦

TTGF-Only YES 4.12◦ 7.14◦ 5.20◦

proposed method (TTGF+GAM) YES 3.88◦ 6.46◦ 4.89◦

Table 4 shows the angular errors of each method on the evaluation datasets.
The TTGF-only model outperforms the itracker-MHSA on all evaluation
datasets.

Effect of GAM. We compared our proposed model with GAM with the TTGF-
only model trained on multiple datasets. Table 4 shows that with GAM the
accuracy of the TTGF-only model without multiple sets of training is improved
on all three datasets from 0.1◦ to 0.43◦ respectively.

To confirm the performance gain in multiple dataset training is due to the
use of GAM, we trained the TTGF-only model with the combination of the
ETH-XGaze and the evaluation datasets. The TTGF-only model trained on
mixed datasets performed even worse than the TTGF-only model trained on
each single evaluation set. This supports our claim that GAM can address the
inconsistency in annotation across different datasets.

6 Conclusion

We proposed a Two-stage Transformer-based Gaze-future Fusion (TTGF) and
the use of Gaze Adaption Modules (GAMs) for improving gaze estimation accu-
racy. The TTGF uses two-stage fusion for the features of the head and eye
images through three transformer encoders. The proposed GAM generates gaze
corrections to gaze estimates for one dataset (chosen here to be ETH-Gaze) to
create estimates for images from other datasets. Our experiments show that our
method surpasses the state-of-the-art by a significant margin. Ablation studies
show that both innovations result in improvements when applied in isolation and
that improvements compound when they are applied together. However, our pro-
posed model still has some limitations. For example, the proposed TTGF needs
cropped eye patches as input. The GAM does not address all issues arising from
annotation inconsistency among gaze datasets.
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Abstract. Recently, it has been discovered that EEG signals have enor-
mous potential to be used as biometric authentication. Although, its
practical implementation is limited due to the intricate and dynamic
nature of EEG signals. To overcome these challenges, we need to sim-
plify the analysis and preserve the spatial attributes of the EEG signals.
In this work, a methodology using an ensemble of Riemannian geome-
try and a genetic algorithm for EEG-based biometric authentication is
devised. Here, the symmetric positive definite covariance matrices of the
EEG signals are calculated and classified using the Minimum distance to
the Riemannian Mean (MDRM) and the Tangent space LDA (TSLDA)
classifier. Furthermore, NSGA-II is used to optimize the number of chan-
nels and to reduce the computational complexity. This study achieved
an accuracy of 99.9% on average with all the datasets used. Multiple
publicly available datasets are used to compare the proposed approach
with existing methods. Results obtained show the efficacy of the pro-
posed method. Friedman’s statistical test also supports the statistical
significance difference between the proposed and existing methods.

Keywords: Riemannian Geometry · NSGA - II · Covariance
Matrices · Biometric · EEG

1 Introduction

In this era, characterized by the rapid convergence of technology with human
lives, safeguarding data privacy, ensuring security, and verifying individual iden-
tities are paramount. Thus, biometrics has emerged as an essential tool. Bio-
metrics involves the statistical analysis of unique physical, physiological and
biological attributes.

Although conventional authentication systems such as fingerprints, retinal
scans, and facial recognition are well established, research is being conducted to
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use brain activity for biometric identification. This emerging field has gained pop-
ularity with advancements in the brain-computer interface (BCI). Brain activity
as biometrics can benefit border protection, security services, financial safety,
and access control for consumer electronics. [29] The fundamental concept is to
scan and match an individual’s physiological or electrical brainwave patterns
with those stored in a database. Several methods are available for tracking
brain function, such as functional magnetic resonance imaging (fMRI), near-
infrared spectroscopy (NIRS), positron emission tomography (PET), magne-
toencephalography (MEG), and electroencephalography (EEG) [21]. This study
specifically highlights EEG signals for biometrics due to their affordability and
ease of use.

Utilizing EEG signals for biometrics presents several advantages. [5] 1) Non-
Duplicable: EEG signals are unique to individuals and cannot be duplicated.
2) Real-Time Monitoring: They allow continuous, real-time biometric identifica-
tion. 3) Inconspicuous: EEG-based biometrics are invisible and imperceptible to
the human eye, enhancing security. 4) Emphasis on Universal Traits: EEG-based
biometrics emphasize universality, distinctiveness, permanence, and circumven-
tion.

Despite these advantages, EEG signals remain underutilized due to their
dynamic nature and sensitivity to the subject’s mental and physical state. The
computational complexity of using EEG as biometric identification may be
immense.

In this paper, we have implemented a classification model to identify sub-
jects while optimizing the number of channels using a combination of Riemannian
geometry and a non-dominated sorting genetic algorithm (NSGA-II). Covariance
matrix features are extracted using the Riemannian framework, and the opti-
mal number of channels is estimated using NSGA-II for EEG-based Biometric
authentication. We harnessed two Riemannian Geometry methods: the Mini-
mum Distance to Mean (MDM) classifier and the Tangent Space LDA (TSLDA)
models for EEG-based Biometric classification. Friedman statistical test was
performed to estimate the significance of the proposed model.

The major contributions of this research work are: 1. Using the Rieman-
nian framework for the classification of Biometric EEG data. 2. Optimizing the
number of channels using the NSGA-II algorithm for biometric authentication. 3.
comparison of proposed work with existing studies on publicly available datasets.

The paper is organised as follows. The relevant studies are discussed in Sect. 2.
The proposed method is described in detail in Sect. 3. Analysis of dataset and
experimental setup is given in Sect. 4 and finally conclusion and future work are
discussed in Sect. 5.

2 Related Works

EEG as biometrics has attracted attention in past few years. [30] delved into
the authentication of individuals using EEG signals obtained during periods
of rest. They achieved an impressive 99.7% genuine accept rate (GAR) with
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EO and 98.6% with EC, specifically in the beta frequency band. Similarly, [24]
adopted frequency-weighted power (FWP) as an alternative approach to repre-
senting power within a specific frequency band. Their system underwent eval-
uation using two EEG datasets recorded during periods of rest. This system
achieved a remarkable 0.0039 equal error rate (EER), mainly when EEG signals
were collected during EC resting states. These studies give high accuracies while
using EEG-based biometrics, even in different experimental conditions.

An EEG emotion recognition system tailored to individual subjects, as intro-
duced by [2], utilized an MDRM classifier to differentiate between high and low
levels of valence and arousal by analyzing multidimensional EEG signals. In [32],
an innovative transfer learning algorithm grounded in Riemannian geometry
was presented for code-modulated visual evoked potential (c-VEP) based Brain-
Computer Interface (BCI). [1] concentrated on the classification of four human
emotions by using EEG signals. The approach employed the Log-Euclidean Rie-
mannian Metric (LERM) distance metric on a symmetric positive definite man-
ifold (SPD) while considering various channel combinations (2, 7, 10, and 18-
channels) across the various frequency bands.

[23] compared the performance of the greedy backward elimination algo-
rithm with two versions of the non-dominated sorting genetic algorithm (NSGA),
specifically NSGA-II and NSGA-III. Their findings indicated an accuracy range
of 0.98 to 1 using only one to two channels, which was comparable to the accu-
racy achieved with the full set of electrodes, where accuracy ranged from 1 to
0.97. Numerous other research works assert flawless recognition accuracy when
employing EEG signals as biometric identifiers [9]. Nonetheless, the reliability
of a substantial portion of these studies is frequently questioned due to a pre-
vailing practice. Such practice involves collecting the data on a single day or
under the same circumstances [28]. In such instances, the system’s performance
evaluation often hinges on the conditions specific to the recording session rather
than the distinct characteristics of the individuals [25]. To address this limita-
tion, it is essential to properly test EEG-based biometric recognition systems

Fig. 1. Proposed framework of Methodology
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using multi-session datasets that are recorded on different days. When consid-
ering such conditions, the attainable recognition rates often exhibit a notable
decrease compared to scenarios where data from the same session is employed
for enrollment and recognition [22].

3 Proposed Framework

The flow diagram of our proposed model is described in Fig. 1. First, the EEG
signals are pre-processed by the Butterworth low pass filter and scaling. Then,
covariance matrices are extracted from each epoch as a feature. For classifica-
tion, we used two methods based on the framework of Riemannian geometry -
Minimum Distance to Mean (MDM) and Tangent Space LDA (TSLDA) [6]. As
the name says, the MDM classifier classifies the test epoch based on the min-
imum distance between the covariance matrix of the test epoch and the mean
covariance matrix of the classes. TSLDA projects the covariance matrices to the
tangent plane and then with help of LDA, the classification is performed. The
Mathematical framework behind the Riemannian geometry is given in Sect. 3.3.
Then, the number of channels is optimised with NSGA=II, and the fitness of the
generation of NSGA-II is calculated using the MDM and TSLDA classifiers. The
best accuracy with the least number of channels is obtained. The Algorithm 1
briefly explains the proposed method.

3.1 Pre-processing

Data Segmentation. The EEG signals were segmented into shapes (epochs,
channels, time points) to ensure consistent analysis across datasets. The number

Algorithm 1: Proposed Framework for Classification through MDM and
TSLDA
Input: Training Data: a set of EEG epochs and corresponding subject labels
Steps: 1. Pre-process and filter the data.

2. Extract the covariance matrix from each epoch as a feature.
3. Compute the mean covariance matrix for each class.
4. For MDM classification:

– To classify a new test EEG epoch, calculate the distance from the
covariance matrix of the test EEG epoch to each class mean matrix.

– Assign the epoch to the class with the minimum distance to its mean
covariance matrix.

5. For TSLDA classification:
– Map each covariance matrix to the tangent space using the matrix

logarithm.
– Perform Linear Discriminant Analysis (LDA) on the tangent space

representations.
Output: Classification of EEG epochs to the class labels based on MDM and

TSLDA.
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of time points is taken to be the same as the sampling frequency, such that each
epoch represents one second. All relevant EEG Epochs from subjects performing
the same task were concatenated. This built a dataset specific to the chosen task.
Each epoch was labelled according to its subject to facilitate supervised machine
learning.

Data Filtering and Normalization. A Butterworth low-pass filter of order
25 was applied to each epoch, with a 50 Hz cutoff frequency. This filter reduced
the noise and maintained the quality of EEG data. Then, MinMax scaling was
performed to ensure consistent amplitude scaling across all datasets. This pro-
cess helped to align the amplitude of EEG data while preserving their relative
differences. Then, a variance threshold of 0.03 was employed to ensure data qual-
ity. Epochs with variance below this threshold were considered insufficient and
excluded from the dataset.

3.2 Extraction of Covariance Matrix as a Feature

Since EEG signals are non-stationary in both the frequency and time domain,
computerized analysis emerges as a crucial tool [17]. To address this challenge,
spatial covariance matrix for each epoch of the processed EEG signals is cal-
culated. This reduces the dimensionality of EEG signals and extracts salient
features, ultimately enhancing classification accuracy. Then, the mean of all the
epochs of each subject is computed. These means of SPD matrices and their
subjects’ labels are now ready to be classified.

3.3 Classification Using Riemannian Framework

Riemannian geometry is used to analyse the properties of smooth and curved
spaces. These smooth curved spaces hold local characteristics similar to
Euclidean spaces [31]. We used the principles of Riemannian geometry to analyse
the space of covariance matrices extracted from EEG signals. These covariance
matrices of shape (channels, channels) preserve the spatial properties of EEG
Signals [12].

Since Covariance matrices are symmetric positive definite (SPD) matrices,
they are suitable for analysis with the help of Riemannian Geometry. These
covariance matrices can be treated as points on the Riemannian manifold. Vari-
ous metrics have been defined in the domain of Riemannian geometry to compare
the SPD matrices on the manifold. Each metric has its properties and implica-
tions for brain signal classification.

[10] reviews the properties of these distance metrics, exploring their appli-
cations in EEG-based brain-computer interfaces. It provides extensive literature
on various formulations of different metrics and their computational sensitivity.
The formulae to find distance and mean among SPD matrices is provided in
Table 1.
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Table 1. Distance Metrics defined between SPD matrices

Metric Distance δ(C1,C2) Mean of C1,C2, ...,Cm

Harmonic [20] ‖C1
−1 − C2

−1‖F where ‖.‖F is Frobenius
norm.

(
1
m

∑
i Ci

−1
)−1

Log-Det [8] (log(det
(

C1+C2
2

)
) − 1

2
log(det(C1C2)))

1/2
Algorithm 1 in [8]

Log-Euclidean [4] ‖ log(C1) − log(C2)‖F exp ( 1
m

∑
i logCi)

Riemannian [26] δR(C1,C2) =
(∑

i log(λi)
2
)1/2

where λi are
the joint eigenvalues of C1 & C2.

argminC
∑

i δR(C,Ci)
2

Wasserstein [3] (tr
(
C1 +C2 − 2(C2

1/2C1C2
1/2)1/2

)
)
1/2

Eq. (19) in [3]

Riemannian Manifolds: The concept of surface in higher dimensions can be
understood better by topological manifolds. This is because every point in the
topological manifold has a neighbourhood homoeomorphic (one-to-one, onto,
and continuous mapping in both directions) to Rn. In other words, it looks like a
flat space locally. Possessing a differential structure facilitates the transformation
of a topological manifold into a differential manifold. Smooth manifolds, which
are a type of differential manifold, exhibit smooth transitions between maps.
These smooth transitions establish rules for locally translating a point on the
manifold to its linear approximation.

For simplicity, we will first see how it works with two signals. Consider e1(t)
and e2(t) be two EEG signals recorded as a function of time. Let e1k and e2k be
the kth epoch under analysis. Then the covariance matrices Ck generated will be

Ck(e1(t), e2(t)) =
[

Var(e1k) Cov(e1k, e2k)
Cov(e2k, e1k) Var(e2k)

]
(1)

where Cov(e1k, e2k) = Cov(e2k, e1k), making the covariance matrix SPD.
Thus, we are concerned with the variance and the covariance of EEG sig-

nals. Here, we have three elements since we are demonstrating 2 EEG signals.
Ck is generally determined by (N + 1)/2 elements where N is the number of
signals. Ck, with two signals, can be represented in 3D space along the axes
Var(e1k),Cov(e2k, e1k) and Var(e2k). Since the Covariance matrix is SPD, the
Cauchy-Schwartz inequality states that Cov(e1k, e2k) ≤ Var(e1k)Var(e2k)

Geometrically, this signifies that our covariance matrices are constrained
within the symmetric cone. From an electrophysiological perspective, the Ck

(the covariance matrices) behaviour varies along the variance axis when changes
in electrode energy occur. It also varies along the covariance axis during phase
synchronization and amplitude co-modulation between the signals. On a sim-
ilar conceptual note, in higher dimensions, the manifold takes the shape of a
hyper-cone.
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A suitable distance metric for this positive matrix cone is defined to facil-
itate meaningful analysis, similar to the geometric distance [12]. The linear
space of NxN symmetric matrices possesses a natural inner product 〈X ,Y〉 ≥
tr(XY), along with the associated Euclidean norm ‖X‖2. This Euclidean norm
is defined as

‖X‖22 = tr(X )2 =
N∑

i=1

λi(X )2 (2)

where λi represents the N eigenvalues of matrix X , and tr(X ) is the sum of
the diagonal values of X . As our interest primarily lies in Symmetric Positive
Definite (SPD) matrices, they naturally inherit this Euclidean norm ‖X‖2.

Let S++(N ) be a set of N × N positive matrices. Since it can be regarded
as a differentiable manifold, every small neighbourhood around point C exhibits
properties similar to Euclidean space of symmetric matrices, an open set. In
Riemannian geometry, the first step is to equip each tangent space with an inner
product, ensuring that the resulting metric varies smoothly from one point to
another. In this context, Inner Product at a point C is given by [12]

〈X ,Y〉 = tr(C−1XC−1Y) (3)

The corresponding norm ‖X‖2,C is given as

‖X‖22,C = ‖C−1X‖22 = ‖C− 1
2 XC

1
2 ‖22 (4)

Geodesic Riemannian Distance: Suppose Ψ(t) : [0, 1] → C(n) is a differ-
ential path from Ψ(0) = C1 to Ψ(1) = C2. Then length L of Ψ(t) is stated as
[6]

L(Ψ(t)) =
∫ 1

0

||Ψ(t)‖Ψ(t)dt (5)

The geodesic in the space S++(N ) connects two points X and Y with the shortest
curve, while the Riemannian distance between these points is defined as the
length of this curve.

δR(C1, C2) = ‖Log(C−1/2
1 C2C

−1/2
1 )‖F =

√√√√ N∑
n=1

log2 λn (6)

Here, λn represents the eigenvalues of the matrix C
−1/2
1 C2C

−1/2
1 , which can

also be expressed as C−1
1 C2. Additionally, “Log(.)” denotes the matrix logarithm,

while “log(.)” refers to the scalar logarithm.

Exponential Map: At each point C belonging to C(n), it’s feasible to define
a tangent space by aggregating tangent vectors at the point C [6]. Each of
these tangent vectors denoted as Ti, represents the derivative at t = 0 of the
geodesic Ψi(t) linking point C and the exponential mapping Ci = Expc(Ti).
This relationship can be expressed mathematically as follows:

ExpC(Ti) = Ci = C1/2 exp(C−1/2TiC
−1/2)C1/2 (7)
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Algorithm 2: Pseudo code of NSGA II algorithm
Input: Random initial population P of channels, Number of generations g

1 Evaluate accuracy through MDM and TSLDA classifier as given in algorithm 1 ;
2 Rank the individuals using Pareto sorting.;
3 Create offspring population for P .;
4 for i = 1 : g do
5 Evaluate accuracy of through MDM and TSLA classifier as given in

algorithm 1;
6 for each parent and child in P do
7 Reassign ranks of individuals using Pareto sorting. ;
8 Create collections of solutions that are not dominated by others. ;
9 Calculate crowding distance ;

10 Apply crossover and mutation ;
11 Update population based on the evolutionary strategy

12 Choose points on the lower frontier with significant crowding distance. ;
13 Create offspring population

Output: Child Generation

Consequently, the inverse mapping can be defined using the logarithmic map-
ping, given by:

LogC(Ci) = Ti = C1/2 log(C−1/2CiC
−1/2)C1/2 (8)

The corresponding definitions of Riemannian distance are:

δR(C,Ci) = ‖LogC(Ci)‖C = ‖Ti‖P

= ‖upper(C−1/2LogC(Ci)C−1/2)‖2
= ‖ti‖2

(9)

Here, the operator “upper(.)” vectorises the upper triangular symmetric
matrix.
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Under specific conditions satisfied by matrices C and Ci, the above expression
can be interpreted as an approximation of the distance between the Riemannian
manifold and the tangent space. This approximation adheres to the following
relationship for all i and j:

∀i, j, δR(Ci, Cj) ∼ ‖ti − tj‖2

Mean of Covariance Matrices. Let Cii=1,...,N be a set of SPD matrices, then
using the Riemannian geodesic distance, the Riemannian mean is defined as

Δ(C1, C2, ...CN ) = arg min
C∈C(n)

N∑
i=1

δ2(C,Ci) (10)

The notation arg min g(x) designates the point at which the function g reaches its
minimum value. In simpler terms, the Riemannian mean represents the precise
location at which the dispersion or variance of the Symmetric Positive Definite
(SPD) matrices is minimized.

3.4 Channel Selection

To optimize the informative channels that contribute to better classification, a
Non-dominated Sorting Genetic Algorithm - II (NSGA II) [13] is used. NSGA - II
chooses parent chromosomes for reproduction based on the classifier’s accuracy
and the number of channels selected [11]. The algorithm for NSGA II is given
in Algorithm 2.

4 Experimental Setup and Results

This section introduces the dataset on which the proposed method was executed.
The datasets chosen are characterised by various task types, signal frequencies,
participant numbers, and multiple sessions, enhancing the findings’ robustness.
Various experiments are conducted thereafter to validate the proposed model.
Thus, this section discusses the step-by-step observations that led us to the
desired result.
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Fig. 2. Mean of all epochs with given the subject and task within dataset 2a of BCI
Comp IV
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Fig. 3. (a)–(e) Heat maps comparing the distance between covariance matrix of 9 test
epoch and mean covariance matrix of each Subject; (f) Friedman ranking of various
methods
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Fig. 4. Box plot representing the accuracies of the methods on all 20 tasks

4.1 Datasets

All the experiments are executed on three datasets. The respective numbers
of tasks within these datasets are 12,4 and 4. In total, we have 20 tasks per-
formed by a certain number of subjects. The experiments were performed for
each dataset with 10 cross-fold validations and a testing ratio of 80:20. There
was no overlapping between training and testing epochs in each run. A brief
description of each dataset is given below:

Dataset 1. As presented in [19], the dataset consists of EEG recordings from
30 subjects performing 12 distinct tasks. Each subject engaged in multiple ses-
sions, ranging from 2 to 5, and executed 3 to 6 distinct tasks. The data was
collected with 128 channels with sampling frequency of 250 Hz. The details of
the data are given in [19]. This segmentation procedure was performed without
bias toward the experimental protocol. Consequently, these meticulously crafted
epochs remain task-independent. This approach encompasses the resting state,
passive observation or listening to various stimuli or instructions, and active
engagement in specific tasks.

M3CV Competition. The EEG Biometric Competition on Kaggle, M3CV
[16], is a Multi-subject, Multi-session, and Multi-task Database for Investiga-
tion of EEG Commonality and Variability. This dataset originally included 106
participants in specific tasks across six distinct paradigms. However, for this
research, we concentrated on trials where both the subject and task labels were
available. This narrowed our focus to four paradigms: Motor Execution (ME),
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Table 2. Optimized channels and their performance obtained through GA

Task MDRM TS+LDA

Channels used Accuracy (%) F1 Score Recall Channels used Accuracy (%) F1 Score Recall

Dataset 1

1 12 100 1 1 13 99.83 0.9983 0.9983

2 14 99.70 0.9970 0.9970 11 100 1 1

3 14 99.91 0.9892 0.9891 12 99.84 0.9984 0.9984

4 15 98.35 0.9836 0.9835 14 100 1 1

5 11 99.38 0.9938 0.9938 5 100 1 1

6 15 99.27 0.9928 0.9927 14 99.83 0.9983 0.9983

7 14 99.52 0.9952 0.9952 16 100 1 1

8 10 99.70 0.9969 0.997 11 100 1 1

9 14 98.37 0.984 0.9837 18 100 1 1

10 22 99.50 0.9950 0.9950 14 100 1 1

11 13 98.98 0.9899 0.9899 11 99.87 0.9987 0.9987

12 16 98.27 0.9828 0.9827 13 99.46 0.9946 0.9946

M3CV dataset

13 35 97.11 0.9706 0.9711 23 99.93 0.9999 0.9993

14 37 98.09 0.9812 0.9809 23 100 1 1

15 33 98.37 0.984 0.9837 21 99.84 0.9983 0.9983

16 34 98.98 0.9899 0.9899 22 100 1 1

Dataset 2a of BCI Competition IV

17–20 12 100 1 1 13 100 1 1

Transient-State Sensory (TSS), Resting-State (RS), and Steady-State Sensory
(SSS). Consequently, our dataset now includes 95 subjects. These participants
are part of the enrolment and calibration subsets of the initial dataset. The data
was collected with 64 EEG channels with a sampling rate of 1000 Hz.

Dataset 2a of BCI Competition IV. Dataset 2a of BCI competition IV [7]
is compiled for 4-class motor imagery tasks from 9 healthy individuals. Each
experimental session consists of 72 trials per class. The experimental timeline is
structured as a 2-s fixation period, a 1.25-s cue presentation, and a subsequent
4-s MI process. The data was collected with 22 channels on a frequency of 250 Hz.

4.2 Analysis

Visual Signature. Initially, the mean of all epochs associated with a specific
task and a particular subject is evaluated for comparison. We took the dataset
2a of BCI competition IV. Figure 2 displays the plot of mean values of the epochs
associated with tasks and subjects of dataset 2a BCI Comp IV. We can see that
the pattern of EEG signals is distinct for all the individuals across a task. So
this motivated us to investigate the metrics available to compare the mean of
these signals.

Performance of Various Metrics. Five different metrics are considered to
calculate the mean of covariance metrics and the distance between covariance
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metrics. These are Harmonic, LogDet, LogEuclid, Riemann, and Wasserstein.
To understand the difference among the metrics used with the MDM classifier,
we took the first task, ‘Imagining Left Hand Movement’ of dataset 2a of the
BCI competition, performed by nine subjects. Then, nine random epochs were
taken from different subjects, and their covariance matrices were computed. The
mean covariance matrics of all classes were also computed. Figure 3 shows the
pairwise distance between covariance matrices of randomly selected epochs and
the mean of covariance matrices of all nine subjects, with all five metrics. The
harmonic distances came out to be comparatively larger, so a log of all the
values is taken. The heatmap of these metrics in Fig. 3 exhibited a diverse range
of values. The variance of the given values in the heatmap comes out to be
0.025, 0.024, 0.23, 0.23 and 0.003, respectively. We can observe that Riemannian
and Logeuclid metrics have the most variance, highlighting their sensitivity to
differences. Moreover, the diagonal values are minimum in all the heatmaps,
indicating that if an epoch belongs to subject k, then its distance from the mean
of covariance matrices of subject k is minimum.

All five metrics are used to evaluate the mean of covariance matrices under
the MDM method. The mean of covariance metrics is then projected in Tangent
space and classified with the help of LDA. All the channels available were ini-
tially used with a 10-fold cross-validation scheme on all 20 tasks. The accuracies
with these configurations in MDM and TSLDA are given in Table 3. For a bet-
ter visualization of performance by these metrics, Fig. 4 shows the box plot of
the accuracies achieved by these methods. The median of the accuracies is also
mentioned along side the plot of each method. We can see that the Riemann
metric performed better across all the tasks using the MDM method. Moreover,
TSLDA performed best overall, giving an accuracy of more than 99.8% for all
tasks.

Optimization of Channels with NSGA-II. A non-dominated sorting genetic
algorithm - II [13] was employed on both classifiers—MDRM (Minimum Dis-
tance to Riemannian Mean) and TSLDA—to reduce the number of channels
across all tasks. Given that the Riemann metric demonstrated superior perfor-
mance within the MDM classifier, the Riemann metric with MDM was used to
evaluate the fitness of generations in NSGA-II. The NSGA evaluated 30 gen-
erations with a population of 20 binary chromosomes, where the length of the
chromosome is equal to the total number of channels present, and each binary
bit tells the presence or absence of a channel. Initially, a random population is
chosen for all the tasks. This random population was kept consistent for all the
tasks within each dataset. In each generation, pre-processing is performed with
selected EEG signals as given in Sect. 3.1. Then the fitness of each chromosome
in a generation is evaluated with MDRM and TSLDA. To generate the next gen-
eration, a single-point crossover between the parent chromosomes is performed.
The mutation rate is set at 0.05 to introduce diversity in the population. Also,
4 best-performing chromosomes were preserved for the next generation to intro-
duce elitism. This formulation ensures that the NSGA-II seeks high classification
accuracy and prioritizes the parsimonious selection of EEG channels [18]. The
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number of channels selected after 30 iterations and the accuracies are given in
Table 2. In the dataset provided by [19], the MDRM classifier utilized an aver-
age of 14 channels, achieving an accuracy of 99.4%, while TSLDA employed 12
channels, resulting in an accuracy of 99.94%. For the M3CV dataset, MDRM
utilized 34 channels, giving an accuracy of 98.13%, whereas TSLDA utilized 22
channels to achieve an accuracy of 99.94%. Similarly, in the case of dataset 2a
from BCI Competition IV, MDRM utilized 12 channels, achieving an accuracy
of 100%, and TSLDA used 13 channels, resulting in an accuracy of 100%.

Friedman Statistical Test. To assess the statistical differences among the
6 metrics employed on 20 tasks in our study, Friedman statistical tests [14] is
executed. The null hypothesis assumes that all six metrics have equal classifica-

Table 3. Accuracies achieved by metrics when utilized in the MDM classifier and by
TSLDA

Task MDM TS+LDA

harmonic logdet logeuclid riemann wasserstein

Dataset 1

1 96.951 99.098 99.098 99.098 95.209 99.969

2 89.804 98.601 98.601 98.684 93.996 100

3 84.085 99.714 99.714 99.733 96.264 100

4 98.109 99.7 99.7 99.7 99.43 100

5 99.668 99.785 99.785 99.785 94.65 100

6 97.112 99.392 99.341 99.417 97.872 100

7 97.508 99.225 99.225 99.225 97.785 100

8 95.782 99.208 99.208 99.208 96.509 99.935

9 94.563 98.854 98.821 98.854 96.757 99.967

10 96.421 99.199 99.199 99.199 98.581 99.877

11 95.729 99.181 99.267 99.288 97.52 100

12 96.057 99.54 99.54 99.54 96.679 99.988

M3CV dataset

13 59.43 89.85 89.015 91.158 50.085 99.987

14 60.025 89.321 88.664 90.61 54.577 99.984

15 59.813 89.379 88.68 90.715 47.969 99.981

16 59.814 88.98 88.077 90.104 54.299 99.968

BCI Competition IV Dataset 2a

17 87.815 99.536 99.382 99.536 84.276 100

18 85.784 98.606 98.45 98.916 81.635 99.846

19 88.567 99.228 98.767 99.075 77.457 100

20 88.731 99.075 99.075 99.075 83.471 99.846

Mean 86.5884 97.2736 97.08045 97.546 84.75105 99.9674
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tion accuracy. Under this test, the methods are assigned rank values based on
their classification accuracy, where the best method and worst method receive
rank values 1 and 6, respectively. The P value is calculated as 1.31E−18, which
rejects the null hypothesis. Thus, there is a statistically significant difference
in the accuracy of the methods with X2 Friedman (df = 5) = 93.37. The effect
size WKendall = 0.93 with 95% confidence interval [0.93,1] turned out to be sub-
stantial. To assess the performance of all other methods in comparison to the
top-ranked method (Control method, namely TSLDA), p-values are calculated
through prescribed post hoc analyses, including Nemenyi, Bonferroni, Holm,
Hochberg, and Hommel methods. The p values are given in Fig. 3f. All the p-
values derived from post hoc procedures were less than 0.001. This means that
the results are statistically significant.

Comparision with Existing Studies. Studies that have performed Biometric
authentication using EEG signals are mentioned in Table 4. [19] used subspace
system techniques to identify individuals with accuracies of 86.4% using just
nine EEG channels. On the same dataset, we got accuracy more than 99% with
MDRM and TSLDA but used 14 and 12 channels respectively. M3CV dataset is
comparatively new, and no studies have been published on this dataset yet. [27]
proposed adaptive transfer learning-based multiscale feature fused deep convo-
lutional neural network model that achieved average classification accuracy of

Table 4. Performance comparison of existing methods on the datasets used in this
study.

Method Subjects Channels Accuracy

Dataset 1

IX-VECTOR [19] 30 9 86.40%

Proposed:

MDRM 30 14 99.40%

TSLDA 30 12 99.94%

M3CV dataset

Proposed:

MDRM 95 34 98.13%

TSLDA 95 22 99.94%

Dataset 2a of BCI Competition IV

TST-ICA [15] 9 22 97.77% (With ICA)

96.11% (Without ICA)

MSFFCNN-TL [27] 9 22 94.06%

Proposed:

MDRM 9 12 100%

TSLDA 9 13 100%
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94.06% on BCI competition dataset 2a. On this dataset, we achieved accuracy
of 100% with 12 and 13 Channels using MDRM and TSLDA, respectively.

5 Conclusion

This study aims to identify the subjects based on EEG signals. Spatial covari-
ance matrices are calculated from each EEG epoch. Since covariance matrices are
symmetric positive definite (SPD) matrices, they can be represented on the Rie-
mannian manifold. Two classification methods grounded in Riemannian geom-
etry: Minimum Distance to Mean (MDM) and Tangent Space LDA (TSLDA)
are employed. The MDM classifier utilized the minimum distance between test
epoch covariance matrices, and class mean covariance matrices for classification.
Meanwhile, TSLDA projected these covariance matrices onto a tangent plane
and used Linear Discriminant Analysis (LDA) for classification.

While calculating the mean and minimum distance among covariance matri-
ces for the MDM classifier, 5 metrics, namely Harmonic, LogDet, LogEuclid,
Riemann, and Wasserstein and then TSLDA are used. The respective accura-
cies of all classifiers were 86.58, 97.27, 97.08, 97.55, 84.75 and 99.97. Friedman
statistical test concluded that there is a significant difference between all the
methods. Moreover, TSLDA performed remarkably well with 99.9% accuracy.

These methods’ classification accuracy is high, but so is the computational
cost. To resolve this, the number of channels is optimized using NSGA-II, where
the fitness of each generation is evaluated by both MDM and TSLDA classifiers.
Table 2 shows the optimal number of channels for various tasks. On average,
TSLDA used 11,25 and 14 channels for our three datasets giving accuracies of
99.3%, 99.78% and 99.61%, respectively. Our approach successfully identified
the optimal channel configuration, achieving the best accuracy with the least
number of channels.

One limitation of our study is that it doesn’t account for the participants’
geological, physiological, environmental, and societal conditions. In the future,
we intend to integrate these factors into our research for a more comprehensive
analysis.

In conclusion, this research successfully investigated the complexities of EEG-
based person identification. By adopting innovative strategies, such as Rie-
mannian geometry and Genetic Algorithms, we’ve achieved high accuracy and
reduced the number of signals. The insights of this work contribute significantly
to the field of biometric identification and have the potential to be applied to a
wide range of real-world applications.
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11. Ĉımpanu, C., Ferariu, L., Dumitriu, T., Ungureanu, F.: Multi-objective optimiza-
tion of feature selection procedure for EEG signals classification. In: 2017 E-Health
and Bioengineering Conference (EHB), pp. 434–437. IEEE (2017)

12. Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based
brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4(3),
155–174 (2017)

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
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Abstract. We present a novel metric designed, among other applica-
tions, to quantify biased behaviors of machine learning models. As its
core, the metric consists of a new similarity metric between score distri-
butions that balances both their general shapes and tails’ probabilities.
In that sense, our proposed metric may be useful in many application
areas. Here we focus on and apply it to the operational evaluation of
face recognition systems, with special attention to quantifying demo-
graphic biases; an application where our metric is especially useful. The
topic of demographic bias and fairness in biometric recognition systems
has gained major attention in recent years. The usage of these systems
has spread in society, raising concerns about the extent to which these
systems treat different population groups. A relevant step to prevent
and mitigate demographic biases is first to detect and quantify them.
Traditionally, two approaches have been studied to quantify differences
between population groups in machine learning literature: 1) measur-
ing differences in error rates, and 2) measuring differences in recognition
score distributions. Our proposed Comprehensive Equity Index (CEI)
trade-offs both approaches combining both errors from distribution tails
and general distribution shapes. This new metric is well suited to real-
world scenarios, as measured on NIST FRVT evaluations, involving high-
performance systems and realistic face databases including a wide range
of covariates and demographic groups. We first show the limitations of
existing metrics to correctly assess the presence of biases in realistic
setups and then propose our new metric to tackle these limitations. We
tested the proposed metric with two state-of-the-art models and four
widely used databases, showing its capacity to overcome the main flaws
of previous bias metrics.
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1 Introduction

In the past decade, we have experienced a revolution in the field of Artificial Intel-
ligence (AI). The surprising capabilities of data-driven automatic systems have
made possible the development of AI-based solutions in a variety of domains,
such as health [15], education [5], or recruitment [35]. Among these application
areas, biometric recognition technology, or biometrics, is growing significantly
due to its advantages over traditional security/authentication approaches. Com-
pared to the latter, biometric recognition systems are capable of authenticating
the identity of a person using features extracted from biometric data of the
individual, usually known as biometric traits [26]. Some traits that have been
studied in the field include iris [1], fingerprint [31], or human-computer inter-
action signals [8]. Of the different traits traditionally addressed in biometrics,
Face Recognition (FR) is probably the one that has benefited the most from the
emergence of Deep Learning. The success of novel architectures [22] and learning
strategies [9,45], has notably raised the performance of these systems compared
to traditional handcrafted approaches [17]. Consequently, during the last decade
a lot of attention has been paid to face recognition [47], while its use in real
systems has become more widespread, with applications ranging from border
control [4] to mobile phone authentication [2,33].

Although several AI-based systems may appear to be ready for large-scale
deployment in a vast array of domains and applications attending solely to the
performance, some unsolved issues around their use must be first addressed for
successful and trustworthy applications [11,35]. Several scholars have raised con-
cerns about aspects such as vulnerabilities to attacks [14,23,34,36], or potential
algorithmic discrimination effects [29,39]. Attending to the latter, in recent years
we have observed a significant amount of systems exhibiting biased behaviors,
leading to unfair treatment towards certain individuals based on their member-
ship to demographic groups [3]. In addition to these concerns, biometrics has
been singled out in both past and future legislation on data privacy and AI, due
to the sensitive nature of the data it deals with. The European General Data Pro-
tection Regulation (GDPR)1 already imposed several restrictions on how to store
and process personal data [18]. Furthermore, the recently approved European
AI Act2 includes new requirements that biometric systems shall meet, including
the prevention of the aforementioned problems. Biometrics has been particularly
fruitful in this scenario, with the study of demographic biases, including their
prevention and mitigation [10,13]. Methods tackling bias in biometrics span the
evaluation of trained models in different populations [6,38,40], learning strate-
gies including fairness constraints in their optimization objectives [16,39], or the
development of new databases with a broad and fair representation of the demo-
graphic groups [32,46,48]. However, a key point for analyzing and mitigating
demographic biases is to be able to measure them properly.

1 https://gdpr-info.eu/.
2 https://www.euaiact.com/.

https://gdpr-info.eu/
https://www.euaiact.com/
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Traditionally, the measurement of demographic bias in biometric systems has
been based on the differences among the error rates for each demographic group.
This approach has received the name of the differential outcome [25]. In [13] the
authors propose to measure fairness using the maximum difference (i.e., worst-
case differentials) of both False Match Rate (FMR) and False Non-Match Rate
(FNMR) between demographic groups at a given operating threshold τ . They
combine both measures in a single metric, known as Fairness Discrepancy Rate
(FDR). In [24] the authors introduced the Gini Aggregation Rate for Biometric
Equitability (GARBE) metric, a fairness measure inspired by the Gini coefficient,
computed for both FMR and FNMR. The National Institute of Standards and
Technology (NIST) has also highlighted the use of FMR/FNMR discrepancies as
a quantitative measure of system fairness [20]. They proposed the Inequity metric
(IN), an alternative measure to the FDR [19]. In this case, instead of computing
the maximum difference of FMR/FNMR across groups, the maximum ratios of
these between demographic groups at a given threshold τ are obtained, which
are combined to obtain the Inequity metric. The metric has a direct operational
sense since it directly represents the number of times that the individuals from
the disfavoured group are more likely to be confused, compared to the favored
group (i.e., the one with the best performance). A common drawback of all the
previous proposals is the need to select a concrete operational point to measure
fairness, which may hinder a complete assessment of the model performance. An
exception to the aforementioned threshold-focused approach that still is based
on differential outcomes is the work proposed by Gong et al. [16]. They proposed
to measure bias as the standard deviation of performance across demographic
groups, reported in terms of the Area Under the Curve (AUC). Whilst it does
not require explicitly fixing a threshold, the metric cannot measure fairness at
the distribution level.

Contrary to the aforementioned differential outcome approaches, Kotwal and
Marcel focused on a differential performance approach [27]. Instead of measur-
ing the fairness at a specific operating point τ , they introduced a metric directly
working with score distributions of demographic groups. Concretely, the Dis-
tribution Fairness Index (DFI) measures the difference in score distributions
between demographic groups by leveraging the Kullback-Leibler (KL) diver-
gence. While measuring fairness at the score distribution level poses some ben-
efits compared to other methods, the DFI exhibits some limitations. By consid-
ering the whole distribution equally, biases appearing in the tail of those distri-
butions, which ultimately condition the recognition performance, are not always
properly represented. This nuance is especially relevant for high-performance
systems, such as the ones leading the NIST’s Face Recognition Technology Eval-
uation (FRTE). These FR systems, mostly commercial from the industry, usually
present low error rates, and hence their differences are determined by extremely
competitive operational points. In other words, it is mostly in the matching score
distributions tails where the main differences across systems arise. The differ-
ential outcome approach can be useful to measure bias in these scenarios. Still,
it should be noted that performance differences in the distribution tails may



Comprehensive Equity Index (CEI) 113

not be always related to demographic biases. As Therhörst et al. showed, non-
demographic attributes such as head-pose, illuminations, brightness, resolution,
or even black and white images can affect the performance of FR systems [43].
Therefore, it would be desirable to use a metric that strikes a balance between
the two extremes: based on decision thresholds or full score distributions.

In this work, we propose a metric that can capture differences in the distribu-
tions tails without fixing specific operational points. We were inspired by recent
fairness metrics [19,27] and we have addressed some of the flaws observed when
using these metrics in real and synthetic scenarios [30,41]. We present a modi-
fication of the DFI metric [27] that solves the previously mentioned drawbacks,
which we use to evaluate a high-performance algorithm presented to the NIST
FRTE challenge in several state-of-the-art face recognition databases. The main
contributions of this work are:

1. We present an evaluation of six fairness metrics applied to face recognition
in synthetic and real-world scenarios. We characterize its performance when
measuring the fairness of commercial algorithms in state-of-the-art datasets.
Our experiments demonstrate the difficulties in detecting biased behaviors in
high-performance algorithms characterized by long-tail score distributions.

2. We propose a new metric, the Comprehensive Equity Index (CEI) that
addresses the drawbacks of the existing DFI metric when evaluating high-
performance systems. The proposed metric aims to detect demographic biases
in the distributions tails and in the center part of the distributions.

2 Measuring Fairness in Biometric Systems

2.1 Problem Formulation

Let us consider any 2-class classification problem (n-class can be developed as
multiple 2-class problems), in our case exemplified using Face Recognition (FR).
Other AI setups apart from classification in which output probabilities for dif-
ferent data populations can be obtained are also easily covered by our methods.
Other AI setups in which class probabilities are not straightforward, e.g., regres-
sion, will need further work for our ideas to be properly developed. Let’s now
focus for concreteness and without loss of generality in Face Recognition.

Traditionally, a FR system operates in one of the following setups: i) Iden-
tification or ii) Verification. Our interest here is in the latter, where the task is
to determine whether two samples belong to the same identity or not with a 1:1
similarity comparison, or match. If both samples belong to the same identity, the
samples are said to form a genuine pair, otherwise, we refer to it as impostor, i.e.,
a 2-class classification problem. In a real scenario, it is common that one of the
biometric samples in the pair is pre-enrolled in the system (reference sample),
whose identity is known. Thus, the system is presented with a second sample
(probe sample) that claims to belong to the same identity as the reference.

Formally, to measure the performance of the system let us consider a dataset
of biometric samples, which contains N samples, i.e., face images I in the case
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of FR systems. Each of the images was captured from a subject, who is part
of a demographic group di according to its demographic traits (e.g., gender,
ethnicity, age). We assume here a set D of K demographic groups, which are
disjoint (i.e., a subject can only be a member of one group). A FR model wF

is trained to extract face representations x = f(I|wF ) discriminant for the task
of identity recognition from the images. The dissimilarity of a pair of face rep-
resentations (xn,xm) is usually computed using a vector distance metric, such
as the Euclidean or the cosine distances, which can then be normalized [12]
to a score s(xn,xm). In this context, different considerations of what is meant
for the system to be demographically fair have been proposed in the litera-
ture [13,21,27,39], but they all follow a similar hypothesis: the “performance”
of the system should be equal across groups. The nuance here is how to define
performance. If we abstractly formulate the performance of a model for a demo-
graphic group di as Performance(wF |di), the previous idea would be satisfied
if Performance(wF |di) ≈ Performance(wF |dj) ∀di, dj ∈ D (where ≈ should be
carefully defined). In traditional Machine Learning [21], these performances have
been measured as the probability of a certain decision of the model (i.e., Demo-
graphic Parity), or even as the True Positive Rate (i.e., Equal of Opportunity).
Particularly in biometrics, differential outcome approaches have considered error
rates, i.e., FMR/FNMR, as the basis for these performance measurements [13].
On the other hand, differential performance approaches such as [27] consider
the entire distributions of scores z = p(s|wF ) (where p denotes probability) to
represent the performance of the model.

2.2 Fairness Metrics: Existing Methods

Recently, Kotwal and Marcel have addressed the problem of measuring demo-
graphic fairness in biometric systems [27]. They argued how the community has
paid mostly attention to differential outcome metrics, i.e., those which measure
fairness as gaps in classification rates across groups [13,16,19,24]. Compared to
these, they proposed a differential performance metric based on the distances
between score distributions z. This approach presents the main advantage of
being agnostic to the operational point selected, thus measuring the fairness of
the overall system.

Concretely, the metric proposed in [27] leverages the Kullback-Leibler (KL)
divergence as the basic distance measure among the distributions of each demo-
graphic group. The metric, known as the Distribution Fairness Index (DFI),
spans values between 0 and 1, where a value close to the latter represents a
fairer model. Formally, DFI is defined as follows (using the same notation as
in [27]):

zDmean =
1
K

K∑

i=1

zDi
(1)

DFIN = 1 − 1
K log2 K

K∑

i=1

Si (2)
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where zDi
is the combined (genuine + impostor) distribution for the demo-

graphic group di, normalized so that the curve area sums one, and Si is the
KL divergence among zDi

and the mean distribution zDmean . The formulation in
Eq. 2 corresponds to a baseline definition of DFI (Normal, therefore N), which is
based on the average of the dissimilarities of all the demographic distributions
from the mean distribution. Additionally, it is a common approach to measure
the fairness of a system considering the group that is disfavoured the most, as
it represents the worst-performing case. Thus, another formulation of DFI can
be made, which only considers the distribution of the demographic group that
diverges the most from the mean:

DFIE = 1 − 1
log2 K

max(Si) (3)

Apart from DFI, two interesting differential outcome metrics are highlighted
in the latest NIST FRVT report on demographic differentials measurement [19].
The first of them is an updated version of the Inequity metric, which computes
the ratio between maximum and minimum FMR/FNMR values across demo-
graphic groups. As noted in [19], using the minimum values is not robust in
general setups, thus a better measurement can be obtained by including in the
ratio the geometric mean of FMR/FNMR across groups, instead of the mini-
mum. Thus, the modified Inequity metric is formulated as follows:

INFMR =
maxdi

FMR(τ)
FMRgeom

(4)

INFNMR =
maxdi

FNMR(τ)
FNMRgeom

(5)

In addition to the previous metric, the NIST’s report proposes as well the use
of the GARBE metric to measure fairness in terms of both FMR and FNMR [25].
This metric is inspired by the Gini coefficient, a commonly used measurement
of income disparity, and is formulated as follows:

GARBEFMR =

∑
i

∑
j |FMRdi

(τ) − FMRdj
(τ)|

2K2 FMRarith
(6)

GARBEFNMR =

∑
i

∑
j |FNMRdi

(τ) − FNMRdj
(τ)|

2K2 FNMRarith
(7)

where FMRarith and FNMRarith represent arithmetic means of each demographic
group considered. The Gini metric yields values on the interval [0, 1], with high
values being associated with unfair systems. Higher values are a sign of unfair-
ness as well for the Inequity metric. For both Inequity and GARBE metrics,
an operational point needs to be selected. In its evaluations, NIST fixes the
operational point as that for which the systems give an overall FMR of 0.0003.
Then, FMR and FNMR values for each demographic group can be computed
and aggregated using any of the previous metrics. While both of them can be



116 I. Solano et al.

further aggregated into a single value, having a separate value for FMR and
FNMR allows us to analyze the fairness with regard to different kinds of errors,
i.e., whether the model exhibits more bias in the genuine distribution (FNMR)
or in the impostor distribution (FMR).

2.3 Proposed Metric: Comprehensive Equity Index (CEI)

In this section, we present an extension of the metric of [27] to measure fairness.
Our proposal tries to keep the benefits of performance-based metrics while inte-
grating the error-based perspective of differential outcome metrics. With this
balance, we are not only aiming to measure the model’s bias but also to consider
how competitive the recognition system is, a relevant aspect in systems with
very small error rates.

By examining the evaluation of high-performance models (e.g., those pre-
sented to NIST FRTE) with the DFI metric on state-of-the-art datasets, such
as RFW [48] or BUPT-B [46], we noticed that error rates associated to demo-
graphic biases are not captured with the cited metric. We hypothesize that,
since DFI uses the entire distribution to measure fairness i) the tail has a lit-
tle relevance in the computation and ii) genuine and impostor distributions are
treated as a whole, hence hindering the assessment of any bias present in either
of them. In comparison, differential outcome metrics such as GARBE [25] or
Inequity [19] can capture these biases, since the selection of an operational point
directly focuses the evaluation on the tails of the distributions. However, mea-
suring fairness for a concrete operational point presents some drawbacks. First,
the demographic bias underlying the core of the biometric system is not cap-
tured at all, so information about the rest of the distribution is lost. Second, by
considering only the tail of the distribution, the performance is measured in a
lower percentage of samples than when using the entire curve. Thus, outcome
differences could be due to reasons beyond demographic attributes, for instance,
image resolution, brightness, or pose covariates.

We aim to overcome the aforementioned shortcoming by presenting a new
fairness measure built on the proposal of Kotwal and Marcel [27]. Specifically,
our objective is to have a metric that is both threshold-agnostic and able to
measure bias in genuine and impostor distributions independently while prop-
erly accounting for the tails, i.e., where errors occur. We introduce here the
Comprehensive Equity Index (CEI). For every demographic group, the CEI first
splits each distribution (i.e., genuine or impostor) into two groups based on a
given percentile Ps (i.e., score threshold s corresponding to certain accumulated
probability P ), dividing the tail from the rest of the distribution (referred to
as center distribution from now on). The intuition here is to have independent
components so we can assign them different weights when computing fairness.
Once the distribution is split, we can compute a score S′

i (dissimilarity score as
we are using distance measures) between a demographic distribution and the
mean distribution as follows:

S′
i(Ps) = wt · DKL(ztDi

||ztDmean
) + wc · DKL(zcDi

||zcDmean
) (8)
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where ztDi
and zcDi

are respectively the tail and center distributions from zDi
,

ztDmean
and zcDmean

refer to mean distributions as defined in Eq. 1, and wt and
wc are manually-tuned weights controlling the trade-off between the relevance
of each part in the similarity score. The term in Eq. 8 is computed for each
demographic group, then the CEI is calculated in a similar way as the DFI,
having Normal and Extreme variants:

CEIN(Ps) = 1 − 1
K log2 K

K∑

i=1

S′
i (9)

CEIE(Ps) = 1 − 1
log2 K

max(S′
i) (10)

Both proposed metrics CEIN and CEIE are on the interval [0, 1], with a higher
value being associated with a fairer model.

3 Material and Methods

3.1 Models and Databases

For the present work, we have trained two face recognition models from scratch
for face recognition. The models were trained with a margin-based loss, i.e., Cos-
Face [45], on the WebFace database [49], which contains 260M images from 4M
identities. The database includes images from 7 different race groups, with more
than half of the identities being Caucasian. Similarly to the models evaluated
in [49], we assessed the performance of the trained models on IJB-C [28]. These
models will be used later in our experiments:

– ResNet-100 [22]. The ResNet architecture is one of the most famous convolu-
tional models of the last decade. Here, we have used the architecture with 101
convolutional layers. The trained ResNet-100 model exhibits a FNMR@FMR
= 1e−5 of 0.0407.

– Proprietary Model. A commercial model submitted to the NIST FRTE
1:1 with a FNMR@FMR = 0.0003 of 0.0058. When evaluating this model on
the IJB-C [28] dataset, we obtained FNMR@FMR = 1e−5 of 0.037.

Throughout the experiments carried out in the present work, we will use the
following publicly available databases: MORPH [37,44], RFW [48], and BUPT-
B [46]. All three databases include demographic labels with the gender and
ethnicity of each subject. In addition to the aforementioned databases, we have
used in this work a synthetic database recently released for the FRCSyn Chal-
lenge [30] with realistic conditions and controllable demographics.

4 Experiments

In this section, we present different experimental scenarios in which we show the
usefulness of the proposed metric to measure the (un)fairness of high-performing
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face recognition models. In Sect. 4.1 we present a toy scenario to elaborate on
and numerically assess the advantages of the presented metric in comparison to
existing metrics. Finally, experiments on real images are conducted in Sect. 4.2,
where we evaluate a high-performance industry model and compare our proposed
metric with existing methods.

Fig. 1. Genuine and impostor synthetically-generated similarity score distributions,
in different scenarios: (Left) Biased Genuine distribution tail (BG); (Center) Biased
Impostor distribution tail (BI); and (Right) Biased genuine-impostor distribution Cen-
ter (BC).

4.1 Synthetically-Generated Distributions

In the following, we present experiments on synthetically-generated similarity
score distributions, simulating the performance of a competitive model. Three
scenarios are considered (see Fig. 1). First, we manipulated the left tail of the
genuine distribution, i.e., the right distribution in Fig. 1 (left), to increase the
false rejections in that region. We have called this scenario Biased Genuine distri-
bution tail (BG). This name is given because in the overlapping region between
the two distributions (genuine and impostor), the genuine tail is forced (biased)
to have an atypically high probability (considering as typical a rapid decrease
similar in nature to a normal distribution tail, e.g., as shown in the impostor
distribution).3 The second scenario is similarly created for a Biased Impostor
distribution tail (BI). Finally, in the third scenario, both distributions (gen-
uine and impostor) have similar probabilities in their tails, but their centers
are shifted. We have called this scenario Biased genuine-impostor distribution
Centers (BC). The first two scenarios are expected to be well captured by the
INFMR (INFNMR) and GARBEFMR (GARBEFNMR) metrics, as changes in the
tail are more relevant here, whereas the distribution changes introduced in the
third scenario will, in principle, be better captured using both DFIN and DFIE
metrics, as the distribution tails in that case are similar and hence present an
identical error rate.
3 In a general sense, bias in machine learning can be considered a systematic error that

occurs in a model due to incorrect assumptions in the machine learning process.
Technically, we can define bias as the error between the model behavior and the
ground truth. In practical terms, measuring that error will normally mean measuring
differences between score distributions, as done in the present paper for the particular
case of systematic demographic differences in biometric systems [6].
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The evaluation presented in Table 1 confirms the initial intuition. On one
hand, both variants of the DFI metric are not able to detect any bias in those
cases where the differences are found in the distribution tails (BG and BI), but
the GARBE and IN metrics seem to capture those differences. We hypothesize
that DFIN and DFIE are not being able to capture the generated bias because
of: i) the minor impact that differences in the distribution tail have compared to
the center of the distribution, and ii) the metric using the genuine + impostor
distribution as a whole, ignoring particular differences found in each one. On
the other hand, in the third scenario, it can be observed that the GARBE and
IN metrics are not able to capture any differences, whereas both variants of

Table 1. Values of the DFI and NIST-related metrics and the proposed CEIN and
CEIE on the simulated scenario.

BG BI BC

DFIN [27] 0.9983 0.9974 0.8361

DFIE [27] 0.9982 0.9970 0.8112

GARBEFMR [25] 0.0050 0.2950 0.0433

GARBEFNMR [25] 0.3326 0.0025 0.0208

INFMR [19] 1.1249 2.0989 1.0697

INFNMR [19] 2.2331 1.0037 1.0416

CEINGenuine [ours] 0.5678 0.9991 0.9919

CEINImpostor [ours] 0.9992 0.6223 0.3767

CEIEGenuine [ours] 0.4714 0.9990 0.9916

CEIEImporstor [ours] 0.9992 0.5372 0.2986

Table 2. Values of CEIN on three synthetically generated cases: i) BG, ii) BI, and
iii) BC. We evaluate each case using three different percentiles (75, 90, 95) and three
different weight sets (i.e., w1 = (0.2, 0.8), w2 = (0.5, 0.5), and w3 = (0.8, 0.2)) for the
tail and center of the distributions, respectively.

Genuine Impostor

BG BI BC BG BI BC

P75 w1 0.9897 1.0000 0.9110 0.9999 0.9908 0.4008

w2 0.9757 0.9999 0.8990 0.9999 0.9803 0.4083

w3 0.9617 0.9998 0.8869 0.9998 0.9698 0.4158

P90 w1 0.9438 0.9997 0.9726 0.9995 0.9481 0.5319

w2 0.8787 0.9994 0.9757 0.9992 0.8901 0.4580

w3 0.8136 0.9991 0.9787 0.9989 0.8320 0.3841

P95 w1 0.8791 0.9998 0.9804 0.9997 0.8936 0.5703

w2 0.7235 0.9995 0.9862 0.9995 0.7580 0.4735

w3 0.5678 0.9991 0.9919 0.9992 0.6223 0.3767
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the DFI seem to be more sensitive to distribution displacements. As the NIST-
related metrics need the differences to be related to the performance instead of
to the shape of the curve, this does not manifest in this case.

To assess our proposed metric, we evaluated those three scenarios using dif-
ferent configurations of the proposed CEI metric with the normal variant, CEIN.
We have conducted experiments combining percentile values of 0.75, 0.90, and
0.95 and weight values of (wtail, wcenter) = {(0.2, 0.8)}, (0.5, 0.5), (0.8, 0.2)}. The
results are shown in Table 2. For the first two scenarios (BG and BI) of Fig. 1,
it is observed that when configuring our metric to give more importance to the
distribution tail (both using high percentile values and high wtail proportions),
our metric is able to detect the introduced bias (i.e., the CEIN value decreases) in
each the genuine (for the BG scenario) and impostor distribution (for the BI sce-
nario). (Note that the metric diverting from 1 means that the bias introduced
between the two evaluated scenarios with/without bias is properly noticed.) For
the last scenario, BC, we observe the biggest decrease in CEIN (i.e., largest
bias detected) for the impostor distribution, as expected given the BC setup
considered (see Fig. 1 right, where we can see that the bias introduced makes
more different the impostor distributions in comparison to the genuine ones).
Therefore, the proposed metric is able to detect the bias in all three presented
cases, regardless of the weight parameters used. This is a desired behavior not
observed with any of the other metrics in the literature. Thus we conclude that
our proposed CEI has the potential to overcome some of the weaknesses of the
original DFI. However, this needs to be assessed in real-world scenarios.

Distance Distance

Fig. 2. Genuine (continuous line) and impostor (dashed line) distributions for ResNet-
100 [22] model in MORPH [37,44] (Left) and RFW [48] (Right) datasets. The x-axis
shows the Euclidean distance between two images. Thus the genuine distributions are
on the left and the impostor on the right. Each demographic group is represented by
a different color.

4.2 Evaluation in Real Scenarios

In Fig. 2 the genuine and impostor distributions for a ResNet-100 [22] model
trained over the WebFace database [49] for the MORPH [37,44] and RFW [48]
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Table 3. Values of CEIN metric using the ResNet-100 [22] model on MORPH [37,44],
RFW [48], BUPT-B [46], and the FRCSyn database [30]. We evaluate using three
different percentiles (75, 90, 95) and two weight sets (i.e., w2 = (0.5, 0.5), and w3 =
(0.8, 0.2)) for the tail and center of the distributions, respectively.

Genuine Impostor

MORPH RFW BUPT-B FRCSyn MORPH RFW BUPT-B FRCSyn

p75 w2 0.9759 0.9318 0.9192 0.9515 0.9492 0.8151 0.9670 0.9316

w3 0.9614 0.9073 0.8951 0.9343 0.9368 0.7556 0.9532 0.9138

p90 w2 0.9202 0.8911 0.8944 0.9317 0.9129 0.7779 0.9272 0.9157

w3 0.8723 0.8365 0.847 0.8988 0.8741 0.6804 0.8907 0.8798

p95 w2 0.8696 0.8461 0.8753 0.9206 0.8871 0.7581 0.9097 0.9046

w3 0.7959 0.7622 0.8129 0.8787 0.8298 0.6435 0.8611 0.8578

Table 4. Values of the DFI and NIST-related metrics, and the proposed CEIN and
CEIE on the simulated scenario obtained on MORPH [37,44], RFW [48], BUPT-B [46],
and the FRCSyn database [30]. The two CEI variants use a percentile of 95% and
weights (wtail, wcenter) = (0.8, 0.2).

ResNet-100 [22]

MORPH RFW BUPT-B FRCSyn

DFIN [27] 0.9932 0.9785 0.9965 0.9927

DFIE [27] 0.9885 0.9529 0.9927 0.9768

GARBEFMR [25] 0.3762 0.2885 0.3289 0.4631

GARBEFNMR [25] 0.1500 0.1377 0.2719 0.0654

INFMR [19] 2.9418 1.8803 2.2661 4.3461

INFNMR [19] 1.6818 1.3723 2.0182 1.1754

CEINGenuine [ours] 0.7959 0.7622 0.8129 0.8787

CEINImpostor [ours] 0.8298 0.6435 0.8611 0.8578

CEIEGenuine [ours] 0.5425 0.6724 0.6725 0.6717

CEIEImporstor [ours] 0.6797 0.394 0.7973 0.6989

Proprietary Model

MORPH RFW BUPT-B FRCSyn

DFIN [27] 0.9933 0.9818 0.9983 0.9906

DFIE [27] 0.9873 0.9647 0.9818 0.9662

GARBEFMR [25] 0.2439 0.2500 0.3075 0.4616

GARBEFNMR [25] 0.1500 0.1941 0.2873 0.0693

INFMR [19] 2.9410 1.7965 2.1286 4.1876

INFNMR [19] 1.6818 1.5635 2.0803 1.2038

CEINGenuine [ours] 0.9056 0.7624 0.7831 0.8686

CEINImpostor [ours] 0.9135 0.6744 0.9001 0.8467

CEIEGenuine [ours] 0.7953 0.6408 0.6431 0.6704

CEIEImporstor [ours] 0.8585 0.4560 0.8492 0.6867
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datasets is depicted. For each of the datasets, each curve represents a demo-
graphic group based on the ethnicity. We have evaluated the normal variant
of the CEI metric described in Eq. 9 with different configurations. More con-
cretely, we analyze its behavior using percentile values of 75%, 90%, 95%, and,
based on the observations from Sect. 4.1, weight values of (wtail, wcenter) =
{(0.5, 0.5), (0.8, 0.2)}. Table 3 it can be observed that, as the distribution tail
receives more importance (i.e., using high percentile like P95 and a weight com-
bination that prioritizes the tail like w3). the metric value decreases, indicating
that differences among demographic groups exist on those parts of the curves.
In Table 3 in that configuration (P95 and w3) we also observe differences in
the behavior of genuine and impostor distributions, e.g., MORPH [37,44] and
RFW [48] have a larger difference in their CEIN score between the genuine and
impostor distribution, meaning that the bias is different for each one. We have
used the distance score distributions over those datasets and the ResNet-100 [22]
model in Fig. 2 to confirm the existence of the differences captured by the CEIN.

The configuration using a percentile of 95% and weights (textsubscript) =
(0.8, 0.2) has been used for the two variants of the proposed CEI metric (CEIN)
and the extreme variant described in Eq. 10, (CEIE) to compare them with other
existing metrics (see Sect. 2.2). The results are represented in Table 4. It is shown
that the DFI-related metrics (DFIN and DFIE) are not able to capture any of
the existing differences. As hypothesized before, this may be related to the fact
that differences are mainly found in the distribution tails. Moreover, the DFIN
and DFIE metrics do not separate the genuine and impostor distributions. It
uses an aggregation of both distributions to compute the “fairness”, provok-
ing bias related to specific distributions not to be captured. That behavior is
not observed with the NIST-related metrics, which is especially relevant in this
scenario because the metric can detect potential differences between the demo-
graphic groups while providing more detailed information about the distribution
(genuine or impostor) in which the difference is found. If we analyze the results
obtained for both variants of the CEI metric, we find improvements w.r.t. the
existing performance-based DFI metric, as it is able to better detect differences
between demographic groups. Moreover, we observe that the proposed variant
CEIE is more sensitive when measuring those demographic differences. Thus,
the validity of both variants of the proposed metric is confirmed. It is shown
to be able to capture existing differences while maintaining the strengths of the
performance-based approach.

5 Conclusions

In this work, we follow up on previous efforts to measure “fairness” in bio-
metric recognition systems by using a differential performance-based approach,
dependent on the system score function. We have introduced a modification of a
previous metric by adapting it into its application to real-world scenarios where
the differences are found in the score distribution tails. The proposed metric,
called Comprehensive Equity Index (CEI), has been shown to capture existing
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differences in the score distributions for different demographic groups when eval-
uating a high-performance Face Recognition (FR) system presented in the NIST
FRVTE 1:1 (with excellent results) in several state-of-the-art datasets.

Our proposal addresses previous weaknesses of differential performance met-
rics by parameterizing the relevance of the tail distribution differences for diverse
demographic groups with a percentile selecting the tail and weights that give
more or less importance to differences in that area of the distribution. Our pro-
posed metric CEI also provides information on the bias encountered in each of
the genuine and impostor distributions. This way, the metric can adapt to the
distribution area where bias is desired to be studied. The proposed metric there-
fore overcomes observed deficiencies of previous metrics in real-world scenarios
while preserving the benefits of the differential performance approach: it does
not depend on concrete operational points and knowledge of the intrinsic behav-
ior of the system, i.e., how the model represents biometric samples depending
on its demographic attributes.

The introduced metric should be understood as a complement to other per-
formance outcome-based metrics. Ours can detect differences in distributions,
but this may not always be enough to determine whether a system is fair (or
has bias), as that statement is dependent on the definition of fairness (or bias)
and the concrete use case [39]. We propose to use the CEI as an index to detect
differences in high-performance model distributions together with other perfor-
mance metrics such as FMR, FNMR, and outcome differential-based indexes to
have a wider view of the biases of the system in terms of the demographic group.

Future work includes continued investigation on data-efficient and cost-
effective bias detection and evaluation methods looking both at models inter-
nals [38,40] and outputs [6], symbolic methods to analyze biases [42], and
exploitation of LLMs to better assess biometric systems [7] including bias eval-
uation.
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Abstract. Face, a non-intrusive recognition modality, is an ideal candi-
date for identifying criminals or performing general-purpose person iden-
tification. On top of that, faces are not only related to identity but other
essential attributes such as age and gender can also be extracted. Due to
such potential, face recognition has received tremendous attention, yet
face recognition from a distance remains challenging. To empower the
face recognition research, we have collected a novel unconstrained video
face dataset namely MobileFaces across various distances using mobile
phones. Utilizing the proposed dataset, we have performed extensive
experiments on face recognition, including verification and identification
using state-of-the-art (SOTA) deep face recognition networks. Further,
we have evaluated the robustness of current SOTA deep face attributes
prediction networks to demonstrate whether the challenge lies in face
recognition only or whether the existing algorithms are vulnerable in
predicting facial attributes such as age and gender. The results suggest
that the existing algorithms are ineffective not only in identifying the
identity of the subjects but also fail to detect face attributes when the
images are captured in unconstrained environments. For example, deep
face networks yield the best macro average accuracy of 65% and an F-1
score of 0.48 when asked to predict gender on the collected dataset at a
distance of 10m. Based on the comparison with existing unconstrained
face datasets and analysis of the effectiveness of image super-resolution
techniques, it is showcased that the proposed dataset is significantly chal-
lenging compared to them, and hence, we believe that the presence of our
dataset can advance the development of unconstrained face recognition
algorithms.

Keywords: Face Recognition · MobileFaces · Unconstrained Videos
Dataset

1 Introduction

Acquiring faces in the real world and an unconstrained environment requires
installing surveillance cameras [9,18,42]. The prime challenge of installing

The dataset can be accessed using the following link.
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Fig. 1. Challenges present in unconstrained face recognition where the images are
captured using a mobile camera. The first row of images is taken at a 5m distance,
and the second row is the low-quality faces when captured from a 10m distance.

surveillance cameras is the setup cost, along with its infeasibility of covering
every possible corner, especially in a country that has a large geographical area
such as India. That is where the boom in the mobile camera industry can be a
boon as “every pocket” has a camera that can be used to capture images [35]. We
assert that these “mobile surveillance” images can better act as evidence in a
court of law as compared to the testimony of eyewitnesses or sketches developed
[33,43]. Therefore, we required an unconstrained dataset captured using mobile
phones to develop a robust face recognition technology across varying distances.
However, capturing faces from videos recorded on mobile phones presents unique
challenges, especially when the distance between the camera and a person is sig-
nificant, say 10 m. Due to low resolution, pose variation, and poor image quality,
recognizing individuals from a long distance poses many challenges. Apart from
that, unconstrained acquisition conditions suffer from several other limitations
due to a high degree of facial freedom, which results in expression variation,
occlusion, and motion blur. Along with these, the environment also plays a crit-
ical role in the form of illumination.

Looking at the potential of face recognition (FR) in person identification
and to boost FR algorithms, over the years, substantial progress has been made
in collecting the face recognition datasets, such as FERET [34], CMU FIA
[16], and CMU PIE [41]. However, these databases are mainly collected from
close distances with low and constant camera zoom, making them suitable for
short-distance applications. The datasets, such as VGGFace2, MS-Celeb-1M, and
MegaFace, are developed over a longer range and captured using surveillance or
professional cameras. However, most of these datasets’ studies are conducted on
European, Caucasian, and American ethnicities, and very limited studies have
been conducted on Indian ethnicity face images. Therefore, in this research, we
have conducted a first-ever large-scale face analysis study using the proposed
MobileFaces dataset captured in the unconstrained real world at various dis-
tances using mobile phones. In brief, the contributions of this research are:
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– We have collected an unconstrained MobileFaces video dataset reflecting sev-
eral real-world artifacts such as pose, distances, illumination, and resolution.
The proposed dataset can be seen as mobile surveillance but with proper
ethical guidelines;

– A detailed face analysis study has been conducted to extract facial charac-
teristics related to soft biometrics, such as age and gender, along with face
verification. The study reveals several interesting insights that can pave the
way for robust, unconstrained FR.

Fig. 2. Full images and cropped face images from our collected dataset reflect the
challenges developed due to not only varying distances but also the subject being
unconstrained in having natural actions.

Figure 1 shows the challenges of FR when the images in the proposed dataset
are captured using mobile phones in completely unconstrained environments at
varying distances. The images suffer from quality, pose, illumination, occlusion,
and blur. Therefore, analysis of the current deep FR algorithms can help in
further improving the FR algorithms in unconstrained mobile settings.

2 Related Work

In the literature, a tremendous amount of work has been done for face recog-
nition at the architecture and optimizer level [6,13], and several datasets have
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Table 1. Statistics for face datasets. The proposed Mobilefaces contain images at
three different distances, such as 2m, 5 m, and 10 m, which result in varying poses and
resolutions as well. A few of the large-scale datasets (*) are not publicly available, and
most of them have achieved at least 95% accuracy [4,53], reflecting the demand for
a novel unconstrained face recognition dataset. The description of existing datasets is
taken from VGG-Face2 [5].

Dataset Total
Images

Minimum Per
Subject Images

Varying
Distance

Varying
Pose

Varying
Resolution

Mobile
Acquisition

Indian
Ethnicity

Year

LFW [19] 13,233 1 – – – – – 2007

CASIA-WebFace [50] 494,414 2 – – – – – 2014

IJB-A [24] 5,712 11.4 – – – – – 2015

VGG-Face [31] 2.6 M 1,000 – – – – – 2015

*MegaFace [22] 4.7 M 3 – – – – – 2016

*MSCeleb-1M [17] 10 M 100 – – – – – 2016

UMDFaces [3] 367,920 43.3 – Yes – – – 2016

CSCRV [42] 40,950 210 Yes Yes Yes – Yes 2016

IJB-B [49] 11,754 36.2 – Yes – – – 2017

IJB-C [29] 31,334 36.3 – Yes Yes – – 2018

VGG-Face2 [5] 3.31 M 80 – Yes – – – 2018

TinyFace [8] 169,403 1 – Yes Yes – – 2019

D-Lord [28] 1.2M 60 Yes Yes Yes – Yes 2023

MobileFaces (Ours) 52,913 224 Yes Yes Yes Yes Yes 2024

been collected to feed and test this model. However, few efforts have been made
to understand the challenges when face images are captured in an unconstrained
environment. Li et al. [15] explored deep learning techniques for face recogni-
tion from a distance using mobile devices and have achieved promising results.
The UMD Faces [3] challenge dataset has been designed for face detection and
recognition under unconstrained and realistic conditions, such as in surveillance
and security applications. IJB-C [29] is a benchmark dataset for face recognition
under unconstrained conditions. Table 1 shows the statistics of the existing face
recognition datasets along with their comparison with the proposed dataset. As
can be seen, most existing datasets are not acquired using mobile cameras and
do not have explicit labeling concerning varying distances used for acquisition.
Further, many of these datasets have a large number of subjects, which is because
they might be unethically scrapped from the web1, whereas the proposed dataset
is captured by following ethical guidelines with proper consent from the subjects
and hence might look small in terms of the number of subjects. Although we
want to highlight the number of subjects is comparable to other ethically col-
lected datasets in the real world, such as FPV (#140) [36] NDPSID (#100)
[10], and KaspAROV (#108) [9]. The closest dataset to our dataset is CSCRV
[42] and D-Lord [28], which contains face images at varying distances; however,
acquired using a sophisticated five mega-pixel camera and in a semi-controlled
environment.

1 It can also be seen from multiple recent incidents including data regulation policy,
retrieval of such datasets, and ban of web scrapping APIs.
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The prime limitations so far in the literature are (i) the lack of a dataset
covering Indian ethnicity, (ii) varying distances for acquisition reflecting in-the-
wild real-world settings, (iii) video datasets, and (iv) a mobile camera dataset
for unconstrained acquisition. We assert that due to the significant population
strength, which is not bound to any geographical boundaries, the lack of datasets
covering Indian ethnicities can create biased face recognition systems. Hence, for
fair face recognition, it is essential to cover each ethnicity. Therefore, we have
developed a dataset from Indian ethnicities in unconstrained real-world settings
using mobile phones, where the subjects are free to perform their natural actions.
We assert that the presence of such a large-scale dataset of under-represented
ethnicity will add to a more balanced representation of various ethnicities in
the face research domain and can boost the learning of ethnicity-unbiased face
recognition algorithms.

Table 2. Summarizing the characteristics of the proposed MobileFaces dataset.

No. of Subjects 87

Distances from mobile 2, 5, and 10m

No. of probe videos 87 videos/distance (total 261 videos).

No. of frames in a probe video 200–250

Total no. of probe frames 52,913

Frame width*height, rate 1920 × 1080 pixels, 30.01 frames/second

Gallery 87 (Frontal image of each subject)

Age range Range 18–34 years, Average 22.6 years

Gender ratio 50 Males, 37 Females

Location Indoor, Outdoor daytime (natural light), Outdoor
nighttime (synthetic light)

Annotation Age and gender of each subject in CSV file

3 Proposed MobileFaces Dataset for Unconstrained
Person Verification and Identification

We have collected a video-based face dataset of Indian individuals in the uncon-
strained real world. The dataset is a collection of facial images and videos cap-
tured using multiple smartphones. The videos in the proposed dataset are col-
lected at varying distances between the camera and the subjects, where no other
instructions are provided to the subjects except to ensure the distance is con-
stant for a particular video. In other words, the subjects are free to perform
natural tasks to ensure the presence of natural actions, which are highly possible
in real-world surveillance scenarios. Table 2 summarizes our proposed dataset’s
characteristics. In the proposed dataset, the frame’s resolution is high, but the
cropped face region covers a small portion, especially where the distance is high.
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For example, the resolution of face images captured at 10 m distance is 32 × 32
or lower. The faces extracted from these unconstrained videos are used as probes
for face recognition and the analysis of soft biometrics attributes, including age
and gender. We collected a high-resolution gallery image of each subject, which
has been used for face verification and identification.

Figure 2 shows the unconstrained nature of the proposed dataset and the
challenges it brings for face recognition. As mentioned, the images are captured
across distances, resulting in a high distribution shift among the images. Due to
the high richness of features such as variation in pose, distance, and resolution,
the proposed dataset is an ideal candidate to benchmark the performance of cur-
rent DFR networks. In brief, the proposed dataset has several implications for the
field of face recognition: (i) the dataset provides a benchmark for evaluating the
performance of face recognition algorithms on images and videos captured from
a range of distances. Using a benchmark dataset enables researchers to objec-
tively compare the performance of different algorithms and identify improvement
areas; (ii) the dataset will address the current lack of balanced representation

Table 3. Comparison of TPR at different FPR rates using macro and micro average
aggregation of score vectors for the face verification task performed on raw images
across different distances, using VGG-Face and ArcFace networks.

CNN Distance FPR: 10−3 FPR: 10−2

Micro Macro Micro Macro

VGG-Face 2 m 0.82 0.14 0.82 0.14

5 m 0.79 0.08 0.79 0.13

10 m 0.38 0.01 0.38 0.08

ArcFace 2 m 0.72 0.11 0.72 0.36

5 m 0.64 0.11 0.64 0.39

10 m 0.09 0.05 0.09 0.08

Fig. 3. ROC curves of face verification task using the face images captured at distances
2 m (leftmost), 5 m (middle), and 10 m (rightmost) using two SOTA FR networks,
namely ArcFace and VGG-Face. Pink shows the micro average performance, and blue
curves the macro average performance of the networks. (Color figure online)
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of various ethnicities, such as the Indian, within the computer vision commu-
nity; (iii) the dataset can aid in the development of new robust face recognition
algorithms that are optimized for images and videos captured from different dis-
tances and under different conditions even in mobile phones. This is important
because current face recognition algorithms are optimized for images captured
at close range, and their performance degrades as the distance increases.

4 Experimental Results and Analysis

To utilize the full potential of the proposed MobileFaces dataset, we have per-
formed several experiments, which can be broadly divided into two categories:

Table 4. A comparison between pre-trained and fine-tuned SOTA FR deep networks
in terms of TPR at various FPR values, utilizing images acquired at a distance of
10m. Fine-tuning is done using 8076 raw images captured at 10 m, distinct from the
test images.

FR Model Pre-Trained Fine-Tuned

10−3 10−2 10−3 10−2

ArcFace 0.056 0.161 0.099 0.165

AdaFace 0.015 0.041 0.014 0.0663

ElasticFace 0.0049 0.035 0.0088 0.0549

MagFace 0.008 0.04 0.0312 0.0977

Fig. 4. ROC curves for face verification task using pre-trained AdaFace, ArcFace, Elas-
ticFace, and MagFace FR models at distances 2m (upper right), 5 m (upper left), and
10m (lower).
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(i) face verification and (ii) soft biometrics analysis, i.e., age and gender classi-
fication. In this section, we first describe the experimental results and analysis
concerning the face verification algorithms. Later, face attribute classification
results are discussed. In the end, we present an interesting study highlighting
the need for novel and robust face analysis networks by conducting several exper-
iments using existing gender and ethnicity-balanced datasets such as UTKFace
[37] and FairFace [7] along with highly used low-resolution test dataset TinyFace
[8].

4.1 Face Verification Results and Analysis

Face verification is a 1:1 matching process where, along with the probe image, an
identity is also provided to match the corresponding identity’s gallery image. If
the matching score exceeds the predefined threshold, the match is termed as gen-
uine else imposter. For face verification, we have used two popular SOTA models,
namely VGG-Face [31] and ArcFace [12] available in the deepface library [39].
The ROCs of face verification on unprocessed images are reported in Fig. 3. As
expected, as soon as the distance between the subjects and the camera increases,
the performance of the face verification networks starts decreasing. The detected
faces from the video at 10 m distance are blurred and contain noises with low
resolutions, as shown in Fig. 2, which decreases the performance of the face veri-
fication networks. Therefore, the analysis of the face verification experiment can
be divided into two parts: (i) analysis based on the face verification networks
and (ii) impact of distance measure. The ArcFace yields significantly lower per-
formances of the two CNNs used, as shown in Table 3. For example, the face
verification accuracy of the ArcFace in terms of micro average [32] is 10% lower
than VGG-face at 10−3 false accept rate when the face images captured at 2 m.
Further, as the distance increases from 2 m to 10 m, and the gap between the

Fig. 5. Sample images processed using various super-resolution models performed on
10 m raw face images.
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Table 5. Comparison of TPR at different FPR rates using macro and micro average
aggregation of score vectors for the face verification task on the 10 m processed face
images using various SR models.

Models 10−3 10−2

Macro Micro Macro Micro

EDSR 0.01 0.41 0.08 0.41

ESPCN 0.01 0.38 0.08 0.38

FSRCNN 0.01 0.38 0.09 0.38

LapSRn 0.01 0.40 0.08 0.40

ESRGAN 0.01 0.30 0.09 0.30

GFPGAN 0.02 0.52 0.08 0.52

accuracy of both networks increases drastically, i.e., face images captured at
10 m distance are found highly challenging for ArcFace. While the performance
of VGG-Face also suffers a drastic reduction, it shows significantly better robust-
ness than ArcFace, even on large stand-off distances.

We have also evaluated other SOTA benchmark DFR networks such as
FaceNet [38], OpenFace [2], DeepID [44], ElasticFace [4], AdaFace [23], and Mag-
Face [30]. It is observed that these networks also suffer huge performance drops
on the proposed unconstrained dataset and found that their performance is,
most of the time, lower than ArcFace for each distance. Figure 4 shows the ROC
curves of the face recognition, where the TPR values at different FPR at 10 m
are given in Table 4.

Face Super-Resolution. From Figure(s) 1 and 2, we can see the quality of the
detected faces at a 10 m distance is poor; therefore, we assert that improving the
quality of low-resolution detected faces at a distance of 10 m might be a solution
of improved accuracy. For that, we have experimented with the following SOTA
super-resolution (SR) models with an upscaling factor of 4: (i) EDSR [26], (ii)
FSRCNN [14], (iii) ESPCN [40], (iv) LapSRN [25], (v) ESRGAN [48], and (vi)
GFPGAN [47].

Fig. 6. Comparison of ROC curves for face verification task using VGG-face network
as the backbone on the raw face images (left) with enhanced SR face images processed
using GFPGAN model (right), at 10m distance.
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Through empirical evaluation, we found that the VGG-Face model performs
best; hence, we have utilized that for future face verification experiments on SR
face images. It can be seen from Fig. 5 that while the majority of SR models
fail drastically in improving the image quality, few models significantly improve
the quality. It is also clear from our analysis, presented in Table 5, that EDSR,
ESPCN, FSRCNN, and LapSRN models do not show significant performance
improvement compared to raw face images (without SR). Further, ESRGAN
models yield an 8% lower micro average accuracy than raw images, which might
be due to increased image noise in SR images. In contrast, as seen in Fig. 6,
GFPGAN increases the image quality significantly, which also shows through a
jump of 14% in the verification accuracy.

4.2 Soft Biometrics Analysis

Apart from performing face verification, which aims to find a person’s identity, we
have also conducted a detailed study to extract several soft biometrics attributes,
such as age and gender. In this session, first, we describe the findings related to
gender classification, then age identification results are described, and at the
end, experimental findings are reported using the balanced datasets, namely
UTKFace [52] and FairFace [21].

Gender Classification Results and Analysis. To perform the gender classi-
fication, multiple face detectors are used wrapped in the Deepface library, namely
(i) OpenCV (Haar-Cascade) [46], (ii) MTCNN [51], (iii) RetinaFace [11], and (iv)
SSD [27]. The prime reason for using multiple face detectors is to understand

Table 6. Confusion matrix of gender classification on 1305 random frames at each
distance using various face detectors

Predicted

True
RetinaFace MTCNN SSD OpenCV

M F M F M F M F

Acquisiition Distance 2 meters

M 749 1 748 2 733 17 732 18

F 346 209 340 215 350 205 467 88

Acquisiition Distance 5 meters

M 749 1 748 2 710 40 741 9

F 402 153 444 111 540 15 450 105

Acquisiition Distance 10 meters

M 747 3 744 6 741 9 749 1

F 488 67 497 58 539 16 489 66
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Table 7. F1-scores for gender classification using various face detectors at 2, 5, and
10m.

Distance RetinaFace MTCNN SSD OpenCV

2 m 0.68 0.69 0.66 0.51

5 m 0.61 0.55 0.38 0.54

10 m 0.48 0.47 0.39 0.48

the robustness of these SOTA models, which are heavily popular for face detec-
tion, and it is shown that the effectiveness of the detection model significantly
impacts the recognition performance [1,20]. Table 6 shows the confusion matrix
of gender classification concerning face images captured across distance.

Through the evaluation using multiple face detectors, it is found that the
gender classification algorithms are highly biased towards the male class. Further,
for the male class, the gender classification performance on the majority of the
face detectors is either higher or similar on 10 m images as compared to 2 and 5 m
images. However, for female images, the detectors show a drastic reduction in
gender classification performance. As observed in the literature, Table 7 reveals
that the effective selection of face detectors is crucial for gender classification
across distances. For example, Retinaface and MTCNN perform similarly in
terms of accuracy at 2 m distance images, but in terms of speed and accuracy
on large-stand-off, Retinaface outperforms MTCNN for gender classification. In
brief, it is observed that RetinaFace performs consistently better or comparable
to the other detectors across the acquisition distances. The reason for the poor
performance might be the low resolution of the detected faces.

Table 8 shows the confusion matrix of gender classification using various SR
models along with various image enchantment techniques. For the male class,
the F1 score of gender classification on SR images without filters shows a slight
improvement of 2% compared to the raw images. However, when we applied
sharpening and denoising filters on these SR images, the performance increased
by 9%. For instance, FSRCNN classified 200 female images captured with fil-
ters, compared to 82 images captured without filters on SR images, and for
males, almost all are correctly classified. This demonstrates the models’ biased
nature towards male classifiers at a threshold value of 50%. To eliminate bias, we
experimented with 26 random validation subjects to determine the best thresh-
old value, which is found to be 20%. When the percentage of female prediction
exceeds 20%, the model classifies the image as a female. Therefore, from the
Tables 8 and 9, among all the experiments, the FSRCNN super-resolution model
with filters at a threshold value of 20% (TH-20) provided the best results, with
an F1-score of 0.77. Figure 7 shows a few samples where gender classification fails
and works correctly on 10 m distance images. A few reasons for misclassification
include occlusion, the presence/absence of a mustache, and glasses.

Apart from utilizing existing pre-trained models, we fine-tuned the VGG16
network using a training set from the proposed dataset consisting of 26 subjects
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Table 8. Confusion matrix of gender classification using Retinaface face detector and
various SR models with image processing techniques at 10 m distances.

Predicted

True

EDSR ESPCN FSRCNN LapSRN

M F M F M F M F

Without Filters

M 743 7 742 8 739 11 743 7

F 484 71 485 70 473 82 473 82

With Filters

M 730 20 718 32 710 40 726 24

F 415 140 405 150 355 200 402 153

With Filters and Threshold value of 20

M 633 117 595 155 599 151 610 140

F 232 323 207 348 137 418 206 349

Table 9. F1-scores for gender classification using SR models without filters and with
filters at threshold (TH) values of 50 and with filters at TH of 20 at 10 m.

Models EDSR ESPCN FSRCNN LapSRN

Without Filters 0.49 0.49 0.50 0.51

With Filters 0.58 0.59 0.64 0.60

TH-20 0.72 0.71 0.77 0.72

with an equal gender ratio. Our experiments involved two types of images: raw
detected faces and FSRCNN super-resolution images after filter-based enhance-
ment. Once the model is trained for gender classification, we evaluated the
model’s performance on 61 subjects and found the macro F1-score of 0.50 when
raw face images are used. It increases to 0.52 once the enhanced images are
used for evaluation. These results obtained using pre-trained and model trained
from scratch demand a robust gender classification network capable of handling
artifacts present in mobile faces captured at large-standoff.

Age Classification Results and Analysis. We have also studied the per-
formance of deep face attribute classifiers using different face detectors for age
classification. In this research, the age classification has been performed based on
the following principle: “if the predicted age by the model is in the range of ±k of
the true age, then treated as a correct classified age else labeled as misclassified
age sample”. Where k is referred to as the tolerance age limit, for example, if the
true age is 24 and k = 2, then the correct classification will be when the network
predicts the age in the range of 22 to 26. Table 10 shows the number of correctly
classified samples using different face detectors across distances. As expected,
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Table 10. Age identification with different tolerance limits (2, 3, 5, and 10) in terms
of the number of images correctly classified samples.

Detectors 2m 5 m 10 m

2 3 5 10 2 3 5 10 2 3 5 10

RetinaFace 72 114 227 573 55 91 221 564 62 135 386 851

MTCNN 66 102 247 557 34 68 197 595 82 154 463 902

SSD 58 111 293 763 5 14 283 719 4 12 227 766

OpenFace 128 195 399 835 107 181 407 826 74 135 402 853

Table 11. Age identification with different tolerance limits in terms of the number
of images correctly classified using various SR models without filters (w/o) and with
filters (w/) at 10 m.

Super-Resolution 2 3 5 10

w/ w/o w/ w/o w/ w/o w/ w/o

EDSR 170 161 303 275 716 670 1140 1122

FSRCNN 167 97 294 210 741 504 1166 1076

LapSRN 164 158 227 267 713 684 1139 1134

ESPCN 175 179 307 310 740 709 1161 1162

with the increase of the tolerance limit, the performance of each face detection-
based age classification network increases drastically. However, one caveat of such
performance improvement is that the higher the tolerance limit, the search space
in which we need to find a person will also be significantly high. The age classifi-
cation performance also shows somewhat improved performance even when the
distance of acquisition increases. For example, for the RetinaFace detector, the
number of correctly classified samples at 2 m distance increases from 573 to 851
when the images are captured at a 10 m distance. A similar jump can also be
observed when the MTCNN face detector-based age classification has been used.
However, for tolerance level 2, the number of correctly classified images is very
low, which needs to be considered for accurate prediction. Therefore, for the age
classification, we have experimented with various super-resolution models with
and without filters, as shown in Table 11. The age classification performance on
images obtained after super-resolution algorithms shows better results than raw
images. For instance, the number of correctly classified samples increases from
82 to 179 for images with ESPCN resolution with a tolerance level of 2 at a 10 m
distance. However, adding filters did not significantly affect the age classification
task, so we can exclude this step to optimize time.

Comparison with Other Datasets. In this experiment, we employed pre-
trained models that are trained on the UTKFace [37] and FairFace [7] datasets
to evaluate the robustness of soft biometrics analysis networks when they are
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trained on balanced datasets and evaluated on our unconstrained dataset. Both
datasets are comprised of face images annotated for age, gender, and ethnic-
ity with variations in pose and resolution. We tested the performance of these
models [7,37] on raw face images captured at distances of 2, 5, and 10 m and
also with processed images using the best-performing super-resolution algorithm.
The experimental results are shown in Table 12. It is worth noting that even in
the model trained on one balanced dataset, namely UTKface, the gender classi-
fication performance shows a significant decline in performance and even yields
lower accuracy than the deepface model. The UTKface model for age prediction
performed slightly better than the deepface model for a tolerance limit of 2 but
poorly for a limit of 10. On the other hand, Gender classification using a Fair-
Face pre-trained model shows significantly higher performance, but the network
shows bias towards males as the recall percentage for men is 97% compared
to 63% for women at 10 m distance images. On the other hand, age prediction
using the FairFace model performed poorly and only correctly classified 544
images, even at a tolerance limit of 10 for 10 m distance images. Furthermore,
We also analyzed the ethnicity results produced using the FairFace model on
10 m images. Out of 1305 Indians, this model could only predict 271, indicating

Fig. 7. Full images and cropped face region samples from our collected dataset. Along
with images, we have mentioned the true gender and age of each sample and the pre-
dicted age and gender by the deep face model. The SOTA models are highly ineffec-
tive on Indian ethnicity subjects in identifying age and gender. Red and blue represent
the true and predicted values, respectively. (Color figure online)

Table 12. Macro-F1 Scores for gender classification of our proposed dataset at varying
distances, and with processed images obtained using the FSRCNN SR model, at a
distance of 10 m.

Distance Model trained on

UTKFace FairFace MobileFaces

2m 0.70 0.96 0.77

5m 0.52 0.93 0.68

10m 0.44 0.81 0.62

SR(10m) 0.48 0.80 0.64
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Table 13. Top 3 Rank accuracies of TinyFace and MobileFaces dataset for face iden-
tification task.

FRModel TinyFace MobileFaces

R1 R2 R3 R1 R2 R3

ArcFace 45.06 49.49 51.88 30.91 38.88 46.94

AdaFace 67.81 69.37 70.25 25.02 34.54 40.04

MagFace 61.45 63.60 64.86 23.78 32.22 37.49

that the current dataset lacks Indian ethnicity data. Therefore, at last, we only
experiment on the Indian ethnicity data extracted from UTKface and FairFace
dataset, and the model [45] trained using the VGG16 network as the backbone
for the model. Even though this model also does not give good results at distance
images, it shows interesting results with oppositely biased nature dominance of
female prediction. This shows the lack of Indian ethnicity data, especially the
male and long-range variations in the dataset. In the end, we have also experi-
mented with the recently highly used low-quality testing dataset TinyFace [8] for
face identification task (1:N matching). Table 13 shows that the rank accuracy
of our MobileFaces is significantly lower than the TinyFace, which shows that
our dataset can become a new benchmark testing dataset for improving model
unbiasedness in a real scenario.

5 Conclusions

In this research, we have presented a unique mobile surveillance dataset, namely
‘MobileFaces dataset’ 2. The images are captured at multiple standoff distances
between subjects and the camera, multiple times a day, at multiple locations, and
in natural, unconstrained conditions. Extensive experiments performed using the
proposed dataset demonstrate that current DFR models are not robust enough
to identify individuals or perform soft biometrics prediction, especially when the
images are captured at large standoff (say 10 m). We have also evaluated several
image super-resolution models to check whether image enhancement is effec-
tive in improving performance; however, based on the performance, it observed
that these models are not only ineffective, but also the selection of an accurate
super-resolution model is also necessary. Based on the limitations of the existing
models, we aim to develop robust face recognition networks. Apart from that,
we aim to increase the number of subjects drastically to ensure coverage of a
wide range of populations and ethnicities.
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Abstract. Unmanned aerial vehicles (UAVs) have revolutionized search
and rescue (SAR) operations, but the lack of specialized human detec-
tion datasets for training machine learning models poses a significant
challenge. To address this gap, this paper introduces the Combination
to Application (C2A) dataset, synthesized by overlaying human poses
onto UAV-captured disaster scenes. Through extensive experimentation
with state-of-the-art detection models, we demonstrate that models fine-
tuned on the C2A dataset exhibit substantial performance improvements
compared to those pre-trained on generic aerial datasets. Furthermore,
we highlight the importance of combining the C2A dataset with gen-
eral human datasets to achieve optimal performance and generalization
across various scenarios. This points out the crucial need for a tailored
dataset to enhance the effectiveness of SAR operations. Our contribu-
tions also include developing dataset creation pipeline and integrating
diverse human poses and disaster scenes information to assess the sever-
ity of disaster scenarios. Our findings advocate for future developments,
to ensure that SAR operations benefit from the most realistic and effec-
tive AI-assisted interventions possible. The dataset, code, and model are
publicly available at: https://github.com/Ragib-Amin-Nihal/C2A.

Keywords: Aerial Object Detection · UAV (Unmanned Aerial
Vehicle) · Human Detection · Disaster Response · Search and Rescue
(SAR) · Artificial Intelligence in Disaster Relief · Emergency
Management · Benchmark Dataset

1 Introduction

The advancement of UAVs, colloquially known as drones, has signaled a new
era in the field of emergency response and disaster management. With their
unparalleled agility and ability to provide an aerial perspective, drones have
rapidly become indispensable assets in the arsenal of SAR operations worldwide.
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These technological marvels significantly improve the efficiency and effectiveness
of missions aimed at locating and aiding people in disaster-hit areas [13]. Drones
can have a significant impact on minimizing the aftermath of disasters through
time efficiency, making a difference in survival and fatality rates.

Despite these advancements, a major shortcoming exists in the deployment
of drone technologies—particularly in the area of object detection via drone
vision. Existing computer vision or drone vision systems significantly depend
on datasets to train detection algorithms. However, these datasets are primarily
designed for general situations and do not adequately address the specialized
and intricate requirements of disaster contexts. The shortage of disaster detec-
tion datasets is mostly owing to logistical and ethical obstacles in capturing and
annotating real events, which need substantial resources and often involve sensi-
tive circumstances. The ethical dilemmas of capturing vulnerable people during
actual catastrophes aggravate the issue. This lack of specialized human detec-
tion datasets for SAR operations hinders the capability of drones to effectively
identify human figures disaster scenarios. This deficiency is particularly acute, as
our findings indicate current pre-trained detection models fall short of effectively
identifying humans (more discussed in Sect. 6.1) amidst the multifaceted chaos
of disaster scenes—where the stakes are very high.

In critical scenarios, the lack of datasets with the necessary detail for train-
ing advanced machine learning algorithms hinders the optimization of drone
capabilities. Recognizing the critical need for a specialized dataset, our research
introduces a novel dataset explicitly designed to improve human detection capa-
bilities in disaster scenarios through drone vision. This dataset is created by
combining human posture images with disaster scene backgrounds, resulting in
an intricate collection of images that simulate the diverse settings faced dur-
ing real-world SAR operations. By integrating human figures into a variety of
disaster scenes, our approach aims to mirror the array of challenges that SAR
drones are likely to face, facilitating the development of more robust and effective
machine learning models tailored for disaster response applications [21].

Our endeavor is inspired by the growing field of disaster management tech-
nology, where recent breakthroughs highlight the revolutionary potential of
machine learning and computer vision in improving SAR operations [4]. Our
research focuses on creating a challenging dataset to train AI models for detect-
ing partially occluded humans, a common scenario in disaster-stricken environ-
ments. Such occlusions, resulting from individuals being trapped under debris
or obscured by various objects, represent a significant hurdle for human detec-
tion systems. Existing datasets scarcely address this challenge, primarily due
to the inherent difficulty in replicating these complex scenarios accurately. Our
dataset, therefore, signifies a pioneering step towards addressing this gap, offer-
ing a resource that simulates the conditions under which SAR operations unfold
in reality.

We aim to enhance the precision and reliability of drone-operated human
detection in emergency scenarios, underscoring the nuanced requirements of
effective disaster response strategies. The construction of this dataset involved
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Fig. 1. This collection of images presents a selection from our proposed “Combination
to Application” (C2A) dataset, a specialized compilation designed to refine machine
learning algorithms for SAR operations in diverse disaster scenarios. Within the bound-
ing boxes, human figures are superimposed onto various disaster scenes, demonstrating
the intricate process of overlaying accurately segmented human poses onto different
disaster backdrops such as rubble, traffic incidents, flood, and fire. This synthetic
approach is crucial for creating more challenging training conditions that AI mod-
els may encounter in actual SAR missions. Furthermore, the dataset is enriched with
detailed pose information-such as bent, kneeling, lying, sitting, and upright-providing
comprehensive data for AI to learn and recognize human forms even when partially
occluded by environmental obstacles.



148 R. A. Nihal et al.

a process of incorporating elements of obstruction to emulate the visibility chal-
lenges frequently encountered in real-world disaster settings. This approach facil-
itates the training of AI models that are not only adept at recognizing human
forms in clear view, but are also capable of inferring the presence of individuals
in less than optimal visibility conditions. Such abilities are necessary for quickly
finding emergency areas and finding survivors who need help right away, which
makes SAR missions much more effective [2,8].

Through this comprehensive paper, we delineate the process undertaken to
create our novel synthesized dataset (Fig. 1), emphasizing its designed complex-
ity and the specific challenges it poses to AI models. We delve into the selection
criteria for the images, the sophisticated image processing techniques employed,
and the rationale underlying the dataset’s structure. We also present our find-
ings from using this dataset to train deep learning models, which show notable
improvements in detection accuracy and the feasibility of operational deploy-
ment. In essence, our research essentially provides the field of disaster manage-
ment with a substantial C2A dataset. Researchers and professionals can use this
dataset to extend the potential of drone technology, which will make emergency
responses and life-saving operations more effective in chaotic situations. This
paper presents our contributions to the field as follows:

– We introduce a novel synthesized dataset that mitigates the gap in current
SAR operations by providing imagery capturing human figures in disaster
contexts, designed to train machine learning models for complex human detec-
tion tasks.

– We present a comprehensive dataset creation pipeline that combines advanced
image processing techniques and domain-specific knowledge, resulting in a
dataset that represents the complexity and unpredictability of disaster sce-
narios.

– Our dataset includes a variety of human poses and disaster scene informa-
tion, allowing researchers to develop models that can assess the severity of a
disaster scene and prioritize rescue efforts.

– Our preliminary results demonstrate that the dataset significantly improves
the detection performance and operational feasibility of deep learning models,
indicating the dataset’s potential to transform disaster response efforts.

2 Literature Review

Robust datasets are fundamental to developing and training precise machine
learning models. The importance of datasets tailored to specific application
domains is well established in the literature. Studies such as those by [1] and [27]
emphasize the need for datasets that encompass the intricacies of various disas-
ter scenarios. These resources are pivotal for calibrating UAV-operated detection
systems to recognize human subjects under a multitude of conditions. Yet, there
remains a scarcity of datasets that accurately mirror the complexities of disaster-
hit environments.
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Table 1. Comparison of Datasets for Human Detection in Disaster Scenarios

Feature C2A (proposed) LoveNAS [30] Smoke Scene
[31]

M4SFWD
[29]

SARD [25]

Focus Human detection in
disaster scenarios
with partial
occlusion

Land-cover
mapping for
multiple
scenes
including
disaster
scenarios

Detection of
smoke scenes
from satellite
imagery for
early disaster
response

Synthetic
dataset for
remote
sensing forest
wildfires
detection

Human detection in
search and rescue
operations using
drone imagery

Scenarios
Covered

Various disaster
scenarios
(earthquakes, flood,
fire) with partial
occlusion

Urban, rural,
and disaster
scenes

Areas prone
to fire
outbreaks

Forest and
wildfire
scenarios

Search and rescue
operations in
non-urban areas (no
disaster scene)

Partial
Occlusion

Yes No No No Yes

Image
Diversity

High, with images
from multiple
disaster types
including occluded
humans

High,
including
three normal
and two
disaster
scenes

Moderate,
focused on
smoke
detection

High,
developed
through post-
processing
and synthesis

Moderate, focused
on search and rescue
scenarios

Realism Moderate, designed
to mimic real
disaster conditions
with individuals

Moderate,
lacks specific
focus on
human
detection

High for
smoke
detection,
moderate for
overall
disaster
realism

High for
wildfires,
moderate for
human
detection
relevance

High, includes
realistic search and
rescue scenes
captured by drones

Human
Poses

Bent, Kneeling,
Lying, Sitting,
Upright

Not
applicable

Not
applicable

Not
applicable

Diverse, not included
in annotation

Debris and destruction frequently obscure human subjects in disaster zones,
biasing UAV detection. According to the literature, existing datasets and models
are progressing, but they fall short of providing the granular detail required for
reliable detection in such complex circumstances [18,19]. A significant body of
research, including work by [11], emphasizes the pressing need for advancing
UAV technology to navigate these obstacles adeptly. Yet, the development of
datasets that reflect the reality of partial occlusions in disaster contexts is still
in its early stages, indicating a pivotal area for future research.

The evolution of machine learning and computer vision has been enhancing
to UAV capabilities. These advancements have paved the way for more nuanced
data analysis, crucial for discerning human presence within complex terrains.
Even with these improvements, the research shows that algorithms and models
still need to be improved, especially to make human detection more reliable [12].
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One notable effort in this direction is the Search and Rescue Drone (SARD)
dataset [25], which focuses on human detection in search and rescue operations
using drone imagery. The SARD dataset includes images of people in various
poses simulating exhausted or injured individuals, captured in non-urban envi-
ronments. While it provides a valuable resource for developing detection models
for SAR scenarios, the SARD dataset does not explicitly include disaster scenes,
which pose additional challenges such as debris, occlusions, and clutter. More-
over, although the dataset contains diverse human poses, this information is
not directly incorporated into the annotations, limiting its utility for pose-aware
detection.

The main gap is the absence of comprehensive datasets capturing the full
spectrum of disaster scenarios, specifically focusing on the aspect of partial
human occlusion. Moreover, there is an evident need for further exploration
into advanced machine learning and computer vision applications tailored for
SAR operations. The new dataset is compared to existing datasets about find-
ing people in disaster situations in Table 1.

This comparison indicates the distinctive contributions of the newly devel-
oped dataset, particularly its emphasis on effective human detection in disaster
scenarios, a topic not explicitly addressed by the existing datasets. The newly
developed dataset sets itself apart from existing ones, which narrowly focus on
specific types of disaster scenes or aspects like smoke and fire detection.

The new dataset mitigates in a gap in specifically designed datasets for find-
ing partially occluded individuals in disaster scenarios. Its goal is to greatly
enhance the abilities of machine learning models for disaster response and SAR
operations, ultimately leading to more effective and timely humanitarian efforts.

3 Dataset Creation Pipeline

We developed a systematic pipeline to produce a comprehensive set of images for
training machine learning models to detect humans in disaster scenarios. The
dataset combines parts of the Aerial Image Dataset for Emergency Response
Applications (AIDER) and the LSP/MPII-MPHB dataset. It shows a variety of
human poses on a range of disaster backgrounds.

3.1 Data Sources and Composition

AIDER (Aerial Image Dataset for Emergency Response Applica-
tions): The AIDER dataset [14] serves as the foundation for the disaster scene
backgrounds. It comprises images from four major disaster types: Fire/Smoke
(320 images), Flood (370 images), Collapsed Building/Rubble (320 images), and
Traffic Accidents (335 images). These authentic disaster images offer a realistic
portrayal of the chaotic and unpredictable conditions typical in emergency sce-
narios. We did not utilize the 1,200 normal case images to keep the focus on
emergency situations. This dataset offers a glimpse into the chaotic and unpre-
dictable environments that characterize disaster scenes, making it an ideal choice
for our purposes.
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LSP/MPII-MPHB (Multiple Poses Human Body): For the human sub-
jects, we sourced images from the LSP/MPII-MPHB dataset [3,10], which con-
tains 26,675 images featuring 29,732 instances of human bodies in various poses.
This dataset is specifically designed to capture a wide range of human body
positions, including bent, kneeling, sitting, upright, and lying, providing the
necessary diversity to train models for detecting humans under different condi-
tions. The detailed annotations of human poses in this dataset are critical for
training models to recognize human figures in complex disaster environments.

3.2 Pipeline Steps

1. Background Removal and Image Preparation: Using the U2Net seg-
mentation model [23], we isolated human figures from the LSP/MPII-MPHB
dataset by removing the background. The U2-Net, short for “U-Squared Net”,
is a deep neural network known for its powerful performance in salient object
detection and image segmentation tasks. It employs a nested U-structure that
enhances the learning of local and global features within images, enabling precise
segmentation of objects, including human figures, from their backgrounds. This
process involved saving each figure with its respective pose in a separate folder,
ensuring that the focus remained on the human subject without any background
distractions.

2. Image Cropping and Cleaning: In the next step, the isolated images were
then cropped to highlight the human figures, removing unnecessary peripheral
content. This step involved calculating the minimum and maximum indices of
non-zero pixel elements to determine the bounding box for each figure. Images
where non-zero indices constituted less than 2% of the total image area were
excluded to minimize noise and inaccuracies.

3. Overlay Process: For each disaster background from the AIDER dataset,
human figures from the LSP/MPII-MPHB dataset were overlaid at random posi-
tions. The scaling of human figures in the dataset was randomized within speci-
fied lower and upper bounds, taking into account the dimensions of the disaster
scene backgrounds. This approach was employed to mimic the diverse scales
at which humans may be observed in real disaster scenarios. This process also
included checks for collisions and adjustments to the placement of figures to
ensure a realistic composition. The final images were annotated with bounding
boxes, accurately reflecting the position and scale of each human figure within
the disaster scene.

The dataset creation pipeline integrates human poses with disaster scene
backgrounds to construct a comprehensive dataset for training machine learning
models for human detection within disaster scenarios. The Algorithm 1 outlines
the steps involved in the dataset creation process.
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Algorithm 1. Dataset Creation Pipeline for Human Detection in Disaster Sce-
narios. This pipeline integrates human poses with disaster scene backgrounds,
involving background removal, cropping, random scaling, and overlaying to sim-
ulate realistic disaster environments for training AI models.
1: Input:

2: AIDER: Set of disaster scene images
3: MPHB: Set of human pose images

4: Output: Combined dataset D with annotated human poses in disaster scenes
5: procedure U2NetRemoveBackground(image)

6: Apply U2-Net model to image for segmentation
7: Extract foreground (human) based on segmentation result

8: return foreground
9: end procedure
10: procedure CropFocusedObject(image)

11: Compute bounding box around non-zero pixels in image
12: Crop image to the bounding box
13: return cropped image

14: end procedure

15: procedure RandomScale(image)
16: scale ← random value between predefined min and max

17: Resize image by scale

18: return resized image
19: end procedure
20: procedure RandomPosition(background, object)

21: bgWidth, bgHeight ← dimensions of background
22: objWidth, objHeight ← dimensions of object

23: x ← random integer from 0 to bgWidth − objWidth
24: y ← random integer from 0 to bgHeight − objHeight
25: return (x, y)

26: end procedure
27: procedure CreateDataset(AIDER,MPHB)

28: D ← ∅
29: for each pose p in {bent, kneeling, sitting, upright, lying} do
30: for each image i in MPHB corresponding to pose p do

31: ibg removed ← U2NetRemoveBackground(i)
32: icropped ← CropFocusedObject(ibg removed)

33: if Size of icropped ≥ 0.02× Size of ibg removed then

34: Add icropped to MPHBp

35: end if

36: end for

37: end for
38: for each image a in AIDER do

39: H ← Random selection of human poses from MPHBp

40: for each human pose h in H do

41: hscaled ← RandomScale(h)

42: pos ← RandomPosition(a, hscaled)
43: Overlay hscaled on a at position pos

44: Compute bounding box bbox for hscaled at pos
45: Add (a, bbox) to D
46: end for
47: end for

48: return D

49: end procedure
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Table 2. Comparison of various datasets [33] including the proposed C2A dataset

Dataset Annotation way # main categories # Instances # Images Image width

SARD horizontal BB 1 6,532 1,981 1920

M4SFWD oriented BB 2 17,613 3,946 776–1480

Smoke Scene oriented BB 2 18,849 8,735 95–6000

Tiny Persons horizontal BB 1 70,702 1,570 765–2048

Crowd Human horizontal BB 2 456,098 19,370 400–10800

PASCAL VOC horizontal BB 20 27,450 11,530 640

MS COCO horizontal BB 80 ∼2.5M ∼328,000 640

NWPU VHR-10 horizontal BB 10 3,651 800 ∼1000

3K Vehicle Detection oriented BB 2 14,235 20 5616

DOTA oriented BB 14 188,282 2,806 800–4000

C2A (proposed) horizontal 1 (with 5 poses)>360,000 10,215 150–3400

4 Properties of C2A Dataset

The C2A (Combination to Application) dataset1 is a curated collection specif-
ically designed for advancing human detection disaster scenarios by combining
AIDER dataset images (disaster scene backgrounds) and diverse human poses
from the LSP/MPII-MPHB dataset. Some of the samples of the dataset are
presented in Fig. 1. Comparison of various datasets is shown on Table 2. In this
section, we present a comprehensive analysis of the dataset’s properties.

4.1 Number of Images and Image Size

In the C2A dataset, the total number of images is 10, 215, encompassing over
360, 000 objects for human detection within disaster scenarios. The original size
of the images spans a wide range from approximately 123 × 152 pixels to high-
resolution images of 5184× 3456 pixels. This range is significantly broader than
what is commonly found in standard datasets like PASCAL VOC or MSCOCO,
where the image dimensions generally do not exceed 1000 × 1000 pixels. The
wide range of resolution in the C2A dataset ensures the inclusion of various
granular details necessary for the precise detection of humans in diverse and
challenging disaster environments. Furthermore, the most common image width
range within the C2A dataset is between 322 and 600 pixels, with over 50.32% of
images falling within this range. The median image width is noted at 428 pixels,
indicative of the dataset’s central tendency toward mid-range resolutions. The
dataset preserves the integrity of the scenes and avoids potential complications
that may arise from segmenting an instance across multiple image pieces.

1 Dataset available at: https://github.com/Ragib-Amin-Nihal/C2A.

https://github.com/Ragib-Amin-Nihal/C2A
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Table 3. Comparison of instance size (in terms of width) distribution of some datasets
in aerial images and natural images. Some statistics collected from [33]

Dataset <10 pixel 10–50 pixel 50–300 pixel>300 pixel

SARD 0.01 0.66 0.32 0.01

M4SFWD 0.02 0.38 0.51 0.09

Smoke Scene 0 0.25 0.61 0.14

Tiny Persons 0.56 0.42 0.02 0

Crowd Human 0.01 0.42 0.50 0.07

PASCAL VOC 0 0.14 0.61 0.25

MSCOCO 0 0.43 0.49 0.08

NWPU VHR-10 0 0.15 0.83 0.02

3K Munich Vehicle 0 0.93 0.07 0

DOTA 0 0.57 0.41 0.02

C2A (proposed) 0.47 0.52 0.01 0

4.2 Objects Size

In our C2A dataset, the pixel size of objects is distributed across a broad spec-
trum, accommodating the real-world variability in human sizes from an aerial
perspective. Specifically, we observe that a substantial 47% of instances are under
10 pixels, indicative of individuals who appear extremely small due to the alti-
tude of the imagery. This reflects realistic scenarios where people are often tiny
and challenging to detect. The dataset also contains 52% of instances in the
range of 10–50 pixels and a minimal 1% within the 50–300 pixel bracket. There
are no instances above 300 pixels, reinforcing the dataset’s focus on detecting
smaller objects. In Table 3, when compared to datasets like PASCAL VOC and
DOTA, the C2A dataset demonstrates a more balanced distribution between
small and middle-sized instances. It is challenging for the models to detect the
objects that are in tiny size.

4.3 Aspect Ratio of Objects

The aspect ratio (AR) is a critical parameter in anchor-based detection mod-
els, influencing the design and effectiveness of detectors like Faster R-CNN and
YOLO series. In the C2A dataset, we analyze the AR of the minimally circum-
scribed horizontal bounding boxes encompassing each object. The histogram in
Fig. 2a displays the distribution of these aspect ratios. The distribution is skewed
towards smaller ARs, with the majority of objects having an AR less than 1.
This suggests that most bounding boxes are wider than they are tall, a likely
scenario when dealing with collapsed individuals or those in horizontal positions
in disaster scenarios. A noticeable amount of instances have ARs between 1 and
2, aligning with natural human proportions when standing or sitting. Very few
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(a) (b)

Fig. 2. (a) Aspect Ratio of C2A Dataset (b) Object Density

instances possess a high AR, which is expected as elongated bounding boxes
would be less common unless representing individuals in highly unusual orienta-
tions or in motion.

4.4 Object Density of Images

Aerial image datasets often exhibit a far greater number of objects per image
when compared to datasets composed of natural images. Typical datasets, such
as ImageNet, have an average of 2 objects per image, while MSCOCO aver-
ages 7.7. In stark contrast, our C2A dataset showcases a higher object density,
reflective of the real-world complexity found in disaster-stricken environments.

The histogram depicted in Fig. 2b outlines the frequency of object instances
per image within our dataset. The distribution peaks significantly around 20
to 40 objects, with a notable extension towards images containing up to 100
instances. This dense distribution is a testament to the C2A dataset’s capacity
for providing a challenging and enriched learning context for object detection
algorithms, pushing the envelope of their detection and discrimination capabili-
ties.

4.5 Human Pose and Disaster Scene Information

In the pursuit of advancing SAR operations through machine learning, our C2A
dataset offers more than object detection; it integrates critical contextual data
by providing detailed annotations for both human poses and disaster scene types.
The dataset categorizes human figures into five distinct poses: ‘Bent’, ‘Kneeling’,
‘Lying’, ‘Sitting’, and ‘Upright’. These annotations are crucial as they potentially
correlate with the urgency and type of assistance required; for example, individ-
uals found ‘Lying’ or ‘Bent’ in a disaster scene could indicate severe injury,
necessitating immediate medical attention.

Alongside pose information, the C2A dataset is annotated with disaster scene
context, such as ‘traffic incident’, ‘fire’, ‘flood’, and ‘collapsed building’. This level
of detail allows for a nuanced understanding of the environment, providing vital
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clues about the challenges present in each unique scenario. Such information is
instrumental for developing machine learning models that can not only detect
humans in aerial images but also assess the severity and nature of the disas-
ter context. The addition of these rich contextual layer opens new avenues for
machine learning applications, potentially transforming the landscape of disaster
response and emergency aid.

5 Evaluation

5.1 Evaluation Metrics

The evaluation of object detection models was conducted using the mean Aver-
age Precision (mAP) [22], a prevalent metric that integrates both precision and
recall aspects of the predictions. Precision, defined as Precision = TP

TP+FP , mea-
sures the correctness of the predictions, while recall quantifies the model’s ability
to identify all relevant instances. The mAP is the mean of Average Precision (AP)
across all classes, computed for varying Intersection over Union (IoU) thresholds,
typically ranging from 0.5 to 0.95. The AP at a specific IoU threshold is the area
under the precision-recall curve. The mAP at IoU threshold of 0.5, denoted
as mAP@.50, is represented as mAP@.50 = 1

N

∑N
i=1 APi

∣
∣
IoU=0.5

, highlighting a
model’s proficiency in detecting objects with a moderate overlap with the ground
truth.

5.2 Training Options

The evaluation of the models on the C2A dataset was conducted using NVIDIA
A100 GPUs, with a uniform batch size of 24 and an image resolution of 640×640
pixels across 50 epochs. The ADAM optimizer was chosen for its efficiency in
handling large datasets and complex image structures. Basic data augmenta-
tion techniques, such as flipping and resizing, were employed to enhance model
robustness and prevent overfitting. The experiments were facilitated by popu-
lar deep learning frameworks, specifically mmDetection [6], Detectron2 [32], and
Ultralytics [9], known for their high performance in object detection tasks. These
frameworks provide extensive support for custom dataset training, enabling
the effective application of state-of-the-art detection models to our specialized
dataset.

5.3 Benchmarking

The C2A dataset was subjected to a rigorous evaluation process using a suite of
state-of-the-art object detection models. These evaluations aimed to benchmark
the dataset’s performance in training machine learning algorithms for the task of
human detection in various disaster scenarios. The models were chosen for their
relevance and proven accuracy in similar tasks, with an emphasis on assessing
their capability to handle the complexities introduced by varied disaster back-
grounds within the dataset. The Table 4 illustrates the results found.
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Table 4. Performance Evaluation of state-of-the-art Models on the C2A Dataset

Model mAP mAP@.50 Model mAP mAP@.50

Faster R-CNN [24] 0.3656 0.6340 Dino [16] 0.4710 0.7890

RetinaNet [15] 0.3834 0.6933 Rtmdet [17] 0.4420 0.7080

Cascade R-CNN [5] 0.4860 0.7350 YOLOv5 [9] 0.4920 0.8080

YOLOv9-e [28] 0.6883 0.8927 YOLOv9-c [28] 0.5562 0.7996

5.4 Result Analysis

The evaluation results demonstrate a range of performance metrics across dif-
ferent models, reflecting the diverse strengths of each approach. YOLOv9-e out-
performed other models with the highest mAP (mean Average Precision) score,
indicating its superior ability to detect objects with a high degree of accuracy
across varying Intersection over Union (IoU) thresholds. This suggests that the
architectural improvements in YOLOv9, particularly for detecting small and
partially occluded objects, are beneficial in the context of disaster scenarios.

On the other hand, Faster R-CNN and RetinaNet, while offering competitive
performance, particularly at the AP50 metric, fell short of the YOLO models.
Dino and Cascade R-CNN showed substantial performance, with Cascade R-
CNN achieving the second-highest mAP score, indicating its effectiveness in
handling complex object relationships, likely due to its multi-stage detection
process.

The analysis of AP50 scores, which are based on a lower IoU threshold,
reveals that most models perform significantly better when the requirement for
the overlap between predicted and ground truth bounding boxes is relaxed. This
discrepancy suggests that while the models are capable of identifying the pres-
ence of objects, refining the accuracy of bounding box predictions remains a
challenge and an area for potential improvement in future research iterations.

6 Discussion

6.1 Model Optimization for Complex Disaster Scenarios

To investigate the impact of domain-specific training on model performance in
complex disaster scenarios, we conducted a comparative analysis using several
datasets and a model [20]: C2A (synthetic disaster scenes), SARD (real-world
search and rescue images), and “General Human Detection” (a combination
of crowd human [26], tiny person [34], and VisDrone [7] datasets). By train-
ing models on these datasets and evaluating their performance across different
validation sets, we aimed to identify the most effective approach for detecting
humans in challenging disaster environments. Table 5 presents the results of this
experiment, showcasing the mAP scores achieved by models trained on various
datasets and validated on different test sets.
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Table 5. Comparative Performance Across Different Training and Validation Datasets

Trained on\Validated onGeneral Human SARDC2A General Human+C2A

General Human 0.77 0.347 0.168 0.159

SARD 0.036 0.931 0.168 0.071

C2A 0.168 0.259 0.784 0.462

General Human+C2A 0.855 0.66 0.874 0.862

The model trained exclusively on the C2A dataset demonstrates a significant
improvement in performance (0.784 mAP) when validated on the C2A test set
compared to models trained on other datasets. This substantial increase in per-
formance highlights the importance of domain-specific training using a dataset
tailored to the task at hand, such as C2A, for developing models that can effec-
tively detect humans in complex disaster scenarios.

One notable observation from the results is that although models trained on
general human datasets perform poorly on search and rescue (SARD) and disas-
ter (C2A) scenarios, the addition of the C2A dataset to the training process leads
to a considerable improvement in performance. For instance, the model trained
on the combined “General-Human + C2A” dataset achieves an mAP of 0.660
on the SARD validation set and 0.874 on the C2A validation set, surpassing the
performance of models trained on either dataset alone. This finding suggests that
incorporating disaster-specific data, such as the C2A dataset, can significantly
enhance the model’s ability to generalize to various challenging environments.

Furthermore, the results demonstrate that the combination of the C2A
dataset and general human datasets yields better generalization performance
across all validation sets. The model trained on the “General-Human + C2A”
dataset achieves the highest mAP scores on the “General-Human” (0.855),
SARD (0.660), and C2A (0.874) validation sets, indicating its robustness and
versatility in handling diverse scenarios.

While the C2A dataset primarily consists of synthetic images, relying solely
on synthetic data for training may undermine confidence in the model’s real-
world efficacy. Therefore, it is advisable to combine general human datasets
with the C2A dataset to improve the model’s ability to detect people in real-
world disaster situations. The strong performance of the model trained on the
“General-Human + C2A” dataset on the SARD validation set, which contains
real-world search and rescue images, supports this recommendation.

To further validate the model’s performance and increase confidence in its
real-world applicability, future work should focus on evaluating the model on
a more extensive set of real-world disaster images. This evaluation will help
identify any potential gaps between the model’s performance on synthetic and
real-world data, guiding efforts to refine the dataset and training process.
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Fig. 3. Comparative Analysis of Object Detection (a) The frequency distribution of
ground truth object sizes (blue) showcases a clear decline in detection rates for smaller
objects (red), highlighting the challenges current detection algorithms face with objects
less than 20 pixels in size. (b) The detection confidence scores across varying object
sizes, with mean confidence indicated by red points, emphasize the higher reliability
of detecting larger objects. These visualizations underscore the need for refining detec-
tion algorithms to better recognize small objects, which are critical for comprehensive
disaster scene analysis. (Color figure online)

6.2 Object Size and Detection Confidence

In-depth analysis of detection performance reveals a notable size bias where
smaller objects (less than 20 pixels) are detected with less frequency and lower
confidence scores. This trend, observable in Fig. 3(a), points to a potential size-
dependent limitation inherent in current detection algorithms. Conversely, larger
objects demonstrate higher detection confidence, as seen in Fig. 3(b), where
the mean confidence score, represented by red points, scales with object size.
This size-detection relationship suggests an avenue for model improvement-
specifically, enhancing the sensitivity of detection algorithms to smaller objects
could significantly improve performance in complex disaster environments, where
small-scale features can be critical.

6.3 Dataset Limitations and Prospects for Improvement

The C2A dataset, while effective, encounters limitations due to its synthetic
nature. The overlay of human figures from the LSP/MPII-MPHB dataset onto
disaster scenes can sometimes result in unrealistic scaling and positioning, poten-
tially compromising the model’s ability to generalize to real-world scenarios.
Interestingly, this element of unrealism could also serve as a form of data aug-
mentation, introducing variability that may help in training more robust and
generalized models. Despite this, it is better to have context-aware adaptive
scaling and improved spatial algorithms to enhance the realism of the training
images. Moreover, transitioning to dynamic 3D models could more accurately
depict human movement, overcoming the static nature of 2D images. Another
limitation of the C2A dataset is that it consists of single images, whereas in most
actual disaster scenarios, the input data could be in the form of video footage.
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This discrepancy between the training data and real-world application data may
impact the model’s performance in practical settings. Future work should focus
on expanding the dataset to include video sequences of disaster scenes, enabling
the development of models that can effectively process and analyze real-time
video feeds from UAVs during SAR operations. The dataset’s variety in human
poses and disaster scenarios is designed to aid in assessing disaster severity,
enhancing its utility for SAR operations. Future enhancements should include
real disaster footage to further validate and refine the dataset, optimizing AI
model performance for real-world applications.

7 Conclusion

In the rapidly changing field of disaster response, our research introduces the
C2A dataset as a crucial resource, connecting AI with humanitarian efforts.
This work advances the technical capabilities of UAV-assisted search and rescue
operations and represents a significant shift in how we integrate machine learning
into crisis management.

The C2A dataset fills a critical need in disaster response, offering a compre-
hensive, synthetic environment that represents the complexities of real-world
catastrophes. This dataset forms a foundation for training more robust and
adaptable AI models. Our comparative analysis across various datasets high-
lights the importance of combining domain-specific data (like C2A) with general
human datasets, resulting in models that are both specialized and widely appli-
cable.

These advancements are initial steps in an ongoing process. As we expand
the capabilities of AI-assisted disaster response, we must consider the ethical
implications and real-world applicability of our work. The limitations we’ve iden-
tified, particularly in synthetic data generation and real-world validation, serve
as guides for future research.

We envision a future where AI becomes an essential tool in crisis manage-
ment, working alongside human expertise to save lives and reduce suffering. To
achieve this vision, we encourage the research community to:

1. Test the C2A dataset in real-world pilot studies, linking synthetic training
with practical application.

2. Collaborate to expand and refine the dataset, including diverse disaster sce-
narios and cultural contexts.

3. Pursue research that combines computer vision, disaster management, and
ethics to ensure responsible and effective use of AI in humanitarian efforts.

As the field advances, our ultimate goal goes beyond technological progress; we
aim to create tools and methods that are reliable in critical situations. By con-
tinually improving our approach, incorporating real-world feedback, and foster-
ing collaboration across disciplines, we move towards a future where technology
and human compassion work together, addressing the complexities of disaster
response with increased precision and reliability.
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In conclusion, the C2A dataset and our findings represent not only a techni-
cal achievement but also progress towards a more resilient and responsive global
community. As we confront increasingly complex global challenges, the combi-
nation of AI and human ingenuity offers hope for more effective, efficient, and
compassionate disaster response strategies in the years to come.

Acknowledgements. This work was supported by JSPS KAKENHI Grant No.
JP22F22769 and JP22KF0141. Also, this work was performed the commissioned
research fund provided by F-REI (JPFR23010102).

References

1. AlAli, Z.T., Alabady, S.A.: Techniques and methods for managing disasters and
critical situations. Nat. Hazards 1–47 (2024)

2. Alsamhi, S.H., et al.: UAV computing-assisted search and rescue mission framework
for disaster and harsh environment mitigation. Drones 6(7), 154 (2022)

3. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation:
new benchmark and state of the art analysis. In: Proceedings of the IEEE Confer-
ence on computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

4. Aryal, R., Karki, M., Thapa, P.: Smoke scene detection from satellite imagery using
deep learning. Retrieved from ResearchGate (2024)

5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detec-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6154–6162 (2018)

6. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155 (2019)

7. Du, D., et al.: VisDrone-DET2019: the vision meets drone object detection in image
challenge results. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops (2019)

8. Hu, D., Chen, L., Du, J., Cai, J., Li, S.: Seeing through disaster rubble in 3D with
ground-penetrating radar and interactive augmented reality for urban search and
rescue. J. Comput. Civ. Eng. 36(5), 04022021 (2022)

9. Jocher, G., et al.: ultralytics/YOLOv5: v7. 0-YOLOv5 SOTA realtime instance
segmentation. Zenodo (2022)

10. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for
human pose estimation. In: BMVC, vol. 2, p. 5. Aberystwyth, UK (2010)

11. Kang, D.K., Olsen, M.J., Fischer, E.: Residential wildfire structural damage detec-
tion using deep learning to analyze uncrewed aerial system (UAS) imagery. In:
Computing in Civil Engineering 2023, pp. 849–856. ASCE (2023)

12. Khial, N., Mhaisen, N., Mabrok, M., Mohamed, A.: An online learning framework
for UAV search mission in adversarial environments. Available at SSRN 4725375
(2024)

13. Kucukayan, G., Karacan, H.: YOLO-IHD: improved real-time human detection
system for indoor drones. Sensors 24(3), 922 (2024)

14. Kyrkou, C., Theocharides, T.: Deep-learning-based aerial image classification for
emergency response applications using unmanned aerial vehicles. In: CVPR Work-
shops, pp. 517–525 (2019)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

http://arxiv.org/abs/1906.07155


162 R. A. Nihal et al.

16. Liu, S., et al.: Grounding DINO: marrying DINO with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499 (2023)

17. Lyu, C., et al.: RTMDet: an empirical study of designing real-time object detectors.
arXiv preprint arXiv:2212.07784 (2022)

18. Malandrino, F., Chiasserini, C.F., Casetti, C., Chiaraviglio, L., Senacheribbe, A.:
Planning UAV activities for efficient user coverage in disaster areas. Ad Hoc Netw.
89, 177–185 (2019)

19. Munawar, H.S., Ullah, F., Qayyum, S., Khan, S.I., Mojtahedi, M.: UAVs in disaster
management: application of integrated aerial imagery and convolutional neural
network for flood detection. Sustainability 13(14), 7547 (2021)

20. Nihal, R.A., Yen, B., Itoyama, K., Nakadai, K.: From blurry to brilliant detec-
tion: YOLOv5-based aerial object detection with super resolution. arXiv preprint
arXiv:2401.14661 (2024)
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Abstract. Active attention and engagement are important in improv-
ing users’ learning experiences. Engagement refers to the level of involve-
ment and interest individuals show towards a particular task. Attention,
on the other hand, refers to a state where someone is entirely focused
on a particular task with conscious awareness. Engagement and atten-
tion are different but closely linked concepts and can influence each other
bidirectionally [23]. To explore the relationship between user engagement
and attention, we introduce the Diverse Reactions of Engagement and
Attention Mind States (DREAMS) dataset. The dataset includes facial
video recordings of 32 users in naturalistic settings watching various stim-
uli to evoke diverse emotions. We then analyze user engagement and
attention states in these videos by framing it as a classification problem,
exploring single-task, transfer learning task, and multi-task settings. In
single and transfer learning task settings, separate networks are applied
to predict engagement and attention states. Whereas in multi-task set-
tings a shared network is applied, which jointly learns to predict both
engagement and attention states. Moreover, we examine participants’
performance on video-based questionnaires and evaluate their perceived
cognitive workload. In our findings, we observe (a) better classification
performance in predicting engagement states in both transfer and multi-
task learning compared to single-task learning and (b) higher engagement
and attention states correlate with lower cognitive load and improved
task performance. The dataset and the code are publicly available and
can be accessed through https://sites.google.com/view/dreams-dataset/
dataset.

Keywords: Engagement · Attention · Single-Task Learning · Transfer
Learning · Multi-Task Learning · Transformers

1 Introduction

Human-Computer Interaction (HCI) has witnessed remarkable advancements in
recent years, transforming how users engage with interactive systems. Within
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this context, Engagement and Attention are two intertwined concepts which
have emerged as key elements in the design and evaluation of interactive sys-
tems. Engagement mainly includes three aspects: behavioral, affective, and cog-
nitive [24]. Behavioral engagement refers to observable actions, behaviors, and
interactions displayed by individuals while performing a task. Affective engage-
ment refers to the emotions and feelings that users experience during their inter-
action. Cognitive engagement involves mental investment exerted by users while
engaging with a particular task. On the other hand, Attention refers to a state of
focused cognitive engagement and conscious awareness directed toward a specific
task.

Understanding the interplay between engagement and attention is useful for
the design of interactive systems, as it significantly influences user experience.
Positive engagement in interactive systems refers to users’ active participation,
while positive attention reflects the higher degree of focus users dedicate to the
system. Conversely, negative engagement, often driven by confusing interfaces
or uninspiring content, may lead to user disinterest and a shift of attention away
from the intended interaction. The preceding statements suggest a positive cor-
relation between engagement and attention, implying that higher engagement
levels result in heightened attention. However, it is noteworthy that individu-
als who behaviorally appear engaged may not necessarily be attentive as it is
plausible for one’s mind to wander despite outward signs of engagement. This
underscores the importance of refraining from accepting the conventional notion
of a correlation between engagement and attention, but rather considering an
orthogonal relationship between them. Consequently, understanding the intri-
cate dynamics of this relationship becomes crucial for enhancing various facets
of user interactions.

We aim to understand how engagement and attention are related to help
content creators develop more immersive content. The main contributions of the
paper are summarized below:

– We introduce DREAMS (Diverse Reactions of Engagement and Attention
Mind States), a self-annotated engagement and attention state dataset, col-
lected in an in-the-wild setting.

– We designed single, transfer learning, and multi task experiments to eval-
uate engagement and attention, assuming that the performance of related
tasks would exhibit improvement in transfer learning and multi task setup
compared to single task setup.

– We applied NASA Task Load Index(NASA-TLX) workload [11] assessment
questions to identify the variations in cognitive load levels experienced by
individuals while watching the diverse set of stimuli. Additionally, we explored
the causal relationship between engagement, attention, and cognitive load
levels.

– We study the impact of engagement and attention on task performance by
analyzing the percentage of correct responses for various engagement and
attention levels.
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2 Background and Related Work

In this section, we present an overview of contributions and recent advancements
in the fields of engagement and attention research.

Fig. 1. Engagement(left) and Attention(right) states from the DREAMS dataset.
On the left, notice that Highly Engaged participants are glued to the screen. Subtle
changes in expressions and gestures can be observed as engagement decreases gradually.
On the right, notice that outward signs of attention are displayed by the first-three-row
participants. However, the last-row participant appears to be visually attentive in both
states, but his mind may have been wandering in the second instance.

2.1 User Engagement

Engagement encompasses users’ observable actions (Behavioral), emotional con-
nection (Affective), and cognitive investment [28]. Behavioral engagement can
be assessed through qualitative observations of user behavior, such as gaze, head
pose, facial expressions, etc. Various methods, including surveys, physiological
measures, behavioral analysis, and neuroimaging techniques, can measure affec-
tive engagement. Multiple approaches, such as evaluating task performance, self-
reporting, analyzing response times, monitoring physiological indicators, and
employing neuroimaging techniques, can be applied to gauge cognitive engage-
ment. User engagement plays a crucial role in achieving various goals, including
educational success, productivity, customer satisfaction, and business growth.
User engagement has been extensively studied in the context of HCI [10,14,17].



166 M. Singh et al.

One of the earliest efforts in this direction is by D’Mello et al. [8]. They investi-
gated the relationship between facial expressions, linguistic cues, and engagement
detection and explained the importance of non-verbal cues in comprehending
user engagement. Facial Action Coding System was used by authors in [9,21]
to assess distinct emotions associated with various facial muscle movements
to emphasize the relationship between particular engagement labels and facial
action units. In [21], Whitehill et al. showed that automated engagement detec-
tors work as accurately as people using non-verbal features. To assess engage-
ment, Booth et al. [2] evaluated the performance of an LSTM-based method. In
the EmotiW 2018 [6] sub-challenge, Engagement Prediction in the Wild, authors
proposed using TCN [19] to predict user engagement in an in-the-wild setting.
TCN network was applied here to show improvements over LSTM in improving
baseline models. In the recent works, authors tried to understand patterns that
relate to User Engagement by demonstrating and focusing on interpretability
and having a simpler SVM model to train for predicting engagement [18].

2.2 User Attention

Attention can be described as the mental state in which an individual directs
their entire focus and conscious awareness toward a particular task or stimulus.
Attention is vital for selectively processing information, facilitating cognitive
functions, and enabling efficient task performance. Attention can be measured
through various methods such as reaction time tasks, eye-tracking technology,
neuroimaging techniques like Electroencephalography or Functional Magnetic
Resonance Imaging, and behavioral observation. Attention, a crucial process, is
one of the main focus of HCI research. Eye-tracking experiments have greatly
added to the study of visual attention patterns. A significant contribution was
made by Buscher et al. [3] in which they investigated the dynamics of visual
attention while browsing the web. Their research provided an understanding of
the hierarchy of visual saliency and user preferences by demonstrating how con-
sumers distribute their attention across various web page elements. The work by
D’Mello et al. [7] stands out in the field of attention-aware, intelligent tutoring
systems. In their study, they introduce a pioneering approach that harnesses gaze
data to enhance the effectiveness of tutoring interactions. The Gaze Tutor sys-
tem employs eye-tracking technology to track students’ gaze patterns and alter
instructional content based on their visual attention. Their work demonstrates
the potential of attention-aware technology in building more responsive and per-
sonalized educational experiences by smoothly incorporating gaze tracking into
the tutoring process.

In their study, Hutt et al. [13] offer a compelling investigation into the use of
gaze-based attention-aware technologies to combat students’ tendency to day-
dream in classroom environments. The authors suggest a novel strategy that
uses gaze monitoring to identify instances of mind wandering and then imple-
ments targeted interventions to draw students’ attention back. This work pro-
vides important insights into the practical implications and efficacy of such inter-
ventions inside classroom situations by expanding the deployment of gaze-based
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attention-aware technologies outside controlled laboratory settings. Recent work
in attention(mind wandering) detection by Lee et al. [15] involved the use of facial
action units extracted from videos of students participating in online learning.
The authors emphasized that their proposed feature-based model outperformed
random and gaze-only baselines and suggested using landmark-based features
over gaze features.

Researchers from various fields have been intrigued by the complex interplay
between engagement and attention, which has provided light on the dynamic
nature of human cognition and interaction. In his study, Heath [12] investi-
gates how attention and engagement mutually influence each other, contribut-
ing to the overall impact of advertisements on viewers. His research reveals a
strange pattern. A higher level of emotional content in the advertising corre-
lates with lower levels of attentiveness. This discovery casts doubt that engage-
ment and attention have a simple causal relationship. Instead, the experiment
demonstrates that engagement and attention can function separately and are
not necessarily associated. The study by Leiker et al. [16] used neurophysiolog-
ical measures of attention to investigate the relationship between engagement
and attention in motion-controlled video games. This study found that engage-
ment elicits increased information processing, which reduces attentional reserve.
These initiatives underscores the importance of considering both engagement
and attention in designing effective educational interventions and interactive
systems.

3 DREAMS Dataset

3.1 Ethics

We obtain user consent for the collection of their data and meta-information,
ensuring transparency and respect for individual autonomy. Also, all stimuli used
in the study are sourced either from publicly available datasets or videos having
Creative Commons licenses. By doing this, we protect user’s rights and promote
transparency in our research processes.

3.2 Stimuli

We use three stimuli from the EngageNet [17] dataset, (i) Schrödinger’s cat: A
thought experiment in quantum mechanics (ii) What is cryptocurrency? (iii)
Where did English come from?. The first and second stimuli feature a dig-
ital teacher avatar (refer Fig. 2). These stimuli provide instruction on quan-
tum mechanics and cryptocurrency, respectively. While the third stimulus offers
insights into the evolution of the English language. The avatar based videos are
generated using the Artiste platform from Kroop AI. Additionally, we include
two humorous videos with Creative Commons licenses to diversify the stimuli set.
The educational stimuli typically have an average duration of 5 min, whereas the
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humorous stimuli are shorter, lasting approximately for 2 min. The background
sources of the stimuli can be found here1.

3.3 Data Collection Protocol

We develop a web-based interface to collect data on user’s engagement and atten-
tion states. The data is collected in an in-the-wild settings, where participants
have the flexibility to record data at their preferred time and location. Partic-
ipants can use a computer or laptop with a reliable internet connection and a
good webcam. The experiment starts with collecting participants’ demographic
data, including biological sex and age. Afterwards, a pre-study questionnaire is
given to gauge user personality traits.

Following the completion of the questionnaire, the video stimuli are presented
in a randomized order. As the stimuli play, automatic prompts are integrated into
the web interface, asking participants to self-assess their attention and engage-
ment states based on certain guidelines provided to them.

For attention state, the participants could choose from the following options:
Focused/Attentive (thinking about the stimulus), Not Focused/Not Attentive
(mind-wandered, doing or thinking something unrelated to the lecture), or Skip
(participant is indecisive about his/her state).

For engagement, participants could choose from the following engagement
levels: Highly Engaged (participant is attentive and glued to the screen), Engaged
(participant is interested in the content, and appeared to like it), Barely Engaged
(participant is minimally attentive, fidgeted restlessly in the chair or hardly
opened his or her eyes), and Not Engaged (participant are disengaged, frequently
glanced away from the screen and are disinterested).

After completion of a stimuli, participants are required to fill out a brief ques-
tionnaire, which includes stimulus content based questions, engagement-related
questions and cognitive load assessments using NASA-TLX. The typical dura-
tion of a user session varies from 25 to 30 min, depending on the questionnaires’
response time of participants.

3.4 Participants

The study involved 32 college students, comprising 13 females, with age ranging
from 21 to 38 years. All participants are proficient in English with educational
backgrounds in science and engineering.

3.5 Data Collection and Annotations

During the experiment, we collect the following information from each partici-
pant: (i) responses to the personality questionnaire, (ii) video recordings of par-
ticipants as they watch the stimuli, (iii) self-reported engagement and attention

1 Video Source: Quantum Mechanics, Cryptocurrency, English Language,
Humorous Stimulus 1, Humorous Stimulus 2.

https://www.youtube.com/watch?v=UjaAxUO6-Uw
https://www.youtube.com/watch?v=1YyAzVmP9xQ
https://www.youtube.com/watch?v=YEaSxhcns7Y
https://www.youtube.com/watch?v=ZnjJpa1LBOY
https://www.youtube.com/watch?v=Q1z9AU7_e-g
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states provided by the participants, (iv) responses to questionnaires regarding
the content of the viewed stimuli, and (v) responses to questions assessing behav-
ioral, cognitive, and affective engagement, followed by NASA-TLX responses.

Automatic prompts are generated every 40 s, asking participants to self-
identify their attention and engagement states. We chose a 40-second interval
based on the typical time it takes for attention to shift [22] and the findings of
an in-lab pilot study conducted by Lee et al. [15]. We collected 832 videos of 40 s
duration, out of which 781 videos were successfully processed. The resolution of
the recorded videos were at least 640× 480 pixels.

User
Information

Personality
Survey

Stimulus 1
with probes

at 40 sec

Stimulus 1
based

Questions

Stimulus 1
Engagement

based
Questions

Stimulus 1
NASA TLX
Cognitive

Load
Questions

Stimulus 5
based

Questions

Stimulus 5
NASA TLX
Cognitive

Load
Questions

Stimulus 5
Engagement

based
Questions

Stimulus 5
with probes

at 40 sec
User

Consent

Quantum Mechanics Stimulus Frame Cryptocurrency Stimulus Frame English Language Stimulus Frame

Humorous Stimulus 1 Frame Humorous Stimulus 2 Frame

Experimental Study Sequence Overview

Stimuli Set

Fig. 2. (Top) Sequence Flow of Experimental Study, and (Bottom) Frames from Stimuli
Set used in the study. Notice the digital avatars in upper left corner of the Quantum
Mechanics Stimulus Frame, and in lower left corner of the Cryptocurrency Stimulus
Frame. For details, refer to Sect. 3.

As a pre-processing step, we combine the Not Focused/Not Attentive and
Skip labels of attention into a single category called Not Attentive. The rationale
behind this merging was the participants’ lack of attention to the task, which
prevented them from making a decision.

Table 1 illustrates the distribution of self-labeled instances of Engagement
and Attention. To quantify the relationship between these self-labels, we applied
Cramér’s V correlation coefficient. The coefficient for the self-labeled data is
0.7289, signifying a strong association between engagement and attention.
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3.6 Data Split

We split the data into subject independent sets, with 25 subjects in Train and
7 subjects in Test set. There are 600 videos in the Train set whereas 181 videos
in the Test set, amounting to a total of approximately 9 h of data.

4 Identifying Relationship Between Attention and
Engagement

In psychology studies, attention and engagement are closely connected concepts.
Multiple studies [25–27] have identified attention as an important factor in deter-
mining behavioral engagement. However, authors in [16] observe that higher
engagement is associated with low eP3a levels. eP3a is a brain wave compo-
nent typically observed in response to stimuli, where higher levels are usually
associated with increased attention. These studies suggests that the relation-
ship between engagement and attention is complex and sometimes contradictory.
Hence it is important to understand this relationship prior to devising effective
learning strategies.

Table 1. Distribution of self labelled instances under various Engagement and Atten-
tion states.

Attentive Not-Attentive

Highly Engaged 260 2

Engaged 220 59

Barely Engaged 32 133

Not Engaged 8 67

To understand this relationship, we apply supervised learning based app-
roach, where we explore single-task learning, transfer learning, and multi-task
learning.

– In single-task learning, we apply separate neural networks to independently
learn about attention and engagement states. The idea behind this approach
is to benchmark the performance of each network in identifying attention and
engagement states.

– In transfer learning, we first pretrain the network on engagement or attention
task, and later fine-tune on the related counterpart task. The idea behind this
approach is to transfer the learned feature representations from one task to
another to improve performance.

– In multi-task learning, we train a unified network which jointly learns to
identify attention and engagement states. The idea behind this approach is
to learn shared representations, allowing the network to capture underlying
correlations and dependencies between attention and engagement.
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4.1 Feature Extraction

We extract facial features such as eye-gaze, facial landmarks, head pose, facial
action units, and Point Distribution Model (PDM) by applying OpenFace [1]
framework on user videos. Additionally, we extract spatiotemporal representa-
tion of the face by applying MARLIN [4] framework.

Input Video

OpenFace

MARLIN

OpenFace Features(gaze, hp, etc.)

Window Size
= rows/10

Window Size
= rows/10

MARLIN Features

Column-wise Mean
and STD Dev

Column-wise Mean

Window 1
Window 2

.

.

.
Window 10

Window 1
Window 2

.

.

.
Window 10

10 × feature_dim

10 × 1024

Fig. 3. Feature extraction and statistical feature aggregation. For details, refer to
Sect. 4.1.

After extracting facial features and spatiotemporal representations using
OpenFace and MARLIN, respectively, we partition the extracted row-wise data
into 10 evenly distributed segments. Then, we compute the mean and standard
deviation for each segment and combine them into a single vector. This vector
statistically captures the changes in facial features over time in the video. The
overall process of feature extraction is depicted in Fig. 3.

4.2 Experiments

To understand the relationship between engagement and attention, we apply
classification methods based on Transformer [20] architecture. Transformers can
learn temporal and spatial relationships in the data. The attention mechanism
within the Transformer allows for identifying important relationships in the data
and effectively managing long-range relationships.

This section describes the supervised methods employed to uncover the rela-
tionship between engagement and attention. Figure 4 illustrates these classifica-
tion methods.

Single Task and Transfer Learning Task. Single-task learning is a method-
ology that optimizes a single objective function using a dedicated feature rep-
resentation. Transfer learning, on the other hand, leverages knowledge gained
from solving one problem and applies it to a different but related problem. We
conducted single-task and transfer learning experiments using a Transformer
architecture incorporating positional encoding, a transformer encoder, and a
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Multi-Layer Perceptron (MLP) for engagement and attention prediction. Posi-
tional encoding enhances the input data while maintaining its sequential context.
The order of each component inside the sequence is considered, which is crucial
for tasks involving temporal or spatial interactions.

Multi-task Learning. Multi-task learning is a way to learn multiple objec-
tive functions using a common feature representation. We achieve this by using
the same time-series transformer-based model to train on the OpenFace and
MARLIN features. In the multi-task network, we have a common positional
encoding and a transformer encoder layer. The shared transformer encoder layer
serves as a foundational feature extractor. This layer is excellent at capturing
intricate dependencies and interactions among input sequences. Two different
MLP, one for attention (mind wandering) and the other for engagement, han-
dle the encoded features. The task-specific MLP heads are designed to extract
task-specific features from the shared transformer encoder’s output. This spe-
cialization enables the model to excel at each task’s unique challenges. Over the
positional encodings, we add task-specific attention layers and establish a resid-
ual connection with MLP heads. These task-specific attention layers grant our
model the ability to dynamically distribute attention across the input sequence
in accordance with the unique demands of each task. The network thus benefits
from a common transformer encoder layer and task-specific attention from the

Fig. 4. Single-Task/Transfer Learning and Multi-Task Learning. For details, refer to
Sect. 4.2.
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positional embeddings. We train the model where we try to minimize engage-
ment and attention losses jointly, using the same encoder. The network splits
into two task-specific MLP where they reduce their individual losses.

We use cross entropy loss with assigned class weights for engagement and
attention prediction. We choose the best model by maximizing the sum of the
weighted F1 score, weighted Precision, and weighted Recall for engagement and
attention prediction.

4.3 Results

The experiments were performed in single-task, transfer learning, and multi-task
setups using supervised approach. We considered gaze as our base feature, a cru-
cial indicator of attention and behavioral engagement, and incrementally added
other OpenFace features to assess their contribution in predicting engagement
and attention levels. For performance comparisons we took the summation of
weighted precision, weighted F1, and weighted recall scores. Below is a detailed
analysis of the results of the various experiments performed as part of this study.

Table 2. Results of Engagement prediction in Single-Task, Transfer Learning and
Multi-Task setups. Here HP, AU, LMK, and PDM refers to Head Pose, Action Units,
Landmarks, and Point Distribution Model respectively. P, F1, and R refer to Weighted
Precision, F1, and Recall scores respectively.

Engagement

Single-Task Transfer Learning Multi-Task

Features P F1 R P F1 R P F1 R

GAZE 0.125 0.185 0.354 0.125 0.185 0.354 0.125 0.185 0.354

GAZE+HP 0.178 0.181 0.332 0.110 0.165 0.331 0.163 0.218 0.332

GAZE+HP+AU 0.219 0.256 0.320 0.167 0.216 0.354 0.295 0.306 0.332

GAZE+HP+AU+LMK 0.496 0.226 0.320 0.400 0.293 0.392 0.596 0.208 0.365

GAZE+HP+AU+LMK+PDM 0.260 0.305 0.376 0.606 0.284 0.398 0.311 0.299 0.343

MARLIN 0.267 0.256 0.298 0.310 0.275 0.326 0.382 0.276 0.354

Single-Task vs Transfer Learning. From the engagement results, (refer to
Table 2) we can observe that for the feature combination of Gaze + HP + AU +
LMK, Gaze + HP + AU + LMK + PDM, and MARLIN, there is an improve-
ment in the performance of transfer learning(attention pre-training and engage-
ment fine-tuning) over the single-task learning. However, in the attention results
(refer to Table 3) no improvement is observed in the performance of transfer
learning(engagement pre-training and attention fine-tuning) over the single-task
learning for any feature combination. Based on these observations, one can infer
that attention may serve as a clearer indication of engagement, but engagement
may not be a reliable indicator of attention.
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Table 3. Results of Attention prediction in Single-Task, Transfer Learning and Multi-
Task setups. Here HP, AU, LMK, and PDM refers to Head Pose, Action Units, Land-
marks, and Point Distribution Model respectively. P, F1, and R refer to Weighted
Precision, F1, and Recall scores respectively.

Attention

Single-Task Transfer Learning Multi-Task

Features P F1 R P F1 R P F1 R

GAZE 0.763 0.465 0.608 0.158 0.226 0.398 0.158 0.226 0.398

GAZE+HP 0.775 0.534 0.641 0.564 0.566 0.580 0.158 0.226 0.398

GAZE+HP+AU 0.703 0.574 0.652 0.690 0.579 0.652 0.158 0.226 0.398

GAZE+HP+AU+LMK 0.675 0.615 0.663 0.646 0.617 0.652 0.363 0.453 0.602

GAZE+HP+AU+LMK+PDM 0.668 0.637 0.669 0.641 0.606 0.646 0.763 0.465 0.608

MARLIN 0.643 0.623 0.619 0.630 0.622 0.619 0.621 0.546 0.553

Single-Task vs Multi-Task. From the engagement results Table 2, we can
observe that for all feature combinations except Gaze, there is an improvement
in performance of multi-task over the single-task learning. However, in attention
results Table 3 no improvement was observed in performance of multi-task over
single-task learning for any feature combination. The results of this experiment
also suggest that the presence or absence of attention directly affects engagement,
but the reverse relationship may not be as strong or direct. In other words, the
model might find it easier to learn features or patterns related to engagement
when attention information is available, as attention could be a contributing
factor to engagement. However, the absence of engagement information may not
have a substantial impact on the model’s ability to predict attention.

4.4 Engagement and Attention NASA-TLX Workload Analysis

We applied NASA-TLX assessment questions to assess the perceived workload
experienced by the participants while watching the diverse set of stimuli. The
NASA-TLX, which originally had six arbitrary subscales, rates the following
aspects: (i) Mental Demand, (ii) Physical Demand, (iii) Temporal Demand, (iv)
Performance, (v) Effort, and (vi) Frustration Level.

In order to calculate the average task load for this study, we concentrated
on three distinct subscales: Mental Demand, Effort, and Frustration. Using a
four-point scale, our assessment classified the task load as very low, low, high, or
very high. This method gave insightful information about the perceived workload
related to the tasks under evaluation.

The assessment of workload across the different educational video categories
yielded distinct findings. Specifically:

– The average workload associated with the Quantum Mechanics educational
video fell within the range between low and high. This indicates that viewers
perceived a moderate level of mental demand and effort while engaging with
this educational content.
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– In contrast, both the Bitcoin and English language educational videos exhib-
ited an average workload categorized as low. This suggests that these videos
required relatively less mental demand and effort compared to the Quantum
Mechanics video.

– Notably, the category of humorous videos was found to have an exceptionally
low workload. This implies that the act of viewing humorous content involved
minimal mental demand, required little effort, and was associated with a low
level of frustration.

Our observations further revealed intriguing patterns in workload perception
among participants with varying levels of engagement and attention. Specifically:

– Participants classified as Highly Engaged and Engaged consistently reported
lower workload scores. This phenomenon can be attributed to their elevated
levels of engagement, which likely facilitated memory retention, and content
recall. Consequently, these individuals encountered reduced mental demand,
spent less effort, and experienced diminished frustration when responding to
questions related to the viewed content.

– Similarly, participants categorized as Attentive exhibited workload scores that
aligned with the trend observed among Highly Engaged and Engaged subjects.
Their attentive demeanor likely contributed to a smoother cognitive process,
translating to a lower perceived workload.

– In contrast, participants characterized as Not Attentive consistently reported
higher workload scores. This outcome can be attributed to their need to exert
additional effort to recall and process the presented concepts. This heightened
mental demand, coupled with a higher level of frustration, reflects the chal-
lenges faced by individuals in this category when responding to questions
associated with the viewed stimuli.

Fig. 5. In (a) Highly Engaged and Engaged classes performed comparatively better
than Barely Engaged and Not Engaged classes, whereas in (b) Attentive class performed
comparatively better than Not Attentive class. For details, refer to Sect. 4.5.
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These findings highlight the crucial role of attentiveness and active engagement
in shaping users’ task experiences and perceived cognitive demands.

4.5 Engagement and Attention Percentage of Correct Responses

We assessed participants’ self-labels for engagement and attention and analyzed
their performance in video-based questionnaires. Each questionnaire contained
two moderately difficult questions related to the stimulus content. By calculating
the mode of self-labels, we assigned overall engagement and attention labels to
participants. We then computed the percentage of correct responses for each label
category. Figures 5a and 5b illustrate the relationship between the percentage
of correct responses and engagement and attention labels. We found that the
Highly Engaged, Engaged, and Attentive categories gave the highest percentage
of correct responses. As engagement and attention levels decrease, the percentage
of correct responses also declines. This suggests a direct relationship between task
performance and the level of engagement or attention.

5 Discussion

In this study, we investigate the relationship between engagement and attention
using the DREAMS dataset. Our experimental results indicate that attention
may be a more definitive indicator of engagement than the reverse. The underly-
ing cause of this observation can be attributed to the fact that for Engagement,
self-labels were assigned based on participants’ visible reactions rather than their
cognitive involvement. Conversely, attention labels were assigned based on the
participants’ immediate thoughts, whether related to the stimuli or not. Thus,
while an individual may display visible signs of engagement their mind might
be elsewhere, as illustrated by the fourth user in the attention sample frames in
Fig. 1. On the other hand, attentive individuals tend to unintentionally exhibit
positive signs of engagement. When these visible reactions data is fed into our
model, it more readily learns that attention can lead to engagement, whereas
the reverse relationship is more complex. This complexity arises because a visu-
ally engaged individual may or may not be attentive, complicating the model’s
ability to predict attention based on visual data.

Understanding the interplay between engagement and attention is important
for optimizing user interaction with multimedia content. Our findings suggests
that attention is an important factor to be considered in educational settings.
The educational content should be designed to maintain the user’s attention,
which can improve learning outcomes. Whereas for recreational content, allowing
users the freedom to engage without strict attention is beneficial, as it helps them
enjoy the content and relax mentally.

6 Conclusion and Future Work

We present the DREAMS dataset, self-labelled with Engagement and Attention
mind states. We perform experiments in single-task, transfer learning, and multi-
task setups. The results demonstrate the richness and complexity of the data and
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suggests that attention could be considered a clearer or more informative signal
of engagement compared to the reverse relationship. Additionally, We analyzed
the cognitive workload experienced by the participants of the experimental study
and found that the workload was directly correlated to the complexity of the
content of the video stimulus. We also observed that Higher Engagement and
Attention states resulted in lower workload and vice versa. Furthermore, we
analyzed the performance of the subjects belonging to various engagement and
attention states and found that the percentage of correct responses was directly
related to higher engagement and attentiveness. A limitation of our study is the
narrow range of stimuli, primarily focusing on educational and humorous videos.
This may not fully represent the broader spectrum of real-world scenarios. In
the dataset extension, we will introduce a diverse set of stimuli, including topics
outside of computing, and invite participants from non-technical backgrounds.
In this work we explored attention and engagement in supervised manner. It will
be intriguing to uncover this relationship in self-supervised settings.
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Abstract. With the rapid advancement of generative AI, multimodal
deepfakes, which manipulate both audio and visual modalities, have
drawn increasing public concern. Currently, deepfake detection has
emerged as a crucial strategy in countering these growing threats. How-
ever, as a key factor in training and validating deepfake detectors, most
existing deepfake datasets primarily focus on the visual modal, and the
few that are multimodal employ outdated techniques, and their audio
content is limited to a single language, thereby failing to represent the
cutting-edge advancements and globalization trends in current deepfake
technologies. To address this gap, we propose a novel, multilingual, and
multimodal deepfake dataset: PolyGlotFake. It includes content in seven
languages, created using a variety of cutting-edge and popular Text-to-
Speech, voice cloning, and lip-sync technologies. We conduct comprehen-
sive experiments using state-of-the-art detection methods on PolyGlot-
Fake dataset. These experiments demonstrate the dataset’s significant
challenges and its practical value in advancing research into multimodal
deepfake detection. PolyGlotFake dataset and its associated code are
publicly available at: https://github.com/tobuta/PolyGlotFake.

Keywords: Multimodal deepfake · Multilingual deepfake · Deepfake
Dataset · Deepfake detection

1 Introduction

In recent years, the emergence of deepfake technology, which leverages advanced
deep learning techniques to generate forged content, has captured global atten-
tion [18]. A particularly notable significant advancement is the development of
multimodal deepfakes [26], which manipulate both visual and audio components
in videos. This enhancement substantially increases the realism of the forged
content, making it increasingly challenging to differentiate from reality.

Recently, the advancement and popularization of cutting-edge technologies
such as Text-to-Speech (TTS), voice cloning, and lip-sync have led to the emer-
gence of a new type of multimodal deepfake on the web. Using Platforms like
Heygen [13] and RaskAI [4], producers can easily alter the language spoken by
characters in videos. creating convincing fake lip-sync videos. This advancement
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15314, pp. 180–193, 2025.
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in video tampering technology not only overcomes language barriers but also
facilitates the rapid global distribution of deepfake content.

The misuse of deepfake technology represents a significant threat to infor-
mation security. In response, numerous deepfake detection methods have been
proposed. These methods [2,9,34,43] are mainly based on deep learning, and
their effectiveness is largely dependent on the quality and diversity of the train-
ing data. However, the majority of existing deepfake datasets are unimodal
[17,21,22,25,32,40,46,47], primarily focusing on visual manipulation and often
neglecting the audio aspects. Only a few datasets are multimodal [11,20]. This
scarcity of multimodal deepfake datasets leads to the predominance of visual
modality focus in current deepfake detection methods.

To the best of our knowledge, DFDC [11] and FakeAVCeleb [20] are among
the few publicly accessible multimodal deepfake datasets. While these datasets
partially meet the demand for multimodal training data, they employ outdated
technologies and are predominantly limited to English content. Consequently,
they fail to fully represent the global scope and the cutting-edge status of current
deepfake technologies, and these limitations could pose generalization challenges
in detecting deepfakes. Furthermore, these datasets usually provide only basic
attribute labels, like character attributes (e.g., gender), and lack comprehensive
labeling of the techniques used. This deficiency makes it difficult to conduct
fine-grained technical traceability analysis of the manipulated videos.

Considering the global trend and technological advancements of deepfake
generation technology, we propose PolyGlotFake, a novel multilingual and mul-
timodal deepfake dataset. Specifically, we collected high-quality videos in seven
different languages from publicly available video platforms and translate the con-
tent of these video into the six other languages. We employ five advanced voice
cloning and TTS technologies to generate audio in the target languages. Then, we
employ two cutting-edge lip-sync technologies to produce high-quality, realistic,
translated videos. Each video is accompanied by detailed technical and attribute
labels, which are crucial for analysis and classification in technical traceability.
Furthermore, we conduct a comprehensive evaluation of current state-of-the-art
deepfake detection methods on our dataset. Experimental results demonstrate
the challenges of PolyGlotFake in deepfake detection tasks and its practical value
in advancing multimodal deepfake detection research.

Our contributions are summarized as follows:

• We present a novel multimodal, multilingual deepfake dataset comprising
seven languages and created using ten multimodal manipulation methods.
Notably, no multilingual deepfake dataset has been proposed previously.

• We carefully selected raw videos in seven languages from public platforms and
annotated each with fine-grained labels for character features and specific
techniques. This deepfake dataset enables more detailed traceability of the
technologies used.

• We comprehensively evaluated current state-of-the-art deepfake detection
methods on PolyGlotFake and conduct comparative experiments with other
datasets. These results demonstrate the challenging nature and the value of
PolyGlotFake dataset.
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Table 1. Quantitative comparison of PolyGlotFake with existing publicly available
video deepfake datasets.

DataSet Release Data
Manipulated

Modality
Mutilingual Real video Fake video Total video

Manipulation

Methods

Techniques

labeling

attribute

labeling

UADFV [46] 2018 V No 49 49 98 1 No No

TIMI [21] 2018 V No 320 640 960 2 No No

FF++ [40] 2019 V No 1,000 4,000 5,000 4 No No

DFD [40] 2019 V No 360 3,068 3,431 5 No No

DFDC [11] 2020 A/V No 23,654 104,500 128,154 8 No No

DeeperForensics [17] 2020 V No 50,000 10,000 60,000 1 No No

Celeb-DF [25] 2020 V No 590 5,639 6,229 1 No No

FFIW [47] 2020 V No 10,000 10,000 20,000 1 No No

KoDF [22] 2021 V No 62,166 175,776 237,942 5 No No

FakeAVCeleb [20] 2021 A/V No 500 19,500 20,000 4 No Yes

DF-Platter [32] 2023 V No 133,260 132,496 265,756 3 No Yes

PolyGlotFake 2023 A/V Yes 766 14,472 15,238 10 Yes Yes

2 Background and Motivation

In this section, we conduct a comprehensive comparison with existing deepfake
datasets and detail the limitations of these current datasets. We present a com-
prehensive list of widely used and publicly available deepfake video datasets for
deepfake detection in Table 1. These datasets reflect the gradual evolution of
deepfake video generation techniques.

The early deepfake datasets, such as UADFV [46] and TIMIT [21], were cre-
ated using initial versions of deepfake generation technologies like FakeApp [1]
and FaceswapGANs [27]. These early datasets are limited in size, contained a
small number of low-quality videos, and suffere from significant visual artifacts.
Subsequent studies [25,40] utilized advanced deepfake generation algorithms,
targeting creating more diverse and higher-quality deepfake videos with reduced
artifacts. Concurrently, several large-scale deepfake datasets [11,17,22,32,47]
have been proposed. However, most of these datasets primarily concentrate on
visual modalities, focusing on techniques such as face swapping while neglecting
the manipulation of audio modalities.

Building on previous work, the DFDC [11] dataset emerged as the first
multimodal deepfake dataset, incorporating voice cloning in some videos via
TTS Skins [37]. However, DFDC’s main emphasis is on visual manipulations,
and it does not provide clear labeling for audio manipulations, making it diffi-
cult to identify which clips have been audio-manipulated. Subsequently, in 2021,
FakeAVCeleb [20] was proposed. This dataset includes four types of multimodal
forgeries and provides fine-grained labels for each video. While FakeAVCeleb
currently stands as the most prominent multimodal deepfake dataset, it faces
limitations, notably in the diversity of manipulation techniques and the linguistic
variety of the raw videos. It relies solely on SV2TTS [15] for audio manipulation,
a system considered somewhat outdated, resulting in lower-quality voice synthe-
sis compared to cutting-edge TTS technologies. For lip-sync, it uses an older
version of Wav2Lip [38], which can produce noticeable artifacts. Another signif-
icant limitation is that its real videos are collected from the VoxCeleb2 dataset
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Fig. 1. Language distribution in real
and fake videos.

Fig. 2. Synthesis methods distribution in
the PolyGlotFake dataset.

Table 2. Attribute distribution by age and sex.

Characteristics Number Percentage(%)

Age

0-18 2 0.26

19-35 366 47.78

36-55 320 41.78

56+ 78 10.18

Sex
Female 481 62.8

Male 285 37.2

[8], which is limited to English, thereby restricting the linguistic diversity avail-
able for multilingual deepfakes. These constraints diminish the dataset’s variety
and realism, impacting the generalizability of detectors trained with it.

As a result, current multimodal datasets still exhibit significant limitations in
terms of manipulating technical and linguistic diversity. This research gap high-
lights the urgent need for more technologically advanced, diverse, and globally
representative deepfake datasets.

Furthermore, it is worth noting that many current datasets are often pro-
moted based on their large scale. However, for the specialized task of deepfake
detection, an excessively large scale can result in longer training periods. This not
only reduces experimental efficiency but may also hinder the ability to quickly
iterate and test new detection techniques. Additionally, ensuring the quality
and consistency of each sample in a very large dataset can be challenging, which
in turn affects the performance and reliability of the model. Therefore, in Poly-
GlotFake, our emphasis is on creating a high-quality, diverse dataset rather than
merely focusing on its scale.

3 PolyGlotFake Dataset

The PolyGlotFake dataset comprises a total of 15238 videos, including 766 real
videos and 14472 fake videos. The average duration of each video is 11.79 s, with
a resolution of 1280*720.
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Fig. 3. Generation Pipeline of PolyGlotFake Dataset. Original videos are separated into
video and audio. The audio is transcribed into text using Whisper [36] and subsequently
translated into multiple languages using a translator. These translated texts are then
converted into audio through Text-to-Speech and voice cloning models. Finally, the
original video clips are synchronized with the generated audio using a lip-sync model.

3.1 Data Collection

The high-quality raw (i.e. real) videos are collected from YouTube, including
content in seven different languages. Figure 1 shows the linguistic distribution
in collected raw videos and manipulated videos. To ensure the accuracy of sub-
sequent translations, we manually verify that each sentence in the videos is
complete. The selection of languages is based on their global popularity and
compatibility with existing popular open-source TTS models. These languages
include the six official languages of the United Nations (i.e., English, French,
Spanish, Russian, Chinese, Arabic) and Japanese. We also conducted detailed
labels of the collected videos, encompassing information such as their sources,
duration, as well as the gender and age of the characters in videos. The attribute
distribution by age and sex is shown in Table 2. Additionally, we preserved the
video’s background instead of extracting only facial regions, thereby retaining
as much of the original video information as possible.

3.2 Synthesized Data

For the generation of fake videos, we employ cutting-edge and popular visual
and audio manipulation methods based on realistic deepfake generation cases
found in internet media.
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For audio modality manipulation, we use the following five methods.

• XTTS [3]: A powerful and popular open-source TTS model built on the Tor-
toise and developed by Coqui AI. XTTS supports 16 languages and enables
cross-lingual voice cloning and multilingual speech generation with only three-
second audio prompts.

• Bark [5] + FreeVC [23]: Bark is a Transformer-based multilingual TTS
model developed by Suno-AI that supports 13 languages and is capable of
generating highly realistic, multilingual speech and other audio content such
as music. FreeVC is a high-quality, text-free, one-short voice conversion sys-
tem. Since Bark does not support cross-language voice clones, we use Bark to
generate the corresponding speech first and then FreeVC to realize the voice
clone according to the audio prompt.

• Vall-E-X [42]: An efficient multilingual text-to-speech synthesis and voice
cloning model recently proposed by Microsoft. It can efficiently realize high-
quality voice cloning with only three seconds of an audio prompt. It currently
supports three languages.

• Microsoft TTS [29] + FreeVC: Microsoft TTS supports multiple languages
and dialects. Given its widespread use on the internet, we design manipulation
schemes that combine it with FreeVC.

• Tacotron [44] + FreeVC: Tacotron is an advanced TTS synthesis system
proposed by Google. It is known for its seq2seq architecture and ability to
generate highly natural and fluent speech. Similarly, We combine it with
FreeVC.

For visual modality manipulation, we employ the following two methods
based on the popularity and generation quality:

• Wav2Lip [38] + GANs: Wav2Lip is a widely used, highly accurate lip-sync
model proposed in 2020. This model can accurately match any speech to the
lip movements of a character in a video, often utilized in deepfake for face
reenactment tasks. The basic Wav2Lip model alone tends to produce videos of
low quality. However, by integrating it with Generative Adversarial Networks
(GANs), the video quality can be significantly enhanced. In this study, we
employ a fine-tuned Wav2Lip plus GANs model to produce high-quality lip-
sync videos.

• VideoRetalking [7]: VideoRetalking is a audio-driven lip-sync system
recently proposed by Cheng etc.. This system generates lip-sync videos by
processing audio and video in a series of sequential steps. The generated video
frames are finally enhanced and repaired using an identity-aware enhancement
network.

Additionally, for generated video we label the detailed audio and visual
manipulation techniques used, The distribution of the various combinations of
techniques is shown in Fig. 2. For instance, in the pie chart, the gray section
represents the percentage of videos that use MicroTTS and FreeVC for voice
manipulation, and videoRetalking for lip syncing. There are 2,290 such videos,
accounting for 15.82% of all fake videos.
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Table 3. Visual quality assessment and comparison. The first column shows the dif-
ferent Datasets and the second and third columns show the FID and BRISQUE values
measured in that Dataset, respectively. lower values of FID and BRISQUE indicate
better quality.

DataSet FID ↓ BRISQUE ↓

FF++ 4.12 52.17

CelebDF 3.72 42.23

DFDC 5.91 74.52

FakeAVCeleb 4.32 69.31

PolyGlotFake 3.25 46.21

Table 4. Audio quality assessment and comparison. The first column shows
FakeAVCeleb and the parts of PolyGlotFake that use different sound manipulation
techniques. The second column shows the Mos value of the audio in these datasets,
where larger indicates higher audio quality.

DataSet Mos ↑

FakeAVCeleb 3.17

PolyGlotFake(XTTS) 4.12

PolyGlotFake(MicroTTS+FreeVC) 4.51

PolyGlotFake(Vall-E-X) 3.22

PolyGlotFake(Tacotron+FreeVC) 4.57

PolyGlotFake(Bark+FreeVC) 4.30

PolyGlotFake(Overall) 4.12

The fake video generation pipeline is shown in Fig. 3. We first extract the
audio from the original video and use Whisper [36] to convert the speech to
text while detecting its language. Then, the text output from Whisper [36] is
translated into other languages using Microsoft’s Translate API. For example,
If the output text is in English, the original English text will be translated into
Spanish, Russian, Chinese, Japanese, Arabic, and French. We select a suitable
TTS model based on the translated text and randomly cut 10 s from the orig-
inal audio as an audio prompt. The selected TTS model converts the text to
audio and performs sound cloning based on the audio prompt. Then, the lip-
sync model performs face reenactments of the original video based on the TTS
output audios, resulting in a series of high-quality manipulated videos in different
languages generated using several techniques.

3.3 Quality Assessment

We perform quality assessments for PolyGlotFake dataset in visual and
audio modalities. For the quality assessment of visual modality, we adopt
the Frechet Inception Distance (FID) and the no-reference image assessment
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Fig. 4. Visualization of some video frame samples and Mel spectrograms of audio
sample clips in the PolyGlotFake dataset.

method BRISQUE [31]. We also compar the quality of the PolyGlotFake
dataset with several other well-known datasets, including FF++, Celeb-DF,
and FakeAVCeleb, and the related results are presented in Table 3. For the
audio modality quality assessment, we employ the non-invasive audio assessment
method NISQA [30] to compute the Mean Opinion Score (MOS), and compare
the result with FakeAVCeleb. The detailed assessment results for each synthesis
method are shown in Table 4.

Based on our quality evaluations, it is clear that the PolyGlotFake dataset
exhibits high performance in both visual and audio quality aspects. Addition-
ally, Fig. 4 presents selected video frame samples and Mel spectrograms of audio
sample clip from the PolyGlotFake dataset. Both visualization and quantitative
quality assessment confirm the superior quality of PolyGlotFake across both
visual and audio modalities.

4 DeepFake Detection Benchmark

In this section, we first comprehensively evaluate several existing state-of-the-art
deepfake detectors on the PolyGlotFake dataset and compare the performance
of these detectors across different datasets. Then, we conduct a qualitative and
quantitative experiment on the audio modality of our dataset to explore the
impact of different languages on detection performance.

4.1 Selection of Detectors

Current deepfake detection methods can be broadly categorized into three
groups: naive detectors, spatial detectors and frequency detectors. ❶ Naive detec-
tors employ CNNs to directly distinguish fake images from real ones. ❷ Spatial
detectors examine the spatial domain of images in greater detail using specially
designed structures to detect features like fusion boundaries and artifacts. ❸
Frequency detectors analyze the frequency domain of images to identify forgery
features such as high-frequency artifacts.
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Table 5. Evaluation results and comparisions with other datasets. All detectors were
trained on the FakeAVCeleb dataset and tested on FakeAVCeleb, DFDC, and PolyGlot-
Fake. Consequently, the FakeAVCeleb column represents the AUC values obtained from
intra-dataset evaluation, while the DFDC and PolyGlotFake columns represent the
AUC values from cross-dataset evaluation.

DataSet
Type Detector Backbone

FakeAVCeleb DFDC PolyGlotFake

Naive MesoNet [2] Designed 0.7332 0.5906 0.5672

Naive MesoInception [2] Designed 0.7945 0.6344 0.5831

Naive Xception [40] Xception 0.9169 0.6530 0.6052

Naive EfficienNet-B4 [41] EfficienNet 0.9023 0.6020 0.5769

Spatial Capsule [34] Capsule 0.8663 0.6146 0.6068

Spatial FFD [10] Xception 0.9285 0.6583 0.5960

Spatial CORE [35] Xception 0.9345 0.6625 0.6220

Spatial RECCE [6] Designed 0.9396 0.6884 0.6596

Spatial DSP-FWA [24] Xception 0.9115 0.6929 0.6658

Spatial TALL [45] Transformer 0.9387 0.6830 0.6535

Spatial CADDM [12] Designed 0.9533 0.6931 0.6737

Frequency F3Net [39] Xception 0.9416 0.6452 0.6439

Frequency SRM [28] Xception 0.9043 0.6346 0.6143

Ensemble XRes [19] Designed 0.9556 0.7042 0.6835

To perform the experiments, we employ a total of 15 state-of-the-art deepfake
detectors. This set included four naive detectors, namely MesoNet [2], MesoIn-
ception [2], Xception [40], and EfficientNet-B4 [41]; seven spatial detectors, Cap-
sule [34], FFD [10], CORE [35], RECCE [6], and DSP-FWA [24], TALL [45],
CADDM [12]; and two frequency detectors, F3Net [39] and SRM [28]. In addi-
tion, for multimodal deepfake detection, we use XRex [19], an ensemble model
combining Xception and ResNet. In this model, Xception is used for visual
modality detection, and ResNet is used for audio modality detection. The selec-
tion of these detectors was based on the popularity and public availability of
their code.

4.2 Experimental Setting

We divide the dataset into training, validation, and testing sets in the ratio of
8:1:1. To ensure the representativeness of each technique combination in the
dataset division; we use a stratified sampling method to ensure that the propor-
tion of each combination is consistent across the datasets. For exisiting detection
methods, we follow the respective data preprocessing steps. For the ensemble-
based model, we randomly clip three seconds from each audio and convert it
into a three-channel Mel Frequency Cepstral Coefficient (MFCC) feature as the
input for the audio modality and extract ten frames from each video as input
for the visual model.

To ensure fairness, we train all detectors on the FakeAVCeleb dataset and
evaluate them on both the DFDC and PolyGlotFake datasets. We use the Area



PolyGlotFake: A Novel Multilingual and Multimodal DeepFake Dataset 189

Table 6. Audio modality analysis. The first column represents the generative models
used, while the other columns represent the languages of the audio. “-” indicates that
the model does not support generating this language.

Models en fr es ru zh ar ja

XTTS 0.8552 0.7134 0.6854 0.6764 0.7323 0.6614 -

Bark 0.7336 0.6835 0.7415 0.7632 0.7153 - 0.6824

MicroTTS 0.8364 0.7543 0.7385 0.6978 0.7576 0.6954 0.7143

Tacotron 0.7422 0.6945 0.7223 - 0.8132 - 0.7321

Vall-E-X 0.8064 - - - 0.8354 - 0.6974

Under the Curve (AUC), a commonly used evaluation metric for deepfake detec-
tion, as our experimental metric.

For the audio modality analysis, we first divid the test set of the dataset
according to language, ensuring that the number and ratio of real to fake videos
remains the same for each language groups. We use a ResNet trained on the
audios (MFCC) of PolyGlotFake dataset to detect the audios of each group and
reported the AUC for each language category in Table 6.

4.3 Result and Analysis

Table 5 reports the results of our experiments. The FakeAVCeleb column shows
the intra-dataset detection results, which reveal that the spatial detector with a
specialized structural design and the frequency detectors outperform the naive
detectors. For instance, the detection result of Xception is 0.9169, while CORE,
which also utilizes Xception as a backbone, achieves a result of 0.9345.

The DFDC and PolyGlotFake columns present results obtained from cross-
dataset detection. Comparing these results with the intra-dataset detection
results indicates significant performance degradation for detectors trained on
FakeAVCeleb when faced with unseen Deepfake content. Furthermore, the per-
formance of the detectors on the PolyGlotFake dataset is significantly worse
than on DFDC. This suggests that PolyGlotFake includes a wider variety of
unknown synthesis techniques, making it a more challenging dataset for these
detectors.

The result in Table 6 indicates that even when detecting audio with the
same semantic content generated by the same model but in different languages,
the detection results remain different. This suggests that due to differences in
the training data for each language used during the TTS training phase, model
adaptability, and the distinct characteristics of each language, the TTS leaves
varying degrees of detectable traces when generating audio of different languages.
This further underscores the importance and significance of establishing a mul-
tilingual, multimodal deepfake dataset.
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5 Conclusion

In this study, we propose PolyGlotFake, a multilingual, multimodal deepfake
dataset that employs cutting-edge multimodal manipulation techniques. Each
technique used in this dataset is meticulously annotated to aid in technical
traceability analysis. Furthermore, we comprehensively evaluate various state-
of-the-art deepfake detectors on this dataset. The experiment results demon-
strate the challenging nature and practical value of our dataset. We comprehen-
sively evaluated various state-of-the-art deepfake detectors using this dataset.
The experimental results underscore the challenging nature and the practical
value of PolyGlotFake, demonstrating its potential to significantly advance the
field of multimodal deepfake detection.

Due to the complexity of data collection and processing, our dataset also faces
issues such as an imbalance in the proportions of various attributes and a small
scale of real video data. In future research, we aim to address these fairness issues
by improving the balance of attributes and expanding the scale of our dataset.
We also plan to enhance the linguistic diversity of our dataset. Additionally, in
response to recent studies [14,16,33] showing how adversarial perturbations can
help evade detection, we plan to explore methods for implementing such per-
turbations in practical scenarios. This includes incorporating subtle adversarial
perturbations into both the audio and video components of our dataset.
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30. Mittag, G., Naderi, B., Chehadi, A., Möller, S.: Nisqa: a deep CNN-self-attention
model for multidimensional speech quality prediction with crowdsourced datasets.
arXiv preprint arXiv:2104.09494 (2021)

31. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in
the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

32. Narayan, K., Agarwal, H., Thakral, K., Mittal, S., Vatsa, M., Singh, R.: DF-platter:
Multi-face heterogeneous DeepFake dataset. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9739–9748 (2023)

33. Neekhara, P., Dolhansky, B., Bitton, J., Ferrer, C.C.: Adversarial threats to Deep-
Fake detection: a practical perspective. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 923–932 (2021)

34. Nguyen, H.H., Yamagishi, J., Echizen, I.: Use of a capsule network to detect fake
images and videos. arXiv preprint arXiv:1910.12467 (2019)

35. Ni, Y., Meng, D., Yu, C., Quan, C., Ren, D., Zhao, Y.: Core: consistent repre-
sentation learning for face forgery detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12–21 (2022)

36. OpenAI: Github repository for openai whisper project (2023). https://github.com/
openai/whisper. Accessed 29 Dec 2023

37. Polyak, A., Wolf, L., Taigman, Y.: Tts skins: speaker conversion via asr. arXiv
preprint arXiv:1904.08983 (2019)

38. Prajwal, K., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert
is all you need for speech to lip generation in the wild. In: Proceedings of the 28th
ACM International Conference on Multimedia, pp. 484–492 (2020)

39. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery
detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58610-2 6
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Abstract. Video action understanding is a rapidly growing field that
has achieved excellent results in various application areas, such as sports
and lifestyle applications. However, research that combines computer
vision action understanding techniques and the artistic domain of clas-
sical ballet choreography is still in its infancy. Publicly available ballet
video datasets are limited in number and need more richness to prop-
erly explore this specialized field and its extensive collection of actions.
Recordings of ballet rehearsals, performances, and competitions have
become more readily available on public platforms in recent years, mak-
ing a substantial amount of data available in this discipline. We propose
a novel video dataset, AnnChor, for temporal action localization in bal-
let choreography. The dataset is notable for its quality and the diversity
of ballet actions found in the videos of solo ballet performances. The
full dataset comprises 1020 videos with over 25 000 temporal annota-
tions for 11 action classes. We evaluate and provide baseline results for
temporal action localization using the Coarse-Fine Network and TriDet
models. There is much opportunity to advance computer vision technol-
ogy to aid the classical dance domain. We hope this dataset will benefit
the computer vision community and enable researchers to explore the
challenges present in action localization, especially in the context of fine-
grained ballet movements. The dataset can be found at https://github.
com/dvanderhaar/UJAnnChor.

Keywords: Fine-grained Temporal Action Localization · Ballet
Dataset · Video Understanding

1 Introduction

The field of video action understanding has continually grown over recent years
with the publication of multiple influential and large-scale video datasets. In this
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paper, we refer to video action understanding as an umbrella term that includes
the task of temporal action localization. The success of many new machine learn-
ing models is driven by state-of-the-art and emerging datasets that explore a vari-
ety of domains for the task of temporal action localization [12], such as Charades
[28], ActivityNet [3], MultiTHUMOS [37], HACS Segments [39], FineAction [20]
and FineGym [26], to name a few. The applications for video understanding are
continually branching out into several specialized domains, and temporal action
localization remains challenging as each domain presents unique problems.

Classical ballet is an exciting application domain for the temporal action
localization task, mainly due to the rich vocabulary of actions present in the
art form. Ballet solos in the classical repertoire, also known as ballet variations,
consist of carefully choreographed step sequences filled with many distinct ballet
actions [25] that are performed by a single dancer. However, limited datasets
for ballet exist that are sufficiently rich in action classes and appropriate for
temporal analysis. There are well-established ballet competitions that take place
yearly where multiple dancers perform variations from great classical ballets.
With the ever-increasing popularity of online video and streaming platforms,
recordings of ballet competitions, rehearsals, and professional performances have
become more readily available to the public. There is an opportunity to use
the data available in this discipline to explore how the application of computer
vision technology may benefit the ballet community and reveal new challenges
to researchers.

Creating the AnnChor dataset is motivated by technology’s potential to sim-
plify tasks such as notating choreography as well as teaching and correcting bal-
let movements. The AnnChor dataset furthermore demonstrates the difficulty of
fine-grained action localization. Automating aspects of the typical tasks found
within the fine-grained action setting of ballet, using computer vision requires
high-quality data.

This paper proposes a novel video dataset, AnnChor, for temporal action
localization in ballet choreography. We use the term temporal action localization,
also known as temporal action detection according to [12], to refer to assigning
action labels to temporal segments in a video based on the likelihood of an
action occurring within a start and end frame window. AnnChor is a high-quality
dataset consisting of high-resolution videos with a diverse range of annotated
ballet actions. Spatial localization is not a part of the dataset as the focus is
on solo dance performances where the dancers are mostly isolated. The dataset
creation and annotation tasks for AnnChor are subject to a carefully defined
control process to ensure reliable annotations (Fig. 1).

To take on the challenge of temporal action localization within this relatively
unexplored space, we perform a baseline study by using Coarse-Fine Networks
[13] and TriDet [27]. The results of our study reveal that there is still much room
for progress in applying temporal action localization techniques to the generally
complex area of ballet choreography with its many fine-grained movements.

Our work, therefore, contributes to research in video action understanding
in the following ways: 1) We create a novel video dataset, AnnChor for action
understanding in the specialized domain of classical ballet, which is rich in qual-
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Fig. 1. An overview of the AnnChor dataset showing some of the actions that are
present in the selected ballet sequences. We provide fine-grained temporal annotations
for 1020 videos.

ity and diversity of actions. 2) We conduct a baseline study on the dataset as
a benchmark using Coarse-Fine Networks and TriDet to demonstrate the chal-
lenges that arise for this application field’s fine-grained temporal action local-
ization task.

Section 2 of this paper presents the background and related work. Section 3
contains information about the dataset presenting details such as dataset con-
struction, annotation, considerations, and the evaluation protocol. Section 4 pro-
vides information on the baseline experiments and methods. The results and
analysis of the paper are found in Sect. 5. Finally, the paper ends with the con-
clusion in Sect. 6.

2 Background and Related Work

Classical ballet is a very well-codified art form with precise movements focus-
ing on the correct alignment of the body [5,24]. Interesting research works in
the body of literature have combined technological research with ballet. How-
ever, the use of action understanding techniques in this context still needs to be
improved. Some of the literature has focused on assisting dancers with proper
training and correction using various camera and wearable sensors as well as vir-
tual reality technology [1,16,23,30–32]. Other research works have focused on the
choreographic side of ballet and dance in general, by considering dance notation
systems as well as generative choreography [2,14,17,22,38]. The advancement of
work in the combined computer vision and classical ballet area for future research
is largely dependent on the availability of substantial, high-quality datasets.
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Fig. 2. Frames from the AnnChor dataset showing the progressions of the Grand Jeté
action from the Black Swan variation

Several existing datasets offer temporal annotations for action localization,
primarily in sports or non-artistic domains. For example, the Charades and
ActivityNet datasets focus on coarse-grained action understanding, featuring
general action instances such as “Watching television” and “Playing hockey”
[3,28,37]. In contrast, the FineAction dataset concentrates on fine-grained action
instances from multiple domains [20]. However, specialized domains like ballet
necessitate domain-specific fine-grained annotations. Other existing specialized
datasets include Diving48 and FineDiving for diving activities [18,36], and Fin-
eGym for gymnastics [26].

There are a few existing datasets that are mentioned in related work which
explore dance as a topic. Examples of general dance datasets include: Let’s Dance
[4] as well as the AIST++ [18] datasets. The ballet-focused video datasets, how-
ever, are limited in number of samples and subjects with little diversity and
richness of ballet action annotations. One video ballet dataset that is mentioned
in the literature is called Ballet Movements, created by [9], which has 44 video
sequences with 8 action classes and 3 subjects [33,34]. The works that make use
of this dataset mention the complexity of ballet movement patterns, focusing on
action recognition as a task, but not fine-grained temporal action localization
[9].

It is also clear from recent literature that performing action localization
and recognition on temporally untrimmed videos is a challenging but necessary
task for a realistic analysis of human actions [10–12,29]. As such, the AnnChor
dataset focuses on providing temporal annotations for ballet actions performed
in various dance-specific environments. This dataset contributes a relatively sig-
nificant amount of data together with action classes for the highly nuanced move-
ments within the ballet repertoire. In the next section, we present the details of
the AnnChor dataset.

3 The AnnChor Dataset

3.1 Dataset Background and Overview

The AnnChor video dataset has been carefully constructed by ballet subject
matter experts. It presents a new opportunity for researchers to explore action



198 M. Bowditch and D. van der Haar

Fig. 3. An example of the AnnChor dataset annotation process using the VIA Video
annotation tool

understanding problems in a uniquely complex application area. Ballet is a his-
torically rich art form where companies perform masterpiece full-length ballets
worldwide. Every full-length ballet contains solo-performance pieces, known as
variations, which are performed by a single male or female dancer. Many of these
variations from ballet repertoire are well-known within the ballet community, for
example, the Black Swan variation from Swan Lake, is a dynamic piece filled with
various quick, fine-grained actions as demonstrated by the frames illustrated in
Fig. 2. These variations are often performed as stand-alone solo pieces at ballet
competitions [21].

A significant number of records of ballet competitions, as well as studio
rehearsals and stage performances, have become available on public platforms
such as YouTube. Therefore, much data is readily available with the same chore-
ography performed by many dancers. However, little of this data has been
utilized for understanding video actions. AnnChor addresses the opportunity
and need for an adequately annotated high-quality dataset in the classical ballet
space with a ballet-specific class vocabulary. The AnnChor dataset is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national License.

3.2 Dataset Construction

Video datasets are often collected by crawling the web or capturing the video
data by recording study participants. Furthermore, crowd-sourcing labeling ser-
vices such as Amazon Mechanical Turk are often used to gather annotations [12].
However, due to the required domain knowledge to build a high quality dataset
for classical ballet, 3 domain experts with advanced knowledge of classical ballet
carefully selected and annotated the data for the AnnChor dataset. Fifty-one
ballet variations of similar choreography were selected, and 20 high-quality video
samples were collected for each of these variations resulting in 1020 videos. In
this section, we will unpack various aspects that were considered during the
dataset construction phase.
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Fig. 4. Sample showing the start and end frames of a Balancing Extension Derriére
action

Action Vocabulary. We select the vocabulary by consulting sources such as
[25] and observing which basic ballet actions occur most frequently across video
footage of well-known ballet variations. Therefore, the vocabulary is based on
ballet actions prevalent in classical variation choreography. We also consider
which actions are simple to annotate choreographically using a dance notation
system such as Benesh Movement Notation [6]. Furthermore, in consultation
with the ballet domain experts, the agreed-upon vocabulary was selected based
on similar related actions with well-defined starting and ending moments in the
ballet context.

Data Preparation and Considerations. We searched for competition, rehearsal,
and performance footage on YouTube to gather sufficient high-quality video data.
Ethical clearance was obtained prior to the creation of the AnnChor dataset
which consists of data from publicly available YouTube videos. One constraint in
place during the collection phase of the AnnChor dataset included that the video
background environments had to be consistent with a typical ballet studio or
stage environment. We also decided that no mirrors should be present in the
background of any video to avoid unnecessary noise that may negatively affect
computer vision tasks. The collected video samples had to have one main dancer
performing a solo as the focal point and not include any group dance perfor-
mances. Only high-resolution footage of at least 720P was selected, with clear
sections showing the performer’s whole body. Some footage in the dataset shows
the same dancer performing the same solo on different occasions. Therefore,
data collectors carefully inspected the dataset for duplicate videos. Only truly
identical duplicates were removed manually to ensure unique samples per solo.
Furthermore, the videos were manually trimmed based on each solo’s known con-
ventional starting and ending moments to ensure consistency across samples per
solo. For example, the Black Swan (extract shown in Fig. 2) variation’s choreog-
raphy typically starts and ends with Pirouette actions, and each sample of this
solo has, on average, a similar number of actions.

Annotation. In the area of temporal action localization, a common challenge is
ensuring consistency across the annotations of the temporal actions in a given
dataset [19]. We addressed this challenge by creating an annotation guide that
defines the action boundaries of each ballet step in our action vocabulary.
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Fig. 5. The number of annotations for the initial annotated 20 classes for the sub-
dataset, AnnChor260 and the full dataset, AnnChor1000, sorted in ascending order.

The guide was iteratively improved until consensus among the 3 annotators on
action windows and grouping similar actions was reached.

The guide refers to the dancer’s supporting leg as the leg on which the weight
of the body is placed, and the working leg as the leg that is lifted in a non-weight-
bearing position. An example of a clearly defined action boundary as stipulated
in the guide for the Balancing Extension Derriére movement, which is presented
in Fig. 4, is as follows: The action starts with the dancer’s weight transferred onto
their straight supporting leg while the working leg is at its lowest point lifted
behind the body; The action ends with the dancer’s supporting leg still in posi-
tion, but the working leg is at its highest point lifted behind the body in a bal-
ancing pose. The kinds of movements found in the Balancing Extension Derriére
action class include, in ballet terms, steps such as the Arabesque and Attitude
Derriére actions due to their visual similarity. Therefore, future iterations of the
AnnChor dataset may contain further fine-grained sub-actions for classes like
Balancing Extension Derriére.

The annotators were thoroughly briefed, and the pre-defined annotation
guide was used. The annotation guide is available in the supplementary mate-
rial of this paper. Whenever an annotator came across an unclear action
instance, all annotators were notified, and the required annotation approach
was decided on through collective agreement among the annotators. The aver-
age time taken among annotators to complete the annotation of a single video
was 12.5 min. Figure 3 shows a screenshot of the annotation process using the
open-source VIA Video Annotation tool [7,8]. As seen in Fig. 3 the temporal
actions do not overlap, each taking place at distinct time intervals. The only
exception in overlapping annotations is for the backwards action class which was
added to annotate actions that are performed facing away from the audience.
The format of the annotations allows for start and end timestamps to be cap-
tured along with a class name which is specified based on the provided timelines
presented in Fig. 3.

The original raw annotations of the AnnChor dataset had 20 different action
classes. These classes allow for variation on the sagittal plane, which divides the
body into right and left sections. These annotated classes can be seen in Fig. 5.
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Fig. 6. The number of annotations per class for the final 11 classes for the sub-dataset,
AnnChor260 and the full dataset, AnnChor1000, sorted in ascending order.

The reason for initially annotating at this level of detail is due to the fact that the
dataset contains identical movements of certain action classes that occur towards
the left and the right, respectively. A “backwards” class also allows for anno-
tating actions facing away from the camera. Therefore, there are opportunities
to explore various class configurations with AnnChor. A representative sample
of the dataset with 260 videos, called AnnChor260 was created for preliminary
benchmark purposes. We refer to the complete dataset with its 1020 videos as
AnnChor1000. As a starting point for our baseline results, we grouped the rele-
vant classes of the same step for left and right into one, which results in the 11
classes that can be seen in Fig. 6. The distribution of class action annotations
are presented in Figs. 5 and 6. The classes in Figs. 5 and 6 have been sorted
by the number of annotations for each class. One can clearly see a long-tailed
distribution with the pirouettes class being the most frequently occurring action.

Dataset Challenges. There are several difficulties present in the AnnChor
dataset. Firstly, ballet is a complex performing art containing fast movements
with extreme body deformations, which is still challenging for video action under-
standing models. Secondly, subtle nuances exist in different dancers’ approaches
to specific ballet movements. For example, the choice of arms and speed at
which specific actions are performed vary among dancers. Therefore, another
challenge is that the AnnChor actions are fine-grained with significant varia-
tions in the duration of action instances. The dataset also contains videos with
major changes in the field of view and angles from which the dancers are filmed.
Another interesting challenge within AnnChor includes the symmetry of specific
actions as the dancer transitions out of the movement into the next step. An
example is the Balancing Extension Derriére action presented in Fig. 4 where
the transition out of the action is very similar to the transition into the action
except for the direction in which the working leg is moving. Lastly, the uneven
class distribution, while representative of action frequencies generally found in
ballet solos, also contributes to the challenges for action localization models.

Quality Control. It was essential to have ballet dance and teaching experts with
extensive knowledge of the classical ballet technique annotate this specialized
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Fig. 7. AnnChor1000 statistics showing the standard deviation from the average dura-
tion per action class

dataset since they could detect necessary details and nuances in the AnnChor
actions and annotate appropriately. The full dataset has been reviewed to ensure
annotation consistency, quality, and consensus among annotators. The review
process required annotators to review one another’s work by fixing incorrect
annotations or adding any missed action instances.

3.3 Dataset Properties

The full AnnChor dataset consists of data for 51 ballet solos with 20 high-
resolution videos for each solo, which results in an overall total of 1020 videos. For
AnnChor1000, the overall average temporal length per video is 75.65 s, with the
longest video length at 155.56 s. The average duration of the action segments for
the entire dataset is 0.7 s. The length of the shortest and longest action segments
are 0.02 and 4.98 s, respectively. Figure 7 speaks to the variance of action instance
duration by presenting statistics on the standard deviation from the average
duration per action class. When one considers the Courus action, it is clear that
there is a high variance in the durations of this particular action’s instances.
The reason for this is that the Courus action consists of repetitive series of tiny,
fast steps on the tips of the toes which, in some solos, are performed for a long
duration and in others a concise duration. Further statistics on the complete
dataset include an average of 24.13 action annotations per video and an average
of 2237.82 action annotations per class. Table 1 compares AnnChor with other
related datasets. Our dataset is distinguished from other datasets such as Multi-
Sports [19] and Charades [28] with longer untrimmed video clips (75.65 s vs 20.9 s
vs 30 s). Notably, the average number of action instances per video for AnnChor
(24.13) is higher when compared to MultiSports (11.8), Charades (6.8), FineAc-
tion (6.17), Thumos14 (15.29), ActivityNet (1.15) and HACS Segment (2.47).
Therefore, AnnChor is more densely annotated compared to many recent action
localization datasets. Furthermore, the average action annotation duration for
our dataset of 0.7 s is smaller when compared to MultiSports (1.0 s), FineGym
(1.7 s) and FineAction (7.1 s) among others [19,20,26]. It requires tremendous
effort to annotate such a large number of highly fine-grained actions. At the
same time, it also presents a more significant challenge to the temporal action
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Fig. 8. AnnChor1000 statistics showing the average percentage of each video which
has been covered by annotations

Table 1. AnnChor dataset statistics compared to other related datasets: AC (Ann-
Chor), MS (MultiSports), FG (FineGyn), D48 (Diving28), C (Charades), FA (FineAc-
tion), TH (Thumos14), AN (ActivityNet), HS (HACSSegment)

Statistic AC MS FG D48 C FA TH AN HS

Avg. video duration 75.65 s 20.9 s - - 30 s - - - 156 s

Avg. action instances per video 24.13 11.8 - - 6.8 6.17 15.29 1.15 2.47

Total action instances 25600 37701 32697 18404 66500 103324 6364 23064 122304

Avg. annotation duration 0.7 s 1.0 s 1.7 s - 12.8 s 7.1 s 4.3 s 49.2 s 33.2 s

localization domain. The overall percentage of video durations which are covered
by annotations in the AnnChor1000 dataset is 22.66%. Figure 8 highlights the
coverage of annotations as percentages of each video’s duration.

3.4 Evaluation Protocol

We report performance as Mean Average Precision (mAP) over all the classes as
is prevalent for the temporal action localization task [12,35]. For evaluating the
Coarse-Fine model implementation, we use the same evaluation procedure that
the authors of [13] used to perform their evaluation on the Charades [28] dataset.
The evaluation code provided by [28] evaluates mAP on 25 equally spaced frames
throughout the video, where each frame of a video can have zero or more actions.
The results are presented as per-class average precision (AP) scores and the
overall mAP score.

For the TriDet model, evaluation results are reported as mean average preci-
sion (mAP) at different thresholds for the intersection over union (IoU). Follow-
ing the authors of [27]’s approach with evaluating on the THUMOS14 dataset,
results are reported at IoU thresholds of 0.3, 0.4, 0.5, 0.6 and 0.7 along with the
average mAP.
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4 Baseline Experiments

4.1 Methods

An Nvidia GTX compute system with 4 A100 GPUs was used to conduct the
baseline experiments for this study. One of the methods chosen as a baseline for
this study is based on an implementation of Coarse-Fine networks [13] which is
licensed under an MIT license. This model provides appropriate mechanisms for
temporal action detection for video understanding. The Coarse-Fine Networks
architecture utilizes two temporal resolutions. The coarse and fine streams are
fused during a step the authors call Multi-stage Fusion. The Coarse-Fine net-
works method has achieved excellent results on the Charades dataset. However,
the Charades dataset contains a much larger number of videos than our AnnChor
dataset, and each video in Charades has a shorter temporal length. We follow
the same approach that the authors in [13] used to train on the MultiTHUMOS
dataset. We create a segmented version of the AnnChor dataset and limit the
maximum temporal length of each video clip to 1280 frames. A two-stage process
is followed for training, and both the Coarse and the Fine streams are initialized
with the X3D backbone pre trained on Kinetics400 [15]. We use the same hyper-
parameter configuration and training schedule as used in the implementation by
[13].

Another method for benchmarking this dataset is the TriDet model [27],
which relies on codebases that use MIT and Apache licenses. TriDet is based on
a one-stage convolutional action localization approach that uses a novel Trident-
head to model action boundaries to improve existing approaches for boundary
prediction. The TriDet model has achieved state-of-the-art performance across
benchmarks such as THUMOS14, HACS, and EPIC-KITCHEN 100. We follow a
similar approach and configuration as the authors in [27] to benchmark on the
THUMOS14 dataset. We kept our videos at their original length for the baseline
experiment using the TriDet model and used extracted i3D features. More details
on the implemented experiments for each of the models are provided in the
following section.

4.2 AnnChor Benchmark

As mentioned above, in preparation for the implementation of the Coarse-Fine
model, we create a segmented version of our AnnChor dataset which is similar to
the approach taken by the authors in [13] to train on the MultiTHUMOS dataset.
The sub-dataset’s original 260 videos were segmented to produce 532 video clips
and the complete dataset’s original 1020 videos were segmented into 2004 video
clips to align better with the video durations best suited to the Coarse-Fine
model. We manually split the segmented dataset into 80% training and 20%
testing sets. For the segmented sub-dataset 426 video clips were used for training
and 106 were used for testing. For the segmented full dataset 1605 video clips
were used for training and 399 for testing. For the Coarse-Fine implementation,
all the videos were converted to a constant frame rate of 24 fps.
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The TriDet model implementation required that we extract I3D features for
all the videos in the dataset. All videos were converted to a constant frame-
rate of 25 fps. Optical flow frames were obtained using the Recurrent All-Pairs
Field Transforms (RAFT) architecture and subsequently, the I3D features were
extracted. The number of videos used were 816 for training and 204 for test-
ing. The TriDet paper [27] reports that the localization performance improves
as the number of pyramid layers of the model increase. Their model achieves the
best results on THUMOS14 with a pyramid level number of 6 and a bin number
value of 16. We kept our parameters consistent with this approach and provided
a maximum sequence length parameter of 4608 for our longer video samples.

5 Results and Analysis

Fig. 9. Per-class average precision on the AnnChor dataset with Coarse-Fine models

Table 2. mAP Results

Dataset version Model mAP(%)

AnnChor260 Coarse-Fine Network 2.45

AnnChor1000 Coarse-Fine Network 2.99

AnnChor260 segmented Coarse-Fine Network 11.09

AnnChor1000 segmented Coarse-Fine Network 8.15

AnnChor 260 TriDet 2.81

AnnChor1000 TriDet 1.49

The baseline results that were obtained for the AnnChor dataset are shown
in Fig. 9 along with Tables 2 and 3. The best-performing base-line result is for the
segmented AnnChor260 dataset with the Coarse-Fine Network model achieving
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an mAP of 11.09%. This suggests that the AnnChor dataset and it’s classical
ballet context is a challenge for temporal action localization models.

During the AnnChor annotation process, we identified two action classes
that could be problematic due to the varying approaches that dancers take in
executing these movements, namely Pirouette and Tour en l’air. These classes
involve turning actions where the start and end windows are nuanced. Figure 7
shows that these actions have varied segment lengths. However, as seen in Fig. 6
the Pirouette class had many more annotated instances which may account for
the higher overall AP seen for this class in Fig. 9. The Tour en l’air class had
fewer annotated instances and a lower AP score. Another challenging class was
the Waltz step class which had the lowest number of annotated instances as well
as a variance in the duration of segments as indicated by Figs. 6 and 7, resulting
in an overall low AP score seen in Fig. 9.

Table 3. TriDet detailed evaluation results: mAP % at t-IoU values for the Ann-
Chor260 (AC260) and AnnChor1000 (AC1000) datasets.

t-IoU 0.30 0.40 0.50 0.60 0.70 Avg

AC260 mAP 4.08 3.51 2.82 2.28 1.38 2.81

AC1000 mAP 2.54 1.81 1.36 1.04 0.72 1.49

Figure 9 presents generally higher average precision scores for the segmented
AnnChor260 sub-dataset for most classes except for the Grand Jeté, Extension
Second, Tour en l’air and Cabriolé Derriére classes. This is an interesting result
which shows that ballet is a complicated application domain, where more data
may not guarantee better results for all action instances. Figure 9 points to
the fact that there are many nuances in the data where different dancers and
different versions of the same action introduce complexity for the temporal action
localization task. The results point to an interesting case for analysis of similarity
across action instances in this dataset.

The mAP results for the Coarse-Fine and TriDet models are presented in
Tables 2 and 3. The results suggest that fine-grained temporal action localiza-
tion is still difficult for video understanding models. The authors of FineGym
[26] confirmed the difficulty of the temporal action localization task by report-
ing an mAP % of 9.6 for their more fine-grained sub-action classes. Similarly,
the FineAction [20] authors reported mAP % values ranging between 5.31 and
9.25 for various state-of-the-art temporal action localization methods, with their
own baseline method achieving an mAP % of 13.17. These results and current
literature show that highly fine-grained actions are particularly challenging for
action localization models. There is room for more comprehensive studies on
understanding the boundaries of fine-grained actions.
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6 Conclusion

We propose AnnChor, a dataset for the ballet domain, which provides fine-
grained annotations for commonly occurring ballet actions. AnnChor is a novel
and unique dataset with long-form videos filled with annotations for fine-grained
actions. We provide a baseline study using Coarse-Fine Network and TriDet
models. Our baseline results indicate that ballet is an exciting application field
for the temporal action localization task which remains challenging, especially
within fine-grained action contexts. We hope AnnChor provides the computer
vision community with opportunities for further research and benchmarking in
video action understanding.

Acknowledgements. This work is based on the research supported wholly/in part
by the National Research Foundation of South Africa (Grant Number 138301).
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Abstract. For online face recognition services, the potential leakage of
facial features and reconstruction techniques gives malicious attackers the
opportunity to reconstruct face images, raising public concern about pri-
vacy. Previous privacy-preserving face recognition methods either require
retraining the face recognition model or iterative perturbation that
increases inference time. To overcome these limitations, we propose an
efficient plug-and-play method that crafts Adaptive Generative pertur-
bations for frozen Face recognition model (AGFace) to defend the recon-
struction attacks. To generate perturbation with a single forward for shal-
low features extracted by frozen recognition model, we learn a Perturba-
tion Generator to efficiently mine the adversarial perturbations by simul-
taneously minimizing the perturbation and maximizing the reconstruc-
tion error of a proxy reconstructor. To achieve privacy-utility trade-off, we
propose the Adaptive Channel Selector to identify top-k reconstruction-
sensitive channels for the features. By selecting these channels for per-
turbation, the dominant visual privacy information is protected with
reconstruction-insensitive discriminative information preserved. Exten-
sive experiments demonstrate that AGFace achieves state-of-the-art per-
formance in terms of both privacy and utility among retraining-free meth-
ods and is comparable to retraining-dependent methods.

Keywords: Face Recognition · Reconstruction Attacks · Facial
Feature Protection

1 Introduction

With the rapid development of deep learning, face recognition has been widely
deployed in real-world applications with impressive recognition accuracy. Due to
local computational resource constraints, dominant face recognition (FR) sys-
tems usually employ client-server mode: users of local clients send their face
images to a cloud server for efficient online face recognition services. However,
the potential data leakage [5] raises public concern about privacy.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Illustration of the client-server face recognition system and the potential mali-
cious attacker with reconstruction attacks. Without retraining the face recognition
(FR) model, our AGFace can be incorporated into the deployed face recognition sys-
tem to protect shallow features to resist reconstruction attacks and maintain online
face recognition accuracy at the same time.

To prevent privacy leakage, it is prevailing to upload face features instead
of raw images to the cloud server. Specifically, the face recognition network
can be divided into two parts. The first few layers, called Shallow Encoder, are
installed on the client side to convert the users’ face images into face features to
compress the visual information. The remaining deep layers of the network are
kept on the server. In this way, the visually indistinguishable shallow features
extracted by the Shallow Encoder are transmitted to the server for subsequent
online face recognition. However, it has been shown that attackers could use
some recovery techniques to exploit eavesdropped features to reconstruct original
images [6,15,30], exposing the privacy of users.

An expected privacy-preserving face recognition method should satisfy the
three properties. 1) Strong privacy protection: The method should protect
the features from reconstruction attacks. 2) High task performance: The
method should not severely sacrifice the recognition accuracy. 3) Low cost of
training and inference: The method should not bring significant overhead
for training and inference. However, existing privacy-preserving methods are
struggling to meet these properties. Encryption-based methods encrypt face
images [1,11,14] and thus require high latency and expensive computation costs.
Perturbation-based methods [13,16,34] transform face images or features into the
privacy space through noisy perturbation. However, the privacy transformation
compromises task performance, limiting their applications. Frequency-domain
transformation [10,17,18,29] achieves a good trade-off between privacy and util-
ity. Nevertheless, they require retraining the FR model and hence are maintain-
ing considerable training overhead. Recently, the most related work [30] proposes
a plug-and-play method that addresses the first three objectives. Unfortunately,
it generates adversarial features in an iterative manner over several dozen steps,
which leads to significantly slower inference.

To overcome the above challenges, we propose a novel method to craft
Adaptive Generative perturbations for frozen Face recognition model (AGFace)
to efficiently build adversarial features, which simultaneously resist reconstruc-
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tion attacks and maintain face recognition performance. Inspired by [9], adver-
sarial samples are features rather than bugs, we intend to mine adversarial per-
turbations from shallow features to resist reconstruction attacks. To this end, we
first construct a proxy reconstructor to characterize a strong adversary model
that maps the facial features to the original images. With the assistance of the
proxy reconstructor, we then train a Perturbation Generator to produce adver-
sarial perturbations by disturbing shallow features that cannot be effectively
reconstructed to the original images. To maintain face recognition performance,
we also regularize perturbations to keep it smooth and subtle. Since the Per-
turbation Generator produces perturbations by a single forward, our method is
efficient and introduces negligible additional inference time.

To further refine generative perturbations for a better trade-off between
privacy and utility, we propose the Adaptive Channel Selector to select
reconstruction-sensitive channels for the adaptive addition of perturbations.
In particular, with the prior knowledge regarding reconstruction mapping of
the proxy reconstructor, the Adaptive Channel Selector learns a binary mask to
find channels that are more sensitive to reconstruction. Afterward in the infer-
ence phase, the trained Adaptive Channel Selector is combined with the Per-
turbation Generator to craft adaptive generative perturbations. Specifically, the
perturbations are added only to the reconstruction-sensitive channels of shallow
features, while the other channels remain unprocessed. As a result, we obtain
effective adversarial features by adaptively disturbing critical reconstruction-
sensitive channels while maintaining discriminative information of shallow fea-
tures, thereby achieving better performance on both accuracy and privacy.

To summarize, our contribution is three-fold:

1. We propose a novel method (namely AGFace) to efficiently craft adaptive gen-
erative perturbations, which protect feature privacy without causing severe
deviation from the original features. Hence, AGFace can be incorporated into
deployed FR systems without retraining the FR model for privacy-preserving
face recognition.

2. For a better trade-off between privacy and utility, we develop an Adaptive
Channel Selector to identify the sensitive channels that contain critical visual
privacy.

3. Extensive experiments demonstrate that AGFace achieves state-of-the-art per-
formance in terms of both privacy and utility among retraining-free meth-
ods and is comparable to retraining-dependent methods regarding recognition
accuracy. Moreover, compared to FR baselines, AGFace brings a negligible drop
in accuracy, along with small increases in inference time and parameter costs.

2 Related Work

2.1 Face Privacy Protection

We categorize existing face privacy protection methods into encryption-based
methods, perturbation-based methods, frequency domain-based methods, and
adversarial feature-based methods. Encryption-based methods [1,11,14] first
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encrypt face images and perform face recognition model on the encrypted data,
both in the training and testing phases. However, these methods face high latency
and expensive computation costs. Perturbation-based methods [13,16,34,37]
distort the images or features by adding noise to make them difficult to recognize
or revert to the original image. Unfortunately, arbitrarily adding noise severely
decreases the accuracy of face recognition. Frequency domain-based meth-
ods [10,17–19,29] transform RGB images into frequency-domain data and dis-
card the DC component, which is particularly important for visual information.
However, such methods need retraining the FR model to preserve satisfactory
performance, thus incurring significant training overhead.

As the most related ones, adversarial feature-based methods [12,27,32]
aim at generating adversarial features that thwart reconstruction attacks. These
methods employ adversarial training to minimize the classification loss of the
classifier while maximizing the reconstruction loss of the reconstruction network.
However, since these methods are designed for attribute prediction, they can-
not achieve satisfactory performance on face recognition. AdvFace [30] builds a
shadow model to generate adversarial noise, which is added to the clean features
to prevent features from restriction attacks. However, their adversarial noise
from the shadow model requires iterative generation, significantly slowing down
inference. Differently, our approach crafts adaptive generative perturbations with
only single forward to generate, thus enabling significantly efficient inference and
achieving better privacy-utility trade-off.

2.2 Reconstructing Face Images from Features

The optimization-based reconstruction attack methods [6,22] continue an opti-
mization process until the output of the feature extractor is effectively recon-
structed to resemble the original facial image. However, these interactive meth-
ods result in substantial computational expenses. Another effective and cost-
saving way is learning-based approaches [4,15,21,26,30,36], which build a recon-
struction network to learn the inverse mapping from the features to the original
images. Dosovitskiy et al. [4] and Zhmoginov et al.. [36] aim to minimize the
feature distance between the reconstructed images and the original images. Mai
et al. [15] proposed a neighborly de-convolutional network to recover face images
from corresponding features based on the assumption without knowledge of tar-
get networks. Similarly, Wang et al.. [30] established reconstruction networks
based on three different architectures to carry out reconstruction attacks. Doso-
vitskiy et al. [21,26] proposed to learn a mapping from facial templates to the
intermediate latent space of a pre-trained within a generative adversarial net-
work (GAN)-based framework.

3 Adaptive Generative Perturbations

3.1 Threat Model Setup

In this work, The server provider is supposed to be trustworthy and aware of
the architecture and weight of the face recognition model. As shown in Fig. 1,
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Fig. 2. Pipeline of AGFace. The Perturbations Generator G(·) and the Adaptive Chan-
nel Selector together constitute AGFace which is incorporated into the deployed face
recognition system to protect facial features without retraining the FR model. Note that
R(·) is a proxy reconstructor that is pre-trained and fixed to assist the training of
AGFace.

the server provider divides the pre-trained face recognition network into two
parts: Shallow Encoder Fc(·) on the resource-constraint client while remaining
deep layers of the network Fs(·) on the server. Unfortunately, the database of
face features still may be leaked to powerful attackers [5].

Following previous works [15,30], we consider that the powerful attacker has
access to the black-box shallow Encoder Fc(·) and steals the features stored
in the database. An attacker can launch reconstruction attacks by training a
reconstructor R(·) that learns the mapping from features to face images. Suppose
the attacker has face images from public datasets denoted as X = {x1, . . . , xN},
and then the attacker can query Fc(·) to obtain facial shallow features Z =
{z1, . . . , zN}, where zi = Fc(xi) and N is the number of facial images from the
public dataset. After feeding zi to R(·) to obtain reconstruction images R(zi),
the attacker can train R(·) by optimizing: The attacker trains R(·) to reconstruct
images from features zi by optimizing:

LR =
N∑

i=1

‖xi − R(zi)‖1 , (1)

where ‖·‖1 is the L1-norm distance measuring the difference between reconstruc-
tion images and original images.

3.2 Overview of AGFace

Our goal is to mine adversarial perturbation to resist reconstruction attacks
while maintaining the discriminative information of shallow features. Figure 2
shows the pipeline of AGFace, which consists of three stages: 1) In the Pertur-
bations Generator Training stage, we aim to train the Perturbations Generator
G(·) to generate perturbations to defend against reconstruction attack; 2) In
the Adaptive Channel Selector Training stage, we train the Adaptive Channel
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Selector S(·) to identify top-k channels that are sensitive to reconstruction; 3)
In the Inference stage, we incorporate AGFace (consist of trained G(·) and S(·))
into the deployed face recognition system to protect shallow features.

3.3 Perturbation Generation

The intuition of our method is to disrupt this mapping by adversarial perturba-
tions. Inspired by [9] that adversarial samples are features rather than bugs, we
intend to generate adversarial perturbations from shallow features. Then such
perturbations are fused with shallow features to disrupt the mapping so as to
resist reconstruction attacks.

Specifically, we initialize a shallow network as the Perturbations Generator
G(·) to generate perturbation η from the shallow face feature z:

η = G(z), (2)

where η has the same shape with z and each element in η is bounded in [0, 1].
Then z is fused with η to obtain adversarial features z + η.

To learn effective adversarial features, we feed z + η to R(·) to obtain the
reconstructed image R(z + η), where R(·) is a fixed proxy reconstructor pre-
trained by Eq. (1) to simulate a strong adversary. Since the proxy reconstructor
maps shallow features to the original image, we aim to optimize η against the
proxy reconstructor R(·) to maximize the distance between reconstructed images
and original images:

max
θG

Lrec =
N∑

i=1

‖R(zi + ηi) − xi‖1, (3)

where θG is the parameter of G(·). During minimizing the Lrec and updating
the parameters of G(·), the perturbation η is gradually optimized to become
resistant to reconstruction attacks.

Moreover, in order to guarantee that perturbations have minimal impact on
the original shadow features and distribute smoothly over all pixels, we constrain
the L2 norm of η by computing the perturbation loss:

min
θG

Lp =
N∑

i=1

‖ηi‖2. (4)

Overall, our training scheme simultaneously maximizes the reconstruction loss
and constrains the L2-norm of perturbations to maintain face recognition accu-
racy. Thus, the Perturbations Generator G(·) is optimized by:

min
θG

Ladv = −Lrec + λpLp, (5)

where λp is a trade-off parameter. After optimization, the privacy-enhanced
adversarial feature Z + η can perturb the reconstruction mapping from features
to facial images and avoid severe deviation from the original features.
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3.4 Adaptive Channel Selection

There is a dilemma that maintaining the recognition accuracy requires the per-
turbations to disturb the original features less while a large disturbance to the
original features may contribute to protecting feature privacy. To better refine
the perturbations for balancing the privacy protection ability and recognition
accuracy, we further propose the Adaptive Channel Selector to identify top-k
reconstruction-sensitive channels in the feature z. The design of the Adaptive
Channel Selector starts from a simple insight that not all channels contribute
equally to reconstruction. Thus, we only add perturbations to the sensitive chan-
nels to protect dominant privacy information while mitigating the server distur-
bance to the original features.

We propose the Adaptive Channel Selector S(·) to get a channel selective
mask M ∈ {0, 1}C (C are the number of channels of the shallow features) as a
discrete vector that controls the selection of reconstruction-sensitive channels:

M = KeepT opk(S(z)), (6)

where S(z) ∈ [0, 1]C is the output of Channel Selector and KeepT opk(·) is a
function where the top-k channels are retained in M while the other channels are
dropped during the forward propagation. Formally, the c-th element in M is
expressed as:

Mc =

{
1, S(z)c ∈ T opk(S(z))
0, S(z)c /∈ T opk(S(z))

, (7)

where T opk(.) are top-k reconstruction-sensitive channels with highest value and
S(z)c is the c-th element in S(z).

However, such a discretization operator will cause gradient vanishing if used
in training (the derivative of all differentiable points is 0). To solve this, we adopt
Gumbel Softmax to explore sensitive channels over all possible channels. Spe-
cially, from Gumbel distribution with U ∼ Uniform(0, 1), we sample a random
variable N = − log(− log(U)) at each channel. We then pass S(z) + N through
the softmax output to obtain the probabilities of a channel to be chosen:

pc =
exp ((log (S(z) + N )) /τ)

∑C
c=1 exp (log (S(z) + N ) /τ)

, (8)

where τ is a temperature parameter. Then we can modify Eq. (7) as:

Mtrain
c =

{
KeepT opk (pc) , in forward
pc, in backward (9)

where the difference between the forward and backward propagation ensures
the differentiability. To mine the channels that are important for reconstruction,
we modify the feature by masking out the channels that are unimportant for
reconstruction according to the sensitive mask Mtrain and force the modified
features being reconstructed to the original images by fixed R(·):

z̃ = z � Mtrain, (10)
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Original 
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Generated 
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Difference

(a) CPGAN-FR (b) Ours

Fig. 3. The visualization of randomly chosen channels of facial shallow features from
different methods. We adapt [27] as CPGAN-FR to generate adversarial features with-
out retraining the FR model. (a) The generated features are predominant in CPGAN-
FR; (b) The original features play a dominant role in our method.

min
θS

L̃R =
N∑

i=1

‖R(z̃i) − xi‖1 , (11)

where θS is the parameter of S(·). If the original image can be recovered from
the partially selected channel of features, it suggests that the Adaptive Channel
selector has learned knowledge about seeking reconstruction-sensitive channels.
Note that none of the above training processes change the FR model.

3.5 Inference

During inference, as a plug-and-play module, the AGFace (consists of G(·)
and S(·)) can be incorporated into the face recognition system to perform pri-
vacy enhancement to original shallow features with slightly modified. We freeze
the Channel Selector S(·) to keep its’ knowledge about seeking reconstruction-
sensitive channels. Through Eq. (7), we can obtain the sensitive channel mask M
to get final privacy-enhanced adversarial features with a controllable number of
sensitive channels:

z′ = z + η � M. (12)

The privacy-enhanced adversarial features z′ rather than the original features
z are stored in a database for subsequent online face recognition. In this way,
even if the privacy-enhanced features are stolen by adversaries, they are still
incapable of reconstructing them to original images.

Discussion. Recall that the intuition to resist reconstruction attacks is to build
the adversarial features. A simple solution is to modify similar methods such
as [12,27] to directly generate adversarial features by training a generator. How-
ever, directly generating adversarial features without retraining the FR model
would corrupt the original feature distribution, which results in a drastic drop
in recognition accuracy. For example, we adapt [27] as CPGAN-FR (See the
Appendix for more details) to generate adversarial features, which leads to a
significant accuracy drop (e.g., 13.9% in CFP-FP dataset). Here we give a visu-
alization and analysis to discuss the reason behind this phenomenon. As shown
in the last row of Fig. 3(a), the difference between the original feature and the
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generated feature is more similar to the generated feature, which suggests that
the generated feature is dominant and nearly obliterates the expression of the
original feature.

Differently, instead of directly generating adversarial features, we use G(·)
and S(·) to craft adaptive generative perturbations and fuse them with the
shallow features to obtain adversarial features. On the one hand, it maintains the
discriminative information in shallow features so as to maintain accuracy. On
the other hand, the critical top-k reconstruction-sensitive channels of shallow
features are disturbed to resist reconstruction attacks.

4 Experiments

4.1 Experimental Setup

We adopt FaceNet [23], ArcFace [3], and CosFace [28] as baseline FR mod-
els for face recognition. Unless specifically stated, we used FaceNet for our
main experiments and ablation studies. For a fair comparison, we follow pre-
vious work [30] to employ FaceNet with pre-trained Inception-ResNet-v1 [7] on
CASIA-WebFace [33] dataset, and the first three convolutional layers are chosen
as the Shallow Encoder Fc(·). Besides, for ArcFace and CosFace with pre-trained
Resnet50 [7] pre-trained on VGGFace [2], the first convolutional layers and the
first residual block are selected as Fc(·). The shallow feature z extracted by Fc(·)
has 64 channels. We conduct experiments on three widely used face recognition
datasets: LFW [8], AgeDB-30 [20], CFP-FP [24]. All images are cropped with
MTCNN [35] to detect faces and facial landmarks in images and resize them to
160 × 160.

Metrics. For the utility of face recognition, we report the accuracy of iden-
tifying whether pairs of facial features belong to the same individual. For a
quantitative evaluation of the defense efficacy against reconstruction attacks,
we report the average Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index [31] (SSIM) of the reconstructed images. Furthermore, we conducted
experiments with replay attacks, considering that the attacker feeds recon-
structed images to the face recognition system for malicious authentication. We
follow [25] to report the Success Attack Rate (SAR) at different False Match
Rate. SAR(1%)/SAR(0.1%) indicates SAR at FMR = 1%/0.1%, respectively.
Lower PSNR, SSIM, and SAR indicate stronger defense.

AGFace. We employ TransRec [30] as the backbone of the proxy reconstructor
R(·). Both Perturbation Generator G(·) and Adaptive Channel Selector S(·)
consist of two convolutional layers and one residual [7] block except that S(·)
has an extra pooling layer. AGFace is trained on the CASIA-WebFace dataset.

Adversary Reconstruction Network. Following [15,30], the adversary is
considered to adopt ResRec as the adversary reconstruction model, which takes
a ResNet [7] structure. Additionally, we also consider the attacker constructs
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Table 1. Quantitative results of the reconstructed images among retraining-free
privacy-preserving methods. SAR(1%)/SAR(0.1%) indicates Success Attack Rate at
False Match Rate = 1%/0.1%, respectively. The adversary reconstruction network is
ResRec. The face recognition model is FaceNet [23].

Method LFW CFP-FP AgeDB-30

PSNR SSIM SAR(1%) SAR(0.1%) PSNR SSIM SAR(1%) SAR(0.1%) PSNR SSIM SAR(1%) SAR(0.1%)

Unprotected 27.87 0.93 75.23 73.41 22.89 0.83 69.88 67.51 23.96 0.87 65.23 60.40

random 22.81 0.90 72.14 70.29 20.73 0.79 65.66 62.13 21.68 0.86 55.31 50.14

DP 23.12 0.90 71.96 68.54 20.89 0.79 62.39 59.44 21.86 0.86 56.43 51.97

Deep-FR 14.34 0.25 51.40 49.23 12.21 0.22 49.13 46.12 12.32 0.25 52.13 45.26

CPGAN-FR 11.32 0.42 12.12 10.51 9.34 0.39 12.04 9.98 9.67 0.43 14.28 10.31

AdvFace 6.97 0.28 3.11 3.05 5.98 0.23 9.88 8.43 5.85 0.24 8.45 6.88

AGFace 6.33 0.16 2.04 1.68 5.27 0.13 8.36 7.12 5.14 0.18 6.40 5.38

Original oursAdvFaceRandom CPGAN-FR

LFW

CPF-FP

AgeDB-30

Unprotected DP Deep-FR

Fig. 4. Reconstructed images from different retraining-free privacy-preserving methods
on three face datasets. Our AGFace hinders reconstruction attacks more effectively
than the others.

three reconstruction networks (URec, NbRec-A, NbRec-B) to carry out a brute-
force attack to simulate black-box attack scenarios. All reconstruction networks
are trained on the CelebA dataset, which differs from the dataset used for our
FR model.

Baseline Methods. According to the requirement of retraining the FR model,
we categorize the baseline privacy-preserving FR methods into two groups.

For retraining-dependent methods, we choose three state-of-the-art methods
for comparison: CPGAN [27], DCTDP [10], and DuetFace [17].

For retraining-free methods, we follow the same setting with [30] to imple-
ment random and DP to add noise to the features with a noise bound of 0.2.
We modify two typical adversarial feature-based methods [12] [27] into Deep-
FR and CPGAN-FR without re-train the FR model (refer to the appendix
for more description). Moreover, AdvFace [30] iteratively generates adversarial
noise by a shadow reconstruction network.

4.2 Resistance to Potential Attacks

Our main security goal is to defend two types of attacks on the leakage database
of facial features: reconstruction attacks and replay attacks. Specifically, (1) for
the Reconstruction Attacks, the adversary intends to recover images from
leaked features, which would expose the privacy of face images; (2) for the
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Replay Attacks, the adversary feeds the reconstructed facial image into the
face recognition system for malicious face authentication purposes. To demon-
strate the superior defense capabilities, we compare our AGFace with different
retraining-free methods.

Effectiveness Against Reconstruction Attacks. Figure 4 illustrates the
reconstructed images by the attacker. We can see that random (3th column) and
DP (4th column) completely fail to resist the reconstruction attack, as the recon-
structed images closely resemble the original ones. Meanwhile, the adversarial
feature-based protection method including Deep-FR (5th column) and CPGAN
(6th column) results in notable changes around the face in the reconstructed
images. However, the key features of the person in the reconstructed images
remain easily identifiable. In comparison, our AGFace (8th column) offers a
considerably outperformed defense against reconstruction attacks and approxi-
mately 10 times faster inference than AdvFace (7th column). Table 1 provides
quantitative metrics of reconstructed images on LFW, CFP-FP, AgeDB-30. We
can see that the SSIM and PSNR of AGFace are lower than the other privacy-
preserving methods, which means that our method achieves the best defense
performance toward reconstruction attacks.

Effectiveness Against Replay Attacks. As Table 1 shown, our AGFace
shows exceptional efficacy in thwarting replay attacks. Remarkably, the utiliza-
tion of AGFace on unprotected features led to a substantial reduction in the
SAR(1%) value, namely, 73.19%, 61.52%, and 58.83%, on LFW, CFP-FP, and
AgeDB-30 datasets, respectively.

4.3 Recognition Accuracy Comparison

Table 2 shows the face recognition performance of different privacy-preserving
methods. Our AGFace closely approximates the performance of the unprotected
baseline FaceNet, with a negligible accuracy drop (about 0.2% ∼ 0.77% lower

Table 2. Comparison of the face recognition accuracy among privacy-preserving meth-
ods on three datasets. The face recognition is FaceNet and it is present as the accuracy
upper bound without any privacy protection. “Re-training” indicates whether the FR
model needs to be re-trained.

Method Re-training LFW CFP-FP AgeDB

CPGAN [27] ✓ 97.31 89.20 86.32

DCTDP [10] ✓ 97.32 91.24 87.03

DuetFace [17] ✓ 98.02 84.37 87.10

random ✗ 97.20 91.67 86.60

DP ✗ 96.27 90.84 85.12

CPGAN-FR ✗ 92.83 79.26 78.03

Deep-FR ✗ 93.34 82.35 80.32

AdvFace [30] ✗ 96.43 90.59 85.10

AGFace (ours) ✗ 97.93 92.39 87.12

FaceNet (upper bound) N/A 98.13 93.16 87.57
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than FaceNet on the three datasets). Compared with retraining-free privacy-
preserving methods (6th–11th row) which do not need retraining the FR
model, our AGFace outperforms all SOTA methods, holding advantages on
accuracy range from 0.6% to 15.09%. Compared to retraining-dependent
privacy-preserving methods (2nd–5th row) which require additional training
cost and deployment overhead, the performance of our AGFace is still compara-
ble and even reaches SOTA on CFP-FP, AgeDB.

4.4 Generality of AGFace

Our method is effective and efficient to generalize to different face recognition
models. In this subsection, we verify the generality of AGFace in three terms:
Transferability, Compatibility, and inference overhead.

Transferability of Adversarial Features from AGFace. Since the attacker
may build the reconstruction model with different networks to carry out a brute-
force attack, it is necessary to study the defense effectiveness against differ-
ent adversary reconstruction models. To this end, we employ adversary recon-
struction models with three different backbones to simulate unseen adversaries.
Figure 5 shows the reconstructed images from the adversarial features by dif-
ferent reconstruction networks that are remarkably indistinguishable from the
original image. Table 3 provides a quantitative analysis of the average quality of
reconstructed images as the SSIM and PSNR are low. According to the experi-
mental results, it can be observed that AGFace is consistently effective against
various adversary reconstruction models, suggesting the excellent transferability
of its adversarial features.

ResRec URe

c

NbRec-A

FaceNet

w/ ours

ArcFace

w/ ours

CosFace

w/ ours

NbRec-BTransRec

Original 

Image

Reconstruction attack with different backboneDifferent 

FR model

Fig. 5. Evaluation of AGFace with dif-
ferent FR models on LFW dataset. Our
AGFace can combine with different SOTA
FR models (ArcFace, CosFace) to gener-
ate adversarial features that defend against
reconstruction attacks with different back-
bones (TransRec, ResRec, URec, NbRec-A,
NbRec-B).

Table 3. Quantitative analysis of gen-
erality on LFW dataset.

Metric Defense with Reconstruction attack with different backbone

Different FR model ResRec TransRec URec NbRec-A NbRec-B

PSNR FaceNet w/ ours 6.33 6.21 7.63 6.93 6.72

ArcFace w/ ours 6.16 6.04 7.24 6.57 6.43

CosFace w/ ours 6.16 6.02 7.28 6.51 6.40

SSIM FaceNet w/ ours 0.21 0.15 0.27 0.22 0.20

ArcFace w/ ours 0.19 0.13 0.23 0.18 0.17

CosFace w/ ours 0.18 0.13 0.22 0.18 0.16

Table 4. Compatability of AGFace
on different FR methods. Integrat-
ing AGFace with ArcFace or Cos-
Face incurs only a slight, acceptable
decrease in face recognition perfor-
mance.

Method LFW CFP-FP AgeDB

ArcFace 99.60 98.32 95.88

ArcFace w/ ours 99.15 97.68 95.45

CosFace 99.63 98.52 95.83

CosFace w/ ours 99.35 97.33 95.35
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Table 5. Training cost of different
privacy-preserving face recognition meth-
ods on CASIA-WebFace. Our AGFace
requires only lightweight training to save
significant overhead.

Method Iteration Training time Batch size Memory ACC

DCTDP 92k 173 min 256 44.52 MB 97.32

CPGAN 80K 164 min 256 42.13 MB 97.31

AGFace 1k 3 min 32 5.45 MB 97.93

Table 6. Inference cost of the plug-
and-play methods compared to FR base-
line. Experiments are conducted on LFW
dataset.

Method Inference time(s) Param(Mb)

FaceNet 10.23 27.56

FaceNet w/ AdvFace [30] 113.04 27.67

FaceNet w/ AGFace(ours) 12.34 28.08

ArcFace 21.53 43.59

ArcFace w/ AdvFace [30] 173.39 43.70

ArcFace w/ AGFace(ours) 23.75 44.11

Compatibility of AGFace. A well-generalized privacy-preserving method
should be compatible with different FR models. Therefore we incorporate
AGFace with different SOTA FR methods to evaluate the accuracy and defense
effectiveness. Table 4 shows the compatibility of AGFace which is incorporated
with ArcFace and CosFace. Compared to unprotected features from ArcFace and
CosFace, the adversarial features of AGFace cause a minor decrease in accuracy,
specifically 0.45% and 0.43% on the LFW dataset. Such a minor decrease in accu-
racy is considered acceptable in light of the exceptional performance of AGFace
in privacy protection as shown in Fig. 5 and Table 3.

Cost of Training and Inference. Unlike previous privacy-preserving FR
methods that necessitate full training for performance assurance (see Table 6),
our AGFace maintains the pre-trained FR model frozen and solely trains the
lightweight networks, thereby significantly reducing training overhead.

Moreover, a widely used privacy enhancement module should incur low over-
head in terms of inference speed and parameter cost. As shown in Table 5, com-
pared to the FR baseline, AdvFace (another plug-and-play privacy-preserving
method) requires approximately ten times longer for inference, whereas our
AGFace introduces negligible time and parameter costs for inference. Therefore,
our AGFace is resource-efficient.

4.5 Ablation Study

Hyperparameters for Trade-off. In our AGFace, both k and λp control the
trade-off between privacy and utility. Table 7 presents an analysis of the remain-
ing parameter choices. As k increases, more channels are disturbed with per-
turbations so that recognition accuracy decreases while privacy protection is
enhanced (lower PSNR). λp controls the magnitude of the perturbation and
it shows a similar trend when it decreases. We empirically search for the best
combination of hyperparameters as our default setting.

Effectiveness of S(·). Table 8 demonstrate the ablation study of AGFace to
verify the effectiveness of S(·). For the first row, We naively drop S(·), which sug-
gests that the whole perturbations are added to shallow features, consequently
leading to accuracy drops. For the second row, we replace S(z) with a learnable
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Fig. 6. Effectiveness of the Adaptive Chan-
nel Selector to identify reconstruction-
sensitive channels. “Top-k Channels” indi-
cates the original setting. “Random Chan-
nels” indicates randomly selecting k chan-
nels to add perturbations. “Reverse Top-k
Channels” indicates the selection of top-k
reconstruction-sensitive channels in reverse
order.

Table 7. Ablation study of hyperpa-
rameters. When changing one of the
parameters, we keep the other param-
eter unchanged.

Hyperarameter ACC↑ PSNR↓ SSIM↓ SAR(1%)↓ SAR(0.1%)↓

k

12 98.02 11.45 0.42 14.13 12.98

24 97.93 6.33 0.16 2.04 1.68

36 97.21 5.23 0.13 1.89 1.57

48 96.01 4.69 0.11 1.64 1.40

λp

10 97.99 13.24 0.47 16.44 15.90

3 97.93 6.33 0.16 2.04 1.68

1 97.34 6.21 0.14 1.86 1.54

0.5 95.04 4.23 0.09 1.58 1.42

Table 8. Ablation study of AGFace.
G(·): Perturbation Generator. S(·):
Adaptive Channel Selector. “learnable
vector” means that we replace S(z)
with a learnable vector of the same
shape.

Setting ACC↑ PSNR↓ SSIM↓ SAR(1%)↓ SAR(0.1%)↓
G(·) 95.21 4.52 0.10 1.23 1.04

G(·) + learnable vector 96.83 7.34 0.34 8.34 7.20

G(·) + S(·) (full) 97.93 6.33 0.16 2.04 1.68

vector which has a consistent shape with S(z) in Eq. (8). We can see that it
hurts both the accuracy and privacy compared with our full model (4th row),
which suggests that the information in shallow features z is necessary for the
adaptive channel selection.

To further evaluate whether our proposed Adaptive Channel Selector could
effectively identify reconstruction-sensitive channels, Fig. 6 shows the experi-
ment on disturbing different channels according to three different strategies. The
upper right position of Fig. 6 showcases a superior balance, suggesting a strong
performance both on utility and privacy. “Top-k channel” curve falls in the upper
right of both the curve of “Random Channel” and “Reverse Top-k Channel”,
indicating Adaptive Channel Selector identifies meaningful channels to resolve
the dilemma between utility and privacy.

4.6 Robustness Against Adaptive Attacks

Here we provide the robustness of our method against adaptive attacks. We
assume that the adversary is aware of our method and tries to launch an adap-
tive attack. Since perturbations η are continuous variables, it is difficult to pre-
dict them. Therefore we assume that the adversary tries to find clean channels,
which are not affected by perturbations, in order to reconstruct images.

Since the added noise is subtle, it is challenging for the adversary to confirm
the number and location of the clean channels. Therefore we consider that the
adversary adopts three strategies to predict clean channels and brutally launches
attacks based on different numbers n of channels. The three strategies for predict-
ing clean channels are as follows: Random Channel: Randomly selecting chan-
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Original Random Channel Adversary Channel Selector Channel 
Awareness

n=16 n=32 n=48 n=16 n=32 n=48

w/o Adaptive

Fig. 7. Adaptive attacks on clean channels on LFW datasets. Here we use ArcFace to
train AGface to protect 32 channels for each 64-channel shallow feature. The Adver-
sarie uses ResRec to launch reconstruction attacks on n channels of each feature. For
Advanced strategy, we assume the adversarie uses CosFace to train his own Channel
Selector to simulate black-box scenarios.

nels for reconstructions. Adversary Channel Selector: the adversary trains
his own Channel Selector to try to find clean channels on protected features.
Note that in black-box scenarios, the adversary cannot know our face recognition
(FR) model. Therefore, the adversary trains the Selector based on an arbitrary
pretrained FR model (e.g., CosFace). Channel Awareness: The adversary is
assumed to be fully aware of each shallow feature’s clean channels.

After predicting clean channels, the adversary sets perturbed channels to zero
value and trains the reconstruction networks to launch attacks. The results are
shown in Fig. 7. For Random Channel, the adversary struggles to recover the
images. For Adversary Channel Selector, the CosFace-based Selector (adver-
sary) encounters difficulties in identifying the clean channels selected by the
ArcFace-based Selector (ours). We speculate that it is due to the pattern gap
between different FR models. For Channel Awareness, even if the adversary
knows all clean channels (which is an exceedingly rare circumstance), complete
recovery is still challenging. It remains visually unclear due to the insuffi-
ciency of available channels for reconstruction. The above analysis demonstrates
the robustness of our AGFace to adaptive attacks.

5 Conclusions

In this work, we discuss the expected properties of the privacy-preserving face
recognition (FR) methods and the shortages of previous works, especially the
requirement of retraining the FR model and the long latency. To satisfy these
properties simultaneously, we explore generating adversarial perturbations from
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original features instead of directly generating adversarial features to avoid severe
deviation from original features. Besides, we propose the Adaptive Channel
Selector to identify the channels containing critical visual privacy for adaptive
adversarial perturbations generation. Without retraining the FR model, exten-
sive experiments demonstrate that our method (AGFace) achieves superior per-
formance in terms of both privacy and utility with small increases in inference
time and parameter costs.
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Abstract. Remote photoplethysmography (rPPG) is a promising tech-
nology that consists of contactless measuring of cardiac activity from
facial videos. However, current approaches are limited by data scarcity
and environmental noise robustness. Most recent approaches utilize con-
volutional networks with limited temporal modeling capability or ignore
long temporal context. Purely supervised rPPG methods are also severely
limited by scarce data availability. In this work, we propose PhySU-
Net, the first long temporal context rPPG transformer network and
a novel self-supervised pre-training strategy that exploits unlabeled data
to improve our model. Our strategy leverages traditional methods and
image masking to provide pseudo-labels for physiologically relevant self-
supervised pre-training. Our model is tested on three public benchmark
datasets (OBF, VIPL-HR and MMSE-HR) and shows state-of-the-art
performance in supervised training. Furthermore, we demonstrate that
our self-supervised pre-training strategy further improves our model’s
performance by leveraging representations learned from unlabeled data.
Our code is available at: https://github.com/marukosan93/PhySU-Net.

Keywords: Remote Photoplethysmography · Facial Videos ·
Transformer · Self-Supervised Learning

1 Introduction

Physiological signals like the blood volume pulse (BVP) are used to determine
vital healthcare parameters such as heart rate (HR), heart rate variability (HRV),
respiratory frequency (RF) and oxygen saturation (SpO2). Moreover, they are
psychological indicators since they change accordingly with emotional states [20].
They are customarily measured with contact devices based on electrocardiography
(ECG) [12] or photoplethysmography (PPG) [3]. A more convenient non-contact
method that employs cheap and ubiquitous RGB cameras is remote photoplethys-
mography (rPPG) [39]. Similar to contact PPG, rPPG relies on capturing period-
ical variations in optical absorption of tissue caused by cardiac activity. The main
differences between rPPG and contact PPG are in optical sensor (RGB camera
vs. photodiode), distance from sensor (meters vs. millimeters) and lighting source
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. (Left) Quasi-periodical variations in reflected light, which are caused by the
heart’s activity, are captured by the camera. Noise from the environment (from lighting,
motion and sensor) is also acquired. (Right) A rough rPPG estimate can be obtained
by averaging pixels from a ROI (e.g. cheeks or forehead) and the obtained temporal
signal is highly susceptible to noise.

(LED vs complex environmental). Due to these differences in measuring environ-
ment, along with the weak signal derived from skin color variation, a camera also
captures overwhelming environmental noise caused by lighting changes, subject
movement and sensor variations. Accurately and robustly identifying the faint
quasi-periodical rPPG signal is a challenging task. In Fig. 1 we provide a visual-
ization on how rPPG data is acquired and of a simple extraction method.

Several early traditional methods had been proposed that relied on opti-
cal/physiological considerations expressed through mathematical models like
CHROM [7], POS [42], PBV [8], LGI [33] or common blind source separation
approaches such as ICA [34] and PCA [19]. However, since they lacked robust-
ness in scenarios with variable light and movement, they were surpassed by deep
learning approaches. Most deep learning methods employed Convolutional Neu-
ral Networks (CNN). Early 2D-CNN models extracted HR from adjacent frames,
such as HR-CNN [35] and DeepPhys [4]. End-to-end 3D-CNN models such as
PhysNet [45], rPPGNet [46] and AutoHR [44] exploited the temporal information.
Non-end-to-end models used spatial-temporal maps, less affected by noise, like
RhythmNet [30], CVD [31], Dual-GAN [25] and BVPNet [6], DRNet [10], ND-
DeeprPPG [22] and NEST [26]. Particularly, CVD [31], Dual-GAN [25] and
DRNet [10] and ND-DeeprPPG [22] focused on disentangling the useful physio-
logical features from noise, and NEST [26] focused on maximizing the coverage of
the feature space during training. Aside from CNNs, in GraphPhys [43] a graph
convolutional neural network has been successfully utilised for rPPG.

Self-attention based Transformer networks such as ViT [11] and Swin [24]
have shown to be superior to CNN in many computer vision problems due
to their capabilities to capture global dependencies, but heavily rely on data
quantity and pre-training on large-scale datasets. There have been several suc-
cessful applications of transformer based architectures used in rPPG. Efficient-
Phys [23] utilizes Swin transformer for extracting rPPG signals and directly
compares with a convolutional backbone. Physformer [47] used spatio-temporal
input tokens, custom temporal difference guided global attention layers and an
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elaborate dynamic supervision training scheme. In TransPPG [17] two signal
map streams composed of foreground and background are fed to a transformer
network. TransPhys [41] a hybrid CNN and Transformer architecture was pro-
posed to pre-train contrastively and then fine-tune using labels. However, all of
the aforementioned methods use small time segments as input (2 s-10 s) that do
not fully exploit the strong long-range modeling capabilities of the transformer
architecture. This is especially relevant with strong environmental noise, as the
underlying rPPG signal has strong self-correlation over time, but is overshad-
owed by strong movement and illumination noise. However, modelling a longer
time segment allows to better capture the correlation between the rPPG signal
salient features over time, and can make the faint signal easier to distinguish from
aleatory or impulsive noise. As an example, we can consider the signal shown
in Fig. 1, where observing only the 2nd or 4th peak would lead to an inaccu-
rate prediction, but modelling the whole time frame can allow us to capture the
correlation between the cleaner parts of the signal.

Lack of labeled data is another major issue in rPPG, as data collection
is costly, requires medical devices and presents privacy concerns. Supervised
methods struggle to achieve robustness and high generalization capability when
trained on small datasets with specific noise distributions. Data augmentation
has been used to partially mitigate this issue, both with classic computer-vision
augmentation strategies and with rPPG specific augmentations. For example,
spatial-temporal augmentations have also been proposed [32,44] to extend the
training set with extra samples containing borderline small or large HR values,
by temporally up-sampling and down-sampling videos to achieve this. Augment-
ing datasets with synthetic videos generated from real data via video-to-video
networks was also proposed in [37], RErPPGNet [16] and [1]. Natural images [30],
synthetic signals [28] and synthetic avatar facial videos [27] have also been used to
learn more generalized representations. Nonetheless, non-facial videos, simple
augmentations and synthetic data cannot replicate signals and complex envi-
ronmental noise present in real facial video data. Another direction towards
data scarcity mitigation has been learning from facial videos without physiolog-
ical annotations, which are plentiful in contrast to rPPG labeled data. Several
self-supervised contrastive methods have also been proposed to learn from data
without labels [13,36,40], but failed to reach close to supervised performance
or to demonstrate their transferable capability. Moreover, they rely on weak
constraints that do not hold for challenging scenarios.

The rPPG signal is quasi-periodical and drowned in environmental noise, but
over a longer time frame it retains similar features (amplitude, frequency, dicrotic
notch, systolic point, diastolic point) and has high self-correlation. Consequently,
modeling a longer time frame can aid in distinguishing the rPPG signal from
noise. Moreover, in a quantitative study [18] on HR measurement, the error
increased hyperbolically with decreasing duration. We propose a method for
rPPG that capitalizes on the long-range capabilities of the transformer architec-
ture and makes use of compact noise-robust spatial-temporal maps. Our model
can learn rich features from a long input of ∼20 s, making it more robust to
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environmental noise. We design our framework for signal prediction as an image
(multi-signal) reconstruction task, providing stronger supervision and enabling
our model to train from scratch without any complex training strategies or data
augmentation. Moreover, we propose a self-supervised pre-training framework
that allows our model to seamlessly learn physiologically relevant representa-
tions by pre-training on unlabeled data. We leverage pseudo-labels that are
generated via masking the input signals, enabling the model to learn tempo-
ral and frequency characteristics of rPPG signals from the input data alone, and
use a traditional method to guide the model via an additional regression con-
straint. We clarify that our self-supervised pre-training is meant for subsequent
fine-tuning and we produce useful representations for improving the downstream
supervised learning task, instead of attempting to surpass purely self-supervised
methods on unlabeled data. We summarise our contributions as follows:

– We propose PhySU-Net, the first long temporal context transformer network
for rPPG, that is able to learn robust features from challenging data.

– We propose a novel self-supervised pre-training framework, that leverages the
first image-based pretext task for rPPG and a novel regression constraint.

– We extensively evaluate our framework on three datasets (OBF [21], VIPL-
HR [29], MMSE-HR [48]) and perform intra-dataset, cross-dataset, linear
classification, transfer learning and ablation studies.

2 Methodology

To address the issue of non-robustness to environmental noise in rPPG, we pro-
pose PhySU-Net, a long temporal context transformer network with spatial-
temporal map input. To mitigate data scarcity, a self-supervised pre-training
scheme is proposed that can aid in learning useful representations from unla-
beled data for improved generalization. Our complete framework is divided into
preprocessing, PhySU-Net model and self-supervised pre-training. The complete
overview is shown in Fig. 2.

2.1 Preprocessing

We preprocess the input videos into spatial-temporal maps because they par-
tially exclude non-physiological noise and have a compact size. They are cal-
culated by averaging pixels from regions of interest (ROI). This is a procedure
that has been proven to successfully extract relevant features for rPPG as most
traditional methods use average pooling of pixels. The additional computational
burden is minimal compared to end-to-end methods that use cropped videos,
since both end-to-end and non end-to-end methods need to detect landmarks,
which is the heaviest step of the preprocessing. Additionally, as signal maps are
more compact, they allow us to model longer temporal sequences. We calculate
Multi-scale Spatial-Temporal Maps (MSTmaps) by following [31]. MSTMaps ate
obtained by averaging pixels from combinations of ROIs that merge both local
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Fig. 2. Overview of our method: The input video is processed into a stacked
MSTmap. For the supervised downstream task, the decoder reconstructs an image
with similar temporal and frequency properties as the BVPmap label, and the HR
head regresses the global HR value with the HR ground truth as label. For the self-
supervised pretext task, only the input and the labels change. The input is a masked
version of the MSTmap that the decoder attempts to reconstruct into a full MSTmap.
For the HR regression, a CHROM [7] calculated pseudo-label is used.

and global physiological information present in the face. Firstly, to extract land-
marks we utilize PyFeat [5] with RetinaFace [9] model for face detection and
PFLD [14] model for landmark localization. The landmarks are then stabilized
with a 5-point moving average filter. Six informative ROIs are defined within the
face, which are joined in R = 26 − 1 ROI combinations, thus merging global and
local information. For each ROI combination (R) and color channel (C) a tempo-
ral sequence is obtained by averaging the pixels for the whole video. Each of the
C ∗ R sequences is then band pass filtered at [0.7, 3]Hz to reduce interference of
non-physiological signal components and is min-max normalized. In addition,
the R dimension is resized from 63 to 64 for computational ease. The blood
volume pulse (BVP) ground truth is also band pass filtered to cut off irrelevant
frequencies, and HR regression targets are calculated via FFT. For the image
reconstruction target, BVPmaps are generated by stacking C ∗ R copies of the
BVP ground truth, so that each row of the MSTmap will correspond to the same
BVP ground truth. Finally, both MSTmaps and BVPmaps are divided into three
equal segments along the temporal axis and are stacked to form a square image.
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Fig. 3. Preprocessing: a1) C × R temporal sequences are extracted by averaging
pixels for each channel and ROI combination. a2) The ground truth BVP is duplicated
to fit the dimension of the MSTmap b) The sequences are filtered with a pass band
of [0.7, 3]Hz and min-max normalized. c) The MSTmap and BVPmap is temporally
stacked to form square images.

This step will be discussed further in the next subsection. The preprocessing
procedure is shown in Fig. 3.

2.2 PhySU-Net Model

We formulate a multitask learning problem comprised of HR regression and
image-based rPPG signal prediction, proposing a rPPG extension of Swin-
Unet [2] to solve it. Swin [24] transformer hierarchically builds feature maps
by merging image patches and computes self-attention within local windows,
allowing it to have linear complexity. It was adapted into a Swin-Unet [2] by
constructing an encoder and decoder with skip connections and by adding a
new patch expanding layer for up-sampling. This base architecture is particu-
larly suited to the rPPG problem, as the self-attention mechanism can leverage
long range dependencies of the quasi-periodical underlying rPPG signal. The
rPPG signal prediction is framed as an MSTmap to BVPmap image reconstruc-
tion task [6], where we aim at a direct image-to-image correspondence between
the input spatial-temporal map and ground truth signal map. Therefore, each
coarse temporal input sequence is reconstructed into a cleaner rPPG signal, pro-
viding strong supervision and enabling our model to train easily from scratch.
We further expand the base model to be better suited for rPPG with the fol-
lowing two additions. Firstly, the input MSTmap is stacked to a square size
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as shown in Fig. 3(c). This strategy allows us to maintain the temporal consis-
tency in the patch sampling, and to inject temporally distant patches in the local
neighborhoods of windowed self-attention, encouraging the network to learn long
range dependencies in earlier layers. Secondly, as the skip connections allow the
network to reconstruct the final output from the earlier layers, we add an HR
regression head that compels the encoder to learn global HR features as well.
This strategy ensures that the network focuses both on global supervision via
the HR regression constraint and fine-grained signal level supervision via the
temporal and frequency constraints. The HR regression head is constructed of a
1d convolution, which aids faster convergence, followed by a ReLU non-linearity,
adaptive average pooling and finally a fully connected layer regressing the HR
value. The full architecture is shown in Fig. 2.

For the HR regression loss Lreg, we employ an L1 loss and compare the pre-
dicted value of the regression head with the ground truth HR. For the signal map
reconstruction, we utilize both temporal and frequency based losses. The tem-
poral loss promotes high correlation between prediction and label. Instead of the
commonly used Pearson loss [45], which is sensitive to synchronization errors, we
utilize the maximum cross-correlation (MCC) [13], which determines the corre-
lation at an ideal offset and is invariant to phase differences between prediction
and label.

MCC(x, y) = Cpr × Max(
F−1{BPass(F{x} · F∗{y})}

σx × σy
) (1)

The MCC, in Eq. 1, is calculated by firstly taking the FFT of the two signals
and multiplying the one with the complex conjugate of the other. The result
is band-pass filtered by zeroing the frequencies outside the HR relevant band
[0.7, 3]Hz. Next, the IFFT is performed and divided by the standard deviation
of the signals x and y, obtaining the cross-correlation calculated in the frequency
domain. Then by taking the maximum of the cross-correlation, we obtain the
correlation between the signals at the ideal offset, mitigating any synchronization
errors between input videos and ground truth. Finally, the loss is scaled by Cpr,
the ratio of power inside the HR relevant frequencies. Our temporal loss Ltemp, in
Eq. 2, is the mean of the negative MCC of each C × R temporal sequence from
the predicted spatial-temporal map X and BVPmap label Y .

Ltemp(X,Y ) = 1 −

C∑

c=1

R∑

r=1
MCC(X(c, r, t), Y (c, r, t))

C × R
(2)

Our frequency loss Lfreq, as shown in Eq. 3, is defined as the mean
squared error between the Power Spectral Densities (PSD) of the prediction and
label temporal sequences. The error is squared to accentuate the peaks in the
spectrum, since they are of most relevance.

Lfreq(X,Y ) =

C∑

c=1

R∑

r=1
(PSD(X(c, r, t)) − PSD(Y (c, r, t))2

C × R
(3)
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The normalized PSD is defined in Eq. 4 with irrelevant values outside the
[0.7, 3]Hz band set to zero. It is calculated using the product of the FFT with
its complex conjugate and normalized by dividing it by its summation, ensuring
that all PSDs are on the same scale.

PSD(x) =
F{x} · F∗{x}

∑N
n=1 F{x} · F∗{x}

(4)

The final loss, in Eq. 5, is the weighted sum of the regression, temporal and
frequency losses.

L = αLreg + βLtemp + γLfreq (5)

2.3 Self-supervised Pre-training

We propose a self-supervised pre-training framework that enables our network to
learn useful representations on unlabeled data, which can be subsequently used
to fine-tune with supervised learning on labeled data, offering better performance
and generalization capability. Our self-supervised pre-training method consists of
pseudo-HR regression and masked MSTmap reconstruction pretext tasks. Both
pretext tasks utilize the same losses and network as the downstream task, the
only difference being the input and labels. This allows to achieve quick adap-
tation from the pre-training to the downstream task. Inspired by Masked Auto
Encoder [15], we input a masked version of the MSTmap and have the model
reconstruct the missing parts, consequently making the model learn temporal
and frequency characteristics (by minimizing Ltemp and Lfreq) of the coarse
rPPG signals present in the MSTmap. We mask 75% of all 4× 4 input patches
for the image based task. For the HR regression task, we generate a pseudo-
label with the traditional method CHROM [7], which serves as an additional
constraint to guide the models’ self-supervised learning towards learning fea-
tures with global physiological meaning. Our framework can be easily adapted
to other image-based pretext tasks and pseudo-labels obtained with different
hand-crafted rPPG methods.

3 Experiments

We evaluate PhySU-Net on the OBF [21], VIPL-HR [29] and MMSE-HR [48]
datasets, and show superior performance compared to state-of-the-art methods
in intra and cross dataset testing. To prove the effectiveness of our self-supervised
approach, a protocol similar to [40] is used, where linear classification (re-train
only last fully-connected layer) and transfer learning (re-train whole network)
are performed. Additionally, we provide ablation studies to analyze crucial net-
work components and hyperparameters, demonstrate the effectiveness of longer
temporal context and show generalizability of our self-supervised pre-training.
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3.1 Experimental Setup

Datasets: OBF [21] contains 200 five-minute-long constant frame rate RGB
videos with corresponding ground truth ECG and BVP. They were recorded from
100 diverse subjects with resting and elevated heart rates in an environment with
stable lighting and minimal movement of the subjects. MMSE-HR [48] contains
102 videos of length 20–70 s recorded under stable lighting from 40 subjects in
emotion elicitation experiments. It contains challenging motions as there are spon-
taneous facial expressions and head motions. VIPL-HR [29] contains 2,378 RGB
videos of 20 s–30 s length with variable and unstable frame rate. It was recorded
in a challenging environment with different devices, large movements and various
lighting. It contains numerous sources of noise, making HR estimation very chal-
lenging. We assess the environmental noise robustness of our method by evalu-
ating it on datasets with diverse environmental conditions. Based on the level of
challenge, we can rank the datasets from most controlled conditions in OBF [21]
(large dataset, good lighting, minimal movements, varied demographics, elevated
HR), to less controlled in MMSE-HR [48] (small dataset, spontaneous movements)
and with VIPL-HR [29] being the most challenging (large dataset, unstable fps,
different recording devices, challenging lighting and movement).

Evaluation Metrics: We follow previous works by using absolute error (MAE),
root-mean-square error (RMSE), standard deviation (SD) and Pearson’s corre-
lation coefficient (R).

Implementation: We choose T = 576 (19.2 s at 30fps) due to VIPL-HR videos
being 20–30 s long and for computational ease. For fair comparison with other
methods, a ten-fold subject exclusive cross validation is adopted for OBF, five-
fold for VIPL-HR and three-fold for MMSE-HR in all experiments. In training,
the AdamW optimizer is used with epsilon = 1e−8, betas = (0.9, 0.99), lr =
5e−5, wd = 0.05, batch = 8. Loss parameters are set at α = 5, β = 1, γ = 5.
For supervised experiments and self-supervised pre-training 50 epochs are used.
For all fine-tuning (linear and transfer) on VIPL-HR, the epochs are lowered to
25. No data augmentation method is used, training samples are 576 frames long
with a fixed sliding window of 30 frames, testing samples are 576 frames long
with no overlap. All the implementation code will be shared upon acceptance.

3.2 Experimental Results

Supervised: We evaluate the supervised part of our method on the OBF and
VIPL-HR datasets in intra-dataset testing, as shown in Table 1. We compare
PhySU-Net to a wide array of previous supervised methods including traditional,
convolutional and transformer based, showing that it reaches state-of-the-art
performance with RMSE of 0.659 on OBF and 7.35 on VIPL-HR. Our method’s
long-range temporal modelling proves effective on extracting an accurate HR
on the challenging VIPL-HR data, with more reliable predictions than other
methods with notably lower SD. Following the protocol of [30,47] we also conduct
cross-dataset evaluation by training the model on VIPL-HR and directly testing
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Table 1. Supervised training results on OBF [21] and VIPL-HR [29]: divided in Tra-
ditional, Convolutional and Transformer based methods. Best results are marked in
bold, second best are underlined.

Dataset: OBF [21]

Type Method RMSE ↓ SD ↓ r ↑

Traditional
CHROM [7] 2.733 2.730 0.980

POS [42] 1.906 1.899 0.991

Convolutional
rPPGNet [46] 1.800 1.756 0.992

CVD [31] 1.260 1.257 0.996

Transformer
Physformer [47] 0.804 0.804 0.998

PhySU-Net (Ours) 0.659 0.618 0.999

Dataset: VIPL-HR [29]

Type Method MAE ↓ RMSE ↓ SD ↓ r ↑

Traditional
CHROM [7] 11.4 16.9 15.1 0.28

POS [42] 11.5 17.2 15.3 0.30

Convolutional

DeepPhys [4] 11.0 13.8 13.6 0.11

PhysNet [45] 10.8 14.8 14.9 0.20

RhythmNet [30] 5.30 8.14 8.11 0.76

CVD [31] 5.02 7.97 7.92 0.79

Dual-GAN [25] 4.93 7.68 7.63 0.81

BVPNet [6] 5.34 7.85 7.75 0.70

NEST [26] 4.76 7.51 7.49 0.84

GraphPhys [43] 6.69 9.70 9.30 0.48

DRNet [10] 4.18 6.78 6.75 0.85

Transformer

Physformer [47] 4.97 7.79 7.74 0.78

TransPPG [17] 4.94 7.42 7.44 0.79

TransPhys [41] 5.09 10.6 10.12 0.69

PhySU-Net (Ours) 4.53 7.35 5.79 0.80

on the MMSE-HR dataset. In the cross-dataset results shown in Table 2, our
method obtains the best performance on all metrics and shows that it can adapt
well to an unseen dataset.

Linear Classification and Transfer Learning: In Table 3, with transfer
learning we obtain a notable performance increase with RMSE reduced from
7.35 to 7.07. This proves the transferable ability of our method, as it learns use-
ful representations on unlabeled OBF data during pre-training that improve its
performance when fine-tuning on VIPL-HR. Furthermore, in the linear classifi-
cation test the representations learned with self-supervision on both unlabeled
OBF (RMSE 9.16) and VIPL-HR (RMSE 9.28) are of good quality, as the per-
formance is still satisfactory considering that only the last fully connected layer
is re-trained on the challenging VIPL-HR data.

Input Sequence Length Ablation: In Table 4 rows 2 and 3 we show that
reducing the temporal context length leads to lower performance. The best per-
formance is obtained with the longest T = 576, showing that PhySU-Net is pro-
ficient at modelling long-temporal context and can learn more robust features
with a longer context.
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Table 2. Cross-dataset testing on MMSE-HR [48] after training on VIPL-HR [29]:
divided in Traditional, Convolutional and Transformer based methods. Best results
are marked in bold, second best are underlined.

Dataset: VIPL-HR [29] → MMSE-HR [48]

Type Method MAE ↓ RMSE ↓ SD ↓ r ↑
Traditional CHROM [7] - 13.97 14.08 0.55

Tulyakov2016 [38] - 11.37 12.24 0.71

Convolutional PhysNet [45] - 13.25 12.76 0.44

RhythmNet [30] - 7.33 6.98 0.78

CVD [31] - 6.04 6.06 0.84

AutoHR [44] - 5.87 5.71 0.89

ND-DeeprPPG [22] 1.84 4.83 - 0.93

Transformer EfficientPhys-C [23] 2.91 5.43 - 0.92

Physformer [47] 2.84 5.36 5.22 0.92

PhySU-Net (Ours) 2.28 4.43 3.75 0.94

Table 3. Linear classification and Transfer learning on VIPL-HR [29]

Training Methods Pre-train → Fine-tune MAE ↓ RMSE ↓ SD ↓ r ↑
Purely Supervised NONE → VIPL-HR 4.53 7.35 5.79 0.80

Linear classification OBF → VIPL-HR 6.19 9.16 6.75 0.68

(with Self-Supervision) VIPL-HR → VIPL-HR 6.30 9.28 6.81 0.67

Transfer learning

(with Self-Supervision)

OBF → VIPL-HR 4.22 7.07 5.66 0.82

Network Components Ablation: In Table 4 rows 4 and 5, we show that both
multitask learning components contribute to our method’s effectiveness, as the
HR head provides rough global supervision and the decoder performs signal level
supervision on the signals. In row 6 of Table 4, performance declines without
stacking, indicating that the network is encouraged to learn more informative
features as attention windows also include signals that are further away in time,
better exploiting the long-temporal context.

Transfer Learning Ablation and Generalization: As shown in rows 2, 3
and 4 of Table 5, both pretext tasks contribute to a better downstream predic-
tion as there is a drop in performance when excluding either of them. Addi-
tionally, our method is generalizable as the pretext tasks can be easily changed.
The HR regression obtained by using different traditional methods (CHROM [7],
LGI [33], GREEN [39]) yields comparable results, as can be seen in Table 5 rows
4, 5 and 6. We also implement another image-based pretext task, in alterna-
tive to masking, called PBVPmap prediction. This task consists of predicting
a PBVPmap constructed from pseudo-BVP signals obtained with CHROM [7]
method. In row 7 of Table 5, we see that the PBVP task is also valid for pre-
training, but masking yields stronger representations. Our self-supervised pre-
training approach can be adapted to any kind of regression target and image-
based task.
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Table 4. Network design ablation on VIPL-HR [29]. Base method is marked in bold.

MAE ↓ RMSE ↓ SD ↓ r ↑
Proposed (T = 576) 4.53 7.35 5.79 0.80

T = 384 4.80 7.80 6.15 0.78

T = 256 5.05 8.13 6.37 0.76

w/o HR head 4.72 7.85 6.28 0.78

w/o Decoder 5.20 7.93 5.98 0.77

w/o Stacking 5.62 8.35 6.17 0.74

Table 5. Transfer learning ablation study on VIPL-HR [29], with different self-
supervised pre-training tasks on OBF [21]. Base method is marked in bold.

Tasks: MAE ↓ RMSE ↓ SD ↓ r ↑
Regression Image

No task No task 4.53 7.35 5.79 0.80

CHROM No task 4.17 7.17 5.83 0.82

No task Mask 4.46 7.32 5.80 0.81

CHROM Mask 4.22 7.07 5.66 0.82

GREEN Mask 4.15 7.06 5.71 0.82

LGI Mask 4.17 7.08 5.72 0.82

CHROM PBVP 4.35 7.18 5.71 0.82

Hyperparameter Sensitivity Analysis: As our loss function from Eq. 5 is
composed of three weighted terms, we analyze our method’s sensitivity to the
parameters α, β, γ. In Fig. 4, we show that for α and β parameters, tied to the HR
regression and temporal losses respectively, values within the same order of mag-
nitude yield small variations in the range of ≈ 0.2RMSE, while borderline values
(0 or 20) lead to the final loss being severely unbalanced, thus resulting in subop-
timal performance. Compared to β, γ is less impactful on the learning, meaning
that, out of the two reconstruction losses, the temporal term is more significant
than the frequency term. We conclude that our method’s sensitivity to α, β, γ
is low, as the performance significantly degrades only for largely unbalanced
coefficients.

Visualization: From Table 3 and Table 5, quantitative results show that PhySU-
Net benefits from both the self-supervised pre-training tasks. Moreover, in Fig. 5
we show a visualization of PhySU-Net features on the OBF [21] dataset after
different self-supervised pre-training (separate tasks and then complete) and
supervised training. When only pre-trained via the map masking task and, even
though the features are useful for downstream learning, we can see that they
still do not have a physiologically relevant structure yet. With only the pseudo-
HR regression task, we notice that the physiological meaning is much higher
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Fig. 4. Loss hyperparameter sensitivity analysis on VIPL-HR [29]

Fig. 5. PCA feature visualizations on OBF [21]. Self-supervised pre-training first with
only masking (w/o pseudo-HR), second with only pseudo-HR (w/o masking), third
with both tasks. The last visualization is from supervised training on the same data.

as the regression task gives more specific physiological context. Lastly, when
pre-training with both tasks, we see that the feature structure is similar to
supervised learning on the same data, with the self-supervised features having
a looser distribution due to being more general than the strongly supervised
features obtained when training with labels.

4 Conclusion

We propose PhySU-Net, a robust rPPG method that deals with challenging data
by making full use of a long temporal context via our transformer model. With
our proposed self-supervised pre-training, we further improve performance by
leveraging unlabeled data. Experiments on three public domain datasets show
that our supervised method is superior to most state-of-the-art methods. More-
over, with our generalized self-supervised pre-training the model can learn mean-
ingful representations and transferable representations from unlabeled data.
Future work can include the addition of new pretext tasks to our framework
and usage of non-rPPG unlabeled data.
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Abstract. With the growing breakthrough of deep learning-based face
recognition, the development of lightweight models that achieve high
accuracy with computational and memory efficiency has become
paramount, especially for deployment on embedded domains. While
Vision Transformers have shown significant promising results in various
computer vision tasks, their adaptability to resource-constrained devices
remains a significant challenge. This paper introduces SwiftFaceFormer,
a new efficient, and lightweight family of face recognition models inspired
by the hybrid SwiftFormer architecture. Our proposal not only retains
the representational capacity of its predecessor but also introduces effi-
ciency improvements, enabling enhanced face recognition performance
at a fraction of the computational cost. We also propose to enhance the
verification performance of our original most lightweight variant by using
a training paradigm based on Knowledge Distillation. Through extensive
experiments on several face benchmarks, the presented SwiftFaceFormer
demonstrates high levels of accuracy compared to the original Swift-
Former model, and very competitive results with respect to state-of-the-
art deep face recognition models, providing a suitable solution for real-
time, on-device face recognition applications. Our code is available at
https://github.com/Inria-CENATAV-Tec/SwiftFaceFormer.

Keywords: Lightweight Face Recognition · Efficient Vision
Transformer · Knowledge Distillation · Efficient Face Transformer

1 Introduction

In the last decade, deep learning methods based on Convolutional Neural Net-
works (CNNs) have revolutionized the face recognition research landscape,
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achieving impressive levels of accuracy compared to “shallow” methods [29].
However, this increased performance often relies on a high model complex-
ity, which makes it difficult to deploy on embedded devices or smartphones with
memory and computational constraints, resulting in finding a suitable trade-off
between speed and accuracy to be a significant challenge.

Designing efficient face recognition solutions, from lightweight deep learning
architectures proposed for common computer vision tasks, has emerged as a
great promising option. Models such as MobileFaceNet [5], ShuffleFaceNet [19],
VarGFaceNet [31], MixFaceNets [2] and GhostFaceNets [1] have been built from
MobileNetV2 [23], ShuffleNetV2 [17], VarGNet [32], MixNets [27] and GhostNets
[11,28], respectively, reaching high levels of recognition accuracy with a low
number of parameters and computational complexity.

On the other hand, it has been recently demonstrated that Transformer-
based architectures can be incorporated into face recognition with promising
results [35]. Although these methods are capable of capturing long-range rela-
tions among facial regions, the associated high computational costs due to the
effective use of self-attention computation have restricted their usage in resource-
limited domains. To address this issue, new hybrid models [9,12,15,26], that
combine the strengths of both lightweight CNNs and Vision Transformer (ViT),
have been introduced for face recognition, demonstrating that it is possible to
meet real-time deployment in practical applications.

Recently, the SwiftFormer network [25] introduced a consistent hybrid design
with an efficient additive attention mechanism to model the contextual informa-
tion with linear complexity. Experiments on image classification, object detec-
tion, and segmentation tasks showed that this model achieves state-of-the-art
(SOTA) performance with a good trade-off between accuracy and latency.

In this work, we present a new family of efficient and lightweight hybrid
face models, namely SwiftFaceFormer, including five model variants with dif-
ferent levels of complexity. We adopt SwiftFormer [25] as a baseline network
structure and adapt it for face recognition applications. Specifically, we lever-
age a Global Depthwise Convolution (GDC) layer followed by a convolution
layer of size 1 × 1 and a batch normalization layer to produce a compact 512-
dimensional feature vector in the embedding process. In addition to the four
variants of the SwiftFormer model (XS, S, L1, L3), we introduce a new model
variant (XXS), with lower computational complexity in terms of the number
of floating-point operations (FLOPs), number of parameters, and model size.
To enhance the recognition performance of this compact model, we apply hard
knowledge distillation (KD) [4] to train our SwiftFaceFormer-XXS model to learn
similar feature representations to the ones learned by a high-performance heavy
network. Experiments on challenging benchmarks demonstrate the effectiveness
and efficiency of SwiftFaceFormer in comparison to SOTA Lightweight CNNs,
Vision Transformers, and hybrid models, showing its potential for deployment
on resource-constrained face recognition applications.

The main contributions of our work are summarized as follows:

– We introduce a novel lightweight hybrid face architecture, called SwiftFace-
Former, which extends the efficient SwiftFormer network to the specific
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domain of face recognition for real-time applications. The proposed hybrid
network architecture leverages CNN and ViT capabilities through five model
variants of different complexities.

– We extend the SwiftFaceFormer family of networks including an extremely-
lightweight variant, named SwiftFaceFormer-XXS, that introduces an Effi-
cient Convolutional Encoder with variable convolutional groups per stage.
This approach heavily improves efficiency over the original SwiftFormer Con-
volutional Encoder and the rest of the SwiftFormer variants.

– To enhance the interpretation ability and the recognition performance of the
most compact variant of our SwiftFaceFormer model (XXS), we apply the
knowledge distillation paradigm. We provide two ablation studies about the
effect of using different teacher models to learn feature representations and
two different loss functions.

– We provide extensive experiments and comparisons with SOTA face models
on different datasets including large-scale face recognition benchmarks such
as IJB-B and IJB-C, showing the advantages of our proposed models in terms
of both accuracy and efficiency.

The paper is organized as follows. Section 2 reviews the existing lightweight
CNNs and ViT models for face recognition. Section 3 introduces the lightweight
hybrid SwiftFaceFormer models tailored for face recognition. Experiments are
presented in Sect. 4, followed by discussion and conclusion in Sect. 5.

2 Related Work

Here, we summarize existing approaches for developing face recognition models
with low computational complexity that can be deployed on resource-restricted
domains such as embedded devices or smartphones. We also give an overview of
ViT models that have been proposed for face recognition, including those based
on lightweight face recognition models.

2.1 Lightweight CNNs for Face Recognition

Designing small and efficient network architectures that reduce the computa-
tional effort in comparison to larger and more complex CNN models, has become
a promising solution in recent years to achieve a better balance between speed
and accuracy. In particular, for face recognition, the most common approach has
been modifying lightweight networks originally designed for common computer
vision tasks to the specific case of face recognition.

MobileFaceNet [5] and ShuffleFaceNet [19], which are based on MobileNetV2
[23] and ShuffleNetV2 [17], respectively, replace the Global Average Pooling
(GAP) layer for a Global Depth-wise Convolution layer, and use the Parametric
Rectified Linear Unit (PReLU) activation function instead of the Rectified Linear
Unit (ReLU) function. Moreover, they adopt a fast downsampling strategy at the
beginning of the networks, an early dimension-reduction strategy at the last
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several convolutional layers, and a linear 1 × 1 convolution layer following a
linear GDC layer as the feature output layer.

VarGFaceNet [31] improves the discriminative ability of VarGNet [32] by
using an efficient variable group convolutional network for lightweight face recog-
nition. In addition, to improve the interpretation ability of this lightweight net-
work, a recursive knowledge distillation strategy is introduced. In a similar way,
MixFaceNets [2] extend the MixConv [27] block with a channel shuffle operation
aiming at increasing the discriminative ability. More recently, GhostFaceNets
[1] extends two efficient neural architectures, GhostNetV1 [11] and GhostNetV2
[28], by replacing the GAP layer and the pointwise convolution layer with a mod-
ified GDC layer. They employ the PReLU activation function and replace the
fully connected layers in the squeeze and excitation (SE) modules by convolution
layers, to improve the discriminative power of their method.

Another strategy has been using Neural Architecture Search (NAS) [8] to
automatically create efficient artificial neural networks specifically designed
for face recognition. A family of extremely lightweight face models, namely
PocketNets, was proposed in [4], aiming at automating the process of design-
ing a neural network that achieved very competitive face recognition results.
The authors also introduce a novel training paradigm based on knowledge dis-
tillation to ease the challenges caused by the significant gap between the teacher
and student models, reducing the trade-off between model performance and com-
pactness.

2.2 Vision Transformers for Face Recognition

In recent years, there has been a growing interest in the use of Vision Trans-
formers (ViT) for different computer vision tasks, including face recognition.
Face-Transformer [35] was the first attempt to investigate the performance of
ViT models in face recognition, by introducing a Transformer model that uses
sliding patches to capture inter-patch information from faces. Although this
method achieves comparable performance to state-of-the-art CNNs, it is com-
putationally heavy and unsuitable for low-resource environments.

Recently, CFormerFaceNet [12] combines a lightweight CNN face model with
ViT. The authors designed a Group Depth-Wise Transpose Attention that used
the CNN’s ability to extract local facial features and the Transformer’s capa-
bility to model global facial features, with lightweight modifications reducing
computation requirements. In MobileFaceFormer [15], another hybrid method,
both CNN and Transformer branches are parallelized in a dual branch design,
and a bi-directional feature fusion bridge connecting dual branches is designed
to concurrently retain local facial features and global facial interpretations.
A convolutional token initialization method is proposed at the Transformer
branch to perceive long-range facial information, enhancing feature interpre-
tations. The CNN branch uses Depth-Wise Separable convolution and attention
mechanisms are adopted to improve local facial feature extraction before an
Attentive Global Depthwise Convolution (AGDC).
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EdgeFace [9] presents a new hybrid model that adapts the EdgeNeXt archi-
tecture [18] for face recognition and introduces a Low Rank Linear (LoRaLin)
module to further reduce the computation in linear layers while providing a
minimal compromise to the performance of the network. In addition, a split
depth-wise transpose attention (STDA) encoder is proposed to process input
tensors and encode multi-scale facial features, while maintaining low computa-
tional costs and compact storage requirements.

HOTformer [26] is another novel face recognition model based on Mobile-
FaceNets and ViTs that can effectively generate discriminative face represen-
tations by regional interaction of faces. The authors introduce two cooperation
types of tokens named atomic tokens and holistic tokens to capture the region
relationship of the face. Specifically, atomic tokens are generated by fixed-size
patches to carry the fine-grained core representation, while holistic tokens are
generated from adaptively spatial regions to aggregate information from several
facial parts.

3 Approach

In this section, we detail the SwiftFaceFormer architecture specifically tailored
for face recognition tasks. This approach is directly inspired by the SwiftFormer
network [25], which achieves state-of-the-art performance in general-purpose
computer vision tasks. Thus, we first describe the original SwiftFormer archi-
tecture, followed by the modifications introduced to make it an efficient and
accurate face recognition model.

3.1 SwiftFormer Network

The SwiftFormer architecture [25] is a lightweight hybrid design that combines
the strengths of CNNs and Transformers for real-time mobile vision applications.
It builds on EfficientFormer [16] and improves the token mixing by using a
simple yet effective Convolutional Encoder. This encoder replaces 3 × 3 average
pooling layers used as a local token mixer by depth-wise convolutions, without
increasing the parameters and latency. Moreover, SwiftFormer introduces an
efficient additive attention module in the SwiftFormer Encoder module, to model
the contextual information with linear complexity, that can be incorporated in
all stages of the network. This leads to more consistent learning of local-global
representations and significantly reduces the computational complexity.

The original SwiftFormer authors proposed four different configurations for
this architecture, varying in complexity, named L3, L1, S, and XS. All of these
versions use the same operators although with different depth and width levels.
The depth configuration regulates the number of encoding operations, while the
width level dictates the number of channels present in the feature map. In each
stage, the network performs the Convolutional Encoder operations followed by
the SwiftFormer Encoder step. After three stages of stacking multiple Encoder
blocks, depending on the complexity, the feature map is averaged and its output
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is sent to a Linear layer for classification tasks. This output before the linear layer
is a Global Average Pooling (GAP) operation, common in other general-purpose
architectures.

3.2 SwiftFaceFormer Architecture

To adapt the SwiftFormer architecture to the face recognition task, we introduce
specific refinements to the original approach. As noted in previous works, the
GAP operator is not suitable for the face recognition task, due to the averaging
operation weighting all the inputs from the feature map equally, thus hinder-
ing the projection of non-linear features and the capacity to extract discrimina-
tive information present in open-set face recognition scenarios. This shortcoming
is accentuated when using the GAP layer output before a Linear layer for final
classification purposes. To mitigate this limitation, an alternative is to use an
embedding head including a Batch Normalization and a Dropout step before the
Linear layer [9].

Recent approaches [5,19,31] adopt the Global DepthWise Convolution to
spatially reduce the feature map size and adjust the embedding dimension to
the final embedding. To extend the SwiftFormer model to the face recognition
scenario and improve its performance, we opt to adjust the output channels of
the final SwiftFormer Encoding stage to the pre-defined face embedding dimen-
sion C using an efficient 1 × 1 point-wise convolution. We then employ the GDC
layer with a 4 × 4 kernel size, reducing the spatial dimension from the Swift-
Former feature map to a vector, and employ another efficient 1 × 1 point-wise
convolutional operator to output the final face embedding.

3.3 SwiftFaceFormer-XXS

When assessing SwiftFormer’s efficiency performance, we noted a heavy load of
convolutional operations in the Convolutional Encoders from the SwiftFormer
architecture. As such, we analyzed the computation load in each one of the
stages, noting that the earliest stages performed the most computations due to
the larger spatial feature map sizes with two point-wise convolutional layers. Our
approach consists of converting the last point-wise layer of the Convolutional
Encoder into a grouped point-wise convolution. Our intuition for selecting the
last point-wise convolutional layer for grouped convolutions instead of the first
one, was to retain more input information with full convolutional operations and
reduce the compromise on accuracy when using the following grouped convolu-
tion. We corroborated the effectiveness of our selection through experimentation.

We propose to employ a descending strategy for the number of groups at
each stage. Using larger group sizes for the first stages heavily reduces the com-
putation load and parameter count and leaving deeper stages less compromised
achieves a reasonable balance between efficiency and accuracy. The last stage is
left uncompromised with regular point-wise convolutions (groups g = 1) before
the output to our face embedding head. Figure 1 shows our approach to this
efficient Convolutional Encoder.



250 L. S. Luevano et al.

Fig. 1. Our Efficient Conv. Encoder in SwiftFaceFormer-XXS. We employ Grouped
Point-Wise Convolutions only at the last layer for maximizing efficiency and mitigating
accuracy penalties.

In addition, we reduced the depth regulating the number of encoding oper-
ations in stages 2 to 4, maintaining most of the operations in the third stage
as in the original architecture. This further reduces the computation load with
limited compromises to accuracy. Lastly, we adjusted the width (channels) of
the feature maps starting from 16 in stage one to 128 in the last stage. We
selected 128 as our final channel dimension as previous work [19] has suggested
that 128 suffices for efficiently embedding facial features. Figure 2 illustrates the
modifications for this efficient approach.

Fig. 2. SwiftFaceFormer-XXS overall architecture. Consistent with the original Swift-
Former notation for the stages, the complexity is expressed as depth d for the number of
encoding operations and width w for the number of feature map channels. C denotes the
embedding channel dimension for our face recognition head.

4 Experiments

In this section, we introduce the experimental setup of our proposed Swift-
FaceFormer models and evaluate their recognition performance over several face
benchmark datasets. In addition, we validate the accuracy improvements of the
designed SwiftFaceFormer-XXS architecture through two ablation studies.
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4.1 Datasets

We used the MS1M-RetinaFace dataset (MS1MV3) [6,7] for fine-tuning our
SwiftFaceFormer models (XXS, XS, S, L1, L3) to the face recognition task. We
choose to use this particular dataset to allow a fair evaluation of our method with
the rest of the state-of-the-art face recognition benchmarks [7,14]. This dataset
is a clean version of the MS-Celeb-1M dataset [10], which contains 5.1 million
of face images collected from 93,431 identities. To evaluate the effectiveness and
robustness of trained SwiftFaceFormer models, we employed several benchmarks
including Labeled Faces in the Wild (LFW) [13], Celebrities in Frontal-Profile in
the Wild (CFP-FP) [24], AgeDB-30 [22], Cross-age LFW (CALFW) [34], Cross-
Pose LFW (CPLFW) [33], IARPA Janus Benchmark-B (IJB-B) [30] and IARPA
Janus Benchmark-C (IJB-C) [21].

4.2 Implementation Details

For training our approach, we adopt a Stochastic Gradient Descent (SGD) opti-
mizer with a batch size of 3 × 128 to improve training stability. We perform
training on three Nvidia GeForce GTX A6000 GPUs. The learning rate is initial-
ized to 0.05 and decreased by a factor of 10 periodically at epochs 8, 20, 25, and
30, training for a total of 34 epochs as in [4]. The momentum parameter is set to
0.9 and weight decay at 5e−4. The parameter-initialization method for convolu-
tions is Xavier with random sampling from a Gaussian normal distribution. We
use the ArcFace [6] loss function with an angular margin m = 0.5, which turned
out to be the best for face recognition. All experiments are implemented on the
Pytorch framework. We adopted the pre-trained weights on ImageNet from the
original SwiftFormer models [25] to initialize our networks to achieve the best
performance on face recognition tasks. During inference, the classification head
of the SwiftFaceFormer models is removed and the resulting 512-D embedding
is used for the comparisons.

On our Knowledge-Distillation approach for SwiftFormer-XXS, we employed
hard-sample distillation with two separate headers, as in [25]. For optimizing the
embeddings, we used the Mean Squared Error Loss scaled to 104 and the Cosine
Distance scaled to 64, when applicable. A second separate header is added to
compute the ArcFace loss. Each loss value is scaled to 0.5 for our optimization
process. For verification, the embeddings from both headers are averaged and
used for similarity scoring.

All face images used for both training and testing are detected and aligned
as in [6], generating generate the face crops of 112 × 112, where each pixel (in
[0, 255]) is normalized by subtracting 127.5 and then dividing by 128.

4.3 Results

We now present and discuss our experimental results focusing on comparisons
with the original general-purpose SwiftFormer architecture and comparing our
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approach with state-of-the-art face recognition models. We also conduct an abla-
tion study of our Knowledge Distillation approach for bridging the accuracy gap
between SwiftFormer-XXS and more computationally expensive models.

Comparison with SwiftFormer Architecture. To show the advantages of
our proposed SwiftFaceFormer architecture for the specific case of face recogni-
tion, we compare it with the original SwiftFormer network. For a fair comparison,
we trained SwiftFormer models (XS, S, L1, L3) under the same training setting
as our SwiftFaceFormer models. In Table 1, we show the verification accuracy of
the models on LFW, CFP-FP, AgeDB-30, CALFW and CPLFW datasets. In
addition, the number of parameters (Params.) and the MFLOPs are given. It can
be seen from the table that, for all variants (XS, S, L1, L3), the proposed Swift-
FaceFormer outperforms the original SwiftFormer models, maintaining a very
similar computational complexity. To validate our intuition for selecting the sec-
ond point-wise convolutional layer as a grouped convolution instead of the first
layer, in our Efficient Convolutional Encoder, we trained the SwiftFormer-XXS
approach on MS1MV3 and tested face verification on the same datasets as above.
Testing both possibilities, we found our approach yields an average increase of
0.5%, with a more notable verification accuracy difference of 1.55% and 1.27%
on CPLFW and CFP-FP, respectively.

Table 1. Comparison of the recognition rates proposed SwiftFaceFormer with the
original SwiftFormer models on popular face recognition benchmarks.

Method LFW (%) CFP-FP (%) AgeDB-30 (%) CALFW (%) CPLFW (%)

SwiftFormer-L3 99.67 96.91 97.02 95.68 90.37

SwiftFaceFormer-L3 (ours) 99.75 97.80 97.55 96.03 90.70

SwiftFormer-L1 99.63 96.37 95.58 95.53 89.77

SwiftFaceFormer-L1 (ours) 99.68 96.61 96.95 95.80 90.10

SwiftFormer-S 99.42 95.40 95.90 95.25 88.72

SwiftFaceFormer-S (ours) 99.60 96.49 96.83 95.78 90.00

SwiftFormer-XS 99.45 95.10 94.92 94.98 88.55

SwiftFaceFormer-XS (ours) 99.60 95.47 96.35 95.35 88.65

Comparison with the State-of-the-Art. Table 2 presents a comparison
between our proposed SwiftFaceFormer models (XXS, XS, S, L1, and L3) and
previous state-of-the-art CNNs, Transformer-based, and hybrid models on seven
face recognition benchmarks. The existing models are ordered according to the
number of parameters (compactness), showing those with less than 4M param-
eters. Our most efficient SwiftFaceFormer models are presented at the end of
the table. SwiftFaceFormer-XS and SwiftFaceFormer-XXS-KD are in with less
than 4M. In the case of HOTformer-Net models [26], the number of parameters
is unknown, however, the authors used HOTformer-Net (base) and HOTformer-
Net (small) for comparisons with state-of-the-art lightweight models.
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Verification results from this table reveal that our SwiftFaceFormer models
obtain comparable performance to SOTA face recognition models from the lit-
erature. Among our models belonging to the first category, SwiftFaceFormer-L3
achieves the best performance. Although it is the most complex of our mod-
els, SwiftFaceFormer-L3 (28M parameters) achieves comparable results to other
deeper CNN and ViT models with more than twice number of parameters and 10
times more FLOPs. For example, SwiftFaceFormer-L3 outperformed T2T-ViT,
ViT-P10S8, and ViT-P8S8 models on the challenging CFP-FP and CALFW
datasets. Our other two models, SwiftFaceFormer-L1 (11.8M parameters) and
SwiftFaceFormer-S (6M parameters) perform very similarly to ResNet18-Q8-bit
(24M parameters), obtaining even higher verification scores under pose variations
from CFP-FP and CPLFW. Moreover, the SwiftFaceFormer-S model reaches the
accuracy levels of GhostFaceNetV2-2.

Table 2. Comparison with the state-of-the-artViT, Hybrid, and CNN models on pop-
ular face recognition benchmarks. The models are ordered based on the number of
parameters per approach type, and divided into > 4M and < 4M parameters. The
FLOPs column shows the number of Floating Operations Per Second in millions. The
IJB-B and IJB-C columns correspond to the verification TAR at FAR = 1e−4 on the
IJB-B and IJB-C datasets, while the rest show verification accuracy (%).

Method Type Params. (M) FLOPs (M) LFW (%) CFP-FP (%) AgeDB-30 (%) CALFW (%) CPLFW (%) IJB-B (%) IJB-C (%)

T2T-ViT [35] ViT 63.5 25,400 99.82 96.59 98.07 95.85 93.00 – 95.67

ViT-P10S8 [35] ViT 63.3 24,800 99.77 96.43 97.83 95.95 92.93 – 96.06

ViT-P12S8 [35] ViT 63.3 24,800 99.80 96.77 98.05 96.18 93.08 – 96.31

ViT-P8S8 [35] ViT 63.2 24,800 99.83 96.19 97.82 95.92 92.55 – 95.96

ResNet100-ElasticFace [3,14] CNN 65.2 24,211.8 99.80 98.73 98.28 96.18 93.23 95.43 96.65

ResNet100-ArcFace [14] CNN 65.2 24,211.8 99.82 98.27 98.15 95.45 92.08 94.20 95.60

ResNet50-Q8-bit [14] CNN 43.6 – 99.78 97.70 98.00 96.00 92.17 94.15 95.66

ResNet18-Q8-bit [14] CNN 24.0 1,810 99.63 94.46 97.03 95.72 89.48 91.57 93.56

GhostFaceNetV2-1 [1] CNN 6.9 272.1 99.86 99.33 98.62 96.11 94.65 96.48 97.75

GhostFaceNetV2-2 [1] CNN 6.8 76.5 99.68 94.28 96.83 95.73 90.16 91.88 93.15

VarGFaceNet [14,31] CNN 5.0 1,022 99.85 98.50 98.15 95.15 88.55 92.94 94.70

GhostFaceNetV1-1 [1,14] CNN 4.1 215.7 99.73 96.83 98.00 95.93 91.93 93.12 94.94

GhostFaceNetV1-2 [1,14] CNN 4.1 60.3 99.68 93.31 96.92 95.60 90.07 91.25 93.45

HOTformer-Net (large) [26] Hybrid – 2,840 99.80 98.80 98.20 95.90 92.90 95.30 96.60

MixFaceNet-M [2] CNN 3.9 626.1 99.68 – 97.05 – – 91.55 93.42

MixFaceNet-S [2] CNN 3.1 451.7 99.60 – 96.63 – – 90.17 92.30

ShuffleFaceNet [14,19,20] CNN 2.6 577.5 99.67 97.26 97.32 95.05 88.50 92.25 94.30

MobileFaceNet [5,14,20] CNN 2.0 933.3 99.70 96.90 97.60 95.20 89.22 92.83 94.70

PocketNetM-128-KD [4] CNN 1.7 1,099 99.65 95.07 96.78 95.67 90.00 90.63 92.63

MixFaceNet-XS [2] CNN 1.0 161.9 99.60 – 95.85 – – 88.48 90.73

PocketNetS-128 [4] CNN 0.9 587.1 99.50 93.78 95.88 95.01 88.93 88.29 90.79

PocketNetS-128-KD [4] CNN 0.9 587.1 99.55 93.82 96.50 95.15 89.13 89.23 91.47

HOTformer-Net (base) [26] Hybrid – 1,301 99.70 97.80 97.60 96.00 91.90 93.80 95.50

HOTformer-Net (small) [26] Hybrid – 765 99.70 96.50 96.90 95.60 91.10 92.50 94.50

EdgeFace-S [9] Hybrid 3.7 306.1 99.78 95.81 96.93 95.71 92.56 93.58 95.63

EdgeFace-XS [9] Hybrid 1.8 154 99.73 94.37 96.00 95.28 91.82 92.67 94.85

CFormerFaceNet [12] Hybrid 1.7 40.0 99.73 95.06 97.12 95.80 90.20 – –

MobileFaceFormer [15] Hybrid 1.4 – 99.60 96.79 97.69 95.98 98.43 – –

SwiftFaceFormer-L3 (ours) Hybrid 28.0 2,015.6 99.75 97.80 97.55 96.03 90.70 92.92 94.70

SwiftFaceFormer-L1 (ours) Hybrid 11.8 804.6 99.68 96.61 96.95 95.80 90.10 91.81 93.82

SwiftFaceFormer-S (ours) Hybrid 6.0 485.2 99.60 96.49 96.83 95.78 90.00 91.56 93.54

SwiftFaceFormer-XS (ours) Hybrid 3.4 293.7 99.60 95.47 96.35 95.35 88.65 90.20 92.32

SwiftFaceFormer-XXS-KD (ours) Hybrid 1.5 64.1 99.43 92.50 94.82 94.78 86.97 87.81 90.28

For the second category, the performance of our SwiftFaceFormer-XS and
SwiftFaceFormer-XXS-KD models, demonstrate promising results on the evalu-
ated benchmarks. For instance, SwiftFaceFormer-XS obtains as good verification
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results as the hybrid EdgeFace-S model and the lightweight MixFaceNet-S CNN
model. Also, it is able to achieve competitive results with respect to ResNet18-
Q8-bit, which belongs to the first category. The use of the KD paradigm allows
us to enhance the performance of our compact SwiftFaceFormer-XXS model,
offering a good trade-off between efficiency and accuracy for deploying it in
limited-resource devices.

As it can be appreciated, in general, we have developed novel hybrid face
recognition models that perform well compared to the state-of-the-art, which
demonstrates that combining the strengths of both lightweight CNNs and Trans-
formers makes it possible to reduce the computational requirements for practical
applications.

4.4 Ablation Study

The knowledge distillation (KD) paradigm enables a student model to learn
from a teacher model, making it a popular technique for training lightweight
models from more complex ones. Intending to enhance the performance of our
compact model, SwiftFaceFormer-XXS, this section presents two ablation studies
based on the hard simple distillation method. First, we show the effect of using
different teacher networks for transferring their interpretation capabilities. Then,
we evaluate the impact of using different loss functions during KD training.

Using Different Teacher Networks. We conduct experiments to investigate
the effect of different teacher models on SwiftFaceFormer-XXS. We employ two
pretrained and fully converged teacher networks, ResNet100-ArcFace [6] and
SwiftFaceFormer-L3, respectively, to measure the relationship between teach-
ers and student structures. Table 3 presents the recognition results on several
face datasets. We observe that, introducing KD into the SwiftFaceFormer-XXS
training phase improves its achieved verification performance on all evaluation
benchmarks, especially on the large-scale IJB-B and IJB-C databases. Although
the performance of teacher models is very similar, when SwiftFaceFormer-XXS is
trained with KD using SwiftFaceFormer-L3 as the teacher network, the verifica-
tion results are higher. This shows that, using a simplified version of the teacher
network as student, reduces the model capacity gap between a large deep neural
network and a small student neural network.

Using Different Loss Functions. To investigate the effect of loss func-
tions, we train SwiftFaceFormer-XXS models with KD using Mean Square
Error (MSE) and Cosine (COS) loss functions, respectively. Comparing the
obtained results in Table 4, we can appreciate that for both loss func-
tions, SwiftFaceFormer-XXS achieves very similar results. We choose the
SwiftFaceFormer-XXS model trained with the MSE loss function since it offers
more stable results during training.
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Efficiency Assessment. To support our claim on real-time inference perfor-
mance on edge device hardware, we performed latency experiments on our pro-
posal. Table 5 presents the latency and single image throughput (FPS) for our
SwiftFaceFormer models on the Nvidia Jetson Nano edge device, TensorRT,
warmup time of 200 ms, and at least 10 inferences. We note that, our XXS-KD
variant exhibits the lowest latency and the highest FPS. We also included the
Average FR accuracy of the benchmarks of our method from Table 2 and divided
it for the inference latency of our methods, calculating an “Accuracy per latency”
score, to better assess the performance gains of our proposed method. We note
a huge improvement of Accuracy per latency points with the XXS-KD variant,
demonstrating its feasibility for usage on real-time hardware-constrained deploy-
ments, even though this could potentially increase training time if a teacher net-
work is not already trained. Measuring the efficiency impact of our XXS design
decisions, we observed that the width (w) adjustments resulted in a 71.36%
reduction in FLOPs, grouped convs. amounted to a 11.23% reduction, and depth
changes with a 12.81% reduction. Notably, the width adjustment in Stage 1 alone
led to a 36.99% FLOPs reduction.

Table 3. Recognition rates and TAR@FAR = 1e−4 on IJB-B and IJB-C obtained
by using KD for training SwiftFaceFormer-XXS model with different teacher models
(R100-ArcFace and SwiftFaceFormer-L3) on popular face recognition benchmarks.

Method LFW (%) CFP-FP (%) AgeDB-30 (%) CALFW (%) CPLFW (%) IJB-B (%) IJB-C (%)

SwiftFaceFormer-XXS (no KD) 99.22 90.94 92.75 94.02 85.70 81.07 82.80

ResNet100-ArcFace (Teacher) 99.82 98.27 98.15 95.45 92.08 94.20 95.60

SwiftFaceFormer-XXS (student) 99.42 92.00 94.92 94.80 86.42 87.30 89.80

SwiftFaceFormer-L3 (Teacher) 99.67 96.91 97.02 95.68 90.37 92.92 94.70

SwiftFaceFormer-XXS (student) 99.43 92.50 94.82 94.80 86.97 87.81 90.28

Table 4. Verification results obtained by using different loss functions (MSE and COS)
for KD training of SwiftFaceFormer-XXS model on popular face recognition bench-
marks. IJB-B and IJB-C report TAR@FAR = 1e−4.

Method LFW (%) CFP-FP (%) AgeDB-30 (%) CALFW (%) CPLFW (%) IJB-B (%) IJB-C (%)

SwiftFaceFormer-L3 (Teacher) 99.67 96.91 97.02 95.68 90.37 92.92 94.70

SwiftFaceFormer-XXS (student)-MSE 99.43 92.50 94.82 94.80 86.97 87.81 90.28

SwiftFaceFormer-XXS (student)-COS 99.48 92.30 95.20 94.80 86.62 87.80 90.30

Table 5. Efficiency metrics in terms of latency, FPS throughput, number of parame-
ters, Floating Operations Per Second (FLOPs), Average FR accuracy, and Accuracy
per latency tested on the Nvidia Jetson Nano platform. Our XXS-KD variant shows
remarkable efficiency performance across all metrics.

Method Latency (ms) FPS throughput Params (M) FLOPs (M) Avg. FR Acc. (%) Acc. per latency (%/ms)

SwiftFaceFormer-L3 36.9 27.1 28.0 2,015.6 95.6 2.6

SwiftFaceFormer-L1 18.0 55.3 11.8 804.6 95.0 5.3

SwiftFaceFormer-S 12.8 77.7 6.0 485.2 94.8 7.4

SwiftFaceFormer-XS 9.1 109.6 3.4 293.7 94.0 10.3

SwiftFaceFormer-XXS-KD 4.6 215.5 1.5 64.1 92.4 20.1
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5 Conclusion

We introduce SwiftFaceFormer, a novel family of hybrid models using
Lightweight Face CNN and Transformer architectures tailored for face recogni-
tion by adapting the SwiftFormer model and incorporating a Global Depth-Wise
Convolution layer, followed by a 1 × 1 convolution layer and batch normaliza-
tion to produce a compact 512-dimensional feature vector. Our most notable
contribution is the design of our lightest version, SwiftFaceFormer-XXS, using
grouped point-wise convolutions in specific sections of SwiftFormer’s Convolu-
tion Encoders and progressively decrease the groups and width per stage for
maximizing efficiency. Finally, using Knowledge Distillation on the XXS variant,
we achieve a remarkable accuracy and efficiency trade-off for real-time resource-
constrained devices.
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Abstract. Low-quality 3D face recognition (FR) is a crucial applica-
tion in human-computer interaction. However, it is sensitive to changes
in 3D shapes and textures caused by time, resulting in poorer recog-
nition performance on the time subset. To solve the problem, we first
propose a novel time robust feature extractor (TFE), which introduces
an improved Transformer block to mitigate interference from texture and
shape changes. Additionally, TFE includes a novel feature mixer (GL-
Mixer), which effectively integrates local and global features while reduc-
ing redundancy. Finally, we utilize TFE to construct MIHNet, a multi-
scale intra-layer fusion network with a hybrid structure for low-quality
3D FR. Experiments on two publicly available low-quality datasets and
one cross-quality dataset demonstrate that MIHNet achieves competi-
tive recognition accuracy, particularly attaining state-of-the-art (SOTA)
performance on the time subset.

Keywords: Low-quality 3D FR · Time robust feature extractor ·
Hybrid structure · Intra-layer fusion

1 Introduction

Low-quality 3D FR, profiting from the 3D faces’ rich geometric information, has
become popular in biometrics. However, most existing 3D FR [1–5] focus on
improving recognition performance under various poses and occlusions while
overlooking the impact of time variations on recognition accuracy. Specifically,
facial changes over time can result in a decline in recognition performance. There-
fore, investigating how to tackle the challenges posed by temporal variations is
essential for improving the practicality and reliability of 3D FR technology.
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Fig. 1. MIHNet consists of three parts: backbone network, TFE module, and classifi-
cation. The TFE module includes a dual-stream module, TransL, for extracting global
and local features, and a feature fusion module, GL-Mixer.

To enhance the performance of the time subset, multi-modal low-quality
3D FR utilizes RGB face images to compensate for the deficiency of texture
information in 3D face data. Uppal et al. [2] proposed a deep-guided atten-
tion mechanism, enabling the network to focus on critical facial regions in RGB
images with the assistance of depth features. Nonetheless, there is interference
in the matching and fusion of information between modalities, which can lead
to insufficient acquisition of discriminative features. Some methods employed
single-modal 3D face data as input to avoid interference. MQFNet [3] combined
high-quality 3D face image output from the pix2pix network with low-quality
3D face images, feeding them into a multi-quality fusion network to improve the
performance of 3D FR. LMFNet [4] integrated high-level and low-level features
separately, effectively reducing the interference of information between layers.
While these single-modal low-quality 3D FR models mitigate inter-modal inter-
ference, they lose a lot of discriminant facial details information. Consequently,
the total and subsets recognition performance fails to meet expectations, partic-
ularly when dealing with time subsets.

Inspired by recent studies [9–11] applying CNN combined with Transformer
[12] to the field of image classification, we propose a multi-scale intra-layer fusion
network (MIHNet) based on a CNN-Transformer hybrid structure for low-quality
3D FR, as illustrated in Fig. 1. Firstly, we constructed a time robust feature
extractor (TFE) which employs joint guidance of global and local information,
consisting of a feature extraction module (TransL) and a feature mixer (GL-
Mixer). TansL is a dual-stream feature extraction module, with one branch incor-
porating the LVC module proposed by [13] and the other branch featuring an
improved Transformer Block, which leverages the designed differentiated spatial
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reduction attention module (DSRA) to amplify the distinctions between layers.
Secondly, a novel feature mixer (GL-Mixer) is designed to minimize redundancy
in global and local feature fusion while enhancing the expressive ability of the
intra-layer fused features. Finally, building upon the TFE, time robust features
at different scales are collected and fused to capture abundant and discriminative
texture and shape information, improving performance specifically on the time
subset. The experiments conducted on the low-quality datasets Lock3DFace,
KinectFaceDB and the cross-quality dataset formed by Bosphorus show that
our proposed model achieves competitive total recognition accuracy and the
SOTA recognition accuracy on the time subset.

In summary, our contributions can be summarized as follows:

– We propose a multi-scale intra-layer feature fusion network, which is based
on the structure of a CNN-Transformer. Through the joint guidance of global
and local features, the network extracts robust features at different scales
that remain invariant over time and improves the performance of low-quality
3D FR.

– A novel time robust feature extractor (TFE) is developed that contains
TransL and GL-Mixer module. TransL leverages a dual-stream network to
extract rich global and local features while enhancing inter-layer feature diver-
sity. GL-Mixer, with its residual structure and spatial-channel reconfiguration
units, fortifies the intra-layer fusion features’ representation ability and dimin-
ishes redundancy in the fusion of global and local features.

– Extensive experiments on two low-quality datasets and one cross-quality
dataset validate the competitiveness of our approach in total recognition accu-
racy and achieve the highest recognition accuracy on the time subset.

2 Related Works

In this section, we review some methods for low-quality 3D FR. Then, we intro-
duce recent works that apply Transformer to FR.

2.1 Low Quality 3D FR

Research on deep learning-based low-quality 3D FR is relatively scarce. Mu et
al. [14] constructed a lightweight network to achieve real-time low-quality 3D
FR. To diminish the RGB-based FR methods’ sensitivity to geometric infor-
mation changes induced by facial variations, Uppal et al. [2] utilized depth
features extracted by CNNs to guide the network’s attention towards discrim-
inative facial regions in RGB images. Zhao et al. [4] developed a lightweight
multi-scale fusion network with a hierarchical structure (LMFNet), achieving
a balance between model performance and lightweight. Zhu et al. [6] proposed
a progressive multi-modal fusion framework (PMMF) that combines features
from both RGB and depth images after refining low-quality depth. Niu et al. [7]
introduced an improved residual network based on image and curvature, which
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enhances recognition accuracy under low-light or no-light conditions. Xu et al.
[8] proposed an innovative depth map denoising network (DMDNet) and utilized
Led3D [14] to extract complementary features from two modalities. While exist-
ing methods have enhanced total and subset recognition accuracy, the recogni-
tion accuracy for the time subset remains comparatively low. The introduction of
Transformer [12] holds the potential to address this problem.

2.2 Transformer in FR

Transformer was originally developed to address natural language processing
tasks. Due to its outstanding performance, Dosvitskiy et al. [15] applied Trans-
former to image classification, sparking subsequent research in the field of face-
related studies. Sun et al. [16] proposed an efficient self-supervised framework
for deep facial expression recognition, which involves explicitly modeling time
facial movements during the fine-tuning process of ViTs [15], aiming to reduce
computational costs while maintaining high performance. Nguyen et al. [17]
introduced a diagonal micro attention (DMA) mechanism that accurately iden-
tifies subtle facial changes between consecutive video frames. Zhong et al. [18]
refined the token generation method in ViTs, showcasing that Transformer model
attains comparable performance to CNNs when possessing similar numbers of
parameters and computational complexity. He et al. [44] incorporated Trans-
former into CNN networks to compensate for the CNNs’ shortcomings in attend-
ing to critical facial feature regions. Dan et al. [19] introduced a patch-level data
augmentation strategy to increase sample diversity, encouraging ViTs to utilize
patches that are easily overlooked by deep networks, effectively improving facial
recognition performance. These models are all proposed for 2D FR. To achieve
3D FR, Zheng et al. [1] subsequently proposed a complementary multi-modal
fusion Transformer (CMMF-Trans) network, enhancing the robustness of FR to
variations in lighting, pose, and time. Although these methods achieve FR with
high accuracy, compared with the single-mode low-quality 3D FR model, the
multi-modal CNN-Transform method has very high parameters and computa-
tional complexity, which makes it unable to be applied in practice. However,
there is limited research on applying transformers to single-modal low-quality
3D FR. Therefore, we propose a single-mode intra-layer feature fusion network
based on CNN-Transformer structure for low-quality 3D FR.

3 Method

In this section, we describe the entire network architecture and provide a detailed
explanation of its constituent module: time robust feature extractor (TFE), as
well as the key module Transformer Block and GL-Mixer in TFE.

3.1 Total Network Architecture

As depicted in Fig. 1, MIHNet comprises three components: the backbone net-
work, the time robust feature extractor (TFE) guided by both global and
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local information, and the classification. Firstly, to present a good compromise
between performance and model complexity, we employ four feature extraction
blocks as the backbone network, each block containing a convolutional layer,
a batch normalization layer, and a ReLU activation function. We opt for kernel
sizes of 7 and 5 for the convolutions in the first and second feature blocks, respec-
tively, aiming to obtain more facial detail information from the input images,
while the kernel sizes in the third and fourth feature blocks are set to 3. Sec-
ondly, to extract more effective time-robust features from feature maps of various
scales, we utilize the four most critical time robust feature extractors (TFE) in
MIHNet. These extractors process the features FC1, FC2, FC3, and FC4 of each
layer output by the backbone network individually, resulting in the processed
features FTFE1, FTFE2, FTFE3, and FTFE4. Subsequently, the four processed
features are concatenated according to the channel dimension to obtain the fused
feature FC . Finally, FC is fed into Conv5 for final fusion to obtain FConv, which
is then passed into the classifier for model training.

3.2 Time Robust Feature Extractor (TFE)

To strengthen model’s capacity to learn robust features from images captured at
intervals in time. In this work, we propose a module for extracting time robust
features, termed the time robust feature extractor (TFE). It captures both global
and local information from the input feature map, guiding the model to learn
invariance from geometric changes in face images. TFE consists of a dual-stream
feature extraction module (TransL) and a feature mixer (GL-Mixer), where the
TransL module comprises two branches: a LVC module for extracting local fea-
tures and a Transformer Block for extracting global features. The entire work-
flow of the proposed TFE is depicted in Fig. 1. Specifically, the feature map
X ∈ R

C×H×W obtained from the feature extraction block is fed into both the
LVC module and our improved Transformer Block, resulting in corresponding
feature maps {X1,X2} ∈ R

(C×H×W ). Subsequently, these feature maps are con-
catenated along the channel dimension to yield the feature map X′ ∈ R

2C×H×W .
Finally, the fused feature Y is accomplished using GL-Mixer. The entire process
of TFE can be formulated as:

X1 = Trans(X)
X2 = LVC(X)
X′ = Concat(X1,X2)
Y = Mixer(X′)

(1)

where Trans(·) and LVC(·) refer to transformer block and LVC module, Concat(·)
denotes connection along channel, and Mixer(·) stands for the GL-Mixer.

3.3 The Transformer Block

The texture and shape variations due to the time interval are one of the factors
leading to the performance degradation of low-quality 3D FR time subsets. To
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address this problem, we followed the construction paradigm of the Transformer
block to created a novel Transformer Block consisting of patch embedding and
stacked three residual blocks, as shown in Fig. 2, which includes dynamic posi-
tional encoding (DPE) [21], differential spatial reduction attention (DSRA), and
inverted residual FFN (IRFFN) [22]. Initially, a patch embedding layer, consist-
ing of a convolutional layer and a batch bormalization layer, is employed to
downsize the intermediate features, facilitating better processing of large-sized
image inputs. DPE subsequently integrates the 3D positional information from
the feature maps into all tokens. Then, we utilize our designed DSRA to cap-
ture relationships between different positions. It allows the model to enhance
the distinction between features across different layers, thereby reducing the
interference of redundant inter-layer features and extracting more discriminative
semantic information. Finally, IRFFN enhances gradient propagation across lay-
ers without significantly increasing computational cost and outputs the global
features FG.

Fig. 2. Workflow of the proposed TFE module.
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3.4 Differential Spatial Reduction Attention (DSRA)

For specific 3D FR tasks, it’s crucial to extract multi-scale features at differ-
ent layers while enhancing the diversity among these features. Considering the
advantages of spatial reduction attention (SRA) [23] and its improved methods
[22–25], we propose a differential spatial reduction attention (DSRA) to meet
this demand, as depicted in Fig. 2(b), which similarly involves linearly transform-
ing the input X ∈ R

H×W×C into query Q ∈ R
HW
R2 ×Cq , key K ∈ R

HW
R2 ×Ck , value

V ∈ R
HW
R2 ×Cv . The symbols Cq, Ck, and Cv represent the dimensions of the Q,

K, and V, correspondingly. R denotes the reduction ratio of the DSA.
In contrast, to enhance feature disparities across various layers and reduce

inter-layer interference, we apply a multi-scale operation to X before project-
ing it into V. This operation can be implemented as a convolution, with each
layer using convolutional kernels of varying sizes {7, 5, 3, 1}. To mitigate compu-
tational complexity, we utilize depth-wise separable convolutions to reduce the
spatial scale of K and V. The DSRA is calculated by:

(K′,V′) = DSR(X)
Q = Linear(X)
K = Linear(K′)
V = Linear(V′)

DSRA(Q,K,V) = Softmax
(

QKT

√
dk

+ B
)

V

(2)

where Linear(·) represents a linear transformation. B denotes a learnable atten-
tion bias matrix used for positional encoding. K′ ∈ R

HW
R2 ×Ck and V′ ∈ R

HW
R2 ×Cv

are the outputs obtained after spatial DSR(·). DSR(·) denotes the operation of
enhancing feature differences and reducing spatial dimensions of the input, which
can be written as:

DSR(X) = (DSConv(kConv(X)),DSConv(X)) (3)

where kConv(·) indicates convolution with k × k kernel, while DSConv(·) refers
to depthwise separable convolution.

Fig. 3. The architecture of the GL-Mixer which is responsible for fusing global and
local features.



266 Y. Hu et al.

3.5 The Global and Local Feature Mixer (GL-Mixer)

We construct a novel feature fusion mixer (GL-Mixer) with a residual structure
in Fig. 3, aiming to eliminate redundant features while leveraging both global fea-
tures for rich contextual information and local features for fine-grained details
to learn time robust features. To reduce computational complexity and channel
dimensions, we process the input feature maps utilizing a 3 × 3 depth-wise sep-
arable convolution. The spatial reconstruction unit (SRU) and channel recon-
struction unit (CRU) proposed in [26] are employed here to enhance feature
expression and reduce redundancy. We employ a 1×1 convolution to restore the
number of channels. Additionally, the added residual structure effectively pre-
serves the representational capacity of the original features. The above processes
are expressed as:

Mixer(X′) = Conv(C
r →C)

1×1

(
CRU(SRU(DSConv(C→C

r )
3×3 (X′)))

)
+ X′ (4)

where r is the channel reduction ratio in GL-Mixer, SRU(·) and CRU(·) repre-
sents the spatial reconstruction unit and the channel reconstruction unit.

4 Experiments

In this section, we introduce the datasets utilized, training specifics, and experi-
mental results across various datasets to validate the effectiveness of time robust
feature extraction.

4.1 Datasets

We evaluate our approach on four public datasets: Lock3Dface [27], Kinect-
FaceDB [28], FRGC v2.0 [29], Bosphorus [30,39]. The first two are low-quality 3D
face datasets, while the last two are a high-quality 3D face datasets. Lock3DFace
dataset, captured by Kinect V2 camera, stands as the largest low-quality 3D
facial dataset currently available, comprising 5,671 videos sequence from 509 sub-
jects, with each video sequence containing 59 frames. This dataset covers diverse
facial variations such as neutral, expression, occlusion, pose and time changes.
KinectFaceDB comprises 936 images of 52 subjects from six different ethnici-
ties, and exhibits diverse facial types, including neutral, smile, mouth opening,
illumination, eye occlusion, mouth occlusion, right face occlusion, left contour,
right contour and time changes. FRGC v2.0 is exclusively used for training and
Bosphorus is a high-quality dataset that focuses on facial variations related to
expression, pose, and occlusion.

4.2 Preprocessing and Implementation Details

Preprocessing: For Lock3DFace, we follow the preprocessing steps outlined in
[14], where we generate a 3D point cloud of the face from the original depth map,
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Table 1. The recognition accuracy on Protocol 1 of the Lock3DFace dataset, where
NU, FE, PS, OC, TM represents neutral, expression, pose, occlusion, time, respectively.
AVG denotes the average rate and bold indicates the best result, double underline
indicates the second best result, and tilde indicates the third best result.

Year Methods
Accuracy

FE PS OC TM AVG

2018 MobileNet-V2 [40] 85.38% 32.77% 28.30% 10.60% 44.92%

2019 Led3D [14] 86.94% 48.01% 37.67% 26.12% 54.28%

2021 Zhang et al. [20]
������
92.38%

������
49.30% 43.34% 31.80% 58.68%

2021 Xiao et al. [43] 89.88% 45.32% 47.04% 38.76% 59.03%

2021 MQFNet [3] 90.55% 52.81% 44.64% 22.65% 61.04%

2022 LMFNet [4] 90.56% 49.02% 53.14% 31.97%
������
62.11%

2023 DSNet [38] 92.49% 49.14% 53.29%
������
33.18% 62.26%

2024 Ours 92.57% 50.17%
������
52.96% 39.46% 62.98%

centered around the tip of the nose. Subsequently, we perform outlier removal,
hole filling, and normalization to produce 128 × 128 normal maps for training
and testing. To mitigate overfitting due to limited 3D data, we additionally
employ data augmentation techniques in [14], including pose generation, shape
jittering, and scaling. Processing KinectFace involves generating depth, azimuth,
and elevation maps using the method described in [41], followed by synthesizing
three-channel images to augment the data. The method in [14] is utilized to
synthesize cross-quality datasets from Bosphorus.

Implementation Details: We train and evaluate the MIHNet model using
the PyTorch platform equipped with NVIDIA GeForce RTX 4090. The SGD
optimizer with an initial learning rate of 10−2 is chosed and the learning rate
decreases by 10% every 10 epochs during training. We set the batchsize to 32
and epoch to 100.

4.3 Experiments on Three Datasets

Results on Lock3DFace: To validate the effectiveness of MIHNet, we employ
the Lock3DFace dataset following the protocols proposed in [14]. Protocol 1
involved training solely on the first neutral video from 509 subjects along with
its augmented data. Subsequently, six frames were selected from each remaining
video for testing the model. Protocol 2 divided the dataset into training and
testing sets based on the number of subjects. Specifically, the model was trained
on the original data and corresponding augmented data of 340 subjects, while
the remaining 169 subjects had six frames from each original video used for
testing. Table 1 and Table 2 respectively display the results of Protocol 1 and
Protocol 2.
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As summarized in Table 1, the proposed model outperforms the current exist-
ing SOTA methods. The average (AVG), expression (FE) and time (TM) recog-
nition rates are 0.72%, 0.08% and 0.7% higher than the second-best results.
The performance of the pose (PS) subset is slightly lower than [3], while the
accuracy of the occlusion (OC) subset falls slightly behind [38]. This may be
due to MQFNet [3] incorporating both the high-quality 3D face recovered from
low-quality 3D faces and the original low-quality 3D face into the model, enhanc-

Table 2. The recognition accuracy on Protocol 2 of the Lock3DFace dataset. Total
denotes the total rate, bold indicates the best result, double underline indicates the
second best result, and tilde indicates the third best result.

Year Methods Input
Rank-1 Accuracy

NU FE PS OC TM Total

2018 MobileNet-V2 [40] Depth 98.91% 95.74% 69.92% 61.44% 43.00% 79.49%

2018 Cui et al. [32] Depth 99.55% 98.03% 65.26% 81.62% 55.79% 79.85%

2019 Hu et al. [33] Depth 90.90% - - - - 76.70%

2019 Led3D [14] Depth 99.62% 97.62% 64.81% 68.93% 64.97% 81.02%

2021 3D-FRM [34] Depth
�����
99.93% 96.77% 69.06% 65.16%

������
74.19% 82.27%

2021 MQFNet [3] Normal 99.95% 97.31% 73.61% 80.97% 61.67% 86.55%

2022 LMFNet [4] Normal 99.95%
������
99.01%

������
78.61%

������
83.08% 75.60%

������
87.49%

2022 PointFace [5] XYZ 99.35% 97.93% 72.03% 77.06% 66.33% 84.78%

2023 Niu et al. [7] Depth - - - - - 78.24%

2023 LDNFNet [8] Depth 100% 99.37% 82.94% 85.39% 71.95% 87.71%

2024 Ours Normal 99.95% 99.43% 80.02% 83.10% 76.37% 87.52%

Table 3. The results on the KinectFaceDB dataset. P1 consists of seven variations
obtained from session 2, including neutral, smile, mouth opening, illumination, and
three types of occlusions: paper occlusion, mouth occlusion, and eye occlusion. P2
comprises three variations without occlusions in session 2. P3 exclusively contains neu-
tral faces in session 2. Total denotes the total rate, bold indicates the best result, double
underline indicates the second best result, and tilde indicates the third best result.

Year Ref.
Accuracy

P1 P2 P3

2019 3DLBP+CNN [31] 80.9% 90.2%
�����
96.1%

2019 Led3D [14] 76.2% 87.5% 89.7%

2020 CABNet-FE [35] 67.3% 79.4% 82.7%

2020 CNN+BSIF [36] 93.6% 99.4% 90.2%

2022 LMFNet [4]
�����
94.9%

�����
95.5% 96.3%

2023 Neto et al. [37] 73.4% 82.2% 86.5%

2023 DSNet [38] 95.0% 99.5% 96.3%

2024 Ours 95.3% 99.5% 96.9%
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ing the expression of 3D facial shape information. Unfortunately, the fusion of
these two types of 3D facial features may introduce significant interference in
facial texture and detail information, resulting in a performance drop of 2.02%
and 16.81% on the FE and TM subsets, respectively, compared to our model.
DSNet [38] adopted a dense connectivity approach to obtain richer multi-scale
information, enabling the learning of more features details and contour informa-
tion from facial images with local regions missing. Likewise, DSNet [38] over-
looked interference between inter-layer features and was sensitive to shape and
texture features. Our approach outperforms DSNet by 6.28% on the TM subset,
significantly achieves an improvement of 0.7% compared to the top-performing
result on the time (TM) subset, significantly demonstrating the superiority of
MIHNet in handling face images with time change.

Table 4. The results on the cross-quality dataset. HL: the gallery is high-quality and
the probe is low-quality. LL: gallery and probe are both low-quality. Total denotes the
total rate, bold indicates the best result, double underline indicates the second best
result, and tilde indicates the third best result.

Year Ref.
Accuracy

HL LL

2018 MobileNet-V2 [40] 79.12% 78.09%

2019 Led3D [14] 91.27% 90.70%

2021 PointFace [5] 92.96% 91.86%

2022 LMFNet [4]
����
93.64%

����
92.42%

2023 DSNet [38] 93.71% 92.46%

2024 Ours 94.13% 92.85%

Table 2 shows that our model attains recognition accuracy that is on par
with the most advanced model currently. Specifically, MIHNet performs excep-
tionally well in FE and TM, surpassing the second-best recognition accuracy
by 0.06% and 0.77%, respectively. For scenes with missing local regions, our
model exhibits the second-best performance, trailing behind LDNFNet [8] on
the PS subset and on the OC subset. LDNFNet [8] added a denoising network
before performing the FR task, which can effectively reduced the interference
of noise on extracting discriminative features. However, this approach lose part
of the valuable facial information, such as texture and details, resulting in a
recognition rate of 4.42% lower than our MIHNet on the TM subset.

Results on KinectFaceDB: We conduct experiments on KinectFace, another
low-quality 3D face dataset with lower face image quality than in Lock3DFace,
to further validate the effectiveness of our proposed model. The setting of this
experiment follows [31], and the results are listed in Table 3. Our model achieves
the highest recognition accuracy on subsets P1 and P3, with an improvement of
0.3% and 0.6% over the second-best DSNet [38], and the performance is compa-
rable to DSNet [38] on the P2 subset.
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Results on Cross-Quality Dataset: We additionally verify the generalization
of our model on the cross-quality dataset. By introducing four different levels
of noise intensity to FRGC v2.0, we generate cross-quality data, supplemented
with data augmentation during model training. Table 4 illustrates the model’s
performance on the synthesized cross-quality data derived from Bosphorus. The
proposed model achieves a recognition accuracy of 94.13% on HL and 92.85% on
LL, outperforming the second-best DSNet [38] by 0.42% and 0.39%, respectively.

These aforementioned results of Table 1, Table 2, Table 3, and Table 4 demon-
strate that MIHNet is not only effective in recognizing faces with time variations,
but also exhibits strong generalization capability.

Table 5. Ablation study of TransL module and GL-Mixer on the Lock3DFace dataset,
with indication of module presence denoted by � and bold indicates the best result.

Model TansL GL-Mixer Rank-1 Accuracy

NU FE PS OC TM Total

Model 1 98.64% 97.54% 68.62% 71.27% 65.41% 81.57%

Model 2 � 98.64% 97.66% 77.33% 77.84% 69.57% 85.32%

Model 3 � � 99.95% 99.43% 80.02% 83.10% 76.37% 87.52%

4.4 Ablation Study

To study the contributions of the proposed TransL and GL-Mixer, we conduct
a series of ablation experiments on the Lock3DFace dataset, with the results
presented in Table 5.

We conduct experiments on three models to prove the efficacy of the pro-
posed TransL and GL-Mixer modules. Model 1 excludes the TransL and GL-
Mixer modules, using the feature fusion approach from the baseline [14]. Model
2 integrates the TransL module into Model 1, while Model 3 added the GL-
Mixer module to Model 2. Table 5 presents the Rank-1 accuracy of these models
on the Lock3Dface dataset. From the table, it is evident that Model 2 exhibits
a 3.75% improvement over Model 1, and Model 3 further improves by 2.2%
compared to Model 2. This indicates that the TransL module can extract both
global and local feature information from the feature maps, and the GL-Mixer
effectively combines the features output by the TransL module to achieve more
discriminative features.

To evaluate the efficacy of our proposed differentiated spatial reduction atten-
tion (DSRA) within the Transformer Block, we substituted the DSRA with SRA
from Wang et al. [23], and OSRA from Lou et al. [42] to construct Model-
SRA and Model-OSRA. The experimental results, depicted in Fig. 4, reveal that
incorporating DSRA into the model led to superior total performance, and per-
formance across individual subsets compared to Model-SRA and Model-OSRA.
Notably, there was a notable enhancement in recognition accuracy on the OC
and TM subsets, surpassing Model-OSRA by 0.81% and 1.06%, respectively.
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Fig. 4. The performance comparison of different subsets of the Lock3DFace dataset,
where the attention mechanism of the model is replaced with SRA, OSRA, and our
proposed DSRA, respectively. The red font indicates the best result. (Color figure
online)

This effectively illustrates the ability of DSRA to magnify feature distinctions
between layers, enabling the model to extract more discriminative information.

5 Conclusion

In this paper, we propose a multi-scale intra-layer fusion network with a hybrid
structure, MIHNet, for low-quality 3D FR to address the problem of model’s sen-
sitivity to changes in 3D shapes and textures caused by time. A dual-stream fea-
ture extraction module is designed to extract both global and local information,
promoting the network’s expressive ability. Additionally, a feature fusion module
named GL-Mixer has been introduced, enabling the network to learn discrim-
inative features that are robust to time variations while reducing redundancy.
Extensive experiments on three challenging low-quality 3D face datasets demon-
strate that our model successfully extracts time robust features and improving
the recognition accuracy of low-quality 3D FR.
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Abstract. Classification of pathological vs. normal infant cries is used
to infer the infant’s health conditions. Such an approach can be benefi-
cial in many situations and even to save infants’ lives. In this paper, we
propose a novel classification system based on the Modified Group Delay
Cepstral Coefficients (MGDCC), for classifying infant cries. We investi-
gate generalizability of proposed MGDCC features. The Convolutional
Neural Network (CNN) was used as a pattern classifier in this study. Pro-
posed MGDCC features are found to perform better than widely used
spectral features, such as Mel Frequency Cepstral Coefficients (MFCC),
Linear Frequency Cepstral Coefficients (LFCC), and Group Delay Cep-
stral Coefficients (GDCC). Experiments are performed on two datasets
namely, Baby Chillanto (D1) dataset, and DA-IICT Infant Cry (D2)
corpus and for various experimental evaluation factors, such as noise
robustness under signal degradation conditions, cross-database scenario,
and analysis of latency period. We obtained 2.25% increase accuracy as
compared to existing optimal accuracy for proposed task. Better perfor-
mance of MGDCC is may be due to its capability to implicitly capture
time dependencies in the sequence of audio samples via fourier transform
phase information.

Keywords: Infant Cry Classification · Modified Group Delay Cepstral
Coefficients · Convolutional Neural Network · Modified Group Delay
Function

1 Introduction

Infancy is the period between birth and the acquisition of language. Infants com-
municate with us through crying, expressions and babbling making it essential
to analyse and understand their cries. Previous studies have shown, the ability
of infants to distinguish between two different languages just after four days of
birth [1]. Recently, biometrics based on infants’ fingerprints have been adapted
to improve infant security, but they come with multiple challenges as aquisition
of an infant’s fingerprint is difficult as they commonly suck their fingers lead-
ing to wet fingers, and also keep their fists closed [2]. The infants who suffered
from Autism Spectrum Disorder (ASD), have higher fundamental frequency (F0)
(the frequency of oscillation of vocal folds) during cry production mechanism in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15314, pp. 275–289, 2025.
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infants, which is responsible for controlling pathological cries [3]. Due to a lack of
knowledge about the ailment, many newborns die from the disease that strikes
them in the first quarter of their lives. Sudden Infant Death Syndrome (SIDS)
is the primary cause of newborn mortality when it comes to diseases, birth
asphyxia, and associated anomalies [4]. For the infants who died of SIDS, land-
mark studies funded by the National Institutes of Health (NIH), USA, revealed
evidence of abnormalities in the brain stem (specifically, the medulla oblongata),
which is known to control breathing functions.

Collecting infant cry samples is a difficult task, as only a few par-
ents/guardians cooperate and permit due to apprehension of recordings.
Although large scale data on infant cry classification is not available (due to data
imbalance, ethical issues, data privacy, etc.), the market continues to demand
better approaches due to solid relevance of this problem. In order for doctors
to have control over concerns pertaining to infants’ assistance, a system that
can more accurately distinguish between pathological and normal cries must be
secured. This enhances the quality of life for newborns.

2 Related Works

Many attempts have been made to develop an optimal system that classifies patho-
logical vs. healthy cries. Due to recent advancement in machine learning and deep
learning, many previous studies have employed such processes for infant cry clas-
sification. In [5], the authors used magnitude spectrum-based features with Con-
volutional Neural Network (CNN) as classifiers for infant cry classification task.
Many such studies have been reported in recent time, such as in [6] and [7], authors
used Mel Frequency Cepstral Coefficients (MFCC) and Linear Frequency Cepstral
Coefficients (LFCC) for infant cry classification. In [8], the authors used MFCC as
features and machine learning approaches, such as Multi-Layer Perception (MLP)
and CNN as classifier for infant cry classification task.

However, most of the studies fail to explore the characteristics of infant cry
signals. According to authors’ best knowledge and belief, this is the second study
to employ phase-based features for infant cry classification task. In particular,
Modified Group Delay Cepstral Coefficients (MGDCC) have been employed in
many speech tasks previously, such as speech recognition, phoneme recognition,
and isolated word recognition [9–12]. The success of MGDCC, in existing stud-
ies motivated us to explore its properties for classification of infant cries with
standard data and advanced DL models, such as CNN [13]. In [13], the authors
did not fine-tune model systematically, nor they did experiment on any standard
dataset. Newly proposed approach (this system) is able to obtain 9.18% increase
in accuracy than the one proposed previously [13]. For fair comparison of our
system, we also compared our work with existing approaches, such as Whisper
features, which are currently most renounced features, for various speech applica-
tion, such as, speech recognition [14], emotion classification [15], Deepfake Audio
Detection (ADD) [16], and infant cry classification [17]. For optimizing time and
space complexity, we also conducted latency analysis (to be discussed soon in
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Sub-Sect. 5.4). We have also conducted experiments based on noise robustness
for additive babble noise, which helps us to check the robustness of the proposed
system, as compared to other feature vectors.

Figure 1 (a) represents the time-domain waveform, (b) represents short-time
waveforms, and (c) presents modified group delay function (MGDF) for the
normal vs. pathological cries signal. It can be observed from Fig. 1 (c) that
the in normal cry signal, we get higher number of poles of MGDF. On the
other hand, we obtain well separated poles in the MGDF in the pathological cry
signal. These poles in the MGDF correspond to formants of the infants. As a
result, the formants and their harmonics of the infants may differ in ways that
are indicative of an underlying condition.

The remaining part of the paper is organized as follows: Sect. 3 presents com-
putational aspects for proposed phase-based features. Section 4 contains infor-
mation about the dataset, and other details of experimental setup. Section 5
contains detailed explanation about the experimental results obtained. Section 6
concludes the paper by summarizing the findings and suggesting possible future
research directions.

Fig. 1. Panel I (healthy signal), and Panel II (pathological signal): (a) time-domain
waveforms, (b) short-time segment, and (c) MGDF.

3 Phase Based Approach

Information obtained by any spectral-based feature vector may not be sufficient
enough to categorize an infant cry, which motivated us to explore the tempo-
ral characteristics in the form of signals’ Fourier transform phase. Group Delay
Function (GDF), which is one of the most well known phase-based feature, is
known for its ability to capture temporal characteristics (in frequency domain) of
a speech signal. The unit circle (in Z-plane), zeros (valleys), and poles (spikes) of



278 A. J. Shah et al.

a given speech segment are the three main focal points of the GDF concept. How-
ever, the vocal tract system and the excitation source also greatly contribute to
envelop and fine structure of speech segment. The magnitude spectrum aims to
find spectral envelope, which is not sufficient knowledge from speech signal. This
proposed study is intended to abstract more information about speech signal by
integrating its spectral and temporal characteristics. This additional information
helps us for better classification of infant cries. While the information derived
from a magnitude-based spectrum can be easily extracted, phase-based informa-
tion for the classification of infant cries is still not well-explored. The phase-based
information is obtained after unwrapping of phase spectrum to invert signal pro-
cessing artifacts of the arc-tangent function.

Speech signals are a combination of magnitude and phase spectrum, which
prompted us to investigate phase-based characteristics of the speech spectrum.
After investigating the GDF, the authors were prepared to explore other phase-
based features, which led us to investigate the modified group delay features.
The MGDF is a modified version of GDF. The MGDF feature is achieved by
reducing the number of spurious spikes in GDF [10]. The meaningful fea-
ture emerges by reducing the number of poles for a specific speech segment.
MGDF has previously been investigated for many tasks, as mentioned in Sect. 1.
In this context, the GDF refers to the delay experienced by a group of frequen-
cies, when provided as input to the system [18]. For discrete-time signal p(n),
its Discrete-Time Fourier Transform (DTFT) can be given by P (ejω). Further,
its magnitude-phase representation can be given by [19]:

P (ejω) =| P (ejω) | ejφ(ejω), (1)

where |P (ejω)| is the magnitude spectrum, and φ(ejω) is the phase spectrum
of the signal at frequency, ω. Neglecting the magnitude spectrum, GDF can be
represented in terms of phase spectrum as:

τ(ejω) = − d

dω
φ(ejω) = −j mag

[
d

dω
log(P (ejω))

]
. (2)

Alternatively, Eq. (2) can be also represented in form of frequency-domain as:

τ(ejω) =
PR(ejω)QR(ejω) + PI(ejω)QI(ejω)

|P (ejω)|2 , (3)

where P (ejω) → DTFT of p(n), and Q(ejω) → DTFT of n ∗ p(n), R and I
are the real and imaginary parts of the Fourier transform, respectively. MGDF
is created after adding γ parameters for restoring dynamic range of speech and
α for α to reduce the number of spikes in Eq. (3), and modifying it, we get
equation of MGDF as [20]:

τmgd

(
ejω

)
=

τm

(
ejω

)
|τm (ejω)|

∣∣τm

(
ejω

)∣∣α , (4)
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where,

τm(ejω) =
PR(ejω)QR(ejω) + PI(ejω)QI(ejω)

|Pc(ejω)|2γ
, (5)

where |Pc(ejω)| represents cepstrally smooth version of |P (ω)|. Figure 2 repre-
sents the steps for extraction of proposed MGDCC features, along with the func-
tional block diagram of feature extraction and pattern classification process. The
classification of this feature vector shows promising results due to their ability
to capture temporal characteristics of audio signal in frequency domain. For the
extraction of features, Hamming window of duration 25 ms was chosen, the shift
was taken to be 10 ms, and the number of coefficients per frame (i.e., dimention
of feature vector) was taken as 20.

Fig. 2. Functional block diagram of proposed MGDCC based classification.

4 Experimental Setup

4.1 Dataset Used

The dataset being used is Baby Chillanto dataset (D1) was created by record-
ings, which were made by doctors of NIAOE-CONACYT, located in Mexico
[21,22]. Chillanto is a Spanish word meaning screaming or crying. It consists
a total of 1049 healthy infant cries, and 1219 pathological cries. This dataset
has classification of 5 classes, which can be classified into 2 categories as men-
tioned in Table 1. Another database used for this study was DA-IICT Infant Cry
Database (D2) [23], which contains a total of 793 healthy and 416 pathological
cries [23]. This dataset has a total of 3 class audios, which can be further merged
and classified in 2 categories as mentioned in Table 1. For fair comparison, both
datasets were resampled at 16 kHz sampling rate. Table 1 indicates more details
about the number of samples in both datasets.

4.2 Pattern Classifier Used

For this study, we employed CNN as pattern classifier because it captures spatial
and temporal dependencies in the audio signals. The MGDCC features of the
cry signal, which carry significant discriminative information, can be effectively
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Table 1. Audio sample numbers for datasets used [22,23]

Class Sub-class Baby Chillanto DA-IICT

Pathological Asthma – 182

Asphyxia 340 215

Deaf 879 –

Healthy Pain 192 –

Hunger 350 –

Normal 507 793

learned by CNN due to their hierarchical feature learning capability. The CNN
architecture was built with a sigmoidal activation layer, and 3 ReLU activation
layers. CNN consists of five convolution blocks and three fully-connected layers.
Each layer is made up of 2 -D convolution layers, a ReLU activation layer,
and a batch normalization layer. At the end of each layer, max-pooling is used
to downsample feature maps. The final dense layer has a single unit with a
sigmoid activation function, producing a binary classification output (0 or 1)
that indicates whether the input belongs to class 0 or 1. Learning rate was
taken as 0.003 and optimizer was chosen to be Adam. Input shape was taken to
20× 893× 1. For the dimensions less than 893, the rows were padded with extra
zeros until column 893. Learning rate was selected as 0.003, with batch-size of 64.
Adams optimizer were used for this paper. The architecture and structure-code
implemented are openly available1.

4.3 Other Spectral Features Used

MFCC and LFCC. Two cepstral features, namely, MFCC and LFCC were
used for comparison with phase-based features. 20 -D MFCC and 20 -D LFCC
features were extracted using 25 ms window length and 10 ms of window overlap.
LFCC captures information w.r.t. linear frequency scale, unlike MFCC, which
employs a logarithmic Mel frequency scale. These two features were chosen in
order to compare phase-based features with the other magnitude spectrum-
based features [24,25].

4.4 Performance Metrics

F1-Score. It is a useful metric to balance the trade-off between precision and
recall for this problem. F1-score can be described as harmonic mean of precision
and recall, providing a balance between these two metrics. It ranges from 0 to
1. If F1-score reaches closer to 1, then it’s believed to have best precision and
recall for any problem. F1-score is given by:

F1 − Score =
2TP

2TP + FN + FP
. (6)

where FP, and FN denote false positives and false negatives, respectively.
1 github repo: “https://github.com/ARTHARKING55/CNN ICPR MGDCC”.

https://github.com/ARTHARKING55/CNN_ICPR_MGDCC
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5 Experimental Results

5.1 Fine-Tuning of Parameters for MGDCC

In this sub-Section, we fine-tune two parameters of MGDCC, namely, α and γ,
which are responsible for reducing the spurious spikes of MGDCC feature vector.
A mixed-phase system can be made into a minimum phase system by minimizing
the number of spikes in the MGDF spectrum. This implies that all of the poles
and zeros of the z-domain system function are located inside the unit circle in
the z-plane [11]. For creating an optimal feature vector for any task, we need to
find what exact number of parameters and data are required in order to get the
best possible results. The GDF becomes a mixed phase system if the number of
spikes is increased; conversely, if the number of spikes is drastically decreased, the
necessary quantity of data can be lost. In order to create balance of number of
spikes and to obtain maximum results, we need to find the optimal values of α
and γ parameters of MGDCC, for the infant cry classification. Figure 3 represents
testing accuracy obtained when we vary the parameters of MGDCC. It can be
noted that as we move towards 1 for parameter γ, the accuracy of model degrades
lately. This phenomenon occurs due to heavy number of unwanted spikes present
while extraction of GDCC. On the other hand, as we move value of towards α
towards 1, the number accuracy degrades less, however, at low value of α, we
achieve absolute maximum accuracy of 99.56% at α = 0.2 and γ = 0.2, which
suggests that, for the specific infant cry classification problem, the optimum
number of spikes is needed. Further examination of the other point values of
α and γ helps us to obtain the exact number of spikes needed. Greedy search
algorithm was used for the task of fine tuning. For the experiments, the range
of α and γ, which lies between 0 and 1, was varied by step size 0.1.

5.2 Comparison with Cepstral Features

In this study, we compare phase-based features to magnitude-based features,
i.e., MFCC, and LFCC. We used two datasets for a fair comparison of fea-
tures. The idea to test our findings in different acoustical and environmental
settings inspired this work. The results shows in Table 2 indicate that the results
of MFCC are better than LFCC under both datasets conditions, which speci-
fies the significance of low frequency region resolution for infant cry classification.
Additionally, it states that less information is needed to classify high frequency
region data as healthy vs. pathological cries. Similar results have been observed
for MFCC and LFCC features w.r.t. CNN as classifier in previous studies [5],
where authors employed different structure of CNN without fine-tuning each
layer from scrap.
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Fig. 3. Fine-tuning of α and γ parameters of MGDCC on Baby Chillanto (D1) dataset.

On the other hand, GDCC performs poorly than MFCC, indicating that
there are more spurious spikes included in the extraction of phase-based fea-
tures. MGDCC, a modified version of GDCC, outperforms all other features for
the same pattern classifier and parameters, indicating the features ability (i.e.,
their discrimination power) to capture temporal characteristics, and convert a
maximum phase system to a minimum phase system. The high F1-Score for
the MGDCC feature vector highlights its high precision and recall. It further
indicates well balanced performance of the model w.r.t. proposed feature vector.
Baby Chillanto (D1) being a balanced dataset gives much high F1-Score com-
pared to DA-IICT Infant Cry Database (D2) Corpus, which is an unbalanced
dataset. The poor EER and F1-Score ratios are caused by the same unbalanced
dataset. For the D1 dataset, MGDCC had 1.78% higher accuracy than MFCC,
and 2.67% higher accuracy than LFCC features. For the D2 corpus, MGDCC
had a 4.06% increase in accuracy over MFCC and an 18.04% increase over LFCC
features. Poor performance on DA-IICT Infant Cry dataset (D2), is due to its
recording setup, i.e., the recordings were done in open, making them wild, and
thereby evaluating proposed methodology on most realistic scenerio possible.

5.3 Evaluation on Cross-Dataset Scenarios

In order to test the performance of our model in realistic testing scenarios, we
tested models of all four feature sets with alternate dataset than on which they
were trained, i.e., realistic cross-database scenario. This section of the study looks
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Table 2. Comparison of Features w.r.t. Different Datasets

Dataset Features Accuracy (in %) EER (in %) F1-Score

DA-IICT MFCC 79.55 20.49 66.67

LFCC 65.57 34.42 52.27

GDCC 79.51 20.49 61.54

MGDCC 83.61 16.39 69.71

Bably Chillanto MFCC 97.78 2.22 97.91

LFCC 96.89 3.12 97.12

GDCC 91.56 8.44 92.12

MGDCC 99.56 0.97 99.11

into the ability of the MGDCC feature set to perform in the random datasets
testing portion, where the data has not been trained. Results shown in Table 3
indicate that even when evaluated across different datasets, the MGDCC feature
performs better than other feature vectors. It can be observed that the % accu-
racy reduces significantly for each feature by performing cross-evaluation, which
indicates we need more large and balanced database in order to identify infant’s
cry as healthy or pathological cry. We obtained total of 1.58% increase in accu-
racy than MFCC feature, and 9.78% accuracy when we test the model on
D1 dataset. We obtained 10.45% increase in accuracy than MFCC, and 9.11%
increase than LFCC when model is trained on D2 corpus and testing on Baby
Chillanto (D1) corpus. The better performance of MGDCC for cross-database
may be attenuated to the fact that it may capture class-specific characteristics
more dominantly due to its mathematical structure of representing Fourier phase
information, which further helps in synthesizing given pattern-specific charac-
teristics (i.e., class information).

Table 3. Results on Cross-Database Scenarios

test ==> DA-IICT Baby Chillanto

train ==> Baby Chillanto DA-IICT

Performance Metrics Accuracy (in %) EER F1-Score Accuracy (in %) EER F1-Score

MFCC 68.03 30.02 68.23 45.77 43.32 46.05

LFCC 59.83 37.34 61.11 47.11 44.12 47.38

GDCC 34.42 47.86 33.98 53.77 37.76 54.37

MGDCC 69.61 29.87 71.77 56.22 35.13 55.92

5.4 Analysis of Latency Period

Latency period is the least amount of frames necessary for achieving the highest
classification accuracy [26]. We have evaluated the accuracy against the latency
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introduced by the frame count. The frames are varied from a range 50–300.
The results show that MGDCC consistently performs better than other fea-
tures because of the ability to capture phase-based and temporal attributes.
Analysis of latency period is carried out to calculate minimum time period of
data required for given classification task. This further helps to optimize space
complexity, along with time complexity, in order to make system reliable and
efficient. Latency analysis was performed on D1 dataset (Fig. 4).

Fig. 4. Analysis of Latency Period on Baby Chillanto (D1) Dataset.

5.5 Robustness of MGDCC for Signal Degradation Conclusions

In this study, we examine how adding babble noise to the MGDCC proposed
features affects their noise robustness. All experiments of this sub-Section were
performed on standard D1 dataset. We also performance of these features in com-
parison to MFCC, LFCC, and GDCC. Additionally, the effects of noise power on
the proposed method are examined by taking several SNR levels for babble noise
into account, such as −5 dB, 0 dB, 5 dB, and 10 dB. These experiments assist
us for analyzing the model’s performance in real-world scenarios. We obtained
better results using MGDCC than MFCC and LFCC features, which shows the
superiority of MGDCC features even under noisy conditions. In addition, this
experiment also helps us to get estimation of models accuracy in day-to-day life
scenario. We were unable to perform experiments on other types of noise due to
limited time and storage resources (Fig. 5).
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Fig. 5. Results under noise degradation using Additive Babble Noise on Baby Chillanto
(D1) dataset.

5.6 Comparison With Existing Works

This sub-Section compares the proposed approach w.r.t. existing approaches.
We compare our results with state-of-the-art (SOTA) OpenAI’s Whisper, which
is one of the most popular feature in recent days. Furthermore, we compare our
findings with alternative approaches based on MFCC and spectrogram charac-
teristics. It can be observed that the results for MGDCC with CNN classifier, is
better than the existing approaches. This indicates the importance of phasebased
properties and poles and zeros in audio signal. We obtained 12.53% higher accu-
racy than existing baseline work [27] proving the superiority of MGDCC over
spectrograms. In order to do fair comparison with baseline, kept the classifier
same (layers may differ in minor) and just altered feature set. Whisper being
a large scale pre-trained model, is also not able to capture particular infor-
mation which MGDCC is able to capture. Appendix gives mathematical proof
justifying noise robustness of MGDCC features. Only accuracy was employed as
comparison factor in this sub-Section, as most of the studies in the literature
have reported only accuracy as their evaluation factor (Table 4).
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Table 4. Comparison With Different Existing Works on D1 Dataset.

Source Features Pattern Classifiers Accuracy (in %)

[27] Spectrogram CNN 87.03

[27] Spectrogram TLCNN & SVM 90.8

[27] Spectrogram SVM 90.10

[27] Spectrogram TL ResNet50 90.80

[27] Spectrogram SVM + TL ResNet50 91.10

[28] Spectrogram → TL CNN GCN (supervised/unsupervised) 92.01/94.39

[17] MFCC Bi-LSTM 97.17

[17] Whisper CNN 97.31

[17] Whisper Bi-LSTM 97.31

[Proposed] MGDCC CNN 99.56

6 Summary and Conclusions

In this work, we presented significance of Fourier transform phase-based features
to classify infant cries. We enquired MGDF-based features for identifying healthy
vs. pathological cries. This study investigated two group delay-based features,
namely, GDCC and MGDCC, using two different datasets. The primary goal of
this study is to emphasize the significance of phase-based features for the chosen
task. The features extracted by signal processing concepts were then fed into the
CNN classifier for classification. For this study, we made a variety of observations
based on testing accuracy, EER, and F1-score. In comparison to existing widely
used features, we achieved significantly better results for the task selected. We
also discussed the difference and improvement between GDCC and MGDCC
feature vectors. The proposed system have been explored for only one type of
noise, which we aim to extend the work to various different types of noise, to
analyze effect of different types of noise on model, as a future task. Future works
also involve more detailed exploration on phase-based features, and fusion of
features analysis of proposed approach.
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Lab DA-IICT), and DA-IICT authorities for his helpful support in this study. The
authors sincerely thank the MeitY, for funding this study under project ‘BHASHINI’,
(Grant ID: 11(1)2022-HCC(TDIL)).

Appendix: Noise Robustness of MGDCC

Let clean signal (x) be a clean signal, degraded by adding uncorrelated, addi-
tive noise (x) with 0 mean and σ2 variance. Then, the noisy signal (x) can be
represented as,

noisysignal (x) = clean signal (x) + noise(x). (7)
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Obtaining the power spectrum, and taking the Fourier transform, we get,

Pnoisy

(
ejω0

)
= Pclean

(
ejω0

)
+ Pnoise

(
ejω0

)
. (8)

Two frequency regions, which are mutually exclusive (higher and lower SNR),
can be obtained from Eq. (8). For the scenario of lower signal-to-noise ratio
(SNR), we examine frequencies ω0 satisfying Pclean

(
ejω0

) � σ2 (ω0), while for
higher SNR, we focus on frequencies ω0, where Pclean

(
ejω0

) � σ2 (ω0) [29]. For
low SNR, we have:

Pnoisy

(
ejω0

)
= σ2 (ω0)

(
1 +

Pclean

(
ejω0

)
σ2 (ω0)

)
. (9)

Solving Eq. (9), and neglecting higher order terms, we get:

ln
(
Pnoisy

(
ejω0

)) ≈ ln
(
σ2 (ω0)

)
+

1
σ2 (ω0)

[
d0 +

+∞∑
x=1

dx cos
(

2π

ω0
ω0x

)]
. (10)

Equation (10) can be further solved and GDF can be obtained as mentioned in
[29]:

τ
(
ejω0

) ≈ 1
σ2 (ω0)

+∞∑
x=1

xdx cos (ω0x) . (11)

Similarly for higher SNR, we have:

Pnoisy

(
ejω0

)
= Pclean

(
ejω0

) (
1 +

σ2 (ω0)
Pclean (ω0)

)
. (12)

Taking the logarithm on both sides of Eq. (12) and using the Taylor series
expansion results in expanded term as:

ln
(
Pnoisy

(
ejω0

)) ≈ d0
2

+
σ2 (ω0) e0

2
+

+∞∑
x=1

(
dx + σ2 (ω0) ex

)
cos (ω0x) . (13)

Equation (13) can be solved to GDF and the term obtained can be repre-
sented as [29]:

τ
(
ejω0

) ≈
+∞∑
x=1

x
(
dx + σ2 (ω0) ex

)
cos (ω0x) (14)

The respective GDF for these cases (Eq. (11), and Eq. (14)) summarized and
represented as follows [29]:

τGDF

(
ejω0

) ≈
{

1
σ2(ω0)

∑+∞
x=1 xdx cos (ω0x) , for lower SNR,∑+∞

x=1 x
(
dx + σ2 (ω0) ex

)
cos (ω0x) , for higher SNR,

(15)
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The Fourier series coefficients of ln
(
Pnoisy

(
ejω0

))
and 1

Pcle an(ejω0 )
are

denoted by dx’s and ex’s, respectively. Equation (15) reveals that in the lower
SNR scenario, the GDF is inversely proportional to the noise power, suggest-
ing that the GDF effectively preserves peaks and valleys amidst additive noise.
Conversely, for higher SNR values, the GDF is proportional to noise power,
although the noise power is lower than the signal power. These findings imply
that the GDF tracks the signal spectrum rather than the noise spectrum.
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Abstract. Finger-vein (FV) biometrics is an active and growing topic
of research. Most FV systems available today rely on contact sensors
that capture vein patterns of a single finger at a time. We have recently
completed a project aimed at designing a contactless vein sensing plat-
form, named sweet . In this paper we present a new FV dataset collected
using sweet . The dataset includes multiple FV samples from 120 sub-
jects and 280 presentation attack instruments (PAI), captured in a con-
tactless manner. Further, we present baseline FV authentication (FVA)
results achieved for proposed dataset. The sweet platform is equipped to
capture a sequence of images suitable for photometric-stereo (PS) recon-
struction of 3D surfaces. We present a FV presentation attack detection
(PAD) method based on PS reconstruction, and the corresponding base-
line FV PAD results on the proposed dataset. (See Footnote 4.)

1 Introduction

Vascular biometrics offers several advantages over other biometrics modalities,
such as high accuracy, robustness to variations in ambient illumination and
robustness to presentation attacks (PA). Finger-vein (FV) sensors are the most
common type of vascular-biometrics devices. Most commercially available FV
sensors today use transmissive near-infrared (NIR) illumination – the camera
captures the light passing through the finger. These FV devices rely on contact-
imaging, where the user is required to place a finger on a transparent support,
to provide a biometric sample.

The main benefit of such a contact-imaging apparatus is the high quality
of vascular images. In contact-imaging based FV devices, the distance between
the presented finger and the camera is fixed a priori, and therefore the camera
parameters can be adjusted accordingly, to obtain sharp images. The NIR illu-
mination intensity may also be controlled adequately, so as to provide sufficient
contrast between the blood-vessels and the surrounding tissue. Contact-imaging
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Fig. 1. (a) Prototype of the sweet platform. (b) Contactless bona-fide presentation. (c)
Apparatus for recording certain species of presentation attacks (PA). Note, in (b), that
the horizontal bar has been placed only to indicate to data-subjects the approximate
height at which to present the hand. The finger-tips are not actually resting on the
bar.

for biometric sensors, however, may be undesirable in certain deployment sce-
narios where hygiene is critical, such as hospitals, or even commercial points of
sale.

We have developed a platform for contactless hand-vascular biometrics. The
open-source design of this hardware platform, named sweet, is presented in a
separate paper [3]. The prototype sweet platform is shown in Fig. 1(a). Here,
the hand is presented at a distance of between 10 and 15 cm from the sensor, as
illustrated in Fig. 1(b). sweet can capture biometrics samples under a variety of
illumination-modalities. At present it is equipped to capture images under white
LED light using a color (RGB) camera, and two NIR wavelengths, 850 nm and
950 nm, using two NIR cameras. The NIR cameras record vascular data. Each
NIR camera also records data for Photometric-Stereo (PS) reconstruction of the
target-surface, by capturing a set of images under a controlled illumination-
sequence. This PS capability has been included for detecting presentation attacks
(PA). Because of its contactless design, the sweet platform also supports vascular
biometrics for palm and wrist modalities. The present work is concerned with FV
biometrics only.

In this work we present a new dataset, named CandyFV, collected using the
sweet platform. This dataset, which includes several FV samples per subject
from a gender-balanced test crew of 120 subjects could support research on a
variety of questions related to FV biometrics. In this work we have described
our baseline FV authentication (FVA) method, and have provided results of this
method on the new dataset.

The proposed dataset also includes PAs made using PA instruments (PAI)
of 14 PAI species. We also present a FV PAD method that utilizes the surface-
normal map reconstructed using PS. The main contributions of this work are
(i) a new FV dataset containing 1200 genuine FV samples and 1400 PA samples
from 14 PAI species; (ii) baseline FVA performance using a well-understood FVA
pipeline; and (iii) a new baseline FV PAD method based on PS reconstruction,
accompanied by its performance on the new dataset.
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We begin, in Sect. 2, with a brief review of related research. The new dataset,
including the data collection process, is described in Sect. 3. The baseline FVA
method, and the PS based FV PAD method are described in Sect. 4. Then, the
experimental methodology and results for both FVA and FV PAD are discussed
in Sect. 5. A summary of this work and some perspectives on future work are
presented in Sect. 6.

2 Related Research

For a comprehensive overview of FV biometrics, we point the interested reader
to a recent review of the subject compiled by Hou et al. [4]. In this section we
discuss selected works related to FVA and FV PAD that are relevant to the
present study.

Finger-Vein Authentication Datasets: Newly proposed FVA algorithms can
be compared to the state of the art using publicly available datasets such as
SDUMLA-HMT [22], MMCBNU 6000 [9], VERA-finger [19], UTFVP [18], and
SCUT-SFVD [13]. One common characteristic of these datasets is that the bio-
metric samples represent only single fingers. In contrast, FV samples in the pre-
sented dataset show four fingers together, which enables finger-fusion for more
robust FVA and FV PAD.

Finger-Vein Authentication Systems: Mainstream vascular biometrics sys-
tems still rely on hand-crafted features such as Repeated Line-Tracking (RLT)
[10], maximum curvature (MC) [11], wide-line detection (WLD) [5]. These algo-
rithms extract binary pixel-maps representing the vein-network in the biometric
sample allowing to compare them. In this work we have used MC features.

Frequency-domain methods for FVA has also been proposed. Yang et al.
[21] have used a bank of Gabor filters to enhance veins at different scales and
then construct a set of FVCodes that are compared using a Cosine-similarity
function. Yang et al. claim that their method performs better than MC features
[11]. These results, however, have been estimated over a proprietary, unpublished
dataset. More recently, Kovač and Marák [8] have used Gabor filters to detect
feature-points in vein-images.

Publicly available FV datasets are not large enough to train a convolu-
tional neural network (CNN) from scratch. Up to now, deep-learning based
FVA approaches have adapted pre-trained CNNs through transfer-learning on
FV datasets to construct feature-extractors. Besides FVA, deep-learning based
methods have also been developed for other purposes such as vein enhance-
ment, vein segmentation, and even encryption (see [23]). Kotwal and Marcel
proposed a lightweight module – Residual Feature Pyramid Network (ResFPN)
– for enhancement of vascular structures [7]. Bros et al. [2] propose a Resid-
ual Convolutional Autoencoder (RCAE) for vein-enhancement that reduces the
classification error on the UTVFP dataset from 2.1% to 1%. In the present work
we have used this RCAE in our FVA pipeline as well.
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Research on FV PAD: Since the first comprehensive review of FV PAD meth-
ods [14], several new FV PAD methods have been proposed. Qui et al. [13]
use total variational (TV) decomposition to decompose a FV image into struc-
ture and noise components. The two components are then modeled separately
using local binary patterns (LBP), and the LBP histograms are subsequently
classified using a cascade-classifier. This method (TV-LBP) achieves nearly per-
fect PAD on two public datasets – IDIAP VERA-finger [19] and SCUT-FVD
[13].

Singh et al. [17] have used the SfSNet [16] to reconstruct a surface-normal
map as well as a diffusion-map from a single (transmissive) image. The key
difference between their work and our proposed FV-PAD is that in our case the
surface-normal map is computed from photometry-data collected explicitly for
this purpose (PS), whereas Singh et al. decompose a single image into a surface-
normal map and a diffusion map using a pre-trained SfSNet. Surface-normal
maps reconstructed using SfSNet do not always reflect the reality.

Raghavendra et al. [15] have used transfer learning to adapt a pre-trained
Alex-Net for FV PAD. They demonstrate that their method consistently achieves
a BPCER of 0 on several public datasets. The APCER for their method varies
from 0.5% to 3.5%, depending on the species of presentation attack instru-
ment (PAI) used.

From the analysis presented in this section we see that the idea of using
Photometric-Stereo for FV PAD has not been explored previously (only for bio-
metric recognition).

3 Data Collection

Using the sweet platform we have collected a new dataset, named CandyFV for
FVA and PAD experiments. The proposed dataset is described in this section.

Fig. 2. Finger-vein data captured in various channels using the sweet platform. (a)
Fingers illuminated under 850 nm NIR; (b) fingers illuminated under 950 nm NIR; (c)
pseudo-color map showing the 3D surface-normals reconstructed from the photometric
stereo (PS) data.
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Bona Fide FV Samples: FV samples from 120 subjects (62 male and 58
female) comprise the CandyFV dataset. The two gender groups are approxi-
mately evenly distributed over three age-groups: 18–30 years, 31–50 years, and
51 and above. Five samples for each hand are recorded for each subject. As illus-
trated in Fig. 2, the subject presents the hand with four fingers close together
(named the fingers-closed modality), over the three cameras, at a distance of
roughly 10–15 cm from the cameras. (Note that, the presented hand is not in
contact with the horizontal steel bar; it just appears so in the picture due to the
perspective.) Thumbs are not used in our experiments.

Each sample includes 20 usable images per camera (2 NIR cameras, and one
color camera), captured under a variety of illuminations. For FVA, we use the FV
images recorded by the two NIR cameras under 850 nm (‘NIR-850’) and 950 nm
(‘NIR-950’) illumination. Each sample yields three images captured under NIR-
850 illumination for each of the two (left, right) NIR cameras, and similarly,
three images with NIR-950 illumination. The sample also includes four images
captured specifically for PS reconstruction. These have been used in FV PAD
experiments.

Fig. 3. Illustrations of some PAIs used in this work. The PAI species (described in
Table 1) shown in each image is indicated in the caption.

Presentation Attacks: As is well known, vascular biometrics are very secure
in the context of PAs. Unlike for superficial biometrics traits, such as face or
fingerprint, it is almost impossible to construct a FV PAI without the cooper-
ation of the textittarget subject. Here we have simulated the situation where a
malevolent actor may gain unauthorized access to a database of FV biometrics
samples. In other words, our PAIs have been constructed from the bona-fide
samples recorded previously using the sweet platform. To construct our PAIs
we have arbitrarily selected 20 target subjects. For each target subject a single
NIR-850 image of the right hand captured by the left NIR camera has been used
to create PAIs of several species, grouped into two levels, A and B:

Level A: PAIs can be created with minimal effort, within a day.

Level B: PAIs may take between one and three days to create, and require some
expertise or specialized equipment.

The various PAI species are described in Table 1. As indicated in this table,
we have considered four Level A and 10 Level B PAI species. The PAIs of Level



Vascular Biometrics Experiments on Candy 295

A are made by printing the source-images on two kinds of photo-paper (glossy
and matte) using two different kinds of printers – a laser printer and an inkjet
printer. The toner used in laser printers typically has NIR-absorbent properties.
The PAIs in the various Level B species have been made either by enhancing
the source-images before printing them, or by creating artefacts in other ways
that may confound the proposed FV-PAD method.

For each PAI, again, five samples have been recorded using the sweet plat-
form. In most cases, the PAI is presented to the sweet platform in the same way
as a bona-fide presentation. Care is taken to hold the PAI over the cameras, as
flat and horizontal as possible.

A different method has been used to capture PA samples of PAIs of the
species B4. PAIs of this species are created by printing the source-image on a
transparent sheet of plastic. To perform the PA, a bona-fide hand is placed over
the image printed on transparent plastic. The idea is to see if the 3D shape of the
bona-fide hand may fool the PS-based FV PAD method. Here we have placed
a cardboard box over the sweet platform. The box has a rectangular hole cut
out on the top surface. A transparent plastic PAI is placed on the box such that
the printed FV image is visible to the cameras through the hole in the box. The
attacker then places his or her (bona-fide) hand over the PAI, so that it is visible
to the cameras through the PAI. This setup is illustrated in Fig. 1(c). Examples
of selected PAI artefacts are shown in Fig. 3.

4 Baseline Algorithms

In this section we describe the FVA and FV PAD algorithms used in this study
to generate baseline results for the CandyFV dataset.

Table 1. Descriptions of the PAI species of levels A and B. The letters A and B in the
first column indicate the level of the PAI species.

Species Description

A1 Source image printed on glossy paper on a laser printer

A2 Source image printed on matte paper on a laser printer

A3 Source image printed on glossy paper on an inkjet printer

A4 Source image printed on matte paper on an inkjet printer

B1 Image printed on glossy paper on a laser printer, with veins enhanced manually using a black marker

B2 Image printed on matte paper on a laser printer, with veins enhanced manually using a black marker

B3 Vein pattern drawn with black marker on a latex glove

B4 Image printed on plastic transparency, with a bona fide hand presented over the transparency

B5 Hand-region cut out from image printed on glossy paper on a laser printer

B6 Hand-region cut out from image printed on matte paper on a laser printer

B7 Image printed on glossy paper on an inkjet printer, with veins enhanced manually using a black marker

B8 Image printed on matte paper on an inkjet printer, with veins enhanced manually using a black marker

B9 Hand-region cut out from image printed on glossy paper on an inkjet printer

B10 Hand-region cut out from image printed on matte paper on an inkjet printer
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4.1 FV Authentication Baseline

Finger-vein samples are compared based on templates. To enroll a new subject in
the biometrics verification system, the subject first provides a biometric sample.
A template constructed from this sample is stored in the biometrics system, asso-
ciated with the subject’s identity. During the probe phase, the subject claims a
certain identity, and provides a new biometric probe sample. The system then
compares the probe-template (derived from the probe sample) with the template
previously enrolled for the claimed identity. If the two templates are sufficiently
similar (i.e., the match-score is above a predetermined threshold), we consider
that the probe sample indeed corresponds to the claimed identity. In this section
we describe the template creation process used in our baseline FVA method, as
well as the method used here for comparing FV templates.

4.1.1 Finger-Vein Template Creation
The flowchart of the FV template creation process is shown in Fig. 4. Each input
FV-sample is an image corresponding to a presentation, showing all fingers of the
presented hand. First, the four fingers – index-, middle-, ring-, and little-finger
– are segmented out from the input image. One template is constructed for each
separate finger. The various steps indicated in Fig. 4 are described below.

Fig. 4. Flowchart for constructing a FV-template from a FV-sample.

Finger Segmentation: First we generate a foreground mask using adaptive thresh-
olding (Otsu’s method [12]) to detect the hand-region (foreground object) in the
image. Small regions in the resulting binary image are deleted using morpholog-
ical opening. We then scan the foreground mask along the horizontal axis for the
first foreground pixel (assumed to belong to the hand in the image). The location
of detected pixel is assumed to correspond to the tip of one finger (the tallest
finger). The left and right boundaries of the finger are obtained by scanning the
input image horizontally for finger-edges on both sides. This scanning process is
repeated for each row in the image, as long as the left and right finger-boundaries
extracted correspond to a reasonable finger-width determined empirically from
few samples. The scanning process terminates when the finger-width estimated
for a given row exceeds the nominal finger-width value by a factor of 1.25. At this
point we assume that we have identified all pixels representing a single finger –
currently the tallest finger in the foreground region. Then we remove this finger
from the binary mask (set all finger-pixels to background) and repeat the scan-
ning process again, this time to find another finger. This procedure is repeated
four times, to detect four fingers in the image.
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In this approach, fingers are detected in order of their height in the input
image (the finger closest to the top-edge of the image is detected first, followed
by the second-tallest, and so on). We use the relative coordinates of the center-of-
gravity of each finger-mask to renumber the fingers in a natural order from index-
to little-finger. This procedure of renumbering the fingers works correctly only
when all four fingers have been detected. (If, for example, only three fingers have
been detected, then we cannot tell whether these are index-, middle- and ring-
finger, or middle-, ring-, and little-finger.) For this reason, images where all four
fingers are not detected, are excluded from further processing. The process of
finger-segmentation is illustrated in Fig. 5, and an example of an extracted finger-
region is shown in Fig. 6(a).

Fig. 5. Illustration of the finger-segmentation process.

Finger Normalization: Next, a normalization step proposed by Huang et al. [5]
is applied to each individual finger-image. This step simply rotates the finger-
image to align the longitudinal axis of the finger to the vertical axis as best as
possible. The purpose of this normalization is to correct for minor hand-rotations
(‘yaw’) during presentation. Compare the finger-orientations in Fig. 6(a) and
(b) to understand the effect of this normalization step.

Finger-Vein Enhancement: We use a pre-trained autoencoder [2] to enhance the
vascular structures in the input (normalized finger) image. Preliminary experi-
ments showed that FV-enhancement improves the FV recognition accuracy sig-
nificantly. Hence, we have included the FV-enhancement module in our pro-
cessing pipeline. A sample result of the vein enhancement process is shown in
Fig. 6(c).

Vascular Feature Extraction: FV patterns are compared based on a set of image-
features extracted from the two vein-images being compared. In this work we
have used the Maximum-Curvature (MC) features [11]. A sample result of the
finger-vein MC feature-extraction process is shown in Fig. 6(d). The MC feature-
map extracted for a single finger is considered as the biometric template for the
finger.
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Fig. 6. Example result of the vein-enhancement. (a) Extracted finger-image; (b) nor-
malized finger-image; (c) Vein-enhanced finger-image; (d) MC-feature-map extracted
from (c). Note the slight rotation towards the vertical axis in (b) w.r.t. (a). The nor-
malized finger-image, (b), forms the input to the vein-enhancement autoencoder [2].

4.1.2 Finger-Vein Matching
We have used the method proposed by Miura et al. [11] to compare two MC-
feature based templates. This method uses cross-correlation (computed in the
frequency domain) to find the position of best match of the two input feature-
maps. The cross-correlation coefficient at the best-match position is taken as the
match-score between the two templates.

4.2 FV PAD Using Photometric Stereo

Our baseline method for FV-PAD relies on a dense surface-normal map com-
puted from the PS data recorded by each NIR camera. Before presenting our
FV-PAD method, we briefly describe the processing of recovering the surface-
normal map using PS.

4.2.1 Photometric Stereo Reconstruction
The LEDs in the sweet platform are organized in four banks. The four LED
banks, when fired in a pre-defined sequence, illuminate the presented hand from
different angles. The resulting set of four images can be used to recover the
surface-normal map of the hand [20]. This PS reconstruction produces a pixel-
wise surface-normal map. The method also produces an albedo image of the
presented hand. Figure 7 shows an example of PS reconstruction using data
from the sweet platform.
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Fig. 7. Sample recovered 3D surface-normal map shown as a false-color composite (a),
and its individual directional components: (b) X; (c) Y ; and (d) Z. (e) Recovered
albedo image.

Fig. 8. Flowchart of the proposed FV-PAD algorithm.

4.2.2 Proposed FV-PAD Method
The processing pipeline of the proposed FV PAD method is shown in Fig. 8. The
various steps in the proposed FV PAD method are described here.

Surface-Normal Map: Recall that, in every sample, the sweet platform captures a
sequence of four images where the presented hand is illuminated from a different
angle in every image. The first step is to process these four input images to
generate the surface-normal map for the hand (using the method described in
Sect. 4.2.1). One surface-normal map is reconstructed for each NIR camera. Each
map consists of surface-normal vectors computed for each pixel-position.

Hand-Region Detection: K-means clustering [1] is used to group pixels into two
clusters. The input to the clustering method consists of the three components of
the surface-normal as well as the albedo value of each pixel. The cluster with
the higher mean-albedo is considered as the foreground cluster, which may
include multiple isolated foregound regions. Based on the assumption that the
largest foreground region corresponds to the presented hand, we use connected-
component analysis to retain only the largest isolated region in the foreground
cluster as the hand-region.

Feature Extraction: The feature-vector that we use for FV PAD is derived from a
two-dimensional (2D) histogram of surface-normal angles. Each surface-normal
vector, (x, y, z), of the retained hand-region is transformed into an equiva-
lent representation (θ1, θ2, M) where θ1 represents the angle of the vector
with respect to the x-y plane and θ2 represents the angle of the vector with
respect to the y-z plane. The angles θ1 and θ2 are naturally bounded in the
range [−π/2, π/2]. The magnitude, M , of the surface-normal vector is ignored.
For each surface-normal map we construct a 2D histogram by quantizing θ1 and
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θ2 each into N bins over the detected hand-region. (N = 41 in this study.) The
N bins cover the range [−π/2, π/2] in each dimension. The 2D histograms are
used to construct feature-vectors to distinguish between bona fide and PA classes.
For both classes, a large majority of the histogram-bins are empty (bin count
= 0). Such empty bins act as confounders during the classification process. To
mitigate this problem, we reduce the dimensionality of the feature-vectors using
Principal Components Analysis (PCA) [1].

Feature Classification: We have used Gaussian Mixture Models (GMM) [1] to
classify the feature-vectors generated in the previous step. One GMM is trained
for each class (bona fide, PA). Given an input probe feature-vector, the likeli-
hood that it comes from each of the two classes is evaluated using the GMMs
corresponding to each class. Specifically, for a given feature-vector, let llBF and
llPA be the log-likelihood values returned by the GMMs for the bona fide and PA
classes, respectively. The difference (llBF − llPA) is taken as the classification-
score for the probe feature-vector.

5 Baseline Experiments Using CandyFV Dataset

Baseline FVA and FV PAD results for the CandyFV dataset are discussed
here. First we describe the methodology used in our baseline FVA experi-
ments (Sect. 5.1), followed by the baseline FVA results on the CandyFV dataset
(Sect. 5.2). In Sect. 5.3 we present the methodology adopted for our baseline FV
PAD experiments. Baseline FV PAD results are presented in Sect. 5.4.

5.1 Methodology for FVA Experiments

Two sets of FVA experiments are presented here – single-finger FVA, and multi-
finger FVA based on score-fusion. For the FVA experiments, first we group the
subjects into two disjoint subsets, named the development (‘Dev’) set and the
evaluation (‘Eval’) set. The Dev set is used for tuning hyper-parameters of the
FVA system for the desired performance. The performance of the tuned FVA
system is then evaluated using the Eval set, to quantify the performance of the
system. The Dev and Eval sets have been constructed arbitrarily – data for the
first 60 subjects has been assigned to the Dev set and data for the remaining
subjects has been assigned to the Eval set.

Recall that for the FVA experiments, only the NIR-850 and NIR-950 images
from CandyFV dataset are used. From each image captured by the sweet plat-
form, we extract three individual finger-vein images, corresponding to the index-,
middle- and ring-finger recorded in the image. Within each set (Dev or Eval), we
have five FV samples for each subject. That is, for each camera we have 15 NIR-
850 images and similarly 15 NIR-950 images, per hand, per subject. Considering
three fingers (index, middle, and ring) per hand, we have 90 single-finger vein
images for each camera and each NIR-illumination for each subject.
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In single-finger FVA experiments, FV templates have been compared under
eight different protocols, listed in Table 2.1 The table shows the number of enroll-
ment and probe samples in each subset, for the eight protocols. In each protocol,
we have arbitrarily selected one sample of each subject as the enrollment sample.
The remaining samples have been designated as probe-samples. For single-finger
FVA, each enrolled sample is considered a unique identity. Each probe-sample
has been used for four comparisons – one genuine comparison (with the correctly
matched identity), and three zero-effort-impostor (ZEI) comparisons (with non-
matched identities). In each ZEI comparison, the claimed-identity for a given
probe-template is selected randomly.

Table 2. List of protocols for finger-comparison experiments. For each protocol, the
number of enrollment images and probe images in the development (Dev) set, as well
as in the evaluation (Eval) set are also listed. Each protocol name consists of three
strings indicating the hand (‘LH’ or ‘RH’), the NIR camera used (‘left’ or ‘right’), and
the NIR illumination (850 nm or 950 nm).

Id. Protocol Name Dev Set Eval Set

Num. Images Num. Images

Enrol. Probe Enrol. Probe

P1 LH left 850 159 8064 159 7836

P2 LH left 950 141 4908 138 4665

P3 LH right 850 159 7968 156 7791

P4 LH right 950 147 6372 144 6300

P5 RH left 850 156 7200 156 6998

P6 RH left 950 153 6138 136 4644

P7 RH right 850 156 7116 156 7032

P8 RH right 950 144 4842 123 3969

Next, we consider each hand of a subject as a unique identity. We have imple-
mented a finger-score fusion based method to identify each hand based on three
fingers of the hand: index-, middle-, and ring-finger. Thus, each hand-probe is
represented by a 3-D feature-vector consisting of single-finger FVA scores. While
constructing these feature-vectors, finger-FVA scores are selected either only
from genuine-probes of a given hand identity, or only from ZEI-probes of the
hand in question. In this way we obtain, for each hand-identity, a set of genuine-
probe (‘match’) feature-vectors, and another set of ZEI (‘non-match’) feature-
vectors.
1 Each protocol name is composed of three elements: <Hand> <Camera> <NIR>.
The Hand may be ‘LH’ (Left hand) or ‘RH’ (Right hand). The Camera compo-
nent (‘left’ or ‘right’) indicates the NIR camera from which the template has been
derived. The NIR component may be ‘850’ or ‘950’, indicating the illumination used
to capture the image-sample.
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A two-class classifier is then constructed using the feature-vectors in the Dev
set. This classifier is used to label the hand feature-vectors of the Eval set. In this
study, we have used Support Vector Machines (SVM) with RBF (radial basis
function) kernel [1], for the hand-identification experiments. In each protocol in
Table 2, we fuse the FVA-scores of the three fingers of the hand. Thus, all probe
feature-vectors used in a given experiment represent information from the same
hand, captured by the same NIR camera, under the same NIR illumination.

5.2 FVA Performance at Fixed FMR

In this section we first present the results of single finger recognition, followed by
hand-recognition results based on finger-score fusion. In all our experiments, we
have estimated the recognition performance at the operating point corresponding
to a specific FMR of 0.1%.2 That is, the score-threshold is selected such that the
FMR over the Dev set does not exceed the desired FMR limit. This score-
threshold is then applied the Dev set and the Eval set, to determine the actual
FMR and FNMR rates over each dataset.

5.2.1 Single Finger-Vein Recognition
In Table 3 we summarize the FMR and FNMR achieved for various evaluation
protocols, for single-finger FVA, for the FMR ceiling of 0.1%. The results show
that the FVA performance is significantly better for the right-hand fingers (pro-
tocols P5–P8) than for the left-hand fingers. We do not have any logical expla-
nation for this phenomenon. We assume that right hand presentations by most
subjects may have been more consistent (less variability) than left hand presen-
tations, for one of two reasons: (1) increased familiarity with the data-capture

Table 3. Finger-vein recognition performance (expressed as percentages) at False-
Match rate (FMR) of 0.1% (for the Dev set). The table shows results for single-finger
recognition as well as hand-recognition based on finger-score fusion. The lowest HTER
values are highlighted in bold characters.

Protocol Single-Finger Recognition Multi-Finger Hand Recognition

Dev Set Eval Set Dev Set Eval Set

FMR FNMR HTER FMR FNMR HTER FMR FNMR HTER FMR FNMR HTER

P1 0.1 3.82 1.96 0.17 7.3 3.74 0.1 2.68 1.39 0.20 4.29 2.25

P2 0.08 8.7 4.39 0.09 10.05 5.07 0.08 4.2 2.14 0.54 3.57 2.06

P3 0.08 5.77 2.93 0.0 6.46 3.23 0.05 2.71 1.38 0.05 3.93 1.99

P4 0.09 7.74 3.91 0.02 9.45 4.74 0.06 3.04 1.55 0.6 2.67 1.66

P5 0.09 0.66 0.38 0.79 0.61 0.7 0.06 0.0 0.03 0.46 0.0 0.23

P6 0.09 0.57 0.33 0.66 0.60 0.63 0.07 0.0 0.03 0.45 0.0 0.23

P7 0.09 0.33 0.21 0.68 0.45 0.57 0.06 0.0 0.03 0.11 0.0 0.06

P8 0.09 1.39 0.74 0.04 2.27 1.15 0.08 0.46 0.27 0.0 1.51 0.76

2 In some experiments, the actual FMR for the Dev set may be slightly lower than
the desired FMR ceiling of 0.1%.
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procedure – subjects were consistently asked to present the left-hand first, or (2)
simply due to right-handedness of most subjects.

The single-finger FVA results in Table 3 that the recognition-rates achieved
for protocols involving 850 nm NIR illumination are usually somewhat bet-
ter than the corresponding (i.e., same hand, same camera) protocols involv-
ing 950 nm illumination. This result is counterintuitive. In theory, we expect
950 nm illumination to provide better results than 850 nm, because 950 nm NIR
penetrates the soft-tissue of the fingers to a deeper extent than 850 nm NIR.
Also, 850 nm NIR tends to produce more speckle noise on the skin-surface. On
the other hand, much more power is needed for the 950 nm illumination. Our
conjecture is that in the sweet platform the 950 nm illumination may not be
sufficiently powerful.

5.2.2 Hand-Recognition Based on Finger-Score Fusion
The results of FVA-score fusion within each FVA protocol are also shown in
Table 3. These numbers quantify the performance of the score-fusion system
corresponding to the classification-score-threshold that limits the FMR over the
Dev set to 0.1%. We note that FVA-score fusion improves the hand-recognition
performance compared to single finger FVA. For the left hand, the single FVA
error-rates (HTER in Table 3) range from 3.5% to 5% for each of the individual
fingers. Finger-fusion reduces the left-hand recognition error-rates to about 2%
or lower in all four left-hand protocols. For the right-hand, single-finger FVA
performance is already very high (FVA in protocols P5–P8 in Table 3). Multi-
finger FVA performance for the right hand still reduces the classification error.
The best performance for multi-finger FVA, with a HTER of 0.06% for the
‘RH right 850’, is almost a 10-fold improvement over single-finger FVA in the
same protocol.

5.3 Methodology for FV PAD Experiments

In this section we explain the methodology for the FV PAD experiments using
the method described in Sect. 4.2, on the CandyFV dataset. For the classification
experiments reported here, the PCA model for dimensionality reduction has
been trained to retain 99% of the total information in the input space (for
the Training set). The trained PCA model is applied to transform the input
histogram-features into a new 10-D feature-space. Thus, in the classification
step, each presentation is represented by a feature-vector of length 10.

Data Partitions: We have randomly grouped the subjects into two non-
overlapping sets: Training and Test3. Each set consists of data from 60 subjects
– 10 target subjects, and 50 non-target subjects. In each set (training, test),
the bona fide feature-vectors correspond to all 60 subjects comprising the set,
whereas the PA feature-vectors come from the 10 target subjects in the set.
3 Due to the small number of target-subjects in the CandyFV dataset, no separate
development set has been used for tuning classifier hyper-parameters.
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For each subject we consider only the feature-vectors representing the surface-
normal map of the right hand, computed for one camera – the ‘left’ camera. The
Training set consists of 590 bona fide and 1390 PA vectors. The Test set consists
of 608 bona fide and 1382 PA vectors.

PAD Classification: Two GMMs have been trained, one using the bona fide
feature-vectors and the other using the PA feature-vectors (of the Training set).
For each GMM we select the number of Gaussians such that the Akaike Informa-
tion Criterion (AIC) is minimum [1], based on trials with different numbers of
Gaussians. Thus, we obtain a GMM with two Gaussians for the bona fide class
and a GMM with 26 Gaussians for the PA class.

PAD Performance Metrics: We report the PAD results using the following fig-
ures of merit defined in the ISO/IEC 30107-3 standard [6]:

APCER: Attack Presentation Classification Error Rate – the proportion of PAs
that are misclassified, and

BPCER: Bona fide Presentation Classification Error Rate – proportion of bona
fide presentations that are misclassified.

The Average Classification Error Rate (ACER) – the mean of the APCER
and BPCER – summarizes the two ISO figures of merit with a single number.
APCER, BPCER, and ACER are expressed as percentages.

5.4 Baseline FV PAD Results

In this section we present the classification results produced by our baseline FV
PAD algorithm at two classification-score-thresholds: (1) the threshold corre-
sponding to the EER on the Training set, and (2) the threshold that limits the
APCER to a maximum of 1% on the Training set. FV PAD results for both
operating points are shown in Table 4. The table shows overall PAD results for
each operating point, PAD results for each PA level (Level A and Level B), as
well as for each individual PAI species.

5.4.1 PAD Classification at EER
Here we have selected the classification-score-threshold, TEER = −1.389, corre-
sponding to the EER (ACER = 2.4%) over the Training set. The APCER and
BPCER values achieved for the Test set using TEER are shown in the left half
of Table 4. Following ISO convention [6], when several PAI species of the same
Level are used, the performance metrics of the worst performing species are to
be taken as the aggregate PAD performance for the Level. Therefore, PAD per-
formance for Level A corresponds to the PAD performance obtained for PAI
species A1, and the performance metrics stated for Level B correspond to the
species B3. We note that, apart from PAI species B3, B5 and B6, the ACER for
the other species are low.
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5.4.2 PAD Classification at Fixed APCER (1%)
Next we examine the performance of the proposed FV PAD method when
the APCER is limited to 1% (this operating point is also referred to as the
BPCER100 point). Note that APCER ≤ 1% is a very stringent constraint. The
corresponding score-threshold, T1% = 0.464, is determined from the Training set.

The PAD performance metrics for the Test set at this operating point are
shown in the right half of Table 4. We note, again, that the APCER is high
for three PAI species, namely B3, B5 and B6, but quite low for the remaining
PAI species. We note that in this experiment BPCER100 remains at an accept-
able level for most applications. We also note that, except for the PAI species
B3, B5 and B6, the APCER for the various PAI species does not exceed 3%.

5.4.3 Analysis of FV-PAD Results
The results in Table 4 validate the PS based surface-shape reconstruction app-
roach for FV PAD, in general. The proposed method is clearly not adequate
for PAs of species B3 (PAs where the hand is covered with a latex glove on

Table 4. Performance of the proposed FV-PAD method (on the Test set) at two
operating points: the EER for the Training set (i.e., score-threshold TEER = −1.839),
and BPCER100 (i.e., T1% = 0.464, which limits the APCER on the Training set to
1%). Note that the APCER observed for the Test set may be higher from the desired
limit.

Level/Species EER (TEER) APCER ≤ 1% (T1%)

APCER BPCER ACER APCER BPCER ACER

Overall 5.2 1.2 3.2 3.1 9.4 6.2

Level A 1.0 1.2 1.1 0.0 9.4 4.7

Level B 31.7 1.2 16.4 15.0 9.4 12.2

A1 1.0 1.2 1.1 0.0 9.4 4.7

A2 0.0 1.2 0.6 0.0 9.4 4.7

A3 0.0 1.2 0.6 0.0 9.4 4.7

A4 0.0 1.2 0.6 0.0 9.4 4.7

B1 1.0 1.2 1.1 0.0 9.4 4.7

B2 1.0 1.2 1.1 1.0 9.4 5.2

B3 31.7 1.2 16.4 12.2 9.4 10.8

B4 0.0 1.2 0.6 0.0 9.4 4.7

B5 18.0 1.2 9.6 15.0 9.4 12.2

B6 16.0 1.2 8.6 12.0 9.4 10.7

B7 0.0 1.2 0.6 0.0 9.4 4.7

B8 0.0 1.2 0.6 0.0 9.4 4.7

B9 5.0 1.2 3.1 2.0 9.4 5.7

B10 4.0 1.2 2.6 3.0 9.4 6.2



306 S. Bhattacharjee et al.

which vein-patterns have been drawn with dark, NIR-visible, ink). Surface-
normal statistics alone are not sufficient to distinguish this class of PAs from
bona fide presentations. Additional cues are required to detect PAIs of species
B3.

PAI species B5, B6, B9, and B10 include PAIs made from printed vein-
pattern images, where the hand region has been cut out following the outline
of the fingers (see Fig. 3). Our experiments shows that the APCER is high for
the two PAI species printed on laser printer (B5, B6) but significantly lower for
B9 and B10, which have been printed on an inkjet printer. In general, we believe
that for these four PAI species, additional data, in the form of more PAIs in the
training set, may help improve the PAD results to some degree.

6 Conclusions

We present a new finger-vein (FV) dataset, named CandyFV, collected using
a newly designed contactless finger-vein sensor named sweet . Our open-source
sensor design is described in a separate paper. Unlike with most FV sensors
currently available, to use sweet the user presents a hand at a distance of 10–
15 cm. The platform can record FV samples of multiple fingers simultaneously,
using multiple illumination regimes. At present the platform illuminates the
presented hand with two different NIR wavelengths (850 nm and 950 nm) as well
as white light. Among other imaging modes, it also collects a sequence of four
images where the presented hand is illuminated from a different angle for every
image. Photometric Stereo (PS) reconstruction may be applied to this image-
sequence to compute a surface-normal map of the hand.

CandyFV includes data for both FV authentication (FVA) as well as FV
PAD experiments. For FVA experiments, the dataset includes FV samples from
120 subjects. For FV PAD studies, samples from 20 subjects have been used to
construct PAIs of 14 PAI species of Levels A and B. In this work we have also
provided some baseline FVA and FV PAD results for the proposed dataset4.

The baseline FVA pipeline used here relies on FV features extracted using the
maximum curvature (MC) method. Our experiments show that, by combining
three fingers of a hand, FVA accuracy of 0.06% FNMR can be achieved at the
operating point corresponding to a FMR of 0.1%.

The baseline FV PAD method presented in this work analyzes the surface-
normal map reconstructed using PS, to determine whether the corresponding
presentation is bona fide or a PA. Overall FV PAD performance, summarized
by the ACER for the test set, was 3.2% at EER and 6.2% when APCER was
constrained to 1%. The CandyFV dataset presented here is rich in FV informa-
tion, and can be used to further the state of the art in FV biometrics. In future

4 The CandyFV dataset is available for research purposes under license via the fol-
lowing URL: https://www.idiap.ch/dataset/candyfv. Python code for our base-
line methods for FVA and FV PAD, and our experimental protocols are avail-
able, under license, via the following URL: https://gitlab.idiap.ch/bob/bob.paper.
icpr2024.candy fv pad.

https://www.idiap.ch/dataset/candyfv
https://gitlab.idiap.ch/bob/bob.paper.icpr2024.candy_fv_pad
https://gitlab.idiap.ch/bob/bob.paper.icpr2024.candy_fv_pad
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work, we plan to develop a vision-transformer based method for FVA using this
dataset, as well as more effective FV PAD approaches.
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Abstract. Finger vein recognition systems are widely used in several
fields, and existing methods usually require many high-quality images
for training to ensure accuracy. As a result, research on the finger vein
image quality assessment (FVIQA) has received considerable attention.
However, in reality, the available finger vein images are often distributed
across multiple organizations or companies. Due to insufficient data and
a shortage of quality labels, it is difficult for such organizations and com-
panies to independently train accurate FVIQA models. At the same time,
due to user privacy and ownership constraints, it is typically not prac-
tical to pool data from multiple organizations or companies for model
training. To address this problem, this paper introduces federated learn-
ing into FVIQA for the first time and proposes a personalized federated
learning method for two-stage FVIQA (FedFVIQA). In the first stage,
each client labels the quality of unlabeled finger vein images based on
their similarity distribution for personalized scoring. In the second stage,
the clients collaborate with a server for the training of quality classifica-
tion model, thereby producing optimal personalized models. Finally, this
paper reports extensive experiments conducted on the SDUMLA-HMT,
NJUPT-FVP, HKPU-FV datasets to verify the superiority of the pro-
posed method.

Keywords: Finger vein image quality assessment · Federated
learning · Biometrics

1 Introduction

With the ongoing development of deep learning technology, the performance
of finger vein recognition techniques based on deep learning has continuously
improved, and these techniques have been widely applied in many fields, such as
finance, healthcare, and logistics. Such finger vein recognition methods usually
require many high-quality images for training. Moreover, attempting to use low-
quality images for this purpose can cause the network to fail to extract stable
and reliable features, ultimately leading to higher rejection and misidentification
rates and a decrease in recognition accuracy. To enhance the performance of
finger vein recognition, assessing the quality of finger vein images to identify
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15314, pp. 309–325, 2025.
https://doi.org/10.1007/978-3-031-78341-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78341-8_20&domain=pdf
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and reject such low-quality images has gradually become a popular topic of
research.

Finger vein image quality assessment is one of the most effective ways to
improve the accuracy and efficiency of recognition systems. The existing quality
assessment methods for finger vein images can be divided into two categories:
methods based on hand-designed features [3,19] and methods based on deep
learning [15,24]. Quality assessment methods based on hand-designed features
rely on the extraction of inherent features of finger vein images based on a priori
knowledge as the basis for assessing image quality. These methods are effective,
but the selection and design of the corresponding features rely on the empirical
knowledge of domain experts, and the extracted features may not sufficiently
capture the deep and complex features of an image. In contrast, quality assess-
ment methods based on deep learning usually rely on the application of CNNs
for finger vein image quality assessment (FVIQA) to achieve deep mining of
the image features. Deep learning models can learn features of an image at dif-
ferent levels of abstraction. This multilevel learning allows deep learning-based
methods to outperform methods belonging to the first category, but they often
require training on large amounts of finger vein data and associated quality
labels in order to correctly judge image quality. Currently, due to the insuffi-
cient amount of local data held by each organization or company and the small
number of associated quality labels, it is difficult for any individual organization
or company to train an effective and stable FVIQA model. Moreover, due to
increasing privacy protection concerns worldwide, the data of each organization
or company tends to be isolated in its own independent databases or appli-
cations. This problem of “data isolation” further exacerbates the difficulty of
related research.

Federated learning (FL), a distributed learning framework designed with the
aim of protecting user privacy achieves collaborative learning among individ-
ual clients. FL has been proposed to solve the distributed learning problem in
scenarios requiring the protection of user privacy and has found numerous appli-
cations in the field of biometric identification [2,5,9]. However, in the context of
FVIQA, further study is still needed for the following reasons: (1) There is a lack
of sufficient labeled data. (2) The data heterogeneity across clients makes the
traditional FL framework inapplicable. To address the above issues, this paper
proposes a personalized FL method for two-stage FVIQA (FedFVIQA). In the
first stage, each client implements quality annotation of its own local images.
In the second stage, the clients and the server collaborate for the training of
quality classification networks based on the obtained quality labels. Experimen-
tal results show that FedFVIQA has high stability and accuracy. The specific
contributions of this paper are as follows:

– This paper proposes a new FL framework for image quality assessment (Fed-
FVIQA). To our knowledge, this paper presents the first exploration of
FVIQA in the FL setting. In addition, there is very little existing work on
image quality assessment (IQA) based on FL in the field of biometrics in gen-
eral, including face recognition, iris recognition, and fingerprint recognition.
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Therefore, the method proposed in this paper is also informative for research
in related fields.

– This paper proposes a personalized federated quality classification mecha-
nism, which enables the creation of an optimal personalized model for each
client to avoid the model offset problem.

– This paper proposes an adaptive finger vein image quality labeling mechanism
that enables accurate scoring of image quality for automatic image quality
labeling, thereby solving the problem of the shortage of quality labels for
finger vein images.

– The results of extensive experiments conducted on the SDUMLA-HMT [22],
NJUPT-FVP [16], HKPU-FV [6] datasets demonstrate the superiority of the
proposed method.

2 Related Work

2.1 Finger Vein Image Quality Assessment

The existing FVIQA methods can be broadly classified into two categories: qual-
ity assessment methods based on hand-designed features and quality assessment
methods based on deep learning. Quality assessment methods based on hand-
designed features rely mainly on expert experience and aim to construct FVIQA
models that conform to the characteristics of the human visual system. Represen-
tative methods of this type include Literature [3,12,14,18]. This type of method
is useful, but its applicability is usually limited to a single dataset. In addi-
tion, this type of method relies on the empirical knowledge of domain experts,
and researchers usually cannot access all the attributes related to image quality
in finger vein images. Deep learning-based quality assessment methods mainly
involve performing IQA by means of neural networks, aiming to establish recog-
nition result-oriented FVIQA models. Representative methods in this category
include methods Literature [15,17,23,25]. This class of methods performs better
than the first class overall, but such methods usually require a large amount of
high-quality data for training. In practice, however, the available data are typ-
ically limited and of varying quality. Sharing and access among different data
sources are also limited due to incompatibility, privacy and ownership protection,
and other factors.

2.2 The Application of Federated Learning in the Field
of Biometrics

FL allows multiple devices or nodes to train a model together without sharing
their original data, thus guaranteeing the privacy and security of the data. Since
it was proposed in 2016, many experiments have proven the effectiveness and
security of FL [21]. In the field of biometric identification in particular, FL tech-
nology also has numerous successful applications. This is because it addresses two
pain points faced by traditional centralized training methods: privacy protection
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Fig. 1. First stage: adaptive image quality annotation. This stage is deployed on the
client side. It consists of two parts: quality scoring (depicted in the red box) and image
quality labeling (depicted in the blue box). (Color figure online)

and a lack of data. It allows clients to collaboratively optimize models without
sharing their data, thereby indirectly expanding the training dataset while ensur-
ing data privacy. Consequently, since its proposal, FL has attracted extensive
attention from researchers in the field of biometrics. Related works have been
proposed in various areas, such as face recognition [9], iris recognition [11], fin-
gerprint recognition [1] and finger vein recognition [8]. Nevertheless, compared
with other applications in biometrics, work on FL in the area of biometric IQA
is relatively scarce, and related research is still in its infancy. This is mainly due
to two reasons: the lack of available labeled data and the serious heterogeneity
of the data. This prevents the classical FL methods cannot simply be directly
applied for biometric IQA. To overcome the above challenges, this paper designs
a personalized FL method for two-stage FVIQA (FedFVIQA).

3 Proposed Method

In this work, a new two-stage framework, FedFVIQA, is constructed for the
FL task of FVIQA. FedFVIQA consists of two stages. The first stage, which
is deployed locally on each client, consists of the automatic labeling of images
with quality labels to solve the problem of insufficient quality-labeled finger vein
images. The second stage is deployed both locally and on a server to enable
multiple clients to collaborate for IQA. Each client locally trains a quality clas-
sification network, and personalized model aggregation is implemented on the
server side. The details of the first and second stages are described in the fol-
lowing subsections.

3.1 First Stage: Adaptive Image Quality Annotation

This section describes the first stage of the FedFVIQA framework, in which
each client implements the quality annotation of unlabeled finger vein images.
Its specific flow is shown in Fig. 1. This stage is divided into two main parts:
quality scoring and image quality annotation.
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Quality Scoring. This section describes the implementation of the image qual-
ity score calculation. First, image features are extracted locally from training
data. Then, the intraclass and interclass similarities of each image are calculated
based on the obtained image features. Finally, the image similarity is statistically
analyzed and scored.

First, the image features are extracted. To ensure the consistency and accu-
racy of the assessment, the feature extraction model used here is consistent with
the finger vein recognition model used in the subsequent experimental tests,
although with some modifications. Specifically, in this work, a 512-dimensional
linear layer is deployed after the backbone network. This linear layer is designed
as a feature embedding layer for extracting the feature vectors of images. Ulti-
mately, the output of the recognition model is jointly determined by the results
of the feature embedding layer and a classification layer. Accordingly, the model
is trained to acquire image features.

Next, the similarities between images are calculated from the obtained image
features, and the calculated similarity values are used to obtain the intraclass
and interclass similarity distributions of the images. In this paper, the cosine
similarity is used to measure the similarity between images. In Eq. 1 and Eq. 2,
T in

mk
denotes the intraclass similarity distribution of a set of images mk , T out

mk

denotes the interclass similarity distribution of the set of images mk , and nk and
ng denote image identity labels, cos(f (mk ), f (mg)) denotes the cosine similarity
between the two feature vectors of images mk and mg .

T in
mk

= {cos (f (mk) , f (mg)) |nk = ng} (1)
T out
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= {cos (f (mk) , f (mg)) |nk �= ng} (2)
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Finally, the image quality is calculated. The method of quality score calcula-
tion used here is borrowed from the method of quality label generation presented
in [13]. In this paper, the Wasserstein distance is used to calculate the distance
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Fig. 2. Second stage: personalized federated quality classification. This stage is
deployed on both the clients and the server. The client side performs quality clas-
sification model training, and the server side performs personalized model aggregation.

between intraclass samples and interclass samples, denoted by Distancemk
, which

is calculated as shown in Eq. 4. Then, this score is normalized to the range of
[0,100], as shown in Eq. 5. In Eq. 4, inf stands for the infimum,

∏(
T in′

mk
,T out

mk

)

denotes the set of probabilities of the joint distribution of T in
′

mk
and T out

mk
, E

stands for the expectation, and
∥∥∥T in

′

mk
− T out

mk

∥∥∥ is the L2 norm difference between

T in′
mk

and T out
mk

, which is defined as the square root of the sum of the squared
differences between the two distributions at corresponding positions. In Eq. 5,
min() is the minimum value function, max() is the maximum value function, and
distance represents the set of all possible values of Distancemk

.

Quality Annotation. This section describes how each image is annotated as
being of either high-quality or low-quality. These labels should not be determined
based only on the raw scores. This is because the feature and quality distributions
of each client’s data differ, and the score distributions obtained based on the
Wasserstein distance will also differ. Consequently, the same score may indicate
a low-quality image for a client with a high overall image quality but a high-
quality image for a client with a low overall image quality. As a result, using the
same scoring standard for all clients may lead to misclassification and inaccurate
recognition.

Therefore, this paper proposes an adaptive threshold calculation method to
adjust the quality annotation for each client. This calculation method is shown
in Eq. 6. In Eq. 6, th denotes the calculated threshold, quality denotes the set of
quality scores for this client’s images, d is a weighting coefficient, mean() denotes
the mean function, and std() denotes the standard deviation function.
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th = mean(quality) − std(quality)d (6)

Finally, the image quality scores for each client data source are statistically
analyzed to calculate a corresponding score threshold, and images with scores
higher than th are tagged as high-quality images, whereas those with scores
lower than th are tagged as low-quality images.

3.2 Second Stage: Personalized Federated Quality Classification

This section describes the second stage of the FedFVIQA framework, in which
personalized federated quality classification is implemented on the client and
server sides. The specific process is shown in Fig. 2. This stage is divided into
two main parts: client-side quality classification model training and server-side
personalized model aggregation. The specific process is described as follows.

Client-Side Quality Classification Model Training. This section describes
the implementation of the client-side quality classification model training. Each
client first constructs a quality classification model and then feeds its images
labeled with quality tags into this classification model for training, thereby gen-
erating a local classification model. At this time, the optimal classification model
is also initialized. Then, the clients upload their local classification models to the
server for model aggregation. Once its aggregated model is returned, each client
continues training on the basis of this aggregated model. This process is repeated
until finally, the optimal trained model is obtained for each client and is saved
to be used for image quality prediction.

The first step is to construct a quality classification model. To ensure the
consistency and accuracy of the evaluation, the quality classification model used
here is consistent with the third-party finger vein recognition model used later
for experimental testing, although with some modifications. Specifically, in this
paper, a 512-dimensional linear layer is deployed as a feature embedding layer
after the backbone network of the recognition model, and the classification layer
of the recognition model is removed and replaced with a 2-dimensional linear
layer to serve as a classification prediction layer. The feature embedding layer
is used to extract the feature vectors of the input images, and the classification
prediction layer is used to predict whether each image is of high or low quality.
Ultimately, the output of the recognition model is jointly determined by the
results of the feature embedding layer and the classification prediction layer.

Next, the constructed quality classification model is locally trained to achieve
image quality prediction. Images annotated with quality labels are fed into the
quality classification model to obtain their feature vectors and corresponding
classification predictions. In this way, a local classification model is generated,
and at the same time, an optimal model is locally initialized. Specifically, the
local model is the classification model from the last epoch of each round of local
training, and the optimal model is the model obtained during the local training
process that achieves the minimum loss value. To improve the performance of
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the quality classification model in accurately predicting image quality, a loss
function Lloss is designed for network training in this paper.

The loss function Lloss consists of the binary cross-entropy loss
LBinaryCrossLoss and the cosine loss LCosineLoss , as shown in Eq. 7. When the
model is trained, the outputs of the classification prediction layer and the qual-
ity labels of the images are input together into LBinaryCrossLoss , which is used
to reduce the distance between the real image labels and the prediction prob-
abilities. Similarly, the outputs of the feature embedding layer and the quality
labels of the images are used together as the input to LCosineLoss , which works to
reduce the distance between similar samples and increase the distance between
dissimilar samples.

LLoss = LBinaryCrossLoss + LCosineLoss (7)

There are generally more high-quality data than low-quality data in a dataset,
so there will be an imbalance in the numbers of samples belonging to the high-
quality and low-quality image categories. To solve this problem, in the method
proposed in this paper, different weights are assigned to different sample cat-
egories when using the cross-entropy loss function to balance the difference in
the amount of data between the different categories. The binary cross-entropy
loss represents the difference between the true image labels and the predicted
probabilities.

The cosine loss represents the feature distance between images in the same
class and different classes and is calculated as shown in Eq. 8. The cosine loss
value is the sum of the loss values obtained for the current image and each other
image. In Eq. 8, I is the total number of samples, and compA,i is the loss value
for image A and other image i . The formula for compA,i is shown in Eq. 9. In
Eq. 9, cA,i denotes the cosine distance between the two feature vectors of images.
And m denotes a boundary value; similar denotes images. A and i are similar
samples; dissimilar denotes images. A and i are dissimilar samples.

LCosineLoss =
I∑
i

compA,i (8)

compA,i =

⎧
⎨
⎩

c2A,i, if cA,i ≥ m and similar

(m − cA,i)
2
, if m ≥ cA,i and dissimilar

0, otherwise

(9)

At the completion of each round of local training, each client uploads its
classification model to a central server. The server then sends the corresponding
aggregated model back to each client. In turn, the individual clients continue
training on their local data based on these aggregated models to further opti-
mize their local optimal models. Finally, each client saves its optimal model
obtained at the end of the training process. This optimal model is the one that
performs best on the client’s local data, i.e., the one that obtains the smallest
loss value on these local data. These optimal models will then be used for image
quality prediction.
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Server-Side Personalized Aggregation. This section describes the imple-
mentation of personalized FL to generate an optimal personalized model for
each client. The quality classification models are aggregated on a third-party
server, which generates a more accurate personalized model for each client by
integrating the quality classification models of all clients. The aggregation
method for the personalized model Φ′

g(n) is shown in Eq. 10.

Φ′
g(n) =

(1 − θ)
(num − 1)

U∑
u

(
Φg(u)

)
+ θΦg(n) (10)

In Eq. 10, θ denotes a threshold used when aggregating models. num denotes
the number of clients. U denotes the set of clients other than n, i.e., U = N − n,
and N denotes the set of all clients. Φg(n) and Φg(u) denote the models sent by the
nth client and the u th client, respectively. A different global model, Φ′

g(n), can
be aggregated for each client through this personalized aggregation mechanism.

Finally, the server sends the corresponding aggregated model back to each
client. Once a client receives its personalized aggregated model, the client con-
tinues local training on the basis of this model. In this way, each client can take
advantage of the knowledge contained in the global model while optimizing a
personalized model based on its own local data.

4 Experiments

4.1 Experimental Setup

In these experiments, validation was carried out on three public finger vein
datasets: SDUMLA-HMT from the Machine Learning and Mining Laboratory
of Shandong University (short for SDUMLA), NJUPT-FVP from Nanjing Uni-
versity of Posts and Telecommunication (short for NJUPT), HKPU-FV from
the Hong Kong Polytechnic University (short for HKPU). The SDUMLA-HMT
dataset consists of 636 classes, with 6 images per class, corresponding to a total
of 3816 finger vein images. The NJUPT-FVP dataset consists of 840 classes of 10
images each, for a total of 8400 images. The HKPU-FV dataset consists of 312
classes, with 6 images per class, corresponding to a total of 1872 finger vein
images. The samples in SDUMLA-HMT, NJUPT-FVP, HKPU-FV were divided
into a training set and a test set at a 1:1 ratio, and each dataset was further
divided into different groups of the same size to serve as independent datasets for
different clients.

All the experiments reported in this paper were run on an octa-core Win-
dows 11 machine with an Intel i7-9700K processor. The code was built and
implemented using the PyTorch deep learning framework, and the models were
trained using NVIDIA GeForce RTX 2080 Ti GPUs. For the finger vein recogni-
tion model in the experiments, ResNet18 [4] was used. All local clients performed
1 round of FL for every 3 epochs. The base learning rate was 0.01, and the batch
size was 8.
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Fig. 3. Performance comparison of FedFVIQA with solo training. The black lines rep-
resent the performance of both FedFVIQA and solo training before the rejection of
low-quality images, whereas the red line represents the performance of FedFVIQA after
the rejection of low-quality images, and the blue line represents the performance of solo
training after the rejection of low-quality images. (Color figure online)

To demonstrate the effectiveness and superiority of the proposed method,
we analyze the identification of low-quality images by comparing the EER and
TAR@FAR metrics before and after their rejection. By adjusting the threshold,
the False Rejection Rate (FRR) is made equal to the False Acceptance Rate
(FAR). The point at which FRR equals FAR is called the Equal Error Rate
(EER), denoted as EER = FRR = FAR. EER is commonly used to evaluate the
overall performance of the system, with a lower EER indicating better perfor-
mance. If two samples are from the same class but are incorrectly identified by the
system as being from different classes, it constitutes a false rejection. The FRR is
the proportion of false rejections out of all genuine match attempts. Conversely,
if two samples are from different classes but are incorrectly identified by the
system as being from the same class, it constitutes a false acceptance. The FAR
is the proportion of false acceptances out of all impostor match attempts. The
True Accept Rate (TAR) represents the proportion of correctly accepted genuine
matches. TAR@FAR = 0.01 indicates the TAR value when FAR is set to 0.01.
A higher TAR value indicates greater system effectiveness. In our experiments,
we set FAR to 0.01, meaning that one false acceptance is allowed for every 100
impostor attempts. Both EER and TAR results are presented as percentages.

4.2 Experimental Results and Analyses

To verify the performance of the method proposed in this paper, four groups of
experiments were designed, and the results are discussed and analyzed here. The
four groups of experiments are described as follows: (1) validate the effective-
ness of the FedFVIQA framework; (2) validation of the need for a personalized
aggregation approach; (3) ablation experiments; (4) comparative Experiments.
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Table 1. Comparisons of solo centralized training and FedFVIQA.

Dataset Methods Rejection EER TAR

SDUMLA Centralize No 1.572 98.166

Yes 1.400 98.488

Solo No 1.781 97.380

Yes 1.555 97.946

FedFVIQA No 1.781 97.380

Yes 0.904 98.847

NJUPT Centralize No 0.512 99.738

Yes 0.451 99.865

Solo No 0.798 99.310

Yes 0.737 99.377

FedFVIQA No 0.798 99.310

Yes 0.680 99.603

HKPU Centralize No 0.748 99.252

Yes 0.641 100.000

Solo No 1.072 98.925

Yes 0.749 99.053

FedFVIQA No 1.072 98.925

Yes 0.534 99.281

Fig. 4. Violin plots of the quality distributions.

Validation of the Effectiveness of the FedFVIQA Framework. Fed-
FVIQA was compared with the solo and centralized training methods. Table 1
presents the results of the FedFVIQA, centralized, and solo methods for com-
parison, where the average of the client outcomes is reported for FedFVIQA and
solo training. Moreover, Fig. 3 displays the specific FedFVIQA and solo results
for each client.

As seen from Table 1, FedFVIQA outperforms solo training in terms of both
metrics on average. Compared to centralized training, FedFVIQA achieves higher
performance improvements in both metrics. On the SDUMLA dataset, the EER
performance is improved by 49.24% with FedFVIQA, by 12.69% with solo train-
ing, and by 10.94% with centralized training; the TAR performance is improved
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Table 2. Performance changes before and after using the personalized aggregation
mechanism.

Dataset Methods EER TAR

SDUMLA Before rejection 1.781 97.380

Without the mechanism 1.289 98.711

With the mechanism 0.904 98.847

NJUPT Before rejection 0.798 99.310

Without the mechanism 0.684 99.532

With the mechanism 0.680 99.603

HKPU Before rejection 1.072 98.925

Without the mechanism 0.746 99.184

With the mechanism 0.534 99.281

Fig. 5. Comparison of the method proposed with other methods for each individual
client. The black lines represent the performance for all methods before the rejection
of low-quality images.

by 1.51% with FedFVIQA, by 0.58% with solo training, and by 0.33% with cen-
tralized training. On the NJUPT dataset, the EER performance is improved by
14.79% with FedFVIQA, by 7.64% with solo training, and by 11.91% with cen-
tralized training; the TAR performance is improved by 0.30% with FedFVIQA,
by 0.07% with solo training, and by 0.13% with centralized training. Figure 3
shows that the FedFVIQA method has stable performance on each client, and the
performance on all of them is improved after the rejection of low-quality images.
In contrast, solo training shows unstable performance among the clients, and on
some clients, the performance even decreases after the rejection of low-quality
images. For example, after the rejection of low-quality images, the EERs achieved
with solo training for clients with IDs 2 and 3 on the SDUMLA dataset are higher
than their EERs before the rejection of these images. This is because of the small
amount of data available for each client, which makes effective model training
impossible when using the solo approach. From the experimental results, it can
be concluded that the FedFVIQA method has high robustness and accuracy.
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Table 3. Results of the ablation experiments.

Dataset
Adaptive

threshold

Personalized

aggregation
Lloss EER TAR

SDUMLA × × × 1.904 97.130√
× × 1.840 97.322√ √

× 1.345 98.310√ √ √
0.904 98.847

NJUPT × × × 0.795 99.351√
× × 0.743 99.383√ √

× 0.722 99.552√ √ √
0.680 99.603

HKPU × × × .128 98.823√
× × 0.771 99.213√ √

× 0.599 99.191√ √ √
0.534 99.281

Validation of the Need for a Personalized Aggregation Approach. To
validate the need for the personalized aggregation method proposed in this paper,
the performance of the FedFVIQA method was compared before and after the
personalized aggregation mechanism was applied. Additionally, the quality dis-
tribution was visualized for each client, demonstrating that the data quality
varied among the clients. The mean values of the results before and after the
use of the personalized aggregation mechanism are recorded in Table 2, and Fig. 4
illustrates the quality distributions for each client.

As shown in Table 2, the use of the personalized aggregation mechanism
results in an increase in the mean values of both metrics. On the SDUMLA
dataset, the performance improvements in the EER and TAR metrics are 27.62%
and 1.37%, respectively, before using the mechanism and 49.24% and 1.51%,
respectively, after using the mechanism. On the NJUPT dataset, the respective
performance improvements in the EER and TAR metrics are 14.29% and 0.22%
before and 14.79% and 0.30% after. On the HKPU dataset, the respective per-
formance improvements in the EER and TAR metrics are 30.41% and 0.26%
before and 50.19% and 0.36% after. Figure 4 illustrates the quality distributions
of the SDUMLA dataset, the NJUPT dataset and the HKPU dataset on the five
clients. Figure 4 shows that the quality distributions of the different datasets are
different, with the SDUMLA dataset having a higher overall quality, the NJUPT
dataset having a more concentrated overall quality and the HKPU dataset hav-
ing a lower overall quality. Moreover, the distributions of the same dataset on
different clients also differ; for example, the quality scores of the data from the
SDUMLA dataset held by the client with ID 1 are basically concentrated in the
range of [50, 73], while the quality scores of the data held by the client with ID
3 are basically concentrated in the range of [63, 85]. For the NJUPT dataset,
the quality scores of the data held by the client with ID 1 are basically concen-
trated in the range of [57, 72], while those of the client with ID 2 are basically
concentrated in the range of [50, 70]. Similarly, for the HKPU dataset, the qual-
ity scores of the data held by the client with ID 4 are basically concentrated in
the range of [41, 64], while those of the client with ID 5 are basically concen-
trated in the range of [52, 77]. These experimental results show that the data
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quality distribution of each client may be different, meaning that a model that
is well trained for one client may not achieve the same performance on other
clients; therefore, it is necessary to propose a personalized aggregation method.

Ablation Experiments. The efficacy of the various components of the frame-
work proposed in this paper was verified through ablation experiments, in
which the base FedAvg [21] architecture was gradually supplemented with the
following three components: the adaptive threshold calculation, the personalized
model aggregation mechanism, and Lloss .

Table 3 shows that after the addition of the adaptive threshold calculation,
the EER and TAR values are improved on both finger vein datasets, espe-
cially the HKPU dataset, where the EER is reduced by 31.65% and the TAR is
improved by 0.39%. To test the effectiveness of the proposed personalized aggre-
gation mechanism, this mechanism was implemented on the server in place of the
traditional model averaging method. With the addition of this mechanism, the
performance is further improved for almost all clients. In this case, the greater
improvement occurs on the SDUMLA dataset, where the EER is reduced by
26.90% and the TAR is improved by 1.02%. Finally, Lloss denotes the use of the
combined loss function designed in this paper instead of the traditional cross-
entropy loss function used for performing network training. The experimental
results show that the model performance reaches the optimal level for almost all
clients after the introduction of the Lloss function. Especially on the SDUMLA
dataset, the EER is reduced by 32.79%, and the TAR is improved by 0.55%.
These results indicate that Lloss function designed in this paper is more effective
for FL based on finger vein images. In summary, all three main components of the
method proposed in this paper effectively improve the accuracy and robustness
of FL for FVIQA.

Comparative Experiments. Finally, FedFVIQA was compared with other
state-of-the-art methods. Because no FL method has previously been proposed
for IQA, the classical FedAvg [21] and FedProx [7] methods were applied for
FVIQA to serve as references in this evaluation. Moreover, the method pro-
posed in this paper was compared with two traditional centralized IQA methods,
EQ [10] and SER [20]. Because the FL approach is fundamentally different from
the centralized learning approach, for the comparisons with the traditional cen-
tralized IQA methods, each centralized method was implemented locally at each
client, and the average value across the clients was considered for comparison as
well as the value for each client. Notably, since the SER and EQ methods also
yield a quality score for each image, the same number of images as in the Fed-
FVIQA method were rejected for each client in these comparisons. Table 4 shows
the mean values of the results of each method across the five clients on three
datasets, and the data for each client is shown in Fig. 5. As shown in Table 4,
the FedFVIQA method outperforms the existing methods on three datasets. As
shown in Fig. 5, the FedFVIQA method exhibits more stable performance among
the individual clients than the other methods do, and in all cases, the perfor-
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Table 4. Comparison with other methods.

Dataset Methods EER TAR

SDUMLA Before reject 1.781 97.380

EQ 1.514 97.804

SER 1.124 98.387

FedAvg 1.485 98.189

FedProx 1.327 98.669

FedFVIQA(Our) 0.904 98.847

NJUPT Before reject 0.798 99.310

EQ 0.800 99.282

SER 0.786 99.315

FedAvg 0.778 99.329

FedProx 0.693 99.447

FedFVIQA(Our) 0.680 99.603

HKPU Before reject 1.072 98.925

EQ 1.021 99.282

SER 1.113 98.687

FedAvg 0.643 99.175

FedProx 0.605 98.985

FedFVIQA(Our) 0.534 99.281

mance is improved and more robust after the rejection of low-quality images. In
summary, the method proposed in this paper outperforms both existing FL
methods and traditional IQA methods with high performance.

5 Conclusion

In this work, we have proposed a personalized federated learning framework
for two-stage finger vein image quality assessment (FedFVIQA). This frame-
work improves the applicability of federated learning to finger vein image qual-
ity assessment tasks through the design of a personalized aggregation mecha-
nism to accommodate client finger vein image datasets with different quality
distributions. Moreover, we propose an adaptive scoring threshold calculation
method for the automatic quality labeling of unlabeled finger vein images. In
addition, we report extensive experiments conducted to evaluate the proposed
method. The experimental results show that the FedFVIQA framework outper-
forms both existing federated learning methods and traditional image quality
assessment methods with high robustness and accuracy.
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Abstract. Gait serves as an effective biometric for long-distance iden-
tification, particularly in scenarios where other biometric techniques
present limited results. Most of the current gait recognition research
relies on gait videos captured in controlled settings, predominantly using
RGB cameras, while only a minority employ infrared cameras. There
is a notable demand for real-time gait recognition in uncontrolled envi-
ronments, especially utilizing infrared cameras for security and surveil-
lance purposes. This study introduces a multi-frequency gait database
constructed from long, medium, and short wavelength infrared (LWIR,
MWIR, and SWIR) as well as visible (RGB) cameras in uncontrolled
outdoor settings. The database encompasses recordings of individuals
engaged in four distinct activities: normal walking, walking with a coat,
carrying a backpack, and holding a briefcase. Additionally, it uses a
knowledge-based system for silhouette extraction in dynamic environ-
ments. This research evaluates the robustness of state-of-the-art gait
recognition methods to changes in environmental conditions, clothing,
and carrying covariates by utilizing our dataset to establish a benchmark
for databases captured across various frequency bands. Furthermore, it
assesses gait recognition performance at lower scales (up to 0.05).

Keywords: Gait Recognition · Gait Database · Infrared and RGB ·
Gait Representation

1 Introduction

‘Gait’ is defined as the way people walk and is used as a behavioral biometric
for human identification [6]. The suitability of gait as biometrics emerges from
the fact that gait patterns can be captured and perceived from a distance in an
unconstrained background. It does not require subject cooperation and can oper-
ate without interfering with the subject’s activity, unlike other kinds of biometric
features such as face, ear, iris, and fingerprint. With this advantage, gait-based
recognition systems have been widely used in video surveillance and criminal
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investigations [2]. However, gait can be altered by variations in appearance (such
as clothing, carrying, view, etc.) and environmental conditions which makes the
recognition task difficult. In recent years, there has been notable progress in the
development of gait recognition methods that demonstrate robustness against
these covariates [10,13].

The construction of a common gait database is essential for the develop-
ment and fair evaluation of gait recognition approaches by considering vari-
ous walking conditions (such as view, clothing, carrying objects, environment
conditions, speed), the number and diversity in subjects, and the spectrum of
the camera. Although several gait datasets have been constructed with diverse
and large sets of subjects with varying views, clothing, and carrying condi-
tions [4,9,12,14,15,17,18,20]. However, the variations in environmental condi-
tions and spectrum of camera systems are still insufficiently addressed. Most of
these databases capture the data in controlled environments, such as laborato-
ries where each individual walks on a treadmill or a marked path. In laboratory
settings, the illumination and background are controlled and only one individual
walks into the scene. Few existing datasets were constructed in outdoor settings
but they considered a static background. However, real-life problems require
recognition systems that can accurately recognize individuals in more natural
environments with multiple persons and objects in the scene. Another common
aspect of the existing dataset is that they are mostly captured in the visible
(RGB) spectrum. There is a demand for infrared gait datasets as infrared gait
videos offer certain advantages over RGB videos in specific scenarios. Infrared
cameras record the heat emitted by the human body rather than the colors
and hence can capture images in low light conditions and are less susceptible
to changes in the environment and appearance of the subject. These advan-
tages make infrared gait videos more attractive in real-time security applications.
There is still a lack of work on infrared-based gait recognition. CASIA-C [16] is
the first thermal imagery dataset collected for gait recognition, whereas only the
silhouettes of the dataset are publicly available. Recently, thermal gait datasets,
IOTG [19] and CASIA-E [14] have been created for deep learning based gait
recognition. Nonetheless, these thermal gait datasets were collected in a con-
trolled environment using a ‘near-infrared camera’. Therefore, it becomes essen-
tial to establish an infrared gait database for infrared-based gait recognition
in uncontrolled outdoor environments, particularly for surveillance and security
purposes.

In this paper, we address these limitations and construct a new real-time
gait database for human identification. The key contributions of the paper are
summarized as follows:

1. We introduce a multi-frequency gait database, MultiFreqGAIT1, comprises
of gait videos captured using a short-wave infrared (SWIR), a medium-wave
infrared (MWIR), and a long-wave infrared (LWIR) thermal camera, along
with a visible band color camera, in an uncontrolled and dynamic outdoor

1 To access this database, please send emails to sm3y07@soton.ac.uk.
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environment. In this context, “dynamic and uncontrolled” implies the pres-
ence of multiple individuals and objects in the background, with no control
over illumination conditions. It contains gait recordings in four scenarios: nor-
mal walking, walking while wearing a coat, carrying a backpack, and holding
a briefcase.

2. We demonstrate the validity of our dataset through experiments with state-
of-the-art gait representations for human identification. Our results show the
advantage of employing infrared gait videos for recognition in dynamic scenes.
In addition, we assess the gait recognition performance at lower scales. This
demonstrates the capability of gait recognition even from a distance.

Therefore, our dataset holds significant potential for advancing gait recognition
in real-time scenarios. To the best of our knowledge, this is the first gait database
comprising both infrared and RGB videos captured in uncontrolled and dynamic
outdoor environments. No prior research has utilized three distinct wavelengths
of infrared cameras for gait recordings. In gait recognition, the optimal camera
angle is 90◦ as it provides the maximum information. Therefore, we capture gait
sequences exclusively from a 90◦ perspective with respect to the cameras. In
the future, we plan to expand the database to include various viewing angles,
laying the groundwork for cross-view gait recognition in uncontrolled outdoor
environments.

The remaining sections of the paper are structured as follows: In Sect. 2, an
overview of existing gait databases is presented. Section 3 explains the devel-
oped dataset and uses a knowledge-based method to segment the silhouettes
of subjects. Section 4 delves into the state-of-the-art gait representations. The
experimental setup and results are discussed in Sect. 5. Finally, in Sect. 6, the
paper concludes and mentions potential directions for future work.

2 Overview of Existing Gait Datasets

In Table 1, we present an overview of the popular and publicly available gait
databases, detailing their characteristics such as spectrum (RGB/infrared), envi-
ronment (indoor/outdoor), background (static/dynamic), as well as covariates
such as clothing, footwear, carrying bags, walking speeds, viewing angles, etc.
Our MultiFreqGAIT dataset specifications are also included for comparison.

3 MultiFreqGAIT Dataset

In this section, we explore the details of our data collection process and the
extraction of silhouettes.

3.1 Data Collection

Gait videos were collected using long-wave infrared (LWIR), medium-wave
infrared (MWIR), and short-wave infrared (SWIR) thermal cameras, as well as
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Table 1. Overview of popular and publicly available gait datasets used in the literature

Dataset Spectrum No. of
Subjects

Environment Covariates

SOTON [12] RGB 115 Static Indoor,
Static Outdoor

Normal Walking;
Shoes; 2 views;
Clothing and
Carrying.

USF HumanID [9] RGB 122 Static Outdoor Normal Walking;
2 Views;
Carrying a
Briefcase

CASIA-B [20] RGB 124 Static Indoor Normal Walking;
11 Views;
Carrying a Bag;
Wearing a Coat

CASIA-C [16] Infrared 153 Static Outdoor Three Walking
Speeds; Carrying
a Bag

CASIA-E [14] RGB,
Infrared

1014 Static Indoor,
Static Outdoor

Carrying a Bag;
Wearing a Coat

OU-ISIR
Speed [17]

RGB 34 Static Indoor Nine Walking
Speeds

OU-ISIR
Clothing [4]

RGB 68 Static Indoor Up to 32
combinations of
clothing

OU-ISIR LP
Bag [18]

RGB 62,528 Static Indoor Seven different
carried objects

OU-ISIR
MVLP [15]

RGB 10,307 Static Indoor Normal Walking;
14 views

MultiFreqGAIT Infrared
(LWIR,
MWIR,
SWIR) and
RGB

31 Urban and
Rural
Outdoor
Scenes with
Dynamic
Background

Normal
Walking;
Carrying a
Bag; Carrying
a Briefcase;
Wearing a coat

a color visible band camera, separately in “urban” and “rural” outdoor settings.
LWIR, MWIR, and SWIR are distinct spectral bands in the infrared (IR) region.
LWIR cameras function in the long-wave infrared spectrum, typically from 8 to
15 µm in wavelength, offering thermal sensitivity. MWIR cameras operate in
the mid-wave infrared, spanning 3 to 8 µm, providing improved resolution and
longer-range capabilities. In contrast, SWIR cameras, with wavelengths from 0.9
to 1.7 µm, detect reflected radiation. LWIR cameras are ideal for non-invasive
gait analysis in low light, while MWIR cameras offer clear subject tracking.
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Fig. 1. Examples of gait images captured in (a) urban and (b) rural outdoor scenes,
showcasing various walking conditions (normal walking, walking with a bag, walking
with a coat, and walking with a briefcase) using LWIR, MWIR, SWIR, and visible
cameras, as part of the MultiFreqGAIT dataset

SWIR cameras excel in material differentiation and dynamic imaging, suitable
for detailed gait analysis in diverse lighting conditions. On the other hand, RGB
camera captures the gait in the visible spectrum of light and are susceptible to
appearance and illumination changes.

Urban recordings were conducted at the Highfield campus near building 32
at the University of Southampton, UK, while rural scenes were captured at Val-
ley Garden near building 46 in Highfield campus. Both environments featured
dynamic backgrounds with no control over moving objects or changes in illu-
mination in the background. Data were collected from university students and
staff of diverse ethnicities, religions, and body types. We considered side-view
walking, where the subject walks perpendicular to the camera’s viewpoint. The
subject moved in a straight line from left to right and then back from right to
left, and the camera was positioned at a distance of ten meters from the walking
subject. All subjects walked wearing their clothing and footwear. Subjects were
recorded as they walked normally along a straight line, six times w.r.t. each cam-
era. Subsequently, subjects wore a long coat and walked twice along the same
path, and similarly, two videos were recorded for each subject while carrying a
bag and briefcase, respectively. The recording setup remained consistent across
both urban and rural environments. Figure 1 displays examples of gait images
captured in urban and rural outdoor scenes, showcasing various walking condi-
tions (normal walking, walking with a bag, walking with a coat, and walking
with a briefcase) using LWIR, MWIR, SWIR, and visible cameras. The video
files had different frame sizes: 694 × 576 for LWIR, 640 × 512 for MWIR and
SWIR, and 1440×1080 for the visible camera. They all maintained a frame rate
of 30 frames per second (fps). Finally, gait data from 31 subjects were recorded
in urban and rural settings, with each subject completing 12 walks in the scene
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(6 normal walks, 2 wearing a coat, 2 carrying a bag, and 2 carrying a briefcase).
This results in a total of 12∗31 = 372 gait videos for each camera in each scene.
Thus, our database comprises eight subsets, each containing gait videos of 31
subjects in different environments using various camera types. The first four sub-
sets (LW-U, MW-U, SW-U, and Vi-U) record gait videos of subjects in urban
areas, employing LWIR, MWIR, SWIR, and Visible cameras respectively. While
the remaining four subsets (LW-R, MW-R, SW-R, and Vi-R) contain videos of
subjects in rural settings, captured using the same camera types. The collec-
tion of video data was approved by the university’s ethical committee, and each
subject provided informed consent for the use of the collected data for research
purposes.

3.2 Silhouette Extraction

Silhouette extraction serves as the initial step in gait recognition, typically
involving the application of background subtraction methods to isolate silhou-
ettes in gait sequences. While this approach is effective in ideal scenarios where
the foreground is in motion against a static background, but real-time situations
as seen in our dataset, often feature dynamic backgrounds with multiple mov-
ing objects. In such cases, direct application of background subtraction results
in the extraction of both foreground objects and moving elements in the back-
ground, leading to poor recognition accuracy. We introduce a silhouette extrac-
tion method that isolates the silhouette of the foreground person while filtering
out other moving individuals in the background, which are regarded as artifacts
and clutter.

Fig. 2. Silhouette extraction results for a sample LWIR gait sequence in an urban
scene, comparing (a) the direct background subtraction (GMM) method with (b) the
knowledge-based approach
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We outline our silhouette extraction method as follows: Initially, objects are
detected in each frame of a gait video using YOLO-based object detection [7].
Each detected object is enclosed within a rectangular box and labeled by YOLO.
Our objective is to extract the silhouette of the foreground person (subject of
interest) in each frame. We record the bounding box locations labeled as “person”
computed by YOLO to detect the walking person and by disregarding others.
Employing a knowledge-based system, incorporating factors like the number of
individuals of interest and their proximity to cameras, we differentiate between
foreground and background persons, discarding boxes belonging to the latter.
Consequently, only one box corresponding to the foreground person is recorded
in each frame. The limitation of YOLO-based person detection arises when it
fails to detect the subject of interest in certain frames. In such instances, the
background person with the largest bounding box is incorrectly identified as
the foreground. To address this, we calculate the distance of the bounding box
in the X and Y directions relative to the box in the previous frame, ensuring
its accuracy. If the distance exceeds a predefined threshold, indicating a false
detection, the frame is marked as “no detection”. Additionally, frames where
YOLO fails to detect any person are also labeled as “no detection”. To estimate
the box for the subject in these missed frames, we employ the linear interpolation
technique.

To extract the silhouettes, we now apply the background subtraction on the
original gait video using the Gaussian Mixture Model (GMM) [21], a widely-used
technique in computer vision. We then locate bounding boxes in each resulting
frame using the above-described YOLO-based method. The binary region within
these bounding boxes in the background-subtracted frames represents the sub-
ject’s silhouette. We set all pixels outside the bounding box to zero. Figure 2
illustrates the effectiveness of our approach compared to direct background sub-
traction for silhouette extraction, demonstrating notably superior results.

4 Gait Recognition

To assess the gait recognition performance using our dataset, we consider
state-of-the-art model-free gait recognition methods such as gait energy image
(GEI [3], gait entropy image (GEnI) [1], frequency domain gait entropy
(EnDFT) [8], effective parts frequency domain gait entropy (EP-EnDFT) [8]
and GEI-Net, a deep learning based method [11]. In these methods, gait fea-
tures are represented using the silhouettes of a walking subject. Initially, the
silhouettes are pre-processed using size normalization and center alignment. In
our experimental setup, we standardize the silhouettes to dimensions of 390×260
pixels. Gait cycles are then estimated using the method of autocorrelation pre-
sented in [5]. A gait cycle is defined as the time interval between the same
repetitive events of walking that generally start when one foot is in contact with
the ground.
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The GEI is obtained by averaging silhouettes over a gait cycle as [3]:

GEI(i, j) =
1
F

F∑

f=1

B(i, j, f). (1)

Here, F stands for the total number of frames in a single gait cycle, B symbolizes
a silhouette where pixel coordinates are indicated by i and j, and f denotes the
frame index within the gait cycle. The silhouettes are binary images, meaning
that B(i, j, f) is either 0 or 1. GEI captures both the static components (head
and torso) and dynamic regions (leg and arm movements) of a person’s gait.
Nonetheless, these components are vulnerable to changes in appearance caused
by clothing, carrying objects, and environmental factors. Given that dynamic
regions hold the most valuable information about human gait and are less influ-
enced by these external factors, entropy-based gait features have been suggested
to extract motion details from human silhouettes.

To generate a GEnI, the Shannon entropy is computed for every pixel across
the silhouette images B throughout an entire gait cycle as follows [1]:

GEnI(i, j) = −(p(i, j) log2 p(i, j) + (1 − p(i, j)) log2(1 − p(i, j)). (2)

Here, p(i, j) denotes the probability at pixel (i, j), representing the frequency of
occurrences where B(i, j) equals 1 throughout a gait cycle. Another variant of
entropy-based gait features is the frequency domain gait entropy (EnDFT) [8]. To
derive the EnDFT features, the discrete Fourier transform (DFT) of silhouette
images is computed pixel by pixel across time (frame), after which the entropy
of the DFT is calculated at each pixel over a gait cycle, focusing on the first
three frequency components. EnDFT gives more weight to dynamic areas and
less weight to static areas.

The gait signature encompasses various body parts, and the impact of dif-
ferent covariates doesn’t uniformly affect all parts. While it may modify certain
parts of the entire gait, others crucial for gait recognition remain unaffected.
Based on this, an efficient part-based approach was introduced [8]. It involves
dividing the entire body into five parts and utilizing only three parts that signif-
icantly enhance recognition rates. These segments, contributing positively, pre-
dominantly consist of dynamic elements engaged in motion throughout a gait
cycle. Consequently, these effective (dynamic) parts are automatically selected
by the algorithm proposed in [8], and the EnDFT features are employed to repre-
sent these effective (dynamic) parts. Among the five body parts, only the EnDFT
features of the three most effective body parts are retained for recognition, while
the remaining two parts are discarded. Deep learning has recently gained pop-
ularity in gait recognition, achieving state-of-the-art results. Therefore, we also
evaluate our dataset using GEI-Net [11], a prominent deep learning method. A
convolutional neural network is trained on gait energy images from our dataset
to learn gait features. GEI-Net consists of two triplets of convolution, pooling,
and normalization layers, followed by two fully connected layers that output sim-
ilarities to individual training subjects. Recognition is performed using a simple
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Euclidean distance measure between gallery and probe features. Figure 3 shows
examples of GEI, GEnI, EnDFT, and effective part-based EnDFT gait features,
respectively from our dataset. One can see that dynamic areas such as legs and
arms are represented by higher intensity values while the static areas such as the
head and torso have low values in the GEnI and EnDFT images. This is because
silhouette pixel values in the dynamic areas are more uncertain and thus more
informative, leading to higher entropy values. It can also be observed that the
effect of appearance changes caused by carrying a bag and briefcase, and wear-
ing a coat is significant in GEIs whereas it is reduced in entropy-based features.
The identified effective parts primarily encompass dynamic regions, which are
less influenced by changes in appearance (refer to Fig. 3(d)). We’ve illustrated
these effective parts in the context of normal walking. These same body parts
are employed for other variations in walking as well.

By employing principle component analysis (PCA) on these gait representa-
tions, we reduce the dimensionality of the data. The coefficients of the modes
calculated in PCA are then used as feature vectors to represent gaits. With such
feature vectors, gait recognition is achieved by using a K-NN classifier. The K-
NN classifier is trained using the features of gait sequences in the gallery set and
the subject/class recognition performance is evaluated for every gait sequence
in the probe set.

5 Experimental Results and Discussion

This section shows experimental results using our dataset. Our gait database
comprises 8 datasets: LW-U, MW-U, SW-U, Vi-U, LW-R, MW-R, SW-R, and
Vi-R. The experiments are carried out separately for each dataset. Firstly, we
extract the silhouettes from each video of a subject within every dataset, employ-
ing the method outlined in Sect. 3.2. Subsequently, we manually collect the
silhouette sequences depicting the subject walking in either direction. For our
experiments, we consider the left-to-right walking direction. In this context, a sil-
houette sequence refers to a collection of silhouette images depicting a subject’s
movement in one direction, also referred to as a “gait sequence”. We capture 6

Table 2. Recognition accuracies in both urban and rural scenes using LWIR, MWIR,
SWIR, and visible data when both gallery and probe contain normal walking sequences

Urban Rural

LWIR MWIR SWIR Visible LWIR MWIR SWIR Visible

GEI 74.6 88.1 89.6 94.7 92.4 94.3 85.1 96.9

GEnI 72.0 89.2 89.8 93.8 91.2 94.8 85.1 95.8

EnDFT 95.2 90.0 89.9 98.4 98.0 95.0 91.2 100

EP 98.4 91.2 91.5 98.4 100 96.2 93.5 100

GEI-Net 98.5 92.4 92.5 98.6 98.2 96.2 94.8 100
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Fig. 3. Examples of (a) GEI, (b) GEnI, and (c) EnDFT gait features at frequencies
0, 1, and 2, showcasing various walking conditions including normal, carrying a bag,
wearing a coat, and holding a briefcase. Additionally, (d) displays EnDFT features
with three effective parts during a regular walking pattern
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normal, 2 bag, 2 briefcase, and 2 coat gait sequences i.e., total 12 sequences for
every subject in each dataset. Each gait sequence comprises 2 to 4 gait cycles.
Every dataset is divided into two subsets: the gallery set and the probe set.
The gallery set is constructed by taking the first four normal walking sequences
(nm-01, nm-02, nm-3, nm-04) of each subject. The probe set is the rest of two
normal (nm-05, nm-06), two bags (bg-01, bg-02), two briefcases (cs-01, cs-02),
and two coat (ct-01, ct-02) sequences.

We evaluate the performance of state-of-the-art gait recognition methods
(discussed in Sect. 4) using our dataset in terms of rank-1 recognition accuracy.
Table 2 shows the results using LWIR, MWIR, SWIR, and visible gait data in
both urban and rural scenarios where both the gallery and probe gait sequences
belong to normal walking. Table 3, Table 4 and 5 demonstrates the recognition
accuracies when the probe contains bag, coat, and briefcase sequences, respec-
tively. We conduct these experiments to assess the robustness of state-of-the-art
gait methods to changes in environmental conditions, clothing, and carrying
covariates by utilizing our dataset to establish a benchmark for databases cap-
tured in various frequency bands. Note that all experiments were conducted on a
machine with 11th Gen Intel(R) Core(TM) i7-1165G7, 2.80 GHz frequency, SSD
- 512 MB, RAM - 8 GB, and System Type - 64-bit operating system.

Table 3. Recognition accuracies when gallery contains normal and probe with bag
sequences

Urban Rural

LWIR MWIR SWIR Visible LWIR MWIR SWIR Visible

GEI 22.9 41.1 57.2 45.4 39.3 45.6 55.3 83.4

GEnI 24 48.5 64.1 45.3 54.8 50.1 54.0 77.0

EnDFT 43.6 45.3 64.3 54.4 66.0 54.2 57.5 80.5

EP 45.2 65.7 65.1 61.7 75.0 65.3 63.1 84.8

GEI-Net 50.64 59.68 72.8 62.5 65.7 62.7 63.5 80.8

From the results, the performance of GEI and GEnI are nearly similar, while
the EnDFT performs significantly better. EnDFT with effective parts (EP) and
GEI-Net perform better in both thermal and visible bands, across both urban
and rural settings. Despite the challenging background conditions, we achieve
over 95% accuracy for normal sequences in urban scenes, with the highest recog-
nition rate reaching 100% in rural scenes, particularly noticeable in LWIR and
visible bands (see Table 2). As indicated in Table 3, the EP and GEI-Net meth-
ods attain higher accuracies, reaching approximately 65% in MWIR and SWIR
in urban settings, but surpasses 80% in the visible band within rural areas,
when the probe includes bag sequences. Likewise, we achieve over 65% accu-
racy in MWIR and SWIR bands within urban settings, with approximately 70%
accuracy in the visible band in rural areas for both coat (Table 4) and briefcase
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(Table 5) sequences in the probe. Overall, gait recognition methods show bet-
ter performance when utilizing thermal data, particularly in MWIR and SWIR
for urban scenarios. Conversely, performance is enhanced with the utilization
of visible data in rural settings. Generally, urban environments present more
complex dynamic backgrounds compared to rural ones. Our infrared gait data
demonstrates superior performance over visible data in urban settings, partic-
ularly when dealing with covariates. This shows the advantage of employing
infrared imaging for real-time gait recognition applications, such as security and
surveillance. The state-of-the-art gait methods exhibit excellent performance
when applied to our outdoor infrared and RGB dataset to showcase robustness
against covariates such as clothing variations and carrying objects.

Table 4. Recognition accuracies when gallery contains normal and probe with coat
sequences

Urban Rural

LWIR MWIR SWIR Visible LWIR MWIR SWIR Visible

GEI 28.9 38.4 27.3 17.0 49.4 26.9 16.7 38.9

GEnI 21.7 43.2 24.3 25.0 45.4 32.7 25.9 45.9

EnDFT 27.5 32.3 35.3 39.6 56.2 36.3 42.4 63.7

EP 41.9 68.9 62.5 58.7 66.7 39.2 47.9 70.5

GEI-Net 39.9 58.3 60.5 55.7 54.7 35.2 45.2 65.5

Table 5. Recognition accuracies when gallery contains normal and probe with briefcase
sequences

Urban Rural

LWIR MWIR SWIR Visible LWIR MWIR SWIR Visible

GEI 24.8 36.5 35.4 27.4 42.7 35.8 34.9 62.7

GEnI 26.9 35.8 55.4 42.2 47.9 32.7 31.9 50.7

EnDFT 46.8 41.1 54.2 55.0 50.0 35.2 33.5 65.9

EP 48.4 51.8 69.7 56.7 53.0 39.5 39.9 70.5

GEI-Net 40.4 44.4 60.7 51.7 49.1 34.1 55.1 65.5

The characteristic of gait is that it can be efficiently recognized at a distance.
Hence, we perform experiments to assess the gait recognition performance at
lower image sizes (scales). We directly subsample the silhouette images of the
gait images because we observed in our experiments that the visual quality
of the scaled silhouette images was similar to the silhouettes obtained from
the scaled gait images. Therefore, to reduce the time complexity, we directly
subsample or scale down the silhouette images of the original gait images using



338 S. Nahar and S. Mahmoodi

the nearest neighbour interpolation method. With the use of nearest neighbour
interpolation, scaled-down images remain binary. We choose EnDFT features
with effective parts to evaluate the gait recognition performance at smaller scales
due to their superior performance in both thermal and visible bands, across both
urban and rural settings, as evidenced in our results.

We consider various scale factors for our experiments such as 0.7, 0.5, 0.3, 0.1,
and 0.05. For a fair comparison, the gait images without scaling i.e., scale factor
= 1 are also considered. Tables 6, 7, 8 and 9 depict the recognition accuracies
across various scale factors in urban and rural settings for LWIR, MWIR, SWIR,
and visible gait images, respectively. The results in these tables include various
walking conditions in the probe, such as normal, bag, coat, and briefcase.

Table 6. Experimental results for EnDFT with effective part-based gait recognition
across various scales using LWIR gait data in both urban and rural scenes

Scale LWIR-Urban LWIR-Rural

Normal Bag Case Coat Normal Bag Case Coat

1 98.4 45.2 48.4 41.9 100 75.0 53.0 66.7

0.7 95.2 32.6 46.8 29.1 97.9 45.8 54.3 58.3

0.5 100.0 35.8 45.2 30.7 97.9 54.1 54.3 64.5

0.3 98.4 35.5 48.4 37.0 95.8 45.8 54.3 60.4

0.1 98.4 40.4 50.0 38.7 83.3 33.3 36.9 52.0

0.05 70.9 30.7 27.5 27.4 70.8 39.5 32.6 35.4

From Tables 6, 7, 8 and 9, we can see that in many of the cases, the recog-
nition accuracies significantly increase concerning the lower scale factors. This
is because when we down-sample the gait images, the noise and artefacts are
lowered and hence we obtain better recognition rates at lower scales. We achieve
a 100% accuracy rate for normal walking sequences in urban environments using

Table 7. Experimental results for EnDFT with effective part-based gait recognition
across various scales using MWIR gait data in both urban and rural scenes

Scale MWIR-Urban MWIR-Rural

Normal Bag Case Coat Normal Bag Case Coat

1 91.2 65.7 51.8 68.9 96.2 65.3 39.5 39.2

0.7 84.4 44.6 51.7 68.9 84.7 60.8 36.9 47.8

0.5 84.4 55.3 55.1 62.0 86.9 58.6 41.3 45.6

0.3 84.4 44.6 55.1 56.8 86.9 54.3 50.0 41.3

0.1 87.9 50.0 58.6 65.5 91.3 56.5 58.6 60.8

0.05 86.2 42.8 44.8 50.0 82.6 50.0 43.4 41.3
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Table 8. Experimental results for EnDFT with effective part-based gait recognition
across various scales using SWIR gait data in both urban and rural scenes

Scale SWIR-Urban SWIR-Rural

Normal Bag Case Coat Normal Bag Case Coat

1 91.5 65.1 69.7 62.5 93.5 63.1 39.9 47.9

0.7 91.0 57.1 67.8 64.2 91.3 69.5 31.8 52.1

0.5 91.0 58.9 67.8 67.8 93.4 69.5 34.0 52.1

0.3 92.8 64.2 71.4 66.0 91.3 67.3 36.3 47.8

0.1 82.1 75.0 60.7 66.0 93.4 58.6 36.3 50.0

0.05 57.1 23.2 28.5 28.5 65.2 44.3 28.7 37.8

Table 9. Experimental results for EnDFT with effective part-based gait recognition
across various scales using Visible gait data in both urban and rural scenes.

Scale Visible-Urban Visible-Rural

Normal Bag Case Coat Normal Bag Case Coat

1 98.4 61.7 56.7 58.7 100.0 84.8 70.5 70.5

0.7 93.3 53.3 68.3 48.2 100.0 78.2 63.6 70.4

0.5 98.3 48.3 68.3 44.8 100.0 78.2 65.9 72.7

0.3 93.3 58.3 68.3 50.0 100.0 86.9 68.1 68.1

0.1 90.0 55.0 63.3 53.4 100.0 84.7 70.4 56.8

0.05 88.3 41.6 60.0 48.2 87.5 71.7 65.9 56.8

LWIR data at a scale of 0.5, and in rural settings using visible data up to a
scale factor of 0.1. Typically, the SWIR camera produces high-resolution images,
thereby maintaining recognition performance up to a scale factor of 0.1 without
degradation, as indicated in Table 8. We can see in our results that 0.05 is the
lowest scaling factor where the recognition performance starts to degrade across
all scenarios. The results show the advantage of gait in real-time video surveil-
lance systems, as it can be recognized even at low image resolutions or scales
while the other biometrics like face, iris, fingerprint, etc. require relatively high
image resolutions for person identification.

6 Conclusions and Future Work

We introduced a multi-frequency gait database constructed from long, medium,
and short wavelength infrared (LWIR, MWIR, and SWIR) as well as visible
(RGB) cameras in uncontrolled outdoor scenes. It contains recordings of 31 per-
sons, walking in four variations: walking normally, carrying a backpack, wear-
ing a coat, and holding a briefcase in urban and rural scenes. A knowledge-
based system is used here for silhouette extraction in dynamic environments.
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Our experimental results indicate that state-of-the-art gait recognition methods
perform effectively when applied to our infrared and RGB datasets, demonstrat-
ing robustness against appearance variations caused by changes in clothing and
carrying covariates. The results show the importance of infrared gait recognition,
especially in real-time urban scenarios. In addition, our results demonstrate the
capability of gait recognition even from a distance, specifically at reduced scales
(up to 0.05).

In the future, we plan to extend our dataset to include at least 300 subjects
with various viewing angles. This extensive dataset will subsequently serve as
the foundation for cross-view and deep learning-based gait recognition in uncon-
trolled outdoor settings.
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Abstract. Temporal human pose prediction from a 3D human skele-
ton sequence is vital for robot applications such as autonomous control
and human-robot interaction. Recent pose prediction methods generally
make predictions using GCN. However, because all frames of human
poses are processed at once using a GCN, it is necessary to wait for pre-
processing until all input frames are available, and intermediate predic-
tions cannot be obtained until post-processing is complete. In addition,
when predicting not in the time domain but in the frequency domain,
if the input/output time is less than a few seconds, the number of sam-
pling points is extremely small and the frequency resolution is low. In this
study, we propose Recurrent Graph Convolutional Network (RGCN) and
its application to a pose prediction. The advantages of RNN and GCN
for sequential predictions in the time domain without frequency trans-
formation are combined into RGCN to address the problem of existing
methods. Through evaluation on public datasets, we confirmed that the
accuracy of the proposed model using RGCN, which predicts sequen-
tially in the time domain with simple processing and fewer parameters,
is comparable to that of latest prediction method.

Keywords: Pose prediction · sequential prediction · Recurrent Graph
Convolutional Network (RGCN)

1 Introduction

Predicting human pose and location in future seconds is essential task for robot
applications such as robot-human interaction [10,15], human tracking [9], and
autonomous control [5]. Even if we can predict the future poses of a target
person only one second in advance, the prediction is useful for robot applications.
Therefore, we aim to predict the future human poses as accurately as possible
for about one second.

When a robot automatically controls or interacts with humans, it is essen-
tial to be robust to the surrounding environment to increase the stability of the
system. Therefore, human poses are generally represented by a time series of
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a set of the body-joint locations on 3D coordinates because 3D human skele-
ton sequences are robust to environmental factors such as person’s clothing,
surrounding situation, and background.

Traditionally, machine learning models, such as hidden Markov model [2] and
restricted Boltzmann machine [24], have been used for pose prediction. However,
in recent years, deep learning models with higher prediction accuracy, such as
recurrent neural networks (RNNs) and graph convolutional networks (GCNs),
have been used [17].

Outputs (prediction)

Inputs

RGCN
model

RGCN
model

RGCN
model

RGCN
model

RGCN
model

Fig. 1. Concept of sequential pose prediction using the proposed Recurrent Graph
Convolutional Network (RGCN). The proposed model can explicitly learn the rela-
tionships between body joints and predict future poses by sequentially processing pose
sequences.

Since 3D human skeletons can be regarded as graphs, pose prediction meth-
ods that use GCN, which is suitable for processing graph structures, are increas-
ing. Some prediction methods that consider human body joints as a graph as
it is [3,22] and other methods that convert the movement of each body joint
into frequency coefficients using Discrete Cosine Transform (DCT) [4,18] have
been proposed. However, although the methods using GCN can explicitly learn
the relationship between body joints and have high accuracy, they consider the
body joints of all frames as one graph; they must wait for pre-processing until
all input frames are available, and prediction results cannot be obtained until
all post-processing is completed. Therefore, there is a problem that the waiting
time required for input/output processing is long. In addition, when predicting
in the frequency domain using DCT, the number of sampling points is extremely
small for input/output of several seconds or less, and the frequency resolution is
low.

On the other hand, methods using RNN predict by treating human poses as
time-series data. The advantage of using RNN is that the next joint coordinates
can be simply obtained by the relative distance from the previous coordinate
through sequential processing, and the input/output latency is small. However,
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methods with only RNN is not possible to explicitly learn the correlation between
body joints as with GCN, and the problem is how to represent a single feature
vector of the body joints, which results in low accuracy or high calculation cost.

In this study, we propose a Recurrent Graph Convolutional Network (RGCN)
that has the advantages of both RNN, which can process time-series data sequen-
tially, and GCN, which can convolve graph structures, and a pose prediction
method that uses the proposed RGCN and predicts human poses in the time
domain. Figure 1 shows conceptual figure of the pose prediction.

Our contributions are summarized as follows:

– We propose Recurrent Graph Convolutional Network (RGCN) that can
sequentially process time-series data with a graph structure.

– We propose a pose prediction model using RGCN and its learning method,
and the model predicts human poses with short pre- and post-processing
latency through sequential prediction in the time domain.

The rest of this paper is organized as follows: In Sect. 2, recent work on human
pose prediction is summarized. In Sect. 3, the details of the proposed sequencial
human pose prediction method are described. In Sect. 4, experimental results are
presented. Finally, we conclude the paper in Sect. 5.

2 Related Work

Machine learning methods such as hidden Markov model [2], restricted Boltz-
mann machine [24], and Gaussian process latent variable model [26] had been
used in pose prediction, however, it is difficult to capture complex human motions
using these methods. Recently, pose prediction methods that use deep learning
such as RNN [6,14,19,25] and GCN [3,4,7,14,18,22] are widely used.

Since RNNs have recursive structures, they can efficiently process time-series
data, and when predicting human poses, it is possible to make predictions by
sequentially processing the pose sequence. In terms of the advantage of RNN,
sequential processing prediction allows the next pose to be easily obtained from
the previous pose and has small input/output delays. However, because RNN
alone cannot explicitly learn the correlation between body joints, the problem
is how to represent a single feature vector representing the pose. Many existing
methods using RNN represented joint features as one-dimensional feature vec-
tor [6,19,25], however, this leads to increase in the cost of feature extraction or
a decrease in accuracy.

On the other hand, since the human body can be regarded as a graph struc-
ture, GCNs, which can extract features using convolution operations from arbi-
trary graph structures, have been used for the pose prediction in recent years. An
advantage of using GCN is that the relationships between body joints, which are
the vertices of the skeleton graph, can be learned explicitly. Prediction methods
using GCN include methods that consider temporal changes in the 3D coordi-
nates of body joints directly as a graph [3,14,22] and other methods that convert
the movement of each body joint into frequency coefficients using Discrete Cosine
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Transform (DCT) [4,8,18]. As examples, Cui et al. considered a 3D human skele-
ton sequence as a graph with the coordinate values of each body joints as fea-
tures, and used GCN with learnable adjacency matrices to capture the spatial
dependence between each joints [3]. Li et al. proposed an Encoder-Decoder-based
method with GCN, CNN and RNN that predicts multi-scale poses by grouping
body joints that have a close positional relationship [14]. Whereas, Mao et al.
proposed a prediction method using DCT and GCN with learnable adjacency
matrices [18] which converts the temporal information of a 3D skeleton sequence
in the time domain into information in the frequency domain. This method
represents the temporal changes of each body joint in terms of frequency coef-
ficients and predicts human poses as a set of vectors of frequency coefficients
corresponding to each body joint in the frequency domain. Dang et al. proposed
a GCN-based method that groups closely positioned body joints and gradually
predicts multi-scale poses in the frequency domain [4]. Fujita et al. proposed a
pose prediction method using DCT and GCN that progressively predicts the fre-
quency coefficients by multi-scaling the frequency domain into high-, medium-,
and low-frequency domains [8].

The accuracy of the methods using GCN described above is high because
they can explicitly learn the correlation between the body joints. However, it is
necessary to process all frames at once; pre-processing must wait until all input
frames are available, and intermediate prediction results cannot be obtained
until post-processing is completed. Therefore, there is a problem that the wait-
ing time for input/output latency is long. In addition, when predicting in the
frequency domain using DCT, the number of sampling points is very small for
input/outputs of less than a few seconds, and the frequency resolution is low.

Other prediction methods have been proposed, such as a pose prediction
method using a simple multi-layer perceptron [11] and a method based on Mes-
sage Passing Neural Network (MPNN), which is designed to have equivariance
and invariance [28]. Even with these methods, prediction is performed in the
frequency domain, and there are the problems of the frequency resolution and
latency to batch processing for all frames. Also, other prediction methods using
Transformer have been proposed [1,27]; however, the calculation costs are rela-
tively high, and the methods using Transformer require batch processing of all
input/output frames.

In this study, to solve the problems of existing methods, we focus on the
advantages of both RNN, which can process time series sequentially, and GCN,
which can perform graph convolution, and propose a simple and novel Recurrent
Graph Convolutional Network (RGCN) that can sequentially process time-series
data with graph structure, and a pose prediction method using the RGCN. There
are also studies on combining RNN and GCN in the field of pose estimation
rather than pose prediction [20,21]. However, in our study, we generalize the
formula for combining RNN and GCN and construct an RGCN with a more
concise expression to be useful for pose prediction.
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3 Recurrent Graph Convolutional Network and Pose
Prediction

3.1 Overview of the Proposed Method

Methods using GCN have delays for input/output processing due to batch pro-
cessing of all frames. In this study, we propose a Recurrent Graph Convolu-
tional Network (RGCN) that can sequentially process time-series data with a
graph structure, which has two characteristics: RNN that can process time series
sequentially, and GCN that can convolve graph structures. Then, we attempt
to reduce the delays for input/output processing by sequentially predicting the
pose sequence using a pose prediction model with RGCN.

3.2 Recurrent Graph Convolutional Network

First, the input format of the network is a matrix Hin in which the feature vector
corresponding to each graph node is stacked. A graph convolution layer with a
learnable adjacency matrix is defined by the following equation:

Hout = σ(GHinW ), (1)

where Hin ∈ R
n×Fin is the input, G ∈ R

n×n is the learnable adjacency matrix,
W ∈ R

Fin×Fout is the weight matrix, Hout ∈ R
n×Fout is the output graph feature,

and σ is an activation function, respectively. Fin and Fout are feature dimensions,
n is the number of nodes. Note that the bias, which is added after calculating
the weight matrix, is omitted in Equation (1).
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Fig. 2. Pose prediction model using RGCN and sequential process. The proposed model
receives location, velocity, and acceleration information as inputs and outputs velocity
information (relative distance) to the next location. The next position and accelera-
tion information are then calculated using the predicted velocity information (relative
distance).
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We define a function f as matrix product with W and the process of activa-
tion function in Equation (1) and get

Hout = f(GHin). (2)

Here, by replacing f with RNN process,

Hout = RNN(GHin). (3)

Therefore, the Equation (1) can be replaced by an RNN with recursive structure.
Although it is possible to use existing RNNs such as vanilla RNN and LSTM, in
this study, we use a simplified RNN to reduce the number of parameters. The
proposed RGCN in this study is defined by,

St = σ((GHt + aSt−1)W ), (4)

where Ht ∈ R
n×Fout is the input, G ∈ R

n×n is the learnable adjacency matrix,
W ∈ R

Fout×Fout is the weight matrix, St, St−1 ∈ R
n×Fout are the output graph

features, and σ is an activation function, respectively. In addition, a is a scalar
value and learnable parameter that controls the degree of information transmis-
sion in time steps. Note that the bias, which is added after calculating the weight
matrix, is omitted in Eq. (4).

3.3 Pose Prediction Using RGCN

The pose at a time step t is represented by a graph, and it is represented as
a matrix Xt in which the feature vectors corresponding to each body joint are
stacked. These feature vectors are sets of 3D coordinates of human body joints
obtained using sensors, such as infrared or inertial motion capture sensors. We
assume that X in = (XT1 , . . . , XTin) is the input 3D human pose sequence, and
X out = (XTin+1, . . . , XTout) is the sequence of prediction outputs. The purpose
is to predict X out from X in. Therefore, the proposed model with the RGCN
receives one human pose in order from the beginning of the input sequence,
updates the hidden state, and outputs the next human poses from the last input
sequentially.

In order to add velocity information as the input to the pose prediction model,
V in = (VT1 , . . . , VTin) is calculated by taking the difference Vt = Xt − Xt−1 in
the 3D pose sequence. Here, we set VT1 = O because XT0 is not available.

Similarly, in order to add acceleration information, we also take the difference
in the obtained velocity information and calculate Ain = (AT1 , . . . , ATin), AT1 =
O. Note that the obtained values are not differential values; strictly speaking,
they are not velocity and acceleration. However, since they contain information
on velocity and acceleration, we represent velocity and acceleration hereafter.

Thus, the three obtained feature matrices of X in, V in, Ain are concatenated
and arranged into a feature matrix as the input. The pose prediction model fp
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outputs the next location, velocity, and acceleration using the following equation:

̂Vt = fp(Xt−1, Vt−1, At−1), (5)
̂Xt = Xt−1 + ̂Vt, (6)
̂At = ̂Vt − Vt−1. (7)

This calculation is performed sequentially for each time step t. As shown in
Fig. 2, the prediction model consists of an input layer (graph convolution layer),
stacked RGCN layers, and an output layer (linear layer). After time Tin +1, the
output of the model is used as the next input because observations have not yet
been obtained. For this, it is set as Vt ← ̂Vt, Xt ← ̂Xt, At ← ̂At.

3.4 Training Method for Prediction Model

We used two losses to train the proposed pose prediction model. First, similar
to the training method of the existing methods [4,18,28], the loss is calculated
by Mean Per Joint Position Error (MPJPE), which is the mean of all Euclidean
distances for each joint in the predicted and ground truth skeleton pairs, for
the predicted pose sequence. Normal MPJPE (Ls) is defined by the following
equation:

Ls =
1

TJ

T
∑

t=1

J
∑

j=1

‖p̂j,t − pj,t‖2 , (8)

where J denotes the number of human body joints in the 3D coordinates and
T denotes the number of time step. In addition, p̂j,t ∈ R

3 and pj,t ∈ R
3 repre-

sent the predicted location for j-th joint at the time step t and the ground truth,
respectively. However, since the our prediction model processes the pose sequence
sequentially by differential calculation, the overall accuracy may decrease if mis-
predictions are generated in the early stage. Considering this fact, we used
weighted loss function (Lsw) that weights the MPJPE in sequential order.

Lsw =
1

TJ

T
∑

t=1

Te− 2
T t ·

(

J
∑

j=1

‖p̂j,t − pj,t‖2
)

. (9)

Since low-frequency components (smooth motions) are considered important
for natural human motions [18], the proposed model using RGCN, unlike other
methods, does not predict in the frequency domain, making it difficult to empha-
size the low-frequency components during the training. Therefore, as the second
loss function, we calculated MPJPE of moving average after calculating the
simple moving average of the predicted and ground truth pose sequences. The
moving average acts as a low-pass filter and is expected to remove high-frequency
components from body joint movements. The moving average of the prediction
is calculated as follows:

Mp̂
j,t =

p̂j,t + p̂j,t+1 + p̂j,t+2

3
. (10)
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Note that this was not calculated if there were missing values. After perform-
ing the same calculation for the ground truth, we computed the MPJPE for the
sequences of moving average. The moving average MPJPE (Lmv) is

Lmv =
1

TmvJ

Tmv
∑

t=1

(

J
∑

j=1

∥

∥

∥Mp̂
j,t − Mp

j,t

∥

∥

∥

2

)

, (11)

where Tmv is the number of time step of the moving average. Also, Mp is moving
average for ground truth.

Therefore, the final loss L used for the training is as follows:

L = Lsw + Lmv (12)

4 Evaluation

4.1 Outline of Experiments

We compared the proposed method with existing methods on two public
datasets. In the experiments, we used Python 3.11, PyTorch 2.1.0, CUDA11,
NVIDIA Tesla V100. As the existing methods, we used the prediction method
using GCN, Traj-GCN [18] and MSR-GCN [4]. We also used EqMotion [28],
which currently has the highest prediction accuracy, for the comparison.

In addition, to confirm the effectiveness of the proposed RGCN, we also
experimented with a simple sequential prediction model using Gated Recurrent
Unit (GRU) and Long Short-Term Memory (LSTM) and confirmed these accu-
racy. The features for each body joint were concatenated and flattened to a
one-dimensional feature vectors. For fair comparison, we also applied the learn-
ing method described in Sect. 3.4 to the models using GRU and LSTM.

Table 1. Comparison of the number of model parameters in Human 3.6 M

Model (units, layers) Total number of learnable parameters ↓
GRU model (256, 3) 1,252,162
GRU model (512, 3) 4,863,554
LSTM model (256, 3) 1,646,914
LSTM model (512, 3) 6,439,490
Traj-GCN 2,555,275
MSR-GCN 6,298,185
EqMotion 641,892
Ours (256, 5) 335,200
Ours (512, 5) 1,322,848
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Human3.6M: The Human3.6M is a dataset for human motion analysis [12].
This dataset contains 7 participants and 15 action categories. Like existing
method [4], we used the data of {S1, S6, S7, S8, S9} as the training set and
the data for S5 and S11 as the test set and validation set respectively. Also,
following the existing method MSR-GCN [4], we chose 22 body joints from
the original 32 joints. For MSR-GCN, we also prepared multi-scale skeletons
with 12, 7, and 4 joints. Each sequence was downsampled from 50Hz to 25Hz,
and we used 10 frames for 0.4 s as input and 25 frames for 1.0 s as output by
using a sliding window of 35 frames.

CMU Mocap: The CMU Mocap dataset1 is often used for pose prediction. We
experimented using a subset of the dataset with the 8 action classes used
in [4,13]. Following the existing method [4,13], we split the training set and
test set. Then, we split one-fifth of the training set as the validation set. Also,
we chose 25 body joints from the original 38 joints and prepared multi-scale
skeletons with 12, 7, and 4 joints. Each sequence was downsampled from
120Hz to 30Hz, and we used 12 frames for 0.4 s as input and 30 frames for
1.0 s as output by using a sliding window of 42 frames.

4.2 Configuration and Parameters

Regarding the sequence length, the input and output are 10 and 25 in
Human3.6M, and 12 and 30 in CMU Mocap, respectively. In addition, in the
proposed method, the number of hidden layer units was set to 256 or 512 units,
and the number of RGCN layers was set to five layers. The size of the adjacency
matrices is the number of body joints. In the models using GRU and LSTM,

Table 2. Average MPJPE of 5 trials and its standard deviation on the Human3.6M.

Model Average MPJPE (mm) ↓
(units, layers) Validation Test

GRU model (256, 3) 65.38 ± 0.21 75.42 ± 0.19

GRU model (512, 3) 65.55 ± 0.53 75.62 ± 0.69

LSTM model (256, 3) 67.32 ± 0.30 76.31 ± 0.37

LSTM model (512, 3) 68.76 ± 0.20 77.96 ± 0.49

Traj-GCN 71.57 ± 0.21 85.02 ± 0.77

MSR-GCN 69.48 ± 1.15 82.39 ± 2.50

EqMotion 62.47 ± 0.50 72.59 ± 0.66

Ours (256, 5) 62.50 ± 0.48 72.26 ± 0.73

Ours (512, 5) 61.40 ± 0.25 70.89 ± 0.65

1 The data used in this project was obtained from mocap.cs.cmu.edu. The database
was created with funding from NSF EIA-0196217.
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the number of hidden layer units was also set to 256 or 512 units, and the num-
ber of layers was set to three layers. The models using GRU and LSTM have a
input layer (linear layer with activation) and a output layer (linear layer). The
parameters of MSR-GCN, Traj-GCN, and EqMotion were set by following the
existing studies. The number of parameters to be learned for each model is listed
in Table 1.

All learnable parameters were updated by using RAdam optimizer [16] with
the default hyperparameters. To prevent gradient explosion, we set the gradient
clipping values to 1.0. We also set the dropout ratio to 0.2, batch size to 256, and
the maximum number of epoch to 200. As the activation function of RGCN, we
used Leaky ReLU with a slope of 0.2. When the validation loss did not decrease
for five epochs, the learning rate was multiplied by 0.1. When the loss did not
decrease for 11 epochs, the training was terminated.

The center positions of the data were normalized so that the base of the spine
in the first frame of the input became the origin. In order to learn rotation in
3D coordinates in the proposed method, data augmentation was performed by
rotating each sequence using rotation matrices with random angles in [0, 360)
during the training.

We used MPJPE [12] explained in the Sect. 3.4 as the evaluation metric,
and evaluated the predictions based on how close the predicted 3D future pose
sequence is to the ground truth. We performed the training with five trials with
different initial weights for each method and evaluated the performance by the
average.

4.3 Results and Discussion

Table 2 and 3 show the average MPJPE of five trials and its standard deviation
for each method on the Human3.6M and CMU Mocap, respectively. These values
in the tables are rounded off to the third decimal place. Figure 3 shows examples

Table 3. Average MPJPE of 5 trials and its standard deviation on the CMU Mocap.

Model Average MPJPE (mm) ↓
(units, layers) Validation Test

GRU model (256, 3) 69.60 ± 0.97 79.21 ± 1.28

GRU model (512, 3) 64.07 ± 2.78 75.87 ± 1.30

LSTM model (256, 3) 69.23 ± 0.92 83.94 ± 1.27

LSTM model (512, 3) 70.02 ± 1.50 83.85 ± 0.94

Traj-GCN 65.82 ± 0.90 76.61 ± 1.07

MSR-GCN 70.99 ± 16.87 81.79 ± 11.24

EqMotion 58.81 ± 0.87 67.00 ± 0.71

Ours (256, 5) 58.93 ± 1.05 67.79 ± 1.00

Ours (512, 5) 64.65 ± 4.81 72.99 ± 3.96
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Table 4. MACs for each model on the Human3.6M.

Model MACs (G) ↓
MSR-GCN 0.101
EqMotion 0.196
Ours (256, 5) 0.278
Ours (512, 5) 1.060

Table 5. Processing time and frames per second (FPS) required to predict 25 frames
from 10 frames of input.

Model Device name (time (s) ↓ / FPS ↑)
(units, layers) RTX4090 i9-13900K (24 core) N100 (4 core)

MSR-GCN 2.38 × 10−2 / 42 7.96 × 10−3 / 125 1.70 × 10−1 / 5
EqMotion 1.44 × 10−2 / 69 3.12 × 10−2 / 32 2.74 × 10−1 / 3
Ours (256, 5) 3.51 × 10−2 / 28 7.56 × 10−3 / 132 2.47 × 10−2 / 40
Ours (512, 5) 3.45 × 10−2 / 28 1.19 × 10−2 / 83 4.39 × 10−2 / 22

Table 6. Average MPJPE of 5 trials and its standard deviation in the ablation study
on the Human3.6M. Comparison of 256 units and 5 layers.

Method Average MPJPE (mm) ↓
Validation Test

baseline 63.05 ± 0.29 72.57 ± 0.33

+ weighted loss 62.41 ± 0.52 72.26 ± 0.34

+ moving average loss 62.50 ± 0.48 72.26 ± 0.73

Table 7. Average MPJPE of 5 trials and its standard deviation in the ablation study
on the CMU Mocap. Comparison of 256 units and 5 layers.

Method Average MPJPE (mm) ↓
Validation Test

baseline 61.59 ± 1.55 72.37 ± 1.65

+ weighted loss 59.45 ± 1.22 68.61 ± 0.89

+ moving average loss 58.93 ± 1.05 67.79 ± 1.00

of a comparison between the proposed method using RGCN (512 units) and
EqMotion for pose prediction with relatively large movements in Human3.6M.
Similarly, Fig. 4 shows examples of prediction results involving relatively small
movements in Human3.6M.

From Table 2, we confirmed that the average MPJPE of the proposed method
is higher than that of the existing method in the case of Human3.6M. Meanwhile,
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from Table 3, the average MPJPE of the proposed method was slightly lower than
that of EqMotion in CMU Mocap. We consider that the reason for this is that
the size of the CMU Mocap subset used in the experiment was smaller than that
of Human3.6M, which caused overfitting. In fact, comparing the MPJPEs for
the test data that had the highest score among the five trials in CMU Mocap,
EqMotion had a score of 66.30, while the proposed method had a similar score
of 66.23. In addition, in the case of 512 units, the accuracy worsens because of
overfitting.

Comparing the normal RNN and RGCN, from Tables 1–3, the method using
RGCN, which can learn joint relationships explicitly, has higher scores than the
normal RNN models, despite fewer parameters. Even if the number of layers of
the normal RNN models was increased to four or more, the accuracy did not
improve. Therefore, RGCN can process time-series data with graph structure
more efficiently than normal RNN.

From Tables 1 and 2, in the case of the proposed method with 256 units, the
average MPJPE is comparable to the average MPJPE of EqMotion, indicating
that the parameters were reduced without decreasing the accuracy, despite the
number of parameters being approximately 0.53 times larger. Additionally, there
is no need to wait until all input frames are available to start pre-processing, and
intermediate prediction results can be returned through sequential processing.
Therefore, the waiting time is short, and faster speeds can be expected in other
applications that use prediction results.

The results of the comparison of the computational complexity and prediction
speed between the models are shown in Tables 4 and 5. The MACs are rounded off
to the fourth decimal place, and the processing time is rounded off to the third
decimal place, and the MACs were calculated using a tool called ptflops [23].
MACs is roughly GMACs = 0.5×GFLOPs [23]. The comparison of the prediction
speed in Table 5 shows the results when using an NVIDIA RTX4090 GPU and
intel i9-13900K and when all processing was performed on an intel i9-13900K or
N100 CPU. In addition, each processing time includes the time required for pre-
and post-processing of the skeleton sequence and transfer overhead from CPU
to GPU, and is shown as an average of 1000 times. From Table 4, it can be seen
that the proposed method, which performs calculations sequentially each time,
requires a larger calculations than the existing methods. On the other hand, from
Table 5, when using the RTX4090 GPU, the existing method EqMotion was the
fastest, but when using CPUs, the proposed method had the fastest prediction
speed. In particular, the proposed model (256 units, 5 layers) can be executed
at 40 FPS, even on the N100 (4-core CPU), making it possible to predict more
than seven times faster. In addition, in the existing methods, when the skeletons
are acquired from the sensor at 25 frames per second, a delay of about 0.36 s
occurs for the input of 10 frames; therefore, the speed difference becomes even
larger. From Figs. 3, 4, and Table 2, we also confirmed that by increasing the
number of units, the proposed method was able to predict better than existing
methods, whether the motion is small or large.

We performed ablation studies to verify the effectiveness of the learning
method described in Sect. 3.4. Tables 6 and 7 show the results of the ablation
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Our method

+ +

Pose prediction results for a sequence (the person is walking)

+

EqMotion

Our method

+ +

Pose prediction results for a sequence (the person is greeting)

+

EqMotion

Fig. 3. Examples of prediction (blue) and ground truth (red) on Human3.6M. In
Human3.6M, the proposed method could predict more accurately than the existing
method, even if the movements were relatively large. In these two examples, the per-
son is walking and greeting, respectively. (Color figure online)

studies. These values in the tables are rounded off to the third decimal place.
For Human3.6M, the prediction accuracy improved only when weighted loss was
added; however, adding moving average loss did not improve accuracy. On the
other hand, for CMU Mocap, the accuracy improved with both weighted loss and
moving average loss. RGCN has a disadvantage in that it is sensitive to noise and
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Our method

+ +

Pose prediction results for a sequence (the person is posing)

+

EqMotion

Our method

+ +

Pose prediction results for a sequence (the person is discussing)

+

EqMotion

Fig. 4. Examples of prediction (blue) and ground truth (red) on Human3.6M. In
Human3.6M, the proposed method could predict more accurately than the existing
methods, even when the movements were relatively small. In these two examples, the
person is posing and discussing, respectively. (Color figure online)

accumulation prediction errors due to its simple prediction mechanism. There-
fore, weighted loss is very effective, given the learning characteristics of RGCN.
Also, moving average loss is considered to be effective when the dataset contains
many high-frequency components caused by noise, and it may not be effective
depending on the dataset with little noise.
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5 Conclusion and Future Work

In this study, we proposed a Recurrent Graph Convolutional Network (RGCN)
that can sequentially process time-series data with a graph structure and a
pose prediction method using RGCN, and attempted to improve the process-
ing latency of the input and output in pose prediction. The proposed method
can achieve the same level of prediction accuracy as existing methods, even with
approximately half the number of parameters, and pre-processing is simple and
the waiting time for pre- and post-processing is short, making it possible to make
predictions with reduced overhead.

Because the increase in parameters is smaller when the number of layers is
increased than when the number of units is increased, it may be possible to
further improve the accuracy and reduce the number of parameters. However,
multi-layering may increase the overhead required for each calculation. Analysis
of larger dataset is also a future task. In the future, we would like to work on
the remaining issues to improve the accuracy and further reduce the calculation
costs.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
JP23K16914. The computation was carried out using the General Projects on super-
computer “Flow” at Information Technology Center, Nagoya University.
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Abstract. We introduce a method for recognizing conversation activ-
ity in a group of people walking outdoors using a color video sequence
acquired from a camera. Many methods have been developed to recognize
whether people are walking together or talking together in a color video
sequence. However, a method has yet to be proposed to recognize conver-
sation activity in a pedestrian group walking outdoors. In this paper, we
design a feature extraction approach for conversation activity recognition
using physical body interactions caused by pedestrians’ conversations.
Our method generates an interaction video sequence in a virtual space
using a temporal posture signal and a temporal walking position signal
that represent pedestrians’ body interactions. Our method uses the inter-
action video sequence as an informative and visible feature to determine
a conversation activity label. The experimental results showed that our
interaction video sequence recognized conversation activity more accu-
rately than alternative techniques that use the appearance of the body
regions of a pedestrian group or time-series changes of the posture and
walking position among pedestrians.

Keywords: Conversation activity recognition · Pedestrian groups ·
Human body interaction

1 Introduction

A demand exists for technology that can automatically recognize human inter-
actions within a group of people walking outdoors. In this study, we focus on
conversation activity as one form of human interaction in a pedestrian group.
We define conversation activity as whether a conversation is occurring within a
pedestrian group and whether the conversation is active or inactive. One pos-
sible application of conversation activity recognition is marketing in a scenario
in which many pedestrian groups are walking in the aisles of a shopping mall.
Figure 1 shows an example of the application. By comparing the number of pedes-
trian groups engaged in active conversation between visitors that are arriving
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Fig. 1. We assume that an application for conversation activity recognition exists. This
application can determine whether pedestrian groups are satisfied with their visit by
comparing the number of pedestrian groups engaged in active conversation between
visitors that are arriving and leaving.

and leaving, it may be possible to determine whether visitors are satisfied with
their visit.

We consider what feature can be used to recognize conversation activity in a
pedestrian group. A possible feature is the chronological change of speech sounds,
such as the timing of pedestrians’ utterances and the inflection of pedestrians’
voices. However, because we target a group of pedestrians walking outdoors, it
is difficult to use a microphone for voice sensing for each pedestrian. Instead,
we consider using a color video sequence acquired from a surveillance camera
as a feature that represents a human body interaction performed in a pedes-
trian group. We assume that the time-series changes in gestures performed by
each pedestrian, and the time-series changes in pedestrians’ body orientation
and walking position, provide a visible and informative feature for conversation
activity recognition. When analyzing speech among people [12], it is well known
that gestures, that is, movements produced by the body in response to speech,
are helpful. Regarding the analysis of pedestrian group behavior [23] and the
development of the group detection method [2], it is well known that body ori-
entation and the walking position, which are interrelated among pedestrians that
belong to one group, are helpful. In this study, our definition of physical body
interaction consists of gestures, pedestrians’ body orientation, and pedestrians’
walking position.

We consider how to design a method to recognize conversation activity using
the body interaction feature in a video sequence. To the best of our knowl-
edge, a method has yet to be proposed to recognize conversation activity in a
pedestrian group. Instead, we survey existing methods for recognizing the pres-
ence or absence of body interaction in a pedestrian group, such as whether the
pedestrians are walking together or talking together in a video sequence. These
existing methods can be divided into two main categories. The first category con-
tains methods [2,5,18,19,24] that detect the presence or absence of a pedestrian
group. The second category contains methods [9,13,17] that recognize whether
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people in a group are talking together, given that a pedestrian group has been
detected. More recently, methods [3,6,15] have emerged that detect the presence
or absence of a pedestrian group and simultaneously recognize the presence or
absence of conversations within that group. However, even when these existing
methods are applied, it is impossible to recognize whether the conversation is
active or inactive in a pedestrian group.

In this paper, we propose a novel method for recognizing conversation activ-
ity in a pedestrian group by extracting an interaction video sequence as a feature,
which has high recognition accuracy and can be visually confirmed by human
observers. Our method generates an interaction video sequence in a pedestrian
group using a temporal posture signal and temporal walking position signal esti-
mated from a color video sequence. By applying this interaction video sequence
to the class classification network, our method determines a conversation activity
label: active conversation, inactive conversation, or no conversation. The active
conversation label indicates the state in which the pedestrian group is having a
lively conversation on topics of mutual interest. The inactive conversation label
indicates the state in which the group is not having a lively conversation on
topics of no interest. The no conversation label indicates the state in which no
conversation is occurring.

The salient contributions of this paper are as follows:

– We extract an informative feature using an interaction video sequence ren-
dered in a virtual space by fixing the viewpoint position of the virtual camera
in front of a pedestrian group.

– We design a visible feature that allows human observers to directly see phys-
ical body interaction performed in a pedestrian group.

– On an originally collected outdoor pedestrian dataset of 624 video sequences
in 52 groups, we demonstrated that our interaction video sequences achieved
high accuracy in conversation activity recognition.

From the experimental results, we confirmed that our method using an interac-
tion video sequence recognized conversation activity more accurately than using
color video sequences of pedestrian body regions or using a temporal posture
and walking position signal.

2 Method for Recognizing Conversation Activity

2.1 Overview

In this paper, we assume that body interaction arising from conversation activity
among pedestrians is represented explicitly by time-series signals of the posture
and walking position. Figure 2 shows an overview of our method. In the following,
we describe the procedure in our method.

P1. Body region estimation:
We estimate the region that represents the body of a pedestrian at each time
point in a color video sequence acquired from a surveillance camera.
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Fig. 2. Overview of our method for conversation activity recognition. We estimate
body region images from a color video sequence acquired from a camera in P1. Our
method obtains a temporal posture signal and temporal walking position signal that
represents the body interaction caused by the conversation in P2 and P3. We generate
an interaction video sequence in a virtual space for extracting an informative and visible
feature in P4 and determine a conversation activity label using the interaction video
sequence in P5.

P2. Temporal posture signal estimation:
We estimate a temporal posture signal from the appearance of a pedestrian
body region at each time point. Specifically, we use the three-dimensional
(3D) human body model to extract a time-series signal that represents only
the posture change of each pedestrian. Using this signal, we represent pos-
ture changes in gestures and body orientation while pedestrians engage in
conversation in a group.

P3. Temporal walking position signal estimation:
We estimate a temporal walking position signal by calculating the feet’s cen-
ter of gravity from the pedestrian’s body region at each time point. Specifi-
cally, we estimate the center of gravity of the feet’s contour for each pedes-
trian and determine the walking position on the road surface by applying a
homography transformation. Using this signal, we extract temporal changes
that represent positional relationships in a conversation in a group.

P4. Interaction video sequence generation:
Our method generates an interaction video sequence of a pedestrian group
using 3D rendering with a temporal posture signal of P2 and temporal walk-
ing position signal of P3. By always fixing the virtual camera viewpoint in
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front of the pedestrian group, we extract a feature that can capture the body
interaction that effectively recognizes the conversation activity label. We also
design a feature that allows human observers to visually and temporally con-
firm physical body interactions in a group.

P5. Conversation activity label classification:
We determine the conversation activity label using a classification network
for an interaction video sequence of P4. We use three conversation activity
labels: active conversation, inactive conversation, and no conversation. We
explain the details of these labels in Sect. 3.2. We generate multiple short
video sequences from a single interaction video sequence and output multi-
ple candidate labels from the classification network using these short video
sequences. A majority vote among these candidate labels determines the final
conversation activity label.

In the following sections, we describe each procedure in detail.

2.2 Body Region Estimation

In procedure P1, we estimate the pedestrian body region from a video sequence
acquired from a camera. The body region video sequence R(p) that consists of
pedestrian body pixels and surrounding background pixels is expressed as

R(p) = {R(t, p) | t ∈ T }, (1)

where R(t, p) is the body region image of each pedestrian p at time point t,
T is a set that consists of the times when the images were acquired, and T
is the total number of times that belong to the set T . T also represents the
length of time from when a pedestrian enters the camera’s field of view until
the pedestrian leaves. Note that R(t, p) consists of a pedestrian body region and
the background region surrounding it. R(t, p) stores a mask, whether each pixel
belongs to the body or background region, and the RGB value of each pixel. We
use Mask R-CNN [7], which is internally called from within PHALP [16], at each
time point to estimate the pedestrian body region. PHALP is a body posture
and shape estimation method, as described in the next section. This method
also performs pedestrian tracking and determines each pedestrian p of R(t, p).

2.3 Temporal Posture Signal Estimation

In procedure P2, we estimate a temporal posture signal from the body region
video sequence R(p) to represent the changes of gestures and body orientation
in a conversation among pedestrians. First, we estimate the pedestrian’s posture
from the body region image R(t, p) ∈ R(p). The posture is denoted by V(t, p),
a set of 3D vertices v(t, p) on the pedestrian’s body surface, and their adjacent
vertices. A temporal posture signal V(p) is expressed as

V(p) = {V(t, p) | t ∈ T }. (2)
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Fig. 3. Examples of vertices
on the body surface.

Fig. 4. Parameters used to calculate position f (t, p)
of the feet’s center of gravity.

In this study, to estimate V(t, p), which represents the posture changes, we apply
PHALP [16] described in the previous section. PHALP is a method for track-
ing people in monocular movies by predicting their future 3D representations.
This method involves estimating temporal models for the 3D pose, position,
and appearance and using these models for probabilistic matching and updat-
ing tracklets. PHALP uses SMPL [11], which is a 3D human body model, to
represent the posture and body shape parameters. The posture parameters are
specifically expressed as a rotation matrix at the 23 joint points of the human
body and a rotation matrix over the whole body. Using the estimated posture
parameters and the standard body shape parameters, we generate a set V(t, p)
that consists of 6,890 vertices v(t, p) on the body surface and their adjacent
vertices. Figure 3 shows examples of vertices on the body surface.

When estimating a temporal posture signal, outliers in the time direction
often occur suddenly. We detect outliers by applying a Hampel filter to the time-
series signal of the 3D vertex v(t, p) ∈ V(t, p). Then we interpolate the posture
parameters at the time of the outlier using the nearest neighbor technique from
the values at the surrounding time.

2.4 Temporal Walking Position Signal Estimation

In P3, we estimate a temporal walking position signal on a road surface to rep-
resent the pedestrian’s positional relationship caused by the conversation. First,
in the body region image R(t, p) ∈ R(p), our method estimates the position
of the feet’s center of gravity f(t, p) in the image coordinate system. Next, by
applying a homography transformation to convert the image coordinate system
to the road surface coordinate system, our method obtains the walking position
f̃(t, p). The temporal walking position signal F(p) is expressed as

F(p) = {f̃(t, p) | t ∈ T }. (3)

In the following, we describe how to calculate the position f(t, p) of the feet’s cen-
ter of gravity in the image coordinate system. Figure 4(a) shows the parameters
used to calculate this position. In the body region image R(t, p) of pedestrian p
at time t, our method obtains the image position x(j, t, p) = (x(j, t, p), y(j, t, p))
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of the point on the feet’s contour. Let J = {j} : j be a natural number and
∀j, k ∈ J : j < k ⇒ x(j, t, p) < x(k, t, p). The origin is the lower left corner of
the bounding rectangle of the pedestrian region. Using the component y(j, t, p),
which is the distance from the bottom (x(j, t, p), 0) of the bounding rectangle to
the feet’s contour, we calculate weight w(j, t, p) as

w(j, t, p) ∼ N (y(j, t, p)|0, σ2), (4)

where N () is a normal distribution with mean 0 and standard deviation σ. Note
that w(j, t, p) satisfies

∑
j∈J w(j, t, p) = 1. We obtain the position f(t, p) of the

feet’s center of gravity in the image coordinate system as follows:

f(t, p) =
∑

j∈J
w(j, t, p)x(j, t, p). (5)

By applying a homography transformation and setting the height on the road
surface to 0, we obtain the 3D walking position f̃(t, p) in the road surface coor-
dinate system.

In the following, we explain why weight w(j, t, p) is assigned to point x(j, t, p)
on the feet’s contour. Figure 4(b) shows an example when the legs are closed
during walking, and (c) shows an example when the legs are open. In the case of
closed legs, the candidate contour points mainly appear on the feet, and partially
on the hands and other body parts, as shown in the middle part of Fig. 4(b). In
the case of open legs, the candidate contour points mainly appear on the feet,
and partially on the crotch and other body parts, as shown in the middle part
of Fig. 4(c). To suppress the influence of candidate points that do not belong to
the feet, we assign small weights to these points in Eq. (5).

The temporal walking position signal F(p) sometimes contains outliers when
the feet’s contour is not estimated correctly because of the shadow of a pedestrian
on the road surface or markings, such as white lines. Our method detects outliers
by applying a Hampel filter and performs a linear interpolation.

2.5 Interaction Video Sequence Generation

In procedure P4, we extract a feature that allows human observers to confirm the
body interaction visually. Specifically, we place pedestrians in the same group
in a virtual space using a temporal posture signal V(p) and temporal walking
position signal F(p), and generate an interaction video sequence S using 3D
rendering. In this virtual space, we visualize the temporal posture signal and
temporal walking position signal of each pedestrian using the standard body
shape parameters, which is the average person’s body shape prepared in SMPL,
as described in Sect. 2.3. When we render an interaction video sequence in a
virtual space, we always set the virtual camera viewpoint at a fixed position
in front of the pedestrian group to capture the physical body interaction which
increases the accuracy of conversation activity recognition.

In the following, we explain how to generate an interaction video sequence
S. Our method places the 3D vertex v(t, p) ∈ V(t, p) ∈ V(p) on the body surface
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obtained in Sect. 2.3 at the walking position f̃(t, p) ∈ F(p) obtained in Sect. 2.4.
The 3D vertex ṽ(t, p) in the virtual space is converted as follows:

ṽ(t, p) = v(t, p) + f̃(t, p). (6)

All vertices v(t, p) in a set V(t, p) are converted to ṽ(t, p). Suppose that a con-
verted set Ṽ(t, p) consists of ṽ(t, p) and their adjacent vertices. A temporal pos-
ture and walking position signal Ṽ(p) in the virtual space is expressed as

Ṽ(p) = {Ṽ(t, p) | t ∈ T }. (7)

Note that our method determines pedestrian p that belongs to the same group
using the distance between the walking positions f̃(t, p) of pedestrians. After
obtaining Ṽ(p) for a pedestrian group, we place each pedestrian that belongs
to the same group and perform 3D rendering to generate an image S(t). An
interaction video sequence S for each pedestrian group is expressed as

S = {S(t) | t ∈ T }. (8)

The posture parameters are sometimes estimated with an unnaturally large tilt
of the human body if a temporal posture and walking position signal Ṽ(p) is
directly used for rendering an interactive video sequence. Our method corrects
the human body’s inclination relative to the road surface by always setting the
rotation angle to 0 degrees.

2.6 Conversation Activity Label Classification

In P5, we apply an existing classification network developed in action recognition
to determine conversation activity labels using an interaction video sequence S.
We use the C3D network [20] that consists of 3D convolution layers designed
for action recognition. Our method divides an interaction video sequence into
multiple short video sequences, which are input into the C3D network to pre-
dict candidate labels that represent conversation activity for each short video
sequence. A majority vote among these candidates determines the final label.

In the following, we explain the details of our method for determining the
conversation activity label. Our method generates K short video sequences with
different initial times from a single interaction video sequence S during the C3D
network training and prediction process. Short video sequence Ŝ is expressed as

Ŝ = {S(t̂) | t̂ ∈ T̂ }, (9)

where T̂ is a set of time points t̂ of the image S(t̂) that belong to the short
video sequence. Our method randomly determines the initial time point t̂1. We
generate a short movie sequence Ŝ when T̂ (< T ) images are collected by pro-
gressing time at equal intervals I from t̂1. T̂ also represents the total number of
time points in the short video sequence. During the training process, we train
the C3D network using LK short video sequences generated from L interaction
video sequences prepared in advance. During the prediction process, we calcu-
late K candidates for the conversation activity label using the input short video
sequences generated from an interaction video sequence, and finally determine
the output label using majority voting among candidates.
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Fig. 5. Camera setting for collecting color video sequences of pedestrian groups while
they were walking outdoors and conversing.

3 Experiments

3.1 Dataset

To investigate the effectiveness of our method, we collected color video
sequences of pedestrian groups while they were walking outdoors and conversing.
Figure 5(a) shows the camera setting. We set the height from the road surface
to the camera (SONY, FDR-AX55) to 21.4 m to obtain an overhead view of an
outdoor parking lot. The camera resolution was 3840×2160 pixels and the frame
rate was 30 fps. Figure 5(b) shows the road surface coordinate system described
in Sect. 2.4. We pre-computed the homography matrix from four white line inter-
sections on the road surface. The camera position in the road surface coordinate
system was (10.7, 59.3, 21.4).

We recruited 20 participants (19 men, one woman, 22.6±1.3 years old, univer-
sity students, Japanese ethnicity). When recruiting the participants, we required
that they be somewhat acquainted with each other to avoid a lack of conversa-
tion when they first met each other. We controlled the number of pedestrians
in a group to a minimum of two participants with whom a conversation could
occur. We randomly selected two pedestrians from the 20 participants without
duplicates to form a single pedestrian group. We prepared 52 pedestrian groups.
We controlled each pedestrian group so that the two participants walked side by
side, which is considered to occur most frequently in real scenarios.

We acquired color video sequences of pedestrian groups walking outdoors for
each conversation activity label (active conversation, inactive conversation, and
no conversation). In one color video sequence, a pedestrian group appeared in
the camera’s field of view from the start to the end, when it disappeared. To
confirm the robustness of the virtual camera viewpoint used in our method, we
set four walking paths on the road surface: back to front, front to back, top
right to bottom left, and bottom left to top right, as shown in Fig. 5(c). We
randomized the order in which the participants walked along each path and
the order in which the two participants lined up next to each other. In total,
we collected 52 (groups) × 3 (labels) × 4 (walking paths) = 624 color video
sequences. Figure 6 shows examples of the pedestrian group video sequences
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Fig. 6. Examples of the pedestrian group video sequences R′ generated from the color
video sequences.

R′ generated from the collected color video sequences. To generate R′, we set
a region of interest for the color video sequence so that two pedestrians that
belonged to the same group were within the same field of view using the body
region image R(t, p) ∈ R(p) estimated in procedure P1.

3.2 Conversation Activity Labels

When collecting color video sequences, we only instructed the participants on
the topic of the conversation and did not give any explanation or instructions
regarding the physical body interaction. We set the following conditions for
collecting color video sequences for each conversation activity label.

Active conversation:
As a topic of conversation, we instructed the participants to introduce their
hobbies while walking. We collected color video sequences while a pedestrian
talked about a hobby, the other pedestrian responded to it, and started a new
conversation about a hobby.

Inactive conversation:
As a topic of conversation, we instructed the participants to talk about topics
of little interest to each other while walking. The topic was chosen by the
participants from several candidate topics prepared in advance (e.g., economic
situation and political situation in a country that the participants had never
visited and had almost no knowledge of).

No conversation:
We instructed the participants not to engage in any conversation while walk-
ing.
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Fig. 7. Examples of interaction video sequences S.

We randomized which pedestrians in the group initiated the conversation
when collecting active and inactive labels.

3.3 Experimental Conditions

In the following, we describe the experimental conditions for procedures P1
through P3. We used the default parameters provided for PHALP in P1 and
P2. The window size of the Hampel filter in P2 and P3 was 5. We set the body
shape parameters of SMPL to the default parameters provided by PHALP. We
automatically determined the σ of Eq. (4) in P3 according to the height of the
pedestrian’s bounding rectangle. Specifically, σ increased as the height increased
and σ decreased as the height decreased.

Next, we describe how to determine the virtual camera viewpoint for gener-
ating interaction video sequences in procedure P4. We determined the direction
in which a pedestrian group walks on a road surface by fitting a straight line
using the group’s center positions at all time points. We always kept the vir-
tual camera viewpoint at a distance of 4.25 m from the center position in the
direction of the pedestrian group. The height of the virtual camera viewpoint
was 0.85 m from the road surface. Figure 7 shows examples of the interaction
video sequences S. The color scheme for each pedestrian was either light red or
light blue and was determined randomly without duplication. We believe that
human observers can visually confirm the posture among pedestrians, such as
arm bending and face orientation, and the positioning of the pedestrians in each
group, from the interaction video sequences in the figure.

The C3D network [20] in procedure P5 consisted of four convolution layers,
four pooling layers, and two affine layers. The filter size for 3D convolution was
3 × 3 × 3. Time length T̂ of a short video sequence Ŝ was 16. We set the array
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size of the short video sequences to 100 (pixels) × 100 (pixels) × 3 (colors) ×
16 (time points). We set I = 18 and K = 50 for the parameters described in
Sect. 2.6. We used RMSprop as the optimizer when training the C3D network,
with a learning rate of 0.0001 and mini-batch size of 16. We trained the C3D
network from scratch.

We applied leave-one-group-out when evaluating the accuracy of conversa-
tion activity recognition. Specifically, we used 12 interaction video sequences
generated from one pedestrian group for the prediction process and L = 612
interaction video sequences generated from the remaining 51 pedestrian groups
for the training process. We repeated the training and prediction processes for
all 52 pedestrian groups. We prepared 3 (labels) × 4 (walking paths) = 12 inter-
action video sequences per pedestrian group.

We evaluated the computational cost of our method on a PC equipped with
a GPU (RTX 2080 Ti) and CPU (i9-9940X). The processing time was 0.29 s for
P1, 0.66 s for P2, 0.05 s for P3, and 0.58 s for P4 per video sequence frame. The
processing time for P5 was 0.01 s per short video sequence during prediction.
The total GPU memory usage was 4.7 GB.

3.4 Basic Performance

We evaluated the effectiveness of our method using interaction video sequences as
features. For comparison, we used the following features to calculate the accuracy
of conversation activity recognition.

M1: Interaction video sequence S
We used S generated in procedure P4 of our method as the feature. Specif-
ically, we generated short video sequences Ŝ in procedure P5 from S. The
array size of the short video sequence was 100 (pixels) × 100 (pixels) × 3
(colors) × 16 (time points).

M2: Pedestrian group video sequence R′

We used R′, which represents the appearance of the pedestrian group, as
the feature. Examples of R′ were already shown in Fig. 6. We directly passed
the pedestrian group video R′ to procedure P5 and generated short video
sequences from R′. The array size of the short video sequence was 100 (pixels)
× 100 (pixels) × 3 (colors) × 16 (time points).

M3: Temporal posture signal V(p)
We used V(p) estimated from each pedestrian that belonged to the same group
as the feature. Specifically, we directly passed V(p) estimated in procedure
P2 to procedure P5 and then generated short temporal signals. The array
size of the short temporal signal was 6890 (vertices) × 2 (pedestrians) × 3
(components) × 16 (time points).

M4: Temporal posture and walking position signal Ṽ(p)
We used Ṽ(p), combining a temporal posture signal V(p) with the temporal
walking position signal F(p) estimated from each pedestrian that belonged
to the same group as the feature. Specifically, we directly passed Ṽ(p) gen-
erated in procedure P4 to procedure P5 and then generated short temporal
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Table 1. Comparison of the accuracy of conversation activity recognition using each
feature.

Feature for conversation activity recognition Accuracy (%)

M1: Interaction video sequence S 76.2±0.7

M2: Pedestrian group video sequence R′ 57.3±1.3

M3: Temporal posture signal V(p) 72.9±0.9

M4: Temporal posture and walking position signal Ṽ(p) 74.1±0.7

signals. The array size of the short temporal signal was 6890 (vertices) × 2
(pedestrians) × 3 (components) × 16 (time points).

We input each feature into the C3D network to predict the conversation activity
label in P5. We calculated accuracy using the number of correctly predicted con-
versation activity labels. Because there was random sampling when we extracted
each feature, we set the number of trials used to calculate recognition accuracy
to 10. In M3 and M4, to align the dimensionality with other features, we ran-
domly sampled 5000 vertices and then transformed the array size from 5000 × 2
× 3 × 16 to 100 × 100 × 3 × 16. In each accuracy evaluation trial, we assumed
that the vertices sampled in all short temporal signals were the same. The other
experimental conditions were the same as those described in Sect. 3.3.

Table 1 shows the accuracy of using each feature in conversation activity
recognition. Recognition accuracy was 76.2±0.7% for interaction video sequence
S of M1, 57.3±1.3% for pedestrian group video sequence R′ of M2, 72.9±0.9%
for temporal posture signal V(p) of M3, and 74.1±0.7% for temporal posture and
walking position signal Ṽ(p) of M4. In all cases, we confirmed that our method
M1 was more accurate than M2, M3, and M4. These results indicate that using
a feature of an interaction video sequence generated by our method was more
effective in recognizing conversation activity than using a feature of a pedestrian
group video sequence, a temporal posture signal, or a temporal posture and
walking position signal.

Instead of C3D, we applied TimeSformer [1] as a video action recognition
method and LSTM [8] as a time series analysis method. TimeSformer performed
fine-tuning on a model pre-trained with Kinetics-400, whereas LSTM trained a
model from scratch. The recognition accuracies were 71.8±0.7% for TimeSformer
and 67.1 ± 1.1% for LSTM. Our method obtained higher recognition accuracy
(76.2±0.7%) than the existing methods. The GPU memory usage was 1.3 GB for
C3D used in our method, 6.1 GB for TimeSformer, and 0.7 GB for LSTM. We
believe that our method is reasonable in terms of the trade-off between accuracy
and memory usage.

We evaluated the recognition accuracy of our method for the case of several
groups walking simultaneously. The number of groups in each frame ranged
from 0 to 3. We used a total of 120 groups. The accuracy of our method was
67.4 ± 0.2%. Although our method performed well in this case with minimal
occlusion, it is important to note that real-world scenarios often involve heavy
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Fig. 8. Examples of interaction video sequences generated from different virtual camera
viewpoints in procedure P4 of our method.

occlusion caused by people overlapping. This presents a significant limitation
that we need to address in future work. For practical applications, we must
develop methods for various scenarios, such as heavy occlusion and interaction
with objects such as shopping trolleys.

3.5 Evaluation of Different Virtual Camera Viewpoints

We evaluated the accuracy of conversation activity recognition for different vir-
tual camera viewpoints when generating an interaction video sequence in pro-
cedure P4. We set the positions of the virtual camera viewpoints on C1 front,
C2 back, C3 overhead, C4 underfoot, C5 right side, and C6 left side. Figure 8
shows interaction video sequences generated using these virtual camera view-
points. We changed only the position of the virtual camera viewpoint; the other
experimental conditions were the same as those described in Sect. 3.4.

Table 2 shows the accuracy for each virtual camera viewpoint when gener-
ating interaction video sequences. We confirmed that C1, in which the virtual
camera viewpoint was the front of the pedestrian group, had higher recognition
accuracy than C2, C3, C4, C5, and C6, in which the virtual camera viewpoint
was not the front of the pedestrian group. Furthermore, we checked the recogni-
tion accuracy of our method C1 for each walking path in Fig. 5(c). We achieved
the same level of accuracy for all walking paths. Based on these results, when
generating interaction video sequences in procedure P4, placing the virtual cam-
era viewpoint in a position that always captured a pedestrian group from the
front led effectively to the recognition of conversation activity.

4 Conclusions

We proposed a method for recognizing conversation activity in a group of pedes-
trians walking outdoors using interaction video sequences that represent human
body interactions. The experimental results demonstrated that our method
is superior to the alternative techniques using pedestrian body region video
sequences or temporal posture and walking position signals in conversation activ-
ity recognition. We believe that our method can be implemented in a variety of
potential applications in addition to the marketing applications described in
Sect. 1. For example, we considered medical applications for dementia checking,
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Table 2. Accuracy of conversation activity recognition when generating interaction
video sequences from different virtual camera viewpoints in P4.

Virtual camera viewpoint Accuracy (%)

C1: Front 76.2 ± 0.7

C2: Back 74.8 ± 0.3

C3: Overhead 70.2 ± 0.8

C4: Underfoot 72.0 ± 0.9

C5: Right side 40.0 ± 1.5

C6: Left side 48.2 ± 2.6

office applications for mental health checking, and educational applications for
bullying detection. In future work, we intend to develop a method to recog-
nize conversation activity at multiple levels and a robust method for occlusion.
We will expand evaluations by increasing the number of pedestrians in the same
group and changing the positional relationship of pedestrians within a group. We
will perform a performance comparison with group activity recognition meth-
ods, for example, ARG [21], Actor-Transformers [4], GroupFormer [10], DIN [22],
and KRGFormer [14]. We appreciate Professor Yoshio Iwai’s valuable advice and
suggestions during this study. We would like to thank Mr. Norihiko Torii, Mr.
Tomohiro Miyake, and Mr. Osamu Yoshimura of SEIRYO ELECTRIC Corpo-
ration for their helpful advice on this paper.
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Abstract. Although mobile robots have on-board sensors to perform
navigation, their efficiency in completing paths can be enhanced by plan-
ning to avoid human interaction. Infrastructure cameras can capture
human activity continuously for the purpose of compiling activity ana-
lytics to choose efficient times and routes. We describe a cascade tempo-
ral filtering method to efficiently extract short- and long-term activity in
two time dimensions, isochronal and chronological, for use in global path
planning and local navigation respectively. The temporal filter has appli-
cation either independently, or, if object recognition is also required, it
can be used as a pre-filter to perform activity-gating of the more compu-
tationally expensive neural network processing. For a testbed 32-camera
network, we show how this hybrid approach can achieve over 8 times
improvement in frames per second throughput and 6.5 times reduction
of system power use. We also show how the cost map of static objects
in the ROS robot software development framework is augmented with
dynamic regions determined from the temporal filter.

Keywords: Human-robot interaction (HRI) · Video analytics · Mobile
robots · Robot navigation · Activity filter · Pedestrian dynamics

1 Introduction

Robots must navigate with respect to both their static world (walls and fixed
objects) and dynamic (people and other robots). The dynamic world can be clas-
sified in terms of short- and long-term time frames. Robots capture short-term
events by using their on-board sensors; for instance, a person steps in front of
the robot and the robot should stop. But there is also activity that repeats in
predictable, longer-term periodic cycles. Repetition over a regular time frame is
termed isochronal. Examples of isochronal time periods include factory shifts,
scheduled deliveries, and employee breaks. The effects of these activities on naviga-
tion are just as real as for static objects except that their occurrence is time depen-
dent. In this paper, we determine both long- and short-term activity by temporal
video filtering for use in robot navigation and path planning.

Video analysis of human activity can be performed using convolutional neural
networks or vision transformers to detect and track people. This neural network
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15314, pp. 375–390, 2025.
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processing can achieve a high level of recognition, but at high cost of computa-
tion. If only activity detection is required – not individually segmented persons
– then motion flow [13,20,26,29] is a less expensive alternative. Instead of GPU-
processing needed for real-time neural network detection, motion flow can be
performed by IoT-level processors, typified by low cost, low power, small mem-
ory, and narrow bandwidth. This low level of processing is a practical cost-
and power-usage alternative for installations that might have tens or hundreds
of cameras. A hybrid solution including a temporal filter and neural network
object detection is also shown to realize cost and power efficiencies.

The application goal of this paper is to use fixed cameras to detect human
activity such that it can be avoided for the purpose of efficient robot path plan-
ning and navigation. We consider both off-line global path planning, where the
goal is to schedule the robot for regular (daily, etc.) tasks on selected paths and
at times that are efficient and safe with respect to human activity; and real-time
local navigation where the goal is to choose the best of current path options for
immediate robot navigation.

The technology goal of this paper is to offer an efficient multi-band tem-
poral video filter for extracting short- and long-term activity bands from both
chronological and isochronal time. Extraction of these bands requires multiple
low, high, and bandpass filters. These could be implemented separately, however
we show how a cascade filter architecture can extract all these bands efficiently
from a single video stream. We show how use of the cascade filter both reduces
video processing and video storage. Although temporal video filters are common
and activity detection to avoid human-robot interaction is often used, we believe
the design and use of a single cascade filter to efficiently extract multiple bands
over chronological and isochronal time is novel.

The main contributions of this work are:

1. A cascade filter that extracts temporal video information of long- and short-
term human activity more efficiently than through separate filters.

2. Use of a single, efficient cascade filter to identify long- and short-term activity
to aid global and local robot navigation.

3. An efficiency analysis of using pixel- and feature-based activity analytics
either independently or as a hybrid combination of pre-filter and neural net-
work object detection.

4. Practical implementation on the ROS robot operating system.

In Sect. 2, we review related literature. In Sect. 3, we describe the system
architecture to extract long- and short-term activity. Section 4 shows costs of
computation of activity detection, object detection, and a hybrid of both.

2 Background

Early work in robot navigation dealt with a static environment of building walls
and fixed-placed objects, e.g., [11]. Inclusion of moving objects (other robots) in
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dynamic environments followed, e.g., [3]. While navigation with respect to inan-
imate objects is a challenge, human presence adds the trade-off of safety versus
efficiency. In [28] the procedure of SLAM (Simultaneous Localization and Map-
ping) is augmented to include humans. For prolonged observation, the SLAM
robot can both observe and extrapolate human trajectories to create human
motion maps. However, there is a degree of unpredictability when dealing with
humans [6] that makes the success of trajectory prediction variable.

Because full trajectories are often difficult to track, many approaches rep-
resent floor space as an occupancy grid and determine statistics independently
within each grid cell [16]. In [25], this is done with 2-state Markov probabili-
ties of entry and exit to a cell. Direction is added in [30], in which a 9-state
Hidden Markov Model describes motion direction from each grid cell, and a 9th
state for staying in the same cell. In [10], grid flow is extended to be either
observed (statistical) or spatially extrapolated from cell directions to predict
continuing trajectories. Mobile robots cannot be in all places at all times so it is
understandable that predicted flow is a valuable complement to observed flow.
Finally, work such as [31] combine methods discussed here to yield a multi-layer
representation (static layer from SLAM and object layer from YOLO [23]).

Besides avoiding human-occupied areas, advantage can be gained by observ-
ing the paths humans travel and to follow these. Imitation learning, or inverse
reinforcement learning, is a machine learning approach that doesn’t require train-
ing with labeled samples. Instead, an agent observes how experts behave (humans
in our case), learns a reward function that the experts are unconsciously act-
ing upon, and seeks to maximize that reward [7]. In [32] human trajectories are
observed to learn their normal paths with respect to objects. With this predic-
tion, efficient human-aware robot paths can be planned. In [14], inverse reinforce-
ment learning is used with particular emphasis on socially normative navigation
in dense and complex scenes such as meeting places and hallway intersections.
This can be extended beyond just navigation to where robots can learn more
complex human movements for the purpose of human-robot collaboration [17].

Besides static location of objects and prediction of forward path, affordance
is another relevant factor for robot navigation among objects and humans. Affor-
dance describes how an object is used, and for navigation purposes this relates
to spatial interaction between human and object [12,18,27].

For the previously described work and for many robot navigation systems,
sensors on the robot are used for navigation. But many situations limit robots
to indoors and on paths traveled repeatedly. In these cases, fixed cameras can
augment onboard sensors to aid navigation. In [22], fixed cameras are used to
create a heat map-based path planner. Motion pixels are found and accumulated
into “heat values”. Resulting cost values at regular grid locations are associated
with their closest path edges. This reduction from grid points to many fewer
path edges reduces storage and subsequent communication of cost values to the
robot. A relatively new fixed-camera alternative is an event camera, which con-
tains bio-inspired vision sensors to capture scene changes [9]. Although these cap-
ture activity, as is our goal, they do not also capture traditional frames for video
processing as is also our goal, so are outside the domain of this paper.
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This paper has similarities and differences with respect to the literature
described. Unlike work that combines SLAM and person detection [16], we
detect only people, but do so by their activity rather than their identity. Unlike
work that categorizes objects by their affordances [12], we deal only indirectly by
learning observed human activity and creating a model similar to cost maps and
social force models [14,21,22,27]. A difference in our work from cost maps and
social force models, which directs a robot away from obstacles is that our model
directs it toward higher probability paths. In contrast to work using on-board
robot sensors and cameras to aid navigation [3,10,16,21,27,28,31], we use fixed
cameras as do [22,30,32]. There is much work in learning and avoiding humans
in close-up human-robot interaction with static robots [2,15], which has both
similarities and differences to mobile robot interaction investigated here.

Our work is closest in purpose and methods to those proposing dynamic
occupancy grids [10,22,25,30]. These are created by unsupervised learning of
human activity in a grid-space over time. Our work also has similarities to the
inverse reinforcement learning approaches used for predicting trajectories in [32]
and socially normative behaviors in [14,21]. Whereas these seek to generalize
beyond specific objects and locations, our approach imitates what humans do
with emphasis on fixed locations and times.

3 Method

3.1 Definitions

Our methods distinguish different types of human activity related to different
navigation tasks as shown in Table 1. Long-term activity refers to human motion
that is statistically stationary in time and place. We also use the term isochronal,
meaning that this activity happens on a cyclic basis in some time frame. For
simplicity in this paper, our time cycle is one day, so long-term activity refers to
the activity that is statistically determined over many days at each chosen time of
day. We designate isochronal time as t∗, so an example of an isochronal sequence
is t1

∗ = 18 : 23 Monday, t2
∗ = 18 : 23 Tuesday, .....

Short-term activity refers to human motion at the current time, of which
we distinguish two types. In-place activity is static in location. In-place activity
may include people who are stationary in location such as waiting in line or
dwelling at a shop window. In-place activity also includes people who are not
stationary in location, but who create a location that is active by, for instance,
passing through a crowded bottleneck such as an entranceway. Opposite to in-
place activity is moving activity. This refers to people movement with changing
location, such as people walking.

We distinguish two types of global path planning. Off-line global path plan-
ning pertains to the task of choosing a robots full path for a future time. If
we are arranging a planned daily trip of a robot delivery cart for example, we
would seek to choose the times and paths that are statistically of least activity.
Real-time global path planning pertains to planning a full path that is to be
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Table 1. Activity types corresponding to path planning and navigation.

Activity Global Planning Off-line Global Planning Real-time Local Navigation Planning

Long-term 1 2 – –

Short-term, in-place – 1 1 1

Short-term, moving – 1 1 1

Fig. 1. Functional diagram shows temporal filter cascade and event detection.

begun at the current time. Local planning pertains to altering the global path
with information local to (i.e., a short distance from) the robot at that time.

In Table 1, off-line global path planning can only be performed with respect to
long-term activity because short-term activity is not known off-line. However, for
real-time global path planning, in-place short-term activity can be used because
both are happening at the current time. We designate in-place short-term activ-
ity as first choice “1” for this column and second choice “2” for long-term activity.
This is because, when a path is altered due to short-term activity, the real-time
global planning may also use long-term activity information.

3.2 Architectural Overview

A functional diagram of the cascade filter is shown in Fig. 1. Motion detection is
performed on each video frame, then a cascade of temporal video filters extracts
long- and short-term activity. We describe each component in sections below.

3.3 Motion Detection

Motion detection is performed on each frame to obtain a motion image of K
blocks subsampled from the full frame, each block k containing 2 motion features,
fk = (density, direction), corresponding to an (x, y) location,



380 L. O’Gorman

Fig. 2. Temporal filter bands associated with activity types.

M(x, y, t) = {fk}t, 0 < k < K (1)

Density is a measure of the motion in a block, a function of the number of
motion pixels and their gradient values. Direction is quantized to 8 angles. The
motion features are found from motion flow, specifically by [20], but similarly by
[13,29] or optical flow [8] methods. For brevity below we write a single block
as b(t), where b(t) = M(xi, yj , t), and xi, yi are top-left x, y block coordinates,
which increment with the block size as described in Sect. 4.2.

3.4 Temporal Filtering

After motion detection, long- and short-term activity are found using a cascade of
temporal video filters shown in Fig. 1. Figure 2 shows the temporal filter bands
of frequencies corresponding to the filter time constants TL1, TL2, TS1, and
TS2, which are described below.

For all filtering (with one exception noted below), we use a first-order IIR
filter, also called an exponential moving average filter, to give more weight to
the most recent block b(t) than past blocks b′(t−1), and obtain the block result
b′(t),

b′(t) = αb′(t − 1) + (1 − α)b(t), α ∈ [0, 1] (2)

We choose the filter parameter value α through a more intuitive parameter,
which we call the 10%-decay duration, T. This is the amount of time during
which a filtered signal will decay to 10% of original with zero input. In Eq. 2, if
input b(t) = 0 for n samples, then b′(t = n)/b′(t = 0) = αn = 0.1. So, we can
obtain α with chosen T as follows,

α = 0.1(1/n), n = rT, (3)

where the number of samples is equal to the video frame rate r in frames per
second times the 10%-decay duration T [sec]. The temporal video filters, along
with rational for their parameters and resultant image results, are described in
more depth in [19].

Filtering begins in Fig. 1 with a high-pass filter FL1 applied to the frame-rate
stream of motion vectors,

M(x, y, t) ∗ FL1 → ML1(x, y, t) (4)
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The filter time constant TL1 is chosen to reduce low frequency “stationary motion
noise” as described in Sect. 4.2.

The result of Eq. 4 is combined with the long-term, isochronal motion vector
from storage at corresponding time t = t∗ using a low-pass filter FL2, and the
resultant ML2 is stored,

ML1(x, y, t∗) ∗ FL2 → ML2(x, y, t∗) (5)

Long-term activity is updated in isochronal time, in our case 1 sample per
day for each t∗, 0 < t∗ < 1440, where 1440 is the number of minutes in a day.
Because of this long sample period, there is a tradeoff between the duration of
samples needed to obtain a good measure of long-term activity at any t∗ and
the delay within which the measure adapts to changes in long-term activity. We
choose a low-pass filter value to reduce infrequent (shot) noise as described in
Sect. 4.2.

Short-term, in-place activity can be identified by applying a low-pass filter
FS1 to ML1,

ML1(x, y, t) ∗ FS1 → MS1(x, y, t) (6)

The time constant TS1 is set to capture people activity in the same location, as
described in Sect. 4.2.

Short-term, moving activity is identified using a band-pass filter. The low end
of the filter is TS1 and the high end TS2. The time constant TS1 separates the
signal from in-place activity and TS2 removes high-frequency, infrequent noise.
Short-term, moving activity is found by subtracting MS1 from ML1 to rid the
in-place activity (effectively a high-pass filter) and then applying a low-pass filter
to rid infrequent noise. This combination results in band-pass filtering,

(ML1(x, y, t) − MS1(x, y, t)) ∗ FS2 → MS2(x, y, t) (7)

Note that the two filters at the high frequency end of Fig. 2 are not redundant
because one reduces noise in isochronal time t∗ at TL2, and the other in chrono-
logical time t at TS2.

Finally, event detection is performed on short-term, in-place and moving
activity to act as a gate on more computationally expensive processing such as
object detection,

Event(MS1,MS2) = 1,do object detection
= 0,do nothing.

(8)

3.5 Off-Line Global Path Planning

Most commonly, a path is planned that avoids human activity in time and space.
It is less common to choose path segments of higher activity, but we do this in
the following way. In Fig. 3, the long-term storage contains motion statistics for
each (isochronal) minute of the day M(pi, t∗), where we have replaced x, y of
Eq. 1 with pi to indicate this is for an x, y space corresponding to path segment
pi. We time-collapse and binarize this as follows,
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Fig. 3. Different types of activity information used for different path planning tasks.

M′(pi) = 1, if M(pi, t∗) �= 0 for any t∗, 0 < t∗ < 1440
= 0, otherwise.

(9)

The result M′(pi) can be thought of as a path attribute learned from people
activity. If M′(pi) is 0, then no people travel through this path segment, so its
reasonable to assume it is not passable (for whatever reason) and for a robot to
avoid this path as well.

Off-line path planning through path segments at isochronal time t∗ is now
a function of two activity-related values, M(pi, t∗) and M′(pi). Therefore, the
activity-related cost for off-line planning over a complete path containing seg-
ments pi can be written,

Cost1({pi}, t∗) =
∑

i

Cost(M(pi, t∗), if all M′(pi) = 1

=∞, if any M′(pi) = 0.
(10)

3.6 Real-Time Global Path Planning

Since real-time global path planning is performed just before the robot begins a
path, there is current short-term activity information available as well as long-
term information as shown in Table 1. It may make sense to weight the short-
term information higher than the long-term information {w1, w2}, although we
do not explore that further here. For simplicity, we do not repeat the second line
of Eq. 10, leaving it implicit that any locations of M′

p = 0 are not included in
a path. The activity-related cost for a path through segments {pi} from off-line
planning is,
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Cost2({pi}, t)) =w1Cost1({pi}, t∗ = t)

+ w2

N∑

i=1

Cost(Mpi
(t)).

(11)

The top line of Eq. 11 is the long-term activity cost at isochronal time t∗ = t,
which for real-time planning is the current time of path planning. The cost in
the bottom line includes both in-place and static short-term activity. Short-term
moving activity in Table 1, which is captured from the on-board robot sensors
for local planning, is outside the focus of this paper, but if captured it would be
added to Eq. 11.

4 Experiments and Results

4.1 Scope of Experiments

The focus of this paper is on efficient design of an activity filter and application
to human-robot interaction. It is important to state what is outside the scope of
this paper. Experiments showing the effectiveness of activity filtering with the
same filters but not the same efficient architecture have already been described in
[20]. Other references describe the performance of activity filtering on a variety
of datasets and applications [4]. We do not repeat these. This paper is also not
a comparison between pixel-based activity filtering and neural network object
detection. The former only detects activity; the latter can detect activity as well
but in addition detect higher level features. However, we do show how their
hybrid combination can yield both levels of information in an efficient manner.

4.2 Filter Parameters

Filter parameter values are determined by balancing the signal-to-noise ratio
for noise conditions learned statistically for each particular deployment. The
values described in this paper are for our deployment of robot path planning in
a factory setting described in Sect. 4.7. Typical of indoor surveillance cameras,
the factory cameras are mounted to view activity from ceiling height and at a
perspective such that the activity objects vary in size from about 10 × 10 pixels
to a quarter of the size of a 640 × 480 size image. Activity detection has close to
100% reliability for this range in our indoor office and factory conditions. While
the size range attests to scale robustness of the filter parameter values described
in this section, the scope of our experiments here did not extend to poor lighting
and outdoor conditions. We refer interested readers to earlier motion detection
experiments that included outdoor and low-lighting conditions [20].

The filter FL1 in Eq. 4 is designed to reduce “stationary motion noise”. This
is motion that occurs in-place and continuously such as from rustling tree leaves
or a flashing light. Choice of the value has a wide tolerance, the main consid-



384 L. O’Gorman

eration being that it should not be too short to reduce activity of interest. We
choose to remove motion of duration 30 min and longer, so at 30 frames per
second, r = 30, TL1 = 30 × 60, and Eq. 3 yields α = 0.794.

For filter FL2 in Eq. 5, we choose a low-pass filter to reduce infrequent (shot)
noise. To accomplish this, we choose a filtering duration of 10 d (this is 10 samples
in isochronal time), so at 1 frame per day, r = 1, TL2 = 1× 10, and Eq. 3 yields
α = 0.999957.

For filter FS1 in Eq. 6, we choose a low-pass filter to capture people activity
in the same location and eliminate people moving across locations. The discrim-
ination between static and moving activity is somewhat arbitrary, so the filter
value choice also has tolerance. We choose a low-pass filter with time constant
greater than or equal to 20 s to define this activity, and this activity is updated
not at frame rate but at 1/sec, so r = 1, TS1 = 20, and α = 0.89.

The band-pass filter of Eq. 7 uses FS1 on the low end, which is already spec-
ified. On the high end, FS2, it is set to remove high-frequency, infrequent noise.
This is the most intolerant of the filter parameters, since this noise has variable
periodicity. We use a FIR filter to average activity values over 1 s.

Finally, event detection is based upon the filtered results exceeding the activ-
ity average (Fig. 4), which is statistically learned, plus a chosen standard devi-
ation. In contrast to neural network methods where activity detection would
automatically learn hundreds or thousands of network parameter values, the use
of two intuitive features (density and direction in Eq. 1) incurs far less computa-
tion while incorporating statistical learning for robustness. Since for the hybrid
approach, the activity filter is positioned as a pre-filter to more expensive neural
network object detection, we can choose a conservative standard deviation to
allow more activity events, from which the subsequent neural network object
detection can eliminate false positives for higher accuracy. The computation
savings of this hybrid approach is shown in Sect. 4.6.

4.3 Isochronal Activity

Figure 4 shows two examples of isochronal activity with 1-day periodicity. The
left plot is from an office hallway. The data was collected and averaged over
2 years. The same filter parameter values detailed in Sect. 4.2 are used for all
applications. It shows an increase of activity starting at 6 am, a lull in mid-day,
increase to 4:30 pm, and activity decreasing to 9 pm. The right plot is data
from a university hallway showing activity collected and averaged over 1 month
of the school term. It shows rises and falls coinciding with hourly class changes.
The red vertical lines show times where robot navigation might best be planned
(within the work or school day) to avoid high activity periods.

4.4 Cascade and Non-cascade Filter

For our application of using fixed cameras to monitor human and robot spaces,
an industrial or business installation may use hundreds of cameras. It is impor-
tant to limit costs of hardware and computation. We compare the computation
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Fig. 4. Isochronal activity plots showing magnitude of hallway activity in a business
place (left) and a university (right).

Table 2. Computational costs of non-cascade versus cascade filter.

Cost Non-Cascade Cascade Reduction

Multiplies 5× 4× 20%

Memory 3× 2× 33%

and memory cost of the cascade temporal filter described in Sect. 3.4 and Fig. 1
against a non-cascaded filter that accomplishes the same task.

In Fig. 1, there are 5 filters, where the bandpass filter counts as 2 filters,
a combined low- and high-pass filter. So a non-cascaded filter requires 5 filter
operations. A cascade filter economizes by using the low-pass filter (FS1) for both
the short-term in-place and moving activity operations. Therefore, the cascade
filter has an advantage of 4 versus 5 filtering operations.

For memory, both cascade and non-cascade filters require the long-term stor-
age. For sequential filtering, the cascade filter needs only one storage for both
short-term in-place and moving activity. However, the non-cascade filter needs
storage for both. Therefore, the cascade filter has an advantage of 2 versus 3
motion feature frames. Results of this comparison are shown in Table 2, in which
Multiplies is a multiple of motion frame filter operations and Memory is a mul-
tiple of motion frame size.

4.5 Cost of Computation of Activity and Object Detection

Due to the high accuracy of neural network object detection (which we subse-
quently shorten to object detection), this is likely to be the first choice of many
practitioners for detecting humans to reduce human-robot interaction. This will
indeed perform the task well, but at a relatively high computational cost. In this
section, we show the computational cost of activity and object detection sepa-
rately, and in the following section of a hybrid of both.

Activity detection and object detection are different operations, the latter
being much more versatile than the former. By extracting information on number
of people, their pose, etc., an object detector can extract much more reliable
information than a temporal filter. Our comparison in this section is strictly
computational of combinations of solutions. Where low cost of computation is
important, the more lightweight activity filter may be all that is needed. Where
higher-level information is needed, the activity filter can act as pre-filter to an
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Table 3. Comparing methods for detecting activity.

Single Camera 32-Camera Network

GPU FPS Power Number Number FPS/ Power

[watts] CPUs GPUs Camera [watts]

F. R-CNN yes 6.78 135 – 32 6.78 4320

YOLOv3 yes 14.79 153 – 32 14.79 4895

OpenPose yes 6.2 175 – 32 6.2 5600

tiny YOLO no 17.78 102 4 0 2.9 520

Activity no 30+ 50 1 0 25 80

object detector to form a hybrid solution to reduce overall computation. And
where the reliability or additional information of an object detector is always
needed, we compare these costs as well.

Table 3 shows computation results of comparing different methods for activity
detection. Object detection methods are included in publication order, Faster R-
CNN [24], YOLOv3, and Tiny Yolo [23]. We have added OpenPose [5], which
finds people as well as their poses, because pose can be useful when working
with affordances (as described in Sect. 2). The computational requirements were
measured from a testbed 32-camera network viewing hallways and public areas
of a building containing offices and laboratories. The computing specifications
for processing the video streams are, CPU: AMD Ryzen 5 Pro 2600, 6-core, 8
GB RAM; and GPU: NVIDIA GeForce GTX 1060, 6 GB.

Table 3 shows in general that the pixel-based activity detector is much more
computationally efficient than the object detection approaches. These are both
based upon a processing rate of each frame, either filtering each frame or object
detection on each frame. For a single camera, the activity detector can run at
(and above) the rate of a 30 frames per second video feed, whereas the neural
methods run at half or less rate. CPU power required for the activity detector is
about half of Tiny Yolo on a CPU and about a third of the other object detectors
running on a GPU.

In an industrial application, for instance, where there are multiple cameras,
the difference is more compelling as seen on the right side of Table 3. On our
test machine, we can perform activity detection on up to 32 cameras. Using
this as a baseline, we compare for a network of 32 cameras at which activity
detection drops to 25 fps. For this workload, Tiny Yolo requires 4 CPUs and the
frame rate drops to 6.2 fps. Frame rate for the other methods stays the same
as for 1 camera because each of these uses a full GPU per single camera feed.
Besides cost of GPUs, energy usage is an important system consideration for
real applications. Power consumption is about 5× greater for Tiny Yolo than
activity detection and over 50× greater for the other methods. These results
support using activity detection alone or as a pre-filter for less frequent object
detection as will be discussed in Sect. 4.6.
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Table 4. Activity and object detection with an average of 300 events in a workday.

Detection Single Camera 32-Camera Network

Number Number Energy Number Number Energy

CPUs GPUs [w-h] CPUs GPUs [w-h]

Activity 1 0 500 1 0 800

Hybrid 1 1 500.9 1 1 828

Object 1 1 2030 1 32 49460

4.6 Hybrid Activity Filter and Object Detector

The experimental results of Sect. 4.5 show that performing activity detection is
much more efficient than object detection on every frame. But, what if we want
more detailed information than the presence or absence of activity? When this is
the case, we can employ activity detection as a pre-filter (or gate) to perform
or not perform object detection. The argument for a hybrid approach such as
this is dependent upon the application and the activity density. For instance,
if activity is continuous, we might just as well perform object detection on all
frames. If there are periods of inactivity, then use of the activity pre-filter can
be more efficient.

We have an example of real data where activity in a business hallway was
monitored for 2 years (activity plot shown in Fig. 4). There were, on average, 300
activity events per camera per workday. If an event duration is 10 s, only 8.3%
of camera time contains an event.

Using the 32-camera numbers from Table 3, if we performed YOLOv3 on
one frame of each event detected by the activity detector, then the extra cost
above activity detection is 1 GPU and 28w-h (watt-hours). This is the hybrid
approach shown in Table 4. If we were to run continuous YOLOv3 neural network
processing to do object detection without a pre-filter, this incurs an extra cost
of 32 GPUs and 60× the energy.

4.7 Incorporation into ROS

In practice, we manage our robots on the Robot Operating System (ROS) [1].
A preliminary task in using ROS is to populate a cost map with a floorplan
of walls and other static objects. By assigning cost values to (x, y) locations,
walls can be designated impenetrable, regions can be marked forbidden, and
buffers zones can be placed around objects to help guide robots along safe and
efficient paths. Figure 5 shows a ROS cost map of our robot test area. Walls
are marked in pink with cyan buffer zones, red marks forbidden zones, and blue
marks low-cost areas preferable for robot travel.

We augment the static cost map with dynamic human activity cost deter-
mined by temporal filtering. The yellow circle in Fig. 5 indicates a region of
human activity as shown by cyan dots. Just as the robot avoids cyan buffer
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Fig. 5. ROS cost map showing people activity with cyan dots inside yellow circle.
(Color figure online)

zones, it will also avoid the cyan activity locations – the difference being that
the activity locations can move as they are detected in different locations. We
currently assign the same cost to human activity as for static objects. However,
it is reasonable, since humans can move, that a lower cost could be assigned to
human activity, with the balance between safety and efficiency being a factor in
choosing that value.

5 Conclusions

Although mobile robots carry sensors to aid navigation, there are complemen-
tary benefits from fixed cameras that view the paths that robots travel. A major
benefit is continuous view of an area from which a cycle of activity can be deter-
mined. Through knowledge of daily activity patterns, long-term path planning
can be performed to avoid areas and times that are crowded, and instead choose
paths at off-peak times. We have shown that a cascade filter applied to activ-
ity captured in both isochronal and chronological time can efficiently provide
activity information for detecting long- and short-term activity. Furthermore,
we have shown that a hybrid solution of temporal filtering for event detection,
followed by object detection can yield power and cost efficiencies.
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Abstract. Multi-agent trajectory prediction is crucial for many real-
world applications. This task faces challenges in effectively capturing
individual temporal patterns and complex interactions between intelli-
gent agents. Existing models either solely focus on single agent dynamics
or neglect multi-agent collective interactions. To address these difficul-
ties, we propose a graph neural network-based trajectory forecasting app-
roach, named ForceGNN. Specifically, it combines Transfomer to extract
temporal patterns for each agent and utilizes a multi-scale hypergraph
neural network to simulate complex crowd interactions. Meanwhile, we
incorporate a social force model with strong inductive biases, abstracting
pedestrian interactions as social forces, thereby achieving more efficient
trajectory prediction. We compare ForceGNN with state-of-the-art deep
learning methods on the UCY/ETH and SDD datasets, achieving opti-
mal performance on both.

Keywords: Pedestrian Trajectory Forecasting · Hypergraph Neural
Network · Social Force Model

1 Introduction

Accurate human trajectory prediction is indispensable for autonomous systems
operating in dynamic real-world environments. Applications such as self-driving
vehicles, service robots, and intelligent surveillance all rely on the ability to fore-
cast pedestrian behavior and movements [1]. As human spaces become more
crowded and complex, modeling the intricate interactions between people and
their surroundings remains an open challenge [2]. Recent trajectory prediction
methods have modeled pedestrian paths based on individual goals, static obsta-
cles, and interactions among people [3–7]. These approaches include: early rule-
based social force models that represent interactions using differential equations
[3,4]; data-driven models where recurrent neural networks capture pedestrian
sequence dynamics and graph neural networks or attention mechanisms extract
complex inter-personal relationships [6,7]. More recently, goal-driven models
have been explored that first predict long-term targets to aid future behavior
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Fig. 1. Model Architecture. Our prediction method consists of three main com-
ponents: Temporal module, Group Interaction module, and environment module. In
addition, there is a auxiliary modules: goal estimation module.

forecasting [8]. However, these methods either disregard individual movement
patterns or complex interaction intents. To this end, we propose a goal-driven
graph neural network based on social force models called ForceGNN.

Specially, Sequential learning with neural networks tends to forget earlier
concepts [9]. To overcome this forgetting, we apply Transformer to selectively
learn important model parameters, capturing temporal patterns, named Graph
Transformer, as shown in Fig. 1. Graph-based modeling and attention mecha-
nisms have greatly advanced trajectory forecasting by modeling pairwise interac-
tion intensities [6,10]. However, they are limited in reasoning about the complex
interaction intensities between agents in dense scenes. Pairwise modeling fails to
efficiently capture such intricate relationships in crowded spaces. To enable more
comprehensive modeling of interactions, we construct a multi-scale hypergraph
to simulate the complex interaction intensities. The hypergraph encodes hierar-
chical interactions at different scales, from individual goals to group behaviors.

Meanwhile, deep learning methods face challenges in interpretability and
efficiency. Therefore, we integrate a rule-based social force model [11], which
uses sequential motion information as input. Then a goal module is modeled
as the attractive force of the goal on the agent. Meanwhile, we learn the group
interactions force between agents adaptively through a hypergraph neural net-
work, named Hyper-GNN, as shown in Fig. 1. Furthermore, we use enviorn-
ment module to model the repulsive force of static obstacles in the scene on the
agent, avoiding collisions with scenes. Through this decomposition of attractive
and repulsive forces at individual, group, and scene levels, our model can real-
istically simulate agent behavior in complex crowded scenes. Additionally, To
estimate the goal on the agent within a reasonable inference time, we apply a
goal estimation module that connects historical trajectories with semantic scene
information. Then the information is fed into a U-Net structure [12] to predict
potential goals. The U-Net structure leverages an encoder-decoder architecture
to fuse spatial scene and temporal motion clues for goal prediction. By com-
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bining bottom-up perceptual features and top-down contextual reasoning, the
model can learn robust representations of potential goals. Overall, this work has
three main contributions:

(1) We propose a novel hypergraph neural network prediction framework based
on social force model, named ForceGNN.

(2) Our model includes not only individual temporal patterns, but also the
interaction between agents and static obstacles, as well as the group-level
interaction between agents.

(3) ForceGNN achieves state-of-the-art performance on multiple public human
trajectory dataset.

2 Related Work

2.1 Social Interaction Analysis

Essentially, studies on crowd interaction models can be divided into either
physics-based methods and learning-based methods. The first group of methods
such as the social force model uses external forces to model the social Interaction
of pedestrians [11]. The model and its extensions [13,14] perform well in certain
cases while poorly on complex interactions in crowded scenarios. Learning-based
models enable more flexibility and capacity to capture underlying interactive pat-
terns [7]. However, these methods usually ignore physical feasibility constraints.
Several studies attempt to combine physics with deep learning for trajectory
prediction [3]. However, these methods ignore the group behavior’s influence
on pedestrians. In this work we combine graph neural network and social force
model to model social interactions.

2.2 Graph Neural Network

Graph Neural Networks have been extensively used in tasks such as traffic predic-
tion and trajectory prediction [7,10,15–17]. For simple graphs, prior trajectory
prediction methods based on undirected graphs assign the same weight for each
pair of nodes [15,16]. Meanwhile, EvolveGraph [18] and HEAT [10], can flexibly
handle edge and heterogeneity features for interaction modeling in multi-agent
trajectory prediction. However, these graph neural networks can only model the
pair-wise interaction in a graph but ignoring the group behavior’s influence. The
multiscale hypergraphs can capture group behaviors at different sizes, thereby
modeling agent interactions more comprehensively [7]. In this paper, we use a
hypergraph neural network to adaptively capture the group interaction between
pedestrians.

2.3 Trajectory Prediction Methods

The problem of predicting pedestrian trajectories has been extensively explored
in prior research [19]. Traditional approaches relied on handcrafted rules and
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energy potentials, which struggled to accommodate intricate interactions [11].
To overcome these limitations, deep learning techniques have been harnessed
for trajectory prediction [3,20]. Recurrent Neural Networks have been employed
to model temporal dependencies [6], and subsequently, other advanced neural
network architectures have been integrated into trajectory prediction. Notable
examples include the use of Generative Adversarial Networks [21], conditional
Variational Autoencoders [5,22], Convolutional Neural Networks [4], Transform-
ers [23], and diffusion models [24]. In the pursuit of accurately capturing spa-
tial features and interactions among pedestrians, graph neural networks have
been introduced to reason and predict future trajectories [16,17,25]. In contrast
to prevailing deep learning methodologies, our method not only incorporates
pedestrian prior knowledge, but also achieves superior overall performance.

3 Method

In this section, we will introduce our proposed network ForceGNN in detail. We
first formalize the multi-agent trajectory prediction problem as follows: Spatial
coordinates of N pedestrians is denoted as pt ={(xt

i, y
t
i)}, i ∈ {1, 2, . . . , N}.

Given the segmentation map S of each scenario I and spatial coordinates of
N pedestrians observed within a time period Tobs, {pt}Tobs

t=0 , ForceGNN aims to
predict the most likely trajectories of these pedestrians for the next Tpred time
steps, {pt}Tobs+Tpred

t=Tobs+1 .
As shown in Fig. 1, our framework is comprised of five modules. In partic-

ular, we first employ a temporal module by Graph-Transformer to capture the
temporal patterns of pedestrians. Then, the temporal patterns along with esti-
mation goals produced by a goal estimation model are input into a goal module
to capture the influence of the goals. Simultaneously, we merge the temporal
patterns with the spatial coordinates of pedestrians and feed it into a group
interaction module. Additionally, an environment module is utilized to perceive
interactions between pedestrians and their surroundings. Eventually, the network
merges insights from the environment, individual goals, and social interactions
to facilitate accurate trajectory prediction.

3.1 Temporal Module

As shown in Fig. 2, we first construct a graph G to model the dependencies
in the time steps. For each agent i, Gi =

(
Vi, Ei

(t)
)

contains a set of nodes

Vi = {v
(1)
i , v

(2)
i , · · ·, v(T )

i } , where v
(t)
i is represented by [pt, (pt)′]T which denote

the position and velocity. Generally speaking, we first uses each node vt
i as input

and output a new embedding feature ht
i, which is formulated as:

ht
i = fv(vt

i) (1)

where fv denotes a multi-layer perceptron(MLP). Then we adopt Transformer
to capture the temporal patterns of each agent, which helps overcome the issue
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Fig. 2. Graph Transformer. The figures enclosed within square brackets represent
the count and dimensionality of layers within each constituent element. k denotes the
number of attention heads.

of network forgetting. For i-th pedestrian, The self-attention block first learns
the query matrices Qt

i, key matrix Kt
i and the value matrix V t

i , where fQ, fK ,
fV are learnable functions by three MLPs.

Qt
i = fQ

({
hj

i

}t

j=1

)
, Kt

i = fK

({
hj

i

}t

j=1

)
, V t

i = fV

({
hj

i

}t

j=1

)
(2)

For i-th pedestrian, the temporal pattern at current time (ht
i)

′ is formulated as:

(ht
i)

′ = fh

([
head t

j

]k

j=1

)
,

where headt
j = Attj

(
Qt

i,K
t
i , V

t
i

) (3)

Attj

(
Qt

i,K
t
i , V

t
i

)
=

Softmax
(
Qt

iK
t T
i

)
√

dk

V t
i (4)

The module uses a MLP fh to merge information from k attention heads. Each
head Attj focuses on different parts of the inputs. The final embedding combines
two skip connections and a last fully connected layer (FC layer).

3.2 Goal Module

A pedestrian’s trajectory is directly related to their expected destination. Specif-
ically, we concatenate a processed trajectory heatmap and scene segmenta-
tion map S with dimension of H · W · Kc to obtain an input of dimension
H · W · (Kc + M + 1) into the U-Net structure. H and W are the height and
width of S, Kc is the number of classes for segmentation, and M is the length of
the time steps. The network finally outputs a probability distribution map over
possible destinations. We train the goal estimation model by minimizing the
sum of binary cross-entropy loss and the Kullback-Leibler divergence between
the predicted destination and ground truth. During testing, we employ the test-
time sampling technique introduced in [24] to sample destinations Xt

idest
for

better performance, rather than selecting the maximum probability location.
The effect of the destinations on the pedestrian can be abstracted as a tar-

get attraction force. Then, by applying an improved social force model [5], the
influence of the destination on the pedestrian is abstracted as a target attraction
force, which is formulated as:
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Fig. 3. Group Interaction Module. The graph interaction module is composed
of the construction of multi-scale hypergraph G

(s)
t and hypergraph neural message

passing. Hypergraph neural message passing continuously gets the embedding of agents
and interactions through node to hyperedge layer and hyperedge to node layer.

Fgoal =
1
τ

(νt
0e − νt

i). (5)

τ = fgoal(fdest

(
Xt

idest
), (ht

i)
′) (6)

where νt
0 =

||Xt
idest

−vt
i ||

(T−t)Δt and e =
Xt

idest
−vt

i

||Xt
idest

−vt
i || represent the magnitude and direc-

tion of the desired velocity respectively. νt
i denotes the current velocity, and

τ indicates the expected time to reach the ideal velocity. fgoal, fdest are two
functions by MLPs.

3.3 Group Interaction Module

Pedestrians often exist in dynamic scenes and inevitably have complex inter-
actions with surrounding pedestrians. For example, pedestrians always try to
maintain a certain distance from others to avoid collisions. Such interactions
can be modeled in the form of repulsive forces. However, pedestrian interactions
are complex, with many pedestrians walking in groups or having common desti-
nations. Therefore, we incorporate a hypergraph neural network to model inter-
actions between pedestrians, enabling adaptive modeling of interactions within
pedestrian crowds. As shown in Fig. 3, we first construct a multiscale hyper-
graph G to reflect the interactions between different pedestrian groups. In other
words, the multiscale hypergraph Gt = {G

(0)
t , G

(1)
t , ...G

(s)
t } represents multiple

hypergraphs at different scales s at time t. At each scale s, the hypergraph
G

(s)
t =

(
Vt, E

(s)
t

)
contains a set of hyperedges E

(s)
t = {e

(s)
1 , e

(s)
2 , · · ·, e(s)

Ms
},

Vt = {vt
1, v

t
2, · · ·, vt

N}, where vt
i = (xt

i, y
t
i). Each hyperedge connects a group

of agents, capturing their common relations. Meanwhile, The elements of the
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Fig. 4. Spatial Hypergraph Construction. Top-k denotes that the top k values in
Ai,j are taken out each time to form a superedge, and the rest is set to 0.

incidence matrix H(s) is given by: H
(s)
i,j = 1 if the ith node is included in the

jth hyperedge, otherwise H
(s)
i,j = 0.

Spatial Hypergraph Construction. Specifically, we map the trajectories
into high-dimensional feature vectors to measure the correlations between spa-
tial edges. Agents with high correlations are grouped together to construct the
hyperedges. As shown in Fig. 4, we use the following notation to describe the
affinity matrix of the hypergraph:

Ai,j = q�
i qj

/
(||qi||2‖|qj ||2) (7)

qi = fq

(
vi

)
(8)

which denotes the relation weight between the ith agent and the jth agent,
reflects the correlation between the two agents. We construct hyperedges at
different scales based on the affinity matrix.

e
(s)
i = argmax

Ω⊆V
‖AΩ,Ω‖1,1 , (9)

s.t.|Ω| = s, vi ∈ Ω, i = 1, ..., N, s �= 0 (10)

where ‖ · ‖1,1 denotes the sum of the absolute values of all elements.

Hypergraph Neural Message Passing. For each scale s, we iteratively pass
information from nodes to hyperedges and from hyperedges back to nodes. As
shown in Fig. 5(a), in the node-to-hyperedge stage, for the ith hyperedge e

(s)
i ,

its interaction embedding is computed as:

es
i = ri

L∑
�=1

ci,lfagg v

( ∑

vj∈e
(s)
i

vj

)
,

where ri represents the intensity of node interaction and ci,l falls within the
range [0, 1], signifying the probability of the i-th node’s interaction being of
category l. Furthermore, for each possible category, a learnable interaction
intensity function implemented by a MLP is assigned, named fagg v. Each of
these elements is designed to be trainable within an end-to-end framework. As
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Fig. 5. Hypergraph neural message passing. Hypergraph neural message passing
continuously gets the embedding of agents and interactions through node to hyperedge
layer and hyperedge to node layer.

shown in Fig. 5(b), in the hyperedge-to-node stage, let E
(s)
i = {e

(s)
j |vi ∈ e

(s)
j } be

the set of hyperedges associated with the ith node vs
i . The embedding of (vs

i )
′

is updated as:
(vs

i )
′ = fagg e

([
vs

i ,
∑

ej∈Ei

es
j

])

where the notation [·, ·] signifies the amalgamation of embeddings from a sin-
gle node and its connected hyperedges, fagg e denotes a MLP. Then the agent
embeddings from all scales vs

i are ultimately merged to form a cohesive repre-
sentation of the agents’ embedding as follows:

(vi)′ = [(v0
i )′, (v1

i )′, · · · , (vs
i )

′]

Group Interaction Force. The multi-scale hypergraph features are then input
into the decoder to obtain the final output predictions Fint, where fdec denotes
by MLP:

Fint = fdec((vi)′) (11)

3.4 Environment Module

In addition to their pedestrians’ motion and other pedestrians, pedestrians are
also influenced by the environment. We model the influence Fenv as:

Fenv =
renv

||vt
i − vobs||

( vt
n − vobs

||vt
i − vobs||

)
(12)

where vobs are the center points of static obstacles within the visible scope rscope

and renv is a learnable parameter.
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3.5 Loss Functions and Training

This final output aggregates the outputs from the three modules:

v̈t
i = Fgoal + Fint + Fenv (13)

where v̈t
i represents the second order derivative of vt

i with respect to t. The final
loss is computed as:

Ltraj =
1

N(T − M)

N∑
n=1

T∑
t=M+1

||vt
n − v̄t

n||22 (14)

where N is the total number of samples, M is the history length, and T is the
total trajectory length. Ltraj minimizes the difference between the predicted
positions and the ground truth.

4 Experiments

In this section, we discuss the datasets used to evaluate ForceGNN performance
and the hyperparameters used in the experiments. We also discuss the metrics
for evaluating trajectory predictions from the models and baseline methods.

4.1 Datasets

We conduct experiments on publicly available SDD [26], ETH [27] and UCY
[28] datasets. The ETH subset includes ETH and HOTEL scenes, while the
UCY subset consists of ZARA1, ZARA2 and UNIV scenes. We adopt a leave-
one-out testing strategy, where models are trained on four subsets and tested
on the left out subset. Trajectories are sampled at 2.5 frames per second, with 8
time steps (equivalent to 3.2 s) observed and next 12 time steps (4.8 s) predicted.

4.2 Implementation Details

The entire network was optimized using the Adam optimizer [29] with a learn-
ing rate of 1 × 10−3 and a batch size of 32. During training, mean squared
error (MSE) loss function was employed to facilitate accurate position predic-
tion. Transformer was utilized to capture temporal patterns, with a head size of
8 for the multi-head attention. In the group interaction module, the scale size of
the hypergraph was [2, 3]. Regarding the environment module, the SDD scene
was categorized into three segments - navigable, non-navigable, and weak obsta-
cle areas. The ETH/UCY scene was divided into navigable and non-navigable
regions.
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Table 1. Results of State-of-the-Art and Our Proposed Model on ETH/UCY Dataset.
Bold/underlined fonts represent the best/second-best result.

Datasets SFM-NN Y-net Grouptron ForceFormer Goal-SAR NSP-SFM Ours

ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE

ETH 0.36/0.82 0.28/0.33 0.7/1.56 0.36/0.52 0.28/0.38 0.25/0.24 0.28/0.29

HOTEL 0.68/1.63 0.10/0.14 0.21/0.46 0.09/0.14 0.12/0.17 0.09/0.13 0.09/0.09

UNIV 0.46/1.12 0.24/0.41 0.38/0.97 0.21/0.42 0.25/0.43 0.21/0.38 0.23/0.38

ZARA1 0.35/0.85 0.17/0.27 0.30/0.76 0.15/0.22 0.17/0.26 0.16/0.27 0.16/0.24

ZARA2 0.38/0.95 0.13/0.22 0.22/0.56 0.12/0.20 0.15/0.22 0.12/0.20 0.13/0.22

AVG 0.45/1.07 0.18/0.27 0.36/0.86 0.19/0.30 0.19/0.29 0.17/0.24 0.17/0.24

4.3 Metrics

We adopt average displacement error (ADE) and final displacement error (FDE)
as evaluation metrics. For multi-modal future predictions, ADE calculates the
minimum over K predicted trajectories of the average L2 distance from the
ground truth trajectory at each time step, while FDE takes the minimum over the
final time step. The multi-modal prediction size K is set to 20 in our experiments.

4.4 Baselines

We compare our proposed method ForceGNN with existing approaches based on
combined physical models and neural networks, graph neural networks, and goal-
driven models. Moreover, to demonstrate the performance of our model, we also
make comparisons with several state-of-the-art pedestrian trajectory prediction
baselines from recent years.

SFM-NN [3] is a dynamic equation prediction approach integrating social
force model and neural networks. Grouptron [32] performs trajectory predic-
tion on spatio-temporal dynamic graphs at individual, group, and scene levels
using graph neural networks. GroupNet [7] is a multi-agent prediction method
based on multiscale hypergraphs. Y-net [12] utilizes scene semantic information
for multimodal modeling of goals and paths for trajectory prediction. Force-
Former [23] incorporates social forces into a stochastic generator backbone based
on Transformer, uses destination-driven modeling to simulate goal-driven pedes-
trian interactions, and models inter-pedestrian collision avoidance as repulsive
forces. Goal-SAR [8] proposes a lightweight multi-head attention recurrent back-
bone, as well as a goal estimation module similar to ForceFormer and ForceGNN.
LED [24] is a diffusion model based trajectory prediction approach. TDOR [33]
is an end-to-end interpretable trajectory prediction framework based on inverse
reinforcement learning. NSP-SFM [20] predicts trajectories by utilizing social
scene features and physical dynamics to achieve multi-behavioral group trajec-
tory prediction.
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Fig. 6. Trajectory Prediction in Low crowd density scenes. The observed tra-
jectories are shown in red, the ground truth future trajectories are in green, Fgoal(full)
are in blue, and ForceGNN are in orange. (Color figure online)

Table 2. Results of State-of-the-Art and Our Proposed Model on SDD Dataset. Bold/
underlined fonts represent the best/second-best result.

Datasets Y-net Goal-SAR LED GroupNet TDOR NSP-SFM Ours

ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE

SDD 7.85/11.85 7.75/11.83 8.48/11.66 9.31/16.11 6.77/10.46 6.52/10.61 6.49/10.58

5 Results

5.1 Quantitative Analysis

In Table 1, we compare our method with the current state-of-the-art approaches.
Firstly, compared to the current best-performing method, NSP-SFM, ForceGNN
demonstrates comparable performance. Additionally, our proposed model,
ForceGNN, outperforms the baseline model, ForceFormer, on all subsets of the
ETH dataset and achieves comparable results on the UCY dataset.

For the SDD dataset, whose metrics are reported in pixels, we compare our
proposed method ForceGNN with current state-of-the-art methods in Table 2.
Compared to the Y-net baseline, ForceGNN provides significant improvements,
reducing FDE by 17.1% and ADE by 8.5%. On the SDD dataset, ForceGNN out-
performs the current best method NSP-SFM in terms of ADE, reducing ADE by
0.5%. The pixel-based metrics show that ForceGNN advances pedestrian path
prediction on this challenging dataset.

Our model demonstrates strong performance in both dense crowded scenar-
ios and sparse scenarios in the UCY/ETH dataset and SDD dataset, as shown
in Fig. 6 and Fig. 7. This improvement is attributed to the hypergraph neu-
ral networks’ capability in handling complex interactions and the social force
model’s ability to better incorporate strong inductive biases. The hypergraph
networks can capture intricate relationships between agents, while the physics-
based social force formulation encodes useful domain knowledge about pedes-
trian dynamics. Together, they enable robust trajectory forecasting across varied
crowds, whether sparse or congested. Our experiments validate that this combi-
nation leads to superior multi-agent modeling compared to prior approaches on
the diverse UCY/ETH and SDD benchmark.
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Fig. 7. Trajectory Prediction in Crowded scenes. The observed trajectories are
shown in red, the ground truth future trajectories are in green, Fgoal(full) are in
blue, and ForceGNN are in orange. (Color figure online)

Table 3. Results of different modules on SDD dataset.

SDD Fgoal(LSTM) Fgoal(Transformer) Fgoal(with env) ForceGNN

ADE 6.59 6.55 6.51 6.49

FDE 10.68 10.67 10.61 10.58

5.2 Ablation Study

In order to analyze the contributions of different modules in ForceGNN, we
conduct an ablation study on three model variants using the SDD dataset: Fgoal

(LSTM) uses only Long Short-Term Memory (LSTM) for modeling temporal
patterns; Fgoal (Transformer) which incorporates temporal patterns into the
goal module via Graph-Transformer; Fgoal (with env) integrates the environment
module into the network on the basis of Transformer, as well as the complete
ForceGNN model. The results are presented in Table 3.

Notably, Fgoal (LSTM) alone already achieves reasonable performance by
only considering individual dynamics, as illustrated in Fig. 6(a).Fgoal (Trans-
former) further enhances the performance by mitigating neural network forget-
ting and enabling adaptive learning of agent trajectories. Finally, the full model
additionally captures complex collective interactions among multiple agents
through the integration of group interaction modeling. As observed in Fig. 6(b),
the full model demonstrates improved capability in capturing agents’ interac-
tions.

Moreover, in crowded complex scenes such as Fig. 7, the output of Fgoal

(Transformer) better approximates the ground truth, validating the efficacy of
the group interaction module for multi-agent modeling.

5.3 Qualitative Analysis

In conclusion, our ablation study verifies the role of each component of
ForceGNN for trajectory forecasting, including inherent dynamics modeling,
temporal pattern extraction, and multi-agent interaction reasoning. As shown
in Fig. 7, Fig. 7(a) is the entire pedestrian trajectory map in the complex scene,
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Fig. 8. Qualitative Trajectory Forecasting Results. We visualize the multi-
agent trajectory predictions across three distinct scenarios from the SDD test set. The
observed trajectories are shown in red, the ground truth future trajectories are in green,
and our multimodal trajectory predictions are in blue.

which can be roughly seen that the yellow line (ForceGNN) is closer to the green
groundtruth line and Fig. 7 (b) is the result of sampling Fig. 7 (a), which can
be clearly seen that the yellow line is closer to the true value. In summary,
our ablation study validates the role of each component of ForceGNN in trajec-
tory prediction, including intrinsic dynamics modeling, motion mode extraction,
and multi-agent interactive inference. In Fig. 8, we demonstrate the qualitative
results of multi-agent trajectory prediction on the SDD dataset. It is observed
that ForceGNN is capable of jointly predicting trajectories for all agents within
a given scene, achieving relatively good performance in both sparse (Fig. 8(a))
and crowded scenarios (Fig. 8(b) and Fig. 8(c)).

In summary, ForceGNN demonstrates strengths in joint trajectory forecast-
ing for multiple agents, while there is still room for improvement regarding han-
dling abrupt changes. Specifically, when there are more surrounding pedestrians,
ForceGNN can adjust the motion direction and speed through the group inter-
action module. However, we also notice the failure in capturing some sudden
changes accurately in the prediction, such as the case shown in Fig. 8a. This
could be attributed to the lack of considering sufficient uncertainty for some
abrupt cases.

6 Conclusions

In this work, we propose ForceGNN, a novel framework that integrates hyper-
graph neural networks and social force models for multi-agent trajectory predic-
tion. Compared to existing approaches using either hypergraph neural networks
and social force incorporation, our model achieves significant improvements on
the UCY/ETH and SDD benchmarks, even reaching state-of-the-art perfor-
mance. However, there remains ample room for improvement. In the future, we
plan to accommodate more extreme cases such as sudden trajectory changes by
incorporating additional uncertainty and enriching the group interaction mod-
ule. Meawhile, we will extend the network to systems with higher crowd density
interactions and explore arbitrary observation length trajectory forecasting.
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Abstract. Multilingual speaker verification introduces the challenge of
verifying a speaker in multiple languages. Existing systems were built
using i-vector/x-vector approaches along with Bi-LSTMs, which were
trained to discriminate speakers, irrespective of the language. Instead of
exploring the design space manually, we propose a neural architecture
search for multilingual speaker verification suitable for mobile devices,
called NeuralMultiling. First, our algorithm searches for an optimal
operational combination of neural cells with different architectures for
normal cells and reduction cells and then derives a CNN model by
stacking neural cells. Using the derived architecture, we performed two
different studies:1) language agnostic condition and 2) interoperability
between languages and devices on the publicly available Multilingual
Audio-Visual Smartphone (MAVS) dataset. The experimental results
suggest that the derived architecture significantly outperforms the exist-
ing Autospeech method by a 5–6% reduction in the Equal Error Rate
(EER) with fewer model parameters.

Keywords: Biometrics · Multilingual speaker verification · Neural
architecture search · Mobile devices · Light weight models

1 Introduction

Biometric-based secure verification is widely deployed in many applications, such
as door locks, security devices, home automation, IoT, smart speakers, game con-
soles, border control, smartphone unlocking, banking, and financial transactions.
Over the years, the evolution of smartphones has enabled the biometric-based
secure verification of several financial applications, including banking transac-
tions. Biometric verification of smartphones can be achieved using physiological
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Fig. 1. Illustration of speech signal and corresponding spectrogram of the different
languages uttered by the same subject

and behavioral biometrics. The most commonly used biometric characteristics
in smartphone verification include faces [1], irises or eyes [2], fingerphotos [3] and
voice [4]. Each biometric characteristic has its own advantages and disadvantages
in terms of usability, accuracy, and user experience.

Voice-based biometric verification is widely employed in various smartphone
applications including banking [5]. The main advantages of using voice biometrics
in smartphone applications are accuracy, scalability, and usability. Conventional
voice biometric systems enrol speakers in one language by using short sentences.
During the verification, the speaker will utter the same sentence (in the case
of text-dependent) or different sentences (in the case of text independence) in
the same language used during the enrolment, which will be compared with
the enrolled sample to make the verification decision. However, the use of the
same language limits both service providers (or vendors) and users, in terms
of scalability and usability. Because users can speak more than one language
at a time, it is more convenient for speakers to use multilingual verification
than a single language. From a vendor’s perspective, it is important to build
language-independent models that can achieve scalability. These factors moti-
vated multilingual speaker verification, which allows the user to enrol in one
language and verify it with another language. Therefore, multilingual speaker
verification aims to verify speaker identity based on speech utterances from one
or more languages and ensure that the voice-based security system is robust and
generalizable to various applications [4].

Figure 1 illustrates example time signals and corresponding spectrograms for
different languages uttered by the same subject. The different characteristics
of the language, especially the sequence of phonemes, and the language-specific
spectral characteristics of utterances from the same subject introduce challenges
for reliable multilingual verification. However, as the same speaker is speaking
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multiple languages, even though the sequence of phonemes may differ in lan-
guages, the individual phoneme characteristics may remain somewhat the same
across languages because of the geometry offered by the same vocal tract, which
has motivated researchers to develop multilingual speaker verifications. Earlier
studies have explored multilingual speaker verification systems by extracting
i-vectors or x-vectors from speech utterances [6,7], which are trained to discrim-
inate speakers and map utterances to fixed dimensional embeddings. Recently,
the 2D CNN model [8] was trained on English data and evaluated in the Chinese
and Uyghur languages. It significantly outperforms the baseline i-vector model
by a large margin [8].

The deployment of a multilingual speaker-verification model for smartphones
is challenging because of the requirement for a lightweight text-independent
model that can be generalized across different languages. In this study, we pro-
pose a novel CNN architecture for multilingual speaker verification based on Neu-
ral Architecture Search (NAS) methods [9] to derive the best CNN architecture
for text-independent multilingual speaker verification. The proposed method has
two novel features 1) An automatic network search that can result in an opti-
mized network architecture for a multilingual speaker verification model. 2) A
different architecture for normal and reduction cells to achieve reliable multilin-
gual speaker verification with a lightweight model.

The main contributions of this study are as follows.

1. Novel method for multilingual speaker verification using differentiable neural
architecture search to achieve the optimized lightweight model.

2. The proposed method is initialized to have different architecture for normal
and reduction cells to better quantify the speaker characteristics.

3. Extensive experiments are presented on the publicly available MAVS dataset
with 37,800 utterances representing three different languages. The MAVS
dataset was collected in three different sessions using five different smart-
phones from 103 subjects with unique data.

4. The performance of the proposed method is compared with the Autospeech
[10], which derives the architecture in automated way.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work on multilingual speaker verification, Sect. 3 presents the proposed method,
Sect. 4 discusses the experimental protocols, architecture search, and quantita-
tive results, and Sect. 6 concludes the paper.

2 Related Work

Multilingual speaker verification has attracted significant interest from
researchers in the recent decades. Early work began with the introduction of
the first Spanish corpus named AHUMADA [11] by NIST [12]. Joint Factor
Analysis (JFA) was adopted by [13], in which language factors were captured
in training and testing utterances. The evaluation results showed a significant
improvement in the performance of the non-English trials.
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The NIST Speaker Recognition Challenge in 2016 revealed the importance of
score normalization for mismatched data conditions. Therefore, [14] compared
several normalization techniques, as well as different cohorts, and analyzed the
nature of the files selected for the cohort in adaptive score normalization. Unsu-
pervised speaker verification was conducted using adversarial training [15]. For
short utterances, hard prototype mining as a computationally efficient hard neg-
ative mining strategy to fine-tune the x-vectors was adopted by [16]. A large-scale
study of 46 languages was conducted by [17], in which a hybrid novel triage mech-
anism was introduced for both text-dependent and text-independent methods.
Lately [18] proposed disentangled representation learning to disentangle speaker
module and language module. Both modules have a speaker feature extractor,
embedding layer, and classifier to achieve reliable speaker verification.

It is worth noting that all existing studies are mainly focused on a non-
smartphone environment, where the requirement of lightweight models is of
paramount importance. Recently, [4] benchmarked a smartphone-based SWAN
dataset consisting of four different languages by performing a cross-lingual
speaker verification using the x-vector method. However, the development
of lightweight models is important, particularly in smartphone environments.
The first neural architecture search-based speaker recognition autospeech was
recently proposed by [10]. The experimental results indicate a lightweight model
with robust performance in English, which motivated us to propose a neural
search method for multilingual speaker verification. We hypothesize that ame-
liorating network architecture design matters for deriving a lightweight model
for multilingual speaker verification for mobile devices. Therefore, we consid-

Fig. 2. Depiction of a neural cell. The transitional nodes(x2 to x5) are thickly connected
during the search process. Only two operations with the highest softmax probabilities
are retained during architecture derivation for the transitional nodes.
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Fig. 3. a) illustration of neural architecture search, b) illustration of search space
between node u, v the d) obtained different architecture for normal and reduction
cell

ered Autospeech [10] as a baseline model and proposed a modified architecture
that considers normal cells and reduction cells to have different architectures
to increase the search space within the specified space, by which better speaker
characteristics are captured.

3 Proposed Method: NeuralMultiling

The inspiration for a CNN-based search space is the cognizance that architecture
engineering with a CNN often pinpoints repeated patterns consisting of convo-
lutional filter banks, nonlinearities, and a judicious selection of connections to
accomplish state-of-the-art results. In this section, we introduce the modified
NAS, which is automated to find par excellent architectures. First, we introduce
the neural cell in Sect. 3.1, and in Sect. 3.2 we define the candidate operations,
in Sect. 3.3 and in Sect. 3.4, we modify the basic cell architectural parameters of
[9] in and finally derive the discrete architecture.

3.1 Neural Cell

A block diagram of the proposed method is shown in Fig. 3. First, the search
space is composed of nodes, and candidate operations exist between nodes. The
operation with the highest weight is selected as the connection operation. After
all connected edges and corresponding operations are selected, the final structure
is determined. This section describes the process of building this architecture.
To build a scalable architecture, we need 2-types of convolutional cells to deliver
2-main functions when taking a feature map as input:1) Normal cell: A convolu-
tional cell that returns a feature map of the same dimensions and maintains the
same number of channels. The normal cell is responsible for capturing features
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and patterns from the input data and passing them to the next stage of the net-
work. 2) The reduction cell is a convolutional cell that reduces the input feature
map by a factor of two using a stride of two for all its operations, in contrast to
the normal cell. In addition, this increases the number of channels, resulting in a
reduction in the computational cost and complexity of the network. Reduction
cells are used to downsample feature maps and compress the information before
passing it to the next stage of the network.

A cell is a directed acyclic graph consisting of an ordered sequence of n
nodes; in our case, n=7. Each node n(i) is a latent representation (e.g., a feature
map on a convolutional neural network) and has directed edges (u, v) associated
with some operation o(u,v) that transforms n(i). The structure of each cell was
fixed, with each cell having two input nodes, four transitional cells, and one
output node. A neural cell consists of two types of parameters:1) architectural
parameters, which specify the structure of a neural cell in terms of the edges
(or transformation tensors) connecting the source and target nodes and the
operation being performed on them within the cell. 2) Weight parameters: The
weight parameters are optimized while keeping the architectural parameters of
the cell fixed.

Input Node: The input to the kth cell is the output of the last two cells, the
first input node n0 is the output of the (k − 1)th cell, and the second input node
is the output of the (k−2)th cell. Both inputs to the 1st cell are the same speech
spectrogram. For the 2nd cell, the first input n0 is the output from the first cell
and the second input is the speech spectrogram.

Intermediate Node: All intermediate nodes (n2 → n5) are densely connected,
and each intermediate node ni is computed as the summation of operations based
on all its predecessors:

nv =
∑

u<v

o(u,v)(n(u)) (1)

Because there were four intermediate nodes in a cell for our experiment, the
number of edges within a cell was 14.

Output Node: The output from all the intermediate nodes is concatenated to
form the output node. The architecture of a cell with all of its edges is shown in
Fig. 2.

3.2 Candidate Operations

Each edge, connecting from the input node to the intermediate node and from
the intermediate node to another intermediate node is associated with one of the
operations from the set of candidate operations. These operations must be well-
defined and is capable of capturing the variability and generality of data. The
set of candidate operations utilized to derive the architecture are ′maxpool3×3′,
′avgpool 3× 3′, ′skip connect′, ′sepconv 3× 3′,′dilconv 3× 3′, ′sepconv 5× 5′ and
′dilconv 5 × 5′
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Each of the above operations has a constrained filter size, which we refer to
as a channel that can be fine-tuned to obtain the optimal channel size for a given
dataset. These operations are common in modern CNN architectures. Finally,
each edge was associated with one of these operations. The best combination
of operations with these edges is obtained at the end of the search process.
It is noteworthy that the operations chosen for each cell were independent of
each other. These operations constitute search space (O). Our convolutional
cell consisted of N=8 neural cells and an initial number of channels C=16; the
network was formed by stacking them together. Following previous studies [9]
reduction cells are located at 1

3 and 2
3 positions of the total depth of the network,

and the rest are normal cells.

3.3 Continuous Relaxation over the Cells and Bi-Level Optimization

Let O be a set of candidate operations (e.g., convolutions, max pooling, and
zero), where each operation refers to a function o(.) to be applied to nu. We use
normal and reduction cells to have different architectures, which is contrary to
[9] and formulate the continuous search space relaxing the categorical choice of
operations to be a softmax over all possible operations:

ō(k,u,v) =
∑

o∈O

exp(α(k,u,v)
O )

∑
o′∈O exp(α(k,u,v)

o′ )
o(n) (2)

The goal of the architecture search is then reduced to learning in a continu-
ous variable α = {α(k,u,v)} where k is the cell index as illustrated in Fig. 4. After
searching among candidate architectures, a discrete architecture is obtained by
jointly optimizing the mixing probabilities and network weights by solving the
bi-level optimization problem for each normal and reduction cell with the most
likely operations, that is, o

(k,u,v)
normal = argmaxo∈O α

(k,u,v)
o for normal cells and

o
(k,u,v)
reduction = argmaxo∈O α

(k,u,v)
o for the reduction cell, contrary to [9]. Subse-

quently, we aim to jointly learn the candidate architectures and weight parame-
ters. After soothing out, we aim to jointly learn the candidate architectures and
weight parameters.

In each iteration of the Algorithm 1 two steps are being carried out for each
cell(k):

– Weight parameter (ω) update: During this step, the weight parameters
are optimized while keeping the architectural parameters of the cell fixed.

– Architectural parameter (αk) update: In this step, the architectural
parameters of the cell are updated based on the architectural loss while fix-
ing the weight parameters. The update of both the weight and architecture
parameters is achieved through the minimization of the respective cross-
entropy loss equation 4.
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3.4 Re-Defining the Architecture Parameters of Normal
and Reduction Cell

According to [9], normal and reduction cells have the same architecture param-
eters, that is, 14(edges) × 8(operations) for both types of cells. In contrast,

Fig. 4. An overview of Continuous relaxation: a) Initial architecture with unknown
operations. b) Continuous relaxation of the searched space on each of the edges by
setting up candidate operations. c) Two-way optimization of network weights and
probabilities of each node. d) & e) Spawning the final architecture from the learned
probabilities for normal cell and reduction cell.

Algorithm 1 Search Algorithm:
Input: ← Training data Dtrain and validation data Dval

Output: Searched Architecture
procedure Entropy Calculation

E =
∑

k∈C

∑

(u,v)

∑

o∈O
αo

kuv log αo
kuv (3)

end procedure

procedure NAS
while entropy decreases do � \ ∗ . . . entropy of

the cells have decreased \
for each cell k do

Fix the Architectural Parameters for a cell (αk)
Ltrain ← training loss Dtrain

∇ωLtrain ← gradient on Dtrain

Update the weight parameters (ω)
Fix the weight parameters(ω)

Lval ← Validation loss Dval

∇αkLval ← gradient on Dval

Update the architectural parameters (αk)
end for

end while
end procedure



414 P. N. Aravinda Reddy et al.

we assume that the normal and reduction cells have different architectures
by modifying the parameter dimensionality of the normal cell to (number of
cells−2) × 14(edges) × 8(operations) and 2 × 14(edges) × 8(operations) for the
reduction cell. By doing so, we increase the search within the specified search
space, which better captures the speaker variability across various speakers. More
details about the modified architecture is given in the supplementary material.

Fig. 5. Normal cell: Architecture derived
from our proposed search algorithm

Fig. 6. Reduction cell: Architecture
derived from our proposed search algo-
rithm

The main objective of architecture search is to produce an excellent archi-
tecture α∗ that minimizes the validation loss Lval = (ω∗, α∗) where ω∗

is the weight parameter obtained by minimizing the training loss ω∗ =
argminω Ltrain(ω, α∗). The architecture parameters of the normal and reduc-
tion cells are considered to be a 3-D tuple (x, y, z) where x = cell index, y =
number of edges, z = number of operations are jointly optimized by passing
through the Adam optimizer. The outcome of the optimizer is to produce low
entropy, and the cross-entropy losses for Ltrain and Lval are described as follows:

LCE = −
N∑

i=1

tilog(pi) (4)

where ti: ground truth speaker, N : Number of speakers, logpi: softmax proba-
bility of speaker i.

Deriving Discrete Architectures. To construct each node in the architec-
ture, we keep the top-2 highest softmax probabilities among all non-zero opera-
tions accumulated from previous nodes. The softmax probability of an operation
O between the nodes (u, v) is defined as:

po
(k,u,v) =

exp(αo
(k,u,v))∑

o′∈O exp(αo′
(k,u,v))

(5)

The visualization of the architectures of the searched normal cell and reduc-
tion cell is as shown in Fig. 5 and 6.
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Table 1. Verification performance of the proposed and existing methods for multilin-
gual speaker verification for language agnostic scenario

EER (%)

Trained on ↓ Tested on

Proposed Autospeech [10]

English Hindi Bengali Parameters English Hindi Bengali Parameters

English 20.99 21.33 23.74 362383 27.04 25.72 27.44 418079

Hindi 22.68 17.73 19.75 362383 26.02 22.21 24.67 418079

Bengali 21.95 19.59 18.95 362383 25.90 25.48 23.18 418079

4 Experiments and Results

In this section, we discuss the quantitative results of the proposed and existing
methods for multilingual speaker verification. First, we present the multilingual
dataset employed in this study, followed by the implementation details and dis-
cussion of the results.

4.1 Multilingual Voice Dataset

We conducted our experiments on the MAVS database [4], which consists of
37,810 utterances in three languages recorded in three different sessions using
five different mobile phones: iPhone 6 s, iPhone 10 s, iPhone 11, Samsung S7,
and Samsung S8 spoken by 103 speakers (70 male and 33 female). The three
different sessions include session-1 with no noise, session-2 with controlled noise,
and session-3 with uncontrolled noise from the natural background. The dataset
was divided into 32, 250(80%) utterances for training and 5560(20%) utterances
for testing in both stages, that is, for the architecture search and training of
the searched architecture for multilingual speaker verification. In the first stage,
we search for each cell architecture using our search procedure explained in
Algorithm 1. If the entropy calculated using (3) remains the same for dozens
of epochs, we can conclude that the algorithm has converged. In the second
stage, the searched architecture was trained from scratch, and its performance
on the test set was reported. We used a single-searched architecture for all the
experiments reported in Sect. 4.3.

4.2 Implementation Details

For each utterance, we excerpted a 257-dimensional spectrogram with a 25ms
window and 10ms overlap. We implemented the proposed architecture search
using Pytorch and trained it on a paramshakti supercomputer which has 22
nodes, each of the node has two GPUs of 16 GB named V100 Tesla, and we used
one node for training. The NAS search process model described in Sect. 3 was
trained for 50 epochs, with a batch size of 8. We utilized the Adam optimizer
to optimize both the weight ω and the architecture parameters α by setting the
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initial learning rate to 10−1 and the weight decay of the optimizer to 3 × 10−4.
The entire search process took five days to converge. In the second stage, the
searched architecture was trained from scratch for 200 epochs, with a batch size
of 48. The optimizer learning rate was set to 0.15 the weight decay to 3 × 10−4,
and the verification process took less than a day.

4.3 Results and Discussion

In this section, we present quantitative results of the proposed method for mul-
tilingual speaker verification. The performance of the proposed method was
compared with that of Autospeech [10], which is based on neural searching.
Autospeech was trained using the MAVS [4] dataset under similar training con-
ditions as described in Autospeech for a fair comparison. There was another
model based on Bi-LSTMs [17] where they presented a lighweight speaker ver-
ification models operated on 46 languages. But to do comparison neither the
code nor the dataset is available in open source. We present two different experi-
ments: (1) Language agnostic, in which the speaker is enroled with one language
and probed with another language. (2) Interoperability across smartphones (or
devices) and languages in which the speaker is enrolled with one device and one
language and probed with other devices and languages. The performance of the
proposed method is presented using an Equal Error Rate (EER(%)), which cor-
responds to the False Match Rate (FMR), and is equal to the False Non-Match
Rate (FNMR). Table 1 shows the quantitative performance of the proposed and
existing methods in language-agnostic experiments. Here we consider language

Table 2. Interoperability results in EER(%) for the proposed method. E-refers to
English, H-refers to Hindi, B-refers to Bengali and each entry in table shows the EER.
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Table 3. Interoperability results in EER(%) for Autospeech [10]. E- refers to English,
H-refers to Hindi, B-Bengali language. Each entry in the table indicates EER.

based speech files from all devices and perform cross language testing. Based on
the results in Table 1, the following can be observed.

– The verification performance of the proposed and the existing method indi-
cates the improved performance when trained and tested with the same lan-
guage. The best performance was observed when trained and tested using
Hindi.

– The verification performance degradation is noted with the proposed and
the existing method during the cross language test. It can also be observed
that the training language can influence the verification performance of the
proposed and existing methods. For example, training with the English lan-
guage indicated less verification performance degradation when tested with
other languages such as Hindi and Bengali. Furthermore, it is interesting to
note that the cross-language verification performances of the proposed and
existing methods are less degraded between Hindi and Bengali. This can be
attributed to similarities in language characteristics.

– The proposed method indicates the best performance compared to the exist-
ing method on cross and same language experiments.
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Fig. 7. Case-1: Histogram for same device and same language

– Achieving a language agnostic condition in multilingual speaker verifica-
tion involves addressing challenges such as variations in phonetic structures,
acoustic characteristics and linguistic patterns across different languages. The
Autospeech [10] which follows same architecture for normal cell and reduc-
tion cell do not capture the above said characteristics hence a degradation of
EER is observed whereas for our proposed method the EER is reduced when
cross-language testing is performed. This accounts for robust and a general-
izable muiltilingual verification model that can adapt to inherent diversity in
languages while maintaining lesser number of parameters.

Fig. 8. Case-2: Histogram for cross language and same device
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Fig. 9. Case 3: Histogram for same language and cross device

– The proposed method also results in the less number of parameters (362k) and
model size of 6.28Mb compared to the existing method with (418k) parame-
ters with model size of 8.28Mb. Thus, the proposed method not only outper-
forms the existing method but also results in a lightweight model suitable for
deployment in a smartphone environment.

Tables 2 and 3 show the quantitative performance of the proposed method
and Autospeech for interoperability across devices and languages, respectively.
The interoperability experimental results were interpreted based on the four
cases discussed below.

– Case-I: Same device and same language: Here, we analyze the verifica-
tion performance of the proposed method when same language is trained and
tested by the same device. This analysis provides insight into the verification
performed on independent languages. Figure 7 shows the average EER(%)
with respect to different devices, which is independent of language. As shown
in Fig. 7, Hindi had the lowest EER(%), and English had the highest EER(%).
The best performance with the Hindi language can be attributed to the fact
that the majority of speakers in the MAVS dataset were native Hindi speak-
ers.

– Case II: Cross language and same device: Here, we analyze the verifica-
tion performance of the proposed method when individual devices are trained
in one language and tested in another language. Figure 8 shows the verifica-
tion performance of the proposed method with cross-language and the same
device scenario. This experiment allowed us to analyze the interoperability of
language across devices. The obtained results indicate that (a) the verifica-
tion performance is influenced by the language of the individual devices. (b)
The iPhone6S has the highest EER(%) across all three languages. (3) The
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Fig. 10. Case-4: Histogram for cross language and cross device

iPhone11 indicated the best performance across all three languages and thus
emerged as the best language-agnostic device with the proposed method.

– Case III: Same language and cross device: Here, we analyze the verifi-
cation performance of the proposed method when the same language is used
for training and testing, while cross devices are used for verification. Figure 9
shows the verification performance of the proposed method when the voice
data (irrespective of the language) from one type of device are used for train-
ing, and testing is performed using the voice data (same language as that of
training) collected from another device. This experiment allowed the interop-
erability of the devices to be analyzed when the same language was used for
training and testing. The obtained results indicated the influence of the device
data on the verification performance. In some cases, the interoperability of
the devices indicated improved performance (for example, when trained with
the iPhone6S and tested with Samsung S8). However, the verification perfor-
mance across other devices was less influenced, particularly when Samsung
devices were used.
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Table 4. The ablation study of the proposed method and Autospeech [10] with varying
number of nodes and channels such that N indicated number of nodes and C indicates
number of channels.

Method No of Parameters Search cost No of GPU days

Autospeech [10]

N=8, C=16 418k 7

N=8, C=64 617k 9

N=30, C=64 986k 10

N=8, C=128 1160k 11

Proposed

N=8,C=16 362k 5

N=8, C=64 418k 6

N=30, C=64 568k 8

N=8, C=128 625k 8.2

– Case IV: Cross language and cross device: Here, we analyze the verifi-
cation performance of the proposed method with cross language (training and
testing with different languages) and cross device (enrolment using one device
and probe with other devices). Figure 10 shows the verification performance
of the proposed method in cross-language and cross-device scenarios. This
experiment allowed us to analyze the performance of the proposed system
with interoperability for both language and device. Note that (a) the interop-
erability of the devices indicates higher error rates with cross-language. (b)
Verification performance degrades across all devices. For all four cases, our
proposed method outperforms Autospeech [10] because our proposed model
can capture the speaker characteristics better than Autospeech [10].

5 Ablation Studies

To verify the effectiveness of the proposed method, we use original Autospeech
to search on our MAVS dataset. It is obvious that the search cost is greatly
reduced through our proposed method. We also varied the number of nodes and
number channels during the search process and for each model our proposed
method outperforms Autospeech both in terms of number of parameters and
also in terms of search cost. The experimental results are as shown in Table 4.

6 Conclusions

In this study, we propose an automatic approach to determine the optimal CNN
architecture for multilingual speaker verification. We modified the baseline app-
roach by introducing different architectures for normal and reduction cells. With
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this modification, we searched for an excellent CNN architecture for neural cells
with different edge operations. Subsequently, with the derived architecture we
conducted two different experiments: language-agnostic conditions across vari-
ous smartphone devices, and interoperability by building language models across
different devices and languages on MAVS database. For the language-agnostic
condition, our proposed method outperformed the baseline model while main-
taining lower model complexity. For interoperability, the proposed model also
yields better performance when the trained and test mobile phones are from the
same manufacturer; however, for cross devices, a slightly higher EER is observed.
Overall, we obtained an automatic architecture that is lightweight and performs
better than the baseline model, which can be further deployed into mobile devices
for multilingual speaker verification.
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Abstract. Time series analysis and modelling constitute a crucial
research area. Traditional artificial neural networks struggle with com-
plex, non-stationary time series data due to high computational com-
plexity, limited ability to capture temporal information, and difficulty
in handling event-driven data. To address these challenges, we pro-
pose a Multi-modal Time Series Analysis Model Based on Spiking Neu-
ral Network (MTSA-SNN). The Pulse Encoder unifies the encoding of
temporal images and sequential information in a common pulse-based
representation. The Joint Learning Module employs a joint learning
function and weight allocation mechanism to fuse information from
multi-modal pulse signals complementary. Additionally, we incorporate
wavelet transform operations to enhance the model’s ability to ana-
lyze and evaluate temporal information. Experimental results demon-
strate that our method achieved superior performance on three com-
plex time-series tasks. This work provides an effective event-driven
approach to overcome the challenges associated with analyzing intri-
cate temporal information. Access to the source code is available at
https://github.com/Chenngzz/MTSA-SNN.

Keywords: Multi-Modal · Time series analysis · Spiking neural
network · Joint learning · Pulse encoder · Wavelet transform

1 Introduction

Traditional artificial neural networks (ANNs) have found extensive applications
in time series analysis. They serve as a non-parametric, non-linear model capable
of effectively capturing complex non-linear relationships within time series data.
This is particularly valuable for addressing numerous time series problems since
relationships within such data are typically non-linear. Deep neural networks
(DNNs), as an extension of ANNs, exhibit a multi-layer structure that automat-
ically learns features and hierarchical information from data. This characteristic
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enhances the capability of DNNs to analyze complex time series data by cap-
turing patterns at various abstraction levels. For instance, deep learning models
like Long Short-Term Memory (LSTM) networks have been widely employed
to predict future values or sequences using past time steps [1]. ANNs have also
been widely applied across a range of applications traditionally addressed by
statistical methods, including classification, pattern recognition, prediction, and
process control [2].

However, for complex and volatile time series information, traditional ANNs
often face challenges in capturing temporal features accurately. Consequently,
Spiking Neural Networks (SNNs), as an alternative approach, have garnered
considerable attention. Currently, SNNs have been successfully applied in various
time series prediction scenarios, including financial time series forecasting, time
series classification [3], and real-time online time series prediction [4].

SNNs rely on discrete signals in continuous time to effectively capture com-
plex time patterns. Nonetheless, current SNN models encounter several chal-
lenges. First, the transformation of time series data into a suitable spiking rep-
resentation poses a significant challenge. Second, the firing times of spiking neu-
rons play a crucial role in model performance, necessitating higher demands for
stability and accuracy. Moreover, integrating information from different sources
into a single spiking network framework for decision-making involves complex
issues related to cross-modal time synchronization and information mapping.

To address these challenges, we propose a Multi-Modal Time Series Analysis
model based on Spiking Neural Networks (MTSA-SNN). This model consists of
three key components: a single-modal spiking encoder, a spiking joint learning
module, and an output layer. The spiking encoder is responsible for transforming
time-series information from different modalities into spike signals. It includes
alternating layers of feature extraction and neuron layers to selectively process
input data from each modality. In the spiking joint learning module, we design a
joint learning function and weight allocation mechanism to balance and fuse the
complex spike information from multiple modalities. The output layer optimally
adjusts the fused spike information to adapt to complex time series analysis
tasks. The main contributions are as follows:

– A novel Multi-modal Time Series Analysis Model Based on a Spiking Neu-
ral Network proposed by us. This model introduces an efficient event-driven
approach that overcomes the limitations of traditional time series analysis
methods.

– We design SNN joint learning functions and a weight allocation mechanism,
effectively addressing the balance and fusion of pulsed information.

– We synergize wavelet transform with pulse networks to bolster the model’s
capability in analyzing complex and non-stationary temporal data.

– Extensive experiments demonstrate the outstanding performance of our app-
roach across multiple complex time series datasets.



426 C. Liu et al.

2 Related Work

2.1 Time Series Forecasting

Modelling and forecasting time series data is a valuable task in various domains.
It has evolved significantly, transitioning from traditional methods to deep learn-
ing techniques, resulting in improved prediction accuracy and relevance over
time.

Initially, time series forecasting relied on traditional approaches such as
the ARIMA model [5] and Fourier analysis [6]. ARIMA, which includes auto-
regressive (AR) and moving average (MA) components with differencing (I)
to address non-stationarity, had challenges related to parameter selection and
model identification. Fourier analysis was used for frequency domain analysis to
identify periodic and seasonal patterns in the data.

Later, deep learning methods such as RNN and LSTM emerged to handle
temporal dependencies [7]. LSTM, an improved version of RNN, performed bet-
ter with long sequences due to its enhanced memory and forgetting mechanisms,
becoming the preferred model for many time series problems. Nonetheless, they
encountered challenges related to gradient vanishing and exploding when han-
dling extended sequences, which restricted their practicality.

In contrast to single-modal time series forecasting, multi-modal time series
forecasting leverages multiple data sources, such as text, images, and sensor
data, to capture a broader perspective, enabling a wider range of pattern and
trend recognition. This approach offers benefits like information synthesis, com-
plementarity of different data types, model robustness, and improved general-
ization. Multi-modal deep learning models use CNN and BiLSTM to extract
features from multi-modal time series data. Ensemble models, including proba-
bilistic time series prediction based on Hidden Markov Models [8] and stacked
ensembles, have been used to enhance accuracy and reduce overfitting.

Specific algorithms, including interpretable ML models and multi-modal
meta-learning techniques [9], have been applied in diverse use cases, ranging
from early Parkinson’s disease detection to time series regression tasks. These
applications highlight their potential in various domains, reflecting the diversity
and complexity of time series modelling and forecasting. They underscore the
evolving methods and technologies that offer robust tools for a broad spectrum
of application scenarios (Fig. 1).

2.2 Spiking Neural Network

Multi-modal time series models struggle with complex, irregularly and non-
uniformly sampled data due to their continuous computations, difficulty in han-
dling event-driven data patterns, and high computational complexity. However,
Spiking Neural Networks (SNNs) hold promise in mitigating these challenges.
SNNs, a unique class of neural networks that communicate using discrete spike
signals in a continuous-time framework [10], are capable of emulating biologi-
cal neural systems’ sparsity and encoding temporal information [11]. SNNs find
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Fig. 1. The MTSA-SNN structure consists of three main components: Single-mode
pulse encoding modules used to extract features from time series data; SNN Joint
Learning Module utilizes joint learning and probability distribution methods to map
multi-modal signals to a shared joint learning space, enabling the fusion of pulse signals.
Output layer used to generate predictions and classification results for multi-modal time
series data.

practical application in various time series prediction scenarios, including finan-
cial time series forecasting, time series classification [3], and real-time online time
series prediction [4].

SNNs pose challenges due to their complex neurons and non-differentiable
pulse-based operations. Choosing a multi-modal time series model depends on
the problem and data characteristics. The multi-spike network SNN variant is
useful for financial time series prediction. Therefore, you should select the most
appropriate model based on the problem and data characteristics.

SNNs (Spiking Neural Networks) present challenges due to the complexity
of their neurons and the non-differentiable nature of pulse-based operations,
making training complex. The choice of a multi-modal time series model should
depend on the problem and data characteristics. For instance, a variant like
multi-spike networks has proven valuable in time series prediction, especially for
non-stationary data [12]. Thus, selecting the right model should align with the
problem and data intricacies.

In summary, the proposed MTSA-SNN model efficiently encodes multimodal
information into spikes. It utilizes a spike-based cooperative learning module to
effectively map and integrate complex spike information. This method provides
an accurate and practical event-driven approach that addresses the analysis of
complex and non-stationary temporal information, demonstrating strong perfor-
mance across multiple time series datasets.
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3 Methodology

The MTSA-SNN structure consists of three main components: SNN Encoder
Module used to extract features from time series data; SNN Joint Learning
Module utilizes joint learning and probability distribution methods to map multi-
modal signals to a shared joint learning space, enabling the fusion of pulse signals.
Output layer used to generate predictions and classification results for multi-
modal time series data. The entire workflow is shown in Algorithm 1.

Algorithm 1. MTSA-SNN Overall Model
Require: Data of different models

Input: Simage, Sseries

Single-Modal Pulse Encoding Module:
Ŝ1 = Encoderi(Simage), Ŝ1 ∈ R

T×B×C×H×W

Ŝ2 = Encodert(Sseries), Ŝ2 ∈ R
T×B×C×T

Pulse Joint Learning Module:
Jalign = Ψ(FT (Ŝ1, Ŝ2)), Jalign ∈ R

T×B×C×T

Jfusion = JWAM(Ŝ1/2), Jfusion ∈ R
T×B×C×T

JMTSA = Outputlayer(Jfusion), JMTSA ∈ R
T×B×N

return JMTSA

3.1 Single-Modal Pulse Encoding Module

The visual pulse encoder is a component that processes time-series image infor-
mation into pulse representations and extracts features. This encoder alternates
between the Feature Extraction (FM) module and the Leaky Integrate-and-Fire
(LIF) SNN module. Visual information initially passes through the SNN layer
to be transformed into a unified and compatible pulse signal format, making it
suitable for subsequent network operations. The FM module further performs
feature extraction on the visual information converted into pulse signals, includ-
ing operations such as convolution and pooling. After feature extraction, the
pulse signal Ŝ1 is then passed to the pulse co-learning module.

The sequence pulse encoder is another modality encoder used for pulse-coding
and feature extraction of temporal data sequences. These sequence data initially
pass through the SNN layer and are then transformed into pulse signals. The net-
work employs alternating operations between mapping layers and neurons. Neu-
rons receive pulse information from the previous layer and membrane potential
from the preceding time step in the sequence. By introducing this self-feedback
mechanism, the pulse network can utilize membrane potential information from
the previous time step to influence the calculations at the current time step.
Consequently, the encoder is better equipped to capture the temporal correla-
tions and dynamic changes in time-series data. The pulse information encoded
through sequence encoding is Ŝ2. The SNN encoder entire workflow is shown in
Algorithm 2.
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Algorithm 2. SNN Encoder Algorithm
Require: Simg/series, factor, threshold
1: SNN Encoder Layer:
2: L ← length(S)
3: Δ ← [0]
4: for t = 1 to L − 1 do
5: Δ[t] ← S[t + 1] − S[t]
6: end for
7: threshold ← mean(Δ) + factor × std(Δ)
8: output ← [0]
9: for t = 1 to L do

10: if Δ[t] ≥ threshold then
11: output[t] ← 1
12: else
13: output[t] ← 0
14: end if
15: end for
16: FM/Mapping Layer:
17: Ŝ1 ← FM(output) ⊕ output
18: Ŝ2 ← Mapping(output) ⊕ output
19: return Ŝ1, Ŝ2

Due to the strong temporal information processing capabilities of SNN, we
employ the Leaky Integrate-and-Fire (LIF) model to describe the neural dynam-
ics of multi-modal information. The following formula can represent the dynamic
equation for the LIF model under continuous-time sequences:

τm
dV (t)

dt
= −(V (t) − Vrest) + R · I(t) (1)

V (t) = V (t − 1) +
1
τ

(I(t) − (V (t − 1) − Vrest)) (2)

V (t) is a membrane potential function concerning time t. Vrest represents the
resting membrane potential of the neuron. τm is a constant that characterizes
the charging and discharging rate of the neuron’s membrane potential. I(t) is
the synaptic pulse input function. R denotes the membrane’s responsiveness to
input currents.

When the membrane potential V (t) exceeds the threshold potential Vth, the
neuron is activated and triggers a spike, denoted as H(t). Θ(x) is the Heaviside
step function, which is 1 when x ≥ 0 and 0 otherwise. Vth represents the threshold
potential. Vreset is the reset potential, to which the membrane potential is reset
when the neuron is activated.{

H(t) = Θ(V (t) − Vth)
V (t) = Vreset

(3)
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A neuron receives multiple pulse signals. Their effects are not independent but
accumulate within the neuron, leading to a sustained change in membrane poten-
tial. By controlling the pulse frequency and timing, neurons can integrate and
encode input information over time. Assuming that N neurons generate multiple
pulses at different time points, these pulse timings can be represented by a series
of time sequences {t

(i)
1 , t

(i)
2 , ...., t

(i)
j }. The cumulative effect of multiple pulses can

be expressed as P (t) =
N∑
i=1

j∑
j=1

f(t − t
(i)
j ).

f(t) represents the Dirac Delta function, signifying the generation of a pulse
at the firing time. P (t) is the output of the cumulative effect of multiple pulses,
which corresponds to the pulse output of the encoder Ŝ1 & Ŝ2. Algorithm 2 is
the workflow of the SNN encoder.

3.2 Multi-modal Pulse Joint Learning Module

The pulse signals extracted from different encoders are first subjected to nor-
malization and mapping operations before input into a unified pulse co-learning
module. The pulse signals Ŝ1 and Ŝ2 obtained from two heterogeneous spaces are
then transformed from the time domain to the frequency domain through Fourier
transformation. Fourier transformation FT (s) decomposes the signal into differ-
ent frequency components, which aids in analyzing the frequency domain char-
acteristics of different modal signals.

Ŝ1 = Encoderi(Simage) ∈ R
N×Di (4)

Ŝ2 = Encodert(Sseries) ∈ R
N×Dt (5)

To better integrate and align the information from two different signal spaces, we
introduce a joint learning function denoted as Ψ . This function aims to adjust
the feature representations of the signals, mapping the signals from space Di

and space Dt to a common frequency domain space. During the training pro-
cess, this function is continuously adjusted to make the pulse information in
different modalities more consistent, achieving effective fusion and alignment of
heterogeneous signals. Jalign denotes the fusion of pulse information in the joint
learning space. Dj is the dimension of joint learning space, where data from
different modalities coexist in a shared representation.

FT (s) =
∫ ∞

−∞
Ŝ � e−iwT ∈ R

N×Dj (6)

Jalign = Ψ

(
FT (Ŝ1), FT (Ŝ2)

)
(7)

We introduce a more effective pulse-based joint weight allocation mechanism
(JWAM). This mechanism involves mapping the similarity results in sim of
multi-modal pulse signals into different spatial dimensions of the probability
distribution matrix (Pmtsa). The similarity probability distribution is adaptively
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adjusted based on the features of each modality and their relative importance to
achieve information fusion. Pmtsa integrates information from various modalities,
providing a quantitative method for scoring cross-modal information representa-
tion. sim is a metric function used to measure the similarity between two pulse
information representations in heterogeneous spaces. This function employs the
Euclidean distance calculation method to assess the similarity between different
modality representations. σ2 is used to adjust the sensitivity of the similarity
measurement function. It is worth noting that it can dynamically adapt based
on the distribution information of different modality features, enhancing the
robustness and adaptability of similarity measurements.

sim = exp

(
−|∑i,t

dim=1(Ŝ1 − Ŝ2)|
2σ2

)
(8)

Pmtsa =
exp

(
simi, simt

)
∑j

dim=1 exp (Simi, Simt)
(9)

Furthermore, matrix transformations of the information in the joint space are
utilized to adjust pulse signals. This operation aims to optimize the feature
space while taking into consideration information from different modalities in
order to better accommodate the characteristics of pulse sequences from other
modalities. Additionally, we interact this process with cross-modal probability
distributions to obtain the pulse fusion representation denoted as Jfusion. This
can be expressed as:

Jfusion = Softmax

(
Ŝ1/2 � Jalign√

Dj

)
� Pmtsa (10)

The Output layer is responsible for two major tasks: predicting and clas-
sifying information from multi-modal time series pulse fusion data. It employs
network layer techniques such as residual connections and ReLU to transform
the fused information into a common format, making it available for various
downstream tasks.

4 Experiment

4.1 Datasets

We conduct experimental evaluations for classification and regression tasks on
two traditional time series datasets, MIT-BIH Arrhythmia (MIT-BIH) [13] and
Electricity Transformer Temperature (ETT) [14]. Additionally, we perform a
market forecasting analysis on relevant stock indices of the Chinese stock market
from June 6, 2013, to June 6, 2023, covering a ten-year period, focusing on the
opening and closing prices.
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4.2 Pulse Signal Processing Based on Wavelet Transform

To effectively address the non-stationary, non-linear characteristics and con-
straints in multi-scale feature analysis of time-series data, we employ the
wavelet transform analysis method. Wavelet transform possesses exceptional
time-frequency locality and multi-scale analysis capabilities, making it more
suitable for capturing local features of signals at different time and frequency
scales. The MTSA-SNN network based on wavelet transform can capture richer
feature representations, endowing it with a significant advantage in handling
non-stationary signals, extracting critical signal features, and analyzing signals
across multiple scales.

MTSA-SNN employs wavelet transform to decompose input signals into four
subbands: LL, LH, HH and HL, which represent distinct signal characteristics
in terms of different frequencies and spatial scales. This multi-scale and multi-
frequency analysis approach equips the MTSA-SNN model with a comprehensive
understanding of multimodal data, enhancing its learning capabilities. As illus-
trated in Fig. 2 and Fig. 3, the temporal visualizations of these four subbands
in the ETT and stock prediction datasets demonstrate the effectiveness of this
multi-scale analysis.

Fig. 2. ETT dataset signal features across different frequency and spatial scales. (LL
captures low-frequency signal components. LH and HH capture high-frequency compo-
nents in both low and high-frequency signals. HL contains low-frequency components
of high-frequency signals.)
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Fig. 3. Stock prediction dataset signal features across different frequency and spatial
scales

Figure 4 depicts the pulse network outputs based on the MIT-BIH dataset
with different processing methods. It is evident that the pulse output subjected to
wavelet transform more accurately captures the features of multimodal signals,
resulting in a more stable and effective neural activation.

Fig. 4. Data (wavelet transform) converted into pulse signals by MTSA-SNN (above)
& Original data converted into pulse signals by MTSA-SNN
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4.3 Comparison with Other Methods

MTSA-SNN demonstrates remarkable performance advantages in the field of
biological time-series data analysis. The experimental results in Table 4 demon-
strates that our model has achieved advanced performance in the detection of
cardiac arrhythmias in multimodal electrocardiogram data. With a dataset clas-
sification accuracy of 98.75%, MTSA-SNN markedly outperforms previous lead-
ing algorithms. This is attributable to the effective simulation of the neural sig-
nal conduction process in biological systems through MTSA-SNN’s pulse-based
fusion approach, resulting in performance advantages. Although the improve-
ments in accuracy and precision seem incremental, these advancements are sig-
nificant in biological time-series data analysis. Each percentage point increase
can substantially reduce hundreds or even thousands of misdiagnoses, which is
crucial for the medical field (Table 1).

Table 1. Comparison of MTSA-SNN with other methods on the MIT-BIH dataset

Network Accuracy (%)↑ F1(%) ↑ Precision(%)↑
Mousavi et al. [12] 97.62 85.82 91.46

Yang et al. [15] 97.76 88.28 94.34

Hammad et al. [16] 98.00 89.70 86.55

Xing et al. [17] 98.26 89.09 –

Vision Transformer + Autoformer 98.38 91.09 88.43

Vision Transformer + Informer 98.54 93.50 92.47

MTSA-SNN (ours) 98.75 94.31 94.62

In addition, our method exhibits outstanding performance in various pre-
diction tasks, including transformer temperature monitoring and stock market
forecasting. Analyzing the results presented in Table 2, our model demonstrates
the lowest MAE and MSE across four different time steps in the ETT dataset.
Furthermore, in Table 3, MTSA-SNN achieves remarkably low errors of 0.96 and
1.15 in the stock market price prediction task compared to traditional time-series
prediction models such as LSTM and XGBoost. MTSA-SNN, by converting com-
plex and diverse multimodal time series data into a pulse-based representation,
significantly enhances the model’s predictive and analytical capabilities regard-
ing time-series information.

Table 2. Comparison of MTSA-SNN with other methods on ETT dataset

Methods NLinear [18] DLinear [18] Autoformer [19] Informer [14] MTSA-SNN (ours)

Metric MSE↓ MAE ↓ MSE MAE MSE MAE MSE MAE MSE MAE

ETT 96 0.374 0.394 0.375 0.399 0.449 0.459 0.865 0.713 0.235 0.247

192 0.408 0.415 0.405 0.416 0.500 0.482 1.008 0.792 0.345 0.371

336 0.429 0.427 0.439 0.443 0.521 0.496 1.107 0.809 0.358 0.362

720 0.440 0.453 0.472 0.490 0.514 0.512 1.181 0.865 0.396 0.439
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Table 3. Comparison of MTSA-SNN with other methods on Stock market price pre-
diction dataset

Network LSTM XGBoost LSTM-XGBoost MTSA-SNN (ours)

MAE ↓ 2.465 2.317 1.394 0.961

MSE ↓ 2.839 2.285 1.461 1.152

4.4 Computational Costs and Speed Performance

Under identical operating conditions with a GPU RTX 3090 24GB, we con-
duct a comprehensive comparison between existing multimodal networks and
our MTSA-SNN on the MIT-BIH dataset, including GPU memory usage, train-
ing speed, and inference speed. Training speed refers to the time required for
forward and backward propagation of a batch of data, while inference speed
indicates the time required for forward propagation of a batch of data, mea-
sured in milliseconds (ms). To reduce variance, we calculate the average time
over 50 batches. The results are shown in Table 4.

Our MTSA-SNN demonstrates exceptional performance across all metrics.
Its memory usage is significantly reduced to just 11.89 GB, while other methods
range from 16.53 GB to 23.78 GB. In terms of training speed, MTSA-SNN
achieves a notable improvement with 142 ms per batch, showcasing superior
efficiency. For inference speed, our method also leads with 23 ms per batch,
indicating high processing performance. These results suggest that MTSA-SNN
has significant advantages in resource utilization and processing speed, proving
its superiority in handling the MIT-BIH dataset.

Table 4. Memory usage and speed performance comparison of our method with exist-
ing methods on MIT-BIH dataset

Network Memory(GB) Training Speed (ms/batch) Inference Speed (ms/batch)

Mousavi et al. [12] 22.13 210 50

Yang et al. [15] 19.54 234 53

Hammad et al. [16] 21.46 175 41

Xing et al. [17] 16.53 158 36

Vision Transformer + Informer 23.78 255 63

MTSA-SNN (ours) 11.89 142 23

4.5 Ablation Study

We conduct a comprehensive ablation study to evaluate different components
of the MTSA-SNN model. As shown in Fig. 5, we present pulse signal output
heatmaps for different components at the same time step using the MIT-BIH
dataset. The brightness of the colours in the figure represents the activation
levels of neurons.
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In comparison to the activation patterns from single-modal encoders, the
joint learning module of MTSA-SNN activates more neurons, thus enriching
the representation of temporal information. Furthermore, the application of
wavelet transform enhances the representation of temporal information within
the MTSA-SNN. This suggests that joint learning of pulses effectively balances
multi-modal pulse signals and fuses them together. Simultaneously, wavelet
transformation contributes to enhancing the representation of temporal infor-
mation in the pulse network.

In addition, we analyze the spectral information of the waveform plots during
the training process of the single-modal encoder and the joint learning module.
In Fig. 6, the horizontal axis represents the time steps, while the vertical axis
represents the amplitude. This indicates that the MTSA-SNN model effectively
integrates and analyzes multi-modal signals while enhancing the overall robust-
ness of the model.

Fig. 5. The heatmap of MTSA-SNN’s various component neuron activations. Specifi-
cally, (A) and (B) represent the neuron activation patterns after the time series infor-
mation passes through the image encoder and sequence encoder of MTSA-SNN. (C)
demonstrates the fused output after the joint learning process for the original tem-
poral information. (D) represents the pulse fusion after applying wavelet transform in
MTSA-SNN.
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Fig. 6. The spectral analysis of waveform plots during training (The first four epochs).
(A) and (B) show the waveforms generated by the single-modal encoder, revealing
unstable characteristics of the pulse signals and relatively weak robustness in the indi-
vidual modality. (C) shows the output of the MTSA-SNN model, exhibiting significant
frequency domain stability as it consistently remains within a defined range of ampli-
tudes.

5 Conclusion

In this paper, we introduce an innovative Multi-modal Time Series Analy-
sis Model based on the Spiking Neural Network. The model’s pulse encoder
is designed to uniformly pulse-code multi-modal information. The pulse joint
learning module is employed to effectively integrate complex pulse-encoded
data. Additionally, we incorporate wavelet transform operations to enhance the
model’s capability to analyze and evaluate time series data. Experimental results
on three distinct time series datasets demonstrate the outstanding performance
of our proposed approach across multiple tasks.
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Abstract. Visible-Infrared Person Re-identification (VI-ReID) would
effectively improve the recognition performance in weak-lighting and
nighttime scenes, which is an important research direction in pattern
recognition and computer vision. However, existing methods usually
focus on reducing the image differences between modalities (visible and
infrared) to extract more reliable features, while neglecting the abil-
ity to discriminate the different identities with similar appearances. To
address this problem, we propose a framework called “Progressive Diver-
sity Expansion Transformer (PDET)”, which includes a Diversity Distin-
guishing Vision Transformer Module (DDViTM) and a Cross-Modality
Similarity Matching (CMSM) module for VI-ReID in this study. The
DDViTM is proposed to implement the multiple embedded output vec-
tors for a single input, learning feature representations of individual
pedestrians in different modalities. The second module (CMSM) is used
to improve the feature similarity between visible and infrared images, and
dynamically adjust the image sequence weights of the two modalities to
complete the training and optimization efficiency for the entire network.
We conducted extensive experiments on the SYSU-MM01 and RegDB
datasets, widely recognized public datasets for VR-ReID. The results
demonstrate that the algorithm presented in this work has achieved
promising performance compared to state-of-the-art methods. The code
is available at https://github.com/jxsiaj/PEDT.git.
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1 Introduction

Person Re-identification (ReID), aiming at discriminating whether pedestrians
captured from various views of the cameras are the same one or not by analyz-
ing (comparing) his/her appearance features, is a hotspot issue in the commu-
nities of pattern recognition and social security [1,35]. It is widely used in video
surveillance [20], public safety [29], intelligent transportation [37], and other
fields. Traditional ReID methods mainly rely on the pedestrians’ appearance
feature extraction (manually designed or deep features) and similarity measure
manners in visible environments, which is not applied effectively in weak-lighting
and nighttime conditions [2,20]. Therefore, the Visible-Infrared Re-identification
(VI-ReID) has been proposed to combine both the visible and infrared images
for personal appearance representation, which can provide clearer visual features
in weak-lighting, nighttime, or complex environments, thus achieving better per-
formance in ReID tasks [2]. Compared to the traditional single-modality-based
ReID approaches, the VI-ReID methods aim to address this issue in complex
scenes effectively, especially when presenting weak-lighting and nighttime condi-
tions. Naturally, it also faces some new challenges, which include: (1) The large
differences between modalities, (2) Visible images are more vulnerable during
cross-modality feature matching, and (3) Publicly available datasets for VI-ReID
are limited [23,42]. Consequently, this often results in unstable ReID perfor-
mance in real-world scenarios, presenting an ongoing and formidable challenge
yet to be fully addressed [3].

Existing VI-ReID approaches are mainly classified into two categories: (i)
Non-generative-based methods [4]; and (ii) Generative-based methods [42]. The
former is similar to the traditional approaches, i.e., feature extraction and dis-
tance learning manner to finish the VR-ReID task. The dual-stream network
structure is usually designed to perform on the visible and infrared images
separately [4,12,35]. While these methods effectively extract modality-specific
features and leverage the complementary information from visible and infrared
images to minimize modality differences, achieving shared features across modal-
ities remains challenging. The generative-based methods mainly integrate the
modality differences at the data-level, which generate cross-modality pedestrian
samples via the modality shift strategies [6,21,31]. However, these manners are
easy to increase the computational complexity and other noise image traits for
real VI-ReID applications. Furthermore, current VI-ReID methods primarily
minimize modality differences between visible and infrared images, overlook-
ing the ability to distinguish different individuals with similar appearances. In
addition, they usually exploit the dilated convolution with multiple branches in
ResNet-50 to achieve a single input to produce multiple different outputs, which
disrupt the performance of the model [14,44].

To address the above issues, we have proposed a novel framework called
PDET: Progressive Diversity Expansion Transformer for Cross-Modality Visible-
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Infrared Person Re-identification task in this study. The proposed framework
includes a Diversity Distinguishing Vision Transformer Module (DDViTM) and
a Cross-Modality Similarity Matching (CMSM) module. Specifically, to enhance
the appearance discriminative ability between modalities, the DDViTM is pro-
posed to implement the multiple embedded output vectors for a single input,
learning features for the individual pedestrians’ cross-modality-sharing represen-
tation. Furthermore, the CMSM module is used to improve the feature similarity
between visible and infrared images for the same person, and dynamically adjust
the image sequence weights of the two modalities to complete the training and
optimization efficiency for the entire network. Our investigation extends across
the VI-ReID public datasets, including (SYSU-MM01 [33] and RegDB [25]), serv-
ing as the litmus test for evaluating the efficacy of our approach. The outcomes
underscore the promising strides made by our proposed method, outperforming
contemporary algorithms. In essence, the key contributions of this work can be
encapsulated as follows:

– We present a new PDET framework: Progressive Diversity Expansion Trans-
former for VI-ReID, which aims to increase the amount of data and reduce
inter-modal differences implicitly.

– The proposed framework includes DDViTM and CMSM modules to enhance
the ability of individual appearance discrimination between modalities and
to adjust the image sequence weights of the two modalities for the entire
network, respectively.

– Extensive experiments have been conducted on public VI-ReID datasets,
namely, SYSU-MM01 and RegDB from a variety of aspects. Results show
that the presented algorithm in this work has achieved a promising perfor-
mance against SOTA methods.

2 Related Work

In this section, we have reviewed the relevant work for VI-ReID. Firstly, we
review the overall research status of VR-ReID. After that, the transformer-based
methods for person ReID are described. The most noteworthy works are given
as follows.

2.1 Visible-Infrared-Based Methods for Person ReID

The purpose of VI-ReID is to retrieve the same person as the target sample in
both modalities. Visible ReID is only for visible environments and is more sensi-
tive to light in practical applications. To solve the problem that RGB images do
not work at night, Wu et al. [33] provided the first in-depth study of VI-ReID
and compared several feasible network structures. Also, they released a large-
scale dataset called SYSU-MM01, with cross-modality, which is an important
contribution to further research in this field. The cross-modality-sharing feature
transfer module, namely, cm-SSFT is presented by Lu et al. [24] to explore the
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shared information between modalities. They have employed a complementary
feature learning strategy to acquire discriminative and complementary shared
and modality-specific features. Gao et al. [12] used a joint optimization net-
work with edge feature enhancement templates and edge fusion in multi-feature
space to enhance modality-shared features within each modality. In [26], Park
et al. introduced a Learning by Aligning (LBA) method to exploit the corre-
spondences between visible and infrared images, which address the modality
differences in the pixel-level for VR-ReID. Zhu et al. [44] learnt inter-modal
invariant information between two heterogeneous modalities by controlling the
intra-class centroid distance between the two modalities. Ye et al. [36] presented
HAT (a homogeneous augmented three-modal learning method), which gener-
ates homogeneous grayscales approximating infrared maps using RGB images
for three-modal learning. Fu et al. [11] thought that the batch normalization
(BN) layer can improve the performance of cross-modality retrieval with proper
separation. In addition, a modal obfuscation learning network is presented by
Hao et al. [13] that no longer distinguishes between samples of different modal-
ities during training to minimize the differences between modalities. Josef et
al. [10] used semantic alignment to proofread the same features between modali-
ties. Meanwhile, there are other methods to mitigate the inter-modal differences
by directly processing the images.

2.2 Transformer-Based Methods for Person ReID

Transformer [30] was originally proposed to solve the problems of computation-
ally difficult and long-term dependency of RNN networks in natural language.
For example, Das et al. [7] improved the accuracy of language text recognition
by using a transformer. Transformers have also been used in recent years in com-
puter vision due to their excellent modeling capabilities as well as their ability to
have better parallelism, faster training and reasoning, and can deal with longer
sequence fields while achieving better results. For example, in single-modal Vis-
ible ReID, He et al. [15] improved the Vision Transformer (ViT) [9] using the
camera viewpoint information, which is embedding the patch module to learn the
global-local features for each person. Meanwhile, Zhu et al. [43] quickly localized
image body parts and other parts in the patch, adding partial labeling vectors
to learn partial features that can be directly discriminated. Zhang et al. [38] pro-
posed a multilevel feature aggregation network combining CNN and transformer
to achieve multiscale feature learning. Li et al. [22] proposed a more compact
transformer that learns more robust and differentiated embeddings to recognize
similar classes. Although the previously mentioned transformer-based approach
achieves excellent performance in the ReID task, it falls short in adding diverse
outputs and extracting modality-sharing features in VI-ReID.

3 The Proposed PDET Framework

This part introduces the details of the proposed PDET framework, which is
described as Fig. 1. The detailed content is described as follows.
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Fig. 1. Overall network structure of the proposed PDET. The left part is the multi-
modality images input, which includes RGB, Grayscale, and IR (Infrared) images. The
middle one is the Diversity Vision Transformer Module with the Multiple Class Tokens
for the corresponding modality of the previous part and visual transformation. The
loss functions are following at the right part for the framework’s optimization.

3.1 Diversity Distinguishing Vision Transformer

Generally, increasing the amount of data can provide more samples for the model,
allowing it to better adapt to various changes during the training process, which
would learn more comprehensive and accurate feature representations to make
the model more robust. Meanwhile, the model can recognize more details for the
trained samples when increasing the amount of similar data, thereby reducing the
overfitting of the model for noise and abnormal samples. Therefore, to achieve
different output representations for the single input, we have proposed a Diver-
sity Distinguishing Vision Transformer Module (DDViTM) with Multiple Class
Tokens (CLS) to achieve this goal and get the same effect as increasing the amount
of similar data as described previously. In [40], multiple inflated convolutions with
mutually independent branches are used to produce multiple distinct outputs, but
more branches also consume a lot of computational resources. Inspired by [15],
we just need to improve the last stage of the ViT [9] model to achieve the effect
of embedding a single input and outputting multiple embedding vectors in paral-
lel, without the need for additional convolution calculations. In addition, the ViT
model, being pre-trained on ImageNet [8], is used as our backbone.

Without changing the pre-trained ViT weights, we set three different modal-
ity images as the input. Each of them can be represented as X ∈ RW×H as
the import image, where W and H denote the width and height of the input
image, respectively. Then P patches are set as the same size, which is denoted
as {xi|i = 1, .., i..., P}. Sequentially, the divided patches are all mapped into the
d-dimensional vector via the linear mapping layer of the pre-trained ViT model,
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which is denoted as F (xi). Then we have exploited the combination strategy to
concatenate the CLS labels and patch embeddings to form a series of feature
vectors {xcls1, ..., xclsN , F

(
x1

)
, ..., F (xP )}, and this process is described in the

middle part of Fig. 1. N is the number of the CLS. At last, the added learnable
position embedding sequences are used to obtain the diversified representation.

In addition, due to the multi-attention mechanism, our class tokens are trans-
parent to each other. They not only collect information from different patches but
from other CLS among themselves, thereby improving the efficiency of informa-
tion collection. After that, we believe that each CLS does not overlap with each
other, which would learn different features. Maximizing the differences between
CLS can result in boosting the model’s discriminative ability to distinguish simi-
lar classes and reduce the amount of computation. Therefore, we have proposed a
Diversity Discrimination Loss (DDL) with dynamic adjustment in the last layer
of the ViT model to push the distance between CLS. Specifically, we have used
the paired CLSs to perform an orthogonal operation for each other to achieve
the de-correlation process, i.e., cos(xcls1, xcls2) = 0. However, as the number of
CLS increases, each one needs to achieve cosine similarity minimization, which
leads to the complexity being high, making the model’s optimization process
difficult due to the high cosine similarity of some CLS. To solve this problem, we
propose a dynamic adjustment strategy, which recalculates the weights of the
softmax function for each pair of CLS. The CLS markers with higher similarity
gain higher weights, making the model pay more attention to them. The DDL
and dynamic weight adjustment strategy are described as Eq. (1) and Eq. (2).

LDDL =
N∑

i=1

N∑

j=1

wij | cos(f i, f j)|, i < j, (1)

wij=
exp(| cos(f i, f j)|)

N∑

i=1

N∑

j=1

exp(| cos(f i, f j)|)
, (2)

where f i and f j denote the i-th and j-th CLS, respectively. wij indicates the
dynamic adjustment of the weights of each pair of CLS. N represents the number
of the CLS.

3.2 Cross-Modality Similarity Matching Module

Although the proposed DDViTM would provide diverse expressions of individ-
ual appearance features, it also faces an important challenge, which involves
the cross-modality pedestrian matching in VI-ReID. Inspired by PMT [23], we
also exploit a two-stage strategy to achieve the cross-modality similarity match-
ing for VI-ReID. Specifically, a cross-modality similarity matching loss is pro-
posed which is utilized to calculate the similarity distribution between the cross-
modality (visible and infrared) images, correlating representations with different
modalities. It is a more comprehensive and richer sample representation to com-
bine the cross-modality information. The details are described as follows.
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Generally, the visible and infrared images are represented as xvis and xir

respectively. The corresponding grayscale image of the visible image is denoted
as xgray. The sample images

{
xvis, xir, xgray

}
are input into the diversified

expansion Transformer F (·) to obtain the corresponding feature representation,
respectively. The process is described as Eq. (3)–(5).

{fv1, fv2, · · · , fvi, · · · ,fvN} = F (xvis), (3)

{fg1, fg2, · · · , fgi, · · · ,fgN} = F (xgray), (4)

{f ir1, f ir2, · · · , f iri, · · · ,f irN} = F (xir), (5)

where fvi, fgi, and f iri are the corresponding feature vectors of visible, grayscale,
and infrared images, respectively. The size of CLS is represented as N . Different
from existing methods that just consider the representations within modalities,
we have introduced a novel cross-modality similarity matching loss. Firstly, a
label-based similarity matrix is calculated, and then the visible image vector is
projected onto the infrared image space, meanwhile the infrared image vector
is also projected into the visible one. Next, according to the projected vector
and similarity matrix, we calculated the loss values between the two processes
(denoted as Lv2ir and Lir2v), which are added together to get the final LCMSM

loss. The above process is described as Eq. (6) and (7).

Lcmsm = Lv2ir + Lir2v, (6)

LCMSM =
1
N

N∑

i=1

Li
cmsm, (7)

where Lv2ir and Lir2v denote the mutual projection loss between visible
and infrared images. Minimizing the loss would make similar visible and
infrared image vectors closer during cross-modality retrieval. Inspired by [18],
we have selected M visible-infrared image pairs, which are represented as
{(fv

i , f ir
j ), yij}Mj=1, where yij are the true matching labels, yij = 1 indicates that

(fv
i , f ir

j ) is the same identity, and yij = 0 indicates a different one. The proba-
bility of cross-modality matching (pij) is then calculated by softmax function as
Eq. (8).

pij =
exp(cos(fiv, fjir)/γ)

∑M
k=1 exp(cos(fiv, fkir)/γ)

, (8)

where γ is a hyper-parameter that controls the probability distribution peaks.
Subsequently, the CMSM loss is computed from the visible image to the infrared
image within a mini-batch as Eq. (9).

Lv2ir =
1
M

M∑

i=1

M∑

j=1

pij log(
pij

qij + σ
), (9)

where σ is introduced for avoid numerical problems, and qij = yij∑M
k=1 yik

repre-
sents the true matching probability. Symmetrically, the CMSM loss from infrared
to visible Lir2v can be formulated by exchanging fv and f ir.
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3.3 Model Optimization

The staged loss function is proposed to optimize the whole model. Firstly, the
identity loss LID [41] and triplet loss Ltri [23] are utilized to learn modality-
independent features. LDDL constrained diversity representation and LCMSM

are also utilized to increase the correct probability of cross-modality matching.
The process can be described as Eq. (10) and Eq. (11).

L1 =
1
N

N∑

i=1

(
Li

ID + Li
tri

)
+ λ1LCMSM + λ2LDDL. (10)

In the second stage, we further use diversity Lmsel [23] to extract reliable modal-
sharing features and enhance the discrimination with diversity Ldcl [23].

L2 =
1
N

N∑

i=1

(
Li

ID + Li
tri

)
+ λ2LDDL+

1
N

N∑

i=1

λ3(Li
msel + Li

dcl). (11)

4 Experimental Results and Analysis

In this section, we provide the experimental results and relevant analysis. Firstly,
we introduce the datasets, evaluation protocols, implementation details, and
parameter settings in Subsect. 4.1. Subsequently, the ablation study is detailed in
Subsect. 4.2. At last, the comparison with the latest SOTA methods is described
in Subsect. 4.3. The details are described as follows.

4.1 Datasets and Evaluation Protocols

Datasets: To validate the performance of our method, extensive experiments
were conducted on widely-used public VR-ReID datasets, including, SYSU-
MM01 [33] and RegDB [25].

– The SYSU-MM01 [33] includes 491 person identities with 286, 628 visible
and 15, 792 infrared images, respectively. Out of this data, 395 identities with
22, 258 and 11, 909 for visible and infrared images, respectively, are used to
train the model. The remaining data is used as the test set with 3803 infrared,
and 301 visible images for querying and gallery, respectively. In addition, the
dataset exploits all search images and indoor ones for testing.

– The RegDB [25] dataset includes 412 pedestrian identities. There are both
10 visible and infrared images for each person. Without loss of generality, we
divided the total pedestrian identities in this dataset evenly into two halves,
with half used as the training set and the other half as the testing set.

Evaluation Protocols: As usual, we also exploited the Cumulative Matching
Characteristics (CMC) [20] and mean Average Precision (mAP) [16] as the per-
formance evaluation metrics. In addition, the Mean Inverse Negative Penalty
(mINP) [35] strategy is also used in this study for performance evaluation.
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Implementation Details: The proposed algorithm runs on the NVIDIA RTX-
2080Ti GPUs, which are set as the hardware platform. The software environment
is based on Python 3.8.10 and the Ubuntu 20.04 operating system. ImageNet
is used to pre-train the ViT-B/16 model and the overlap step set as 12. The
input images are resized as 256 × 128. There are 4 different identities with 64
batch sizes for each one. In addition, both 4 visible and infrared images have
been selected for one person’s identity.

Parameter Settings: Following [23], the AdamW optimizer of the learning
rating (lr) is set as 3 × 10−4. Weight decay was set as 1 × 10−4. The training
epochs were set as 20 (SYSU-MM01) and 58 (RegDB), respectively. Besides,
the training epoch was set at 6 on both the datasets in the first stage. The
parameters λ1 and λ3 are set as 0.7. λ2 is set to 1, and the margin parameter m
is set to 0.1. Hyper-parameter γ and σ are set as 50 and 1 × 10−8, respectively.
At the testing phase, all the output features are spliced into 3084 dimensions.

4.2 Ablation Studies

To verify the effectiveness of each component of our proposed PDET, we have
conducted a series of ablation studies on the above two public datasets described
below.

Effectiveness of the CLS: To verify the efficiency of the CLS, we have added
multiple extra CLS tokens (denoted as “cls”) and exploited the loss function
LDDL to constrain the CLS tokens to learn different features in Sect. 3.1. From
Table 1, it can be seen that CLS indeed have better performance, and the result
of the method can be further improved by adding the LDDL loss function. In
addition, to further verify how many extra “cls” are more effective, we also
conducted the corresponding experiments. It can be seen that adding 4 “cls” is
more effective in Table 1.

Table 1. Ablation experiments with CLS on the RegDB dataset. ‘cls’ denotes the extra
added CLS token and LDDL is the loss function that constrains CLS to learn different
features.

Method ViT cls cls cls cls LDDL mAP ↑ mINP↑ rank-1↑
Baseline

√ √
76.55 62.90 84.83

DDViTM
√ √

78.76 64.07 85.19
√ √ √ √

80.72 66.44 87.23
√ √ √ √ √

79.76 65.11 86.75
√ √ √ √

79.56 63.92 87.14
√ √ √ √ √

81.20 66.85 86.89
√ √ √ √ √ √

81.58 67.69 88.16

Impact of Loss Functions: To evaluate the impact of different loss functions
on VI-ReID performance, we have also conducted the ablation experiments on
the RegDB dataset, which is shown in Table 2. We have assessed the following
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loss functions: Identity Loss (LID), Triplet Loss (Ltri), Modal Sharing Enhance-
ment Loss (Lmsel), Discriminant Center Loss(Ldcl) and Cross-modality simi-
larity Matching Loss(LCMSM ). As can be seen from the final result, our uni-
fication of all the above loss functions has an essential impact on the model’s
performance.

Table 2. Performance of different loss functions on the RegDB dataset.

LID Ltri Lmsel Ldcl LCMSM mAP↑ mINP↑ rank-1↑
√ √ √ √

76.55 62.90 84.83
√ √

71.18 57.27 75.63
√ √ √

75.44 60.53 81.50
√ √ √ √ √

82.90 68.16 90.10

Performance of DDViTM and CMSM: To verify the effect of DDViTM and
CMSM included in the proposed framework in this study, we have also conducted
the corresponding ablation experiments for each of them. The specific results are
shown in Table 3. From the table, the two models are stacked together, where the
performance of mAP and mINP slightly decreases due to an increase in feature
duplication on the SYSU dataset. It may be due to inconsistent optimization
objectives between the two modules, resulting in an increase in model complexity.
Further investigation is needed in this regard, but due to time constraints, it is
beyond the scope of current research. We will further address this issue in future
research.

Table 3. Performance of the DDViTM and CMSM on the SYSU and RegDB datasets.

Baseline DDViTM CMSM SYSU RegDB

mAP↑ mINP↑ rank-1↑ mAP↑ mINP↑ rank-1↑
√

64.98 51.86 67.53 76.55 62.90 84.83
√ √

66.43 54.07 67.85 81.58 67.69 88.16
√ √

65.84 53.86 67.25 82.05 66.41 88.93
√ √ √

66.42 53.80 68.36 82.90 68.16 90.10

Computational Complexity: To demonstrate the computational complexity
of our method, we also conducted a series of experiments to verify it. We mainly
validate the model in terms of several dimensions such as the size of parame-
ters, FLOPs, Throughput, and Inference Time. The specific results are shown
in Table 4. From the table, it can be seen that although our method has an
increase in the number of parameters compared to the baseline, this does not
significantly impact computational efficiency. By adding more CLS, we capture
richer feature representations, which require more parameters and time to learn
these shared features. Despite the increase in computational complexity in some
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Table 4. Computational complexity of PEDT. ‘Throughput’ is the amount of data
processed per second. ‘Inference time’ refers to the time required to make predictions
for a single batch of input data.

Model Parameters (M)↓ FLOPs (G)↓ Throughput(B/S)↑ Inference Time(S)↓
Baseline 85.97 18.08 0.84 1.18

Ours 93.25 18.34 0.72 1.41

areas, these additional computational resources significantly enhance the model’s
performance as verified from Table 5 and Table 6.

Parameters Analysis:. In this part, we discuss the effect of parameters for
the proposed model. It mainly includes three hyper-parameters: λ1 (controlling
the CMSM), λ2 (constraining the CLS), and λ3 (constraining the loss of Modal
Sharing Enhancement), which are shown in Fig. 2. When λ1 is small, its gradi-
ent may be too weak and the model will not fully optimize this loss term during
training, which reduces the performance of the model. When λ1 = 0.7, the cor-
rect rate of cross-modality matching increases significantly, which is illustrated
in Fig. 2a. When λ2 = 0.1, it does not play a role. The main reason is that
the weights are too small, and the features learned by the CLS are too simi-
lar, resulting in a lack of differences. With the value increased, each CLS learns
more and more diverse features, and its performance is optimal when λ2 = 1.
If its value continues to increase, too large weight makes it difficult for CLS to
converge on the optimization, failing to learn the optimal features. Finally, we
have discussed the effect of λ3 for model performance. Due to the extra CLS in
our model, it requires larger weights compared to the baseline to learn shared
features between the two modalities. When it is set to 0.7, the entire model
achieves the best accuracy.

Fig. 2. Impacts of λ1, λ2, and λ3

Visual Retrieval Results: To visually verify the effectiveness of the algorithm,
we have visualised the results. The top 10 retrieval results are displayed in Fig. 3
to verify the visual effect for the proposed model. It can be seen that we can
quickly recognize the same person in the first few cases.
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(a) (b) (c) (d)

Top 10 retrieval results

Fig. 3. Visualization representations. (a) Query images. (b) The map of PMT [23] with
the attention operation. (c) Attention map of the PDET. (d) Top 10 retrieval results.

4.3 Comparison with the Latest Methods

In this part, we have discussed the corresponding experimental results on the
above two datasets and compared them with the latest SOTA methods.

Comparisons on SYSU-MM01 Dataset: In Table 5, we have summarized
the performance of our method and that of the SOTA competitors on the
SYSU-MM01 dataset. For the benchmark dataset, 13 latest methods are pro-
posed, including Zero-Pad [33], Hi-CMD [5], HAT [36], AGW [35], NFS [4], CM-
NAS [11], LBA [26], MID [17], SPOT [2], FMCNet [39], PMT [23], DARD [32],
and CMRViT [28]. It can be seen that our approach achieved relatively com-
petitive results. However, our model is trained on an “all” scenario, where the
outdoor background is more complex and the indoor background is relatively
simple. The model is better at handling complex backgrounds, but not as good
as the DARD method [32] for simple backgrounds. The reason for our analysis is
that we have added “CLS” in the “all” scenario. The model is trained on more
diverse data, and each “CLS” can learn different feature representations. In the
“indoor” scenario, it contains only indoor data, the model does not have enough
diverse data to learn. The singularity of the data in the “indoor” scenario leads
to the fact that there is still room for further improvement of our algorithms,
and this will be the next problem we need to solve.

Comparisons on RegDB Dataset: Correspondingly, we have also compared
our method with the 12 SOTA methods (namely, Zero-Pad [33], DDAG [34],
HAT [36], AGW [35], NFS [4], MSO [12], CM-NAS [11], LBA [26], SPOT [2],
PMT [23], PartMix [19], and PAPG [27]) on RegDB dataset, which is depicted
in Table 6. The method proposed in this study exhibits notable accuracy advan-
tages, achieving a Rank-1 accuracy of 90.10% and an mAP of 82.90%.
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Table 5. Comparison results on the SYSU-MM01 dataset.

SYSU-MM01 All search Indoor search

Method Venue r=1 r=10 r=20↑ mAP↑ mINP↑ r=1 r=10 r=20↑ mAP↑ mINP↑
Zero-Pad [33] ICCV’17 14.80 54.12 71.33 15.95 – 20.58 68.38 85.79 26.62 –

Hi-CMD [5] CVPR’20 34.94 77.58 – 35.94 – – – – – –

HAT [36] TIFS’20 55.29 92.14 97.36 53.89 – 62.10 95.75 99.20 69.37 –

AGW [35] TPAMI’21 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23

NFS [4] CVPR’21 56.91 91.34 96.52 55.45 – 62.79 96.53 99.07 69.79 –

CM-NAS [11] ICCV’21 61.99 92.87 97.25 60.02 – 67.01 97.02 99.32 72.95 –

LBA [26] ICCV’21 55.41 91.12 – 54.14 – 58.46 94.13 – 66.33 –

MID [17] AAAI’22 60.27 92.90 – 59.40 – 64.86 96.12 – 70.12 –

SPOT [2] TIP’22 65.34 92.73 97.04 62.25 48.86 69.42 96.12 99.12 74.63 70.48

FMCNet [39] CVPR’22 66.34 – – 62.51 – 68.15 – – 74.09 –

PMT [23] AAAI’23 67.53 95.36 98.64 64.98 51.86 71.66 96.73 99.25 76.52 72.74

DARD [32] TIFS’23 68.33 94.32 97.52 65.65 – 77.21 98.32 99.18 81.91 –

CMRViT [28] PR’24 68.05 97.12 96.87 65.17 53.54 72.43 97.16 98.89 77.58 72.19

PDET Ours 68.36 96.01 98.81 66.42 53.80 74.45 97.80 99.48 79.36 75.99

Table 6. Comparison Results on the RegDB Dataset.

RegDB Visible to infrared Infrared to visible

Method Venue r=1 r=10 r=20↑ mAP↑ mINP↑ r=1 r=10 r=20↑ mAP↑ mINP↑
Zero-Pad [33] ICCV’17 17.74 34.21 44.35 18.90 – 16.63 34.68 44.25 17.82 –

DDAG [34] ECCV’20 69.34 86.19 91.49 63.46 49.29 68.06 85.15 90.31 61.80 48.62

HAT [36] TIFS’20 71.83 87.16 92.16 67.56 – 70.02 86.45 91.61 66.30 –

AGW [35] TPAMI’21 70.05 86.21 91.55 66.37 50.19 70.49 87.12 91.84 65.90 51.24

NFS [4] CVPR’21 80.54 91.96 – 72.10 – 77.95 90.45 – 69.79 –

MSO [12] ACM ’21 73.6 88.6 – 66.9 – 74.6 88.7 – 67.5 –

CM-NAS [11] ICCV’21 84.54 95.18 97.85 80.32 – 82.57 94.51 97.37 78.31 –

LBA [26] ICCV’21 74.17 – – 67.64 – 72.43 – – 65.46 –

SPOT [2] TIP’22 80.35 93.48 96.44 72.46 56.19 79.37 92.79 96.01 72.26 56.06

PMT [23] AAAI’23 84.83 – – 76.55 – 84.16 – – 75.13 –

PartMix [19] CVPR’23 85.66 – – 82.27 – 84.93 – – 82.52 –

PAPG [27] SPL’24 88.35 – – 83.18 – 86.46 – – 80.08 –

PDET Ours 89.95 97.14 98.88 83.69 70.86 90.10 97.48 99.17 82.90 68.16

5 Conclusion

This paper proposed a framework called Progressive Diversity Expansion Trans-
former (PDET), which includes a diversity distinguishing vision transformer
module (DDViTM) and a cross-modality similarity matching (CMSM) module
for VI-ReID. The DDViTM was used to enhance the ability of individual appear-
ance discrimination between modalities, thereby learning feature representations
of individual pedestrians in different modalities. Subsequently, the CMSM was
introduced to mitigate inter-modality disparities, resulting in enhanced accuracy
for cross-modality retrieval. Comprehensive evaluations across various metrics
demonstrate that our approach has delivered promising performance compared
to state-of-the-art methods, thus affirming its efficacy. In future, our aim is to
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develop a lighter yet more efficient model to identify modality-shared features,
effectively addressing the cross-modality differences in VR-ReID.
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Abstract. Person Re-identification (ReID) aims to retrieve a target pedestrian
from an image gallery captured by cameras in varied scenarios. It is crucial for
ReID to extract extensive discriminative feature representations from images for
achieving desirable performance. The majority of current methods focus on min-
ing data that can identify a pedestrian from a single image by investigating differ-
ent dimensions of the image. However, a single image is sometimes insufficient
to precisely characterize all the necessary features for identifying a pedestrian
especially when the data quality is not guaranteed. Since a pedestrian tends to
be caught in numerous images, information missed in a single image is expected
to be supplemented from other images. Therefore, we consider extracting more
robust feature representations benefiting from relationships between multiple
pedestrian images and propose a new method DTMIReID. Firstly, we suggest a
Dual Branch Attention Module (DBAM) based on Transformer to extract global
and local features from single images. Then we combine the extracted features
of multiple images together and input them into our proposed Deformable Trans-
former Module (DTM) to simultaneously fuse the global and local features from
these multiple images by a Sample-Points-Based Attention (SPBA) mechanism.
To the best of our knowledge, our method is the first ReID model that uses
the Deformable Transformer to establish relationships between multiple features.
Experimental results on four large ReID datasets show that the new method out-
performs state-of-the-art published works by a large margin. DTMIReID is avail-
able at https://github.com/Titaniumyh/DTMIReID.git.

Keywords: Person Re-identification · Deformable transformer ·
Sample-points-based attention

1 Introduction

Person re-identification(ReID) aims to retrieve the target pedestrian from the image
gallery. The pedestrian images in the gallery are captured by a set of cameras with
non-overlapping shooting ranges. ReID is extensively applied in suspects searching,
target individuals identification, and other scenarios. However, lighting changes, pedes-
trian posture shifting, filming angle varying, blurring, occlusion, and other unexpected
issues make ReID a great challenge. The majority of current research focuses on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. The pipeline of the proposed method. A batch of images are input into the Dual Branch
Attention Module (DBAM) to obtain global and local features for each image. Then, these fea-
tures are feeded into the Deformable Transformer Module (DTM) for further fusion and recon-
struction. Triplet loss and ID loss are calculated respectively for the features output by the two
modules.

how to extract more discriminative feature representations of pedestrians. Example
works include methods concerning data augmentation [9–12], methods using local fea-
tures [13,14,16–22], and approaches based on attention mechanisms [4–8].

Despite that quite a lot of works have been published, most methods pay their atten-
tion on extracting features from individual images of a pedestrian. However, a single
image is prone to losing some information due to occlusion, blurring, and inappropriate
shooting angles. In genuine surveillance circumstances, a pedestrian is usually captured
in multiple images. The missing information from a single image is expected to be sup-
plemented from other images. Therefore, a few methods, such as NFormer [31] and
HLGAT [34], turn to consider constructing relationships between multiple pedestrian
images to enhance the identification performance. Inspired by their ideas, in this work
we use a Deformable Transformer Module(DTM) to automatically construct relation-
ships between multiple pedestrian images.

Alexey Dosovitskiy et al. proposed ViT [30], a universal solution to computer vision
problems using the Transformer structure. Based on the structrue of ViT, TransReID
[26] became the first Transformer-based ReID model. Experiments have shown that
TransReID achieves better performance than traditional CNNmethods. Our work is also
based on ViT. Actually, we propose a Dual Branch Attention Module(DBAM) based on
ViT and TransReID: A global branch and a local branch for extracting the global and
local features of individual pedestrian images respectively. Afterwards, the feature vec-
tors of multiple pedestrian images are combined and input into the Deformable Trans-
formerModule(DTM) for further learning and reconstruction. Experiment results verify
the efficiency of our proposed method which outperforms the state-of-the-art published
works by a large margin.

2 Related Works

Usually, given a target pedestrian image set Query(Q) and an image Gallery(G), the
goal of Person ReID is to retrieve the target pedestrian in Q from G. The ReID
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algorithms initially relied mainly on metric learning [1–3]. At present, the popular ReID
methods are primarily based on representation learning. This kind of method commonly
starts by training a deep learning model to extract the feature representations of input
images, and then achieves image matching and retrieval through similarity calculation
of feature vectors. Therefore, obtaining more discriminative pedestrian feature repre-
sentations is the key to the success of the person ReID algorithm.

Certain methods [9–12] improve the model’s performance from the perspective of
data augmentation. For example, utilizing a generative model like GAN can provide
more supplementary sample data. In addition, numerous studies have demonstrated that
local features are particularly helpful for improving the ReID algorithm’s recognition
accuracy. These are the major means of gathering local features:

– Some methods are based on strip segmentation, such as PCB [13], AlignedReID++
[14], and MGN [15].

– Some methods [16–22] align different parts by locating human key points. Typically,
parsing or key point estimation models [23–25] are employed to assist in obtaining
local features.

– Other methods [26–28] are based on Transformer to automatically obtain local fea-
tures.

Some methods [4–8] add attention mechanisms to the model. The attention mechanism
can effectively strengthen the expression of valuable information while suppressing
irrelevant information expression.

Transformer [29], as a flexible structure for processing different types of data, has
also shown its strong discriminative ability for fulfilling the task of ReID.

ViT [30] is the earliest proposed solution to computer vision problems based on the
Transformer structure. Through the Patch Embedding procedure, ViT divides the image
into numerous fixed-sized small patches, and then encodes each patch into a feature vec-
tor. Numerous experiments have demonstrated that ViT outperforms conventional CNN
models when given a large amount of training data. Later, more Transformer-based
models emerged in the CV field. Detr [35] utilizes Transformer to solve the problem
of object detection, and achieves complete end-to-end detection in contrast with tradi-
tional object detection methods based on CNN and prior boxes. Deformable Detr [36]
introduces a deformable attention mechanism based on sampling points. It effectively
increases the model’s training pace and outperforms Detr greatly in terms of detection
performance.

Many Transformer-based ReID models have gradually emerged as a result of Trans-
formers’ broad use in the CV area. In order to extract pedestrian image features, CNN-
based algorithms typically start with ResNet [37] or other models as baseline and then
add attention mechanisms, local features, and other techniques. TransReID [26] is the
first pure Transformer-based ReID model. It takes ViT as the baseline and incorporates
two training techniques for ReID problems: Side Information Embedding(SIE) and Jia-
saw Patch Module(JPM). TransReID has achieved better performance than CNN-based
methods on several vehicle and pedestrian ReID datasets. Zhu et al. [27] proposed
AAformer, which can automatically partition image parts based on Transformer. Zhu
et al. [28] proposed a Dual Cross-Attention Learning(DCAL) algorithm that includes
Global-Local Cross-Attention (GLCA) and Pair-Wise Cross-Attention (PWCA). In
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addition, there are some methods that combine CNN and Transformer, such as HAT
[32], PAT [33], etc.

Most of the methods mentioned above only consider how to extract discriminative
features from a single image, while ignoring the potential relationships between dif-
ferent images. Noticing this point, Wang et al. [31] modified the Transformer and pro-
posed NFormer which can effectively construct relationships between all input images
based on the observation that the images of the same person have closer distances in
the feature space. NFormer [31] has improved the multi-head self-attention mecha-
nism and proposed the Land-Mark Agent Attention and the Reciprocal Neighbor Soft-
Max. Another tool, HLGAT [34], utilizes the Graph Attention model to simultaneously
construct the inter-local relation and the intra-local relation to improve the identifica-
tion accuracy. The outstanding performance of NFormer and HLGAT demonstrates the
power of building relationships between multiple images. Inspired by their success,
we aim to develop a model that can automatically combine the characteristic of multi-
ple images of one person efficiently. Notice that local features are proved particularly
helpful in improving ReID accuracy, we introduce a Dual Branch Attention Module
based on ViT [30] and TransReID [26] for processing single images, incorporating a
mask attention component as in NFormer [31] for extracting discriminative local fea-
tures. Impressed by the success of introducing the sampling points [36], we design a
Deformable Transformer Module for fulfilling the task of automatically merging the
features extracted from multiple images.

3 Method

We’ll give our proposed approach a thorough introduction in this section. The model
consists of two modules: The first is a Dual Branch Attention Module (DBAM)
designed to extract global and local features of individual images; The other is a
Deformable Transformer Module (DTM), which is applied to construct relationships
between multiple pedestrian images.

3.1 Pipeline

Assuming that N pedestrian images are utilized as batch input, and the i-th input image
is recorded as xi ∈ R

C×H×W . Firstly, we input a batch of images into the Dual Branch
Attention Module(DBAM) for preliminary feature extraction. After the DBAM, for
each input image xi, a global feature representation gi ∈ R

D and several local fea-
tures li ∈ R

m×D can be obtained. Next, we will combine all the feature vectors of
N input images to form a feature map F ∈ R

D×N×(m+1). Then we input F into the
Deformable Transformer Module(DTM) to simultaneously fuse the global and local
features of multiple images. After DTM, we can get the reconstructed m + 1 feature
vectors for each input image xi. Finally, we concatenate these m+1 vectors together as
the feature representation of this image. Figure 1 displays the pipeline of our method.
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Fig. 2. The structure of the Dual Branch Attention Module (DBAM). The left side represents the
global branch, and the right side represents the local branch. After the DBAM, one global feature
(shown in the red small square) and m local features (shown in the blue small squares) can be
obtained for each input image. (Color figure online)

3.2 Dual Branch Attention Module

Figure 2 depicts the structure of the Dual Branch Attention Module(DBAM). DBAM
includes a global branch for obtaining global feature representation of the image and a
local branch for extracting a number of local features.

The global branch is designed based on ViT [30] and incorporates the Side Informa-
tion Embedding (SIE) module proposed in TransReID [26]. First, we partition the input
image xi into several patches using Patch Embedding to convert xi into a sequence
yi ∈ R

n×D. Similar to ViT, we add a CLS-Token as the image’s global feature rep-
resentation at the start of sequence yi. Then we incorporate camera embedding and
position embedding. We currently get the final input sequence M0 ∈ R

(n+1)×D. It is
introduced into a multiple-layer Transformer Encoder, and the output of the i-th layer
is recorded as Mi ∈ R

(n+1)×D. We take out the CLS-Token output from the last layer
as the global feature of the current image, denoted as gi ∈ R

D.
The local branch has a multi-layer structure to match the global branch layer by

layer. Firstly, we randomly initialize m vectors as local features, denoted as L0 ∈
R

m×D. We then input them into the local branch and record the output of i-th layer
as Li ∈ R

m×D. Three components make up each layer of the local branch: a Masked
Cross-Attention component, which we shall discuss in more details in the following
section, a multi-head self-attention mechanism as the second component, and a simple
feed-forward neural network as the last component. The input of each layer in the local
branch is the output of the previous layer and the output of the corresponding layer in
the global branch. For example, for the i-th layer, its inputs are Li−1 and Mi. We ulti-
mately use the output of the last layer as local features of the current image, denoted as
li ∈ R

m×D.
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Fig. 3. The calculating mechanism of the Masked Cross-Attention.

Through the Dual Branch Attention Module, for each input image xi, a global fea-
ture gi and several local features li can be extracted.

3.3 Masked Cross-Attention

In the multi-head self-attention mechanism, theQ,K, and V vectors usually come from
the same input sequence. However, in our cross-attention mechanism, the Q vectors
come from the output of the previous layer, and the K and V vectors come from the
output of the corresponding layer of the global branch. For example, in the i-th layer,
Q, K, and V vectors can be represented as:

Q = Lj−1
i · Wq ,

K = M j
i · Wk ,

V = M j
i · Wv .

(1)

Figure 3 illustrates the calculating mechanism for the Masked Cross-Attention. Firstly,
we obtain a relationship matrix S:

S =
Q · K�

√
D

. (2)

Then we introduce a Mask mechanism in order to ensure that each local feature will
only concentrate on a specific area of the image. We initialize a matrix M as a Mask.
The i-th row of matrix S records the relationship between the i-th local feature and all
patches of the image. We find the top k maximum values of Si,; and set the correspond-
ing position in M to 1, indicating the patches that the i-th local feature needs to be
focused on. Simultaneously set the values of other positions in M to 0:

Mij =

{
1, j ∈ topk(Si,:),
0, else.

(3)
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Fig. 4. The calculating mechanism of the Sample-Points-Based Attention.

Drawing inspiration from the design of the Reciprocal Neighbor Softmax in
NFormer [31], we add the Mask into the Softmax function and further process S to
obtain S′:

S′
ij =

Mij exp (Sij)∑
k

Mik exp (Sik)
. (4)

Finally, S′ is applied to V to obtain the output Lcross ∈ R
m×D:

Lcross = S′ · V . (5)

3.4 Deformable Transformer Module

Through the Dual Branch Attention Module, we can obtain the global and local features
of each input image. Then we combine these features together and input them into the
Deformable Transformer Module for simultaneously fusing global and local features
from multiple images.

After DBAM, for any input image, a global feature and m local features can be
obtained. We will create a two-dimensional feature map F ∈ R

D×N×(m+1) with all the
features from a batch of input images. Then we will input it into the DTM. DTM is a
multi-layer structure with each layer consisting of two parts: One is the Sample-Points-
Based Attention mechanism, which is designed from the inspiration by deformable Detr
[36]; And the other is a simple feed-forward neural network.

Figure 4 displays the calculating mechanism of the Sample-Points-Based Attention.
Firstly, flatten F to obtain query features Q ∈ R

N(m+1)×D and index them with q.
For any vector Qq, it corresponds to a position Pq(pqx, pqy) in the feature map F . At
the same time, we conduct a linear map on the features in F to get the value features
V . Next, we need to predict a set of offsets and attention weights for each feature.
Specifically, for each feature Qq, K offsets are predicted through a linear layer. Each
offset contains offset values in both X and Y directions. The i-th offset is denoted by
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Table 1. Contributions from Algorithmic Components. The bold numbers indicates that the com-
plete model with both DBAM and DTM outperforms dramatically, which suggests the necessity
of both components.

Experimental Settings DukeMTMC Market1501

mAP Rank-1 mAP Rank-1

Base 81.6 89.8 88.6 95.2

Base+DBAM 82.0 90.4 89.0 95.5

Base+DTM 90.3 95.1 96.3 98.6

Base+DBAM+DTM 93.2 95.8 97.5 99.2

ΔPq,i(Δpqx,i, Δpqy,i), i ∈ [0,K). Based on the original position Pq of Qq, K sam-
pling points can be obtained by offsetting according to K offsets. The original coordi-
nates and offsets are added to determine the coordinates of each sampling point:

P ′
q,i = Pq + ΔPq,i

= (pqx + Δpqx,i, pqy + Δpqy,i) .
(6)

It should be noted that the coordinates may not be integers, therefore, bilinear interpo-
lation method needs to be used for further processing. In addition, another linear layer
is also applied to Qq in order to forecast K weights, which correspond to K sample
points one by one. Then the calculation mechanism of sampling-points-based attention
can be expressed as:

Q′
q = Wq

K∑
i=0

(αq,i · Sample(V, P ′
q,i) + λVq ) . (7)

Sample(·) represents a sampling operation, i.e., based on the coordinates of the sam-
pling points, to extract the corresponding feature vectors from the value features. α is
the attention weights. λ is a hyper-parameter used to explicitly retain a portion of the
current features during computation. The above operations of the single-head attention
mechanism, like Transformer, have been extended to the multi-head mechanism.

4 Experiments

4.1 Experiments Setting

Table 2. Statistics of person ReID datasets.

dataset identities images cameras

Market1501 1501 32668 6

DukeMTMC-ReID 1404 36411 8

MSMT17 4101 126441 15

Occluded-Duke 1404 35489 8
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Datasets and Evaluation Protocols. To evaluate the efficiency of our method, we con-
ducted experiments on four large person ReID datasets: Market1501 [38], DukeMTMC-
ReID [11], MSMT17 [39], and Occluded-Duke [40]. Occluded-Duke is an occluded
ReID dataset, with images selected from DukeMTMC, and all images in the query set
are pedestrian images with occlusions. Each identity is captured by multiple images
from various cameras or settings in all of the above datasets. The detailed information
of the above datasets is shown in Table 2.

We employ the conventional ReID algorithm’s setting for experiments and use the
cumulative matching characteristic (CMC) curve and mean Average Precision (mAP)
as evaluation indicators. CMC shows the precision of the top k rankings by calculating
the true positive results among the top k individuals in the sorted query results. When
k is taken as 1, top-1 represents the first hit rate, which is one of the most important
evaluation criteria for the ReID method. The mAP measures the gallery set’s overall
re-identification accuracy.

Implementation. We choose the pre-trained ViT-Base [30] model on the ImageNet
[41] dataset as the baseline of our method. This model has 12 Transformer encoding
layers, 12 heads for multi-head attention, and feature vector size is set to 768. Every
input pedestrian image is resized to 256 × 128. We use random horizontal flipping,
padding with 10 pixels, random cropping, and random erasing [10] for data augmenta-
tion. We set the batch size to 64, indicating each batch includes 16 pedestrian IDs and 4
images for each ID. Stochastic Gradient Descent (SGD) optimizer is applied for training
the model. The initial Learning rate is set to 0.01, and the cosine Learning rate decay
strategy is applied. Our method was implemented using Pytorch and all experiments
were conducted on one GeForce RTX 3090.

4.2 Ablation Study

Contributions from Algorithmic Components. To demonstrate the necessity of each
component of our proposed method, we conducted ablation experiments on the DukeM
TMC-ReID and Martket1501 datasets. Experiment 1 applies the ViT model to extract
pedestrian features and incorporates the overlapping patches and SIE training tips sug-
gested in TransReID. Experiment 2 adds the local branch on the basis of Experiment
1, i.e., to use our Dual Branch Attention Module (DBAM) to extract global and local
features of a pedestrian, and concatenate the features together as the final feature repre-
sentation of the pedestrian. Experiment 3 adds our proposed Deformable Transformer
Module (DTM) to that of Experiment 1, i.e., to conduct preliminary feature extrac-
tion using the basic model from Experiment 1, and then combine the extracted features
together to input into DTM. Experiment 4 is designed to illustrate the performance of
our complete method, which includes our proposed DBAM and DTM modules. Table 1
presents the results of the above groups of experiments.

When comparing the results of Experiment 1 and Experiment 2, it can be observed
that our proposed DBAM performs by a small margin better than Baseline. On the
DukeMTMC-ReID dataset, the Rank-1 and mAP of the DBAM increase in comparison
to Baseline by 0.6% and 0.4%, respectively. On the Market1501 dataset, Rank-1 and
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mAP values increase by 0.3% and 0.4% respectively. The above results indicate that
our proposed DBAM method for extracting global and local feature representations of
pedestrians is effective. Comparing the results of Experiment 3 and Experiment 1, the
performance of the algorithm is shown to be greatly improved by adding our proposed
DTM. On the DukeMTMC-ReID dataset, the model incorporating DTM improves on
Rank-1 and mAP by 5.3% and 8.7%, respectively compared to Baseline. On the Mar-
ket1501 dataset, Rank-1 and mAP increase by 3.4% and 7.7%. The above experimental
results fully demonstrate the effectiveness of our idea of using DTM to extract more
discriminative information from multiple pedestrian images. Compared to Baseline, in
experiment 4, Rank-1 and mAP increase by 6.0% and 11.6% on the DukeMTMC-ReID
dataset, and by 4% and 8.9% on theMarket1501 dataset, respectively. Notice that exper-
iment 4 corresponds to our complete framework which includes both the DBAM and
DTM. Compared to experiments 2,3 where DBAM or DTM are added separately, the
complete framework achieves significantly better performance in experiment 4, which
illustrates the effectiveness of our overall approach.

Table 3. Ablation Study of λ. Bold numbers show that the model performs better when λ is set
to middle-sized numbers. We set λ to 0.5 accordingly.

λ DukeMTMC Market1501

mAP Rank-1 mAP Rank-1

0 90.8 92.3 96.8 98.1

0.3 90.8 92.5 97.4 99.4

0.5 91.8 95.3 97.1 99.3

0.8 89.9 94.8 96.0 98.5

1 89.1 94.4 95.7 98.3

Ablation Study of λ. In the Sample-Points-Based Attention mechanism of the DTM,
λ is a hyper-parameter, which is used to explicitly specify the proportion of preserving
the current feature itself. We compare the impact of different λ on the performance of
the model to determine a reasonable λ for our method. For this purpose, we conducted
five sets of experiments on the DukeMTMC-ReID and Market1501 datasets, with λ set
as 0, 0.3, 0.5, 0.8, and 1, respectively. The experimental results are shown in Table 3.

According to the experimental data shown in Table 3, different values of λ have
a certain impact on the model’s final performance. The model performs best on the
DukeMTMC-ReID and Market1501 datasets when λ is adjusted to 0.5 and 0.3, respec-
tively. The Rank-1 and mAP values of the algorithm will decrease to some extent with
a smaller or bigger λ. This might be the case that if λ is too tiny, information on the fea-
ture itself would be lost, while if λ is too large, learning from other features adequately
will be hard. Therefore, a reasonable value of λ is necessary. We ultimately set λ to 0.5
based on the experimental findings.

Amount of Sample Points. The number of sampling points K is an important param-
eter in DTM, which affects the range of mutual learning and fusion between features.
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Table 4. Amount of Sample Points. Bold numbers show that the model has achieved best perfor-
mance with the amount of sample points set to 4. This is most likely having too many sampling
points can result in the blending of irrelevant information from other features. We set the number
of sampling points K to 4 in our method.

K DukeMTMC Market1501

mAP Rank-1 mAP Rank-1

4 93.2 95.8 97.5 99.2

8 93.0 96.5 96.5 98.8

12 91.7 95.8 96.6 98.9

Therefore, we determined a reasonable number of sampling points through a set of abla-
tion experiments on K. We conducted three sets of experiments on the DukeMTMC-
ReID and Market1501 datasets, with the number of sampling points K set to 4, 8, and
12, respectively. The experimental results are shown in Table 4.

When K is set to 4, the model has achieved ideal performance on both the
DukeMTMC-ReID and Market1501 datasets. When the value of K increases, the
model’s Rank-1 and mAP do not significantly improve, while even decrease. This is
most likely because having too many sampling points can result in the blending of irrel-
evant information from other features. Therefore, we set the number of sampling points
K to 4 in our method.

Table 5. Amount of Deformable Transformer Layers. Bold numbers show that the model per-
forms optimally on both datasets with fewer layers. The features will become amalgamated with
excessive irrelevant information when there are too many layers. In our approach, we set the
number of DTM layers to 3.

Layers DukeMTMC Market1501

mAP Rank-1 mAP Rank-1

3 93.2 95.8 97.5 99.2

6 91.8 95.3 97.1 99.3

9 90.5 94.8 96.5 98.9

Amount of Deformable Transformer Layers. Like the traditional Transformer, the
DTM is also a multi-layer structure. We will determine a reasonable number of DTM
layers through experiments. With the DTM layers adjusted to 3, 6, and 9, we carried
out three sets of experiments on the DukeMTMC-ReID and Market1501 datasets. The
experimental results are shown in Table 5.

According to the experimental findings, the DTM’s layer count significantly affects
the model’s overall performance. We discovered that the model performed optimally
on both datasets with fewer layers, such as three layers. When the number of layers of
the DTM increases, the Rank-1 and mAP of the model do not increase but decrease
instead. This is attributed to the fact that the receptive field expands as the number of
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DTM layers increases. Consequently, if there are too many layers, the features will
become amalgamated with excessive irrelevant information, which is not desirable. As
a result, reducing the number of layers is sensible. Our approach limits the number of
DTM layers to three.

Table 6. Amount of Local Features. Bold numbers show that increasing the amount of local
features does not significantly enhance the algorithm’s performance but increase the cost of time
and space. Therefore, we set up 4 local features in our model.

m DukeMTMC Market1501

mAP Rank-1 mAP Rank-1

4 93.2 95.8 97.5 99.2

6 93.4 96.4 97.6 98.9

12 92.7 95.5 97.7 99.3

Amount of Local Features. In this part, we conducted experiments to exam-
ine the effects of various local feature amounts on algorithm performance. On the
DukeMTMC-ReID and Market1501 datasets, we ran three sets of experiments with
4, 6, and 12 local features. Table 6 presents the experimental outcomes. We discovered
that increasing the amount of local features does not significantly enhance the algo-
rithm’s performance, but rather may slightly worsen the results. Additionally, adding
more local features will cost the algorithm more in terms of time and space. Based on
the above considerations, we ultimately set up four local features in our model.

4.3 Comparison with SOTA Methods

Table 7 shows the comparison results of our method DTMIReID with state-of-the-art
published ReID methods on four datasets: DukeMTMC-ReID, Market1501, MSMT17,
and Occluded-Duke. Note that these methods are commonly cited for comparison in
other works and they cover CNN-based and ViT-based methods as well as the meth-
ods that also apply multi-image retrieval. Overall, our method achieved overwhelming
results on all these four datasets and outperformed other compared methods by a large
margin. Notice that the new method demonstrates excellent performance even when
dealing the occluded images. MP-ReID [51], based on prompt learning and language
models, follows our method and achieves the second best performance on Market1501
and DukeMTMC-ReID. FPC [50], designed mainly for circumventing occluded person
ReID, leads the others on the Occluded-Duke data but still falls behind ours. SOLIDER
[55], as a general self-supervised learning framework, achieves quite leading perfor-
mance with the second position on MSMT17 and the third on Market1501. Notice that
method HLGAT [34], which also takes mutual information of multiple images into
consideration, performs equally well on almost all the data-sets, which validates the
significance of this strategy.
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Table 7. Comparison with SOTA methods. Bold numbers show that our method of merging fea-
tures of multiple images using DTM outperforms other compared methods dramatically. The
prompt-learning-based method MP-ReID, the method FPC designed mainly for circumventing
occluded person ReID, and the self-supervised learning framework SOLIDER perform well
against the others.

Method references Market1501 DukeMTMC MSMT17 Occluded-Duke

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

PCB [13] ECCV(2018) 81.6 93.8 69.2 83.3 40.4 68.2 33.7 42.6

MGN [15] MM(2018) 86.9 95.7 78.4 88.7 52.1 76.9 – –

ABDNet [42] ICCV(2019) 88.3 95.6 78.6 90.0 60.8 82.3 – –

OSNet [43] ICCV(2019) 84.9 94.8 73.5 88.6 52.9 78.7 – –

IANet [44] CVPR(2019) 83.1 94.4 73.4 87.1 46.8 75.5 – –

CBN [45] ECCV(2020) 83.6 94.3 70.1 84.8 – – – –

ISP [46] ECCV(2020) 88.6 95.3 80.0 89.0 – – – –

HOReID [47] CVPR(2020) 84.9 94.2 75.6 89.6 – – 43.8 55.1

PGFA [19] ICME(2018) 76.8 91.2 65.5 82.6 – – 37.3 51.4

CDNet [48] CVPR(2021) 86.0 95.1 76.8 88.6 54.7 78.9 37.3 51.4

PAT [33] CVPR(2021) 88.0 95.4 78.2 88.8 – – 53.6 64.5

TransReID [26] ICCV(2021) 88.9 95.2 82.0 90.7 67.4 85.3 59.2 66.4

AAFormer [27] arxiv(2021) 87.7 94.4 80.0 90.1 63.2 83.6 – –

HAT [32] MM(2021) 89.5 95.6 81.4 90.4 61.2 82.3 – –

DCAL [28] CVPR(2022) 87.5 94.7 80.1 89.0 64.0 83.1 – –

FED [49] CVPR(2022) 86.3 95.0 78.0 89.4 – – 56.4 68.1

NFormer [31] CVPR(2022) 93.0 95.7 85.7 90.6 62.2 80.8 – –

HLGAT [34] CVPR(2021) 93.4 97.5 87.3 92.7 73.2 87.2 – –

FPC [50] AAAI(2024) 91.4 95.1 – – – – 72.8 76.7

MP-ReID [51] AAAI(2024) 95.5 97.7 88.9 95.7 – – – –

ISR [52] ICCV(2023) 92.3 96.9 – – 71.5 88.4 – –

DC-Former384↑ [53] AAAI(2023) 90.6 96.0 – – 70.7 86.9 – –

CLIP-ReID+SIE+OLP [54] AAAI(2023) 90.5 95.4 83.1 90.8 75.8 89.7 60.3 67.2

SOLIDER [55] CVPR(2023) 93.9 96.9 – – 77.1 90.7 – –

DTMIReID (Ours) 97.5 99.2 93.2 95.8 86.9 93.6 74.5 81.4

5 Conclusion

In this paper, we propose a person ReID model DTMIReID based on Deformable
Transformer, which consists of two main modules: the Dual Branch Attention Mod-
ule (DBAM) and the Deformable Transformer Module (DTM). Specifically, we first
perform preliminary feature extraction on individual images using the DBAM to obtain
global and local features of the images. Then we assemble the features from all of the
images into a two-dimensional feature map and input it into the DTM. The Sampling-
Points-Based Attention mechanism in DTM can help us automatically construct the
relationships between all features of multiple images and reconstruct them. The features
output from the DTM are more robust and discriminative. The experimental results on
four ReID benchmarks demonstrate that our method achieves state-of-the-art perfor-
mance and outperforms other compared methods substantially. Despite the high identi-
fication precision, the proposed method needs more time for model training than meth-
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ods using single image for retrieval. Besides, supervised training requires all the training
data annotated which is very labor consuming. How to combine the features of multi-
ple images without extra resources consumption and how to migrate the architecture to
semi-supervised or unsupervised situations will be of interest.

Acknowledgments. This work is supported by the National Natural Science Foundation of
China under No. 61672325. We sincerely thank the anonymous reviewers for their valuable com-
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Abstract. Person Re-Identification (Person-ReID) is the problem of
recognizing an identity in various instances across various cameras.
Cross-modal Person-ReID extends this task to match images of differ-
ent modalities, posing a significant challenge due to the considerable
gap between modalities. The availability of the exact RGB-IR pairs for
each identity and pose will help the system understand the feature space
better. Thus, a generative model leveraging Optimal Transport Theory
is proposed to synthesize IR images corresponding to available RGB
images, enhancing the training data for the Person-ReID model. These
images can be considered as distributions, and finding out how each dis-
tribution differs will eventually tell the model how each identity varies.
Comparing the feature vectors using the conventional distance metrics
might only work for some cases. Hence, this is done using the Integral
Probability metrics, which finds the difference between two probabil-
ity distributions by bringing in perceptual similarity while also aligning
the inter-modality images. Additionally, a part feature attention mod-
ule is proposed to learn the essential features in every RGB-IR pair.
This method combines various loss functions based on Integral Proba-
bility metrics, including Wasserstein distance and Maximum Mean Dis-
crepancy. The proposed method showed significant improvements in the
cross-modal Person-ReID result.

Keywords: Person Re-Identification · integral probability metrics ·
Wasserstein distance · generative adversarial networks · cross-modality

1 Introduction

Person Re-Identification (Person-ReID) [1] is an image retrieval problem where
a person’s identity is recognized by a model in another instance. This problem
plays a significant role in many other tasks like tracking and image retrieval.
The applications of Person-ReID are in security, real-time surveillance, crowd
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management etc. Any Person-ReID model has to overcome certain challenges,
like low image resolution, incomplete annotations, illumination variations, occlu-
sions, and viewpoint variations.

Fig. 1. Sample images from SYSU-MM01 dataset.

This study addresses heterogeneous modality [2], where the images are taken
during morning and nighttimes. The modality of the images changes when the
nighttime images are captured using IR cameras and the daylight images are
captured using standard RGB cameras, as shown in Fig. 1. The model needs to
distinguish between different identities while also aligning the changes in modal-
ities. This means that the model must be trained to understand how features
change when modality changes for the same identity.

Some of the recent works like [3] and [4] solve the issue of cross-modality
Person-ReID by providing a baseline and by introducing camera invariant learn-
ing. However, we try to address the problem by enhancing the feature space and
bringing in perceptual understanding to learn the features. We propose to solve
the cross-modality problem in two steps, first, identity discrimination has to be
learnt, and as the next step, the modality gap is reduced. In order for the model
to understand RGB and IR feature space and to match the identities across
modalities, exact RGB-IR pairs are essential. Therefore, we propose a generative
model to generate synthetic IR images for the available RGB images by limit-
ing the CycleGAN network using the Lipschitz constraint. Person-ReID faces
a high inter-class similarity, and to solve this, the model needs to understand
the features across domains perceptually. To induce perceptual understanding
and to help with the cross-modality alignment, we propose a loss function that
makes use of two integral probability metrics, namely, Wasserstein distance and
maximum mean discrepancy. Also, to map the corresponding RGB-IR pairs, an
attention module is proposed. The proposed system consists of two parts. The
first part is to generate the corresponding IR pairs for the RGB images, and
the next part uses the generated image pairs for the re-identification task. The
generative Person-ReID has been studied in a few works like [5]. Also, [6] learns
identity features using Wasserstein distance. Inspired by the above works, we
propose a cross-modal person re-identification system and experiment in differ-
ent settings. The primary contributions of this study are,

– Proposed a perceptual learning-based generative model - Wasserstein Cycle
Generative Adversarial Network (WCGAN) that can generate IR images for
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the given RGB images. This can improve the perceptual understanding of the
model.

– Proposed a new model for cross-modal Person-ReID - Generative Cross-
Modal Person-ReID using Integral Probability Metrics (GCM-IPM)

– Proposed a part feature attention module that focuses on most discriminative
features and aligns the RGB-IR feature attention maps.

This study is structured as follows: Sect. 2 discusses the works related to
this study in literature; Sect. 3 provides an overview of the OTT basics and
explains the proposed methodology; Sect. 4 explains the implementation details
and analyzes the results obtained from this proposed work. In Sect. 5, the future
work is discussed.

2 Related Work

Person-ReID is an important problem in computer vision and has received a
lot of attention in the recent literature. There are two main classifications in
Person-ReID systems [2], namely open-world and closed-world re-identification.
An open-world re-identification system works with a lot of assumptions, such as
all query images will be from the gallery, all the annotations are correct, and
only the same modality images are used in Re-ID systems. In contrast, closed-
world re-identification does not assume any conditions and is designed to handle
various kinds of data, making it a more challenging task to design such models.

2.1 Feature Based Person Re-ID

A comprehensive analysis of diverse Re-ID approaches is presented in [1]. [7] pro-
posed a model that uses local features to solve the occlusion problem, and the
modality difference is solved by strengthening the global features. The authors
have also designed a batch-normalized global feature enhancement method and
a method to fuse multi-granularity features, thus making use of global and
local features. [8] proposed a siamese model that shares the layers so that
feature fusion can be done. Modality-based and modality-invariant represen-
tations(MSR) are learned separately in this work. In DDAG [9], a dual atten-
tion learning-based approach is proposed. [10] proposed an end-to-end system
for cross-modality-based re-identification that shares features across modalities.
This technique makes use of modality information and modality-specific infor-
mation as well.

To effectively address the heterogeneous feature space, we need to provide
an exact RGB-IR pair for every instance of the image. This will enrich the fea-
ture space and help the model to learn and align the identities across different
modalities effectively. Hence a generation module WCGAN is proposed to gen-
erate exact RGB-IR pairs and use the generated images for further training.
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2.2 Generative Person-ReID Models

An approach based on knowledge distillation [5] is introduced where adversarial
learning is employed to align the source data with the target data distribution. A
larger model named the teacher, is used to learn an extensive dataset, while soft
labels are used to train the small model which will be deployed. [11] proposed
a thermal GAN that converts RGB to IR images and then uses those images
for training the re-identification model. [12] proposed a model that tries to solve
the misalignment problem. This method explicitly removes the modality-specific
features and keeps all the modality-invariaxnt features. Sparse GAN uses skip
connections; thus, it reduces the number of parameters and makes fast retrieval
possible. [13] proposes a contrastive learning-based image generation network,
which fuses the generated images. [14] proposed a model that handles the colour
difference by converting both modalities to grayscale and then generating paired
images.

On the contrary, this study introduces a generative model that employs a
perceptual similarity metric incorporating Wasserstein distance and cycle con-
sistency constraints. The objective of this approach is to improve the model’s
capacity to perceive images accurately and produce images of better quality.

2.3 Loss Based Re-Identification Models

Loss-based models define a new loss function that improves network learning.
The dual alignment learning method by [15] uses semantic and skeletal graphs
and optimal transport-based graph matching techniques. Earth mover’s dis-
tance/Wasserstein distance has been used for image retrieval tasks [16]. Dis-
tribution alignment using Wasserstein distance [17] exploits the local features
of images and aligns the features using Wasserstein distance which shows sig-
nificant improvement in ReID results. Wasserstein distance is used in [6] for
cross-modality image alignment. This work reduces the intra-identity distance
by using work done as a metric. [18] proposed the MMD-ReID model, one of the
first kernel methods in ReID that does margin-based modification, which helps in
reducing over-fitting. A Wasserstein distance-based approach is proposed in [19]
which finds workdone between the RGB and IR modalities.

Inspired by the above works, we extract features from the RGB image and
the corresponding generated IR image and then train the twin model using
basic identity loss and for distribution comparison, integral probability metrics
are used.

3 Proposed Method

The overview of the system: a generative structure WCGAN is proposed to
handle the RGB to IR conversion. Then, the generated RGB-IR images are used
to train the proposed Person-ReID model GCM-IPM along with the already
available RGB images. Then the extracted features are used for discrimination
learning and modality alignment. The high-level architecture of the proposed
model is depicted in Fig. 2.
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3.1 Paired Image Generation Module

In the benchmark cross-modality datasets [2,20], there are many images for each
identity for RGB and IR; however, the specific matching pairs of RGB and IR
images for the same individual are not provided in the SYSU-MM01 dataset.
Therefore, this is not a direct image-to-image mapping and we need to map
the RGB and IR domains without a definite pair. In order to perform unpaired
cross-modality translation, we impose two constraints, namely, cycle consistency
and Lipschitz constraint.

Critic in CycleGAN: Inspired by the cycleGAN, we impose the cycle con-
sistency constraint, which forces the generator to learn important features of
the target domain and to learn the workdone to transport the source domain
and target domain. The discriminator is replaced with the critic as in the origi-
nal CycleGAN, and the discriminator will output the score for every generated
image. In order to compare between the generated images and the real images,
we use the Wasserstein Distance [21]. Details of the Wasserstein Distance are
discussed in the next section. To train the GAN with Wasserstein distance, the
second constraint, 1-Lipschitz continuity, needs to be ensured. For all real values
x1 and x2, a function f : R → R is Lipschitz continuous if,

|f(x1) − f(x2)|
|x1 − x2| ≤ k. (1)
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Fig. 2. The proposed model is shown here. The image generation module is used for
paired image generation. The paired RGB-IR images are passed to the twin network
to learn features. The first three convolutional blocks are modality-specific layers, and
the next three layers are modality-invariant layers. Weights are shared among these
layers. Then, the proposed IPM loss and part feature attention loss are calculated.

Here, derivatives of the function f are bounded to 1. Therefore, the gradients
of the mapping function from the RGB to IR domain need to be less than or
equal to 1. This ensures convergence and will not let the gradient be stuck at
some local optimum, and the critic will output scalar scores.
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Adversarial Learning Loss. For each generator GV →T and GT→V , the objec-
tive is to align the identities by minimizing the Wasserstein distance between the
distribution of generated samples and the distribution of real samples in their
respective domains. Generator loss can be defined as follows,

Lgen = − 1
N

N∑

i=1

(DT→V (GV →T (Vi)) + DV →T (GT→V (Ti))) (2)

Discriminator loss can be defined as follows,

Ldisc =
1
N

N∑

i=1

(
DV →T (Vi) − DV →T (GT→V (Ti))

+ DT→V (Ti) − DT→V (GV →T (Vi))
) (3)

where Vi and Ti are samples from the RGB and IR training set.

3.2 Two Stream Network

The baseline architecture is a two-stream network where both the Convolutional
neural networks are trained together for cross-modality image learning. The
input to the network is the RGB-IR image pairs generated by the proposed
WCGAN in the last section. The initial convolutional blocks are set to learn
the modality-specific features. The first three convolution blocks of the shallow
layers are not shared. After the three layers, the convolution layers start sharing
weights so that the networks learn the representation of the other modality and
also so that the feature representation can be made modality invariant. Three
such convolutional blocks are added to the networks. Then, the Generalized mean
average pooling layer (GeM) is added to filter the extracted feature vectors.
Batch normalization is applied to the features after the last three layers. The
extracted features FV , FT ∈ R

N are partitioned into p parts to exploit the
local features FV

l = {fV
1 , fV

2 , ...fV
p }, FT

l = {fT
1 , fT

2 , ...fT
p } ∈ R

N×�. To learn the
discriminative features of each identity, the Identification loss LID is calculated
separately at the end of both networks. This is the cross-entropy loss, where
entropy is the average of information obtained from one sample.

LID = −
N∑

i=1

p∑

j=1

yij log(fM
ij ), where,M ∈ {V, T} (4)

where fij is the local feature extracted by the proposed model with N samples
and p parts per sample.

Part Attention Loss. Now that we have part-wise features for every RGB-
IR pair, we propose to calculate the pairwise attention between each feature
part. There are p parts for each feature vector of each image in every modality.
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Therefore we have p × N × 1 part features in each modality. Because we have
paired inputs, we take each part feature of RGB modality and find attention to
the respective part feature of IR modality. To find the similarity between each
feature pair, a dot product is first performed,

f(fV
i , fT

j ) = exp(u(fV
i )T v(fT

j )) (5)

where u(.) and v(.) represents the 1× 1 convolution layer. Now to form the
attention map,

βp
i,j =

f(fV
i , fT

j )
p∑
i

f(fV
i , fT

j )
(6)

β is the attention map that holds the importance of each part feature
modality-wise. Now to enhance the feature space, the original feature vectors
are multiplied with the attention maps as follows,

f
′p
i = βi ∗ fp

i (7)

The part feature attention loss for N samples is defined as follows,

LP = − 1
N

N∑

i

yilog(P (yi/f ′p
i )) (8)

3.3 IPM Based Cross-Modality Learning

The integral probability metric refers to finding the distance between two proba-
bility distributions. Each image is considered as a distribution of pixels/features,
and the distance between the distributions can be calculated to find the simi-
larity. Two loss metrics namely, Wasserstein distance and Maxmimum mean
discrepancy are used in training the neural network to discriminate between
identities and modalities.

Learning via Perceptual Similarity. Perceptual similarity refers to how we
humans perceive any object and the difference between various objects. Wasser-
stein distance is the measure of work done to move a mass from one place to
another. The distribution of one image can be compared with the distribution
of another image by using KL Divergence and EMD. KL divergence and total
variation find the distance only as a point-to-point match [16]. Also, by trying
to convert one distribution to another, the model essentially learns how much
effort it has to put in for the task. Therefore, Wasserstein distance can bring in
perceptual learning. An optimal transportation plan is to be learnt from source
distribution to the target distribution with the least possible cost. The Wasser-
stein loss between RGB and IR feature vectors is defined as follows,

WD(FV,FT) = min
∑

i

∑

j

Tij .D(fV
i , fT

j ). (9)
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where Tij is the weight to transport points from i to j. D is the point-to-point
distance between source point i and destination point j. Wasserstein distance
does two stages of distribution comparison. The first step is to find the point-
to-point cost and then use the cost to find the work done to transport one
distribution to another. The similarity is determined by the work done cost,
where if the work done is less, the query image and the gallery image are similar,
and they belong to the same class.

LWD = WD(FV,FT), (10)

where WD is the work done to transport FV to FT. In this work, we fit the
model’s output to the ground truth and Wasserstein loss is calculated by finding
the cumulative distribution of the model features and the ground truth feature
vectors. The difference between these two measures will tell the actual work
done, as using only the distributions at that point will give only the point-to-
point mapping. By learning the perceptual similarity along with point-to-point
similarity, the model can differentiate between features effectively.

Modality Alignment Using Maximum Mean Discrepancy. Maximum
Mean Discrepancy is one of the kernel methods [22] used in machine learning. A
kernel is generally considered to be the dot product between features. For MMD,
the kernels are considered to be in Hilbert space. If the dot product between the
points is large, then the points are similar. If the dot product is 0, the points
are perpendicular to each other. In other words, they are aligned completely in
opposite directions, and there is no similarity.

K(x1,x2) =< φ(x1), φ(x2) > . (11)

In the above equation, φ(x1) and φ(x2) are the feature vectors of the source
and target distributions, respectively. Instead of doing this point-to-point, MMD
finds the difference between the moments of the distributions.

Let V, and T be RGB and IR distributions. Then MMD between the feature
distributions can be expressed as follows,

LMMD(V,T) = ||EvFV − ETFT||2 (12)

Here, FV = {fV
1 , fV

2 , ..., fV
n } and FT = {fT

1 , fT
2 , ..., fT

n }. In the above equation,
MMD is the distance between the means of both distributions. LMMD loss can
be defined as follows,

LMMD(V,T) = (EvFV)2 + (ETFT)2 − 2(EvFV)(ETFT)

= EV[k(fV , fV )] + ET[k(fT , fT )] − 2EVT[k(fV , fT )]
(13)

Here k is the Gaussian kernel used for the MMD computation. The first two terms
represent the within-modality comparison. The last term is the inter-modality
alignment term. MMD shows the proximity between these two distributions. By
computing MMD for every sample, the model learns how far the distributions are
from each other and aligns the modalities to learn a modality invariant feature
representation.
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Overall Loss. Identity loss LID is calculated for each identity with respect
to the modality. Hence, this is done at the end of the fully connected layer to
make it modality-specific. Using the part features, the part feature attention
loss LP is calculated. Finally, IPM loss is calculated with the modality invariant
features. First, the Wasserstein loss, LWD, is calculated to bring in the perceptual
similarity, then the MMD loss, LMMD, is calculated to find a modality invariant
feature representation. The sum of all four losses gives the overall loss of the
model.

Total Loss = α1L
V
ID + α1L

T
ID + α2LP + α3LWD + α4LMMD, (14)

The hyper-parameters α = {α1, α2, α3, α4} represent the weights assigned to
each loss metric, indicating their respective significance.

4 Experimental Results and Evaluation

4.1 Dataset

Two popular cross-modality datasets, SYSU-MM01 [2] and RegDB [20], are used.
The SYSU-MM01 dataset is one of the most popular cross-modal image datasets.
It has RGB-IR images for 491 identities. Images from 6 cameras are available in
the dataset. Of these, four are RGB cameras, and two are IR cameras.

The dataset has a total of 30071 RGB images and 15792 IR images. The
images in SYSU-MM01 are of high resolution, but there are no exact RGB-IR
pairs. The RegDB dataset contains images of 412 identities. For every identity,
ten RGB-IR pairs are available.

4.2 Evaluation Metrics

Two main evaluation metrics are used for comparing the accuracy of the Person-
ReID model. The first one is the rank-k accuracy. To find rank-k accuracy,
top k matching samples are taken and compared with the query image. If the
identity matches, then the Re-ID system correctly identifies the identities. This
paper uses R1, R10, and R20 metrics for evaluation. The other metric used for
evaluation is the precision - mean Average Precision(mAP).

4.3 Implementation Details

The training set images are resized to the shape 256 × 256 × 3. Adversarial
learning is used for RGB to IR translation tasks. The WCGAN is trained for
50 epochs with a learning rate of 0.0001, and then the learning rate is gradually
increased to 0.005. SYSU-MM01 images are unpaired and are used to generate
IR images using the proposed GAN for every RGB image. Resnet-50 is used as
the backbone architecture. Four more convolutional layers are added to both the
visible and thermal networks. Three more weight-sharing layers are added to the
model. The model is trained using an RMS prop optimizer. Four loss functions,
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Table 1. This table presents the accuracy of the proposed model alongside comparisons
with state-of-the-art models on the SYSU-MM01 dataset. Accuracy metrics, Rank-1
(R1), Rank-10 (R10), and Rank-20 (R20) and mAP are shown.

Settings Methods All-search Indoor-search

R1 R10 R20 mAP R1 R10 R20 mAP

LOMO [23] 3.64 23.18 37.28 4.53 5.75 34.35 54.9 10.19

One-stream [24] 12.04 49.68 66.74 13.67 16.94 63.55 82.1 22.95

Two stream [24] 11.65 47.99 65.5 12.85 15.6 61.18 81.02 21.49

Zero-Pad [24] 14.8 54.12 71.33 15.95 20.58 68.38 85.79 26.92

D-HSME [25] 50.85 73.36 81.66 47 50.15 72.40 81.07 46.16

Align GAN [26] 42.4 85 93.7 40.7 45.9 87.6 94.4 54.3

CMM-CML [27] 51.8 92.72 97.71 51.21 54.98 94.38 99.41 63.7

DDAG [9] 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98

MMD-ReID [18] 66.75 94.16 97.38 62.25 71.64 97.75 99.52 75.95

CMCL [28] 69.97 95.26 98.27 67.42 76.48 97.92 99.68 79.94

CM-EMD [6] 73.39 96.24 98.82 68.56 80.53 98.31 99.91 82.71

CM-LSP [7] 76.28 94.38 97.08 76.52 82.31 98.12 99.91 85.16

AGMNet [14] 69.63 96.27 98.82 66.11 74.68 97.51 99.14 78.30

DMA [3] 74.57 – – 70.41 82.85 – – 85.10

DEN [29] 76.36 – – 71.3 83.56 – – 84.65

DGFFN [30] 74.76 – – 70.13 81.66 - - 83.70

BEMSSNet [4] 72.0 – – 68.8 80.5 – – 83.2

PSFLNet [31] 74.0 96.5 99.0 70.51 79.5 97.5 99.24 82.1

G2DA [15] 57.07 90.99 96.28 55.05 63.70 94.06 98.35 69.83

GC-IFS [13] 74.83 97.32 99.10 71.54 78.70 98.68 99.63 82.29

GCM-IPM(proposed model) 77.68 98.18 98.85 76.90 82.54 98.66 98.92 86.03

GCM-IPM�(with re-ranking) 88.95 98.95 99.52 86.67 91.77 98.92 99.67 92.44

Fig. 3. Sample output images obtained from WCGAN(proposed). The RGB image on
the left is given as input to the GAN. The IR image on the right is the generated
output of the WCGAN.

namely, LID, LP , LWD, and LMMD are used, hence loss weights need to be set.
While training the SYSU-MM01 dataset, loss weights [α1, α2, α3, α4] are set to
[1, 0.5, 0.5, 0.5]. For the RegDB dataset, loss weights [α1, α2, α3, α4] are set to
[1, 0.3, 0.3, 0.3]. The batch size used for training is 256 and the initial learning
rate is set to 0.0001 and later increased to 0.001 after 40 epochs. The model is
implemented in TensorFlow and trained for a total of 150 epochs. Training is
done on NVIDIA Tesla V100 with the GAN requiring 26 h for training, while
the Re-ID model requires 5 h to complete its training.
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Table 2. This table presents the accuracy of the proposed model alongside comparisons
with state-of-the-art models on the RegDB dataset. Accuracy metrics, Rank-1 (R1),
Rank-10 (R10), and Rank-20 (R20)and mAP are shown.

Settings Methods Visible to Thermal Thermal to Visible

R1 R10 R20 mAP R1 R10 R20 mAP

LOMO [23] 0.85 2.47 4.1 2.28 – – – –

One-stream [24] 13.11 32.98 42.51 14.01 – – – –

Two stream [24] 12.43 30.36 40.96 13.42 – – – –

Zero-Pad [24] 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82

D-HSME [25] 50.85 73.36 81.66 47 50.15 72.40 81,07 46.16

Align GAN [26] 57.9 – – 53.6 56.3 – – 53.4

CMM-CML [27] 59.81 80.39 88.69 60.86 – – – –

DDAG [9] 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80

CMCL [28] 93.40 97.63 98.90 86.77 94.16 97.70 98.69 86.69

MMD-ReID [18] 95.06 99.67 99.31 88.95 93.65 97.55 98.38 87.30

CM-EMD [6] 94.37 98.93 99.42 88.32 92.77 98.50 99.66 86.85

CM-LSP [7] 94.13 – – 88.86 93.16 – – 87.26

AGMNet [14] 88.40 95.10 96.94 81.45 85.34 94.56 97.48 81.19

DMA [3] 93.30 – – 88.34 91.50 – – 86.80

DEN [29] 95.34 – – 90.21 94.98 – – 90.24

DGFFN [30] 94.53 – – 91.61 93.93 – – 90.94

BEMSSNet [4] 94.3 – – 92.0 94.1 – – 91.7

PSFLNet [31] 95.87 98.63 99.23 91.08 92.32 97.45 98.53 88.28

G2DA [15] 71.72 87.13 91.92 65.90 69.50 84.87 89.85 63.88

GC-IFS [13] 94.40 99.89 100.00 92.19 92.87 99.80 99.95 91.00

GCM-IPM(proposed model) 95.82 98.97 99.67 89.34 94.08 98.97 99.78 87.90

GCM-IPM�(with re-ranking) 97.50 99.95 99.99 97.80 96.62 99.93 100.0 97.08

4.4 WCGAN Results

The resulting images from the proposed WCGAN are shown in Fig. 3. RGB
images indicate the input given to the model, and corresponding IR images are
the images generated by WCGAN. The image quality has considerably improved
when compared with the vanilla CycleGAN. The Re-ID results also proved that
IR images can aid with the re-identification process when RGB images are taken
outdoors during the night or at places where proper illumination is not available.

4.5 Re-ID Results

An extensive evaluation was conducted on the SYSU-MM01 and RegDB datasets
across various settings. For SYSU-MM01, experiments were performed in all-
search and indoor-search settings. Table 1 presents the rank-k and mAP accu-
racy of the model under two architectures: CM-IPM and the proposed GCM-
IPM. GCM-IPM, which incorporates IPM loss, achieved a rank-1 accuracy of
77.68% and a rank-10 accuracy of 98.18%, marking a 3.8% improvement over the
state-of-the-art. The results demonstrate that integrating IPM loss enhances the
model’s discriminative ability, as seen in the superior performance of GCM-IPM
across all metrics in all-search settings.
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Table 3. Ablation study on SYSU-MM01 dataset. Impact of different components on
GCM-IPM model

Settings Methods Components Evaluation Metrics

WCGAN Part features Part attention Re-ranking R1 mAP

Baseline 72.36 74.91

77.68 76.90

83.91 81.02

For the RegDB dataset, analyzed in Visible-to-Thermal and Thermal-to-
Visible settings, only the IPM module was applied due to the paired nature of
the images, omitting the generation module. As shown in Table 2, the model
achieved a rank-1 accuracy of 95.82

Fig. 4. Hyperparameter analysis on the proposed GCM-IPM model

Table 4. Ablation study on SYSU-MM01 and RegDB datasets. Impact of different
loss functions on GCM-IPM model

Settings Methods Components SYSU-MM01 RegDB

LID LWD LMMD LP R1 mAP R1 mAP

Baseline 53.80 61.34 70.14 69.85

62.45 70.09 87.93 82.40

69.84 73.52 93.16 85.06

77.68 76.90 95.82 89.34
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Table 5. Estimation of loss weights α
on SYSU-MM01 dataset.

Loss weights Evaluation Metrics

α1 α2 α3 α4 R1 mAP

2 2 0.5 0.5 65.97 63.42

0.5 0.5 2 2 72.33 69.13

1 1 1 1 73.19 70.25

1 0.5 0.5 0.5 77.68 76.90

Table 6. Estimation of loss weights α
on RegDB dataset.

Loss weights Evaluation Metrics

α1 α2 α3 α4 R1 mAP

2 2 0.5 0.5 82.78 77.74

1 1 1 1 88.02 80.69

0.5 0.5 2 2 92.13 84.41

1 0.3 0.3 0.3 95.82 89.34

Fig. 5. Image similarity check is done by randomly sampling ten identities from the
gallery and trying to match images in two settings: (a) visible to thermal, (b) thermal
to visible. The values on the top of each image are the image similarity values obtained
from the final layer of the proposed model. Green boxes indicate a correct match, and
red boxes indicate a wrong match. (Color figure online)

Parameter Analysis. Inorder to analyse the hyper-parameters used while
training, we perform the parameter analysis which includes parameters namely,
loss weights Table 5 and 6, no. of parts Fig. 4a and Fig. 4b, learning rate Fig. 4c
and Fig. 4d and re-ranking results Fig. 4e and Fig. 4f.

Ablation Study. To understand how effective each component is, we perform
ablation study on the proposed GCM-IPM model as shown in Table 3. It can
be observed that once WCGAN module results are added to the training, the
performance of the model improves. Inorder to test the loss function’s impact
on the training, we perform ablation study on different loss functions as shown
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in Table 4. The model’s R1 improves to 77.68% when the proposed combination
of loss functions are used.

Visualisation of Re-ID Results. The image retrieval results from the pro-
posed GCM-IPM model are shown in Fig. 5. Evaluation is done in two settings,
Visible-to-Thermal and Thermal-to-Visible. Ten identities were randomly cho-
sen for the evaluation. The first five identities are tested under the Visible-to-
Thermal setting. A single RGB image serves as the query image, while ten IR
images are drawn from the test set to assess re-identification accuracy. This is
repeated for all ten identities and for both modalities. The green boxes represent
the samples the model has correctly re-identified, and the red boxes represent
the samples that the model did not re-identify correctly. The values on top of
the sample are the output similarity scores obtained from the proposed system.

5 Conclusion

This work proposes a framework that can translate RGB images to IR images
and use those images for Person-ReID. To solve the unavailability of RGB-IR
pairs, the WCGAN is proposed. Wasserstein distance-based generative model
converges and can be trained till optimality. Furthermore, a re-identification
system utilizing integral probability metrics is introduced. This system is inte-
gral in evaluating the similarity between images across different modalities. The
proposed loss function based on the integral probability metric aids in learn-
ing the perceptual similarities between different image modalities. It helps align
the features extracted from different modalities within the model, enabling a
more coherent representation. To aid in modality alignment, part-based feature
attention loss is proposed. Extensive experiments and analysis on two major
datasets prove that the addition of the generation module has enhanced the
feature space by providing paired images to the re-identification module. The
analysis also delves into how the combined use of part attention loss, Wasser-
stein distance and Maximum Mean Discrepancy loss contributes to reducing
the variance between different modalities for the same individual. This process
leads to a more robust and aligned feature space, critical for accurate person
re-identification across different image types. As a future direction, the integra-
tion of additional data modalities like text and sketches is proposed to enrich
the feature space further.

6 Code Availability

The code used for the proposed model is given as supplementary material.
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