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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. The COVID-19 pandemic sparked a surge in online discus-
sions, making sentiment analysis challenging due to the prevalence of
sarcasm on social media. Identifying sarcastic expressions within the
context of COVID-19 conversations poses a unique linguistic hurdle. To
tackle this challenge, a novel framework called SARCOVID is proposed
that leverages hierarchical transfer learning and ensemble techniques to
detect sarcasm in the field. Through rigorous evaluation on a collected
COVID-19 dataset, SARCOVID demonstrates superior performance in
identifying sarcastic content with reduced bias compared to traditional
methods. The findings reveal a significant presence of sarcasm in online
COVID-19 discussions, underscoring the importance of robust sarcasm
detection techniques. In a test, the framework outperforms other mod-
els with 0.61 accuracy on Sarcasm corpus V2. This approach not only
advances sentiment analysis capabilities for evolving online conversations
but also provides deeper insights into the nuanced expressions of senti-
ment on social media.

Keywords: Sentiment analysis · Transfer learning · Deep learning ·
Opinion mining · Neural networks

1 Introduction

Sentiment analysis is a crucial aspect of understanding public opinion and emo-
tions, particularly during times of crisis such as the COVID-19 pandemic. The
pandemic has led to a surge in discussions and opinions on various social media
platforms, where people share their thoughts and feelings about the situation. As
a result, sentiment analysis has become increasingly important for governments,
businesses, and researchers to understand the public’s concerns, reactions, and
attitudes towards the pandemic.

However, sarcasm poses a significant challenge to sentiment analysis. Sar-
casm, a form of irony, can completely change the meaning of a sentence, making
it difficult for sentiment analysis models to classify the sentiment accurately. For
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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example, a sentence like “I’m so glad, I am not vaccinated” may seem positive
at first glance, but it is actually sarcastic and expresses the opposite sentiment.
Therefore, accurately detecting sarcasm is essential for improving the accuracy
of sentiment analysis, especially in the context of COVID-19.

It is crucial to address sarcasm in sentiment analysis during the COVID-19
pandemic due to the potential impact on the accuracy of sentiment classification.
Sarcasm, an irony often used in online communication, can alter the sentiment
expressed in text, leading to misinterpretation by sentiment analysis models.
In the context of the pandemic, where emotions and opinions are heightened,
accurately capturing sentiments is essential for understanding public reactions,
concerns, and attitudes towards COVID-19. Failure to detect sarcasm can result
in misleading analyses and misrepresenting public sentiment, highlighting the
significance of effectively dealing with sarcasm to ensure the reliability and pre-
cision of sentiment analysis during this critical period.

Numerous approaches are available for detecting sarcasm, transfer learning
is one such effective method among them when a domain-specific dataset is lim-
ited. Transfer learning is a machine learning technique that allows models to
learn from pre-trained models and adapt them to new tasks [1]. In the case of
sarcasm detection, transfer learning can be used to train models on large datasets
of sarcastic and non-sarcastic text, allowing the models to learn the patterns and
nuances of sarcasm. This can lead to more accurate sarcasm detection, which in
turn can improve the overall performance of sentiment analysis models. Address-
ing this challenge of detecting sarcasm in COVID-19 tweet sentiment analysis,
a novel framework called SARCOVID is introduced. This framework leverages
hierarchical transfer learning and ensemble methods to enhance the accuracy
of sarcasm detection. The effectiveness of SARCOVID is evaluated using the
SENSECOR dataset, which revealed the prevalence of sarcasm in COVID-19
discussions.

The subsequent sections unfold as Section 2, Section 3 explains the method-
ology of this study, section 4 discusses the results, and section 5 concludes the
study.

2 Literature work

Several studies have explored sentiment analysis of COVID-19, revealing valuable
insights into public opinion. Twitter data has become a popular resource for
sentiment analysis [2]. In [3], authors explored public sentiment on Twitter in
India during the early stages of the COVID-19 pandemic (December 2019 to May
2020). They used TextBlob to analyze the emotional tone (polarity) of tweets
and NLTK to identify frequently used words. Their analysis, visualized by state
and month, revealed some surprising findings. Despite the pandemic’s challenges,
the dominant sentiment among Indian Twitter users was positive. This positivity
coincided with announcements of lockdowns, with higher tweet volumes coming
from states hit hard by COVID-19. While there were negative tweets, the positive
sentiment suggests a general trust in the government’s response.
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The study [4] evaluated various machine learning classifiers across different
datasets for sentiment analysis of COVID-19-related Twitter data. Traditional
methods like TF-IDF with SVM showed strong performance, with accuracy
scores ranging from 0.829 to 0.845. Embedding-based models, particularly fast-
Text, outperformed others due to their effective handling of out-of-vocabulary
words. Deep learning approaches, such as using GloVe embeddings with deep
convolutional neural networks (DCNN), demonstrated superiority over bidirec-
tional long short-term memory (BiLSTM). Hybrid models like hybrid rank-
ing outperformed IWV, emphasizing the importance of incorporating sentiment
and context information. BERT stood out among transformer-based language
models, surpassing all others with performance scores exceeding 0.85 across all
datasets.

Authors in [5] investigated sentiment trends across eleven heavily affected
countries during the pandemic. Analyzing over 50,000 tweets, the study revealed
nuanced emotional responses, with some nations displaying predominantly pos-
itive sentiments while others showed a balance between positive and negative
expressions. Emotion analysis highlighted shifts over time, from initial fear to
growing trust as recovery rates improved. Utilizing the Syuzhet package in R,
the research compared sentiment analysis algorithms to unveil the complex emo-
tional dynamics amidst the global crisis.

Traditional sentiment analysis approaches primarily focus on surface-level
sentiment in tweets, neglecting the crucial layer of sarcasm. This research intro-
duces SARCOVID, a novel framework that handles sarcasm in COVID-19 tweets.
SARCOVID leverages a hybrid approach, combining hierarchical transfer learn-
ing for improved knowledge transfer and an ensemble majority voting [6] tech-
nique to achieve more accurate sarcasm detection. By adjusting sentiment anal-
ysis based on identified sarcasm, SARCOVID aims to provide a more nuanced
understanding of public opinion within COVID-19 discussions on social media.

3 Methodology

The SARCOVID framework development comprises the fusion of two methodolo-
gies. Initially, a hierarchical evaluation of tweets is conducted for sarcasm detec-
tion, employing transfer learning techniques in the first phase. Subsequently, in
the second phase, the tweets undergo classification utilizing an ensemble major-
ity voting technique. This dual approach ensures comprehensive analysis and
robust sarcasm detection within COVID-19-related discourse on social media
platforms.

3.1 Dataset

The datasets used for this study to train, evaluate and test the models are:

1. News Headlines (26,709 samples) [7]: This dataset is dedicated to identi-
fying sarcasm in concise texts such as headlines, ensuring an equal distribution
of sarcastic and non-sarcastic examples, denoted by 1 and 0 respectively.
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2. Reddit Sarcastic (1 million reviews) [8]: With a vast collection of reviews,
this dataset serves to analyze sarcasm within online discussions, with clearly
labeled instances of sarcasm (1) and non-sarcasm (0).

3. SemEval (5,735 samples) [9]: Sourced from the iSarcasmEval GitHub
repository, this dataset provides additional data with definitive yes/no labels
for sarcasm.

4. Twitter1 (2,000 samples): This dataset is instrumental in uncovering sarcasm
within tweets, offering a balanced mix of both sarcastic and non-sarcastic
instances.

5. Sarcasm Corpus V2(9116 samples) [10]:The Sarcasm Corpus com-
prises three balanced types of samples–Generic, Rhetorical Questions, and
Hyperbole–each containing an equal number of sarcastic and non-sarcastic
samples.

This study evaluates the proposed SARCOVID framework on the
SENSECOR [11] dataset, which we previously collected for research on the
COVID-19 Omicron variant [11]. The SENSECOR dataset comprises 160,000
tweets related to this specific variant.

3.2 Preprocessing

In the text preprocessing phase, a series of steps are implemented to enhance
the data quality before the text given to the model to process. It involves

– Lowercasing all text
– Eliminating punctuation
– Tokenizing
– Removal of stopwords
– Stemming and lemmatization
– Removing special characters
– Handling Emoji and acronyms (if available)
– Removal of URLs, mentions and hashtags (if available)

3.3 Methodology implementation

The process involves four deep learning models (M1, M2, M3, and M4), each
trained on individual sarcasm datasets (Reddit, News Headlines, SemEval, and
Twitter). Each model is tested on the SENSECOR dataset for sarcasm identifi-
cation to make the sentiment analysis free from biased opinions.

1 https://github.com/surajr/SarcasmDetection/tree/master/Data
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Fig. 1. Detailed architectural representation of SARCOVID framework.

hierarchical evaluation The hierarchical evaluation process outlined involves
a multi-stage approach to sarcasm detection in COVID-19-related tweets using
transfer learning techniques. The architectural representation of the proposed
SARCOVID framework is presented in Fig. 1.

In the initial classification, model M1 is used to classify the tweets in the
SENSECOR dataset, where each tweet is classified into two categories: those
identified as sarcastic (Class 1) and non-sarcastic (Class 0).

In the subsequent evaluation phase, M2 conducts further analysis of the
tweets based on M1’s classifications. For tweets initially identified as sarcas-
tic by M1, M2 evaluates them to either confirm or refute their sarcastic nature,
resulting in two new categories: tweets confirmed as sarcastic and tweets reclas-
sified as non-sarcastic. Similarly, for tweets initially labeled as non-sarcastic by
M1, M2 evaluates them to detect any sarcastic content, leading to the creation
of two additional categories: tweets flagged as sarcastic and tweets confirmed as
non-sarcastic. Thus, the initial two results generated by M1 are now categorized
into four.

This process continues with M3 and M4 analyzing the outputs from previous
models, generating outputs at different levels for classifications based on M1, M2,
M3, and M4. Consequently, M1 generates two outputs, M2 generates four out-
puts, and finally, M4 generates 16 outputs, totalling 30 outputs in a hierarchical
fashion, comprising 15 for sarcastic and 15 for non-sarcastic tweets.

Ensemble majority Voting:

– In the final evaluation phase, all model outputs are considered to determine
the final classifications for each tweet. An ensemble majority voting app-
roach is then applied to assess the final classifications. Tweets that receive
at least three votes(three model’s votes) as sarcastic are categorized as sar-
castic, while those receiving at least three votes(three model’s votes) votes as
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non-sarcastic are categorized as non-sarcastic. Overall, this multi-stage hier-
archical evaluation process leverages transfer learning techniques to effectively
identify sarcasm in COVID-19-related tweets, allowing for a comprehensive
analysis of sarcasm prevalence within the SENSECOR dataset.

Algorithm 1. Hierarchical Sarcasm Detection
1: Input: SENSECOR dataset with n tweets Ti where i > 0
2: Output: Sarcastic and non-sarcastic tweet classifications
3: Run M1 on all n tweets � Classification using M1
4: C1 ← Tweets classified as sarcastic by M2

5: C2 ← Tweets classified as non-sarcastic by M2

6:
7: Run M2 on all C1 tweets � Classification using M2
8: C3 ← Tweets classified as sarcastic by M2

9: C4 ← Tweets classified as non-sarcastic by M2

10: Run M2 on all C2 tweets
11: C5 ← Tweets classified as sarcastic by M2

12: C6 ← Tweets classified as non-sarcastic by M2

13: Continue the classification using M3, and M4 models... � assign tweets to
c7,c8,...c30.

14: sarcastic votes ← {0}n

15: non sarcastic votes ← {0}n

16: sarcastic tweets ← {}
17: non sarcastic tweets ← {}
18: for i = 1 to n do
19: for j = 1 to 30 do
20: if Ti in Cj then � Ti is tweet in a dataset
21: if j%2 = 1 then
22: sarcastic votes ← sarcastic votes + 1
23: else
24: non sarcastic votes ← non sarcastic votes + 1
25: end if
26: end if
27: end for
28: if sarcastic votes ≥ 3 then � Threshold for classifying as sarcastic
29: sarcastic tweets.append(Ti)
30: else if non sarcastic votes ≥ 3 then� Threshold for classifying as non-sarcastic
31: non sarcastic tweets.append(Ti)
32: end if
33: end for
34: return sarcastic tweets, non sarcastic tweets

The SARCOVID framework methodology is presented in algorithm 1. The
algorithm takes the SENSECOR dataset with n tweets as input and initializes
lists to store the final sarcastic and non-sarcastic tweet classifications. Model
M1 is run on all tweets, and the initial sarcastic (C1) and non-sarcastic (C2)
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classifications are obtained. Then, M2 runs on (C1) and classifies sarcastic tweets
as (C3) and non-sarcastic tweets as (c4). Later, M2 runs on (C2) and classifies
sarcastic tweets as (C5) and non-sarcastic tweets as (c6). The same procedure
follows for M3 and M4 models, which classify tweets and assign them to C7, C8,
..., and C30. Here, Odd classes such as C1, C3, and C5... are holding Sarcastic
tweets and even classes such as C2.C4, C6,... hold non-sarcastic tweets. After
the hierarchical classification, the algorithm counts the number of sarcastic and
non-sarcastic votes for each tweet based on the model outputs by iterating over
the models and incrementing the respective vote counts for each tweet based
on its classification. Finally, ensemble voting is applied: tweets with at least
three sarcastic votes are added to the sarcastic tweets list, and tweets with at
least three non-sarcastic votes are added to the non sarcastic tweets list. The
algorithm returns these two lists as the final sarcastic and non-sarcastic tweet
classifications. The sample tweet classification of the SARCOVID framework is
presented in Table 1.

Table 1. Sample COVID-19 Tweets detected in SENSECOR dataset

2 jabs taken, but tested positive for COVID-19. Meanwhile, my granny, who
hasn’t received the vaccine, tested negative. Thank you #FireFauci
#COVIDsucks

I love lockdowns - no food, no job, no nothing! #pandemic

Can anyone play a song on COVID-19? My neighbours are disturbing me with
their noise. #COVID19 #lockdown

4 Results and discussion

The performance of four distinct models BiLSTM [12], BERT [13], RoBERTa [14]
and, DistilBERT [15] is evaluated across four diverse datasets: News Headlines,
IsarcasmEval, Twitter, and Reddit. The performance evaluation of models is
presented in table 2. On the News Headlines dataset, BiLSTM achieved a mod-
erate accuracy of 0.81, while DistilBERT and BERT surpassed it with accuracies
of 0.83 and 0.91, respectively. RoBERTa exhibited the highest accuracy of 0.93,
indicating its superior performance in capturing nuanced linguistic cues associ-
ated with sarcasm in news articles. Transitioning to the IsarcasmEval dataset,
BiLSTM performed moderately with an accuracy of 0.74, whereas DistilBERT,
BERT, and RoBERTa showcased improved performance with accuracies of 0.758,
0.774 and 0.805, respectively, with RoBERTa achieving the highest accuracy.
Moving to the Twitter dataset, BiLSTM achieved a reasonable accuracy of 0.87,
while DistilBERT, BERT, and RoBERTa further improved upon this with accu-
racies of 0.884, 0.902, and 0.91, respectively. Lastly, on the Reddit dataset, BiL-
STM demonstrated moderate performance with an accuracy of 0.7, whereas
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DistilBERT, BERT, and RoBERTa exhibited superior performance with accu-
racies of 0.767, 0.782, and 0.79, respectively. These results underscored the vary-
ing capabilities of each model across different datasets. They highlighted the
effectiveness of advanced transformer-based models like RoBERTa, BERT, and
DistilBERT in sarcasm detection across diverse linguistic contexts.

Table 2. Models performances on different datasets

Model Dataset

News Headlines IsarcasmEval Twitter Reddit

BiLSTM 0.81 0.74 0.87 0.7

DistilBERT 0.83 0.758 0.884 0.767

BERT 0.91 0.774 0.902 0.782

RoBERTa 0.93 0.805 0.91 0.79

The SARCOVID framework incorporates the RoBERTa model as a key com-
ponent in its construction. The RoBERTa model is selected for its superior per-
formance compared to all other baseline methods examined in this study. Hence,
Model M1 is RoBERTa trained on the News Headlines dataset, while Model M2
is RoBERTa trained on the Reddit Sarcastic dataset. Models M3 and M4 are
RoBERTa trained on the SemEval and Twitter datasets, respectively. The pro-
posed approach leverages transfer learning due to its adaptability to different
domains. Therefore, the SARCOVID framework must be evaluated on a new
labelled sarcastic benchmark dataset, which is not used for training these mod-
els. For this purpose, the evaluation of the proposed SARCOVID framework is
conducted on the Sarcasm Corpus V2, utilizing 2000 randomly selected sam-
ples to assess the effectiveness of the transfer learning technique. The primary
objective of the study is to detect sarcasm in COVID-19 tweets, which is accom-
plished using the SENSECOR dataset, a large unlabeled corpus. The analysis
and findings are presented in the results section.

The performance evaluation of various models on the Sarcasm Corpus V2
dataset, as depicted in table 3, quantifies their effectiveness in sarcasm detec-
tion. BiLSTM, a traditional recurrent neural network model, achieved the lowest
performance with a precision, recall, F1 score, and accuracy all at 0.50. Distil-
BERT exhibited a slight improvement, with a precision and recall of 0.54, an
F1 score of 0.51, and an accuracy of 0.55. BERT further improved with a pre-
cision of 0.55, recall of 0.56, F1 score of 0.56, and accuracy of 0.561. RoBERTa
outperformed the previous models with a precision of 0.57, recall of 0.55, F1
score of 0.59, and accuracy of 0.58. The SARCOVID model achieved the highest
performance metrics, with a precision of 0.6, recall of 0.62, F1 score of 0.61, and
accuracy of 0.61, highlighting its effectiveness in detecting sarcasm. Notably, the
proposed SARCOVID framework outperformed all other models, boasting the
highest accuracy of 0.61. This superior performance of SARCOVID underscores
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its efficacy in sarcasm detection, indicating its potential to advance the field of
natural language understanding and sentiment analysis. The ROC curve of the
RoBERTa model using various datasets is presented in Fig. 2.

Table 3. Test analysis of models performed on Sarcasm Corpus V2 dataset.

Model PrecisionRecall F1 Accuracy

BiLSTM 0.49 0.50 0.50 0.5

DistilBERT 0.54 0.54 0.51 0.55

BERT 0.55 0.56 0.56 0.561

RoBERTa 0.57 0.55 0.59 0.58

SARCOVID0.6 0.62 0.61 0.61

The performance of sarcasm detection models M1 to M4 on the SENSECOR
dataset of 160,000 tweets is presented in Table 4. The effectiveness of each model
is expressed as a percentage, indicating the proportion of tweets it classified as
containing sarcasm. A lower percentage implies a more conservative approach,
where only tweets exhibiting clear sarcastic cues specific to the SENSECOR
dataset are identified as sarcastic. This selective identification helps reduce false
positives, thereby improving the precision of sarcasm detection. Conversely, a
higher percentage suggests a more liberal approach, increasing the risk of mis-
classifying non-sarcastic tweets as sarcastic, which could lead to lower accuracy
in identifying truly sarcastic content.

Table 4. Sarcastic tweets detected in the SENSECOR dataset by models used in this
study.

Models sarcasm detected(in %)

M1 47.2

M2 46

M3 39

M4 48

SARCOVID24

Among the evaluated models, Model M1 detected sarcasm in 47.2% of tweets,
closely followed by Model M4, which identified sarcasm in 48% of tweets. Mean-
while, Models M2 and M3 exhibited lower detection rates, flagging sarcasm in
46% and 39% of tweets, respectively. Interestingly, the SARCOVID framework
showcased the most discerning performance, with a detection rate of only 24%.
This suggests that SARCOVID employs a rigorous approach to sarcasm detec-
tion, prioritizing accuracy by minimizing false positives and ensuring precise
identification of sarcastic content within the SENSECOR dataset.
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The SARCOVID framework offers several advantages in its methodology for
sarcasm detection in COVID-19 tweets. One notable advantage is its hierarchi-
cal evaluation approach, which allows for a comprehensive analysis by leveraging
multiple deep-learning models trained on diverse sarcasm datasets. Most of the
existing sarcasm detection techniques work on domain-specific labelled datasets
to overcome false positive classification. This technique has a better approach
to reducing the false positives without having a specific dataset. However, this
methodology may present challenges regarding computational resources required
for training and evaluating multiple models iteratively, as well as potential com-
plexities in interpreting conflicting model outputs. Additionally, the reliance on
pre-existing sarcasm datasets for transfer learning may introduce biases or lim-
itations in detecting sarcasm in COVID-19 tweets.

5 Conclusion

Detecting sarcasm in COVID-19 tweets presents a significant challenge due to
the scarcity of domain-specific datasets for model training. To address this issue,
a novel framework called SARCOVID is proposed. SARCOVID employs a hybrid
approach, combining hierarchical transfer learning and ensemble majority vot-
ing. The SARCOVID achieves high confidence in identifying sarcasm within the
SENSECOR dataset, a collection of COVID-19 tweets. This framework exhibits
a lower tendency for false positives in sarcasm detection, making it a robust
solution for overcoming limitations in dataset availability for COVID-19 tweets.
The model can be adapted to any application with limited dataset availability.
A potential future direction could involve exploring the integration of additional
modalities like visual data and employing continual learning techniques that
could further enhance SARCOVID’s ability to adapt and evolve with emerging
linguistic patterns in this ever-changing domain.
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Abstract. Many existing unsupervised domain adaptation (UDA)
methods primarily focus on covariate shift, limiting their effectiveness
in imbalanced domain adaptation (IDA) where both covariate shift and
label shift coexist. Recent IDA methods have achieved promising results
based on self-training using target pseudo labels. However, under the IDA
scenarios, the classifier learned in the source domain will exhibit differ-
ent decision bias from the target domain. It will potentially make target
pseudo labels unreliable, and will further lead to error accumulation with
incorrect class alignment.Thus, we propose contrastive conditional align-
ment based on label shift calibration (CCA-LSC) for IDA, to address
both covariate shift and label shift. Initially, our contrastive conditional
alignment resolve covariate shift to learn representations with domain
invariance and class discriminability, which include domain adversarial
learning, sample-weighted moving average centroid alignment and dis-
criminative feature alignment. Subsequently, we estimate the probability
distribution of the target domain, and calibrate target sample classi-
fication predictions based on label shift metrics to encourage labeling
pseudo-labels more consistently with the distribution of real target data.
Extensive experiments are conducted and demonstrate that our method
outperforms existing UDA and IDA methods on benchmarks with both
label shift and covariate shift. Our code is available at https://github.
com/ysxcj-hub/CCA-LSC.

Keywords: Unsupervised domain adaptation · Label shift · Covariate
shift · Long-tailed distribution

1 Introduction

Unsupervised Domain Adaptation (UDA) [1–4] aims to transfer knowledge from
labeled source domain to unlabeled target domain. A common scenario in UDA
is covariate shift, where the conditional distributions of the labels given the fea-
tures are the same across domains, i.e., PS(y|x) = PT (y|x), but the marginal
distributions of the features are different, i.e., PS(x) �= PT (x). Many UDA
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15311, pp. 13–28, 2025.
https://doi.org/10.1007/978-3-031-78195-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78195-7_2&domain=pdf
https://github.com/ysxcj-hub/CCA-LSC
https://github.com/ysxcj-hub/CCA-LSC
https://doi.org/10.1007/978-3-031-78195-7_2
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methods have been proposed to deal with covariate shift, such as distribution
matching-based methods [3–5], which aim to align the feature distributions of
the source and target domains by minimizing some distance measure. However,
when there exists label distribution shift, i.e. PS(y|x) �= PT (y|x), distribution
matching-based methods may suffer from negative transfer. In real-world scenar-
ios, domain adaptation often faces the challenge of both data distribution shift
(covariate shift) and label distribution shift (label shift). Moreover, real-world
data is usually imbalanced, where some classes are more frequent than others.
For example, in the domainnet [6] dataset, the head classes that are abundant in
the source domain may be scarce in the target domain. This scenario is referred
to as imbalanced domain adaptation (IDA). To enable domain adaptation to
cope with such realistic situations, effective IDA algorithms are essential.

Fig. 1. (a)Top: In cases of substantial label shift, classifier learned from source domain
may mislabel target samples due to the unknown target label distribution. This can
result in error accumulation and misalignment in IDA methods that use self-training
with pseudo-labels. (a)Bottom: Our approach rectifies the classification boundary to
predict target samples based on the label shift metric Mls, effectively reducing the error
rates in estimating target pseudo-labels. We employ calibrated pseudo-labels in CCA to
learn feature representations that are both domain-invariant and class-discriminative.
(b): Label distributions on DomainNet and OfficeHome

Recent studies attempt to address the IDA problem through self-training
with target pseudo-labels. However, these methods prove unstable as the clas-
sifier’s output tends to align more closely with the source than the target label
distribution under label shift. This discrepancy results in noisier pseudo-labels
for target samples. The issue is particularly pronounced for classes with a large
label shift, leading to error accumulation, as depicted in Figure 1(a), top.

To tackle this issue, we introduce a novel method termed contrastive con-
ditional alignment based on label shift calibration (CCA-LSC). This method
adjusts the classification of target samples in accordance with the degree of label
shift. First, we propose to align the conditional distributions of two domains
inspired by contrastive learning by using domain adversarial learning, sample-
weighted moving average centroid alignment, and discriminative feature align-
ment. We then estimate the label distribution of the target domain ( ̂PT ) after a
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simple pre-training. Second, we utilize ̂PT and the label distribution of the source
domain PS to calculate the degree of label shift. Finally, we adjust the classifi-
cation prediction of target samples according to the degree of label shift during
the training process. Our experiments reveal that the pseudo-labels procured
by CCA-LSC consistently outperform the pseudo-labels obtained directly from
the classifier’s output. This observation, confirmed across all tasks on the Office-
Home and DomainNet datasets, suggests that this strategy effectively enhances
the reliability of pseudo-labels, thereby promoting a more accurate alignment
across the two domains. See Figure 1(a), bottom.

The contributions of this article are as follows:

– Contrastive conditional alignment (CCA) leverages the principles of con-
trastive learning for extracting domain-invariant and class-discriminative fea-
tures to resist covariate shift. And it weights samples to reduce misalignment
from unreliable target pseudo labels.

– Label shift calibration (LSC) introduce a novel metric to quantify label shift
and leverage this metric to rectify the classification predictions of target sam-
ples, which reduce target false pseudo-rate and resist label shift. CCA and
LSC jointly resolve the IDA problem.

– Experiments were conducted on the OfficeHome and DomainNet datasets,
which have both label shift and covariate shift, and it was shown that CCA-
LSC achieved state-of-the-art performance.

2 Related Work

Unsupervised Domain Adaptation With Covariate Shift Covariate shift
in UDA is primarily addressed by three kind of methods: statistic divergence
alignment, adversarial training, and self-training. Statistic divergence alignment
learns invariant features by minimizing domain discrepancy, with the diver-
gence measure selection being key. Measures such as maximum mean discrep-
ancy (MMD) [2,4,7,8], correlation alignment [3], wasserstein distance [9–11],
marginal discrepancy measures [12], and other distance-based methods [13,14]
are commonly employed. Adversarial training, taking inspiration from genera-
tive adversarial networks (GANs) [15], aims to extract domain invariant fea-
tures [5,16–18] through an adversarial process. These UDA methods align the
marginal distribution during training, assuming invariant label distributions.
However, label shifts could lead to bad performance or even negative transfer.
Self-training [19–21] employs pseudo-labels generated from the target domain
for training on target domain data. However, these pseudo-labels may suffer from
miscalibrated probabilities [22], potentially leading to the errors accumulation.

Unsupervised Domain Adaptation With Label Shift These techniques
strive to tackle the challenge of varying label distributions across domains. Pre-
dominant strategies include class-weighting methods [23–25] and those that
address cross-domain label shift by predicting and estimating the distribution
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of the target label [23,26]. However, these methods presume the feature distri-
bution is invariant across domains, only concentrating on label shift. Additional
methods have investigated DA scenarios where the label spaces across domains
do not entirely overlap, such as open set domain adaptation [27,28] and par-
tial domain adaptation [29–31]. These methods pertain to specific label shift
problems, which are not the focus of this paper.

Imbalanced Domain Adaptation IDA is designed to tackle the coexistence of
covariate shift and label shift. Typical methods include conditional distribution
alignment based on pseudo-labels [32,33], class-weighting strategies [34,35],
implicit alignment methods based on sampling [36], asymmetric relaxed distri-
bution alignment [37], and cluster-level discrepancy minimization [38]. These
methods typically utilize pseudo-labels for self-training. However, under strong
label shift, pseudo-labels are often unreliable, leading to error accumulation and
erroneous class alignment. To address this, SENTRY [39] proposed that mini-
mizes the entropy of reliable instances and maximizes the entropy of unreliable
instances. ISFDA [40] proposed a method using secondary label correction.
However, as label shift varies for different classes, unreliable instances are class-
biased. These methods overlook the varying label shift across classes and do not
essentially address the label shift issue. In this work, we introduce CCA-LSC. It
adjusts the classification prediction of target samples based on each class’s label
shift degree, Mls, enhancing the precision of pseudo-labels.

3 Method

3.1 Problem Setup

In this work, we investigated C-way image classification. In imbalanced domain
adaptation (IDA), we are given a source domain S = {X s

i ,Ys
i } with Ns labeled

samples {(xs
i , y

s
i )

Ns
i=1} and a target domain T = {X t

i } with Nt unlabeled samples
{(xt

i)
Nt
i=1}, where the input x are images and label y ∈ {1, 2, . . . , C} are categor-

ical variables. For the joint case of label shift and covariate shift, we adopt the
same assumption in [32], i.e., p(y|x) = q(y|x), p(x) �= q(x), p(y) �= q(y) and
p(x|y) �= (x|y). Our goal is to learning a CNN mapping function ft: Xt → Yt.

3.2 Contrastive Conditional Alignment (CCA)

Domain Adversarial Learning In domain adversarial learning, an auxiliary
domain classifier D is employed to determine whether the features extracted by
G are derived from the source or target domain. Simultaneously, G is trained
to deceive D. When this adversarial game reaches a state of equilibrium, the
features produced by G demonstrate domain invariance. Formally,

LDC(xs, xt) = Ex∼DS
[log(1 − D ◦ G(x))] + Ex∼DT

[log(D ◦ G(x))]. (1)
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Sample-weighted Moving Average Centroid Alignment However,
domain-invariance does not mean cross domain class-invariance. In [41], they
propose to use moving average centroid alignment strategy. This strategy explic-
itly constrains the distance between centroids with identical class but different
domains, ensuring close mapping of same-class features. The transfer objective is:

LSM (xs, ys, xt) =
K

∑

k=1

Φ(Ck
S , Ck

T ), (2)

where Ck
S and Ck

T represent the centroid of class K of the source and target
domains respectively, and Φ(·) represents the Euclidean distance between the
two. This strategy is designed to mitigate the adverse effects of incorrect pseudo-
labels. However, in situations with severe label shift, an excess of unreliable
pseudo-labels can misalign centroids. We suggest that each sample’s contribution
to the centroid calculation varies based on its reliability. For instance, in a binary
classification problem, if samples x1 and x2 have probability outputs [0.9, 0.1]
and [0.6, 0.4] respectively, x1 is more reliable. Hence, we use confidence as a
sample weight. For a sample x, the final probability output through a deep model
parameterized by θ is represented as pθ(y|x), with a weight of w = max pθ(y|x).

Inspired by contrastive learning [43], the centroids with same class label but
different domains should be closer, while the centroids with different class labels
and domains should be futher away. We rewrite Eq.(2) as follows:

LDSM (xs, ys, xt, ŷt) =
∑K

k=1 Φ(Ck
wS , Ck

wT )
∑

i�=k Φ(Ci
wS , Ck

wT )
, (3)

where Ck
wS and Ck

wT represent the centroids weighted by w.

Discriminative Feature Alignment In scenarios with two domains exhibit-
ing significant distribution disparities, our goal is to ensure domain-invariant and
class-discriminative features. Features with identical class labels across domains
align closely, while those with different labels are distinctly separated. We pro-
pose discriminative feature alignment, a contrastive learning-based method, to
facilitate this. It computes the difference between each feature pair from the
source and target domains, using actual labels for the source and classifier-
produced pseudo-labels for the target. Identical class labels draw features closer,
while differing labels push them apart, effectively enabling cluster learning for
robust classification boundaries. To avoid over-attracting unreliable samples, we
persist in using w as a sample weight. Formally,

LDFA =
1/Nsame

∑

i

∑

j

√

ws
i w

t
jΦ(x

s
i , x

t
j)|ys

i=ŷt
j

1/Ndiff

∑

i

∑

j

√

ws
i w

t
jΦ(x

s
i , x

t
j)|ys

i �=ŷt
j

(4)

The above strategies address covariate shift by aligning conditional distri-
butions. However, when class imbalance is present, label shift becomes more
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pronounced, leading to a biased classifier and impacting the reliability of pseudo-
labels. Given the unknown target domain, for generality and simplicity, we
employ class-balanced sampling on the source domain. Specifically, when select-
ing samples for a mini-batch, each class has an equal probability of being selected.

3.3 Label Shift Calibration (LSC)

Label Shift Metrics M ls Label shift, quantifies the disparity in label distri-
butions between source and target domains. It varies per class due to differing
quantity distributions across domains. Mls is defined with respect to the prob-
ability distributions PS and PT of the source and target domains respectively.

M i
ls = P i

T /P i
S . (5)

Mls, a 1 × C tensor, measures label shift, where C is the number of classes
and M i

ls represents the label shift degree for class i. If M i
ls = 1, there’s no label

shift for class i. If M i
ls > 1, class i is more prevalent in the target domain, and

if 0 < M i
ls < 1, it’s more prevalent in the source. Both cases indicate label shift,

affecting pseudo-label reliability and potentially leading to error accumulation
and performance degradation. We derive PS from source labels. The unlabeled
target domain’s PT is approximated using pseudo-labels, denoted as ̂PT .

Label Shift Calibration (LSC) In deep learning classification models, we
decompose them into a feature extractor G and a classifier F . The goal of
domain adaptation is to align the features extracted by G from two domains.
When dealing with long-tailed source data, F tends to favor head classes due to
their larger quantity, which can lead to suboptimal learning for tail classes with
fewer instances. However, even if we adopt class-balanced sampling for the source
domain, ensuring an unbiased F , the reliability of target sample labeling remains
uncertain when the target domain follows a class-imbalanced long-tail distribu-
tion. To address this, we propose LSC based on the degree of label shift Mls.
LSC calibrates the classification predictions for target samples during training,
making the pseudo labels more consistent with the real target data’s probability
distribution, thus improving the reliability of target pseudo-labels.

For a target sample through a model with parameters θ, we use pθ(y|xT ) to
represent its final probability output. The idea of LSC is to reweight pθ(y|xT )
based on the degree of label shift Mls, in order to re-estimate the target pseudo-
labels. The class weighting matrix Wm is designed as:

Wm =
1

hm + exp(−
√

Mls)
. (6)

Then we obtain target pseudo labels after calibration and its confidence
weight:

ŷm
t = argmax{pθ(y|xT ) · Wm}. (7)

wm = pθ(ŷm
t |xT ) (8)
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A larger Mls[i] suggests that class i is less frequent in the source but more
so in the target domain, and vice versa for a smaller Mls[i]. As per Eq.6 and
Eq.7, when a sample’s feature is on the boundary of two classes and Mls[i] >
Mls[j], we prefer to label the sample as i, as shown in Figure 1. Wm bounds
the class weighting values, with hm set to 1.5, indicating that only unreliable
samples at the classification boundary are calibrated to prevent over-calibration.
The sample’s confidence weight wm is determined by the classifier’s output,
mitigating the negative effects of incorrect classification calibration.

3.4 Overall Optimization and Analysis

Overall Optimization In summary, our training process comprises two stages.
The first stage involves pre-training for three epochs, utilizing high-confidence
target samples from the training results to estimate the target domain’s label
distribution. The optimization objective of the first stage is:

Ltotal = LC(xs, ys) + λLDSM (xs, ys, xt, ŷt) + μLDFA(xs, ys, xt, ŷt) + γLDC(xs, ys) (9)

In the second stage, we employ LSC to rectify target pseudo-labels ŷm
t , and

utilize ŷm
t for the training of CCA. Then our optimization objective is:

Lm
total = LC(xs, ys) + λLDSM (xs, ys, xt, ŷ

m
t ) + μLDFA(xs, ys, xt, ŷ

m
t ) + γLDC(xs, ys)

(10)

where λ and μ and γ are hyperparameters no less than zero.

Analysis Next, we demonstrate how our approach reduces the expected error
on the target samples from domain adaptation theory.

Theorem 1. ([1]). Denote h ∈ H as the hypothesis. Given two domains S
and T , the target error εT is bounded by three terms: (i) εS : source error, (ii)
dHΔH(S, T ): the discrepancy distance between two distributions S and T, (iii)
C0:shared expected loss. We have:

∀h ∈ H, εT (h) ≤ εS(h) +
1
2
dHΔH(S, T ) + C0. (11)

It is defined as C0 = minh∈H εS(h, fS) + εT (h, fT ) where fS and fT are
labeling functions for source and target domain respectively. Previous methods
often assume that C0 is negligible. However, when C0 is large, ignoring C0 can
prevent the learning of an effective target classifier.

Theorem 2. ([41]). According to the triangle inequality for classification
error [1,42], an upper bound for C0 is:

C0 = min
h∈H

εS(h, fS) + εT (h, fT )

≤ min
h∈H

εS(h, fS) + εT (h, fS) + εT (fS , fT )

≤ min
h∈H

εS(h, fS) + εT (h, fS) + εT (fS , f
̂T ) + εT (fT , f

̂T )

(12)
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In the given formula, the first two terms quantify the discrepancy between
the hypothesis h and the source labeling function fS . Given the availability of
source labels, these terms are typically minimal, facilitating the learning of a
hypothesis space h that closely approximates fS . The third term measures the
inconsistency between the source and pseudo-target labeling functions on target
samples, while the final term indicates the divergence between the pseudo-target
labeling function and the true target label, serving as a reliability measure for the
pseudo-labels. Our method seeks to minimize the last two terms to optimize the
upper bound of C0. The moving average centroid alignment strategy, discussed
in [41], optimizes the third term by aligning the centroids of target and source
features in class C0, ensuring prediction consistency. Our approach employs both
sample-weighted moving average centroid alignment and discriminative feature
alignment to foster feature alignment across different domains but within the
same class, thereby minimizing the third term.

However, [41] presumes the fourth term will minimize over time and disre-
gards it. This assumption falls short in the presence of data imbalance and label
shift, where optimizing the third term could induce class bias in the pseudo-
target labeling function, amplifying the fourth term. Our proposed LSC rectifies
this by adjusting the classification prediction of the pseudo-target labeling func-
tion based on the label shift index Mls, reducing the false pseudo-rate, and
aligning the prediction with the true target data’s label distribution, thereby
also minimizing the fourth term. Our experiments demonstrate that LSC con-
sistently curtails the false pseudo-rate on target samples (refer to section 4.4).

In essence, the efficacy of domain adaptation methods hinges on managing
each term that could escalate the target classification error, thus broadening the
applicability of domain adaptation methods.

4 Experiments

4.1 Set up

Datasets We utilized three datasets . First, we employed Office-Home (RS-
UT), an imbalanced version of Office-Home created by [32], where the source
and target domains follow two reverse Paredo distributions. This benchmark
includes three domains: Clipart (Cl), Product images (Pr), and Real-world
images (Rw). The Art images (Ar) domain in Office-Home, being too small for
sampling an imbalanced subset, is not considered here. Second, we used a subset
of DomainNet created by [32], which includes 40 classes from four domains
(Real (R), Clipart (C), Painting (P), Sketch (S)). As a noticeable label shift
already exists, we made no additional modifications. The label distributions can
be seen in Figure 1(b). Office-31 [44] contains 4,110 images of 31 categories.
The domains are Amazon (A), Webcam (W), and DSLR (D).

Baselines We benchmarked our method against eight state-of-the-art tech-
niques that tackle both covariate shift and label shift. (i) COAL [32] aligns
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feature and label distributions using prototype-based conditional alignment
and self-training on confident pseudo-labels. (ii) MDD+Implicit Align-
ment (I.A) [36] removes explicit model parameter optimization from pseudo-
labels via sampled implicit alignment. (iii) InstaPBM [45] employs instance-
based prediction behavior matching. (iv) F-DANN [37] introduces a DANN
based on asymmetric relaxed distribution matching. (v) SENTRY [39] min-
imizes the entropy of reliable instances and maximizes that of unreliable ones.
(vi)TIToK [46] and (vii)BIWAA-I [47] and (viii)RHWD [48] also solve both
label and feature shifting problems. All methods, except F-DANN, use tar-
get pseudo-labels. We also compared with conventional UDA methods like
BBSE [23], which only addresses label shift, and MCD [17], DAN [4], DANN [5],
JAN [7], BSP [49], which solely focus on covariate shift.

Implementation details All experiments are conducted using the Pytorch
framework with resnet50. The model’s hyper-parameters are λ = 3, μ = 0.6,
and γ = 1. The bottleneck layer dimension is 256, and the batch size is 50. We
use the SGD optimizer with a momentum of 0.9. The initial learning rate for the
classifier is 0.005 for OfficeHome and 0.01 for DomainNet, adjusted as [5]. The
model trains for 20 epochs, with the first 3 forming the initial stage. After this,
the model evaluates target samples and uses pseudo-labels with a confidence
level of w > 0.5 to estimate the target domain’s label distribution. The model
then enters the second stage. The random seed is set to 100 for reproducibility.
For imbalanced data, we use per-class mean accuracy, as suggested by [32], for
a fair performance assessment.

4.2 Results

DomainNet and OfficeHome. The experimental results on DomainNet and
OfficeHome are presented in Tables 1 and 2, respectively. Our method outper-
forms the second best method SENTRY, by improving the average accuracy by
1.90% on OfficeHome (RS-UT) and by 0.88% on DomainNet. Table 1 reveals that
our method significantly surpasses SENTRY in scenarios with higher label shifts,
such as R→S, P→S, and S→P, registering increases of 4.57%, 3.97%, and 3.50%,
respectively. Table 2 shows a better promotion since there are severe label shift.
These results highlight our method’s efficacy in simultaneously tackling label
shift and covariate shift.

Office-31. The experimental results are shown in Tables 3. There are few label
shifts but feature shifts in this dataset. It can be seen that our method also has
good performance for solving the problem of feature shifting.

Different Degrees of Label Shift. We measure imbalance using the imbal-
ance factor IF [50], defined as the ratio of maximum to minimum class sizes.
A larger IF indicates more imbalance. We created four splits on Cl→Pr with
IF∈ {1, 5, 10, 20}. For IF=1, we used the original Cl and Pr data from Office-
Home. For other splits, we maintained the maximum class size and adjusted
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Table 1. Per-class average accuracies on DomainNet

Methods R→C R→P R→S C→R C→P C→S P→R P→C P→S S→R S→C S→P AVG

source 65.75 68.84 59.15 77.71 60.60 57.87 84.45 62.35 65.07 77.10 63.00 59.72 66.80
MCD 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
DANN 63.37 73.56 72.63 86.47 65.73 70.58 86.94 73.19 70.15 85.73 75.16 70.04 74.46
F-DANN 66.15 71.80 61.53 81.85 60.06 61.22 84.46 66.81 62.84 81.38 69.62 66.50 69.52
JAN 65.57 73.58 67.61 85.02 64.96 67.17 87.06 67.92 66.10 84.54 72.77 67.51 72.48
BSP 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
COAL 73.85 75.37 70.50 89.63 69.98 71.29 89.81 68.01 70.49 87.97 73.21 70.53 75.89
MDD+I.A 78.54 75.09 69.43 88.50 70.59 70.44 88.37 75.71 71.65 89.35 77.97 72.41 77.33
InstaPBM 80.10 75.87 70.84 89.67 70.21 72.76 89.60 74.41 72.19 87.00 79.66 71.75 77.84
SENTRY 83.89 76.72 74.43 90.61 76.02 79.47 90.27 82.91 75.60 90.41 82.40 73.98 81.39
BIWAA-I 79.93 75.24 75.35 87.93 72.07 75.71 88.87 77.81 76.66 88.78 80.49 74.49 79.44
RHWD [48] 84.80 76.90 75.20 91.80 75.60 81.20 91.90 84.60 76.10 91.30 83.20 74.60 82.00
Ours 83.74 77.10 79.00 90.21 76.54 78.55 89.62 81.86 79.57 90.49 83.06 77.48 82.27

Table 2. Per-class average accuracies on OfficeHome (RS-UT)

Methods Rw→Pr Rw→Cl Pr→Rw Pr→Cl Cl→Rw Cl→Pr AVG

source 70.74 44.24 67.33 38.68 53.51 51.85 54.39
BBSE 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD 66.03 33.17 62.95 29.99 44.47 39.01 45.94
DAN 69.35 40.84 66.93 34.66 53.55 52.09 52.90
DANN 71.62 46.51 68.40 38.07 58.83 58.05 56.91
F-DANN 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN 67.20 43.60 68.87 39.21 57.98 48.57 54.24
COAL 73.65 42.58 73.26 40.61 59.22 57.33 58.40
MDD+I.A 76.08 50.04 74.21 45.38 61.15 63.15 61.67
InstaPBM 75.56 42.93 70.30 39.32 61.87 63.40 58.90
SENTRY 76.12 56.80 73.60 54.75 65.94 64.29 65.25
TIToK 77.09 52.84 72.15 44.32 60.06 59.95 61.07
Ours 79.18 60.53 78.26 50.13 65.79 68.99 67.15

the Pareto distribution parameters based on OfficeHome (RS-UT). All methods
used class-balanced sampling in the source domain for fairness. As shown in
Figure 2(a), accuracy decreases for all methods with increasing imbalance due
to label shift, but our method consistently outperforms the others.

4.3 Ablation Study

To mitigate the influence of source data imbalance, we evaluated each domain
adaptation component using class-balanced sampling on the source domain.
Table 4 presents the results. Model performance is bad with only source cross-
entropy loss. Performance improves with the addition of adversarial learning
and sample-weighted moving average centroid alignment loss (LDC+LDSM ).
Significant improvement is observed with the inclusion of discriminative feature
alignment loss (LDFA), which ensures both domain invariance and class discrim-
inability of the learned representation. Label shift calibration on target samples
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Table 3. Accuracy results on Office-31 dataset.

Methods A→WD→WW→DA→DD→AW→AAVG

DAN 68.5 96.0 99.0 67.0 54.0 53.1 72.9
DANN 82.0 96.9 99.1 79.7 68.2 67.4 82.2
MCD 88.6 98.5 100. 92.2 69.5 69.7 86.5
MDD 94.5 98.4 100. 93.5 74.6 72.2 88.9
BIWAA-I 95.6 99.0 100. 95.4 75.9 77.3 90.5
Ours 96.0 99.1 100. 94.6 77.1 77.3 90.7

further enhances performance by reducing the target false pseudo rate during
training, ensuring correct execution of the two pseudo label-based strategies.

Fig. 2. Analysis of label shift calibration. (a) Accuracy under different degrees of
imbalance on Cl→Pr. (b) The proportion of target samples with calibrated pseudo
labels(ŷ �= ŷm) via CCA-LSC. (c) and (d) :The accuracy of the target pseudo labels ŷ
(obtained by the classifier) and ŷm (calibrated based on label shift metric Mls) in all
calibrated target samples (ŷ �= ŷm) on Cl→Pr and S→P respectively.

4.4 Analysis of Label Shift Calibration

The label shift calibration strategy calibrates only some target pseudo labels
at the classification boundary, leading to two scenarios: consistency (ŷ = ŷm)
and inconsistency (ŷ �= ŷm) between the classifier’s output pseudo labels and the
calibrated ones. Figure 2(b) illustrates the proportion of samples with calibrated
pseudo labels (ŷ �= ŷm) during training, which decreases over time, indicating
an increasing number of samples moving away from the classification boundary.
Figures 2(c) and 2(d) show the right proportion of ŷ and ŷm in these calibrated
samples. During the initial 3 epochs of pre-training, label shift calibration is not
applied. Throughout the training, the accuracy of ŷm consistently surpasses that
of ŷ, demonstrating the strategy’s effectiveness in reducing the false pseudo rate
of the classifier’s target output, supporting the analysis in Section 3.4. In fact,
higher accuracy of ŷm over ŷ, was observed in all 18 transfer tasks on OfficeHome
and DomainNet during training.
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Table 4. Ablation Study: effectiveness of adap-
tation components. We adopt class-balanced
sampling on the source domain to counteract
the adverse effect caused by imbalance to exam-
ine the effectiveness of each component.

Methods Cl→Pr S→P P→S

source 51.85 63.00 65.07

LC+LDC 62.23 71.22 73.32

LC+LDC+LDSM 63.37 72.80 75.08

LC+LDC+LDSM+LDFA 66.57 76.74 77.35

LC+LDC+Lm
DSM+Lm

DFA 68.99 77.48 79.57

Table 5. The influence of hm

hm 1 1.5 2

Cl→Pr 68.32 68.99 68.44

Table 6. Hyper-parameter sensi-
tivity on Cl→Pr

λ

μ
0.4 0.6 0.8

1 67.18 67.73 68.06

3 68.22 68.99 68.34

5 68.56 68.11 67.16

A question naturally arises: given the label shift between source and target
domains, could we diminish this shift by implementing pseudo-label balanced
sampling on the target domain and class-balance sampling on the source domain?
Initially, the balanced sampling strategy curbs imbalance by regulating the uti-
lization of input data, inevitably leading to an over-sampling of certain classes.
This is more likely to negatively impact the quality of the learned representation
for unlabeled target domain data. Furthermore, our application of pseudo-label
balanced sampling on the OfficeHome dataset resulted in a reduction of per-class
accuracy by about 1%. Consequently, we have decided not to use pseudo-label
balanced sampling strategy on target data in our method.

4.5 Hyper-parameter Discussion

The Influence of the Parameter hm. The hm dictates the proportion of cal-
ibrated samples. A smaller hm value leads to a larger proportion of ŷ �= ŷm.
Although our calibration strategy is effective, more calibrations aren’t always
better. Over-calibration can lead to over-representation of the dominant class
in target samples, while under-calibration can lessen its effectiveness. Table 5
illustrates the impact of the hm. To counteract the effects of incorrect calibra-
tions, we derive the confidence of all target pseudo labels from the classifier’s
probability output. For instance, if a sample’s probability output is [0.6, 0.4] and
the calibrated output is [0.45, 0.55], its confidence is 0.4 and its weight w = 0.4.
This can effectively reduce the adverse impact of incorrect calibrations.

Hyper-parameter Analysis. We fixed γ to 1 and discussed the impact of λ
and μ. The experimental results are shown in the Table 6. It can be seen that
our experimental results are not sensitive to each hyperparameter.
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Fig. 3. The impact of selecting target samples with different confidence levels on the
estimation of target label distribution

4.6 Analysis of Two Stage Learning

Our LSC strategy relies on the distribution estimation of the target domain in
the first stage. When this estimation is highly unreliable, the LSC strategy may
fail. Therefore, we discuss the impact of the pre-training of CCA in the first stage
on the LSC strategy in the second stage. Figure 3 shows the results of estimating
the target domain distribution by selecting pseudo-labels of target samples with
different confidence levels. It can be seen that when the confidence level w > 0.4,
w > 0.5, w > 0.6, our estimated distribution of the target domain is generally
close to its true distribution, indicating that ̂PT is reliable. In fact, our estimation
of the target domain distribution does not need to be very accurate, as long as
it can generally reflect the target label distribution. In our experiments, we use
pseudo-labels of target samples with a confidence level of w > 0.5 to estimate
the target domain distribution.

5 Conclusion

We introduce CCA-LSC to tackle label shift and covariate shift in imbal-
anced domain adaptation. Our approach employs domain adversarial learning,
sample-weighted moving average centroid alignment, and discriminative feature
alignment for contrastive conditional alignment, facilitating the learning of fea-
ture representations that are both domain-invariant and class-discriminative. To
counter label shift, we introduce the label shift measure Mls, using it to calibrate
the classification prediction of target samples. Experimental evidence demon-
strates that CCA-LSC delivers state-of-the-art results on benchmark datasets.

Acknowledgements. The paper is supported by the National Natural Foundation
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Abstract. Cross-domain image style transfer task is an attractive topic for several
applications, such as image-to-image style transfer, text-to-image style transfer,
artistic image generation, etc. In cross-domain image style transfer tasks (e.g.,
image-to-image style transfer, artistic image-to-image style transfer, text-to-image
style transfer, etc.), training becomes cumbersome due to differences in data distri-
bution across domains and complex model architectures. Unlike existing domain
adaptation and domain-independent methods that focus on robust and sufficient
feature extraction, this work focuses on disentangling the latent space through
latent optimization. For this purpose here we propose a new idea of styled image
generation from the latent space of StyleGAN which works well for image-to-
image and text-to-image style transfer.We critically analyzed the low-dimensional
latent structure and its effect on cross-domain image style transfer tasks and finally
proposed a method along with a latent optimizing procedure to overcome the
problem of style transfer. The experimental results on different standard datasets
show that the proposed model is robust, effective, and generic compared to the
state-of-the-art models.

Keywords: Generative adversarial network · Optimization · StyleGAN · Style
transfer · Morphing

1 Introduction

With the advancement in artificial neural networks and their variants, artistic image
generation, image style transfer, and synthesis have undergone a transformative jour-
ney. The recent sophisticated generative models can efficiently generate high-fidelity
visual content that is indistinguishable from reality. These advancements have elevated
image synthesis from an intriguing theoretical concept to a practical tool with real-world
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applications. Traditional artistic image generation relies on conventional methodologies
such as feature modulation, thin plate spline interpolation [1, 2], etc. In the same way,
recently, to alleviate the dependencies of large amounts of training data and humongous
computation power, GAN inversion methods have been proposed [3–8]. The core idea
of these approaches is to find a properly optimized latent vector in the latent space that is
the most suitable for performing a given particular style transfer task. These approaches
mayworkwell for the data of the same domains but not for cross-domains, which include
image and text domains for image style transfer.

Fig. 1. Block diagram of proposed method. It can be observed that the proposed method
successfully generates samples of superior quality compared to the existing methods.

The performance of the state-of-the-art model [8, 9] is illustrated in Fig. 1, where for
the candidate image and condition image including the text domain, the existing method
does not output the correct images which are close to the input candidate image. When
we look at the results presented in the last row in Fig. 2, the existing method [8] does
not fix the reading glass over the output while the proposed method fixes the reading
glass for the candidate of “An old man wearing spectacles”. The key reasons for the
poor results of the existing method are the cross-domain gap and lack of generalization
ability. Therefore, the proposed model works well, especially for textual guidance. This
observation motivated us to propose a new method to explore low-level latent space for
improving the image style transfer performance. Inspired by the success of StyleGAN,
which can generate different variant images of input depending on candidate images, we
explore StyleGAN for generating correct output through developing latent space and a
new approach to the loss function.

As noted from the related work, there are models that work well for image to image
and there are other methods which work well for text to image. But there are a few
methods which perform both the tasks, image to image and text to image. However,
these methods are not robust to adverse situations and the method lacks generalization.
Therefore, developing a new model for addressing the challenges of both image to
image and text to image irrespective of adverse situations is an open issue. This is the
motivation to propose a new idea that exploits styled image generation from the latent
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space of StyleGAN for performing image to image and text to image successfully. This
is the key contribution of the proposed work compared to the state-of-the-art methods.

Therefore, the key contributions of the proposed work are as follows. (i) For cross-
domain image manipulation, we propose a simple and effective architecture with a
novel optimization procedure that involves creating the latent-space disentanglement
and taking advantage of it to find the optimal point in cross-domain latent space. (ii)
Exploring CLIP for generating proper output through textual guidance.

The paper is organized as follows: Sect. 2 provides a comprehensive review of the
foundational works on image synthesis, tracing its evolution from early experiments to
modern deep-learning approaches. In Sect. 3, we present a new architecture and propose
a novel optimization scheme to solve the problem. Experimental results on different
datasets and tasks are conducted in Sect. 4. Finally, we conclude the effectiveness of the
method by highlighting the potential future directions in Sect. 5.

2 Related Work

2.1 Image Style Transfer

Image style editing and manipulation have achieved unprecedented progress in recent
years. This objective includes imagemorphing [10], image style transfer [11, 12], text-to-
image generation and manipulation, etc. Modern sophisticated deep learning algorithms
such asGANs [2], transformers [12], diffusionmodels [13], etc. can successfully transfer
different styles.With these sophisticated architectures, many critical tasks such as image
restoration [14], semantic editing [15], style transfer, and photo-realistic rendering have
achieved anunforeseen advancement. Themodelsworkwell for particular type of images
or dataset but not different datasets of applications.

2.2 Generative Models

In conventional GANs the generator takes a noise vector as an input to produce new
samples and the discriminator tries to differentiate the real and the generated samples.
The progressive architectural and training methodological refinement [16, 17] has sig-
nificantly contributed to the advancement of numerous researches such as image super-
resolution [18], out-of-domain image synthesis [19], conditional image synthesis [20,
21], text-to-image synthesis etc. However, as the existing generative models learn the
underlying data distribution of a particular domain, they often lack the ability of fine-
grained editing control in the case of cross-domain setups. Instead of a random noise
vector zz, StyleGAN, and its variants [22] focus on style injection in progressive fine-
grained image generation. With the improvement in StyleGAN, many pieces of research
have been conducted such as conditioned attributes sampling editing [23], domain-gap
analysis, disentangling variation in video and text-driven image synthesis and editing
[24], etc. are names of a few. Additionally, residual feature-based transformation [25]
to encode finer details, and CLIP adapter [26] based approaches have extended Style-
GAN’s efficiency in text to image editing. In summary, the models are focused on image
to image but not both image to image and text to image.
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2.3 Diffusion Models

Recently diffusion models [13, 27] have shown unprecedented success in text to image
T2I and image to image I2I generation. For T2I, Gal et al. [28] encoded the subject in
the latent space of a pretrained CLIP and then the noise scheduling and denoising were
performed based on a given text prompt. Although this method can generate overall
structure, in case of particular structural identity e.g. face, hairstyle, etc., the model fails
to generate faithful samples. For I2I, diffusion-based generation method [29] mainly
encodes a particular art style as a textual description as textual embedding and guides
the generation process in the denoising step. But the limitation of this model is that the
perceptual guidance of a particular style may not be optimal as our proposed method
as shown in the figure. On the other hand, encoding in StyleGAN latent space in our
proposed method not only generates samples with superior perceptual quality, but also
preserves the identity of the subject. Although the methods perform both image to image
and text to image, the results are not consistent and stable for both tasks.

In summary, although the existing models perform various forms of image style
transfer in cross-domain, they mainly focus on learning from huge data distribution and
explicit architectural design for domain adaptation and hence lack generalization.

Fig. 2. Architecture diagram of the proposed method. Input image tensor Ib×C×H×W is fed
into the pSp encoder which provides latent of shape b × 18 × 512. This tensor is then sent to
the generator blocks of StyleGAN and loss is computed between the conditioned and generated
image. In the case of textual guidance, the loss is computed by incorporating the CLIP text encoder
and CLIP image encoder.

3 Proposed Methodology

Given a set of input candidate images of real domain and condition images of different
domains such as paint, cartoon, etc., our goal is to perform different image style transfer
tasks such as transferring the style of the target image to that of the input candidate
image, guiding the shape of the input images according to the condition images, etc.
While transferring the shape of the target image, our main objective is to preserve the
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identity of the input image. In addition, for textual style transfer, we aim to find a specific
latent direction in a disentangled W+ space where the textual guidance can change a
specific attribute of the image.

As shown in the complete architecture of the proposed work in Fig. 3, the input and
candidate images are sent to Pixel2Style2Pixel (pSp) [30] encoder to obtain initial latent
in the W+ latent space. Then that latent is fed to the generator blocks of StyleGAN
and finally the loss is estimated with the help of image and textual encoder of the CLIP.
Overall, the combination of pSp encoder, StyleGAN and CLIP enables the model to
achieve the best accuracy with robustness and generic properties.

Fig. 3. Hierarchical architecture of the encoder (pSp) for latent initialization.

3.1 Creating Latent Space Using Pixel2Style2Pixel (pSp) Encoder

Image encoder: Conventional GANs are capable of generating photo-realistic images
of a given data distribution by taking a noise vector z ∈ Z from a Gaussian distribution.
But, in the case of facial portrait image generation, it has been observed that, although
the random noise sample can generate a photo-realistic portrait, it often fails to faithfully
reconstruct the identity of the main input image. Moreover, this unstructured random
latent fails to encode attribute-specific information in its latent space making it highly
entangled. To alleviate these preliminary problems, we aim to sample a latent z.

in such a way that while generating the image, this latent will infuse important
information about the person-specific identity and hopefully contain attribute-specific
information in its latent space in a disentangled manner.

Fig. 4. The effect of the optimization process is illustrated. It is noted that optimization using the
latent obtained from pSp encoder gives better generation result
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Hence, for encoding the input images, the pSp encoder is used and it is illustrated
in Fig. 4, which is trained on FFHQ faces [31]. As an input, the pSp encoder takes
a tensor Ib×C×H×W where b,C,H ,W are the batch size, channel, height, and width
respectively. Each element of the batch b is then mapped by the pSp encoder into the
W+ latent manifold. Hence, for an input tensor Ib×C×H×W the pSp encoder gives
w ∈ R

b×n×d tensor as the output. This tensor w ∈ R
b×n×d represents the initial latent

representation of the images. The effectiveness of hierarchical encoding through the
pSp encoder can be observed in Fig. 5 where it clearly shows that the image generated
from pSp encoded latent can reconstruct a high-fidelity sample compared to the image
generated from randomly initialized latent.

Fig. 5. The effect of style loss is illustrated. Here, the leftmost image is the candidate image and
top row images are the conditional images. Second row images show the results of the respective
image style transfer of the proposed method using style loss.

Generator: For synthesizing the images from their latent representations and editing
them in a different style domain such as caricature, Pixar, artistic, etc. a StyleGAN
generator [31] is used. To guide the style and the shape of the target domain to the input
images, this generator is pre-trained with the WebCari-A dataset. As discussed earlier
this generator is composed of 18 sequences. The generator takes inputwb×n×d and gives
Ib×C×H×W
g . For each progressive up-sampling layer of the StyleGAN, it takes w512

latent vector which controls the style-related characteristics of the generated images.
For this task, the w512 latent vector is passed through an affine transformation layer to
generate a style code s. This style code infuses the style information by implementing
adaptive instance normalization. Moreover, for statistically varying features such as
moles, etc., a noise vector n is added in each progressive layer. Next, optimization is
done by comparing Ib×C×H×W

real and Ib×C×H×W
gen . To fulfill the objective function, we

propose a novel and non-trivial optimization scheme. The optimization procedure will
be discussed in the subsequent section.

3.2 Image and Textual Encoder for Deriving Optimization Procedure

Optimization Procedure: In this work, we follow the optimization-based GAN inver-
sion procedure. To find out the optimized latent w, we use the perceptual loss as defined
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in Eq. (1).

LG
p_μ = 1

hμwμcμ
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(
I j
gen
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where LG
p_μ represents the perceptual loss computed from the μth layer of a pre-trained

VGG-16network.φμ denotes the output of theμth layer having a feature space dimension
hμ × wμ × cμ. For transferring the style information of the target image Istyle to the
content image Ireal , for each generation iteration style loss is calculated as defined in
Eq. (2).

Lstyle = 1

Nl

Nl∑

i=0

∣∣∣∣μ
(
φi

(Igen
) − μ

(
φi

(Istyle
)))∣∣∣∣

2 + ||σ(φ(I0) − σ(φ(Is)))||2 (2)

where φi(·) represents features extracted from a ith layer of a pre-trained VGG-19 model
andNl represents the number of layers.μ(·) and σ(·) are themean and standard deviation
respectively.

Fig. 6. Example of the identity generation with ID loss. (a) Input image, the result of (b) existing
StycarGAN [9] method and (c) proposed method. From the images, the identity generation of the
proposed method is better than the existing method.

Although the perceptual loss guarantees visual fidelity and the style loss successfully
transfers the style of the target image to the content image, to capture identity-specific
information, ID loss is also incorporated. The ID loss can be written mathematically as
defined in Eq. (3). Figure 6 shows that style loss can guide condition style successfully
while generating through the proposed optimization process.

Lid = 1 − CosineSim
(
ArcFace

(Igen
)
,ArcFace(Ireal)

)
(3)

where,ArcFace(·) denotes the features extracted from theArcFace [32]model which is a
popular face recognition model. Here, the facial features from the ArcFace are extracted
and the cosine similarity of them is calculated and subtracted from 1. For controlling the
textual guidance, while generating, the CLIP loss is used as shown in Eq. (4).

LCLIP = 1 − CosineSim(ETEXT (text), EIMAGE(image)) (4)

Loss: Finally, the loss is derived as defined in Eq. (5).

L = λperceptLpercept + λstyleLstyle + λidLid + λCLIPLCLIP||σ(w)|| (5)
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where, ||σ(·)|| is the standard error for 18 × 512 vectors which is used as a regularizer.
λpercept , λstyle, λid , and λCLIP are weights of the corresponding perceptual loss, style
loss, ID loss and CLIP loss respectively. Finally, for style transfer, the preservation of
the identity of the candidate image is very crucial. Figure 6 shows that the proposed
methods can preserve identity while transferring conditioned style.

4 Experimental Results

4.1 Datasets and Evaluation

For the experiment, the FFHQ dataset is divided into 9:1 ratio for training and testing
purposes. The WebCariA dataset has 252 different identity classes containing a variable
number of styled images and real images. For our task, we used all styled images of
every class i.e. a total of 6042 styled images were used for learning the image style. For
inference, we took 1000 images chosen randomly from the WebCariA dataset and used
each of them as the conditional image for style guidance.

Implementation Details:We used Nvidia GeForce GTX 1080 GPU. For optimiza-
tion in stage 3.2, we use λpercept = 1, λid = 0.1. For image-to-image style transfer
tasks-related experiments, we use λstyle = 0.4. While text-to-image style transfer task,
we use λCLIP = 0.5. We set the iteration number to 360 to optimize the objective func-
tion. In an input batch of 16, to optimize each image in the batch, it took roughly 2min. In
this experiment, the pSp encoder which is pre-trained on the FFHQ dataset is used. This
encoder takes a batch input Ib×C×H×W where b = 16,C = 3,H = 256,W = 256.
This encoder maps this input tensor to theW+ latent space. The input is mapped to the
w latent where wb×n×d with b = 16, n = 18, d = 512. This wb×n×d acts as the initial
starting point in the latent space. Next this latent is fed into the StyleGAN generator
which has been trained on the WebCari-A dataset. This generator takes this input and
sequentially constructs the output tensor Ob×c×H×W . To find the proper latent which
faithfully reconstructs the image, an optimization process is completed. We use percep-
tual loss, style loss, ID loss, CLIP loss, and noise regularization loss for the optimization
procedure. Adam [33] optimizer with lr = 0.2 is used.

4.2 Ablation Study

4.2.1 Loss Functions

For FFHQ dataset training, the model is trained with perceptual loss, and ID loss. Down-
stream tasks like image style transfer, text to image editing, image morphing, etc. The
results reported in Table 1 shows that each loss listed in Table 1 contributes equally for
achieving the best results. It is also inferred that single loss is not sufficient to achieve
the best results compared to the combined loss of the proposed method.

4.2.2 GAN Inversion

For an effective cross-domain style transfer task, a specific setup for GAN inversion,
identity regeneration, and disentangled latent analysis is shown in Table 2which presents
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Table 1. Effectiveness of the different loss function on FFHQ

 Metrics 

    Id score↑ SSIM ↑ PSNR ↑ CLIP score ↑ 
0.788 0.640 15.72 0.603 

0.826 0.668 14.04 0.487 

0.581 0.410 10.31 0.313 

0.653 0.580 13.44 0.792 

0.961 0.729 18.07 0.918 

the quantitative validation for the specific design choice of the proposed model. We first
verify the proposed optimization-based inversion technique to validate the faithfulness of
the proposed pipeline toward the end goal of image style editing such as cross-domain
style transfer, shape guidance, image morphing, etc. Two types of initializations are
explored:

Table 2. Id score comparison for different setups

Inversion Identity
regeneration

Disentanglement analysis

Random pSp 1–4 4–8 8–12 12–18 10–14 14–18

ID_metric 0.766 0.924 0.961 0.880 0.761 0.749 0.827 0.918 0.921

Random vs pSp Initialization: It is observed that latent obtained from pSp provides
better initialization than the random setup. To get the initial latent wi of an input image
I, we first pass it through the pSp encoder E(·). Then wi is optimized in an iterative
process to find a latent that can accurately reconstruct the image I.

Fig. 7. Examples of identity regeneration in style transfer tasks. It can be observed that the
proposed model outperforms the existing model in terms of identity generation for style transfers
task.
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4.2.3 Identity Regeneration

Weare particularly interested in the question – ‘can the conventional ID lossLid preserve
identity?’ The conventional ID loss Lid uses the face recognition model ArcFace. It can
be observed that during the optimization process, for theLid loss, we can expect minima
in the loss surface where the identity is maximized. This point on which the minima is
attained in latent vector space, captures the identity. Figure 7 shows that in cross-domain
image generation such as real-image-to-caricature, our method can preserve the identity
of the real input image and transfer it to the caricature output image. It is worth noting that
ourmethodfinds a better solution than the current state-of-the-artmethod StyleCariGAN.

4.2.4 Disentanglement Analysis

According to the definition of disentanglement of W+ the change in some direction in
W+ results in particular characteristics in the image domain. In Fig. 8, the first column
represents the input images and the second column represents the generated caricature by
optimizing all 18 latents obtained from the pSp encoder. It is observed that optimizing all
of the 18 latents obtain the highest visual fidelity after generation. For the last column, 1st

image represents generated output by only 1–4 latents and the rest with randomGaussian
initialization. Similarly, 2nd , 3rd , 4th images optimize 4 − 8, 8 − 12, 12 − 18 latents. It
can be seen that initial layers generally store person-specific information such as facial
structures, etc. The last 2 images of this column represent the effect of optimizing the last
8 latents divided into 1:1 ratio and keeping 10 previous latents as similar as that of column
2. These results suggest that the last latent set only contains texture-related information.
This observation supports that optimizing all 18 latents provide better results.

Fig. 8. The effect of different latent optimization is illustrated. The initial latents are mainly
responsible for structural consistency while the final latents are responsible for texture generation.
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4.3 Qualitative Analysis on Different Image Style Transfer Tasks

In this section, we compare the performance of the proposed method with the existing
method qualitatively and quantitatively. This section is divided into three parts:

Fig. 9. Samples of style transfer. 1st column and 1st row for each block represents ground truth
image and style image. Rest of the images represents output of the proposed model for style
transfer.

4.3.1 Experiments on Style Transfer

Style transfer refers to image style editing where the candidate image is manipulated
by the condition image’s texture, color, features, etc. The proposed method uses novel
losses such as perceptual-loss and style-loss for transferring the style of the condition
image to the candidate image while improving visual fidelity. In addition to that, ID_loss
ensures the identity preservation of the candidate image after generation. The weighted
combination of these three losses has been shown to perform wonderfully and produce
satisfactory results for image style transfer. Figure 9 shows the robustness of the proposed
model for transferring different styles (Pixar, caricature, artistic painting, Gogh) on
multiple candidate images. This validates the robustness of the model for style transfer
tasks.

Qualitative Comparison with SOTA: Transferring a specific art style (e.g. carica-
ture, cartoon, artistic painting, Gogh, etc.) while generating portraits is a well-known
problem. The existing methods often suffer from unwanted identity mixing from the
conditioned-style image domain to the generated output. Figure 10 presents the superi-
ority of our proposedmodel. It can be observed that for style transfer, existing state-of-the
art models either fail to learn the style [21] of the conditional art image or inefficiently
transfer the shape exaggeration [9] from the condition image domain which results in
poor identity regeneration.Although recent advancements in conditional generation have
succeeded in copying the conditional art style [11], they often copy the shape of the con-
ditional image and this influences the generated image. As a result, it fails to preserve the
identity of the subject. It can be observed that the proposed latent space optimization in
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W+ space for style transfer successfully captures the style and shape of the conditioned
image, curates them and faithfully generates images where the identity of the subject is
also preserved. At this end, while optimizing, the model finds the optimal latent direc-
tions inW+ that are responsible for shape and style transfer and edits them according to
the conditioned style image while preserving the latents that are responsible for identity
generation.

Fig. 10. Qualitative results of the proposed and the existing methods. The proposed method
transfers the style and shape of the conditioned images more effectively compared to the existing
methods.

4.3.2 Experiments on Text Guided Image Style Transfer

Transferring style of images with textual guidance is particularly challenging due to
(i) text-to-image cross-modality distribution difference between text and image and
(ii) feature localization for style editing. To solve this non-trivial problem, conditioned
text and the generated image are passed through the CLIP text encoder and image
encoder respectively and optimization is done with LCLIP loss. Figure 11 represents
the faithfulness of the generation guided by text. It can be observed that the proposed
model can localize text-specific latent in W+ space and perform style transfer tasks in
accordance with the condition text. It is worth noting that, while transferring the style,
the identity of the subject after generation does not get altered, and ensures reliable
generation.

Qualitative Comparison with SOTA:We compare the text guided generation with
the existing state-of-the art model. It can be observed from Fig. 12 that although the
proposed method has similar or better performance than the existing model [8] for in-
domain text-to-image style transfer i.e. real image to real image, for out-of-domain image
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Fig. 11. The effect of textual guidance in image generation of the proposed model. It can be
observed that the proposed model can faithfully generate output according to the textual guid-
ance for local style editing (old, no-smile, long hair) as well as global style editing (Gogh style,
caricature).

styling, e.g. real image to art style image with text it performs significantly better than
the existing model. The reason being the proposed architecture and optimization method
can successfully find the latent direction that are responsible for cross-domain image
manipulation while keeping the identity of the input image intact.

Fig. 12. Sample results of image generation with textual guidance. It can be observed that for text
guided style editing, even though the proposed method performs similar or better than the existing
method for local textual guidance, it outperforms the existing methods for global textual editing.

4.4 Quantitative Analysis and Comparison with Diffusion Model

To evaluate the performance of the model quantitatively we use the FFHQ dataset as
the source of candidate images. The styled images of the WebCariA dataset are used as
conditioned images. Here, at first, we measure the ID metric based on the ArcFace to
validate the faithful identity regeneration. It essentially compares the identity-specific
features of the intermediate layers of the ArcFace encoder. A high Id score represents
the success of the method for reconstructing the identity of the generated image. Next,
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SSIM [34], and PSNR are also calculated to validate the structural consistency of the
proposed model. Finally to check the textual generation control CLIP score is measured.
Table 3 shows the comparative results. It can be observed that in terms of ID metric, our
method achieves the best results signifying the preservation of identity for cross-domain
style transfer. Additionally, the proposed model performs better in terms of SSIM and
PSNR indicating the high structural similarity and high peak signal-to-noise ratio while
generation. However, for CLIP score, Patashnik et al. [8] perform slightly better than
the proposed model. We believe that the explicit latent mapper used in [8] is responsible
for this slight improvement in CLIP score. However, the exclusion of this mapper in our
model makes it faster for generation.

Table 3. Quantitative evaluation of the proposed and existing methods on the FFHQ dataset

Image to Image Text to Image

Method Type Id score ↑ SSIM ↑ PSNR ↑ CLIP score ↑
WarpGAN [21] GAN 0.784 0.587 12.44 -

StyleCariGAN [9] GAN 0.770 0.664 15.40 -

StyleCLIP [8] GAN 0.959 0.721 17.91 0.942

DualStyleGAN [11] GAN 0.948 0.704 18.03 0.881

Styleres [25] GAN 0.927 0.710 16.91 0.916

CLIPInverter [26] GAN 0.901 0.718 16.70 0.910

Textual inversion [28] Diffusion 0.844 0.680 16.02 0.90

Key locked [29] Diffusion 0.760 0.651 15.47 0.910

InST [27] Diffusion 0.820 0.700 17.73 0.860

Proposed GAN 0.961 0.729 18.07 0.918

Diffusion Models: To compare with state-of-the-art diffusion methods [27–29] we
randomly selected 50k images from the FFHQ dataset and trained the model. As the
methods [28, 29] take images in-the-wild in consideration for inference, for faithfulness
of the comparison, we choose internet-available images (also shown in their main paper)
and show the qualitative comparison. Gal et al. [28] encoded in the latent space of a
pretrained CLIP. While this method can generate the overall structure, it struggles with
specific structural elements such as the face, hairstyle, etc. In contrast, encoding in the
StyleGAN latent space in our proposed method not only produces samples of higher
perceptual quality but also preserves the subject’s identity effectively. For image-to-
image style transfer (I2I) tasks, diffusion-based generation methods [27, 29] primarily
encode specific artistic styles using textual descriptions as embeddings, guiding the
generation process during denoising. However, a limitation of this approach is that the
perceptual guidance for a particular style may not be as effective as demonstrated in our
proposed method, as illustrated in Fig. 13.
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Fig. 13. For I2I (a), existing models do not reconstruct facial attributes faithfully while pro-
posed method can transfer both style and facial information. For T2I (b), the proposed method
successfully edited the text specific attribute while existing methods failed to do so.

Fig. 14. Unconditional and text conditioned sample results of image generation for CARS (a)
and LSUN Church (b) dataset.

4.5 Qualitative Results on Non-Face Datasets

As face data hasminute features for person identification, trainingwith the FFHQdataset
proves the robustness of themodel. Other than that, for ablation, other dataset like CARS
[35] which has 197 classes and a total of 16185 images and CHURCH [36] which
has 126227 images of size 64 × 64 of church are also taken in consideration, whose
generated sample images are also provided. It can be seen from the results in Fig. 14
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that the proposed method can work on non-face images. Thus, one can conclude that the
proposed method is application independent and dataset independent.

5 Conclusion and Future Work

In this work, we have proposed a new idea of generating from low dimensional latent
space and optimizing in that latent space for different image style transfer tasks with task
specific loss functions. Unlike the existing models which are not effective in handling
cross-domain distribution, the proposed method is effective in handling cross-domain
distribution. To achieve an efficient, effective and generic system for image style transfer,
the proposedwork derives optimal perceptual loss. Experimental results on several image
style transfer, morphing and reconstruction using two standard datasets show that the
proposedmodel is effective, efficient and robust. Since the scope of the work is limited to
proposing optimal perceptual loss to handle the low dimensional latent space effectively
for image style transfer, our future work is to propose a new generic model that can
address other challenges of image style transfer.
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Abstract. Traffic forecasting in Intelligent Transportation Systems
(ITS) is vital for intelligent traffic prediction. Yet, ITS often relies on
data from traffic sensors or vehicle devices, where certain cities might
not have all those smart devices or enabling infrastructures. Also, recent
studies have employed meta-learning to generalize spatial-temporal traf-
fic networks, utilizing data from multiple cities for effective traffic fore-
casting for data-scarce target cities. However, collecting data from multi-
ple cities can be costly and time-consuming. To tackle this challenge, we
introduce Single Source Meta-Transfer Learning (SSMT ) which relies
only on a single source city for traffic prediction. Our method harnesses
this transferred knowledge to enable few-shot traffic forecasting, partic-
ularly when the target city possesses limited data. Specifically, we use
memory-augmented attention to store the heterogeneous spatial knowl-
edge from the source city and selectively recall them for the data-scarce
target city. We extend the idea of sinusoidal positional encoding to estab-
lish meta-learning tasks by leveraging diverse temporal traffic patterns
from the source city. Moreover, to capture a more generalized represen-
tation of the positions we introduced a meta-positional encoding that
learns the most optimal representation of the temporal pattern across
all the tasks. We experiment on five real-world benchmark datasets to
demonstrate that our method outperforms several existing methods in
time series traffic prediction. Our code is available at https://github.
com/Kishor-Bhaumik/SSMT.

Keywords: Traffic Forecasting · Time Series · Meta Learning · GNN

1 Introduction

Accurate traffic forecasting is crucial for Intelligent Transportation Systems
(ITS) to enable a wide range of AI services that rely on real time traffic infor-
mation, such as food delivery, taxi services, etc. Traditional methods such as
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ARIMA [1] and Kalman filter often rely on historical data for univariate time
series forecasting. Lately, spatiotemporal traffic forecasting methods [9,27,32]
are proposed to integrate temporal and topological sensor relationships for mul-
tivariate traffic forecasting using Graph Neural Networks (GNNs) [27]. However,
such methods generally rely on abundant training data and fail to generalize for
the data-scarce cities.

Recently, transfer learning-based methods such as RegionTrans [24] and
Cross TRes [12] focused on grid-based traffic prediction by transferring source
knowledge from multiple source cities that have abundant data to the target
cities that have limited data. They include large-scale auxiliary data to better
match regions that are similar to one another. However, these methods are not
directly applicable to graph based traffic prediction because their grid structure
differs significantly from the graph structure of the traffic network in target cities.
To tackle this problem, few transferable time series forecasting models have been
proposed. MetaST [26] uses a global learnable memory, while ST-MetaNet [18]
and ST-GFSL [17] employ meta-knowledge from multiple cities for graph-based
traffic forecasting. However, the aforementioned approaches tend to overlook
the challenges and disadvantages of collecting data from diverse cities. Indeed,
gathering sensor data from multiple cities can be prohibitively expensive. Also,
possibly, negative transfer [30], when an underdeveloped city or the city signif-
icantly differs from the target city is included in the source data, can further
undesirably decrease the forecasting performance for the target city. Addressing
the aforementioned prior challenges, we introduce Few-Shot Traffic Forecast-
ing with Single Source Meta-Transfer Learning (SSMT ), a novel framework for
transferable spatiotemporal traffic prediction. Our method utilizes data from a
single source city learning important spatial footprints and effectively adapt-
ing to new temporal patterns. Overall, the main contributions of our work are
summarized as follows:

– We present SSMT, a new meta-learning based time series traffic forecasting
approach that allows single source knowledge transfer from source city to the
target city. We carefully construct three meta-learning tasks to help the model
quickly adapt to different temporal resolution, each based on a particular
periodic pattern (daily, weekly, or monthly).

– Our SSMT employs an external memory module to facilitate the effective
transfer of topological information from source to target cities in the pres-
ence of sensor node discrepancy. This allows the model to gain a deeper
understanding of the spatial context, resulting in more accurate predictions
for the target city.

– We empirically demonstrate the effectiveness of our proposed SSMT frame-
work on five real-world spatiotemporal datasets and show that our method
achieves superior performances compared to the existing baselines.

2 Related Work

With the emergence of deep learning and graph neural networks, graph is applied
to tackle a variety of urban challenges to explore spatial structural interactions.



48 K. K. Bhaumik et al.

Andrea et al. [3] proposed a framework to explain empirical results associated
with the use of trainable node embeddings and discuss different architectures
and regularization techniques to account for local effects. Bai et al. [2] present
STG2Seq, a graph-based model for multi-step citywide passenger demand. Yuan
et al. [29] proposed recasting spatio-temporal few-shot learning as pre-training
a generative diffusion model, which creates tailored neural networks guided by
prompts. This approach allows for adaptability to diverse data distributions
and city-specific characteristics. To capture the dynamic aspects of urban traffic
flow, Lu et al. [16] propose spatial and semantic neighbors of road segments.
Do et al. [5] use IoT sensors on automobiles to assess city air quality and use
variational graph autoencoders to predict unknown air pollutants. Nevertheless,
these approaches are non-transferable and primarily concentrate on single-city
traffic forecasting. Few-shot learning (FSL) has shown promising performance
in various domains such as computer vision, natural language processing, and
reinforcement learning when dealing with data scarcity. In our context, when
data-rich source cities are used to transfer knowledge to data-scarce target cities,
this problem is referred to as few-shot traffic forecasting. And, recently cross-
city transfer learning models [12,24] have gained significant popularity in this
area. MetaST [26] employs a global memory queried by the target region. More-
over, STrans-GAN [31] generates future traffic speed using GANs, and TPB
method [15] proposes a traffic pattern bank to store similar patterns from mul-
tiple source cities for the downstream fine-tuning task. However, these methods
heavily depend on data-rich multiple source cities, and can be cost-prohibitive
in practice.

Recently, memory-augmented attention (MAA) models have gained much
attention for capturing long-term dependency, particularly anomaly detection
task [8]. Park et al.[19] used MAA for anomaly detection in video sequences.
These studies explicitly utilize memory augmented attention to enhance model
performance by storing data patterns. Inspired by these, in our work, we propose
a separate memory module to address non-transferability due to node count
mismatches between source and target cities.

3 Methodology

3.1 Preliminaries and Problem Formulation

Traffic networks are represented as Gs and Gt, with V as vertices (e.g., traf-
fic sensors) and E as edges (connectivity). V is the set of vertices where
V ∈ (v1, v2, v3, ...vn). In our context, we use subscripts s and t to denote the
data of the source and target city, respectively. Next, we define the source data
as Xs ∈ R

Ns×Ts×Cs and target data as Xt ∈ R
Nt×Tt×Ct , where N , T , and C

represents the total number of nodes, time window length, and the number of
traffic features, respectively. The adjacency matrix A ∈ R

N×N is the spatiotem-
poral graph of G. Aij = 1 indicates that there is an edge between node vi and vj ,
otherwise, vij = 0. In our work, we mainly focus on investigating the transfer-
ability of a single feature, namely traffic speed, thereby reducing C to 1. Hence,



SSMT: Few-Shot Traffic Forecasting with Single Source Meta-transfer 49

we finally consider Xs ∈ R
Ns×Ts as the source, and Xt ∈ R

Nt×Tt as the target
data. Also, as the number of nodes differs between the source and the target
city, we denote Ns �= Nt to indicate this discrepancy in the number of nodes.

In general, the transferable traffic forecasting problem can be divided into
two stages: 1) pre-training and 2) fine-tuning. First, in the pre-training stage, we
can formulate the forecasting problem by training a mapping function fθs

on the
source data, which predicts future timestamps (T ′) based on past timestamps
(T ). We denote the historical spatiotemporal input data and the predicted obser-

vations as 〈X(t−T+1)
Gs ,X

(t−T+2)
Gs , . . . , X

(t)
Gs 〉 and 〈X(t+1)

Gs ,X
(t+2)
Gs , . . . , X

(t+T ′)
Gs

〉,
respectively. Thus, the time series forecasting with the input graph Gs for the
source city can be defined as follows:

〈X
(t−T+1)
Gs

, X
(t−T+2)
Gs

, . . . , X
(t)
Gs

〉
fθs−−−→ 〈X

(t+1)
Gs

, X
(t+2)
Gs

, . . . , X
(t+T ′)
Gs

〉

Next, in the fine-tuning stage, the forecasting task is performed by fine-tuning
the same mapping function with parameters θs, which are initially shared from
the pre-trained function. The fine-tuning process aims to improve the model’s
ability to predict graph signals specifically for the target road network. And, the
fine-tuning process can be defined as follows:

〈X
(t−T+1)
Gt

, X
(t−T+2)
Gt

, . . . , X
(t)
Gt

〉
fθ∗

t ;θs
−−−−−−→ 〈X

(t+1)
Gt

, X
(t+2)
Gt

, . . . , X
(t+T ′)
Gt

〉

In particular, the notation fθ∗
t ;θs

represents the adjusted function parameters
from θs to fit the target domain. It basically signifies the updated or adapted
set of parameters that have been modified from the source model to better align
with the characteristics and requirements of the target city.

3.2 Meta-Learning Framework

In our model, θ represents the encoded spatiotemporal model parameter for
the traffic prediction. To adapt the source model parameters effectively to a
target city, we adopt the approach proposed in model-agnostic meta-learning
(MAML) [7] In MAML framework, the dataset is divided into multiple tasks and
each task is divided further into support and query sets. Then, the support set
is used for model adaptation during meta-training, while the query set evaluates
the model’s performance after this adaptation. We use MAML to initialize θ
with multiple tasks from the source city as θs, such that it can minimize the
average generalization loss across all source tasks. When adapting to a new task
T i, the model’s parameters θs are updated to θ′

i. In MAML, the inner loop is
for training the model’s parameters for a specific task, while the outer loop is
to adjust the model’s initial parameters to enhance the learning performance
across a range of tasks. The inner loop optimization of MAML can be expressed
as follows:

θ′
i = θs − α∇θLT i (fθs

) (1)
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And, practically, we can perform multiple steps of gradient descent to update
the initialization θs to θ′

i. For each task T i, the training process is iterated on
batches of tasks sampled from source tasks S(T ). More intuitively, the meta-
learning objective is defined as follows:

min
θs

∑

T i∼S(T )

LT i

(
fθ′

i

)
=

∑

T i∼S(T )

LT i

(
fθs−α∇θLT i (fθs )

)
(2)

Finally, the outer loop optimization across all the tasks can be defined as:

θ = θ − β∇θ′
i

∑

T i∼S(T )

LT i

(
fθ′

i

)
(3)

Defining β as the meta-step size, we assume that θ will yield superior general-
ization performance to a target city, as it provides an initialization that performs
well across multiple tasks.

Fig. 1. The overall architecture of our proposed SSMT consists of several components.
Firstly, the discrete graph A is learned by computing the pair similarity between M
and E. The memory component then addresses the GCN module’s output, which is
subsequently delivered to the spatiotemporal recurrent block. Finally, the output of
the spatiotemporal block is utilized to compute the loss.

3.3 Positional-Encoding Driven Task Partitioning

Let us define each batch of input data as Dj where j ∈ [1, 2, 3, .., BatchSize].
We first represent this split of a single batch in three distinct sets to present
daily, weekly and monthly periodic patterns as follows:

Dj = B(1)
j ∪ B(2)

j ∪ B(3)
j (4)

Bi
j = {(x

(i)
1 , y

(i)
1 ), (x

(i)
2 , y

(i)
2 ), . . . , (x

(i)

n(i) , y
(i)

n(i))}
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where Bi represents the i-th set of the batch and i ∈ [1, 2, 3]. Bi contains multi-
ple data points and each data point (x(i)

j , y
(i)
j ) consists of input features x

(i)
j and

corresponding labels y
(i)
j for the i-th set. n(i) is the number of data points in the

i-th set of the batch. Inspired by the widely adopted concept of relative posi-
tional encoding in transformer-based attention mechanisms [13,22], we derive
positional encoding as follows:

PEpos,2k = sin
(

2π · pos
24 · samples per hour · V

)

PEpos,2k+1 = cos
(

2π · pos
24 · samples per hour · V

)
,

(5)

where the value of V is influenced by the periodic patterns observed in the source
city with k representing specific positions (either odd or even). For instance, to
capture the daily pattern, we set V = 1. Similarly, for the weekly pattern, V is
set to 7, and for the monthly pattern, V is set to 30. We next add these positional
encodings to each of Bi resulting in three unique sets of batches becoming three
distinct tasks. We then equally divide each task into support and query sets for
the inner loop optimization.

However, traditional sinusoidal positional encodings might not be optimal to
use for all tasks. To address this challenge, we further introduce meta-positional
encoding that is learned throughout the outer loop optimization process, denoted
as η ∈ R

N×T . We define the meta-positional encoding as follows:

η = α ⊗ E; where, α ∈ R
1×T and E ∈ R

N×T , (6)

where ⊗ represents the matrix multiplication, α is the scaling parameter and E
is the embedding vector. And, the scaling parameter, α, acts as a weight that
determines the importance of the positional information. The meta-positional
encoding η remains static in the inner loop and is only updated during the outer
loop optimization. By learning a positional encoding in the outer loop, our model
can potentially capture a more generalized representation of position that works
across different time scales (daily, weekly, and monthly). Furthermore, it can
help the meta-model start with a more suitable positional representation for a
variety of tasks before inner loop adaptation.

3.4 Memory-based Spatial Knowledge Transfer

While traditional methods [11,28] generate graphs from a similarity matrix, our
transfer-learning context for inter-city traffic forecasting presents the following
unique challenges: When transferring knowledge from a source city to a target
city, node embeddings become a problem due to discrepancies in the number of
sensors between the two cities. For example, let us consider a scenario where
the model is pre-trained using the source data, resulting in the learned node
embedding Es ∈ R

Ns×d. However, creating a target city specific graph requires
the node embedding Et ∈ R

Nt×d which disables to use of the learnable node
embedding from the source city directly.
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In order to overcome this non-transferability issue due to the mismatch of
node number between source and target cities, we adopt a memory module
inspired by [21,23]. And, our proposed module supplements node embeddings
that cannot be directly transferred. Let Es ∈ R

Ns×d and Et ∈ R
Nt×d denote

the private node embeddings of the source and the target, respectively, which
are not shared but trained independently. In particular, we leverage the idea
of memory network [8] and learn a global memory that is shared in both the
source and target city. Specifically, the memory is defined as M ∈ R

b×d, where
b and d denote the number of memory items and the dimension of each item,
respectively. During the pre-training step for the source data, the inter-node
similarity matrix ξs ∈ R

Ns×Ns is defined as follows:

ξs = (EsM
T )(EsM

T )T (7)

Upon completion of the pre-training using the source data, we use only the
learned global memory M in the fine-tuning stage for the target data. Like-
wise, the inter-node similarity matrix ξt ∈ R

Nt×Nt for the target city can be
formulated as follows:

ξt = (EtM
T )(EtM

T )T , (8)

where the global memory M enables us to transfer the extracted knowledge
on the road topological structure of the source data, which could have been
potentially lost due to the disparity in the number of nodes between the cities.

To effectively ensure a decent level of sparsity of the graph structure, we
apply the Gumbel softmax trick to retrieve the final sparse adjacency matrix
A ∈ R

N×N for both source and target, where σ and τ are the activation function
and the temperature variable, respectively. This process can be expressed as
follows:

A = σ((log(ξij/(1 − ξij) + (n1
ij − n2

ij))/τ)

s.t. n1
ij , n

2
ij ∼ Gumbel(0, 1)

(9)

Equation 9 implements the Gumbel Softmax algorithm [10] for our task,
where Ai,j = 1 with the probability ξi,j and 0 with the remaining probabil-
ity. Gumbel Softmax maintains the same probability distribution as the normal
Softmax, ensuring statistical consistency in generating the trainable probability
matrix for the graph forecasting network. And, let In denote an identity matrix
and D represent a diagonal degree matrix satisfying Dii = ΣjAij , then the
specific operation of graph convolutional network (GCN) can be expressed as
follows:

O = GCN�A(X) = W (In + D− 1
2 AD− 1

, 2)X, (10)

where GCN is parameterized by W ∈ R
T×d, and the output of GCN is denoted

as O ∈ R
N×d.
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3.5 Memory Addressing

The memory M is designed to explicitly record the topological pattern during
the training. We define the memory that computes attention weights w based
on the similarity of the memory items and the query from the GCN output O.
We compute each wj via a softmax operation as a memory addressing scheme
by following:

wj =
exp(sim(O(a)

t ,Mj))

ΣM
j=1exp(sim(O(a)

t ,Mj))
(11)

sim
(
O

(a)
t ,Mj

)
=

O
(a)
t M�

j

‖O
(a)
t ‖ ‖Mj‖

(12)

where we denote a as a row index, and derive the memory reading operation
by matching O(a) with each memory Mj . We then calculate a scaler wj that
represents the cosine similarity between vector O(a) and memory Mj as shown
in Eq. 12. After that, We recover a node embedding vector P

(a)
t ∈ R

d combining
all the memory item as follows:

P
(a)
t = ΣM

j=1wjmj (13)

3.6 Spatial Temporal Recurrent Network

To capture the spatiotemporal pattern in the traffic data, we use the Spatiotem-
poral Recurrent Graph Convolution Module (STRGC) proposed in [14]. This
module integrates node embedding Pt with a Gated Recurrent Unit (GRU)
network and processes the input series Xt−T+1:t and matrix Pt to ultimately
produce the predicted future traffic data, Xt+1:t+T ′ . This prediction process is
precisely defined as follows:

zt = σ(Pt([X0:t || ht−1]))
rt = σ(Pt([X0:t || ht−1]))

ct = tanh(Pt([X0:t || (rt 
 ht−1)]))
ht = zt 
 ht−1 + (1 − zt) 
 ct.

(14)

In particular, Figure 1 presents the overall architecture of our method, where
we use mean absolute error (MAE) as our objective criterion which is formulated
as follows:

LMAE =
1
Ty

Ty∑

i=1

‖Y[:,τ ] − Ŷ[:,τ ]‖, (15)

To further enhance our model’s discriminating power for diverse scenarios on
different roads over time, we regulate the memory parameters with two con-
straints [20] including a contrastive loss Lseparate and a consistency loss Lcompact,
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as follows:

Lseparate =
T∑

t

N∑

a

[∥∥∥O
(a)
t − Mp

∥∥∥
2

−
∥∥∥O

(a)
t − Mn

∥∥∥
2

+ λ
]

+

Lcompact =
T∑

t

N∑

a

∥∥∥O
(a)
t − Mp

∥∥∥
2

where T indicates the total number of sequences (i.e., samples) in the training
set, and p, n signify the top two memory item indices determined by ranking
wj in Eq. 11 given localized query O

(a)
t . And, we regard O

(a)
t as the anchor, its

most comparable prototype Mp as the positive sample, and the second similar
prototype Mn as the negative sample by applying these two constraints, where
λ signifies the margin between the positive and negative pairings. Here, the idea
is to keep memory items as compact as possible, at the same time, as dissimilar
as possible through contrastive loss. These two competing objectives limits the
memory’s ability to directly discriminate between diverse spatiotemporal pat-
terns at the node level. In practice, we found that including them within the
objective criteria (i.e., MAE) promotes training convergence (with balancing
factors C1, C2 and C3):

Ltotal = C1LMAE + C2Lseparate + C3Lcompact (16)

It should be noted that during source pre-training, we use only the MAE loss
Eq. 15 to update the model parameters. And, for fine-tuning in the target
dataset, we employ Eq. 16 as the loss function. This is because we expect the
memory to include a variety of topological patterns from the source city. Since
data is limited in the target city, the memory should only retain certain patterns
related to its own topological structure in order to prevent negative transfer.

3.7 Pre-training and Fine-tuning Process

As mentioned, the training process for SSMT consists of two primary stages: 1)
pre-training with the data from the source city and 2) subsequent fine-tuning
using the data from the target city. In the pre-training stage, data from each task
is divided into support and query sets to facilitate MAML training. During the
inner loop optimization, the model parameters are updated using the support set
for each task. Importantly, the learnable meta-positional encoding used for the
query set remains static during the inner loop optimization. In the subsequent
outer loop optimization phase, the meta-positional encoding is updated based
on parameters learned from all the tasks. This enables our model to learn task-
universal representations across all temporal patterns. When the model under-
goes the fine-tuning stage with the target data, we use the pre-trained weights
as the initial parameters, except for the node embedding for target data which
is initialized separately. The entire learning process is presented in Algorithm 1
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Algorithm 1 :Pre-training and fine-tuning process of SSMT
Input: Source input data(X s, Ys) and target input data

(
X t, Yt

)

Output: Spatial temporal prediction in the target city

/* ——— Source pre-training ——— */

1: randomly initialize θ
2: θs ←− θ
3: while not done do
4: // sample batch from the source dataset

5: Ds
j ←− SampleBatch(X s, Ys)

6: for all Ds
j do

7: // sample task from a single batch

8: T i ←− Ds
j by Eq. (4)

9: for all T i do
10: // sample support set

11:
(
X s

sup, Ys
sup

)
←− T i

12: calculate α∇θLT i

(
Ys

supp, Ŷs
supp

)

by Eq. 15

13: θs ←− θs − α∇θLT i

(
Ys

supp, Ŷs
supp

)

14: end for
15: sample query set

(
X s

qu, Ys
qu

)
←− T i

16: compute LT i

(
Ys

qu, Ŷs
qu

)
by Eq. 15

17: θ ←− β∇θs

∑
T i∼Ds

j
LTi

(
Ys

qu, Ŷs
qu

)

18: end for
19: end while

/* ——— Target fine-tuning ——— */

20: while not done do
21: // sample batch from the target dataset

22: Dt
j ←− SampleBatch(X t, Yt)

23: for all batches do
24: (X t

i , Yt
i ) ←− Dt

j

25: Ŷt
i ←− fθ

(
X t

i

)

26: calculate Ltotal

(
Yt

i , Ŷt
i

)
by Eq (16)

27: calculate ∇θLtotal

(
Yt

i , Ŷt
i

)
by Eq (16)

28: θ ←− AdamOptimizer
(
∇θLtotal

(
Yt

i , Ŷt
i

))

29: end for
30: end while
31: return θ
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4 Experiments

4.1 Datasets

We perform our experiments on five publicly available benchmark traf-
fic datasets: METR-LA, PEMS-BAY, PEMSD4, Didi-Chengdu and Didi-
Shenzhen [4,14]. These datasets contain months of traffic speed data. METR-LA
and PEMS-BAY are collected every five minutes, while Didi-Chengdu and Didi-
Shenzhen are collected every ten minutes. In our experiment, we use the PEMS-
BAY dataset as the source dataset for the target METR-LA and PEMSD4
datasets, and we use the Didi-Shenzhen dataset as the source dataset for the
target Didi-Chengdu dataset since PEMS-BAY and Didi-Shenzhen have signifi-
cantly more traffic data compared to their respective target cities. Our primary
motivation in this paper is to explore single-source transfer learning. Therefore,
we strategically selected the largest datasets from source cities to ensure robust-
ness. We assume that target cities will have smaller datasets, as they may have
recently deployed sensors. Additionally, we restricted our experiments to cities
within the same country due to the high security and privacy concerns associated
with traffic data.

Table 1. Dataset description.

Dataset Number of sensors (Nodes)Time StepsMean

PEMS-BAY 325 52,116 61.77

METRA-LA 207 34,272 58.27

PEMSD4 170 17,856 35.38

Didi-Shenzhen627 17,280 31.01

Didi-Chengdu 524 17,280 29.02

4.2 Few-Shot Setting

We use the similar few-shot traffic forecasting setting proposed in [17]. We divide
the data of the cities into source, target, and test sets, where the source data
consists of data from a single city, while the target and test data consist of
data from the target city. For example, if PEMSD4 is the target city, we use
the full PEMS-BAY dataset as the source data, 1 week of PEMSD4 data as the
target data, and the remaining PEMSD4 data as the test data. We pre-train and
learn multiple tasks on the source data and fine-tune the model on the target
data. Finally, we evaluate our framework on the test data. We implemented our
model using Pytorch training with a single NVIDIA RTX A5000 GPU with 24
GB memory. The training setup involved a batch size of 64 and a maximum of
100 epochs. We set the learning rates for the inner and outer loops at 0.01 and
0.001, respectively. And the memory module is comprised of 20 units, each with
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a dimension of 64. We empirically chose the values of C1, C2, and C3 as 0.5, 0.2,
and 0.3, respectively for Eq. 16.

Table 2. The overall performance of SSMT vs. baseline methods, where our method
achieves the best performance.

Methods PEMS-BAY to METRA-LA PEMS-BAY to PEMSD4

MAE RMSE MAE RMSE

5 min15 min30 min5 min15 min30 min5 min 15 min30 min5 min 15 min30 min

DCRNN 3.05 3.45 4.38 4.78 5.97 7.55 19.55 20.56 21.15 29.19 30.24 32.33

GWN 3.12 3.59 4.27 4.87 5.94 7.66 19.37 20.58 21.12 29.26 30.15 32.24

AdaRNN 2.95 3.39 4.13 4.66 5.86 7.25 19.45 20.44 20.92 29.12 30.05 32.02

ST-GFSL 2.81 3.21 4.12 4.30 5.82 7.38 19.02 20.32 20.88 28.85 29.93 31.73

TPB 2.75 3.11 3.88 4.25 5.75 6.97 19.08 20.17 20.98 28.81 29.95 31.69

SSMT (ours)2.66 3.01 3.80 4.14 5.60 6.82 18.5819.45 20.34 28.3129.35 31.02

Methods Didi-Shenzhen to Didi-Chengdu

MAE RMSE

10 min 30 min 60 min 10 min 30 min 60 min

DCRNN 2.68 3.19 3.41 3.55 4.05 7.62

GWN 2.79 3.05 3.49 3.41 4.12 4.77

AdaRNN 2.64 2.91 3.35 3.33 3.97 4.56

ST-GFSL 2.48 2.81 3.28 3.24 3.88 4.42

TPB 2.35 2.88 3.21 3.19 3.87 4.45

SSMT (ours)2.23 2.71 3.16 3.10 3.83 4.39

4.3 Baselines

To demonstrate the superiority and effectiveness of our proposed method in
terms of transferability, we use the following baselines: 1) Diffusion Convolu-
tional Recurrent Neural Network (DCRNN) [14] 2) Graph wavenet for deep
spatial-temporal graph modeling (GWN) [25] 3) Adaptive learning and forecast-
ing of time series (Ada-RNN) [6], 4) Spatio-Temporal Graph Few-Shot Learning
with Cross-City Knowledge Transfer (ST-GFSL) [17], and 5) Cross-city Few-
Shot Traffic Forecasting via Traffic Pattern Bank (TPB) [15]. In particular, we
compare our model with both transferable and non-transferable methods. The
first two models are traditional non-transferable forecasting baselines, whereas
the others are transferable baselines including SOTA methods. In this paper, we
use the mean absolute error (MAE) and the root mean squared error (RMSE)
to evaluate the prediction performance.

4.4 Results and Analysis

In Table 2, we present a performance comparison of SSMT with other SOTA
baselines. Our SSMT outperforms all other methods following the same eval-
uation settings in [17]. We can observe that our proposed SSMT outperforms
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the baselines in both short-term and long-term forecasting. For the METR-LA
dataset, our model surpassed the second-best baseline scores, showing enhance-
ments of 2.84% in MAE and 2.44% in RMSE. Similarly, for the PEMSD4 dataset,
we observed improvements of 2.90% in MAE and 1.92% in RMSE. Lastly, with
the Didi-Chengdu dataset, our gains were 3.14% and 1.50% in MAE and RMSE,
respectively. The improved performance demonstrates that the added meta-
knowledge from the memory bank and meta-positional encoding indeed enhance
the model’s forecasting accuracy.

4.5 Ablation Study

We delve deeper into analyzing the effectiveness of different modules and the
sensitivity of hyperparameters through ablation study. Table 3 demonstrates
the effectiveness of the two modules employed in our method. Specifically, we
show the experiment on Didi-Chengdu dataset for 1 hour prediction. It clearly
illustrates that both strategies are individually effective for our task. Further-
more, combining the results of both methods leads to even greater improvements
in performance.

Table 3. Ablation study for the effectiveness of the memory bank and meta-positional
encoding (MPE) used in our method.

MemoryMPEError Score (MAE)

× × 4.12%

× � 3.74%

� × 3.62%

� � 3.16%

Fig. 2. MAE performance with different memory sizes on PeMSD4 dataset.
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Fig. 3. The performance of SSMT vs. the number of tasks.

To further investigate the effect of the memory module of SSMT, we per-
formed experiments with different memory size settings and presented the cor-
responding MAE scores for the Didi-Chengdu dataset. The results summarized
in Figure 2 demonstrate that when a sufficiently large memory size is used, our
SSMT consistently generates reliable and plausible outcomes, indicating that
the memory module succeeds in transferring informative spatial knowledge from
source to the target.

In Figure 3, we examine the impact of the number of tasks on traffic pre-
diction. Our findings indicate that increasing the number of tasks can lead to
significant improvements of our model. And, this suggests that diverse temporal
tasks have the potential to capture essential temporal patterns specific to the
target city.

5 Conclusion

In this paper, we present SSMT, a transferable model tailored for time series
traffic forecasting. During the initial pre-training phase, our proposed model
is trained using abundant data from a single source city, while the fine-tuning
phase involves refining the pre-trained model using limited data from the target
city. We present a carefully designed memory mechanism that stores the diverse
patterns from the source city and then retrieve only the target-specific patterns
from the memory to predict traffic speed accurately. We further propose a meta-
positional encoding that consolidates universal patterns from daily, weekly, and
monthly positional encodings. Our experimental results demonstrate the supe-
rior transferability, outperforming the SOTA traffic forecasting methods.
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Abstract. As we move towards a future where minimally invasive meth-
ods become the norm for surgeries and diagnostic procedures, it is
increasingly vital to improve our strategies for viewing the organs and
complex structures within our bodies. Image stitching presents an entic-
ing solution, expanding our field of view by seamlessly weaving together
a sequence of images. While existing stitching techniques do lean on
the capabilities of endoscopy imaging, they, unfortunately, overlook the
critical need for automated feedback when grappling with the complex-
ities and challenges innate to endoscopy imaging. these methods strug-
gle to stand firm against deformations and regions with low texture.
In this paper, we introduce a robust endoscopic image-stitching algo-
rithm designed to thrive in adversity. Its unique resilience to deformations
and low-texture regions is reinforced by the inclusion of a radial basis
function weighting that is paired harmoniously with location-dependent
homography based on the corresponding locations of the strong features
extracted by affine shape-adapted Hessian-Laplace detector. Crucially,
this algorithm is steered by a sophisticated automatic feedback mecha-
nism. This feedback system makes astute evaluations based on an image
quality metric and the structural comparison between the sequences of
endoscopy images. We have thoroughly validated the efficacy of our new
approach using two public datasets, namely EndoSLAM and EndoAbS,
under demanding conditions. The results eloquently illustrate the supe-
rior benefits of our technique. Our proposed method surpasses commonly
employed techniques, delivering superior performance in quantitative
metrics, including precision at 30.07%, recall at 114.89%, F1-score at
84.62%, and TRE at 46.07%.
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Homography · Feature Extraction · Feature matching.
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1 Introduction

Endoscopy is a common and essential tool in medical diagnostics and
research, playing a pivotal role in identifying and treating diseases, particularly
tumors [29]. Yet, there are limitations such as the inability to obtain the best
field of view and magnify an image simultaneously [15]. Increasing magnification
enhances detail but reduces the visual field, complicating comprehensive organ
examination and disease evaluation [26]. With the advancement of computer
technology, medical images can be shared online, facilitating remote consulta-
tions [27]. However, a single endoscopic image might not suffice for accurate
judgment. Thus, the challenge lies in stitching together successive images for
complete visualization, which is crucial for remote diagnosis and data measure-
ment.

Image stitching involves addressing several interconnected problems. Firstly,
there is the issue of data association, which involves finding common scene ele-
ments across various views, a topic discussed in-depth by Huang [9]. Secondly,
we have the task of estimating a geometric transformation. This transformation
should align with the data association and unify disparate views into a single,
seamlessly stitched image [8]. These two tasks are usually undertaken concur-
rently [4]. Lastly, it is necessary to blend the individual images’ intensities to
ensure a consistent, smooth final image [28].

Of these, the sub-problem of data association is the most complex, particu-
larly in surgical scenarios, and hence attracts significant research focus. A classic
strategy for addressing this issue is to identify and extract image point features
that correspond to unique landmarks within the scene and then match them
across different views. This approach, known as feature-based stitching [18], has
been thoroughly researched in recent years. Various well-known hand-crafted
feature methodologies, such as Harris [20], SIFT [14], SURF [24], ORB [7], and
FAST [12] have been applied to it. In more recent developments, data-driven fea-
tures derived from deep neural networks are being employed for image stitching
[2].

There are also other strategies for stitching that do not hinge on feature
extraction. Direct and dense pixel-based registration techniques can be developed
as an iterative optimization problem, with the goal of maximising similarity as
calculated by mutual information [19] or other photometric similarity/difference
measures [13]. With the increased use of deep learning across various fields, there
are now proposed end-to-end stitching algorithms that rely on deep learning to
deduce registration parameters [3].

Technology’s evolution has substantially enhanced endoscopic instruments.
Luo et al. [16] proposed a method that uses an Auto-Regressive (AR) model to
predict human motion intentions for teleoperated tasks. This algorithm antici-
pates human movements, updating and adjusting robotic actions during Human-
Robot Interactions (HRI) as necessary. Moreover, Su et al. [25] developed an
innovative technique. They employed a swivel motion reconstruction method to
mimic human-like behavior through kinematic mapping in robot redundancy.
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Their groundbreaking framework merges an incremental learning approach with
a deep convolutional neural network, facilitating efficient and speedy learning.

However, these kinds of tasks require automated system feedback regarding
image quality. Owing to the endoscope’s movement, limited field of view, and the
complexity of human body structures, there is a high likelihood of missing crucial
features in the image sequence. Therefore, it is essential to have real-time updates
from the imaging process if a vital structure is not captured in the images due
to the endoscope camera’s unpredictable movement. For this reason, we provide
automated system feedback during endoscopy regarding image quality, which is
otherwise impossible to process manually.

Based on the analysis of existing literature, it becomes evident that tra-
ditional image stitching techniques have been primarily used for endoscopic
imagery, despite their inherent limitations. Such approaches do not take into
account the specific attributes of endoscopic images, resulting in significant dif-
ficulties in solving the stitching problem. In scenarios such as large motion, a
blurred environment, low texture, and deformations, the existing techniques are
prone to stitching failures, often without providing any insightful feedback.

In Section 3, we substantiate our proposed methodology by employing pub-
licly accessible datasets. The comparison of stitched images in Figure 4 and 6
with recent techniques attests to the advantages gained from extracting a sub-
stantial number of robust features in texture-less and deformed regions. These
features are then leveraged to compute a weighted local homography for stitching
image sequences. The improvements compared to best performers in quantitative
metrics, as depicted in Table 1–precision at 30.07%, recall at 114.89%, F1-score
at 84.62%, and TRE at 46.07% undeniably affirm that our technique significantly
outperforms commonly employed methods.

This paper offers several unique contributions:

– The introduction of a fully automated, feedback-oriented, robust stitching
algorithm designed specifically for endoscopic image stitching.

– Our algorithm not only provides feedback to surgeons but also executes blur
removal on endoscopic images based on image quality assessment.

– The implementation of an affine-shape adapted Hessian-Laplace detector to
extract robust features from the images.

– Our approach uses these robust features to apply a weighted local homogra-
phy designed with endoscopic imaging properties in mind.

2 Approach

In this section, we introduce our proposed approach for robust endoscopic image
stitching with automated feedback. Figure 1 illustrates the various components
of our technique.
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Fig. 1. Schematic of the proposed technique

2.1 Statistical Analysis-driven Automated Feedback

We make the assumption that the endoscopic images, denoted as Ii with
i = 1, 2, 3, ..., n, are already aligned. Our processing of these images follows
a sequential approach. To assess the level of texture availability, we employ a
measure based on uncertainty or randomness within an image. This measure,
denoted as Ei,tex, is calculated as follows:

Ei,tex =
255∑

k=1

(−pk log2 pk). (1)

In Equation (1), pk represents the probability associated with the gray level
k of the image.

In order to assess the structural similarity between two consecutive images, Ii

and Ii+1, we consider their luminance, contrast, and structure. This comparison
is based on the following equations:
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S(Ii, Ii+1) = [l(Ii, Ii+1)]α · [c(Ii, Ii+1)]β · [s(Ii, Ii+1)]γ . (2)

Here, the terms are defined as follows:

l(Ii, Ii+1) =
2μIiμIi+1 + ε1

μ2
Ii
+ μ2

Ii+1
+ ε1

,

c(Ii, Ii+1) =
2σIiσIi+1 + ε2

σ2
Ii
+ σ2

Ii+1
+ ε2

,

s(Ii, Ii+1) =
σIiIi+1 + ε3

σIiσIi+1 + ε3

where μIi and μIi+1 , σIi and σIi+1 , and σIiIi+1 represent the local means, stan-
dard deviations, and cross-covariance for images Ii and Ii+1.

2.2 Blur Removal for Enhanced Image Quality

To ensure that the texture information of a good quality endoscopic image is
not lost during the blur removal process, we adopt a selective approach based
on the score obtained from Equation (1). Randomly removing blur may result
in the degradation of image quality and loss of texture details. The blur removal
technique discussed in [5] is employed for this purpose. Consequently, the com-
putation of the enhanced images is carried out as follows:

Ii+1,en =
Ii+1 − [1 − t(x)]A

t(x)
. (3)

Here, t(x) represents the transmission map, and A denotes the single color
in the image where the transmission map is 0.

2.3 Robust Feature estimation using Affine-Shape Adapted
Hessian-Laplace Detector

To initiate our procedure, we employ a detector based on the Hessian matrix to
identify salient points within the scale space. The Hessian matrix is essentially
a matrix of second-order partial derivatives, obtained from the Taylor series
expansion. It is articulated as:

Hi,en =
[
Ii,en,xx(x;σd) Ii,en,xy(x;σd)
Ii,en,yx(x;σd) Ii,en,yy(x;σd)

]
(4)

Here, Ii,en,xx, Ii,en,xy, and Ii,en,yy denote second-order derivatives that are
calculated using Gaussian kernels of scale σd.

Next, we employ a scale-normalized Laplacian, which helps us choose the
appropriate scale for a detected point. It is expressed as:

Laplacian(x;σd) = σ2
d

∣∣Ii,en,xx(x;σd) + Ii,en,yy(x;σd)
∣∣ (5)
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We can estimate the affine shape of the neighborhood surrounding the
detected point by leveraging the eigenvalues of the second-moment matrix. This
matrix is represented as:

Mi,en = σ2
dg(σI) ∗

[
I2i,en,x(x;σd) Ii,en,xIi,en,y(x;σd)

Ii,en,xIi,en,y(x;σd) I2i,en,y(x;σd)

]
(6)

In this scenario, the derivatives are averaged over the detected point’s neigh-
borhood by applying a smoothing process using a Gaussian window of scale
σI .

2.4 Location-Based Weighted Homography Estimation for Feature
Correspondence

Consider reference and target images denoted as Ii,en and Ii+1,en. We compute
matching pairs pppi,en = [x, y]T and ppp

′
i,en = [x

′
, y

′
]T from detected features xr in

previous section using these images. The pairs are derived from robustly iden-
tified feature points discussed in the previous section, using the Brute-Force
(BF) matching algorithm [10]. The homographies between these pairs can be
defined as

ppp
′
i,en = hhh(pppi,en) (7)

From Equation (7), we can perform a simple matrix expansion resulting in
the following expressions:

x
′
=

h1x + h2y + h3

h7x + h8y + h9
(8)

y
′
=

h4x + h5y + h6

h7x + h8y + h9
(9)

In homogeneous coordinates, Equation 7 is represented as

p̃̃p̃p
′
i,en = HHH(p̃̃p̃pi,en) (10)

where p̃̃p̃p
′
i,en = [x

′
, y

′
, 1]T , p̃̃p̃pi,en = [x, y, 1]T and HHH is a 3 × 3 matrix.

The columns of HHH are denoted by hhh1 = [h1, h4, h7]T , hhh2 = [h2, h5, h8]T , and
hhh3 = [h3, h6, h9]T . By taking a cross-product on both sides of Equation 10, we
get:

0003×1 = p̃̃p̃p
′
i,en × HHHp̃̃p̃pi,en (11)

This equation (11) can be reformulated as follows:

0003×1 =

⎡

⎢⎣
0003×1 −p̃̃p̃pT

i,en y
′ − p̃̃p̃pT

i,en

−p̃̃p̃pT
i,en 0003×1 −x

′
p̃̃p̃pT

i,en

−y
′
p̃̃p̃pT

i,en x
′
p̃̃p̃pT

i,en 0003×1

⎤

⎥⎦

⎡

⎣
hhh1

hhh2

hhh3

⎤

⎦ (12)
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The 9 × 1 vector in Equation 12 is referred to as hhh. Considering that only
two rows of the 3 × 9 matrix in Equation 12 are linearly independent, we
can determine hhh utilizing a collection of N corresponding points, denoted as
p̃̃p̃pi, en, kk = 1N and p̃̃p̃pi, en, k

′
k = 1N .

hhh = argmin
hhh

N∑

k=1

∥∥∥∥

[
aaak,1

aaak,2

]
hhh

∥∥∥∥
2

= argmin
hhh

∥∥AAAhhh
∥∥2 (13)

The components aaak,1 and aaak,2 correspond to the two rows of the matrix
specified in Equation 12. We will also apply a constraint of ‖hhh‖2 = 1 since a
homographic transformation possesses only 8 degrees of freedom.

The paper [30], introduced the Moving DLT (Direct Linear Transform)
framework to approximate local homography. This method incorporates locality-
enforcing weights into the objective of Equation 13. The estimation of local
homography at the position pppi,en,j is conducted as follows:

hhhj = argmin
hhhj

N∑

k=1

wj,k

∥∥∥∥

[
aaak,1

aaak,2

]
hhh

∥∥∥∥
2

(14)

The calculation of scalar weights, denoted as wj,kk = 1N , is determined by
changes relative to pppi,en,j .

wj,k =
(∥∥pppi,en,k − pppi,en,j

∥∥2 ∗ log
∥∥pppi,en,k − pppi,en,j

∥∥
)

/σ2 (15)

We can reformulate Equation 14 as follows:

hhhj = argmin
hhhj

∥∥WWW jAAAhhh
∥∥2 (16)

The weight matrix WWW j ∈ R
2N×2N is structured as follows:

WWW j = diag
([

w1,jw1,j ...wN,jwN,j

])
(17)

In the research [30], they propose the concept of allotting increased weights
to data that is closer to pppi,en,k. This enhances the ability of the projective warp,
HHH, with respect to the local structure around pppi,en,k. They also incorporate an
offset parameter, γ, to circumvent numerical issues.

A key aspect of this concept is that the computation of local homography
is only applicable to the areas of the target image that overlap with the refer-
ence image. For each pixel in regions that do not overlap, the transformation
is computed as a weighted linear combination of the local homographies in the
overlapping areas. Thus, an appropriate set γ is crucial to prevent extrapolation.

This overarching idea is highly effective in the context of real-world images,
which often contain abundant textures and rigid structures. However, compli-
cations arise during endoscopy imaging, due to the presence of low texture and
numerous deformations. To address these challenges, we consider an endoscopy



Advanced Endoscopy Imaging with Automatic Feedback 69

imaging property adapted weight function in Equation 15 that tackles deforma-
tions and outliers caused by low texture. This is achieved by combining squared
distance and log distance. This combined approach allows for the flexible fitting
of deformation patterns, while the log distance alone aids in reducing outliers.

When pppi,en,k shifts continuously in the source image domain Ii,en, the corre-
sponding homography estimation HHH adjusts smoothly. This process results in a
dynamic warp that can flexibly adapt to data and transform the source image
into Itx

i,en.

Blending Warped Images

In this section, we merge the transformed source image Itx
i,en with the target

image Ii+1,en to generate the final stitched image Istitch. The computation for
the stitched image [23] is as follows:

Istitch = αItx
i,en + (1 − α)Ii+1,en (18)

Fig. 2. Images with different entropy: (a) higher entropy (b) moderate entropy, and
(c) lower entropy

3 Experiments

We have utilized three diverse, publicly accessible datasets: EndoSLAM [21],
EndoAbs [22], and Hamlyn [16]. These datasets were selected purposefully to
encompass a variety of conditions, including differing lighting circumstances,
small fields of view, low-texture regions, and deformed areas, thereby providing
a comprehensive evaluation of our method. The texture of an image is crucial
for image-guided systems as it enhances feature extraction reliability and boosts
computational precision.
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Fig. 3. Image Enhancement: (a) image with moderate blur, (b) enhanced image from
moderate blur, (c) image with extreme blur and (d) enhanced image from extreme blur

3.1 Qualitative Evaluation

Figure 2 depicts three images from the EndoSLAM dataset, each presenting
varying levels of texture Ei,tex. In Figure 3(a), the image displays a moderate blur
with an entropy value of 7.21. After deblurring, an enhanced image is produced,
as seen in Figure 3(b), which possesses a richer texture and an improved entropy
value of 7.87. This refined image is more conducive to robust feature extraction.
Conversely, the image in Figure 3(c) exhibits an intense blur with an entropy
of 7.13. Following deblurring, the resultant image on Figure 3(d) shows only a
slight improvement in texture quality, with an entropy of approximately 7.17.
Despite the enhancement, this image remains below the optimal threshold and
is not ideal for stitching.

Figure 4 illustrates that our proposed method generates higher quality and
more accurate stitching in comparison to other cutting-edge techniques. To fur-
ther scrutinize the performance, a region in Figure 5 where robust feature extrac-
tion and subsequent image frame warping proved challenging was cropped. The
APAP technique, as illustrated in Figure 5(a) and outlined in [30], presents a
comparable outcome; specifically, it fails to accurately merge the tissue area,
resulting in a warped region. The AutoStitch method [6] generates a malformed
area and even excludes some parts entirely from the original image sequence. As
we shift our focus to Figure 5(c), the latest wide parallax technique [11] misplaces
the tissue region entirely due to the lack of robust features and incorrect warping
in that particular area. In stark contrast, our proposed method delivers perfect
alignment of the tissue region. This is achieved by successfully extracting robust
features in these areas thanks to the affine adaptation of the Hessian-Laplace
detector. Subsequently, these features are used to calculate a weighted homog-
raphy, which enables precise warping. This is made possible by the appropriate
distribution of weight based on whether a randomly located feature is sufficiently
close to the target feature location.

Figure 6 and 7 showcase the exemplary results achieved when stitching using
the stereo pairs from the Hamlyn and EndoAbs datasets, respectively. The Ham-
lyn dataset, while offering images of high resolution, introduces intricate chal-
lenges due to the presence of elements such as blood, deformations, and surgical
instruments. Impressively, our proposed method managed to stitch the Ham-
lyn stereo pairs with remarkable accuracy, highlighting its resilience and effec-
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Fig. 4. Image stitching using state of art techniques: (a) APAP (b) AutoStitch (c)
Wide Parallax, and (d) Proposed

Fig. 5. Magnified stitched region using state-of-the-art feature based techniques: (a)
APAP (b) AutoStitch (c) wide parallax, and (d) Proposed

tiveness even when faced with occlusions caused by surgical tools. Turning our
attention to the EndoAbs dataset, it’s worth noting that our technique consis-
tently delivered despite the challenging low-light conditions. Such challenging
scenarios are not uncommon in surgical environments. The successes displayed
herein emphasize the potential of our method to furnish an expanded field of
view, characterized by both precision and quality, from a stereo image sequence.
This expanded perspective can be invaluable in enhancing surgical operations
and diagnostic procedures.

Figure 8 depicts an instance of a failure during the image stitching process. As
evident from the figure, the extreme blur in Figure 8(a) (the left image) impedes
the algorithm’s capability to establish correspondences between image sequences.
The particular image lacks sufficient texture information, making it challenging
to extract robust features. Consequently, the stitching process fails noticeably
as shown in Figure 8(b). In such scenarios, our algorithm offers feedback to the
experts, suggesting adjustments in the endoscope’s movement to capture higher-
quality images.

Figure 9 illustrates the scenario of the maximum angular limit in our pro-
posed technique. Beyond this limit, the stitching process is affected as the angle
increases. To assess the maximum allowable angle for flawless stitching, we set
the scale to 0.5 and varied the angle values to 5, 10, 15, 45, and 50 degrees. Table 1
includes the maximum limit angle of 45 degrees, beyond which the stitching pro-
cess begins to degrade. In Figure 9(a)(b)(c), the green box region demonstrates
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nearly perfect stitching. However, in Figure 9(d)(e), we observe a degradation
in the stitching process within the green box region as the angle increases from
45 to 50 degrees. These quantitative results are reflected in Table 1, where the
Target Registration Error (TRE) is 0.05 for angles 5, 10, and 15 and increases
to 1.3 for the 45-degree angle.

Fig. 6. Image Stitching using stereo pairs: (a) Hamlyn left view (b) Hamlyn right view
(c) Hamlyin stitched

Fig. 7. Image Stitching using stereo pairs: (a) EndoAbs left view (b) EndoAbs right
view, and (c) EndoAbs stitched

3.2 Quantitative Evaluation

To evaluate the efficacy of the affine-adapted Hessian-Laplace detector, we com-
pared it with two recently adapted feature detectors for endoscopy imaging:
Pyramid ORB [31] and Improved SIFT [16]. We employed the same image
sequence these detectors use for feature extraction. When compared to [31] with
800 key points, our proposed method extracts 17,261 key points, which is approx-
imately 21.5 times greater. Furthermore, when compared to [16] with 113 corre-
sponding points, our technique maintains 1,505 correspondences, which is 13.3
times greater. The large number of key points that our affine-adapted detector
extracts features from most regions, and the high number of correspondences
allows for dense matching.
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Fig. 8. Failure case of image stitching: (a) matching pairs, and (b) stitched image

Fig. 9. Stitching images using the proposed method at a scale of 0.5 with various
rotations: (a) 5-degree rotation (b) 10-degree rotation (c) 15-degree rotation (d) 45-
degree rotation, and (e) 50-degree rotation

Feedback Evaluation In our research, we utilized the EndoSLAM dataset to
determine optimal feedback threshold values. After a thorough examination of
multiple trials, we identified optimal thresholds for both entropy and structural
similarity, which stood at 7.25 and 0.76, respectively. These identified thresholds
play a pivotal role in facilitating feedback for our proposed algorithm. Specifi-
cally, an endoscopy image with entropy below the threshold suggests that the
image might lack sufficient texture, while a lower structural similarity value com-
pared to the set threshold suggests a lack of adequate structure similarity in the
consecutive image sequence for successful stitching. Consider the images shown
in Figure 2(a)(b)(c) with entropies of 7.45, 7.21, and 7.13 respectively. The pro-
gressive increase in entropy value signifies an image enriched in texture. Based
on these observations, our method leverages these entropy values to provide the
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surgeon with feedback regarding the optimal positioning and movement of the
endoscope. Additionally, the structural similarity value obtained from equation
2 assists in determining when there is an inadequate overlapping region for effec-
tive comparison and feature extraction. For instance, Figure 3(b) depicts how
improved image quality can accentuate the texture in an image. Yet, Figure
3(d) illustrates that even with enhanced image quality, extracting meaningful
information for subsequent processes remains a challenge.

We need the feedback system to operate in real time during the endoscopy
procedure to decide whether to accept or reject an image. However, real-time
stitching is not necessary, as it is time-consuming and not crucial for the sur-
geon’s immediate evaluation. The priority is to obtain high-quality images during
the procedure, ensuring they can be stitched later without information loss. This
will provide the surgeon with a high-quality stitched image for better diagnosis.
Our feedback system can evaluate and correct endoscopy images at a rate of 10
frames per second.

Table 1. Evaluating the Efficacy of Various Techniques

Orientation 000000 Methods

Scale Rotation SIFT SURF ORB AKAZE Proposed
P R F1 TRE P R F1 TRE P R F1 TRE P R F1 TRE P R F1 TRE

0.9 5 0.65 0.17 0.27 0.45 0.59 0.29 0.39 8.88 0.59 0.15 0.23 3.87 0.75 0.32 0.3 3.70 0.95 0.77 0.85 0.06
0.9 10 0.64 0.15 0.25 0.85 0.60 0.15 0.23 10.7 0.69 0.12 0.20 6.71 0.82 0.34 0.48 8.02 0.93 0.66 0.77 0.06
0.9 15 0.65 0.12 0.20 1.15 0.50 0.11 0.19 17.8 0.72 0.11 0.20 7.03 0.81 0.35 0.49 10.6 0.88 0.56 0.68 0.05
0.8 5 0.48 0.10 0.13 0.41 0.41 0.19 0.26 9.46 0.73 0.22 0.34 3.62 0.67 0.25 0.36 3.53 0.95 0.89 0.92 0.06
0.8 10 0.47 0.10 0.13 0.79 0.48 0.11 0.18 10.7 0.68 0.20 0.31 7.01 0.69 0.25 0.37 7.31 0.93 0.75 0.84 0.06
0.8 15 0.51 0.10 0.13 1.11 0.46 0.10 0.16 16.6 0.58 0.16 0.25 7.20 0.73 0.25 0.38 10.8 0.89 0.63 0.74 0.05
0.7 5 0.40 0.10 0.10 0.36 0.60 0.23 0.33 8.21 0.67 0.14 0.23 3.13 0.71 0.21 0.33 3.66 0.93 0.89 0.91 0.05
0.7 10 0.39 0.10 0.11 0.70 0.55 0.14 0.23 10.2 0.61 0.13 0.22 6.18 0.76 0.23 0.35 7.02 0.92 0.87 0.90 0.06
0.7 15 0.41 0.10 0.11 1.10 0.49 0.11 0.18 15.8 0.55 0.14 0.22 7.22 0.80 0.22 0.34 10.4 0.90 0.76 0.83 0.05
0.6 5 0.39 0.10 0.11 0.31 0.33 0.11 0.17 7.49 0.73 0.10 0.16 2.88 0.55 0.11 0.19 3.32 0.93 0.88 0.90 0.04
0.6 10 0.44 0.10 0.12 0.61 0.37 0.11 0.16 14.5 0.56 0.10 0.11 5.33 0.66 0.14 0.23 6.22 0.93 0.86 0.89 0.05
0.6 15 0.45 0.10 0.13 0.89 0.44 0.10 0.17 14.9 0.69 0.10 0.16 7.84 0.66 0.14 0.23 6.24 0.90 0.82 0.86 0.05
0.5 5 0.48 0.10 0.15 0.27 0.60 0.12 0.21 6.13 0.71 0.10 0.10 2.33 0.46 0.10 0.10 2.52 0.84 0.78 0.81 0.04
0.5 10 0.45 0.10 0.13 0.51 0.51 0.10 0.17 11.8 0.73 0.10 0.12 4.43 0.43 0.10 0.10 4.57 0.93 0.86 0.89 0.05
0.5 15 0.47 0.10 0.14 0.74 0.53 0.10 0.16 17.1 0.70 0.10 0.10 6.73 0.41 0.10 0.10 7.64 0.86 0.77 0.81 0.05
0.5 45 0.36 0.08 0.11 2.10 0.29 0.08 0.06 18.3 0.42 0.05 0.08 7.95 0.38 0.04 0.07 8.71 0.31 0.26 0.28 1.30
Average 0.47 0.10 0.14 0.77 0.48 0.13 0.20 12.4 0.64 0.12 0.19 5.58 0.65 0.19 0.28 6.51 0.880.74 0.79 0.12

Assessment Through Simulated Transformations Endoscopy imaging
encounters various obstacles, with the random motion of the endoscope being
one of the primary challenges. This motion may introduce minor rotations, and
the tissues encountered can also undergo deformation. Bearing this scenario in
mind, we select an arbitrary frame from the EndoSLAM dataset and subject it
to transformations such as rotation followed by scaling. This procedure yields 15
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unique transformation combinations denoted as TGT . The transformation matrix
Test can then be estimated based on the matched feature points identified in the
feature correspondence section.

We used a specific threshold value of 0.8 for all methods, including our pro-
posed method, as suggested by [17] in Table 1 to evaluate quantitative perfor-
mance. After numerous observations and experiments with different thresholds
on endoscopy images, we determined that a threshold value of 0.8 was the most
effective.

For quantitative evaluation with simulated data, we adopt an approach akin
to that presented in [1]. To assess the results, we utilized metrics such as preci-
sion, recall, and F1-score to quantify feature detection and matching accuracy.
Additionally, the TRE was used to gauge the precision of the registration.

Table 1 displays the quality evaluation metrics for various methods. It is
evident from the table that our proposed method significantly surpasses other
best performers in commonly used techniques, delivering superior performance
in quantitative metrics. Specifically, we achieved a precision of 30.07%, recall
of 114.89%, F1-score of 84.62%, and TRE of 46.07%. The superior performance
of our method is primarily attributed to the innovative affine-shape adapted
detector, which excels in detecting a substantial number of robust features, espe-
cially in low-texture regions. In contrast, other methods under comparison tend
to identify features primarily around specular reflection-affected areas, leading
them to estimate less accurate matches. Remarkably, our method managed to
extract a commendable 78 percent of accurate matches from the vast number of
features identified. Such a substantial figure is pivotal for our stitching algorithm,
as it relies on local homography.

Fig. 10. Ablation Study

4 Ablation Study

We conducted an ablation study to verify the importance of reducing image
blur, which can significantly affect stitching and feature extraction. In both
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Table 2. Ablation Study

methods P R F1 TER

SIFT 0.41 0.53 0.55 1.04
SURF 0.21 0.016 0.03 NA
ORB 0.19 0.01 0.02 NA
Proposed 0.65 0.71 0.69 0.08
Proposed-Corrected 0.79 0.76 0.77 0.02

Figure 10 and Table 2, “Proposed-Corrected” refers to the case of using reduced-
blur images. Figures 10a and 10b demonstrate that the APAP and our proposed
methods perform poorly without blur reduction. Conversely, after reducing blur,
the “Proposed-Corrected” method in Figure 10c stitches images almost perfectly.
Wide Parallax and Autostitch results are not included because these methods
failed to stitch the images due to insufficient feature detection in blurred images.

Additionally, we performed a quantitative evaluation of feature extraction
techniques using both blurred and corrected images, as shown in Table 2. The
metrics indicate that SIFT, SURF, and ORB methods perform poorly with
blurred images. Even our proposed technique performs averagely with blurred
images. However, after reducing blur, our “Proposed-Corrected” method shows
significantly improved performance.

5 Conclusions and Future Work

In our study, we introduce an innovative automatic feedback system critical to
contemporary endoscopic tools used in medical surgeries and diagnostics. This
automatic feedback notifies the surgeon and assists the robot in adjusting the
endoscope’s motion during the imaging process. Moreover, it provides crucial
information to experts, enabling them to acquire meaningful images necessary
for diagnosis and surgery.

Our technique successfully eliminates blur based on feedback, ensuring our
algorithm does not degrade the quality of high-grade images by inappropri-
ately applying the smoke removal technique. The affine shape-adapted Hessian-
Laplace detector incorporated in our approach also extracts robust features
from complex endoscopic images, particularly in deformed and low-texture areas.
Finally, we implemented an endoscopy property-adapted weighting to estimate
local homography, enhancing the stitching in deformed and low-texture regions.
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Abstract. In the process of reconstructing images from data acquired
within a limited angular range, we encounter what is termed limited-
angle tomography. The deficiency of complete data in this context results
in artifacts, commonly appearing as streaks or missing structures, which
can significantly compromise the quality of the reconstructed slice. This
degradation gives rise to issues such as boundary distortion, blurred
edges, and intensity bias, potentially leading to misinterpretation of the
images. Hence, addressing artifacts in limited-angle tomography is crucial
for clinical applications. Although deep learning-based reconstruction has
shown impressive results in recent times, concerns about its robustness
persist. To bolster the robustness of our proposed technique, we integrate
prior information from a modified U-net with preprocessed input into the
Relative Variation - Simultaneous Algebraic Reconstruction Technique
(RV-SART) to provide insights into unmeasured data. Subsequently, the
method extracts structure from the initially reconstructed slice through
structure-texture decomposition. This process facilitates the reconstruc-
tion of high-quality CT images while suppressing pattern-like artifacts.
Extensive experiments demonstrate that our approach surpasses both
traditional and state-of-the-art learning techniques in terms of recon-
struction quality and preservation of fine structures in noisy limited-angle
reconstruction problems. Our technique provides improvements over the
recent LRIP-net for a 90-degree scanning range in quantitative metrics
such as PSNR by 17.48%, RMSE by 46.36%, and SSIM by 6.18%.

Keywords: Limited Angle Tomography · Deep Prior · Artifacts.

1 Introduction

Computed Tomography (CT) finds applications in diverse fields, including med-
ical examinations [13] [18], industrial nondestructive testing [16], and security
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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inspection [14]. In the context of medical CT, increasing attention is being
devoted to mitigating X-ray radiation doses due to their potential harm to
patients [15]. The reduction of radiation dose holds practical significance for
patient well-being. Strategies for achieving this objective include lowering the
X-ray tube current or decreasing the number of projection views. For instance,
a straightforward and effective approach is limited-angle CT scanning, where
projection views are constrained to a specific angular range. Limited-angle CT
scanning is encountered not only in medical applications but also in scenarios
such as the nondestructive testing of pipelines in service [31]. In this context,
the scanning environment necessitates CT scanning within a restricted angular
range. Furthermore, limited-angle CT scanning is employed to enhance temporal
resolution in coronary computed tomography angiography [7]. Within micro-CT
applications, certain identified objects exhibit distinctive structures, including
elongated and discoid shapes. In such cases, the object’s rotational range is
constrained due to limitations in imaging geometry. Alternatively, in specific
projection views, complete X-ray absorption occurs, leading to projection loss
[29]. In summary, limited-angle CT has garnered increasing attention in recent
years.

The rise of Convolutional Neural Networks (CNNs) across various computer
vision tasks has led to a growing popularity of deep learning approaches in the
field of medical imaging. Pelt and Batenburg [26] introduced an artificial neu-
ral network-based algorithm for fast limited-angle image reconstruction. This
method is essentially a weighted combination of the Filtered Back Projection
(FBP) technique and learned filters. Boublil et al. [5] applied a CNN-based model
to integrate multiple reconstructed results, while Kang et al. [22] developed a
deep CNN model in the wavelet domain, training wavelet coefficients from CT
images using the contourlet transform. While the aforementioned approaches
have shown promising outcomes and notably enhanced the quality of recon-
structed images, certain limitations persist. One drawback is the absence of
guaranteed worst-case performance from these algorithms. Another limitation is
their reliance on post-processing methods, overlooking data consistency.

It is evident that iterative methods and learning-based methods exhibit a
primary distinction. The former demonstrates flexibility in addressing diverse
information retrieval tasks by straightforwardly specifying parameters and opti-
mization. Conversely, the latter necessitates laborious training to acquire knowl-
edge of the model before testing and typically faces limitations tied to specialized
tasks. The practical implementation of deep learning techniques in limited-angle
tomography faces significant challenges attributed to two major factors: First,
the potential lack of generalization to unseen data due to inadequate training
data; and second, sensitivity to noise. Consequently, images reconstructed solely
through deep learning methods may appear suboptimal. Additionally, we observe
that limited-angle reconstruction consists of pattern-like artifacts, causing small
structures to be invisible. This issue can be resolved if we can separate structure
and texture from the reconstructed slice.
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We propose a hybrid approach that combines deep learning with iterative
reconstruction. The objective is to leverage Relative Variation - Simultaneous
Algebraic Reconstruction The technique (RV-SART) to impose constraints on
the reconstructed images, ensuring consistency with the measured projection
data, while unmeasured information is supplemented as prior information from
FBPConvNet with preprocessed input. To achieve this, we introduce a method
known as Deep Prior Based RV-SART. Firstly, we employ the Simultaneous
Algebraic Reconstruction Technique - Total Variation (SART-TV) using limited-
angle data. Following this, the resulting reconstructed output is input into the
CNN to extract details about unmeasured data. In the subsequent phase, the
output from the CNN is incorporated into RV-SART, providing crucial prior
information. In this stage, the initially reconstructed slice undergoes decompo-
sition into structure-texture components, aiding in the extraction of structural
information and the mitigation of pattern-like artifacts. This process guarantees
the reconstruction of high-quality CT images.

In Figure 4, we showcase the application of our proposed reconstruction tech-
nique alongside a recent learning-based approach. The visual representation illus-
trates the effective suppression of artifacts and the highly accurate reconstruc-
tion of intricate structures achieved by our method. Substantiating these visual
results, we present a comparative analysis using three key quantitative metrics
in Table 1. This table reveals remarkable enhancements, including a 17.48%
increase in PSNR, a 46.36% reduction in RMSE, and a 6.18% improvement in
SSIM when compared to the second-best performance listed in the table.

2 Related work

Numerous academics have pondered the limitations of post-processing
approaches and have shifted their focus towards emphasizing data consistency
to enhance the quality of reconstructed images. Certain methods leverage neu-
ral networks to incorporate prior information into existing iterative recon-
struction algorithms [1,3,8,17]. Specific approaches, as described in references
[6,9,10,20,24,33] embrace an end-to-end strategy that suggests the unfolding
of an iterative algorithm and comprehensive training as a deep neural network.
This approach facilitates the integration of physical information into the archi-
tecture through data consistency blocks, which are combined with trainable CNN
regularizers.

DIOR [20] is a recent technique that employs a hybrid approach in the resid-
ual domain. In contrast, our hybrid approach operates in the image domain. Our
method is simpler architecture and more effective in reconstructing high-quality
CT images, with lower computational complexity compared to DIOR.According
to our straightforward hybrid technique, structure-texture decomposition proves
to be more effective compared to separating high and low-frequency compo-
nents. This is because we deliberately extract texture components as pattern-
like noise using relative variation, and then successfully remove them from the
reconstructed CT images.
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The technique we propose utilizes prior information that falls within the
realm of deep learning-based reconstruction, specifically categorized as image-
to-image reconstruction. In this approach, direct access to raw measurements
is not necessary, indicating that image reconstruction is independent of manu-
facturing protocols. Through the utilization of a CNN, our method effectively
maps low-quality images to their high-quality counterparts without requiring
additional inputs. In the domain of post-processing sparse-view CT reconstruc-
tion, CNN plays a pivotal role, with FBPConvNet [21] standing out as a notable
representative. FBPConvNet adopts the FBP algorithm for image reconstruc-
tion and integrates a CNN structure based on U-Net [27] for image segmentation
that includes both an encoder and a decoder. Notably, FBPConvNet introduces
a skip connection between the input and output, enhancing the network’s ability
to discern subtle distinctions. To address the limitations of U-Net, Han et al.
[19] introduced Framing U-Net as an alternative post-processing method, specifi-
cally tailored to meet frame conditions. Another innovative approach comes from
Lee et al. [23], who employed a multi-level wavelet U-Net, showcasing superior
results compared to traditional U-Net. Despite the significant success of these
post-processing techniques, it is crucial to note that they do not incorporate
sinogram information into their CNN architectures. As a result, in extremely ill-
posed problems where there are very limited numbers of projections, the afore-
mentioned networks fail to reconstruct high-quality CT images and suppress
artifacts.

Fig. 1. Limited-angle parallel-beam scanning configuration

3 Approach

We examine the limited-angle parallel-beam CT in a two-dimensional setting.
Figure 1 depicts the scanning configuration for this limited-angle parallel-beam
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CT. Additionally, the initial reconstruction for the limited angle with a straight-
forward phantom model is presented in Figure 1. The reconstruction reveals
artifacts, boundary distortion, and structure loss attributed to the insufficient
number of projections obtained through limited-angle scanning.

3.1 Deep Prior Estimation

Jin et al. [21] introduced a post-processing image reconstruction technique named
FBPConvNet, utilizing the FBP method to reconstruct the initial slice from
sparse data and feed it into the CNN input layer. This approach exhibited
impressive results in addressing sparse-view reconstruction in parallel beam X-
ray CT.

FBPConvNet uses Filtered Back Projection (FBP) and a modified U-net for
the reconstruction of sparse-view CT scans. The FBP reconstructs CT images
using the available sparse projection data. Due to the incompleteness of the
available data, artifacts are present in the reconstruction. To address this issue,
the reconstructed CT scans from sparse views undergo training with a modi-
fied U-net, using full-view CT scans as the labeled images, aiming to eliminate
the artifacts. The modified U-net incorporates two modifications. Firstly, zero
padding is applied to ensure that the image size remains constant after each
convolution. Secondly, the final layer is substituted with a convolutional layer,
reducing the 64 channels to a singular output image. While this approach proved
successful for sparse data, it encounters challenges in reconstructing data from a
limited scan range. In such cases, artifacts not only encompass pattern-like noise
but also involve boundary distortion. The FBP technique struggles to effectively
reconstruct distorted boundaries. In contrast, the SART-TV method excels in
reconstructing the initial boundary and effectively reducing noise from limited
data when compared to FBP.

Building on their work, we leverage the SART-TV method to compute the
initial slice and then insert it into the modified U-net input layer, specifically
for limited-angle CT reconstruction. The rationale behind this choice lies in the
superior performance of the SART-TV method when dealing with incomplete
data, resulting in a higher-quality training set compared to the FBP. Considering
the importance of training set quality in the modified U-net, this contributes to
an enhanced efficacy for limited-angle reconstruction.

Our proposed method comprises the following steps: Firstly, we apply the
SART-TV method to limited-angle projection data obtained from the LDCT
dataset. Subsequently, we input the slice reconstructed by the SART-TV method
into the modified U-net trained to minimize the disparity between the recon-
structed image and the labeled image.

3.2 Initial Reconstruction

We utilize the discrete linear model for CT imaging:

Af = p (1)
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where A is the system matrix, p is the vector of measured projection data, and
f is the image to be reconstructed.

Our goal is to reconstruct f satisfying the following constraint:

‖ Af − p ‖< μ (2)

where μ is a parameter representing error tolerance. In the noise-free case, μ is
ideally zero, while in the noisy case, it is set to a positive value.

Due to the severe ill-posedness of limited-angle tomography, the number of
images satisfying the above constraint is not unique. We aim to reconstruct an
image that satisfies this constraint and is simultaneously close to the modified
U-net reconstruction fprior. To achieve this, we choose to initialize the recon-
struction f iteratively, starting with f (0) = fprior, and solving it as follows:

‖ Af − p ‖< μ and f (0) = fprior (3)

Reconstructed slice f is computed as:

f t+1
j = f t

j + γ.

∑
piεPα

Sε(pi−
∑M

k=1 Ai,k.f l
k)∑M

k=1 Ai,k
Ai,j

∑
piεPα

Ai,j
, (4)

where i represents the projection ray index of p, j denotes the pixel index of f ,
Ai,j signifies the element of matrix A at the i-th row and j-th column, M stands
for the total number of pixels, t denotes the iteration number, α represents the
X-ray source rotation angle, γ is a relaxation factor typically set to 0.7, and Pα

denotes the set of projection rays corresponding to the X-ray source rotation
angle α and Sε denotes soft-thresholding operator with threshold ε.

3.3 Structure-Texture Decomposition

Subsequently, we engage in structure-texture decomposition for the recon-
structed slice f to eliminate artifacts. We employ the concept of Relative Vari-
ation (RV) [30] to distinguish and extract structure and texture from the recon-
structed slice. The expression for the RV of the reconstructed slice is as follows:

arg min
∑

pix

(Spix − fpix)2 + λ.

(
Dx(pix)

Lx(pix) + ε
+

Dy(pix)
Ly(pix) + ε

)

(5)

S represents the resulting structure image.The term (Spix − fpix)2 serves
to stabilize the input and output, preventing wild deviations. The regularizer,
denoted as relative total variation (RTV), accounts for the impact of texture
removal in an image. This regularizer is defined as

(
Dx(pix)

Lx(pix)+ε + Dy(pix)
Ly(pix)+ε

)
,

where λ in Equation (5) represents a weighting factor, and ε is a small positive
number crucial for preventing division by zero in the element-wise operation. D
is the pixel-wise windowed total variation in horizontal and vertical directions,
and L denotes the windowed inherent variation that captures the overall spatial
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variation. The solution of the loss function aims to make the extracted structures
similar to those in the input image, while L and D provide information about
the texture part. Textures, being the pattern-like effects, are undesirable in the
CT image. Therefore, we will utilize D computed from Equation (5) to remove
the pattern-like noise in our proposed RV-SART algorithm.

Fig. 2. Schematic of the proposed technique

3.4 Limited-Angle Reconstruction Algorithm

Figure 2 delineates our proposed methodology, providing a comprehensive
overview of each section’s output. In this figure, the reconstruction process part
shows the overall reconstruction process, which includes two main parts: modi-
fied U-net with preprocessed input and RV-SART.

The first part shows the CNN model based on the U-net. It is composed of
an encoder path and a decoder path. The encoder path consists of numerous
3 × 3 convolutions, rectified linear units, and 2 × 2 max pooling operations
represented in the green arrow. The decoder path also consists of numerous
3×3 up-convolutions, batch normalizations, and rectified linear units represented
in the purple arrow. The skip connection and the concatenation in the black
dashed line arrow are available because of the loss of useful information in every
convolution and max pooling. In the final layer of the CNN, a 1× 1 convolution
represented in an orange arrow is used to make the CNN output a single-channel
image, which is the final reconstructed image.

RV-SART receives the CNN output and uses it as prior information about
unmeasured data during reconstruction for data consistency with the measured
data. During this stage, the initially reconstructed slice undergoes decomposition
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Algorithm 1 Deep Prior Based RV-SART
Parameter initialization

1: λ = 0.0002, σ = 5, η = 15, k = 4 ;
Prior reconstruction

2: fprior = initial reconstruction from modified U-net with preprocessed input
3: f = fprior

4: f0 = f
Relative Variation SART

5: for i = 1 : Nd do
6: f = f + λAi

p−Aif
Ai.Ai

7: ffil = medianfilter(f )
Enforce positivity

8: if fi < 0 then
9: fi = 0

10: end if
11: S0 = f

Structure-Texture decomposition
12: solve Dx, Dy, Lx, Ly,Spix using [33]
13: return Dx, Dy,Spix

Enhance Reconstructed slice structure
14: f = Spix

15: fen = f − (Dx + Dy)
16: p = Afen

compute l2 norm
17: Ni =

√
p − Afen

until {stopping criteria}
18: if i �= 1&&Ni > Ni−1 then
19: return fen

20: end if
21: end for
22: return fen

into structure-texture components through total variation and inherent varia-
tion, as shown in the RV-SART stage, facilitating the extraction of structural
information and the suppression of pattern-like artifacts. This comprehensive
process ensures the generation of high-quality CT images.

Considering the lower dose used to obtain the measured data introduces
inherent noise. To mitigate this, we apply a small-sized filter according to the
following expressions:

f = fprior + γAi
p − Aif

Ai.Ai
(6)

ffil(s, t, v) = median{f(s + l, t + m, v + n)|(l,m, n)εR} (7)

Subsequent observations reveal artifacts in the reconstructed slice due to the
significant amount of incomplete data. These artifacts exhibit a pattern resem-
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bling stripes. To address this, we employ a structure-texture decomposition to
separate pattern-like artifacts from the structure and enhance the reconstructed
slice as expressed in Equation 5:

fen = f − (Dx + Dy) (8)

Algorithm 1 outlines the Deep Prior Based RV-SART in pseudocode. The
process begins with the initialization of parameters in the parameter initializa-
tion phase (Line 1). Subsequently, the initial reconstruction is computed using
a modified U-net with preprocessed input and established as a prior (Lines 2-3)
to address the unmeasured region. The RV-SART phase (Lines 4-21) delineates
the key steps involved in ensuring consistency between the unmeasured data and
the measured projection data. The initially reconstructed slice, denoted as f0,
acts as a temporary variable throughout the reconstruction process. An initial
slice is reconstructed using prior information, and a small filter is employed to
suppress noise while maintaining data consistency and positivity (Lines 5-10).
The initially reconstructed slice is then assigned to the temporary variable S0

for further processing. To mitigate pattern-like artifacts stemming from limited
data, structure-texture decomposition is performed on the reconstructed slice
(Lines 11-13). The resulting slice, with suppressed pattern-like artifacts, becomes
the current reconstructed slice, and its brightness is enhanced by subtracting
windowed total variation (Lines 14-15). Subsequently, a forward projection is
computed using the enhanced reconstructed slice, and the l2 norm is calculated
(Lines 16-17). The algorithm verifies the convergence criteria (Line 18). Finally,
the high-quality CT slice is obtained (Line 22).

4 Experiments

Dataset. We employ the clinical dataset from the 2016 AAPM Low-Dose CT
(LDCT) Grand Challenge [25], provided by the Mayo Clinic. We create the pro-
jection data within a parallel-beam geometry system using Siddon’s ray-driven
algorithm [28]. This dataset is already infused with realistic noise. Furthermore,
we introduced a 10% Gaussian noise for comparison with state-of-the-art tech-
niques.

Implementation. We employed a training dataset comprising 2 patient records
from the AAPM dataset, and for testing, we employed data from a separate
patient within the same AAPM dataset. The training process for modified U-
net involved using pairs of limited-view SART-TV slices as input and full-view
SART-TV slices as label. The limited-view SART-TV slices were computed from
three distinct scanning angular ranges: 90, 120, and 150 degrees. In contrast,
the full-view SART-TV slices were computed using the full 360-degree angular
range. It is crucial to emphasize that this training approach makes the method
applicable to real CT reconstructions, where access to an oracle reconstruc-
tion is unavailable. Following this, the network’s output is fed into the iterative
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Fig. 3. Limited-angle reconstruction experiment of the AAPM dataset with 90◦ scan-
ning angular range

model RV-SART as prior information for high-quality reconstruction. This pro-
cess ensures accurate reconstruction of the structure while effectively suppressing
artifacts. This limited-view reconstruction holds significant relevance in human
imaging, as a substantial reduction in the number of views, for instance, a spe-
cific number of decrease in projections, corresponds to an equivalent reduction
in the radiation dose administered to the patient.

Baseline methods. We compare two widely used classical techniques and six
state-of-the-art learning-based techniques as our baselines, including traditional
methods FDK [11] and SART [2], learning based methods FBPConvNet [21],
LRIP-Net [12], SIPID [32], PD-net [1], IFSR-net [9], and SFSR-net [9]. To ensure
a fair comparison, we employ parallel geometry for all techniques and apply the
2D network for slice-wise reconstruction.

Evaluation metrics. We assess the reconstructed CT slice using three quan-
titative metrics, namely peak signal-to-noise ratio (PSNR), structural similarity
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(SSIM), and root-mean-square error (RMSE), following prior studies in [4]. Supe-
rior reconstruction quality is indicated by higher PSNR/SSIM values and lower
RMSE values.

Fig. 4. Comparing Learning-Based Techniques for Limited-Angle Reconstruction
Experiment to Preserve Structural Integrity in the AAPM Dataset with a 90◦ Scanning
Angular Range

4.1 Results

Qualitative Evaluation. Figure 3 illustrates both the qualitative and quanti-
tative performance of our proposed technique in comparison to frequently used
traditional methods using the AAPM dataset with a 90-degree scanning angular
range. In the reconstruction, it is evident that FDK completely failed to recon-
struct the structure. SART performs reasonably well in reconstructing the region
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Table 1. Evaluating Limited-Angle Data Distorted by 10% Gaussian Noise: A Com-
parative Analysis based on PSNR, RMSE, and SSIM Metrics

Noise Nview Method PSNR RMSE SSIM

10% 150 FBPConvNet 21.8293 0.0810 0.7887
SIPID 29.0276 0.0345 0.9193
PD-net 29.0084 0.0354 0.9193
SFSR-net 29.4543 0.0336 0.9199
IFSR-net 29.6694 0.0328 0.9231
LRIP-Net 30.8026 0.0288 0.9362
Proposed 31.67830.0261 0.9800

120 FBPConvNet 20.0065 0.0999 0.7465
SIPID 26.6271 0.0461 0.8941
PD-net 26.7667 0.0458 0.8944
SFSR-net 27.2079 0.0436 0.9034
IFSR-net 27.2853 0.0432 0.9032
LRIP-Net 29.1261 0.0349 0.9256
Proposed 31.55770.0264 0.9740

90 FBPConvNet 18.7582 0.1153 0.7252
SIPID 23.6216 0.0664 0.8607
PD-net 23.6473 0.0657 0.8615
SFSR-net 23.7253 0.0651 0.8591
IFSR-net 24.2056 0.0616 0.8701
LRIP-Net 25.9377 0.0457 0.9141
Proposed 30.90600.0285 0.9724

with available data but struggles in areas with unavailable data. In compari-
son, our proposed technique demonstrates excellent performance in reconstruct-
ing fine structures and suppressing artifacts, particularly within the delineated
white box. These qualitative results align closely with the quantitative values,
as observed from significantly lower values in comparison to our proposed tech-
nique.

Figure 4 illustrates the outcomes of the reconstruction achieved by very recent
learning-based approaches in the context of 90◦ limited-angle reconstruction. It
is evident that learning-based methods demonstrate successful reconstruction in
the missing angular region compared to classical techniques.

To thoroughly assess the preservation of structure and the removal of arti-
facts, we selected a small yet intricate feature within the image slice, demarcated
by a green box. The FBPConvNet falls short in reconstructing even the outer
structure of the slice, as it was expressly designed for sparse data and struggles
to reconstruct adequately from limited input.
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In comparison, SIPID [32], PD-net [1], IFSR-net [9], and SFSR-net [9] demon-
strate commendable performance in reconstructing the overall structure. How-
ever, they still face challenges in accurately reconstructing small structures, and
a significant portion of fine details is lost during the noise suppression process.

Conversely, LRIP-Net [12] exhibits proficient reconstruction of the majority
of structures, yet struggles with the precise reconstruction of small features. In
contrast, our proposed technique excels in reconstructing almost all fine struc-
tures flawlessly. This success is attributed to our approach of implementing
structure-texture decomposition in the initial reconstruction phase, effectively
eliminating pattern-like artifacts from the overall structure.

Notably, our proposed technique showcases superior preservation of image
details and edges, as emphasized in the magnified region within the green box.

Quantitative Evaluation. Table 1 presents quantitative metrics for comparing
recent learning-based techniques with our proposed approach. The evaluation
encompasses three distinct limited-angle scanning configurations, each subjected
to an additional 10% of Gaussian noise. The table illustrates that as the number
of projections increases, the reconstruction quality improves for all techniques.
Consistent with visual assessments, LRIP-Net consistently ranks second across
all three scanning configurations, while our proposed technique secures the top
position.

The quantitative evaluations align with the observed visual quality. Our pro-
posed technique achieves the highest PSNR of 30.9060, SSIM of 0.9724, and the
lowest RMSE of 0.0285. These metrics substantiate the ability of our technique to
preserve high-quality structures, mitigate noise, and minimize suboptimal label
errors compared to ground truth data.

Furthermore, our method outperforms alternatives by attaining the high-
est PSNR and SSIM, coupled with the lowest RMSE. This dual validation, both
quantitative and qualitative, underscores the efficacy of our approach in address-
ing the challenges associated with limited-angle reconstruction, particularly in
terms of maintaining structural integrity.

Fig. 5. ablation study
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5 Ablation Study

We performed an ablation study to demonstrate how the proposed technique
impacts reconstruction quality compared to the base U-Net. Initially, the base U-
Net used FBP-reconstructed inputs, which resulted in very poor reconstruction
quality. Instead, we propose using SART-TV reconstructed inputs to enhance
the base U-Net architecture, thereby improving reconstruction quality.

The base U-Net’s reconstructed output contained pattern-like noise,
obstructing the visualization of small and thin structures. Figure 5 illustrates
the performance of our proposed technique compared to the base U-Net. By
providing SART-TV reconstructed inputs to the base U-Net, the reconstruc-
tion quality improves compared to using FBP-reconstructed inputs. However, as
observed in Figure 5a, the U-Net’s reconstruction quality remains poor due to
its inability to reconstruct missing projection areas.

In contrast, our proposed technique without relative variation, shown in
Figure 5b, successfully reconstructs the CT image in the missing projection
areas, although it contains noise-like patterns that obscure the visualization of
important organs. Finally, in Figure 5c, we utilize relative variation for structure
decomposition, which removes these pattern-like artifacts and produces high-
quality CT images with clear visualization of the organs.

Quantitative evaluation also suggests that including relative variation
improves PSNR, SSIM, and RMSE to 28.1652, 0.9721, and 0.0311, respectively,
compared to the base U-Net and the proposed technique without relative varia-
tion.

6 Conclusions

In this study, we introduce the Deep Prior Based RV-SART designed for recon-
structing high-quality slices in extremely ill-posed conditions, particularly utiliz-
ing a 90-degree scanning angular range. Our approach incorporates prior infor-
mation from a modified U-net with preprocessed input to feed the RV-SART
algorithm about unmeasured data. Subsequently, it extracts structure from the
initial reconstructed slice through structure-texture decomposition, facilitating
the reconstruction of high-quality CT images while suppressing pattern-like arti-
facts.

Experiments demonstrate that Deep Prior Based RV-SART excels in high-
quality reconstruction from limited-angle data, surpassing the performance of
previous state-of-the-art techniques. Notably, prior information is constructed
by adapting the efficient and simple architecture of sparse-based modified U-
net for specific limited-angle data, providing crucial prior information regard-
ing unmeasured data. This method not only sidesteps recent, computationally
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complex deep learning approaches but also enhances accuracy in limited-angle
reconstruction.
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Abstract. Lung diseases cause millions of deaths per year worldwide.
For medical diagnosis, different medical images are available, with com-
puted tomography (CT) standing out as effective tools for pathology
detection. Recently, the use of artificial intelligence (AI) is an advance
in early diagnosis, but the quality of the images in the acquisition
greatly limits the result. Therefore, this paper proposes CTextureFu-
sion, a new approach to improve the resolution of lung CT images by
combining advanced super-resolution imaging techniques like the exist-
ing multi-modal and multi-head attention mechanisms and integrating
low-resolution images with reference images and applying specific fil-
ters for edge detection and contrast enhancement, our model achieves
high-quality, detailed image reconstruction. In experiments, the model
demonstrates significant improvements in quantitative and qualitative
terms. These results suggest a great potential of the model as digital
preprocessing for further diagnostic enhancement.

Keywords: super-resolution · imaging · computed tomography · lung

1 Introduction

The analysis of medical images for the detection of diseases is the subject of
numerous studies. The lung is an organ that can suffer from numerous diseases,
such as pneumonia, cancer and chronic obstructive pulmonary disease (COPD),
among others [9,19]. To reduce the impact of these pathologies, early diagnosis,
proper assessment of disease progression, and effective treatment and surgical
planning are important.

Among the different possibilities for capturing pathologies, CT scans offer a
combination of high spatial resolution, three-dimensional visualization capabil-
ity, increased clarity of lung lesions, visualization of soft tissues and pulmonary
vasculature, or even the detection of details, such as small lung nodules that are
not visible on other types of medical images (i.e. standard chest X-rays) [20].

However, in some cases, the standard resolution or low quality of a test
acquisition may lead to a failure of detecting subtle features or minor lesions,
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such as pulmonary nodules, infiltrative lesions, lung masses, embolisms or fibro-
sis, where improved visualization would allow early detection and monitoring.
In recent years, many super-resolution imaging techniques based on computer
vision, and more recently on deep neural networks [1], have emerged to improve
the quality and resolution of images of all types, and specifically for medical
imaging, serving as preprocessing tasks for further analysis. The advent of deep
learning-based methods has rendered other methods obsolete.

2 Related work

Conventionally, super-resolution (SR) algorithms can be classified into three cat-
egories: those using interpolation-based methods [26], those based on reconstruc-
tion [8] and learning-based methods [13,21].

In recent years, deep learning-based SR models have been explored, from
early models with convolutional neural networks [6] to more modern transform-
based methods [29,30]. In [7], the authors report on the effectiveness of a CNN-
based algorithm for reconstructing high-resolution images from low-resolution
images.

The study of super-resolution in medical imaging (MedSR) differs from tra-
ditional SR techniques due to the unique characteristics of this type of imaging.
In this context, in [5] the authors provide an overview of deep learning-based
SR processing methods. In [28], the authors have successfully restored original
images using a CNN-based algorithm from low-resolution chest computed tomog-
raphy (CT) images. This CNN-based study shows promising results of super-
resolution methods, however, the strategy has limitations as the CT images are
artificially degraded and used as training data for the AI algorithm to restore
the degraded images.

Medical image analysis using machine learning is being widely used in the
diagnosis of various diseases, including lung diseases [24,27]. Among the state-
of-the-art classifiers, used in medical applications, we have deep convolutional
neural networks (DCNN) [2,12]. Thus, infection prediction using medical imag-
ing is challenging and combining medical imaging with DL algorithms is a viable
option in lung disease detection [15,23].

Deep learning-based SR techniques can improve the resolution and detail of
X-ray and CT images, enabling more accurate diagnosis and detection of lung
diseases for the development of personalized treatments, and reducing the noise
inherent in this type of imaging due to the need not to expose the patient to
excessive radiation.

Therefore, this article presents CTextureFusion, a novel model based on the
transfer of features from a reference image combined with the use of multi-head
attention blocks to improve the quality of lung CTs for the capture of small
details to improve the characterization and visualization of possible pathologies
with subsequent techniques.
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3 Methodology

We propose a novel method, CTextureFusion, as a fusion technique of funda-
mental super-resolution principles, specifically adapted for CT scans field [4]. Its
primary aim is to deduce the super-resolution image (I_SR) using that same
image in low resolution, alongside reference images (I_ref), incorporating atten-
tion mechanisms. This includes the utilization of the existing multi-head[10]
attention blocks and the similarity module to extract features of reference image,
enhancing precision and detail in image reconstruction. In this article, tests have
been performed increasing the resolution to x4 using images with size 64x64 as
low-resolution images and images with 256x256 as target images in high resolu-
tion (HR).

The proposed attention mechanism is inspired by the Multi-Head methods
implemented by Georgescu [10] for the attention blocks. Although it is inspired
by this method, two predefined filters for edge detection and contrast enhance-
ment have been included in the input instead of utilizing the variations of con-
trast used by them. This decision is grounded on the observation that current
methodologies often result in excessively smoothed images with poorly defined
edges. Thus, the incorporation of these filters seeks to improve the quality of the
inputs of the network.

The methodology leverages one CT as a reference, using 2D slices in the Z
dimension as a starting point. Through a similarity mechanism, the most simi-
lar slice is identified to maximize the capture of relevant features. Subsequently,
these features, adjusted to various sizes, are integrated into the super-resolution
network along with the application of both multi-head attention mechanisms.
These mechanisms include spatial and channel attention, with a renewed focus
on channel attention in successive stages, thus substantially improving the final
image quality. The dependence of the methodology on this reference image is rel-
ative, as the goal is to achieve an accurate image reconstruction, not to increase
the resolution beyond the known resolution.

3.1 Network Architecture

The proposed architecture for this network is based on the synergy of key mod-
ules specifically designed to enhance the resolution and quality of images. It fea-
tures the Multi-Head Attention Module (MHCA) [10], which implements a
variety of advanced attention mechanisms, addressing both spatial and channel
aspects. The goal is to highlight and refine the significant features of the images.
Subsequently, the Texture Transfer Module [32] is tasked with extracting
and applying textural characteristics from reference images, to enrich the target
low-resolution images (Fig. 1).

The process is further complemented by the Reference Image Extraction
Module, which selects the most suitable images based on their similarity to the
reference CT scan, thereby facilitating an effective comparison and a significant
enhancement of the input images. A module dedicated to extracting features
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Fig. 1. Schema of Network architecture

from the input images themselves is also integrated, utilizing convolutional layers
to extract the fundamental characteristics of the low-resolution images.

To optimize processing in the Multi-Head Attention Module (MHCA)
[10], an innovative technique has been developed involving the use of input
images with three channels: the original image in grayscale, complemented by
two versions processed using specific edge detection and contrast enhancement
filters. This triple image representation is subjected to concatenation, applied to
both the low-resolution images and the reference images. This strategy allows
for a deeper and differentiated analysis of the images, contributing to a more
accurate and detailed high-resolution reconstruction.

Similarity-Based Image Extraction module The following module operates
on the principle of comparing the input image against reference images based on
the Peak Signal-to-Noise Ratio (PSNR) metric [14] (Fig. 2).

This metric is used to measure the quality of reconstructed images or videos
compared to their originals (see eq. 2). It is commonly used in the field of image
compression to evaluate the effectiveness of lossless or lossy compression algo-
rithms. To calculate the PSNR between two images, it is first necessary to deter-
mine the Mean Squared Error (MSE) between the original and the reconstructed
image. The MSE is calculated by averaging the square of the difference between
the pixel values of the two images. Mathematically, the MSE is defined as:

MSE =
1

mn

m∑

i=1

n∑

j=1

(Img1(i, j) − Img2(i, j))2 (1)

where m and n are the dimensions of the images, and Img1(i, j) and
Img2(i, j) are the pixel values at positions (i, j) in the original and reconstructed
images, respectively.
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Fig. 2. Schema of similarity module.

Once the MSE is calculated, the PSNR can be calculated as:

PSNR = 10 log10

(
MAX2

I

MSE

)
(2)

Where MAXI is the maximum possible value of a pixel in the image (in this
case, being normalized, the maximum value is 1). In this case, it will be used as a
metric of similarity between two images since it is a simple metric that will give
us value to obtain the image with greater similarity. One of the options was to
use SSIM (Structural Similarity Index Measure) but it is computationally more
expensive [14] (Fig. 3).

MHCA module The Multi-Head Attention architecture was designed to pro-
cess input with multiple attention heads, each focused on different spatial and
channel features. The class definition can be described as follows:

– The number of attention heads is denoted as H.
– The sizes of the convolution kernels used are represented as a set K =

{k1, k2, ..., kn}.
– Each attention head sequentially applies two convolution operations, first

halving the input channels and then restoring them to their original dimen-
sion, followed by a nonlinear activation.

The operation of each attention head can be described by the following equa-
tions:

Ai(x) = σ
(
Convki,out= in

2
(ReLU (Convki,out=in(x)))

)
, ∀ki ∈ K (3)
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Fig. 3. Image extraction in reference module.

where sigma represents the sigmoid function, ReLU is the linear-rectified
activation function, Convki,out denotes a convolution operation with a kernel
of size ki and a specified number of output channels, and x is the input to
the attention head. The convolution operation includes appropriate padding to
maintain the spatial dimensions of the input.

The attention maps generated by each head, Ai(x), are then combined by
calculating the arithmetic mean:

A(x) =
1
H

H∑

i=1

Ai(x) (4)

Finally, the combined attention map is used to weight the original input,
generating the output of the attention module:

Y (x) = x · A(x) (5)

This weighted output incorporates differential attention on the input fea-
tures, allowing the model to focus on relevant aspects of the visual information.

3.2 Evaluation Metrics

In this study, we use PSNR (eq. 2) and SSIM (eq. 6) as key metrics to evaluate
our CTextureFusion model. These metrics, widely recognized for their ability to
measure the quality and structural similarity of super-resolved images, allow us
to objectively compare the performance of our network to the state of the art.
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PSNR assesses reconstruction fidelity, while SSIM [14]. measures visual quality
relative to the original images, ensuring a complete evaluation of our approach.

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(6)

where x and y are the both compared images, μx and μy are the mean and σ2
x

and σ2
y are the variances of x and y, respectively, σxy is the covariance between x

e y, and C1 = (k1L)2 and C2 = (k2L)2 are two variables to stabilize the division
with a small denominator; L is the dynamic range of the pixel values.

4 Experiments

4.1 Datasets

For the experiments, two datasets of lung CTs will be used:
Task06-Lung dataset: is a dataset of lung images consisted of individu-

als diagnosed with non-small cell lung cancer from Stanford University (located
in Palo Alto, CA, USA), which was made publicly accessible through TCIA
[3,11,25]. This dataset had been previously used to develop a radiogenomic sig-
nature.consists of 96 sets of preoperative thin-section of segmented 3D CT scans.
The dataset was divided into two subsets: train with 64 input 3D volumes and
test with 32 3D volumes.

The acquisition and reconstruction parameters for the CT scans included a
section thickness of less than 1.5 mm, a tube voltage of 120 kVp, automatic tube
current modulation with a range of 100-700 mA, a tube rotation speed of 0.5 s,
a helical pitch between 0.9 and 1.0, and the use of a sharp reconstruction kernel.
An expert thoracic radiologist identified the tumor region by marking it on a
representative CT cross-section via software.

Covid dataset: this dataset comprises 20 labeled COVID-19 CT scans [17].
Two radiologists label the left lung, right lung, and infections, which are subse-
quently verified by an experienced radiologist. The segmentation of the left lung,
right lung, and infections is done using COVID-19 CT scans, existing labeled
lung CT datasets from other non-COVID-19 lung diseases, and heterogeneous
datasets containing both COVID-19 and non-COVID-19 CT scans.

4.2 Training Settings

Training of the SR model was performed using an NVIDIA V100 GPU with 40
GB of memory. CTextureFusion was initialized with a reference CT consisting
of 252 slices and a reduced version of the same, along with the scaling factor for
resolution increase.

The loss function employed for training was the Mean Squared Error Loss
(MSELoss), suitable for regression tasks such as super-resolution where the goal
is to minimize the difference between predicted and actual pixel values. We have
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used the Adam optimizer, and the chosen learning rate is 0.001, with a number
of epochs of 100.

Finally, the training set split was 80% training data, 10% validation and 10%
test.

4.3 Baselines

We compare our method with four SR models of the-state-of-the-art, which are
usually used in the problem of CT lung imaging analysis:

– SRCNN [16] (Super-Resolution Convolutional Neural Network) is an image
super-resolution algorithm based on deep convolutional neural networks. It is
trained using pairs of low-resolution (LR) and high-resolution (HR) images to
learn how to perform the transformation effectively. They are especially useful
in CTs for better identification of anatomical structures, increased accuracy
of early disease diagnosis due to the level of detail of areas of interest, and
evaluation of small lesions.

– EDSR [22] (Enhanced Deep residual networks for single image Super-
Resolution) is an image super-resolution algorithm that takes deep residual
neural networks (ResNets) and includes more residual layers, reducing the
sampling rate and using better filters to make it more computationally effi-
cient. In this way, they enable better spatial resolution in CTs for greater
anatomical structural clarity, the detection of minor lesions and relevant
structures.

– SRResNet [18] (Super-Resolution Residual Network) is a super-resolution
imaging algorithm that takes residual neural networks using residual con-
nections to train deep networks and map directly from low to high resolution
using adversarial with perceptual loss in model training. In this way, high-
quality images with high detail are obtained, especially recommended for CT
imaging, and are perceptually more realistic and have finer details compared
to EDSR and SRCNN.

– RCAN [31] (Residual Channel Attention Networks) is a SR algorithm that
uses attention mechanisms to highlight important image features, and is
deeply useful in problems such as lung CTs.

4.4 Results and Analysis

At first, we compare our model in two datasets. Fig. 4 shows the different pre-
dictions of the networks for an image from each dataset. It is noticeable that
the two datasets differ in the brightness of the CT scans, and additionally, in
the second one, there are also symptoms of the COVID disease, where a certain
amount of grey mass is visible within the lungs.

To evaluate our model CTextureFusion1 a quantitative and qualitative com-
parison is performed, with the most efficient models in this type of state-of-the-
art problems on two lung CT datasets (see Table 1).
1 Code: https://github.com/Maristoteles02/CTextureFusion.

https://github.com/Maristoteles02/CTextureFusion
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Fig. 4. Models comparison for an image from each dataset.

Table 1. SR models comparison.

Dataset Model Avg. SSIM Avg. PSNR

Lung SRCNN 0.6989 29.1972
EDSR 0.7359 30.7072
SRResNet 0.7298 30.4532
RCAN 0.7356 30.6315
CTextureFusion 0.7399 30.7411

Covid SRCNN 0.7304 29.4400
EDSR 0.7548 30.4755
SRResNet 0.7497 30.3239
RCAN 0.7557 30.5198
CTextureFusion 0.7590 30.5552
CTextureFusion Ref 0.7616 30.5826

In the reconstruction of these types of images to improve the quality of a low-
resolution image, SSIM evaluates the structural similarity between two images
from a human perception perspective (textures, edges, details, etc.) and PSNR
measures the image quality according to signal and noise. As can be seen in Table
1, our model obtains better results than the state-of-the-art, both in SSIM and
PSNR. The second and third best-performing models are EDSR and RCAN,
respectively.

These metrics are often used in different superresolution problems, with one
or the other being more relevant depending on the scope of the problem. In
the case of lung CTs, the SSIM is very important to evaluate the quality of
the image obtained by superresolution because many pathologies focus on small
details, textures and edges, such as lung nodules, masses or small lesions.
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In addition, in a CT scan, which usually lasts longer than 15 minutes, the
radiation exposure is greater than a lung X-ray (around seconds). One way to
reduce radiation exposure is to lower the amount of radiation, which results in
the inclusion of noise in the CT scan. Therefore, the PSNR could be degraded
and a balance between the two metrics is important. In Figure 5 it can be seen
how our model improves in both metrics in the two datasets to the rest of the
compared models, followed by ESDR and RCAN (with disparate performance
depending on the dataset).

Fig. 5. Evaluation comparison of our model with the state-of-the-art in terms of PSNR
and SSIM metrics.

In terms of performance, the inference time is not relevant because the quality
of the medical image is more important than its speed. However, comparing our
model with the next two in image quality (EDSR and RCAN), the inference
time of the model is better (0.012) than the rest, 0.0161 and 0.0273, respectively.
Moreover, the number of parameters of our model (1.5 M) is significantly lower
than ESDR (3 M) and RCAN (5.4 M).

As for the validation of the visual perception of the model, three regions of
interest from the same image of the COVID (GT - Ground Truth) dataset can
be observed in Fig. 6.

In the first evaluation (Fig. 6-[a-h]), the region marked in green in (a) is
selected, and a 64x64 pixel image is extracted, performing a 4x super-resolution
(e). After the application of the different models, it can be observed how our
model can define in greater detail the borders of the pulmonary pleura, distin-
guishing the visceral and parietal pleura. With this, diseases such as pleurodesis
or pleuritis could be diagnosed.

In the second evaluation (Fig. 6-[i-p]), an 8x super-resolution (m) is applied,
extracting a 32x32 pixel image (i). It can be seen how our model is able to
capture with higher definition the pleural space, which are fluid-filled cavities
that serve to lubricate and facilitate respiratory movements. The level of detail
could help in the diagnosis of diseases such as pleural effusion, pneumothorax or
hemothorax.
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Fig. 6. Quantitative and qualitative comparison of two regions of interest (ROIs) of
the pulmonary pleura in a CT scan.
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Fig. 7. Quantitative and qualitative comparison of two regions of interest (ROIs) of
the bronchi in a CT scan.
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In the third evaluation (Fig. 7-[a-h]), an 8x super-resolution is applied (a),
extracting a 32x32 pixel image (e). In it, the focus is on bronchi and bronchi-
oles, obviating the blood vessels and cognitive tissue (links). Our model provides
greater sharpness and contrast between these and the rest of the image, bina-
rizing the background and points of interest. In this way, image post-processing
techniques could be used to detect nodules or foreign masses in the lung, and to
diagnose diseases such as cancer at an early stage.

Finally, in the fourth evaluation (Fig. 7-[i-p]), another 8x SR is performed to
analyze the posterior basal segmental bronchus. It is observed how our model
reconstructs its structure better than the other models.

In quantitative terms of these images, improvements in PSRN of up to 1.73%
(pleura) and 2.05% (bronchi) are observed concerning the second-best model
(EDSR).

The results show a slight increase in inference time compared to previous
models. This increase is negligible as it is less than 1% compared to the previous
network that took the longest (RCAN) [31].

5 Conclusion

In this work, an innovative method has been developed to enhance superres-
olution in computed tomography (CT) images, using a single reference CT.
Through a similarity module, this method can identify those reference CT slices
that present greater similarity with each specific slice. This process facilitates
obtaining a detailed representation of the expected textures in the input image.
The proposed network, with a reduced number of parameters compared to other
models, has been applied on lung CT datasets with x4 and x8 scale super-
resolution, surpassing previous state-of-the-art results with significant improve-
ments (greater than 2% in some regions of interest), not only in terms of error
(quantitative) but also qualitatively, significantly improving the super-resolution
of ROIs, such as lung pleura or bronchi, of the images as a preprocessing step in
the analysis of medical images, to be able to subsequently apply medical diag-
nostic tasks in different diseases. All this is achieved without the need to retrain
the network or perform fine-tuning for each dataset.

Additionally, it has been demonstrated that the method is capable of gener-
alizing diseases with some ease in the same type of image (chest CT). The aim
is to lay the foundation for a general model applicable to all types of medical
images, such as bone x-rays. Although there is a slight increase in the number
of parameters and inference time compared to previous methods, the inference
process remains sufficiently fast not to be a limiting factor.

Furthermore, reference images are used as feature extractors for the super-
resolved image, enabling the enhancement of low-resolution images by always
having a similar high-resolution image available as a reference. A comparison
with non-DL based methods was not included as there is currently no ML based
method with a good baseline for comparison with DL based methods. A vali-
dation dataset was used to evaluate the overfitting of all methods during the
training process.
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Abstract. In this paper, a translation-based cross-modality deformable
medical image registration model is proposed. It focuses on preserving
spatial correlation among local and global features of both modalities.
This model uses a discriminator-free StyleGAN2 as the translation net-
work and a U-Net-inspired architecture as the registration network to
generate a deformation field that will warp the moving image to a fixed
image using a spatial transformer network (STN). This registration net-
work includes a CNN-based local and a BGRU-based global feature
extraction module, a transformer-based local-global spatial correlation
module, and a novel super-resolution loss function to register finer-level
lymph node-like structures properly. The proposed model is evaluated
on two pelvis datasets for MRI to CT registration. Experiments show a
36.7% increase in training speed, a 5.40% increase in structural similarity
index, a 29.85% increase in normalized cross-correlation coefficient, and a
2.19% decrease in mean-squared error for cross-modality image registra-
tion compared to state-of-the-art translation-based registration models.
This registration model has broader applications in multimodality image
segmentation, lymph node classification, etc.

Keywords: Biomedical Imaging · Visual Transformer · Bidirectional
Gated Recurrent Unit (BGRU)

1 Introduction

Image registration is a necessary pre-processing step for cross-modality image
translation, segmentation, or classification tasks. Due to inherent tissue structure
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and intensity differences in different imaging modalities, only affine transforma-
tion is not sufficient because this will just rotate, enlarge or shift the objects [1],
rather non-linear deformable registration is required [2]. With multiple deforma-
tion fields appearing to align the images correctly, cross-modality image regis-
tration is an ill-posed problem due to a solution’s nonuniqueness. For example,
CT scans are known for their cost efficiency and widespread use, however, they
often lack the necessary contrast for precise lymph node detection. On the other
hand, MRIs stand out for their superior soft tissue contrast and the ability to pro-
vide detailed information on anatomy, function, and metabolism, making them
more suitable for metastasis detection. Still, the high cost and lower accessibility
of MRIs present a challenge. Therefore, cross-modality image registration can
bridge the gap between CT and MRI imaging.

In recent years, cross-modality image registration has moved from using sim-
ple CNN models to more complex deep learning methods, like GANs and Cycle-
GAN, which introduced the idea of learning without matched pairs. However,
these learning techniques sometimes fail to perfectly align one modality’s images
with the other. This problem has led researchers to try learning with datasets
with pairs of matching images to get more accurate results. The creation of
synthetic images in one modality can augment the image datasets without addi-
tional scans and can facilitate cross-modality image registration successfully.
Traditional Voxelmorph-based [3] networks use a transformer or a U-Net [4] reg-
istration network for deformation mapping across modalities, followed by STNs
to learn spatial transformations. However, only Convolution Neural Network
(CNN)-based registration networks can align local features well. Still, the global
anatomical features may get dislocated, causing problems in identifying the loca-
tion of lymph nodes or tumor-like local features amid the shifted anatomies in
this registered image. On the other hand, only transformer-based registration
networks can neglect to incorporate the local details at the correct position in
the registered image and hence segmenting small structures like lymph nodes
can fail.

In this context, our work focuses on integrating the local details within the
global anatomies maintaining proper spatial correlation with the help of an inno-
vative feature flow pipeline. Our contributions are summarized as:

1) We propose a novel deformable image registration network with a U-Net-
inspired architecture. A convolutional encoder first extracts high-level local
features. Next, global features are extracted by BGRU, fully connected layer,
and squash layer. Then, positional correlations of global and local features are
obtained with a visual transformer unit. Finally, features are reconstructed
by a convolutional decoder.

2) We designed a new super-resolution loss function for registration to accurately
retain lymph node positions and other spatial information in MRIs.

3) We achieved a 36.7% increase in training speed than traditional translation-
based registration models by using dropout layers and StyleGAN2 generator
instead of the more widely used Residual network generator.
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Section 2 explores related work. Section 3 presents the registration algorithm,
model architecture, datasets, comparison models, and modeling details. Section 4
describes the validation and ablation experiments. Section 5 reports statistical
results followed by a conclusion in section 6.

2 Related Works

Image registration can be done by cross-modality image-to-image translation
networks [5], [6]. However, choosing suitable metrics for comparing deformed and
target images after registration across different modalities is challenging. Some
commonly used metrics include mutual information [7] and local self-similarity
[8].

Supervised or semi-supervised learning methods are common in multimodal-
ity image registration [9], [10]. However, they rely on having reference registered
target images, which can be difficult to obtain and may struggle with structural
variations. Unsupervised learning methods offer more flexibility and scalability
by avoiding these limitations. Approaches like normalized mutual information
(NMI) or modality-independent neighborhood descriptor (MIND) [11], [12] are
used in unsupervised methods. However, NMI is better suited for global align-
ment, while MIND may struggle with severe deformations and achieving global
alignment.

Unsupervised techniques for CT–MR deformable image registration have uti-
lized CNNs, such as CycleGAN [13]. Zhao et al. [14] used a CNN to extract
features and feed them to log-demons. Some studies employed U-Net [15], [16],
but they often misalign global structures.

Recent unsupervised methods integrate spatial transform networks (STN)
[17], like VoxelMorph-based networks [18], [19], [20]. However, CNN-based Voxel-
Morph struggles with anatomical variations, while transformer-based approaches
may overlook local details like lymph nodes.

Our model tackles these issues by utilizing local and global feature extractors
for fine-to-coarse feature extraction. A transformer in the local–global correla-
tion module processes semantic classes, preserving critical features’ positional
relationships. Unlike KeyMorph [21], which gives good performance by rely-
ing on considerably large data and pre-trained models, our approach doesn’t
require them. Additionally, geometry is maintained by transforming multimodal
registration into a monomodal task using simultaneous translation and spatial
registration methods [22], [23], [24].

3 Proposed Methodology

3.1 Registration process

The translation-based registration algorithm is followed as mentioned in [25].
Hereafter, X denotes the source and Y denotes the target image sets. Concate-
nated (xreal, yreal) input data is fed to a registration network to learn a deforma-
tion field Φ to align Y to X. Simultaneously, xreal is fed to a cross-modality trans-
lation network to generate ygen, and yreal is fed to a monomodality translation
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network to generate yfake. The super-resolution loss function is used to minimize
the difference between yreal and registered source image Φ(xreal). A structural
loss function is used to minimize the structural dissimilarities between Φ(ygen)
and yfake. A precision loss is used to minimize the difference in minuscule fea-
tures between Φ(ygen) and yreal. The translation network uses discriminator-free
GAN with only the generator followed by a feature network. Since learning-based
nonlinear image registration can result in nonunique and noninvertible solutions,
the mapping from the deformed MRI to the original may be imprecise:

φMRI(φCT (MRI)) ≈ MRI (1)

3.2 Model Architecture

The translation network is the generator of a 6-block StyleGAN2 with a sym-
metric encoder and decoder. To reduce the introduction of non-physiological
features incorrect for the moving image modality in the registered image, the
discriminator is removed. The registration network consists of a local feature
extractor module, a global feature extractor module, a local-global spatial cor-
relation module, and a feature reconstruction module as shown in Fig. 1:

Fig. 1. The registration network architecture

Local Feature Extractor Module: CNNs are good at extracting local features
like tissues, small organs, or lymph node-level details. So, concatenated moving
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and fixed images of size 512 × 512 × 6 are fed to 8 layers of 3 × 3 convolutional
layer, and 0.2 negative slope Leaky-Relu stacks. This module extracts the local
feature details and outputs a 8× 8× 64 sized feature tensor enriched with local
features along with their corresponding positional information [26].

Global Feature Extractor Module: Though this local feature tensor con-
tains all the necessary fine details, it cannot give an idea of the larger organs,
anatomies, or global structure. Hence, the global feature extractor module. This
module consists of a BGRU, a fully connected layer, and a squash layer [27].
The resulting output tensor from the convolutional encoder, with dimensions
8 × 8 × 64, comprises 64 feature representations. Each feature vector is of size
1 × 1 × 64, denoted by f1, f2, ..., f64, where f ∈ R64. These vectors are treated
as time series data in the context of text processing and are fed to the BGRU
layer. The output sequences of BGRU are then passed through a fully connected
layer to adjust weights and a ReLU activation function:

G = ReLU(H · WFC) (2)

where, H = {h1,BGRU , h2,BGRU , . . . , h128,BGRU} are the concatenated hidden
state vectors of forward and backward direction, and WFC ∈ 128 × 64 are the
FC layer’s weights.

Next, the concatenated tensor undergoes normalization through a squash
function:

F =
||G||2

1 + ||G||2 · G

||G|| (3)

The resulting feature vectors are then fed to a local-global spatial correlator.

Local-Global Spatial Correlation Module: A recurrent tokenizer splits the
input tensor into manageable tokens representing only a handful of semantic
concepts, thus reducing computational complexity, which are then combined
with positional embeddings and a dropout layer for enhanced stability. Next,
a transformer containing a sequence of attention and Multi-Layer Perceptron
(MLP) layers identifies positional relationships among local and global features.
This contrasts with the approach taken in [28], where the transformer focused
on modeling semantic class-token connections.

Feature Reconstruction Module: The feature maps undergo decoding by
stacks of convolutional layers, LeakyReLU activations, and trans-convolutional
layers resembling the up-arm structure in a U-Net from a size of 8 × 8 × 64 to
512 × 512 × 16. Pixel-level features from the encoder feature maps are merged
using concatenation, helping to restore detailed pixel-level information lost dur-
ing tokenization.

Feature Network: In the StyleGAN2 setup, a feature network comes after the
encoder. It improves patch sampling by processing encoded source and target
features. This network consists of two sets of linear layers with GELU activa-
tion functions and dropout layers for regularization. Additionally, a novel self-
attention-fused feature network enhances patch sampling from the hidden feature
stack.
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The modified MLP layer within the feature network can be represented as:

H ′(z) = Dropout(GELU(Linear(z)))

Here, z denotes the input features, and the linear transformation is followed
by GELU activation and dropout for regularization.

The translation network utilizes noise contrastive estimation (NCE) loss
instead of a discriminator to maintain structural similarity between generated
and target images. This NCE loss employs patch samples from the feature net-
work.

3.3 Loss Functions

To increase registration accuracy, the following loss functions were used in the
registration objective function:

Super-resolution Loss: A novel loss function called Super-Resolution Loss
(SR) is proposed. This loss uses a simple super-resolution network [29] on
cropped central regions of registered and real target domain images, where the
probability of finding a lymph node is maximal. This cropping reduces compu-
tational complexity. The loss is calculated as the L2 norm of the super-resolved
features of the real target image and the registered source image. Mathemati-
cally,

LSR =
√

||ψreal − ψregistered||2 (4)

Here, ψreal and ψregistered represent the super-resolution features of the real
target image yreal and registered source image Φ(xreal), respectively.

Structural Loss: The L2 losses between the generated target domain image
yfake from yreal and the warped version of the generated target domain image
Φ(ygen) from xreal is calculated to maintain texture and structural similarity
post-registration. This loss focuses on retaining structural features, so this term
is called structural loss,

Lstruct = ||Φ(ygen) − yfake||2 (5)

Precision Preservation Loss: L2 loss is also incorporated between Φ(ygen)
and the real target image yreal to refine the deformation field. This loss term is
called precision preservation loss,

Lprec = ||Φ(ygen) − yreal||2 (6)

Noise Contrastive Estimation (NCE) Loss: The registration objective
function also includes NCE loss LNCE , maximizing mutual information between
the real target yreal and registered source images Φ(xreal). The NCE loss main-
tains patch-wise structural similarity between the source and target domains.
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The complete registration loss function is expressed as:

Lreg = λstructLstruct + λprecLprec

+ λNCELNCE(Φ(xreal), yreal) + λSRLSR

(7)

where λstruct, λprec, λNCE , and λSR represent the weights for the respective
loss terms. The overall generator loss comprises this registration loss, GAN loss,
NCE loss as reconstruction loss, and L2 loss as smoothing loss.

3.4 Datasets

Dataset 1 - Aichi Cancer Centre Dataset: The dataset consists of
Contrast-Enhanced CT and T2-weighted axial (4mm) MRI scans from 52
patients, approved by the institutional review boards of the Aichi Cancer Cen-
ter Hospital (#H301076). CT-MRI pairing was done using RadiAnt DICOM
Viewer. Before training and testing, background annotations were removed from
DICOM slices to improve image quality. The dataset was split into 60 training,
599 testing, and 13 validation image pairs. The small training size allows for
examining model performance with limited data, while the large testing dataset
evaluates the model’s generalization ability.

Dataset 2 - SynthRAD 2023 Grand Challenge Dataset: This dataset is
a collaboration between three Dutch university medical centers: UMC Utrecht,
UMC Groningen, and Radboud Nijmegen. It comprises paired CT and MRI
pelvic data from 90 patients, acquired using standard imaging protocols. Both
T1 and T2 weighted sequences are included to demonstrate the method’s appli-
cability across different imaging types. The dataset consists of 60 image pairs
for training, 10 for validation, and 599 for testing.

3.5 Baseline Models

NeMAR Affine [22]: NeMAR Affine is a competitive state-of-the-art model
(published in 2020) that performs multi-modal registration using two net-
works - a spatial transformation network and a translation network. This is
an unsupervised, multimodality image alignment model using CycleGAN [30] or
Pix2PixGAN [31] for geometry-preserving translation. It utilizes an STN con-
sisting of a convolutional network and a re-sampler layer in the registration
network. Training includes L1 loss for reconstruction and conditional GAN loss
for adversarial training. The affine STN model employs linear transformations
for spatial alignment.

NeMAR U-Net [22]: This variant of the above model employs a U-Net STN
for nonlinear transformations. While affine transformations align global shifts,
U-Net STNs align both local and global features.



Cross-Modality Medical Image Registration 119

DFMIR [25]: Discriminator Free Medical Image Registration (DFMIR) model
(published in 2022) surpassed several recent state-of-the-art multi-modal regis-
tration methods and some other well-established methods, such as, Synthesis-by-
Registration [32], a VoxelMorph architecture with similarity metric MIND [3],
CycleGAN [30] combined with VoxelMorph registration network using mono-
modal similarity metric NCC etc. DFMIR uses an unsupervised joint framework
with end-to-end optimization. It is composed of a discriminator-free Residual
network for multimodality image translation and a U-Net for registration. It
uses NCE loss and L1 losses in the objective function. For testing, DFMIR only
uses the registration network.

3.6 Modelling Details

All models used recommended loss functions during training. Various learning
rates were experimented with from 10−5 to 10−3 and epochs from 5 to 300,
selecting the best combination via cross-validation. Equal weights were assigned
to Lstruct and Lprec to prioritize both precision and structure preservation, so
λstruct = λprec = 1. LNCE was considered less important to reduce exact patch-
wise replication and given a weighting parameter λNCE = 0.25. Our super-
resolution loss had a weighting parameter λSR = 1. The Adam optimizer was
employed with β1 = 0.5 and β2 = 0.999 and a constant learning rate of 2× 10−4

for 150 epochs, followed by linear decay to 0 for the next 150 epochs. There
are 11.378M parameters in the Generator network, 0.560M parameters in the
feature network and 152.721M parameters in the registration network, resulting
in average training time of 19 second per epoch for 60 training images. Imple-
mentation was done using PyTorch on an Nvidia RTX A6000 GPU. Registration
quality was evaluated using the Structural Similarity Index Metric (SSIM), Mean
Square Error (MSE), and Normalized Cross-Correlation Coefficient (NCC) on a
separate test set.

4 Experiments

4.1 Validating Model Architecture Choices

Feature Network: Initially, a basic two-layer MLP patch-sampling network was
used. Later, a self-attention layer was added for assessing patch contributions
based on content and relationships. GELU (Gaussian Error Linear Unit) was
then included for nonlinear mapping and dropout layers were added after each
MLP layer.

Generator Network: Residual networks with 4, 6, 8, and 9 blocks, and Style-
GAN2 with 2, 3, and 6 blocks were experimented with. By choosing a 6-block
StyleGAN2 generator, complexity and training time were reduced. Using Style-
GAN2 reduced all training losses and shortened training time by about 27%. The
beneficial impact of noise injection on training StyleGAN2 was also analyzed.
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Registration Network: Initially, only a transformer was explored, but a U-Net-
like encoder-decoder architecture was found necessary for optimal performance.
The contributions of BGRU, fully connected layers, ReLU, and Squash layers
were assessed by selectively removing them. We experimented with passing hid-
den states in BGRU vertically but found it degraded performance due to weaker
semantic connections in the vertical direction of the feature space.

Loss Functions: A structural similarity index loss was integrated into the
registration network but it was found that SSIM is unsuitable even after varying
weighting parameters. The super-resolution loss showed improvement in metrics.
L1 and L2 losses were tried separately for both Lstruct and Lprec and it was found
that L2 loss gives better performance.

4.2 Ablation Experiments

Besides experimenting with different choices of architecture and hyperparame-
ters for each module in the registration network, the relevance of each module
was also validated through ablation across both datasets. Initially, a model was
tested with only the transformer between the U-Net encoder and decoder, thus
removing the global feature extractor module. Next, the impacts of removing
the local feature extractor, transformer, BGRU layer, GELU, self-attention, and
dropout layer containing feature network and super-resolution loss were evalu-
ated. Results emphasized the importance of the transformer, with all modules
contributing incrementally to registration performance.

Additionally, different configurations for the generator network were experi-
mented with and the number of style blocks in StyleGAN2 was varied. Results
demonstrated the effectiveness of our generator and transformer setup. Variant
models were experimented with by adjusting transformer initialization, encoder-
decoder layers of StyleGAN2, and dropout layers at various stages to understand
each element’s contribution. Different combinations of loss-term weights were
evaluated, finalizing our choice of loss function weights.

4.3 Model Comparison Experiments

Our cross-modality image registration network for MRI to CT registration was
assessed and it was compared with other translation-based registration models
like DFMIR, NeMAR affine, and NeMAR U-net. Both the dataset 1 and 2 were
used for the experiments. For fairness in comparison, the same Adam optimizer
was employed with β1 = 0.5 and β2 = 0.999 and a constant learning rate of
2 × 10−4 for 150 epochs, followed by linear decay to 0 for the next 150 epochs.

5 Results

5.1 Model Comparison Results

DFMIR was the best-performing baseline model. On the Aichi Cancer Center
pelvis dataset, our model outperformed even DFMIR with a 2.19% reduction
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Fig. 2. Ablation study results on the two datasets for MRI to CT registration

Fig. 3. Model comparison results on the two datasets for MRI to CT registration
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in MSE loss, 5.40% improvement in SSIM, and a significant 29.85% increase in
NCC. Similar results were observed on the SynthRAD challenge dataset, despite
texture differences between CT and MRI. Here our model showed an average
0.54% decrement in MSE, 2.33% improvement in SSIM, and 3.44% increase in
NCC compared to DFMIR. Our model reduced training time by 36.7% on aver-
age compared to DFMIR. The dropout layer contributed to a 9.7% improvement,
while the StyleGAN2 generator accounted for a 27% decrease.

The results are given as mean ± standard deviation across 599 test image
pairs in Table 1. Though the metric values for the NeMAR U-Net model seem
superior, observing the corresponding registered images shows that it is strug-
gling to generalize with limited data or overfitting in contrast to our model’s
robustness with only 60 training images. Since metric values are not fully reliable
for model evaluation, the registered images are also shown for visual evaluation
in Fig. 3.

Table 1. Cross-modality Image Registration Model Comparison

Dataset 1 Aichi Cancer Centre Dataset

Models SSIM (↑) MSE (↓) NCC (↑)
Proposed 0.5517 ± 0.054144.62 ± 4.62 0.6929 ± 0.0583
NeMAR Affine 0.3659 ± 0.0587 62.75 ± 7.18 0.3541 ± 0.0971
NeMAR U-Net 0.6416 ± 0.0572 39.78 ± 4.85 0.7739 ± 0.0594
DFMIR 0.5234 ± 0.0527 45.62 ± 4.59 0.5336 ± 0.0687
Dataset 2 SynthRAD Challenge Dataset
Models SSIM (↑) MSE (↓) NCC (↑)
Proposed 0.4603 ± 0.030671.88 ± 6.20 0.8143 ± 0.0524
NeMAR Affine 0.4576 ± 0.0306 71.99 ± 6.24 0.8091 ± 0.0568
NeMAR U-Net 0.4259 ± 0.0373 67.72 ± 7.48 0.8296 ± 0.0791
DFMIR 0.4498 ± 0.0391 72.27 ± 6.26 0.7872 ± 0.0886

5.2 Ablation Results

Key modules were systematically deactivated, like the global feature extractor
block, local-global feature extraction module, and self-attention containing fea-
ture network and super-resolution loss function to assess their impact.

Across all datasets and variations, our model consistently outperformed oth-
ers on SSIM, MSE, and NCC metrics. Ablation results are shown in Table 2
and Fig. 2. ’Without netF’ refers to the model without GELU, dropout, and
self-attention layers in the feature network.
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Table 2. Cross-modality Image Registration Ablation Results

Dataset 1 Aichi Cancer Centre Dataset

Models SSIM (↑) MSE (↓) NCC (↑)
Proposed 0.5517 ± 0.054144.62 ± 4.62 0.6929 ± 0.0583
w/o BGRU 0.5463 ± 0.0544 45.14 ± 4.81 0.7029 ± 0.0522
w/o Transformer 0.5450 ± 0.0535 44.37 ± 4.66 0.6929 ± 0.0514
w/o netF 0.5461 ± 0.0543 44.41 ± 4.46 0.6951 ± 0.0511
w/o LSR 0.5505 ± 0.0531 44.70 ± 4.53 0.6965 ± 0.0542
Dataset 2 SynthRAD Challenge Dataset
Models SSIM (↑) MSE (↓) NCC (↑)
Proposed 0.4603 ± 0.030671.88 ± 6.20 0.8143 ± 0.0524
w/o BGRU 0.4572 ± 0.0312 71.92 ± 6.21 0.8102 ± 0.0535
w/o Transformer 0.4598 ± 0.0302 71.96 ± 6.22 0.8107 ± 0.0559
w/o netF 0.4576 ± 0.0317 71.91 ± 6.19 0.8097 ± 0.0548
w/o LSR 0.4576 ± 0.0306 71.99 ± 6.24 0.8091 ± 0.0568

6 Discussion

The StyleGAN2 generator improves the training time and loss performance com-
pared to the ResNet-based generator because of training stabilization using pro-
gressive growing, and the initialization strategy for StyleGAN2. In the local
feature extraction network, the convolutional encoder helps to extract intricate
detailed local features at multiple scales. Positional information is preserved to
some extent through padding in convolutions. However, a separate global feature
extraction network block is added to integrate these local features into global
features representing larger anatomical structures. In the local global feature cor-
relation module, tokenization establishes a vocabulary representing a compact
set of concepts, ensuring a comprehensive representation of global, contextual,
and local features. In the feature network, the choice of GELU as the activa-
tion function is motivated by its effectiveness in capturing complex patterns in
the data, the self-attention layer helps to induce contextual understanding in
the embedding vectors generated from image patches during calculation of NCE
loss.

7 Conclusion

In this paper, a new method is proposed for improving cross-modal image regis-
tration. Our model ensures precise alignment of local features like lymph nodes
with global anatomical landmarks, crucial for tasks like segmentation or anno-
tation. By integrating a local feature extractor, a BGRU-based global feature
extractor, and a local-global correlation mechanism, our model achieves high
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accuracy. A BGRU layer as a global feature extractor is introduced in the domain
of medical image registration. Our unique super-resolution loss function further
enhances registration precision. Compared to the best-performing state-of-the-
art model, our model outperforms in terms of SSIM, MSE, and NCC metrics,
with a 36.7% speed improvement.

As shown in this paper, we explored two different CT-MRI datasets of the
pelvis region. This model is equally applicable to other paired datasets involving
any two different modalities (e.g., CT, 2D or 3D MRI, PET) and images of
any organ (e.g., brain, lungs). The main requirements for using this model and
algorithm are that both images in the cross-modal pair must be from the same
patient, capture the same organ from the same view (though they may be taken
at different times and may have undergone natural drift, deformation, or minor
imaging artifacts), and must be affine registered. One limitation of the model is
it requires substantial computational resources in return of high accuracy. Our
future work will be optimizing the algorithm. In the future, we plan to apply
this model to tasks like cross-modality lymph node or tumor annotation.
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Abstract. In this paper, we address the problem of Superresolution
magnetic resonance imaging (SR-MRI) to reconstruct a high-resolution
(HR) image from a low-resolution (LR) scan using progressive blocks
of hybrid domain network. Each block consists of cascaded stages of an
encoder-decoder based network model in the frequency domain (FDN)
and spatial domain (SDN). We perform the SR-MRI reconstruction by
estimating the signal components encoded into the higher frequencies
sequentially using FDN-SDN pairs with progressively increasing k-space
coverage. In this scheme, each block of hybrid-domain encoder-decoder
type convolutional neural network (CNN) is sequentially trained to esti-
mate the unknown signal values at k-space locations within the imme-
diate neighborhood of the region covered by the previous block. A key
advantage is the consistent PSNR improvement exceeding 3.2 dB at 4-
fold down-sampling, achieved without employing multi-contrast training
samples or multistreaming architecture.

Keywords: Super-resolution MRI · Deep Learning · convolutional
neural networks · supervised learning · Normalized Cross-Correlation

1 Introduction

High spatial resolution in Magnetic Resonance Imaging (MRI) is often accom-
panied by reduced Signal-to-Noise Ratio (SNR), and attained at the cost of
inherently long scan time. Although, it is possible to increase the SNR with
simultaneous reduction in acquisition time by resorting to higher field strengths,
the situation cannot be same with MR sequences of different organs and
structures[20]. This is because high-field strength contributes to increased inho-
mogeneity effects, artifacts due to the cerebrospinal fluid (CSF) flow, magnetic
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susceptibility artifacts; artifacts due to breathing, patient motion and swallow-
ing. An easier approach is to retrospectively increase the spatial resolution using
image super-resolution (SR) techniques applied to MRI (SR-MRI) [2–4,6,7,9–
17,21,23,25,27,28,30].

Broadly, SR-MRI can be divided into two types based on the low-resolution
(LR) image model. The first type (Type-I) attempts to increase the through-
plane or in-plane resolution using a spatial domain degradation model that
includes Gaussian blurring followed by down-sampling in the spatial domain.
For in-plane super-resolution, the LR image is represented by a larger voxel size
in the in-plane. In this case, an initial estimate of the high-resolution (HR) image
is determined by linear or bicubic interpolation. In a recent Type-I SR-MRI deep
learning model with mean square error (MSE) based reconstruction loss regu-
larized using Laplacian and rank priors, the interpolated HR image forms the
input to a convolutional neural network (CNN) with feedback connections from
higher-level layers that compute feature maps based on variance of the Laplacian
to capture the sharpness of fine local structures, and rank reduction for learning
the global structures [2]. The spatial domain networks have also been used to
improve the through-plane resolution for 3D acquisition performed with a matrix
size set for high in-plane resolution and large slice thickness [8,14,15,17,27].

For a trajectory designed with a given matrix size and Bandwidth per pixel,
the Type-II methods model the degradation resulting from acquisition performed
using a subset of the low-frequency locations on the trajectory. In a Cartesian
scan, this is equivalent to acquiring only the central portion of the kspace, with
the scanner parameters set at the full matrix size and k-space coverage for a given
Field-of-View (FOV). An initial estimate of the HR image is then obtained from
the zero-padded k-space [9,11,12,24,26]. At higher down-sampling factors, this
leads to the generation of oscillatory artifacts. The classic problem of removal
of the undesirable oscillatory artifacts is often addressed by either pure filter-
ing techniques [1], or k-space extrapolation techniques that exploit one or more
forms of prior information about the HR image [18], or a combination thereof
[9]. In addition to the undesirable high-frequency artifacts, reconstruction at
higher down-sampling factors also involves estimation of signal values at more
number of unaquired locations. Although Channel splitting network (CSN) [29]
that performs residual and dense learning on the split features of a convolution
layer is a preferred choice in this situation, the reduced number of low-frequency
observations incapacitates the exploitation of redundant low-level information
to retrieve complex high-frequency spatial patterns at the deeper part of the
network. With encoder-decoder (EnDec) architecture, the propagation of unde-
sirable high-frequency spatial features can be controlled by adversarial training
the EnDec Generator network using a combination of MSE loss, perceptual loss,
and Texture matching loss as shown in [11]. A significant contribution in [11] is
the performance improvement at higher down-sampling factors obtained by con-
catenating multi-contrast features to the high-level feature maps in the decoder
part using a pre-trained reference network (MCSR). At higher down-sampling
factors, this network is progressively connected to have different levels required
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for learning the complex spatial patterns. Our goal in this paper is to develop
a hybrid-domain EnDec (Hd-EnDec) architecture that exploits the frequency
domain information in the limited number of low-frequency observations, and
thereby improve the performance of high-level feature extraction. In the absence
of multi-contrast training features, the Hd-EnDec architecture provides higher
PSNR performance in comparison to both the CSN and the EnDec Generator
network employed in MCSR.

Because the oscillatory artifacts manifest as a result of inverse Fourier oper-
ation performed on the truncated k-space, the undesired spatial patterns can
be avoided by directly training a frequency domain network (FDN) to learn the
high-frequency signal values. The FDN is trained with the observed k-space zero-
filled at the high-frequency locations forming the input and the fully acquired
k-space as the reference. Although the architecture is similar to the FDN in com-
pressed sensing MRI (CS-MRI) [5,19], the reduced number of observed samples
in Type-II SR-MRI makes the problem heavily undetermined. Therefore, a direct
estimation of the signal values becomes challenging. Instead, we resort to a pro-
gressive scheme by estimating the signal components encoded into the higher
frequencies sequentially using FDN-SDN pairs with progressively increasing k-
space coverage. In this scheme, each block of hybrid-domain encoder-decoder
type CNN is sequentially trained to estimate the unknown signal values at k-
space locations within the immediate neighborhood of the region covered by
the previous block. To achieve this, we make use of the high spectral densities
embodied in the observed low-frequency samples to learn the spectral densi-
ties in the neighboring high-frequency region by maximizing the Normalized
Spectral Cross-correlation Energy loss function. In this process, the network
relearns the low-frequency samples with higher spectral energy and preserves
the spectral density of the reference k-space in the low-frequency region. This
results in smoothed estimates of the high-frequency signal values in the neighbor-
ing regions, with smoothed spatial features in the absence of oscillatory effects.
Therefore, the image reconstructed from FDN acts as a suitable training input
to a second stage of spatial domain learning using the MSE loss function and the
low-frequency consistency prior. The high-frequency information learned in SDN
will thus be closer to the reference k-space. The cascaded block of pre-trained
FDN and SDN (Hd-EnDec) gives 0.8-1.2dB improvement in PSNR at four-fold
downsampling with reference to the 2-level progressive MCSR network in the
absence of multi-contrast prior. In addition, the Hd-EnDec approach facilitates
improved reconstruction compared to the conventional Super-Resolution Deep
Learning (SRDL) frameworks used in ESRGAN, FA-GAN, W2AMSN, CSN and
FP-GAN. These frameworks utilize deep enhancement modules emphasized with
multi-streaming architecture or attention modules, with or without generative
learning, to represent local and global high-frequency details in the high-level
abstractions of the model.

With more high-frequency samples corresponding to large Tread or sampling
rate, the number of layers required in a single FDN would be too large to ensure
generalizability. To circumvent this, we divide the k-space into blocks of increas-
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ing dimensions around the observed low-frequency samples. The innermost block
with the least number of high-frequency samples are estimated first with a pre-
trained hybrid network. The output k-space of this network is used to train
a second hybrid network to estimate the high-frequency samples in the next
outer block and so on. In this, the samples that are common to both blocks are
relearned by the outer hybrid network with higher accuracy as compared to that
estimated by the inner network. For a matrix size of 256 and down-sampling
factor of 4, we typically use 2-3 hybrid blocks; with the inner block covering
the central 128 × 128 region. The paper is organized into 4 sections. In the first
section, we give a brief overview of the background on SR-MRI and related
works. The theory section includes a brief description of the SR-MRI acquisition
schemes for fast acquisition and partial k-space, the implementation of FDN,
SDN and Hd-EnDec. The theory section also includes the combination of loss
functions used to generalize the network models. The results section includes
application of FDN, SDN and Hd-EnDec to publicly available brain data. The
results are compared with ESRGAN [22], FA-GAN [7], W2AMSN [21], CSN [29]
and FP-GAN [25] networks. The paper concludes with a detailed discussion of
its implications and relative advantages.

2 Theory

2.1 SR-MRI Problem Formulation

In this paper, we broadly address the problem of SR-MRI using deep networks
trained with the limited low-frequency samples obtained with Fast acquisition
(FA) schemes in which the k-space coverage is limited to the central region for
both Cartesian and non-Cartesian acquisition. SR-MRI designed for specified k-
space coverage and matrix size aims to reconstruct a high-resolution MR image
by acquiring only the central k-space points with reduced readout duration. In
addition to the advantage of reducing the effective readout time, post-processing
in SR-MRI achieves reconstruction without high-frequency oscillations due to
k-space truncation, while retaining fine tissue details. The training data for a
given imaging region (such as the brain, spine etc.) with the same resolution and
contrast weighting, comprises of a set of HR images {f (k)(x , y) | f (k) ∈ RM×N

+

k = 1, 2, ...,Nt} (Nt � 4000 samples or more) obtained as the Fourier inverse of a
fully acquired k-space {F (k)(kx ,ky)|F (k)∈ C

M×N , k = 1, 2, ...,Nt} for Cartesian
acquisition and inverse NUFFT (iNUFFT) [26] for non-Cartesian trajectory. In
the rest of this paper, notations without inclusion of the superscript denote
samples used for prediction. The Type-II SR-MRI problem is to reconstruct
F (kx ,ky) from the zero-filled LR k-space G(kx ,ky) := Mask ◦ F (kx , ky). The
down-sampling operator determines the number and location of sampling points
to be acquired on the specified trajectory. Based on the standard trajectory type
and acquisition scheme, the mask to be chosen for SR-MRI takes the form:
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Mask(kx , ky) :=

{
1 for − kxmax

r ≤ kx (t) ≤ kxmax
, − kymax

≤ ky(t) ≤ kymax
, t ≤ Tread

r

0 otherwise,
(1)

where r denotes an implicit down-sampling factor and Tread represents the read-
out time. Unlike the Type-I SR-MRI, the implicit nature of the down-sampling
factor effectively means that the spatial dimensions of both the LR and HR
images are equal.

2.2 Proposed Learning Approach and Network Architecture

The hybrid architecture is composed of an FDN model (ΓΘF
) sequentially con-

nected to the input of an SDN model (ΓΘI
) through a Fourier Transformation

layer. The training process consists of first training ΓΘF
by optimizing the objec-

tive function LF (.) with respect to the hyper-parameters:- ΘF . ΓΘI
(.) is then

trained with the pre-trained layers of ΓΘF
with respect to ΘI .

Fig. 1. A schematic depiction of the Hd-EnDec architecture. Red box highlights the
EnDec architecture used for FDN and SDN models.

FDN model The feature map at the input layer of FDN can be represented as

G0 = T (G(kx , ky))G0 ∈ R
M×N×2, (2)

where T denotes a Tensor operator to represent the k-space as a tensor with two
separate feature maps consisting of the real and imaginary parts. With Nt num-
ber of training samples, the notation for the feature map is extended to include
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Fig. 2. A schematic depiction of the training process with progressive Hd-EnDec net-
work. The progressive learning strategy involves stage-wise training of each Hd-EnDec
model for a specific extent of k-space, followed by an inverse Fourier transform to
provide input to the SDN model within the Hd-EnDec network. The inferred output
image from the previous stage’s SDN is upscaled to the next higher radix-2 dimension
and then fed into the subsequent Hd-EnDec for training. In this stage, the previous
Hd-EnDec is set to non-trainable mode. This process ultimately generalizes a hybrid
domain sequential model to reconstruct the HR image.

the ensemble training data as G0 := {G(k)
0 }Nt

k=1. Similar to a conventional CNN,
the features maps in FDN are spatially connected with sparse weights in each
successive layer. Similarly, the depth of each layer increases successively in the
encoding path and reduces in the decoding path.The input and output feature
maps of the sth encoding layer is denoted by {G(k)

s−1}Nt

k=1, G(k)
s−1 ∈ RM×N×Ds−1

and {G(k)
s }Nt

k=1, G(k)
s ∈ RM×N×Ds , s = 1, 2, ....,S , respectively. The depth Ds rep-

resents the number of feature maps in the sth layer. The interconnections in each
layer are obtained using a weight kernel Ws ∈ RHs×Vs×Ds and bias Bs ∈ RDs×1.
In CNN, the input and output feature maps are related by a non-linear map-
ping γ(.) applied to a linear transformation of the input feature map. The linear
transformation involves convolution of the input feature map containing weight
kernel together with addition of a bias term. The input-output relationship for
the sth convolution layer can be expressed as

G(k)
s = γ

(
Ws ∗ G(k)

s−1 + Bs

)
,

ΘFs
= (Ws ,Bs).

(3)

The mapping of a layer unit defined as in (3) can be extended to that of a
U-net architecture [23] consisting of an encoder and decoder path in which the
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output of (s
′
)th convolutional layer unit of the decoder path can be expressed as

G(k)

s′ = γ
(
Ws′ ∗ G(k)

s′ −1
+ Bs′

)
,

ΘF
s
′ = (Ws′ ,Bs′ ), s

′
= 1, 2, ....,S

′
,

(4)

where G(k)
s′−1 ∈ R

M×N×Ds′−1 , G(k)
s′ ∈ R

M×N×Ds′ are the input and output feature
maps with depths Ds′−1 and Ds′ . The output feature map G(k)

S of S th convo-
lution layer in the encoder path is fed to the layer s ′ = 1 in the decoder path,
i.e., G(k)

s′−1 := G(k)
S . ΘFs′ ⊂ ΘF represents the hyper-parameter of the (s

′
)th con-

volutional layer unit in the decoder path that consists of weight kernel/filter
Ws′ ∈ RHs×Vs×Ds′ and bias Bs′ ∈ RDs′×1 with reduced depth Ds′ < Ds . The
output feature map G(k)

S ′ of (S
′
)th convolutional layer in the decoder is reduced

to depth D0 = 2 (corresponding to the real and imaginary components)using
a gating convolution layer. With this, the final output of FDN can be repre-
sented as

G(k)
out = T †(G(k)

gating),G
(k)
0 ∈ C

M×N×1, (5)

where T † is the adjoint tensor operator, G(k)
gating = Ψ(Wgating ∗ G(k)

s′ −1
+ Bgating)

and Ψ represents the linear activation function applied to the gating layer.

Fourier domain Loss function To estimate the k-space signal in the immedi-
ate neighborhood, the spectral densities in the adjoining high-frequency region
are learned by maximizing the Normalized Spectral Cross-correlation Energy
loss function. During training, the network relearns the low-frequency samples
with higher spectral energy while preserving the spectral density of the reference
k-space in the low-frequency region. The spectral cross-correlation between the
FDN output G(k)

out and the reference k-space F (k) can be expressed as

RFG(ωx , ωy) =
∫∫ ∞

Ωx ,Ωy=−∞
F

(k)
(Ωx , Ωy)

G(k)
out(ωx + Ωx , ωy + Ωy)∂Ωx∂Ωy ,

(6)

where F
(k)

denotes the conjugate of the fully acquired k-space of the k
′th train-

ing sample and (ωx , ωy) denotes the spectral lags. Since the cross-correlation
is maximum at (ωx := 0, ωy := 0) ), we define a metric using the discrete
form of Spectral cross-correlation at (ωx := 0, ωy := 0) ) as

∑M−1,N−1
Ωx ,Ωy=1

=

F
(k)

(Ωx , Ωy)G
(k)
out(Ωx , Ωy). Therefore, maximizing the cross-spectral density

would imply normalizing the spectral cross-correlation with the spectral energy
function. This yields the Normalized spectral cross-correlation energy (NSCCE)
loss function:

LFG =
|
∑M−1,N−1

Ωx ,Ωy=1
F

(k)
(Ωx , Ωy)G

(k)
out(Ωx , Ωy |2

Nor2FG

, (7)

where Nor2FG = |F (k)(Ωx , Ωy)|2.
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SDN Model The SDN model ΓΘI
employs an architecture similar to that of

FDN. The input training sample g(k)0 is obtained by inverse Fourier transforming
the output feature map G(k)

out of the pre-trained model ΓΘF
. The SDN output in

each forward pass is denoted as f̂ (k). The reference image f (k) used for computing
the loss function LI is obtained by inverse Fourier transforming F (k). The loss
function LI used to optimize the hyper-parameter ΘI is the mean square error
(MSE) expressed as

MSE(f̂ (k), f (k)) =
1

MN
‖f̂ (k) − f (k)‖2F, (8)

where f̂ (k) and f (k) denote the reconstructed and ground-truth HR images,
respectively.

Hd-EnDec Model The proposed network architecture of the Hd-EnDec model
is shown in Fig. 1. The network consists of an SDN cascaded to the output of
a pre-trained FDN. Both the FDN and SDN components consist of a total of 4
convolutional blocks each in the encoder path. Each block has three convolutional
layer units having the same depth. The depths of the convolutional layer units in
consecutive blocks correspond to 48, 64, 128 and 256 filters. The decoder in each
network component has a similar architecture, but with depths decreasing from
256 to 48. Each convolutional block in the encoder path also consists of a pooling
layer with stride 2×2. Likewise, a convolutional block in the decoder path is
preceded by an up-sampling layer with stride 2×2. The FDN and SDN models are
interconnected with an IFFT/iNUFFT layer to enable domain transformation
from FDN to SDN.

Progressive architecture of Hd-EnDec The signal values encoded at the
higher frequencies contain more information regarding fine structural details.
Therefore, the complexity of learning the high-frequency components using a
single Hd-EnDec model increases with distance from the k-space origin. To
address this problem, a progressive learning strategy is employed whereby the
high-frequency components are progressively learned with multiple Hd-EnDec
models as shown in Fig. 2. In the progressive learning approach, the k-space is
segmented into blocks of increasing dimensions. The innermost block with the
least number of high-frequency samples are estimated first with a pre-trained
Hd-EnDec model. The estimated k-space is then used to train a second Hd-
EnDec model to estimate the high-frequency samples in the next outer block
and so on. The samples that are common to both blocks are re-learned by the
higher level Hd-EnDec model, resulting in more accurate estimates as compared
to the lower level model.
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3 Experimental Evaluation

3.1 Datasets

IXI Dataset:-For the retrospective study, we have used the IXI dataset con-
taining registered T2 weighted MR images of 578 patients made publicly avail-
able in (https://brain-development.org/ixi-dataset). A total of 3900 pairs of T2
weighted images from randomly selected 30 subjects were used for training and
1300 pairs from another randomly selected 15 subjects for validation with the
size of original HR T2 weighted images as 256×256. LR images corresponding
to down-sampling factors 2-4 are used as the input image.

3.2 Experimental details

The input for training is the zero-padded LR k-space with the same dimension as
that of the target HR image. The training is performed with batch size set to 16.
For each down-sampling factor, the learning rate used for the training process
is determined from the respective validation loss curve characteristics. It is seen
that for both down-sampling factors, the validation loss curves show improved
convergence for the learning rate value of 1e-3.The loss functions are backprop-
agated in the training process using Adam optimizer. The general pipeline for
the whole study consists of: 1) organizing LR k-spaces for training such that
real and imaginary components are separated into two channels and serve as the
input feature maps to the model, 2) the network is trained for a pre-fixed num-
ber of epochs with early stopping and check points made available based on the
validation loss, 3) After generalizing the model, the test sample pairs consisting
of LR and corresponding HR k-spaces are used to predict the super-resolved
HR images, followed by PSNR computation referenced to the groundtruth HR
images. All the work was implemented using Tensorflow on a NVIDIA Tesla
V100-SXM2-16GB GPU in google colab platform and Quadro RTX 5000 GPU
with 16GB of RAM.

4 Results

4.1 Ablation Study

This ablation study is meticulously designed to evaluate the effectiveness of
progressive frequency domain learning in predicting high-frequency signal mea-
surements and its influence on architectural choice. The experiment aims to
reconstruct HR k-space with high-frequency measurements of size 256 × 256
from LR k-space of size 64×64, which is dominated by low-frequency signal val-
ues. The experiment also includes a sensitivity analysis to assess the impact of
adding convolution layers in abstracting high-level features in frequency domain
learning. Two network models are considered for the experiments: the Progressive
Sequential Hybrid Domain Network (PSHDN), which is the proposed Hd-EnDec
model, and the existing Sequential Hybrid Domain Network (SHDN), used to

https://brain-development.org/ixi-dataset
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address the CS-MRI problem [5]. The SHDN architecture is similar to the Hd-
EnDec but lacks progressive upsampling and the EnDec architecture in FDN.
Instead, it employs a cascade of convolution layers with a data consistency layer
in FDN part of the hybrid model. For uniformity, the FDN part of PSHDN is
also designed with a cascade architecture that includes progressive upsampling
layers and data consistency at each progressive level of the HDN, making the
FDN function as a decoder model. However, the SDN parts of both PSHDN and
SHDN use the EnDec architecture. This architectural design effectively demon-
strates the influence of progressive FDN learning compared to a conventional
cascaded architecture in FDN. For the study, the convolution kernel size and the
number of blocks in both PSHDN and SHDN are fixed at 3 × 3 and 4, respec-
tively. Fixing the number of blocks at 4 means the first level of HDN in both
PSHDN and SHDN will learn to predict k-space of size 128×128. Subsequently,
they will predict k-space of size 192 × 192 and finally predict the HR k-space
of size 256 × 256 from the previously predicted k-space of size 192 × 192. Addi-
tionally, PSHDN reduces the dimension at specific progressive blocks, unlike
SHDN, where the dimension of the feature map or estimated k-space is con-
sistently 256 × 256 at all HDN levels, starting with the zero-padded 64 × 64
LR k-space and its subsequent LR image. The zero-padding ensures the size is
256× 256.The sensitivity analysis varies the number of convolution layers in the
FDN part of the HDN model from 1 to 7. The SDN part uses the EnDec model
with 3 convolution layers in each upsampling/downsampling module.

The visual quality of the reconstructed HR k-space is illustrated in Fig. 3.
The left panel presents the ground truth HR k-space, HR image, and the LR k-
space given as input to PSHDN/SHDN. The right side shows the reconstructed
HR k-space, where the panels in rows 1 and 3 display the output of HR k-space
from progressive levels 1 and 4 of PSHDN. Similarly, the panels in rows 2 and
4 show the output of HR k-space from progressive levels 1 and 4 of SHDN.
The column-wise variation shows the output HR k-space obtained for differ-
ent numbers of convolution layers in the FDN, denoted as Nd.It can be seen
that the progressive upsampling architecture of PSHDN enables more number
of accurate high-frequency predictions compared to the cascaded architecture.
Additionally, when the number of convolution layers in the FDN increases from
3 to 7, there is an accumulation of signal values in the high-frequency region due
to over-abstraction of high-level features with increased depth. This effect is also
observed in PSHDN/SHDN, resulting in a reduced number of high-frequency
signal predictions in the final progressive level as Nd increases from 3 to 7. From
this, it can be inferred that the FDN model should be designed such that hier-
archical representation of features in the frequency domain cannot be directly
interpreted using high-level local modeling capabilities of convolution layers, as
is done to realize hierarchical representation of low-level to high-level structural
features extracted in the spatial domain.
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Fig. 3. Illustration of reconstructed HR k-space for varying the number of convolution
layers in the FDN part of the Hd-EnDec model, compared to an existing sequential
hybrid domain model.

4.2 Fast Acquisition

The PSNR performance of the Hd-EnDec architecture is compared against FDN
and SDN in Fig. 4 for down-sampling factors 2, 3 and 4, respectively. The row-
wise panel a) to c) shows the zoomed-in region of reconstructed HR image for the
respective down-sampling factors 2-4. Left-Right column-wise panels 1-6 show
the ground-truth, LR and HR images reconstructed using the FDN, SDN and
Hd-EnDec deep networks. FDN is shown to result in PSNR gains of 1.38dB,
2.88dB and 2.32dB for the respective down-sampling factors, with improved
visual quality of the reconstructed HR image compared against LR and FDN.
In lieu of preservation of signal characteristics, the effect of remnant ringing
present in FDN is reduced. Although application of attention mechanism in the
Fourier domain results in only a fractional improvement in the overall PSNR,
the undesirable high-frequency artifacts are suppressed by preserving the signal
characteristics of k-space. In similar lines, the PSNR comparison of SDN archi-
tectures is shown in fifth column of Fig. 4. Although SDN achieves better PSNR
performance (1.2dB, 2.1dB and 1.7dB for the three down-sampling factors) due
to preservation of structural integrity gained from spatial domain processing, the
inherent blur present in the reconstructed structures limits its standalone usage
in a clinical setting. Moreover, the Hd-EnDec models achieves better PSNR per-
formance (3.89dB, 4 dB, 3.72dB for the three down-sampling factors) that shows
the improved reconstruction attained with the hybrid learning.
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Table 1. Quantitative comparison with the state-of-the-art methods for ×2 , ×3 and
×4

Method IXI dataset
×2 ×3 ×4

PSNR SSIM PSNR SSIM PSNR SSIM

LR 36.18± 1.3 0.964± .010 30.68± 1.1 0.903± .015 27.63± 0.8 0.824± .017

ESRGAN[22] 36.92± 1.1 0.967± .001 32.14± 1.1 0.917± .001 30.17± 1.1 0.895± .001

FA-GAN[7] 37.45± 1.1 0.974± .001 32.51± 1.1 0.945± .001 30.47± 1.1 0.902± .001

W2AMSN[21] 38.72± 1.1 0.971± .001 32.78± 1.1 0.952± .001 30.96± 1.1 0.921± .001

CSN[29] 38.63± 1.1 0.980± .001 32.85± 1.1 0.949± .001 30.85± 1.1 0.916± .001

MCSR[11] 38.20± 1.1 0.976± .001 33.01± 1.1 0.960± .001 31.24± 1.1 0.943± .001

FP-GAN[25] 38.86± 1.1 0.972± .001 33.24± 1.1 0.958± .001 31.42± 1.1 0.932± .001

Hd-EnDec 39.63± 1.1 0.981± .001 34.13± 1.1 0.964± .001 31.57± 1.1 0.947± .001

4.3 Comparison with state-of-the-art methods

For the case of fast acquisition, a comparative assessment of the hybrid net-
work is performed with the state-of-the-art methods. The latter include MCSR
[11] and CSN [29]. The images reconstructed using the above methods are illus-
trated in Fig. 5 for down-sampling factors 2, 3 and 4, respectively. The left-right
column-wise panels represent the ground-truth, LR image; HR images recon-
structed using: CSN, MCSR and Hd-EnDec (i.e., the proposed method) from
two different sources in the IXI database. Row-wise panels show the respective
images at different down-sampling factors. While for down-sampling factor 2, all
the reconstructed images are shown to preserve structural integrity, our method
alone is found to be capable of alleviating the ringing effects fully together with
simultaneously retaining the sharpness of the fine structural elements as indi-
cated by the yellow arrow in Fig. 5(b). Although the structures are relatively
blurred and distorted with higher down-sampling factors as shown in Fig. 5,
the relative sharpness is higher with the proposed method as indicated by the
respective yellow arrows in panels-b), d) and f). In addition, the performance
of the Hd-EnDec network is also evaluated quantitatively and compared against
the state-of-the-art methods in Table 1. It is seen that SR-MRI using Hd-EnDec
shows superior performance with PSNR gains of 3.89dB, 4 dB and 3.72dB at
down-sampling factors 2, 3 and 4, respectively. Table 1 also reports an improve-
ment in SSIM score attained by the Hd-EnDec network for all down-sampling
factors as compared to other methods.



Hybrid Domain Encoder-Decoder Network for Super-Resolution MRI 139

Fig. 4. Visual comparison of LR, FDN, SDN and Hd-EnDec architecture for down-
sampling factors 2, 3 and 4 with the ground-truth HR image chosen from IXI dataset.
Column-wise panels show the respective images and the corresponding k-space hot
maps.The yellow and blue arrow in rows- 1, 3 and 5 show regions with blurred structures
in the LR image.

Fig. 5. Visual comparison of LR, CSN, MCSR and Hd-EnDec for down-sampling fac-
tors 2, 3 and 4 with the ground-truth HR image chosen from IXI dataset. Yellow arrow
indicates regions with blurred structures in the LR image.
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5 Conclusion

As opposed to the conventional form of spatial domain super-resolution for MRI,
we have developed a hybrid domain deep network for performing retrospective
super-resolution through robust k-space extrapolation; useful for fast MR acqui-
sition including partial Fourier and non-Fourier acquisitions. The hybrid archi-
tecture designed for the specific type of SR-MRI application ensures simultane-
ous preservation of the signal characteristics of k-space and structural integrity
in the spatial domain necessary for accurate retrieval of high-resolution infor-
mation. With limited number of k-space samples, the efficiency of FDN can
be improved using an attention mechanism introduced as a means to correct
the higher-level Fourier domain feature maps with the higher-level features of a
pre-trained teacher sub-network in the Fourier domain. The inclusion of a pre-
trained teacher network entails the application of a knowledge distillation based
transfer learning mechanism. Our experimental results demonstrate improved
performance of the proposed hybrid domain neural network model for high down-
sampling factors in comparison to other state-of-the-art methods.
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Abstract. For the planning of radiotherapy treatments for head and
neck cancers, Computed Tomography (CT) scans of the patients are
typically employed. However, in patients with head and neck cancer,
the quality of standard CT scans generated using kilo-Voltage (kVCT)
tube potentials is severely degraded by streak artifacts occurring in the
presence of metallic implants such as dental fillings. Some radiotherapy
devices offer the possibility of acquiring Mega-Voltage CT (MVCT) for
daily patient setup verification, due to the higher energy of X-rays used,
MVCT scans are almost entirely free from artifacts making them more
suitable for radiotherapy treatment planning.

In this study, we leverage the advantages of kVCT scans with those
of MVCT scans (artifact-free). We propose a deep learning-based app-
roach capable of generating artifact-free MVCT images from acquired
kVCT images. The outcome offers the benefits of artifact-free MVCT
images with enhanced soft tissue contrast, harnessing valuable informa-
tion obtained through kVCT technology for precise therapy calibration.
Our proposed method employs UNet-inspired model, and is compared
with adversarial learning and transformer networks. This first and unique
approach achieves remarkable success, with PSNR of 30.02dB across the
entire patient volume and 27.47dB in artifact-affected regions exclusively.
It is worth noting that the PSNR calculation excludes the background,
concentrating solely on the region of interest.
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1 Introduction

Since their introduction in the 1970s, advanced medical imaging techniques,
particularly high-resolution Computed Tomography (CT), have been crucial for
computer-assisted diagnosis [5]. However, when patients with metal implants
undergo imaging, such as dental fillings or hip prostheses, severe beam attenua-
tion occurs, resulting in discernible streaks that compromise image fidelity and
hampering clinical assessment [1].

Recent advancements in deep learning have shown promise in mitigating
metal artifacts through supervised learning methodologies. However, obtaining
ground truth images without artifacts is challenging. [9] tackles this issue by
generating datasets with and without metal artifacts, enabling the development
of numerous algorithms for Metal Artifact Reduction (MAR). Other approaches
encompass a variety of image-to-image deep learning models, including deep
residual architectures [6] and interpretable convolutional dictionary networks
[24]. Numerous other methodologies utilize sinogram-to-sinogram deep learning
models [20,30] or dual-domain deep learning models using both image and sino-
gram data [12,15,28]. These models can be further extended by incorporating
state-of-the-art interpolation-based algorithm Normalized MAR corrected data
as an extra input [4,14]. A combination of multiple supervised deep learning
methods can be effective in reducing metal artifacts from complex cases of car-
diac CT images [17]. Approach [25] uses pix2pix [7] for MAR, it introduces band-
wise normalization method, which splits a CT image into three channels accord-
ing to the intensity value and considerably improves the performance of the
cGAN. CNN-based approach [29] is introduced to predict an artifact-suppressed
prior image. Extending these concepts, [15] introduced DuDoNet, a dual-domain
learning technique combining sinogram enhancement and image domain recon-
struction. Improved version of DuDoNet [15], restores sinogram consistency and
simultaneously enhance CT images by incorporating metal segmentation in both
domains. In more recent work, [18] introduced an alternative dual-domain app-
roach, emphasizing deep sinogram completion for improved MAR performance.

Mega-Voltage Computed Tomography (MVCT) is used for verification of
patient positioning immediately before the radiotherapy treatment. It is less prone
to streak artifacts from metallic implants because it uses high-energy beams pro-
duced by a radiotherapy linear accelerator, which are less attenuated by metal than
conventional diagnostic X-rays. The main drawback of MVCT is that it is available
only in some specialized radiotherapy machines [5]. [16] proposes to reduce metal
artifacts in kVCT by using MVCT images as prior images. The iterative method
proposed in [19] segments tissue regions in Megavoltage cone-beam CT images and
the metal region in kVCT images for template creation. Forward projection of the
templates generates sinograms. Artifact images are reconstructed from the sino-
grams. Finally, corrected images are obtained by subtracting artifact images from
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original kVCT images. [21] utilizes the sinogram of kVCT and MVCT along with
the corresponding metal trace to ultimately produce artifact-free kVCT images.
Methodology proposed in [10], employing convolutional neural networks to obtain
artifact-free kVCT images, by utilizing two networks where the first generates syn-
thetic artifact-free kVCT images from MVCT, which are then used to train the
second network. The second network takes kVCT images with artifacts as input
and produces artifact-free kVCT images as output.

Fig. 1. (a) Abstract overview of proposed Domain Transformation Network. (b)
Sagittal view of the body with distinct delineations of the head, neck, and body
regions(blue). (c) kVCT (top) and MVCT (bottom) axial artifact slices after normal-
ization and masking.

Different techniques have been utilized to mitigate metal artifacts in kVCT
scans, yet they predominantly operate within the same domain. In contrast, our
innovative approach involves transforming the CT domain from kVCT to MVCT,
as MVCT is inherently less artifact-sensitive, henceforth preferred for its robust-
ness in clinical applications. We hereby propose Metal Artifact Reduction using
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Domain Transformation Network (MAR-DTN) to address metal artifacts in onco-
logical imaging. Our approach generates MVCT using a model that employs a
UNet architecture with skip connections, tailored for MAR from kVCT images, to
systematically mitigate artifacts during the transformation process from kVCT to
MVCT. Leveraging its encoder-decoder structure and spatial awareness, it effec-
tively processes 512x512 pixel images to produce MVCT output (see Fig. 1a).
This network is trained by employing 3858 kVCT slices of head and neck region
(Fig. 1b).

It has achieved exceptional results, a noticeable point is that Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) in all
tables concern the regions of interest only, not the background like the other
methodologies. This approach aims to improve CT quality, interpretability, and
analysis of medical images by transforming artifact-contaminated kVCT into
artifact-free MVCT. This novel method enables radiation oncologists to gain
insights into MVCT from kVCT alone, potentially avoiding repeated imaging and
its implications for patients’ health. In addition, our study entails a comparative
evaluation of MAR-DTN’s performance in relation to three current state-of-the-
art methods, based on adversarial learning and transformers.

2 Methods

2.1 Dataset Collection and Processing

Due to the lack of available aligned kVCT and MVCT datasets, a new dataset
consisting of 5469 images from 52 patients from the National Cancer Institute
(CRO) IRCCS 1. For each patient, we acquired kVCT and MVCT images; the
kVCT images obtained have matrix size of 512 × 512, on the axial plane with a
pixel size of 1.074 mm × 1.074 mm, and slice thickness of 2 mm, furthermore, the
MVCT images obtained have a matrix size of 512× 512, on the axial plane with a
pixel spacing of 0.754 mm × 0.754 mm with the slice thickness of 2 mm or 4 mm.

Patients underwent intensity-modulated radiotherapy for oropharyngeal or
nasopharyngeal cancer. Non-contrast-enhanced CT imaging was performed using
a 32-slice scanner (Toshiba Aquilion LB, Toshiba Medical Systems Europe, Zoeter-
meer, the Netherlands) with parameters set at 120 kVp, 2-5 mm slice thickness, and
1.07-1.17 mm pixel size. Additionally, patients underwent scanning with helical
tomotherapy (Hi-Art II Tomotherapy System, Tomotherapy Inc., Madison, Wis-
consin, USA), utilizing a radiotherapy 6MV linear accelerator capable of acquiring
MVCT images for daily patient setup verification. The imaging beam, produced
by the same LINAC as the therapeutic beam, had a nominal energy of 3.5 MV,
with slice thickness ranging from 2-5 mm and a pixel size of 0.75 mm.

The slices of each modality volume are manually categorized into three
regions: head, neck, and body (see Fig. 1b). The head region comprises from
the beginning of the cranial cavity to the chin, while the neck region spans from

1 Centro di Riferimento Oncologico di Aviano IRCCS, Via F.Gallini 2, Aviano (PN),
33081, Italy
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the chin to the shoulders. The remaining (body region) slices are not consid-
ered since we care about removing artifacts caused by metal implants in the
teeth area. To separate the artifact-corrupted slices from artifact-free slices, we
define artifacts in kVCT images as values exceeding 2000 Hounsfield Units (HU),
while for MVCT images, the artifact threshold is set at 1000 HU. These thresh-
olds were determined through visual inspection and following recommendations
from [10,16].

Table 1. Number of patients and slices (images) in the acquired dataset.The head and
neck region include the artifact slices since we work with artifacts caused by metallic
dental implants.

Set Number of patients Number of slices of the
head and neck regions

Number of slices
with artifacts

Train 36 3858 560

Validation 10 1031 153

Test 6 580 96

For the training and subsequent evaluation of the proposed model, two
datasets are constructed; the first is DAll, the dataset comprises CT slices up
to the neck region (including slices with and without artifacts), and the second
dataset is DArt, which contains only artifact-contaminated CT slices. Out of
the total number of slices in the dataset, 14.78% exhibit artifacts, hence belong
to DArt. Both datasets are further sub-divided into three distinct datasets, as
specifically, 70% of the patients are used for training (DTr

All and DTr
Art), 20% for

validation (DV al
All and DV al

Art ), and the remaining 10% for testing (DTs
All and DTs

Art)
(see Table 1).

2.2 kVCT-MVCT Alignment and Preprocessing

The primary goal is to create a dataset with aligned kVCT and MVCT images.
Despite originating from the same patient and reference system (with the same
origin point), both image volumes (kVCT and MVCT) were not pixel-aligned
leading to increased challenges (i.e., such as the need to address alignment and
artifact reduction simultaneously). To achieve this, image alignment was per-
formed using the Elastix module of 3D Slicer, open source software (version
5.6.1) [3,11].

The aligned kVCT and MVCT volumes undergo normalization to the range
[−1, 1]. This process involves setting the lower threshold at −1000 for air and
upper thresholds at 2000 for kVCT artifacts and 1000 for MVCT artifacts. Addi-
tionally, utilizing the segmentation provided by clinicians (depicted as green seg-
mentation in Fig. 1b), the image background is standardized to the value of −1.
The result of such a preprocessing on two sample kVCT and MVCT slices is
shown in Fig. 1c.
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2.3 Proposed Methodology

The objective is to project images acquired in the kVCT domain onto the MVCT
domain while removing/reducing the artifacts induced by metallic implants.

In what follows, with m denoting the kVCT (k) or MVCT (M) modality, we
let Xr

m ∈ R
d×d be a raw (r) slice with d = 512 denoting the image resolution.

The volume containing the n slices of a patient is Vr
m ∈ R

d×d×n. The original
images undergo an alignment process (see Section 2.2), resulting in two new
volumes, Va

k,Va
M = alignment(Vr

k,Vr
M), which are aligned pixel by pixel.

After this process, all the slices in a volume are preprocessed (see Section
2.2) to obtain Xp

m = preprocess(Xa
m),∀Xa

m ∈ Va
m that collectively define the

dataset for the experiments. The summary diagram is shown in Fig.2.
The input to our model is a preprocessed kVCT image, Xp

k, while the ground
truth is the corresponding preprocessed MVCT image, Xp

M. The output of the
model is the domain transferred kVCT to MVCT slice, denoted as X̂M ∈ R

d×d.

Fig. 2. Steps followed for dataset generation. We start with raw and unaligned kVCT
and MVCT volumes –slices (lines in the cube) do not correspond. Then, volumes are
pixel-aligned and so the slices correspond (Section 2.2). Finally, corresponding slices in
kVCT and MVCT volumes are normalized and masked (Section 2.2).

Network architectures We propose a Metal Artifact Reduction using Domain
Transformation Network (MAR-DTN), which closely aligns with the architec-
tural principles of the UNet framework [22]. The UNet architecture has been
widely used in previous works for pixel-to-pixel image tasks. In medical imag-
ing, specifically, it has demonstrated excellent results in segmentation, denois-
ing, and MAR [22,23,25]. The detailed architectural explanation of our proposed
model, named MAR-DTN, can be found in the supplementary material (Section
1: Explanation of Proposed Model Architecture).

Our investigation involves a comparative analysis of the performance of
MAR-DTN against three contemporary state-of-the-art methods. The first one
is a Conditional Generative Adversarial Network (cGAN), named pix2pix [7].
Additionally, a modification of this network is included, replacing the original
generator with MAR-DTN (referred to as custom-pix2pix).
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In addition, a network leveraging transformers is implemented due to their
demonstrated high performance in addressing pixel-to-pixel image tasks. The
SwinIR architecture [13] is structured into three key components: shallow fea-
ture extraction, deep feature extraction, and high-quality image reconstruction.
Notably, the deep feature extraction module integrates numerous residual Swin
Transformer blocks (RSTB), each incorporating multiple Swin Transformer lay-
ers alongside a residual connection.

Finally, an architecture initially designed for medical image segmentation is
included. This is the INet architecture, a network that does not perform down-
sampling. It simply enlarges receptive fields by increasing the kernel sizes of
convolutional layers in steps (e.g., from 3× 3 to 7× 7 and then 15× 15). In our
case, the final activation is not performed in order to obtain a network capable
of generating images. We used this architecture for image generation because
INet maintains spatial information by fixing the sizes of feature maps and fuses
multilevel semantics by concatenating feature maps of all preceding layers. This
allows INet to enhance optimization capabilities.

Loss functions In addressing artifact reduction with neural networks, various
loss functions such as L1, FFL (Focal Frequency Loss), MSE (Mean Squared
Error), SSIM (Structural Similarity Index), and MS-SSIM (Multi-Scale Struc-
tural Similarity Index) offer distinct advantages.

– The weighted Lw
1 loss function is defined by: Lw

1 = ‖X̂M −Xp
M‖1 ·w, where

w ∈ R
d×d is the pixel weight. This loss emphasizes the absolute differences

between predicted and ground truth values and penalizes outliers, contribut-
ing to robust artifact reduction.

– FFL [8] is defined by: Lβ,α
FFL = 1

d·d
∑d−1

u=0

∑d−1
v=0 z(u, v)|FX̂M

(u, v) −
FXp

M
(u, v)|2 · β, where z(u, v) = |FX̂M

(u, v) − FXp
M
(u, v)|α, β ∈ R is the

weight of spatial frequency, α ∈ R is the scaling factor, and F (u, v) is the
spatial frequency value at the spectrum coordinate (u, v). This loss focuses
on high-frequency artifacts, helps in preserving image details while suppress-
ing artifacts, thus enhancing perceptual quality.

– MSE is defined by ‖X̂Mij
− XMij

‖22 which measures the average squared
distance, and provides simplicity and ease of interpretation.

– SSIM [26], evaluates luminance, contrast and structure, ensuring preservation
of perceptual features, making them suitable for maintaining image fidelity
during artifact reduction tasks.

– MS-SSIM divides images into multiple scales and computes SSIM for each
scale separately. Then, it averages these SSIM values to get a single value
representing structural similarity. This method offers a more comprehensive
evaluation, considering structural similarity across different resolutions.

Implementation details and evaluation metrics All networks have the
same input and output shape, 512 × 512, corresponding to the size of Xp

k and
Xp

M. Models were optimized using Adam with learning rate and weight decay set
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to 0.001 and 5e−4, respectively. The batch size was set to 4 for all networks except
SwinIR for which we used 2 samples (due to computational memory issues). We
trained for 20 epochs with early stopping with a patience of 5 epochs. Data
augmentation [2] includes horizontal flip with a probability of 0.5 and shift,
scale, and rotate with a probability of 0.8 (shift_limit= 0.0625, scale_limit=
0.1, rotate_limit= 5). This introduces variability into our dataset by applying
transformation probabilities to alter the dataset in each epoch, thus aiding in
the mitigation of data limitation.

Models were trained on an Intel Xeon Server with 188GB of RAM and
an Nvidia A100 GPU. We evaluated our methodology using PSNR and SSIM
metrics.

3 Experimental Results

3.1 Loss function analysis

The impact of different loss functions, whether used individually or in combina-
tion, is analyzed in this study. We excluded the INet network from our evaluation
because its performance, as detailed in Section 3.1, is significantly lower com-
pared to the other architectures. Including INet could skew the comparative
analysis and potentially introduce biases, thus detracting from a fair assessment
of the loss functions’ effects on more competitive networks.

First, we explore the impact of using an L1 loss function with weights (Lw
1 ) on

images containing artifacts. Weight assignment is based on body segmentation
provided by clinicians (see Fig. 1b), where w[i, j] is set to 0.1 outside the body
segment and varies within the set {1, 25, 50, 100} inside the segment for slices
with artifacts. Slices without artifacts maintain a weight of 1 throughout the
body segment. Since the only variable is the weight within the body segment,
we simplify the notation in the following sections and denote this value as w.
Therefore, L100

1 indicates a weight of 100 within the body segment for slices with
artifacts.

Additionally, the parameters β and α of the Lβ,α
FFL are discretely varied in the

set of values {0.5, 1, 1.5}. This variation allows for exploring different weightings
and contributions of both parameters in the neural network’s learning process,
particularly in handling images with artifacts.

Lw
1 Analysis Fig. 3a and Fig. 3b show the PSNR and SSIM values obtained by

the networks of the study after training with Lw
1 loss when w ∈ {1, 25, 50, 100}

using DAll.
The first thing to note is the limited variability of results obtained when

modifying the parameter w. In terms of PSNR, the results do not vary by more
than 3dB, while for SSIM, the results demonstrate a variance of no more than
10%.
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In the case of MAR-DTN, a positive trend in the artifact set is observed when
w > 25 increases. Conversely, with SwinIR, better results are achieved when no
supplementary weight is allocated to the artifact class. Moreover, when w > 1
parameters have similar results. For pix2pix, no significant difference in results
is observed, and the same holds true for custom-pix2pix when w > 1. However,
increasing the value of w for the artifact class does lead to an improvement in
the artifact set results.

Regarding the results in the DAll, represented by dots in Fig. 3a and Fig. 3b,
we observe slightly inferior results when giving more weight to the DArt set.
However, we are not concerned as the focus is on the artifact region. Therefore,
for the remaining experiments, we will use w = 100, as it yields the best result
for MAR-DTN and similar values to the state-of-the-art L1 for the rest of the
networks.

Fig. 3. PSNR (a) and SSIM (b) values evaluated on the DAll. The dots represent the
mean value of all slices in the dataset, while the bars represent the mean value of
slices with artifacts. Values obtained using the four considered networks (MAR-DTN,
pix2pix, custom-pix2pix and SwinIR) trained on the DAll with the Lw

1 loss function
only.

Lβ,α
F F L Analysis β and α were varied within the set {0.5, 1, 1.5}. The average

value of the metrics evaluated on the DTs
All set can be seen in Fig. 4a and Fig. 4b.

As with the prior study, we observe some variability in the results with less
than 2dB in PSNR and 10% in SSIM.

However, it is observed that increasing the value of alpha decreases the met-
rics. For the minimum α value, α = 0.5, the best PSNR result is for β = 1,
with a PSNR value of 27.81dB. On the other hand, the mean SSIM value when
alpha = 0.5 and β = 1 is 0.64, very close to the best value, which is 0.65. Taking
this into account, we conclude that the best combination of values is β = 1 and
α = 0.5.
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Fig. 4. Heatmaps with the mean values of PSNR (a) and SSIM (b) evaluated on the
test dataset after training the networks using the Lβ,α

FFL loss function with various com-
binations of the parameters α and β (x and y-axis, respectively). Each cell represents
the mean of 8 values, the first 4 corresponding to the parameter value evaluated on
DTs

Art, and the last 4 corresponding to the parameter value evaluated on the DTs
All, for

each neural network in the study, MAR-DTN, pix2pix, custom-pix2pix, and SwinIR,
respectively.

Loss function comparison Table 2 compares the results obtained considering
different loss functions combinations and datasets.

The L100
1 loss function achieves the best results on DArt for MAR-DTN, with

a PSNR of 27.17dB, and it is the second best result for pix2pix, with a PSNR
of 26.31dB. However, for both custom-pix2pix and SwinIR, the performance is
reduced by almost 2dB.

Also the L1,0.5
FFL loss function has been tested alone. It yields less accurate

results than L100
1 , decreasing the PSNR value by up to 2dB for pix2pix. However,

custom-pix2pix maintains a PSNR value of 26.15dB, competitive with the rest
of the loss functions. Regarding the rest of the loss functions, the improvement
in using LMS−SSIM instead of LSSIM stands out, especially notable in custom-
pix2pix. The most complex loss function (L100

1 +LMS−SSIM +L1,0.5
FFL ) introduces

noise during training and fails to surpass the metric value achieved by simpler
functions. Nonetheless, SwinIR achieves the best result, with a PSNR of 26.42dB.
An example of the reconstruction of a slice with artifacts can be seen in Fig. 5.

However, the results in the DAll improve when other loss functions are added
to L100

1 . In the case of MAR-DTN and custom-pix2pix, the best combination is
L100
1 + LSSIM , reaching a PSNR value of 30.02dB. For pix2pix and SwinIR,

the best combination is L100
1 + LMSE with a PSNR of 28.92 and 29.39dB,

respectively.
In general, the metric values for slices with artifacts are lower when trained on

DAll. This is consistent with having an unbalanced dataset and means that the
loss functions are not entirely capable of addressing the issue of class imbalance.

On the other hand, the results obtained with INet can be found in the last
column of Table 2. The highest PSNR achieved is 12.67dB for the artifact set,
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Table 2. Comparative analysis for different networks and loss function combinations,
indicated with a check mark which sum of loss functions have been used for training.
For the Pix2Pix networks, it indicates the loss function of the generator. The dataset
column indicates the dataset with which the network has been trained and evaluated;
where dataset is DAll then model is trained on DTr

All and tested on DTs
All, and in case

of DArt then model is trained on DTr
Art, and tested on DTs

Art. Finally, the remaining
columns show the PSNR and SSIM values obtained for the test sets. Where the dataset
is the DAll, we report both on the performance obtained on artifact slices from within
the DTs

Art, and the mean of PSNR and SSIM on whole dataset DTs
All (in parentheses).

Underlined values indicate the highest performance for each network with certain loss
function combinations, while highlighted values indicate the highest overall performing
model across all configurations.

highlighting the architecture’s inability to compete with the other architectures
in the study. For the SSIM, we observe a similar behavior, with a maximum value
of 8%. In Fig. 5, the results obtained by INet can be seen. The artifacts not only
have not been reduced, but they also acquire higher contrast, along with the
rest of the image. However, new artifacts appear, which blur and deform other
structures; for example, noticeable in the gird where streaks obtained with a
combination of loss functions L100

1 + LMS−SSIM + L1,0.5
FFL .
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3.2 State-of-the-Art Comparison

The comparison between MAR-DTN and state-of-the-art networks (pix2pix,
custom-pix2pix, and SwingIR using L1

1 as loss function) shows MAR-DTN
achieves the best result for the DArt, with a PSNR of 26.99dB and an SSIM
of 0.69 points. However, custom-pix2pix and MAR-DTN achieve the best over-
all result for the DAll, with a PSNR of 29.88dB and an SSIM of 0.73 points for
pix2pix. SwinIR exhibits a decrease of up to 0.76dB for PSNR and 0.07 points for
SSIM across the DAll, with a larger decrease observed within the DArt, reaching
a difference of 1.7dB compared to MAR-DTN. Table 3 presents a comparison
between the performance time and complexity of the networks.

Table 3. Comparison of trainable parameters, number of multiplications and additions
(MACs), training time computed for the DAll in 1 epoch and patient reconstruction
time (in this case 170 slices) for state-of-the-art methods under study.

Network Parameters
(M)

MACs
(G)

Training time
(s)

Patient reconstruction
time (s)

MAR-DTN 1.882 116.686 65.32 3.56

pix2pix 54.413 77.99 80.02 3.75

custom-pix2pix4.646 123.277 67.42 4.25

SwinIR 1.614 425.034 2, 774.76 47.27

INet 2.96 896.31 807.38 5.31

3.3 Clinical evaluation

Initial feedback from clinicians indicates that the quality of the MVCT images
generated through our proposed method is highly regarded. Clinicians have noted
that synthetic MVCT images exhibit excellent contrast for both soft tissues
and bones, which is essential for accurate diagnosis and treatment planning in
clinical practice. These qualitative observations suggest promising outcomes in
terms of image quality and clinical utility, laying a strong foundation for further
quantitative evaluation and validation studies in the future.
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Fig. 5. Reconstruction of a slice with artifacts by the different models and loss func-
tions. First row shows preprocessed kVCT and MVCT images (ground truth). First
column indicates the loss function, and the following ones indicate the model used.
Networks have been trained on the DArt.

4 Discussion and Conclusion

In this study, we compared our proposed domain transformation methodology
with some state-of-the-art methods, where kVCT images serve as input and
MVCT images as output. Our results demonstrate that a lightweight model like
MAR-DTN can effectively reduce artifacts with the appropriate combination
of loss functions, even with a reasonable dataset size. The performance of the
models is evaluated on two datasets: DArt, which contains only images with
artifacts, and DAll includes both artifact-affected and non-affected images.

Numerous combinations of loss functions were tested, though only a select
few are presented in Table 2 due to space constraints. Consequently, a deliberate
choice was made to include those combinations yielding more promising results
within the allocated space.

As we compare the performance of models trained on DAll, MAR-DTN shows
the best performance in several cases, especially with the combination of L100

1 +
LSSIM when tested on DTs

All, achieving the highest PSNR of 30.02 dB and a high



156 B. Serrano-Antón et al.

SSIM of 0.73 on over all patient volume, in addition to that when tested on DTs
Art

still achieves competitive results. Model pix2pix and custom-pix2pix show similar
performance, with custom-pix2pix slightly outperforming pix2pix in most cases.
custom-pix2pix performs best on DAll with the loss combination of L100

1 +LSSIM

and pix2pix show fair performance using L100
1 + LMSE . SwinIR exhibits decent

performance but is generally outperformed by MAR-DTN, particularly in terms
of PSNR. However, it shows competitive SSIM values. Model INet performs the
worst among all models, with significantly lower PSNR (max 12.67 dB) and
SSIM (max 0.08) values, highlighting its inability to effectively reduce artifacts
or maintain structural similarity.

Furthermore, as we compare the performance of models trained on DArt,
MAR-DTN achieves the highest performance on this dataset with the combina-
tion of L100

1 + LMS−SSIM , achieving a PSNR of 27.46 dB and an SSIM of 0.69
when tested on DTs

Art. Overall, MAR-DTN performs better than all other models
across various loss combinations, particularly on the DAll dataset. Model pix2pix
and custom-pix2pix show similar PSNR and SSIM values, typically around 26-27
dB for PSNR and 0.64-0.68 for SSIM, depending on the loss function combina-
tion used. Model custom-pix2pix slightly outperforms pix2pix in most of the
combinations. Model SwinIR performs reasonably well, achieving PSNR values
around 25-26 dB and SSIM values around 0.64-0.67, depending on the loss func-
tion combination but it is outperformed by MAR-DTN in most combinations.
INet shows the poorest performance on DArt. We can conclude that it is not
capable of eliminating artifacts using the loss functions in this study, falling far
behind its competitors. What is achieved, however, is an increase in contrast
between different bone and muscle structures. Nevertheless, it also introduces
new artifacts, which hinder the correct evaluation of the images. It is important
to note that INet’s initial goal is image segmentation, not image generation.
Additionally, INet performs better with low-resolution images, making it less
appropriate for our dataset.

Despite achieving satisfactory results, it is worth noting that our study’s
considered dataset is relatively small. Nevertheless, our approach demonstrates
significant potential, as evidenced by MAR-DTN’s robust performance metrics
achieved across various network architectures and loss functions. To further
enhance the impact of our findings, we plan to incorporate systematic quali-
tative evaluations by clinical staff. Additionally, we aim to expand our dataset
to include more types of artifacts across different body regions. These steps will
provide deeper insights and potentially lead to even more improved results, rein-
forcing the efficacy and applicability of our methodology in broader contexts.
Moreover, our future work aims to develop a generalized model for the entire
body. This extension will significantly broaden the applicability and robustness
of our approach, paving the way for more comprehensive and versatile artifact
management in medical imaging.
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Abstract. In this paper, we propose a self-prior guided Mamba-UNet
network (SMamba-UNet) for medical image super-resolution. Existing
methods are primarily based on convolutional neural networks (CNNs)
or Transformers. CNNs-based methods fail to capture long-range depen-
dencies, while Transformer-based approaches face heavy calculation chal-
lenges due to their quadratic computational complexity. Recently, State
Space Models (SSMs) especially Mamba have emerged, capable of mod-
eling long-range dependencies with linear computational complexity.
Inspired by Mamba, our approach aims to learn the self-prior multi-
scale contextual features under Mamba-UNet networks, which may help
to super-resolve low-resolution medical images in an efficient way. Specif-
ically, we obtain self-priors by perturbing the brightness inpainting of the
input image during network training, which can learn detailed texture
and brightness information that is beneficial for super-resolution. Fur-
thermore, we combine Mamba with Unet network to mine global features
at different levels. We also design an improved 2D-Selective-Scan (ISS2D)
module to divide image features into different directional sequences to
learn long-range dependencies in multiple directions, and adaptively fuse
sequence information to enhance super-resolved feature representation.
Both qualitative and quantitative experimental results demonstrate that
our approach outperforms current state-of-the-art methods on two public
medical datasets: the IXI and fastMRI.

Keywords: Medical imaging · Super-Resolution · State space
models · Mamba · Unet · Deep learning.

1 Introduction

Medical imaging techniques play a vital role in supporting clinical diagnoses.
However, obtaining high-quality medical images demands high-quality medical
imaging equipment and a longer imaging time. With the advancement of deep
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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learning, super-resolution (SR) is considered as a promising direction for cost-
saving improvements in image quality. Medical image super-resolution aims to
restore the corresponding high-resolution images by adding missing details in
low-resolution (LR) medical images.

To realize medical image super-resolution, initial research utilized methods
of interpolation [16] and optimization [25]. These methods are simple to imple-
ment, but not precise enough in restoring image details. Subsequently, massive
CNNs-based image super-resolution methods [2,18,21,22] have come up to learn
the nonlinear mapping relationship and representative features. It demonstrates
superior performance in the field of medical imaging. However, they are prone
to local matching difficulties. This occurrence is credited to the inductive bias of
CNNs, which limits their ability to capture long-range dependencies. Compared
to CNNs, Vision Transformers [3] have emerged for modeling non-local depen-
dencies. Leveraging the ability of self-attention of Transformer, researchers have
designed tailored approaches to achieve super-resolution [5,10,12,33]. However,
Transformer-based methods face excessive computational complexity and mem-
ory requirements due to the attention calculation of the pairwise affinity. More-
over, these methods are still insufficient to fully mine the precise features hidden
within complex medical image distributions. Mamba [7] is now widely applied
as an emerging sequence model, originating from tasks in natural image process-
ing. It has been proposed for learning visual representations that can efficiently
capture long-distance dependencies of images.

Motivated by these insights, we propose a self-prior guided Mamba-UNet
network for medical image super-resolution, which taps into the potential of
lightweight long-range modeling and fully mining super-resolved features. To
achieve this, we design a self-prior learning in a super-resolution network. Specifi-
cally, the input is disturbed by a brightness inpainting in the feature distribution
during training, leading to an incompleteness of the input. This can enhance the
ability of the model to mine the own super-resolved feature information. We also
develop a Mamba-based Unet to learn the multi-scale contextual dependencies
of images from hierarchical levels. Mamba can calculate long-range dependencies
using linear complexity. Compared with traditional 2D-Selective-Scan in vision
Mamba, we further design the improved 2D-Selective-Scan (ISS2D) model to
adaptively integrate relevant information between image sequences from differ-
ent directions, thereby alleviating the lack of causal reasoning in the image field.

The contributions of our approach can be summarized as follows:

1) We first build a Mamba network for medical image super-resolution. With
the designed Mamba-based Unet network, we can simultaneously learn the
long-range dependencies of features at different scales.

2) We design self-prior learning to improve the local texture and bright-
ness refinement by borrowing self-reasoning features, which can significantly
strengthen the generation of semantically coherent features.

3) We devise an improved 2D-Selective-Scan (ISS2D) module to dynamically
model the correlation between features of four direction sequences in images.
It can better fuse four direction weighted features for image super-resolution.
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4) Qualitative and qua1ntitative experiment results on IXI and fastMRI datasets
demonstrate that our approach achieves superior performance comparing to
the existing state-of-the-art super-resolution methods.

2 Related Work

2.1 Medical Image Super-Resolution

The basic CNNs have been proposed to deal with super-resolution. SRCNN [2]
first introduced deep CNNs into super-resolution and achieved promising results.
Then, many improved methods based on SRCNN have emerged, and significant
progress has been made in medical image super-resolution tasks [13,14,18,21,
22,27]. Specifically, Qiu et al. proposed EMISR [22] based on the improvement
of SRCNN for the knee MR image super-resolution. Liu et al. [18] developed an
edge-enhanced super-resolution generative adversarial networks (EE-SRGAN)
for medical image super-resolution. A dual U-Net residual network (DURN)
[21] was designed to enhance cardiac MR image resolution. These CNNs-based
approaches primarily capture local patterns of images due to the nature of con-
volution operations, lacking of ability to model long-range dependencies. Thanks
to the long-range representation ability of self-attention in Transformer, it has
shown superior performance compared to CNNs-based methods. Dosovitskity
et al. [3] firstly proposed Vision Transformer (ViT) for computer vision task,
such as medical image classification [24] and segmentation [11] tasks. The same
holds in the area of medical image super-resolution [5,10,12,33]. SuperFormer [5]
explored the effectiveness of a swim transformer in the 3D MR image super-
resolution. The TransMRSR [10] further combined the local information of CNNs
and the global information of Transformers for medical image super-resolution.
Although these Transformer-based methods have achieved superior results, they
require a large amount of GPU memory to train the model.

2.2 State Space Models

Recently, State Space Models (SSMs) [9], with roots in classical control theory,
have made their way into deep learning, showcasing potential as an effective
architecture for modeling sequences. These models blend the characteristics of
recurrent neural networks (RNNs) and CNNs, establishing a novel approach to
sequence analysis. Compared with Transformers with large parameter scales,
SSMs have good characteristics of linear scaling of sequence length and mod-
eling long-range dependencies. The Structured State Space Sequence Model
named as S4 [8] is a pioneering work in deep state space models. It models
in a content-agnostic static representation. Recently, a new SSM architecture
named Mamba [7] was proposed based on S4. The authors designed a selective
scan space state sequential model (S6) that is a data-related SSM with selec-
tive mechanisms and efficient hardware design. The breakthrough of Mamba in
sequence modeling has aroused great interest in the field of computer vision [32].
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Fig. 1. Our SMamba-Unet framework primarily comprising a patch embedding layer, a
Mamba-based encoder module, a Mamba-based decoder module, and a final projection
layer.

Some works have applied Mamba as a sequence model backbone to visual tasks,
such as medical image segmentation [23,30], video understanding [28], classifica-
tion [19] and video understanding [28]. In this work, we first explore the potential
of Mamba for medical image super-resolution.

3 Method

3.1 Overview

The core structure of our SMamba-Unet is depicted in Figure 1. Before being
fed into the network, we perturb the image based on a central random bright-
ness inpainting, which enables the network to mine its own prior information for
image super-resolution. Then, we employ a pixel shuffle technique for learnable
upscaling of low-resolution images, aiming to preserve the integrity of image
information. Traditional upscaling methods like bicubic interpolation enlarge
image pixels, often losing sharpness of organ contours and texture detail. In con-
trast, the pixel shuffle technique in neural networks rearranges multiple chan-
nel outputs into a higher-resolution image, shuffling pixels into the correct spa-
tial order to better recover contours and textures. Our method primarily com-
prises patch embedding layer, a Mamba-based encoder module, a Mamba-based
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decoder module, and a final projection layer. In detail, the input image is ini-
tially split into non-overlapping patches via patch embedding layer. The Mamba-
based encoder mainly contains four layers. Each layer is equipped with the vision
Mamba module and patch merging, which can extract contextual features and
further increase the number of channels, respectively. Within the Mamba-based
decoder, each stage progressively merges information from skip connections to
upscale features while simultaneously decreasing the channel count by the vision
Mamba module and patch expanding. Finally, the super-resolved medical image
is generated by the final projection layer.

3.2 Self-prior Learning

From the error map shown in Figure 3 and Figure 4, it can be seen that the main
difference between the super-resolved image and the high-quality image lies in
the texture areas with significant brightness changes. It has been confirmed that
the repetitive characteristics of an image serve as an effective prior for image
super-resolution [26]. Therefore, we propose self-prior learning to mine valuable
repetitive internal examples of super-resolved images to enhance the learning of
texture and brightness feature representations in perturbed images. Unlike nat-
ural scenes, medical images contain a large amount of invalid noise background,
while physicians mainly focus on the foreground areas with rich information in
the middle of medical images where the organs of interests are presented. There-
fore, we first define the width and height of the area of interest in the image,
and the starting coordinates of the area in the image. Then, we randomly select
a position within the region of interest to add a 5×5 brightness block to perturb
the image, and enhance the learning ability of texture and brightness features
in the image through self-reasoning inpainting. During our testing, we input the
original low-resolution medical images to obtain high-quality images.

3.3 Vision Mamba Module

Before introducing Mamba [7], let’s first revisit the Transformer. The Trans-
former views any text input as a sequence of tokens. It creates a self-attention
matrix that compares each token with every other token. The values in the matrix
encode the correlations between them. Generating a self-attention matrix for a
sequence of length L requires approximately L2 computations, which is quite
computationally intensive. Currently, Mamba has emerged as a promising app-
roach, which can be trained in parallel, while still performing inference that scales
linearly with the length of the sequence. It is utilized to characterize the state
representations and to forecast their subsequent states based on given inputs.
It transforms a 1-D function or sequence x(t) ∈ R into the output y(t) ∈ R

via a hidden state h(t) ∈ R
N, which usually realizes through linear ordinary

differential equations (ODEs).

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)
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Fig. 2. The framework of the vision Mamba module and improved 2D selective scan
(ISS2D) module.

where A ∈ R
N×N is the state matrix. B ∈ R

N×1 and C ∈ R
1×N are the projection

parameters.
The zero-order hold (ZOH) technique [6] is used for discretizing ODEs into

discrete functions, making it better adapted for deep learning contexts. By incor-
porating a timescale parameter Δ, it facilitates the conversion of the continuous-
time system matrices A and B into their discrete equivalents, noted as A and
B. The specific steps involved in this conversion are meticulously designed to
preserve the integrity of the original system’s dynamics while making them com-
patible with the discrete computational environment of deep learning models.
The discretization process is implemented as follows:

A = exp(ΔA),B = (ΔA)−1(exp(ΔA) − I) · ΔB. (2)

Following discretization, Equation (1) adopts a form suitable for discrete-
time processing, as follows:

ht = Aht−1 +Bxt, yt = Cht. (3)

Mamba further presents a groundbreaking method within the realm of SSMs
through its introduction of Selective Structured State Space Sequence Models
(S6). This advancement permits dynamic parameterization of the SSMs, where
the parameters B, C and Δ are directly determined by the input data, facilitat-
ing a model adaptation unique to each input. Defined by its linear complexity
and further optimized for hardware efficiency, Mamba stands out for its excep-
tional capability in handling the modeling of lengthy sequences.

Similar to the Transformer, Mamba also processes its input by dividing the
image into a series of image patches. Figure 2 shows the specific structure of the
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vision Mamba module. Initially, the input patch feature map undergoes layer
normalization, after which it splits into two distinct paths. The initial path
processes the input via a linear layer. Concurrently, in the alternate path, the
input is subjected to a linear layer, then it proceeds through a depthwise sepa-
rable convolution (DW Conv), then advancing into the improved 2D-Selective-
Scan (ISS2D) and layer normalization. Integration of these divergent pathways
is achieved through a multiplication process and a linear layer, combining the
processed outputs with the initial input to further enhance feature representa-
tion.

3.4 Improved 2D-Selective-Scan (ISS2D)

The detailed implementation of improved 2D-Selective-Scan (ISS2D) module
is illustrated in Figure 2. Unlike sentences in natural language processing, the
patches of the image lack a direct inferential relationship. Therefore, we use
scan expanding directions corresponding to the horizontal and vertical sequences
of medical images, that is, scanning from left to right and from right to left,
coupled with scanning from top to bottom and from bottom to top. Different
sequences are further processed by equations we mentioned before. The existing
2D-Selective-Scan Mamba models simply add the scanning results from all direc-
tions with equal weights to obtain output features, overlooking the importance
of different sequential directions for medical image super-resolution. Therefore,
we propose the ISS2D module to blend the four sequences with the weighting
coefficients which are learned automatically, making the fusion of the four direc-
tions more relevant. Each directional sequence has a coefficient corresponding
to its contribution. Summarizing features with the weight coefficients from four
different directions can better enhance the global spatial feature connections of
medical images across different directions.

3.5 Loss Function

We use the L1 loss to compute the absolute value of pixel differences between
ground truth HR and super-resolved image SR, expressed as follows:

L1(SR,HR) =
1
n

n∑

i=1

|SRi − HRi| , (4)

where n is the number of images. L1 loss as pixel-level loss, leading to overly
smooth generated images that miss out on semantic details. Therefore, we also
use perceptual loss [15] to measure the discrepancy between images at feature
representation levels, thereby improving the visual appeal of super-resolved med-
ical images. Its calculation is as follows:

Lφ,j
perceptual(SR,HR) =

1
n

√√√√
n∑

i=1

(φj(SRi) − φj(HRi))
2
, (5)
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where φ represents the VGG19 network pre-trained on ImageNet. Through train-
ing on millions of labeled images, the VGG19 network has learned the ability
to recognize a wide range of visual patterns. Therefore, we use it to help our
feature extraction. The φj(·) corresponds to the feature map produced by the
jth layer of the network φ. j is 36.

The final loss function is depicted as follows:

Loss = L1 + βLφ,j
perceptual, (6)

where β is the weighting factor.

4 Experiments

4.1 Datasets and Metrics

We assessed our method on T2-weighted MRI brain and knee images from the
IXI1 and fastMRI2 dataset, respectively. The slices in the IXI dataset have a
fixed size of 256 × 256 pixels with a resolution of 1mm, while the fastMRI
dataset consists of slices having size of 320×320 pixels with a resolution 0.5mm.
In our experiment, we used 368 subjects from the IXI dataset for the training and
reserved 92 subjects for testing. Regarding the fastMRI dataset, we utilized the
data for training on 227 subjects and for conducting tests on 45 subjects. We
utilized the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [29] commonly used in super-resolution to quantitatively evaluate the
medical image quality.

4.2 Implementation Details

To obtain low-resolution medical images for 2× and 4× super-resolution, we
initially apply the degradation model in the frequency domain [20] to generate
low-resolution images that better match the distribution of real scenes. Our
proposed approach was implemented using the PyTorch framework on a NVIDIA
RTX A6000 GPU. We used Adam optimizer to train the network with the initial
learning rate of 1× 10−4. We incorporated 4 vision Mamba blocks in each level,
with the channel count [96,128,384,768] for each level, respectively. The dropout
rate used within the vision Mamba is 0.3. The dimension of state vectors is 16.
The weighting factor β is 0.01.

4.3 Comparison with the State-of-the-arts

Quantitative Comparison. We compared our approach with the SRCNN [2],
VDSR [17], FMISR [31], T2Net [4], and DiVANet [1] on the IXI and fastMRI
1 http://brain-development.org/ixi-dataset/.
2 https://fastmri.med.nyu.edu/.

http://brain-development.org/ixi-dataset/
https://fastmri.med.nyu.edu/
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Fig. 3. Qualitative results on fastMRI and IXI dataset under 2× upsampling factor.
The significant differences between different methods are shown by the yellow arrow.

dataset under 2× and 4× upsampling factors. Table 1 and Table 2 show the
quantitative comparison results. It can be seen from the table that our approach
achieved the highest PSNR and SSIM scores compared with other methods for
all scaling factors. The primary reasons are: i) the proposed self-prior learning
can let the model mine self-exemplar in the original image, fully investigating
its own texture and brightness information and enhancing feature representa-
tion capability; and ii) the designed Mamba-based Unet module not only can
exhaustively exploit local features from different levels but also can fully explore
the long-range dependencies of features at different scales.

Table 1. Quantitative results with different methods on fastMRI and IXI dataset
under 2× upsampling factor.

Method fastMRI 2× IXI 2×
PSNR↑SSIM↑ PSNR↑SSIM↑

SRCNN 25.82 0.5602 29.23 0.8649
VDSR 27.42 0.6263 29.79 0.8772
FMISR 26.19 0.5583 29.50 0.8685
T2Net 32.00 0.7158 31.31 0.9035
DiVANet 31.98 0.7169 33.15 0.9320
SMamba-Unet(ours)32.06 0.718033.36 0.9355
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Table 2. Quantitative results with different methods on fastMRI and IXI dataset
under 4× upsampling factor.

Method fastMRI 4× IXI 4×
PSNR↑SSIM↑ PSNR↑SSIM↑

SRCNN 19.74 0.3653 28.12 0.8357
VDSR 20.31 0.3839 28.34 0.8392
FMISR 24.35 0.5207 28.27 0.8349
T2Net 30.56 0.6244 29.73 0.8773
DiVANet 30.62 0.6352 30.46 0.8946
SMamba-Unet(ours)30.70 0.636131.13 0.9081

Fig. 4. Qualitative results on fastMRI and IXI dataset under 4× upsampling factor.
The significant differences between different methods are shown by the yellow arrow.

Qualitative Comparison. The qualitative experimental results are shown
in Figure 3 and Figure 4. In addition to displaying super-resolved images, we
also show the corresponding error map to better illustrate the differences with
ground truth in detail. The darker the error map, the better the super-resolved
image. The specific difference between medical images generated by different
methods is indicated by yellow arrows. It is evident that the image generated by
SRCNN is very blurred. T2Net and DiVANet can generate relatively clear soft
tissue structures, although there are still some unpleasant blurry edges. From
the overall error map, it can be seen that errors mainly exist in areas with signif-
icant changes in brightness. The designed self-prior learning method randomly
uses brightness inpainting to complete damaged images in the foreground area.
It can enhance the ability of the network to explore lost features and changes in
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Table 3. Ablation study with different components under 2× upsampling factor.

Method Mamba ISS2D SPL PSNR↑ SSIM↑
Base ✓ ✗ ✗ 33.18 0.9245
Base+ISS2D ✓ ✓ ✗ 33.26 0.9284
Base+ISS2D+SPL (SMamba-UNet) ✓ ✓ ✓ 33.36 0.9355

Fig. 5. Ablation study with different patch sizes in vision Mamba module.

brightness through its own information, thereby improving the learning capabil-
ity of super-resolved features. Therefore, our approach has better overall clarity
than other methods and can generate more delicate image details. This aligns
with the findings from the quantitative analysis.

4.4 Ablation Analysis

Effectiveness analysis of the key component. To explore the effectiveness of
the key component in our SMamba-Unet, we conducted the ablation experiment
using the IXI dataset under 2× upsampling factor. We use the pure Mamba-
based Unet as baseline, then gradually add improved 2D-Selective-Scan (ISS2D)
and self-prior learning (SPL) to it. From Table 3, it can be seen that the perfor-
mance of the super-resolution network gradually improves as different compo-
nents participate. The PSNR value increased from 33.18 to 33.36. The value of
SSIM increased from 0.9245 to 0.9355. This fully demonstrates that focusing on
the importance of different sequence features of images can make the features
more effective and accurate. In addition, self-prior learning makes the network
pay more attention to its own texture and brightness feature information, which
helps in the generation of super-resolved images.
Effectiveness analysis of patch size. In medical image super-resolution tasks
using Mamba, selecting the appropriate patch size is an important design deci-
sion. To demonstrate the impact of different patch sizes on the performance of
Mamba model, we set it to 2, 4, and 8, respectively, to observe the differences
in performance. Figure 5 shows that smaller patch sizes achieve better perfor-
mance. A smaller patch size means that the Mamba will extract finer-grained
features from the medical image, which can capture more detailed information.
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Table 4. Ablation study with MambaUnet and TransUnet on model complexity.

Method Params[M] FLOPS[G] GPU Memory[Mib] PSNR↑ SSIM↑
MambaUnet 27.57 18.47 4483 33.18 0.9245
TransUnet 41.05 32.36 30579 32.14 0.9203

Table 5. Ablation study on the weight β in the loss function.

β PSNR↑ SSIM↑
0.1 33.28 0.9347
0.01 33.36 0.9355
0.001 33.34 0.9350

To balance performance and computational cost, we choose a patch size of 2 in
our approach.
Effectiveness analysis of the baseline selection. We conducted baseline
selection experiments to validate the effectiveness of methods based on Vision
Mamba and Vision Transformer. We combine the Mamba and Unet as Mam-
baUnet and combine the Transformer and Unet as TransUnet. Vision Trans-
formers have high computational complexity when processing images because
the computational complexity of the self-attention mechanism increases quadrat-
ically with the number of image patches. While, the hardware-aware algorithm
of Mamba processes data with a linear relationship to the sequence length Table
4 shows the Params, FLOPs, and GPU Memory of TransUnet and MambaUnet
for 128 × 128 inputs on the IXI dataset. It can be seen from the table that
MambaUnet can achieve better performance with less computational complex-
ity. This indicates that exploring Vision Mamba is an excellent approach to
achieving efficient super-resolution.
Effectiveness analysis of weight β in the loss function: We evaluated the
impact of weight β in the loss function. Specifically, we conducted ablation stud-
ies by setting β to {0.1, 0.01, 0.001}. Table 5 presents the quantitative evaluation
results. The results indicate that β = 0.01 achieves the best performance than
other settings.

5 Conclusion and Future Work

In this paper, we have developed a self-prior guided Mamba-UNet network
(SMamba-UNet) for medical image super-resolution. Specifically, our method
learns to exploit self-prior multi-scale contextual features within Mamba-UNet
networks, potentially facilitating efficient medical image super-resolution. The
quantitative and qualitative performance of our SMamba-UNet on the IXI and
fastMRI datasets confirms the effectiveness of our approach. How to apply vision
Mamba for the multi-model medical image super-resolution, which is an intrigu-
ing future path of our approach.
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Abstract. Sagittal views provide detailed and critical information
about the anatomy and pathology in diagnosing and managing lumbar
spine diseases. Radiologists comprehensively evaluate the spinal align-
ment, structural integrity, and health of bone and soft tissue elements in
the sagittal view in diagnosing various spinal conditions and treatment
planning. The first step in the diagnosis is localizing the region of inter-
est, typically the lumbar spine segments. To accomplish this, we present
a modified U-Net model (MU-Net) for the segmentation and localization
of the lumbar spine from sagittal views of Magnetic Resonance Imaging
(MRI) images. We employ different techniques to augment data, address
the issue of limited training samples, and improve the generalization of
deep models. We use the two YOLOv series for localization and MU-Net
for segmentation. The MU-Net model achieves an accuracy of 98.93%, a
Mean Intersection Over Union (IoU) of 84.29%, and a Dice Coefficient
of 98.43%. For the localization, YOLOv8 yields a Precision, Recall, and
Mean Average Precision (mAP) of 99.6%, 99.2%, and 99.4%, respectively.

Keywords: Lumbar spine · Localization · Segmentation. Deep
Learning · Data Augmentation · MU-Net · YOLOv (series) · MRI ·
mAP

1 Introduction

Segmentation and localization of medical images, particularly in the mid-sagittal
view of the lumbar vertebrae, play a vital role in the effective analysis of spinal
deformities, significantly impacting diagnostic applications and treatment plan-
ning [1]. Furthermore, these processes are crucial for monitoring the progression
of diseases related to the lumbar spine, aiding in the adjustment of therapeutic
strategies [2]. Additionally, precise segmentation and localization are fundamen-
tal for accurately diagnosing various diseases associated with the lumbar ver-
tebrae [3]. The most common lumbar vertebrae-related diseases include lumbar
disc herniation (central, right, left), stenosis, compression of the dural sac and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15311, pp. 175–190, 2025.
https://doi.org/10.1007/978-3-031-78195-7_12
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thecal sac, foraminal stenosis, annular tear, facet hypertrophy, facet arthropathy,
ligamentum flavum hypertrophy [4]. Automating the segmentation and localiza-
tion of medical images can help medical professionals (e.g., radiologists) make
more accurate diagnoses and treatment plans for these diseases.

Manual segmentation is widely used to delineate anatomical structures and
identify disease-affected areas in lumbar vertebrae. However, this method is
time-consuming, requires significant expertise, and is labor-intensive. Automatic
segmentation and localization techniques have been developed to address these
challenges, allowing efficient and consistent analysis of proper annotated and
augmented datasets. Recently, deep learning-based approaches have shown sig-
nificant promise in medical image segmentation and localization. These models
can extract complex information from images, producing accurate and precise
segmentation and localization outcomes.

Most reported literature uses a limited amount of training data to train
deep-learning models for anatomical structure segmentation and lumbar spine
vertebrae localization. However, it is essential to note that deep learning mod-
els trained on small datasets are susceptible to overfitting. Mabarki et al. [5]
utilized convolutional neural networks based on the Visual Geometry Group 19
(VGG19) architecture to detect herniations in the lumbar disc. They tested the
system with only 200 patients. Ala et al. [6] used the centroid distance function
to detect disc herniation. In another study [7], authors used two segmentation
techniques on mid-sagittal view MRI images to classify the spondylolisthesis and
lumbar lordosis. Ghosh et al. [8] introduced a deep learning method to detect
and segment tissues in lumbar sagittal MRI. Gang et al. [9] proposed a method
to enhance the ’You Only Look Once’ (YOLO)-tiny model by integrating three
additional Convolutional Neural Network (CNN) layers. While their system can
detect spinal fractures with an accuracy of 85.63%, these results suggest that
further refinements are necessary to achieve more precise localization to lumbar
vertebrae. In [10] used YOLOv5 to accurately locate the lumbar spine with a
mAP of 97.5% and diagnose lumbar lordosis with 74.5% accuracy. They fur-
ther cropped images from YOLOv5 bounding boxes passed through HED U-Net
to obtain detailed information about vertebrae and edges. However, edge-based
segmentation raises issues in precisely segmenting and localizing the lumbar ver-
tebrae. Our understanding of edge-based segmentation is that it heavily relies
on detecting changes in intensity or color, making it highly dependent on image
contrast. Consequently, low-contrast images may not yield effective results.

The literature highlights various methods that leverage limited and diversely
proportioned training data; however, these approaches often struggle with
robustness. Data augmentation can improve adaptability and enhance perfor-
mance. Rigorous model evaluation is essential. Our methodology, depicted in
Figure 1, refines the training process and employs MU-Net for multi-class seg-
mentation across broader and more diverse datasets. We mitigate issues such as
high computational costs and overfitting through strategic data augmentation.
Additionally, we incorporate the latest YOLOv8 for rapid and accurate local-
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ization of lumbar spines. In the context of automatically sagittal view lumbar
vertebrae segmentation and localization, our efforts and contributions aim to:

1. Enhance the sagittal view lumbar spine dataset through various augmentation
techniques.

2. Utilize modified U-Net; the study categorized lumbar spine regions in sagittal
view images, facilitating deformity segmentation.

3. Employ YOLOv8, which played a pivotal role in the precise location of ver-
tebrae and significantly contributed to the advancement of automated spinal
issue analysis.

4. Improve the localization process, for which YOLOv5 was employed to com-
pare results, ensuring the method’s effectiveness.

5. Utilize a collaborative approach where MU-Net, YOLOv8, and YOLOv5 work
together to enhance both segmentation and localization, thereby improving
the diagnosis of lumbar deformities.

2 Materials and Methods

This section discusses the materials, including datasets and deep-learning
methodologies for segmenting and locating lumbar spine vertebrae. We will also
cover the training setup, augmentation techniques, experimental frameworks,
and validation pipelines.

Fig. 1. Proposed Methodology: The input sagittal view lumbar spine MRI images
undergo various augmentation techniques applied to both images and labels, such as
salt-and-pepper noise, horizontal flipping, 90-degree and 180-degree rotations, ran-
dom cropping, random rotation, and shearing. These augmented images and labels
are then processed by the modified U-Net (MU-Net) for segmentation and YOLOv5m
and YOLOv8 for localization. Radiologists will use segmented and localized images for
severity assessments.
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2.1 Dataset Description and Augmentation

A handful of publicly available datasets have been developed with the collabora-
tion of hospitals and many challenges, aiming to improve the diagnosis of spinal
deformities. These datasets are useful resources for understanding and address-
ing issues related to the lumbar spine. This work explores a dataset focusing
on mid-sagittal views of the lumbar spine and its augmentation techniques to
automatically segment and localize the lumbar vertebrae precisely.

Fig. 2. Represents the mid-sagittal view of the human lumber spine dataset. (a) the
mid-sagittal view of the lumbar spine, (b) the marked pixel-wise label of the human
lumber spine, and (c) the pseudo-colored label of the human lumber spine.

Mid-Sagittal View Dataset for Segmentation and Localization: Our
study shown in Fig. 1 used the Lumbar Spine Composite Dataset [11], available
on Mendeley Data, which includes sagittal MRI images of 514 subjects. This
dataset was collected from people experiencing back pain at the Irbid Special-
ity Hospital in Jordan from September 2015 to July 2016. We used a labeled
dataset [7] for mid-sagittal views to segment the lumber vertebrae. Initially, the
dataset contained data for 515 subjects. However, one subject had to be removed
due to a noisy image [11], resulting in data for 514 subjects. This dataset has
ground truth labels, including marked pixel-wise and pseudo-colored labels for
segmentation shown in Fig. 2 [3]. However, training the deep learning models
with only these small samples and their corresponding labels may not yield effec-
tive results. This is where data augmentation becomes crucial in enhancing the
training process. We applied augmentation techniques randomly to both images
and their corresponding labels to the initial dataset consisting of 514 subjects;
the dataset size significantly expanded to 2,513 samples, as visually depicted in
Fig. 3 and Fig. 4.

We used the same dataset for localization and segmentation, sourced from
[3]. The data was annotated in YOLOv format with LabelMe and Roboflow
Annotate [12] for lumbar vertebrae localization. YOLO format was used to label
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the images with six instances of a singular class, "V" for vertebrae, and six
labels encompassing five lumbar vertebrae (L1 to L5) and the sacrum (S1) in
the sagittal view, as shown in Fig. 5 [10].

Data Augmentation Approaches: Our work explores the efficacy of data
augmentation [13] as an important step to enhance our model’s performance and
generalization capabilities in lumbar spine segmentation and localization. We
enhanced the sagittal view lumbar spine dataset through various augmentation
techniques. These techniques include adding salt-and-pepper noise (5% affected
pixels), horizontal flipping, 90-degree rotations, upside-down rotation, random
zooming with adjustable zoom levels (min_zoom=0, max_zoom=20), random
rotation angles (min_angle=-50, max_angle=50), and shearing (horizontal
shear=0.12,vertical shear=0.12) that discussed as in Fig. 3. These thought-
fully adjusted augmentation methods introduce diverse variations, enriching the
dataset to enhance model robustness and generalization for precise segmentation
and localization of lumbar vertebrae.

Fig. 3. Images illustrating various augmentation methods. (a) Original sagittal view
lumbar spine image. (b) Salt-and-pepper noise (5% affected pixels) for increased vari-
ability. (c) Horizontal flipping for an alternative perspective. (d) 90-degree clockwise
rotation for diverse orientations. (e) 180-degree rotation (upside-down) for varied view-
points. (f) Random cropping with adjustable zoom levels (min_zoom=0, max_zoom=20)
for focused regions. (g) Random rotation angle (min_angle=-50, max_angle=50) for
varied orientation. (h) Shearing (horizontal shear=0.12, vertical shear=0.12) for simu-
lating distortions.

The same careful augmentation techniques were applied to the labels to
ensure alignment between the augmented images and their corresponding labels.
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These transformations, including horizontal flipping, 90-degree rotations, upside-
down rotation, random cropping with adjustable zoom levels, and random rota-
tion angles, were replicated from the images to the labels shown in Fig. 4.

Fig. 4. Corresponding labels illustrating various augmentation methods aligned with
augmented images. (a) Original Image. (b) Instead of Salt-and-pepper noise, replace it
with the original image. (c) Horizontal Flip. (d) 90-Degree Rotation. (e) Upside-Down
Rotation. (f) Random Cropping (Zoom: 0-20%). (g) Random Rotation Angle (-50 to
50 degrees). (h) Shearing (Horizontal: 0.12, Vertical: 0.12).

However, it’s crucial to note that adding any type of noise to labels is unsuit-
able. That’s why we replaced the salt and pepper noise with the original images
for the labels to maintain consistency, as shown in Fig. 4 (b). Labels serve as
ground truth annotations, and introducing noise can compromise the model’s
accuracy, hindering the model’s ability to learn correct associations. That’s why
we did not add the noise with the labels.

2.2 Segmentation and Localization Methods

For our work, we used a Multi-Class U-Net to segment the sagittal view of the
lumbar spine. This approach differs from Binary U-Net Segmentation. However,
performing Multi-Class segmentation is quite straightforward if we understand
the original concept of U-Net [14]; we need to make a few adjustments to the
model. In our study, we modify the U-Net [15] that was initially designed for
Sandstone Semantic Segmentation only for four classes. Our study utilized this
model to segment the mid-sagittal view of the lumbar spine vertebrae and cor-
responding labels for seven classes: background, lumbar (L1 to L5), and sacrum
(S1). We adjusted several filters within the layers and the final layer of the U-Net
to perform lumbar spine segmentation.
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Fig. 5. The figure depicts annotations in a mid-sagittal view. The image has a cor-
responding label file with the same name, created after annotation, providing details
about the class, coordinates, and dimensions of the lumbar vertebrae and sacrum bone.

To address the complexity of the task and ensure the robustness of our app-
roach, we made several critical modifications to the original U-Net architecture.
We utilized 3x3 filters consistently across all convolutional layers to maintain spa-
tial resolution, which is essential for accurately capturing the fine details in lum-
bar spine vertebrae images. The number of kernels was incrementally increased
from 16 to 256 in the contracting path, allowing the model to learn progres-
sively more abstract features at deeper layers and correspondingly decreased in
the expansive path to reconstruct the image with fine-grained details. Dropout
layers with varying dropout rates (0.1 to 0.3) were added to prevent overfitting
by randomly deactivating a fraction of neurons during training, thus enhanc-
ing the model’s generalization capability. Additionally, Conv2DTranspose layers
were used for up-sampling in the expansive path, followed by concatenation
with corresponding feature maps from the contracting path. This approach pre-
serves high-resolution features from earlier layers and combines them with the
up-sampled features, thereby improving the segmentation accuracy. These mod-
ifications collectively enhance the model’s ability to perform precise and reliable
multi-class segmentation of the lumbar spine vertebrae.

We chose the U-Net architecture that we modified, which is useful for biomed-
ical image segmentation, particularly in sagittal view lumber vertebrae segmen-
tation. Its feature integration capability helps accurately identify complex bio-
logical structures [16]. The U-Net’s simple structure makes it well-suited for
processing medical images with well-organized experimental data.

In the context of lumbar spine localization, we utilized YOLOv8 [17] to iden-
tify and locate the lumbar vertebrae. We opted for YOLOv8 due to its advanced
features within the YOLOv series. The primary advantage of using YOLOv8 is
its developer-friendly characteristics, enhanced user experience, faster processing
speed, and customization. Unlike previous models in the YOLOv series, which
have slow processing and require executing multiple Python files for various
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tasks like data preparation, training, or inference, YOLOv8 simplifies the over-
all workflow with a command-line interface. YOLOv5 [18] offers four variants:
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, each designed for different
computational and accuracy needs. For our study, we employed the YOLOv5m
model for comparison, specifically optimized to improve the localization of lum-
bar vertebrae.

2.3 Training Details for Segmentation and Localization

The applied models: MU-Net, YOLOv8, and YOLOv5m, were trained on
an NVIDIA GeForce RTX SUPER with 7996MiB of memory, adding the GPU’s
computational capabilities for efficient model training. We used augmented Mid-
Sagittal view MRI images and their corresponding ground truth masks to train
the MU-Net model. The employed dataset was divided into three subsets: 70%
for training, 15% for validation, and 15% for testing. The test set was not used
during training or validation, ensuring an unbiased evaluation of the model’s
performance.

The validation set was used solely to tune hyperparameters and monitor
the training process. Early stopping was implemented to halt training when the
validation loss did not improve for 10 consecutive epochs, and learning rate decay
was applied using the ReduceLROnPlateau callback, which reduced the learning
rate by a factor of 0.2 if the validation loss did not improve for 5 consecutive
epochs, with a minimum learning rate of 0.001. The model was trained for a
maximum of 90 epochs.

The model was compiled using the Adam optimizer and the categorical cross-
entropy loss function, which is suitable for multi-class segmentation tasks. The
training was conducted with a batch size of 32 images per iteration.

The evaluation metrics, including accuracy, Mean Intersection over Union
(IoU), Dice Coefficient, Mean Average Precision (mAP), and Jaccard Index,
were calculated using the test set, which was separate from the training and
validation sets. More details will be discussed in Section 3.

Figure 6 (a) and (b) illustrates the training and validation loss and accuracy
graphs over 60 epochs of the MU-Net model. The gap between the training and
validation lines is minimal, indicating no significant overfitting. This suggests
that the model generalizes well to new data. The model performance is evalu-
ated on a separate set of sagittal images not seen during training, ensuring its
generalization to unseen data.

The training and validation loss curve in Figure 6 (a) shows a steep decline in
loss during the initial epochs, which then stabilizes, indicating that the model has
effectively learned the training data and generalizes well to the validation data.
Similarly, the accuracy curve in Figure 6 (b) demonstrates rapid improvement
in accuracy during the initial training phase, followed by a stable convergence,
reflecting the model’s robustness and reliability.

For vertebrae localization, we randomly augmented 514 subject images by
different augmentation techniques described in Fig. 3, 4 to increase the training
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Fig. 6. The figure represents the training and validation loss, along with accuracy,
observed over 60 epochs in the MU-Net Model. (a) Optimal Training Performance:
The training loss (yellow) compared to validation loss (red), (b) Accuracy Convergence:
Both training (yellow) and validation (red) accuracy steadily approach optimal values.
(Color figure online)

samples to 2,162 images. After applying annotation approaches in YOLOv for-
mat [10], the images and corresponding YOLOv formatted labels go through the
training using YOLOv8. The training employs a batch size of 32 and completed
90 epochs. The dataset is partitioned into 85% for training, 10% for validation,
and 5% for testing. This allocation was made to maximize the amount of data
available for training and validation, which is crucial for optimizing the perfor-
mance of YOLO models, which are known for their need for extensive training
data. We used the same training setup for YOLOv5m.

Despite the smaller test set, YOLOv5m and YOLOv8 achieved high con-
fidence scores in detecting the lumbar vertebrae and sacrum, indicating robust
performance that will be described in Section 3. The primary reason for this split
was to ensure that the models received enough varied examples during training
to learn effectively, with the validation set used to tune hyperparameters and
prevent overfitting.

3 Evaluation, Results and Discussion

In this section, we compare and discuss the results of our evaluation of three
models: MU-Net, YOLOv8, and YOLOv5m. As illustrated in Figure 1, these
models were employed in our proposed approach, utilizing an augmented dataset
alongside state-of-the-art (SOTA) methods. The models were evaluated based
on several key metrics: Accuracy, Mean Intersection over Union (IoU), Dice
Coefficient, Jaccard Index for precise segmentation, and Mean Average Precision
(mAP) for the localization of lumbar vertebrae. Our analysis of these metrics
provides valuable insights into the effectiveness of these models in our methods
of diagnosing lumbar spine deformities.
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We used Intersection Over Union (IoU) to evaluate the accuracy of each class
in sagittal view lumbar spine segmentations. IoU measures the overlap between
predicted and ground truth regions for seven distinct classes: background, lumbar
(L1 to L5), and sacrum (S1). A higher IoU score, nearing 1, indicates greater
accuracy.

Accuracy, another key metric, quantifies the overall correctness of the seg-
mentation by comparing the number of correctly predicted pixels to the total
number of pixels. A higher accuracy indicates a better overall performance.

The Dice Coefficient measures the overlap between the predicted and ground
truth regions but emphasizes the similarity between the sets. It is calculated
as twice the area of overlap divided by the total number of pixels in both the
predicted and ground truth regions. A Dice Coefficient closer to 1 indicates a
more accurate segmentation.

The Jaccard Index assesses the similarity between the predicted and ground
truth regions. It is calculated as the intersection divided by the union of the
two sets. A higher Jaccard Index indicates better performance in segmentation
tasks.

Additionally, we use Mean Average Precision (mAP) to assess the perfor-
mance of lumbar vertebrae localization. mAP evaluates the precision of the
predicted bounding boxes against the ground truth boxes, with a higher mAP
indicating more precise localization of vertebrae.

Table 1. Intersection Over Union and Jaccard Index Values for Seven Classes: back-
ground, lumbar (L1 to L5), and sacrum (S1).

Class Intersection Over UnionJaccard Index

Background0.99147016 0.99147016
L1 0.806324 0.80516865
L2 0.74521583 0.74507784
L3 0.7884944 0.73730023
L4 0.87640816 0.80159759
L5 0.8690623 0.83781334
S1 0.8235583 0.80476218

The MU-Net model in our proposed method in Fig. 1 achieved an accuracy
of 98.93% with a Mean Intersection Over Union (IoU) of 84.29%. The IoU values
obtained for distinctive classes in Table 1 are notably impressive. This range of
IoU for medical images is expected to be obtained due to various artifacts and
the inherent noise in the images of anatomical structures. The Jaccard Index
for each class, also shown in Table 1, further validates the high accuracy of the
model, with values close to the IoU, indicating robust segmentation performance.
Additionally, the MU-Net model achieved a Dice Coefficient of 98.27%, which
outperforms this work [7]. This high Dice Coefficient reflects the model’s excellent
overlap between the predicted and ground truth regions.
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The MU-Net model performed well on test images, with the IoU value for
each class depicted in Table 1. The predicted images were plotted in a ’jet’
color map using the MU-Net model, which showed almost identical results to
the testing label in Fig. 7. Based on the observed outcomes, the MU-Net model
exhibits superior performance and mitigates the issue of overfitting by utiliz-
ing augmented training data. The diversity of the training data significantly
enhanced the model’s generalization capabilities, enabling the MU-Net model to
segment lumbar vertebrae with high precision.

However, the MU-Net model had incorrect predictions on some completely
unseen images in Fig. 8. The main challenge is to increase the Mean IoU value
in medical imaging while reducing these wrong predictions. In semantic segmen-
tation, accuracy doesn’t tell us much. So, we must prepare the images and their
corresponding masks precisely to get more accurate predictions and improve the
Mean IoU. To prevent the model from overfitting, a larger dataset with accurate
annotations, specifically for medical image segmentation, must be constructed.

Table 2. Performance Metrics Comparison between YOLOv8 and YOLOv5m Object
Detection Models for localizing Sagittal view lumbar vertebrae

Performance MetricYOLOv8YOLOv5m

Precision(%) 99.1 99.2
Recall(%) 99.5 99.5
mAP(%) 99.4 99.3

To precisely localize each vertebra (L1 to L5, and S1), Table 2 compares the
performance metrics for YOLOv8 and YOLOv5m in localizing lumbar vertebrae
from sagittal view images. YOLOv8 achieves a mAP of 99.4%, indicating a slight
improvement in precision for detecting and localizing abnormalities in the lumbar
spine, compared to YOLOv5m’s mAP of 99.3%. Both models exhibit an identi-
cal recall rate of 99.5%, highlighting their effectiveness in consistently identifying
lumbar vertebrae as a key factor in diagnosing spinal deformities. Interestingly,
YOLOv8 has a slight advantage in precision over YOLOv5m’s by 0.1%, suggest-
ing a better ability to locate the vertebrae precisely. The table reveals advance-
ments with YOLOv8, suggesting its enhanced capability in accurately detecting
spinal conditions. These enhancements are crucial for accurately evaluating and
devising treatment plans for lumbar spine issues, potentially improving patient
outcomes in orthopedic and neurosurgical fields.
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Fig. 7. Evaluation of MU-Net Model Performance on Sagittal View Lumbar Spine
Images: Detailed Analysis of Testing Images (a, d, g), Ground Truth Labels (b, e, h),
and Model Predictions (c, f, i)

Table 3. Comparision of Speed Metrics for YOLOv8 vs. YOLOv5m in Sagittal View
Lumbar Spine Vertebrae Localization

Speed MetricYOLOv8 YOLOv5m

Preprocess 1.9 ms per image0.5 ms per image
Inference 5.7 ms per image6.0 ms per image
Postprocess 6.3 ms per image4.0 ms per image
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Table 4. Comparative Performance of Our Methods and State-of-the-Art Methods for
Lumbar Vertebrae Segmentation and Localization

Method Segmentation IoULocalization mAPSample Size Reference

YOLOv2 77.3% 75.30% Only 40 Patients Gang et al [9]
SegNet 58.0% N/A 200 Patients W. Mbarki, et al. [5]
UNet 74.0% N/A 514 R.F. Masood et al. [7]
YOLOv3 N/A 91.7% 514 Mushtaq et al. [10]
YOLOv5s N/A 97.5% 514 Mushtaq et al [10]
YOLOv5mN/A 99.3% 514 (augmented to 2,162)Ours
YOLOv8 N/A 99.4% 514 (augmented to 2,162)Ours
MU-Net 84.29% N/A 514 (augmented to 2,513)Ours

We also compared the speed metrics of YOLOv models shown in Table 3. Our
analysis revealed that YOLOv8 has longer pre-processing and post-processing
times than YOLOv5m. However, YOLOv8 boasts a faster inference time, which
is crucial for real-time diagnostics. Despite YOLOv8’s marginally quicker anal-
ysis phase, its overall processing time may affect throughput in large datasets.

Figure 9 demonstrates YOLOv8’s consistently high confidence levels across
lumbar vertebrae, while YOLOv5m shows slightly higher confidence levels in
some instances. Our augmented dataset for lumbar vertebrae localization yielded
superior outcomes compared to state-of-the-art (SOTA) methods.

In Table 4, we compare the results achieved by our adopted methods in Fig.
1, including the MU-Net architecture, YOLOv8, and YOLOv5m, with those
obtained by various researchers using deep learning models on the same and
different datasets. The comparison clearly shows the improved performance of
our methods in both segmentation and localization tasks, thereby validating the
effectiveness of the modifications made to the U-Net architecture and the use of
YOLOv8 for localization. Our MU-Net model achieved the notable segmenta-
tion IoU of 84.29%, outperforming other models like UNet (74.0%), and SegNet
(58.0%). This demonstrates the effectiveness of our modifications to the U-Net
architecture for the task of lumbar vertebrae segmentation. Localization Perfor-
mance: Our applied YOLOv8 model achieved the highest localization mAP of
99.4%, followed closely by YOLOv5m (99.3%). These results surpass the perfor-
mance of YOLOv5s (97.5%), YOLOv3 (91.7%), and YOLOv2 (75.30%), high-
lighting the effectiveness of our approach in accurately localizing lumbar verte-
brae.
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Fig. 8. Instances of Unsuccessful Predictions by the MU-Net Model on External Test
Images: Analysis of Unseen Testing Images (a, d, g), Ground Truth Labels (b, e), and
Model Predictions (c, f, h)

MU-Net segments the vertebrae, while YOLOv8 and YOLOv5m localize
them. This process aids radiologists in determining disease severity and auto-
mates the workflow, facilitating the creation of a practical system. YOLOv8
and YOLOv5m perform similarly, with only a marginal difference in inference
time, making either suitable for localization. The improved performance of our
methods in both segmentation and localization tasks validates the effectiveness.
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Fig. 9. (a) YOLOv8 Vertebrae Detection, (b) YOLOv5 Vertebrae Detection

4 Conclusion

Our study refined the Modified-UNet model for segmentation and utilized
YOLOv8 and YOLOv5m for precise lumbar vertebrae localization. The outcomes
revealed superior IoU scores for vertebrae L1-L5 and the S1 sacrum with the MU-
Net application and YOLOv models, achieving mAP scores of 99.3% and 99.4%
for YOLOv5m and YOLOv8 respectively, highlighted their enhanced accuracy
in lumbar deformity analysis. These methods on our augmented dataset surpass
previous techniques, providing crucial insights for choosing between YOLOv8
and YOLOv5m based on confidence, efficiency, and application needs. Mov-
ing forward, we aim to further explore sagittal lumbar spine measurements to
advance the diagnosis and understanding of related conditions, contributing to
improved public health outcomes.
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Abstract. Breast cancer (BC) remains a significant global health chal-
lenge, impacting millions of lives annually. Traditional histopathological
analysis, while essential, can be subjective and time-consuming, poten-
tially leading to diagnostic inaccuracies. This study proposes a novel
Computer-Aided Diagnosis (CAD) framework utilizing Vision Trans-
formers (ViTs) for BC diagnosis from histopathology slides. ViTs excel
in capturing global dependencies within images, offering enhanced diag-
nostic accuracy compared to conventional methods. The framework inte-
grates ViTs with advanced decision-making techniques like 2-tier major-
ity fusion and SHapley Additive exPlanations (SHAP) for improved
interpretability. Experimental results on a dataset of post-neoadjuvant
therapy breast cancer samples demonstrate the efficacy of the proposed
approach, achieving high performance metrics and providing insights into
model predictions. The proposed approach achieves state-of-the-art per-
formance with an accuracy exceeding 97% surpassing existing methods
both on the utilized dataset and an external benchmark, specifically the
Breast Cancer Histopathological Database (BreakHis). Time complexity
analysis suggests that the proposed framework offers computational effi-
ciency, with the dominant factors influencing overall complexity being
the number of patches, sequence length, and number of layers in the ViT
model. This study contributes a robust methodology towards enhancing
BC diagnostic precision and efficiency through cutting-edge AI technolo-
gies.

Keywords: Breast Cancer (BC) · Computer-Aided Design (CAD) ·
Histopathology Diagnosis · Residual Cancer Burden Index (RCBi) ·
SHapley Additive exPlanations (SHAP)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15311, pp. 191–206, 2025.
https://doi.org/10.1007/978-3-031-78195-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78195-7_13&domain=pdf
https://doi.org/10.1007/978-3-031-78195-7_13


192 H. M. Balaha et al.

1 Introduction

Breast cancer (BC) is a prevalent form of cancer that develops in the cells of
the breasts, typically beginning in the milk-producing ducts (ductal carcinoma)
or the lobules (lobular carcinoma) [1,14]. It is the second most common type
of cancer diagnosed in women worldwide, and although it predominantly affects
women, it can also occur in men [12]. Statistics reveal the widespread impact of
BC on individuals and societies globally. According to the World Health Orga-
nization (WHO), an estimated 2.3 million new cases of BC were diagnosed in
2020 alone, making it a significant public health concern [14,32]. Additionally,
BC is a leading cause of cancer-related deaths among women, underscoring the
urgency for early detection and effective treatment strategies [21].

Histopathological analysis has an important role in diagnosing BC and guid-
ing the different treatment decisions. This process involves examining tissue
samples obtained through biopsy (or surgery) under a microscope to identify
abnormalities indicative of cancerous growth [24]. Pathologists assess various
histological features, such as cell morphology, nuclear characteristics, and tissue
architecture, to classify tumors and determine their aggressiveness and potential
for metastasis [2].

Traditional histopathological analysis, although crucial, can be time-
consuming and subjective, depending heavily on the pathologist’s expertise. Deter-
mining the tumor grade from histopathology often requires a council of doctors
to reach a final decision, and time is a critical factor in this process. In some
cases, diagnoses are made by a single expert, which can result in false positives
and false negatives, further complicating patient outcomes.

Consequently, we are motivated to enhance the diagnostic process and support
the experts in their decisions. The suggested approach treat images as sequences
of patches from different magnification levels and utilize self-attention mecha-
nisms, enabling them to capture global dependencies more effectively than con-
ventional Convolutional Neural Networks (CNNs). This can lead to improved
classification of histopathology slides, potentially resulting in earlier and more
accurate BC diagnoses.

Additionally, utilizing a dataset based on the Residual Cancer Burden Index
(RCBi) is pivotal. The RCBi is a clinically validated tool used to assess the
response to neoadjuvant therapy (NAT) and is associated with prognosis. More-
over, integrating advanced techniques such as SHapley Additive exPlanations
(SHAP) is expected to boost the interpretability and reliability of the results,
ensuring that the system not only performs well but also provides insights into
its decision-making process.

Therefore, the current study proposes a novel approach for BC diagnosis from
histopathology slides using a CAD framework. This framework utilizes Vision
Transformers (ViTs) to perform the diagnosis. The proposed CAD framework
aims to improve the accuracy and efficiency of BC diagnosis by integrating ViTs
with advanced decision-making techniques. The hypotheses of the current study
are: (1) ViTs can effectively classify histopathology slides for BC diagnosis, (2)
incorporating 2-tier majority fusion (2-Tier MF) and SHapley Additive exPlana-
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tions (SHAP) techniques can enhance the interpretability and reliability of the
BC diagnostic process, and (3) the system can decrease the percentage of false
positives and negatives by helping experts ensure their decisions.

The contributions of the current study are: (1) it introduces a novel CAD
framework for BC diagnosis that integrates state-of-the-art ViTs with 2-Tier
MF and SHAP techniques. (2) the study provides empirical evidence of the
effectiveness of ViTs in classifying histopathology slides, demonstrating state-
of-the-art performance on the utilized dataset. (3) by employing 2-Tier MF,
the study enhances the decision-making process by aggregating multiple ViTs
models. (4) the incorporation of SHAP allows for a comprehensive interpretation
of model predictions showing the features and regions of histopathology slides
that contribute most significantly to the diagnosis.

2 Related Studies

Recent advancements in technology, particularly in the field of artificial intel-
ligence (AI), have revolutionized the analysis of histopathological slides in BC
diagnosis [7,11,26].

For example, Sharma and Mehra [26] explored automatic multi-classification
of BC histopathological images, a vital field in biomedical informatics. They
compared two machine learning approaches using the BreakHis dataset. The
first involved handcrafted feature extraction, while the second utilized transfer
learning with pre-trained networks (VGG16, VGG19, and ResNet50). Results
showed that using pre-trained networks as feature extractors surpassed baseline
and handcrafted methods across all magnifications, with augmentation notably
enhancing classification accuracy. Specifically, the VGG16 network with linear
SVM achieved the highest accuracy, reaching 93.97% for patch-based classifica-
tion at 40× magnification. However, this study has limitations. It does not uti-
lize state-of-the-art techniques such as ViTs and You Only Look Once (YOLO),
which are known to capture global context more effectively than traditional CNNs.

Furthermore, Elmannai et al. [13] aimed to automate analysis and diagno-
sis of BC using histopathological images. They employed transfer learning with
two deep CNNs, Inception and Xception, to extract features from BC tissue
images. These features were merged, reduced with dropout, and fed into fully
connected layers for classification. The study achieved remarkable results, with
sub-image classification reaching 97.29% accuracy and 99.58% sensitivity for car-
cinoma cases. Whole image classification attained 100% accuracy with majority
vote and 95% with maximum probability fusion decision, outperforming previ-
ous methods in accuracy and sensitivity. This study has several limitations: (1)
similar to the previous related study, they did not utilize SOTA approaches, (2)
They did not specify whether the reported results were from training, testing,
or validation datasets, which can affect the interpretation of the findings and
reproducibility, and (3) the study did not incorporate explainable AI techniques
to provide insights into the decision-making process.

Additionally, Wang et al. [31] aimed to predict gBRCA mutation risk in
BC patients using whole-slide pathology features. They employed a deep CNN
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based on ResNet, trained on whole-slide images (WSIs) divided into smaller
tiles for classification. Models were trained on tiles cropped at different magni-
fications to assess information levels. External validation showed AUCs ranging
from 0.551 to 0.774 for magnification tiles and 0.635 to 0.828 for magnifica-
tion slides, with histological grade impacting prediction accuracy. However, this
study did not incorporate explainable AI techniques to provide insights into the
decision-making process.

Despite the notable advancements discussed in recent studies utilizing AI for
BC diagnosis from histopathological images, there remains a significant research
gap. Current literature predominantly focuses on traditional CNNs and transfer
learning techniques, such as VGG16, ResNet, Inception, and Xception. However,
there is a limited exploration of state-of-the-art approaches such as ViTs and
YOLO, which have demonstrated superior capability in capturing global context
and enhancing classification accuracy in other domains. Moreover, these studies
do not incorporate explainable AI techniques to provide insights into the decision-
making process.

3 Materials

In this study, we utilized a dataset named Post-NAT-BRCA. It was developed by
the Department of Anatomic Pathology at Sunnybrook Health Sciences Centre
(SBHSC) in Toronto, Canada. It consists of 96 WSIs stained with Hematoxylin
and Eosin (H&E). The slides were taken from 54 patients who underwent neoad-
juvant therapy (NAT) [23]. Manual annotations of tumor cellularity and cell
labels, provided as Sedeen annotation files. The dataset we used in our study
is accessible to the public, ensuring transparency and availability for further
research [18]. The dataset classes are low grade tumor cellularity, medium grade
tumor cellularity, high grade tumor cellularity, and normal.

We organized annotated patches into four separate folders based on their
assigned categories in a systematic manner. These categories were extracted
from three magnification levels (x16, x4, and x2). Patches are extracted from
the 96 WSIs, with each class having approximately 12,000 patches, resulting in
a total of over 48,000 patches. Each patch measures 1,024 by 1,024 pixels. This
extraction process is performed at three magnification levels, with a 10% overlap
between patches. Samples from the base level (i.e., highest magnification level)
are presented in Figure 1.

4 Methods

The current study proposed a CAD framework (See Figure 2) for diagnosing
the BC utilizing histopathology slides. It utilizes three major phases: (1) data
acquisition, annotations and patches extraction, (2) classification, tuning, and
evaluation, and (3) majority fusion and AI explainability using SHAP. The data
acquisition, annotations and patches extraction process is illustrated in the Mate-
rials (See Section 3).
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Fig. 1. Samples from the base level (i.e., highest magnification level) for different cat-
egories: Low Grade, Medium Grade, High Grade, and Normal.

Fig. 2. The suggested Computer-aided design (CAD) framework in the current study
for breast cancer (BC) diagnosis from hitsopathology slides.
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4.1 Classification and Evaluation via Vision Transformers

Vision Transformers, or ViTs, represent a recent breakthrough in computer vision
tasks, including image classification. Unlike traditional CNNs, which rely on hier-
archical feature extraction through convolutional layers, ViTs utilize the Trans-
former architecture, originally proposed for natural language processing tasks
[29].

The Transformer architecture, introduced by Vaswani et al. [29] in the context
of sequence-to-sequence learning, consists of self-attention mechanisms that allow
the model to weigh the importance of different input elements when making
predictions [22]. This self-attention mechanism has proven to be highly effective
in capturing long-range dependencies in sequences, making it well-suited for
various tasks beyond natural language processing, including image classification
[28]. ViTs handle the images like rows of patches. Each patch goes through a
series of changes. The changes involve understanding the whole image and then
using that understanding to sort the patches [25].

Let X = {x1, x2, . . . , xN} represent the sequence of patches extracted from
the input image where N is the number of patches and xi denotes the patch
of the i-th patch. The embedding and position encoding process, represented as
zi = xi + pi, will obtain the embedded vector (zi) where pi is the position of the
patch.

The self-attention mechanism in ViTs computes attention scores between all
pairs of patches and generates weighted representations of each patch based on
these scores. The output of the self-attention layer can be expressed as in Equa-
tion 1 where WQ, WK , and WV are learnable parameters of the self-attention
layer, and dk represents the dimensionality of the key (Z ·WK) vectors. The Soft-
Max operation ensures that the attention scores sum up to 1 across all patches.
By stacking multiple layers of multi-head attention encoders, Z will contain the
captured complex patterns and dependencies in the patches.

Attention(Z) = SoftMax
(
(Z · WQ) · (Z · WK)T√

dk

)
× (Z · WV ) (1)

After computing the attended representations, a feedforward neural network
(FFN) is applied to each patch independently to capture the non-linear relation-
ships. The output of the FFN is represented in Equation 2 where the weights
and biases (W1, b1, W2, and b2) are learnable matrices.

FFN(Z) = ReLU(Z × W1 + b1) × W2 + b2 (2)

4.2 Majority Fusion and AI Explainability using SHAP

The 2-tier majority fusion process (See Figure 2) involves an approach to
decision-making, integrating the outputs from the selected models and the three
magnification levels. In the first tier, majority fusion is performed at each mag-
nification level (i.e., 2x, 4x, and 16x) for each patch based on the top-M models.
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Then, in the second tier, these results undergo another majority fusion procedure
to produce a final decision.

After obtaining the 2-tier majority fused patches, SHAP is utilized to clar-
ify the model’s predictions by attributing the contribution of each feature
to the overall outcome. This approach provides a clear understanding of the
model’s predictions. For diagnosing histopathology slides using ViTs, SHAP
offers insights into how different parts of a WSI influence the model’s final diag-
nosis [4,20].

The Shapley value is the major component of the SHAP. It originates from
cooperative game theory [20]. The Shapley value assigns a worth to each aspect
based on its individual impact on the final prediction [16]. Mathematically, the
Shapley value for a specific aspect i is defined by Equation 3 where φi(v) rep-
resents the Shapley value for aspect i, v denotes the aspect’s values, N signifies
the set of all aspects, S is a subset of aspects excluding i, and f represents the
model’s prediction function [4,17]. In the context of current study of histopathol-
ogy diagnosis, f is the prediction function of the 2-tier majority fusion process,
and N would represent the set of all regions or features extracted from the
histopathology image.

φi(v) =
∑

S⊆N\{i}

(|S|!(|N | − |S| − 1)!)
|N |! × [f(S ∪ {i}) − f(S)] (3)

5 Experiments and Discussion

This study is conducted using a software environment based on Python. Win-
dows 11 is used as the operating system, and Anaconda is selected as the distri-
bution platform. The hardware includes an NVIDIA GPU with 6GB of memory,
256GB of RAM, and an Intel Core i7 processor.

To evaluate the performance, metrics such as its accuracy, precision, and
recall [6]. Accuracy measures the proportion of correctly classified instances out
of the total instances using (TP + TN)/(TP + TN + FP + FN) where TP is
the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives [8,30].

Precision measures the proportion of true positive predictions among all pos-
itive predictions made by the model using TP/(TP + FP ). Recall (sensitivity
or true positive rate), measures the proportion of actual positive instances that
were correctly identified by the model using TP/(TP + FN) [10]. Specificity
measures the proportion of actual negative instances that were correctly iden-
tified by the model using TN/(TN + FP ) [9]. Balanced accuracy (BAC) is the
arithmetic mean of sensitivity and specificity. The F1 score is the harmonic
mean of precision and recall, providing a balance between the two metrics sing
(2 × Precision × Recall)/(Precision + Recall) [5].

The utilized ViT Google pretrained models are B32-P16-224-In21K, B16-
P16-224-In21K„ B32-P16-224, B16-P16-224, B32-P32-384, B16-P32-384, L32-
P32-384, and L16-P32-384 where (B) is Base, (L) is Large, and (P) is Patch.
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For instance, B32-P16-224-In21K refers to a base model that uses a batch size of
32, sequence of fixed-size patches (resolution 16x16), and pretrained on images
sized at 224x224 pixels. Each experiment is performed 10 times, and the mean
along with the standard deviation is reported for each metric. Table 1 reports
the performance metrics for the ViT models and the best combinations for the
three magnification levels utilizing the Post-NAT-BRCA dataset. Each row

At the 16x magnification level, the ViT model B32-P16-224-In21K with aug-
mentation enabled performed the best overall. It achieved an impressive accuracy
of 96.82% and a BAC of 96.25%, reflecting its strong overall performance in cor-
rectly identifying both positive and negative cases. Precision and recall were
both high at around 94.5%, indicating a good balance between identifying true
positives and minimizing false negatives. The F1 score and IoU were also robust,
suggesting effective performance in capturing relevant features in the patches.
On the other hand, models without augmentation showed a notable drop in
performance, particularly in recall and F1 score, highlighting the importance of
augmentation in enhancing the model’s ability to generalize from the training
data.

For the 4x magnification level, the B32-P16-224-In21K model with augmen-
tation again stood out, achieving an accuracy of 98.11% and a BAC of 97.63%.
This model demonstrated exceptional precision (96.66%) and recall (96.61%),
resulting in a high F1 score and IoU, which were crucial for the model’s over-
all effectiveness. Additionally, combinations of models, such as B32-P16-224-
In21K with augmentation both enabled and disabled, provided slightly higher
performance metrics, particularly in BAC and IoU. This suggests that combin-
ing modelscan enhance performance by utilizing the strengths of each individual
approach.

At the 2x magnification level, the results mirrored those at the 4x level,
with the B32-P16-224-In21K model with augmentation achieving the highest
accuracy (98.06%) and BAC (97.61%). The precision, recall, and F1 score were
consistently high, indicating reliable performance in detecting relevant features
at this magnification. The model combination approach also showed effective-
ness, with the best-performing combination achieving an accuracy of 98.47%
and a BAC of 98.08%. This level of magnification benefits from the ability to
capture more contextual information in the patches, contributing to the high
performance across all metrics.

Across all magnification levels, models with augmentation consistently out-
performed those without, and combinations of models provided marginal gains
in performance, suggesting that diverse training strategies can be beneficial. The
B32-P16-224-In21K model with augmentation was particularly effective across
different magnifications, demonstrating its robustness and adaptability to varying
magnification levels of patch detail.

Figures 3 explores the SHAP explainability across an example image four
the three magnification levels. It shows how the fusion accumulates to get a final
decision and probabilities.
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Fig. 3. This study explores the SHAP explainability across an example image four the
three magnification levels. It shows how the fusion accumulates to get a final decision
and probabilities.

Figure 4 illustrates the testing process of the proposed approach on multiple
regions of a WSI. Majority voting between the models is utilized to determine
the prediction of each patch. The patches are extracted from the 16x magnifica-
tion level, with dimensions (1024, 1024) and an overlap of 64 between adjacent
patches. The results indicate that a significant portion of the patches are accu-
rately diagnosed, underscoring the effectiveness of the proposed approach. The
color overlays provide visual cues: green signifies healthy areas, blue represents
low-risk regions, yellow indicates medium-risk areas, and red highlights high-
risk regions. The first region, on the left, reflects a specific category, and the
small overlays inside it indicate some misclassified areas/regions. These misclas-
sifications can be corrected by applying post-processing using the surrounding
ROIs. If the surrounding ROIs at a distance d are related to a specific category,
then this region should be updated to reflect that category. This approach is
considered successful as it corrects small regions within the very large WSI.
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Fig. 4. Graphical presentation after testing regions using the suggested approach. The
color overlays serve as visual indicators: green represents healthy regions, blue signifies
low-risk areas, yellow denotes medium-risk regions, and red highlights high-risk regions.

5.1 Comparison with Pretrained CNNs

Compared with ViTs, pretrained CNN models like MobileNet, DenseNet, and
VGG16/19 exhibit varying performance on a BC histopathology dataset. While
these CNNs have been widely used and established in computer vision tasks,
ViTs demonstrate superior performance in several aspects.

Table 2 showcases the comparison, where ViTs, especially the higher-
resolution variants, outperform pretrained CNNs across multiple metrics. ViTs
show exceptional accuracy, precision, recall, and specificity, with scores consis-
tently surpassing 90%. In contrast, pretrained CNNs such as VGG16 and VGG19
exhibit slightly lower performance, indicating that traditional CNN architec-
tures may not capture the intricate patterns present in histopathological images
as effectively as ViTs. Additionally, ViTs demonstrate balanced scores across
various evaluation metrics, highlighting their robustness in classification tasks.

Moreover, when considering different levels of magnifications as shown in
Table 1, ViTs consistently outperform CNNs across different model configura-
tions and augmentation settings. Augmentation generally improves performance
across all models, but ViTs consistently achieve higher accuracy and other met-
rics compared to CNNs, even without augmentation.

5.2 External Benchmark Validation

The suggested approach is applied on an external dataset named Breast Cancer
Histopathological Database (BreakHis) [27] to study its validations and gener-
alization to other benchmarks. Table 3 compares the results of this study with
those of other related studies on the BreakHis dataset. The results of the cur-
rent study show a significant improvement over previous related studies on the
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Table 2. Table showing various pretrained CNN models using the utilized breast cancer
(BC) histopathology dataset.

Model ACC PRC Recall SPC F1 IoU BAC

MobileNet 90.75% 82.79% 82.85% 92.55% 82.69% 70.83% 87.70%
MobileNetV2 90.24% 82.44% 82.23% 91.68% 82.03% 69.89% 86.96%
DenseNet121 90.54% 82.56% 82.57% 92.49% 82.44% 70.44% 87.53%
DenseNet169 90.86% 83.07% 83.19% 92.84% 83.05% 71.33% 88.01%
DenseNet201 90.84% 83.34% 83.39% 92.81% 83.31% 71.65% 88.10%
VGG16 90.11% 82.13% 82.03% 91.72% 81.81% 69.43% 86.87%
VGG19 83.96% 72.61% 71.68% 86.00% 71.11% 55.42% 78.84%
ACC: Accuracy, PRC: Precision, SPC: Specificity, IoU: Intersection
over Union, and BAC: Balanced Accuracy.

BreakHis dataset. Specifically, this study achieved an accuracy of 96.95%, sur-
passing the highest accuracy of 95.05%. Additionally, the precision of 97.46% and
recall of 92.99% in this study indicate a robust performance in correctly iden-
tifying positive cases. The specificity of 98.84% further highlights the model’s
ability to accurately detect negative cases, reducing false positives. The F1 score
of 95.17% and IoU of 90.79% also demonstrate an overall balanced and effective
performance. This comprehensive set of metrics underscores the advancements
and efficacy of the methods employed in the current study compared to prior
research efforts.

Table 3. Comparison of this study’s results with those of other related studies on the
BreakHis dataset.

Study Year ACC PRC Recall SPC F1 IoU BAC

Nahid et al. [19] 2018 92.19% 98.00% 94.94% 98.00% - - -
Sharma and Mehra [26] 2020 93.97% - - - - - -
Agarwal et al. [3] 2022 94.67% 92.60% 80.52% - 85.2% - -
Han et al. [15] 2017 94.90% - - - - - -
Zhang et al. [33] 2020 95.05% - - - - - -
Current Study 2024 96.95% 97.46% 95.99% 98.84% 95.17% 93.79% 95.92%
ACC: Accuracy, PRC: Precision, SPC: Specificity, IoU: Intersection over Union, and
BAC: Balanced Accuracy.

5.3 Time Complexity Analysis

Time complexity analysis is crucial for assessing the computational efficiency of
the proposed CAD framework based on ViTs for BC diagnosis from histopathol-
ogy slides. In this section, we analyze the time complexity of key components of
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the framework, including image preprocessing, ViT model inference, 2-Tier MF,
and SHAP computation. Let N denote the number of patches extracted from
a given WSI and F denote the number of features (e.g., pixels) per patch. The
time complexity of image preprocessing is typically linear with respect to the
number of patches, i.e., O(N).

The time complexity of ViT model inference depends on the number of
patches (N), the sequence length (L), and the number of layers (M) in the
ViT architecture. For each patch, the self-attention mechanism computes atten-
tion scores with all other patches, resulting in a time complexity of O(N2 ×
L × M) for a single layer. With M layers, the overall time complexity becomes
O(N2×L×M2). 2-Tier MF involves aggregating sub-decisions made at different
magnification levels and sources. Let K denote the number of sub-decisions to
be aggregated. The time complexity of 2-Tier MF is typically linear with respect
to the number of sub-decisions, i.e., O(K).

The time complexity of SHAP computation depends on the number of per-
mutations of features, resulting in a complexity of O(N !× F ) in the worst case.
However, approximation methods such as sampling or kernel approximation can
reduce the computational complexity to a more manageable level, often linear
or logarithmic in N .

The overall time complexity of the proposed system can be approximated
by summing the complexities of its constituent components. Assuming image
preprocessing, ViT model inference, 2-Tier MF, and SHAP computation are
performed sequentially, the overall complexity can be approximated as the sum
of the individual complexities as: O(N)+O(N2 ×L×M2)+O(K)+O(N !×F ).
The dominant factors influencing the overall time complexity are typically N ,
L, and M .

5.4 Clinical Relevance in Enhancing BC Diagnosis

The suggested approach holds significant clinical relevance in enhancing BC diag-
nosis. By utilizing advanced ViTs and self-attention mechanisms, this method
can more accurately classify histopathology slides, potentially leading to earlier
and more precise BC diagnoses. Traditional histopathological analysis is often
time-consuming and subjective, depending heavily on the expertise of pathol-
ogists. The proposed approach addresses these limitations by treating images
as sequences of patches from different magnification levels and capturing global
dependencies more effectively than conventional CNNs. This results in improved
diagnostic accuracy and efficiency. Moreover, integrating the RCBi, a clini-
cally validated tool for assessing responses to neoadjuvant therapy, enhances
the method’s clinical applicability and prognostic value. Additionally, the use
of SHAP ensures the interpretability and reliability of the diagnostic process,
providing insights into model decision-making. This transparency is crucial for
clinical adoption, as it helps build trust in AI-driven diagnostics. The suggested
approach represents a significant advancement in the field of digital pathology,
offering a robust, interpretable, and efficient tool for BC diagnosis.
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6 Conclusions and Future Directions

Breast cancer (BC) is a significant public health concern globally, demanding
accurate and timely diagnosis for effective treatment and management. The
study introduces a CAD framework for BC diagnosis from histopathology slides.
Based on the findings and experiments conducted in this study, several key con-
clusions can be drawn regarding the proposed CAD framework for BC diagnosis
using histopathology slides. The integration of ViTs with advanced decision-
making techniques like 2-Tier MF and SHAP has demonstrated promising results
in enhancing both the accuracy and interpretability of BC diagnosis. Firstly,
ViTs proved to be highly effective in classifying histopathology slides across dif-
ferent magnification levels. The experimental results consistently showed that
ViT models, especially when augmented, outperformed traditional CNN archi-
tectures like VGG16 and DenseNet in terms of accuracy, precision, recall, and
specificity. This superiority can be attributed to ViTs’ ability to capture global
dependencies and contextual information within histopathological images, which
are crucial for accurate diagnosis.

Secondly, the 2-tier majority fusion approach significantly improved decision-
making by aggregating predictions from multiple ViT models at each magnifi-
cation level. This ensemble method not only enhanced classification accuracy
but also provided robustness against potential biases or errors that may arise
from individual models. The hierarchical fusion process, combining outputs at
both patch and slide levels, effectively utilized the strengths of different mod-
els, leading to more reliable diagnostic outcomes. Thirdly, the incorporation of
SHAP for explainable AI added a layer of transparency to the diagnostic process.
By attributing the contribution of each feature and region within histopathol-
ogy slides to the final diagnosis, SHAP enhanced the interpretability of ViT
predictions. This interpretability is crucial for gaining insights into the decision-
making process of AI models, ensuring that clinicians and researchers can trust
and validate the model’s decisions.

Moreover, the study’s validation on external datasets, such as the BreakHis,
demonstrated the generalizability and robustness of the proposed framework.
Achieving superior performance compared to existing methods on these bench-
marks underscores the efficacy of ViTs coupled with advanced decision fusion
techniques in automated BC diagnosis.

Future directions in BC diagnosis should prioritize collecting diverse multi-
modal data and expanding datasets. Additionally, Integrating various imaging
modalities such as MRI with histopathological data can enhance diagnostic accu-
racy. Finally, increasing the volume and diversity of annotated WSIs will enable
the development of more robust models, especially for rare BC subtypes.

References

1. Aboudessouki, A., Ali, K.M., Elsharkawy, M., Alksas, A., Mahmoud, A., Khalifa,
F., Ghazal, M., Yousaf, J., Khalifeh, H.A., El-Baz, A.: Automated diagnosis of



Harnessing ViTs for Precise and Explainable BC Diagnosis 205

breast cancer using deep learning-based whole slide image analysis of molecular
biomarkers. In: 2023 IEEE International Conference on Image Processing (ICIP).
pp. 2965–2969 (2023). https://doi.org/10.1109/ICIP49359.2023.10222479

2. Aebi, S., Davidson, T., Gruber, G., Cardoso, F.: Primary breast cancer: Esmo clin-
ical practice guidelines for diagnosis, treatment and follow-up. Annals of oncology
22, vi12–vi24 (2011)

3. Agarwal, P., Yadav, A., Mathur, P.: Breast cancer prediction on breakhis dataset
using deep cnn and transfer learning model. In: Data Engineering for Smart Sys-
tems: Proceedings of SSIC 2021. pp. 77–88. Springer (2022)

4. Aljadani, A., Alharthi, B., Farsi, M.A., Balaha, H.M., Badawy, M., Elhosseini,
M.A.: Mathematical modeling and analysis of credit scoring using the lime
explainer: A comprehensive approach. Mathematics 11(19), 4055 (2023)

5. Badawy, M., Balaha, H.M., Maklad, A.S., Almars, A.M., Elhosseini, M.A.: Revo-
lutionizing oral cancer detection: An approach using aquila and gorilla algorithms
optimized transfer learning-based cnns. Biomimetics 8(6), 499 (2023)

6. Baghdadi, N.A., Malki, A., Balaha, H.M., AbdulAzeem, Y., Badawy, M., Elhos-
seini, M.: Classification of breast cancer using a manta-ray foraging optimized
transfer learning framework. PeerJ Computer Science 8, e1054 (2022)

7. Baghdadi, N.A., Malki, A., Balaha, H.M., Badawy, M., Elhosseini, M.: A3c-tl-gto:
Alzheimer automatic accurate classification using transfer learning and artificial
gorilla troops optimizer. Sensors 22(11), 4250 (2022)

8. Balaha, H.M., Hassan, A.E.S.: Comprehensive machine and deep learning analysis
of sensor-based human activity recognition. Neural Comput. Appl. 35(17), 12793–
12831 (2023)

9. Balaha, H.M., Saif, M., Tamer, A., Abdelhay, E.H.: Hybrid deep learning and
genetic algorithms approach (hmb-dlgaha) for the early ultrasound diagnoses of
breast cancer. Neural Comput. Appl. 34(11), 8671–8695 (2022)

10. Boursalie, O., Samavi, R., Doyle, T.E.: Evaluation metrics for deep learning impu-
tation models. In: International Workshop on Health Intelligence. pp. 309–322.
Springer (2021)

11. Chan, R.C., To, C.K.C., Cheng, K.C.T., Yoshikazu, T., Yan, L.L.A., Tse, G.M.:
Artificial intelligence in breast cancer histopathology. Histopathology 82(1), 198–
210 (2023)

12. Das, A.K., Biswas, S.K., Bhattacharya, A., Alam, E.: Introduction to breast cancer
and awareness. In: 2021 7th International Conference on Advanced Computing and
Communication Systems (ICACCS). vol. 1, pp. 227–232. IEEE (2021)

13. Elmannai, H., Hamdi, M., AlGarni, A.: Deep learning models combining for breast
cancer histopathology image classification. International Journal of Computational
Intelligence Systems 14(1), 1003 (2021)

14. Gamal, A., Sharafeldeen, A., Alnaghy, E., Alghandour, R., Saleh Alghamdi, N.,
Ali, K.M., Shamaa, S., Aboueleneen, A., Elsaid Tolba, A., Elmougy, S., Ghazal,
M., Contractor, S., El-Baz, A.: A novel machine learning approach for predicting
neoadjuvant chemotherapy response in breast cancer: Integration of multimodal
radiomics with clinical and molecular subtype markers. IEEE Access 12, 104983–
105003 (2024). https://doi.org/10.1109/access.2024.3432459

15. Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., Li, S.: Breast cancer multi-classification
from histopathological images with structured deep learning model. Sci. Rep. 7(1),
4172 (2017)

16. Huang, Y., Wang, X., Cao, Y., Li, M., Li, L., Chen, H., Tang, S., Lan, X., Jiang,
F., Zhang, J.: Multiparametric mri model to predict molecular subtypes of breast

https://doi.org/10.1109/ICIP49359.2023.10222479
https://doi.org/10.1109/access.2024.3432459


206 H. M. Balaha et al.

cancer using shapley additive explanations interpretability analysis. Diagnostic and
Interventional Imaging (2024)

17. Kim, Y., Kim, Y.: Explainable heat-related mortality with random forest and shap-
ley additive explanations (shap) models. Sustain. Urban Areas 79, 103677 (2022)

18. Martel, A., Nofech-Mozes, S., Salama, S., Akbar, S., Peikari, M.: Assessment of
residual breast cancer cellularity after neoadjuvant chemotherapy using digital
pathology. The Cancer Imaging Archive (2019)

19. Nahid, A.A., Kong, Y.: Histopathological breast-image classification using local
and frequency domains by convolutional neural network. Information 9(1), 19
(2018)

20. Nohara, Y., Matsumoto, K., Soejima, H., Nakashima, N.: Explanation of machine
learning models using shapley additive explanation and application for real data
in hospital. Comput. Methods Programs Biomed. 214, 106584 (2022)

21. Parkin, D.M., Fernández, L.M.: Use of statistics to assess the global burden of
breast cancer. Breast J. 12, S70–S80 (2006)

22. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.:
Image transformer. In: International conference on machine learning. pp. 4055–
4064. PMLR (2018)

23. Peikari, M., Salama, S., Nofech-Mozes, S., Martel, A.L.: Automatic cellularity
assessment from post-treated breast surgical specimens. Cytometry A 91(11),
1078–1087 (2017)

24. Rakha, E.A., Reis-Filho, J.S., Baehner, F., Dabbs, D.J., Decker, T., Eusebi, V.,
Fox, S.B., Ichihara, S., Jacquemier, J., Lakhani, S.R., et al.: Breast cancer prognos-
tic classification in the molecular era: the role of histological grade. Breast Cancer
Res. 12, 1–12 (2010)

25. Shamshad, F., Khan, S., Zamir, S.W., Khan, M.H., Hayat, M., Khan, F.S., Fu,
H.: Transformers in medical imaging: A survey. Medical Image Analysis p. 102802
(2023)

26. Sharma, S., Mehra, R.: Conventional machine learning and deep learning app-
roach for multi-classification of breast cancer histopathology images–a comparative
insight. J. Digit. Imaging 33(3), 632–654 (2020)

27. Spanhol, F., Oliveira, L., Petitjean, C., Heutte, L.: Breast cancer histopathological
database (breakhis) (2021)

28. Vaswani, A., Parmar, N., Uszkoreit, J., Shazeer, N., Kaiser, L.: Image transformer
(2018)

29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

30. Vujović, Ž, et al.: Classification model evaluation metrics. Int. J. Adv. Comput.
Sci. Appl. 12(6), 599–606 (2021)

31. Wang, X., Zou, C., Zhang, Y., Xie, L., Zhang, Y.: Prediction of brca gene mutation
in breast cancer based on deep learning and histopathology images. Front. Genet.
12, 661109 (2021)

32. Wilkinson, L., Gathani, T.: Understanding breast cancer as a global health concern.
Br. J. Radiol. 95(1130), 20211033 (2022)

33. Zhang, J., Wei, X., Dong, J., Liu, B.: Aggregated deep global feature representation
for breast cancer histopathology image classification. Journal of Medical Imaging
and Health Informatics 10(11), 2778–2783 (2020)



Directed Brain Network Transformer
for Psychiatric Diagnosis

Xu Zhu1,2 , Zhiwei Qi2,3(B) , Kun Yue1,2 , Yunshan Su4 ,
and Liang Duan1,2

1 School of Information Science and Engineering, Yunnan University,
Kunming, China

xuzhustu@mail.ynu.edu.cn, {kyue,duanl}@ynu.edu.cn
2 Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University,

Kunming, China
3 School of Education, Yunnan University, Kunming, China

maryqizhiwei@ynu.edu.cn
4 Department of Radiology, Affiliated Hospital of Yunnan University,

Kunming, China

Abstract. Human brain is a complex organ that consists of billions of
neurons and trillions of connections among the neurons. To describe the
correlations among the time series of the brain regions, we model the
brain as a functional brain network to diagnose psychosis. However, tra-
ditional methods of functional brain network construction are usually
noisy and do not consider the causal relationships among brain regions.
To obtain the causal relationships and improve diagnosis interpretabil-
ity, we propose a directed brain network Transformer (DBNT) for psy-
chiatric diagnosis. First, the causal relationships in the blood-oxygen-
level-dependent time series of brain regions are extracted to generate a
directed brain network. Then, the feature encoding method is proposed
to obtain local and global features of the brain networks by using the
DBNT. Experimental results demonstrate that the accuracy of DBNT
increases by 8.1% and 6.4% compared to state-of-the-art methods on
two large-scale brain network datasets. DBNT also highlights the brain
regions associated with psychosis and provides interpretation for diagno-
sis.

Keywords: Brain Network · Psychiatric Diagnosis · Causal
Relationship · Transformer · Feature Encoding

1 Introduction

The behavioral, emotional and cognitive deficiencies of patients with psychosis
have a major effect on their lives [27]. Millions of people suffer from psychosis,
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and the yearly expense of medical care exceeds trillions of dollars [18]. The cur-
rent diagnosis of psychiatric disorders relies on the subjective judgment of clin-
icians regarding patients’ cognitive, behavioral and emotional functioning [15].
Most treatments are ineffective due to the lack of understanding of pathology of
psychosis, although there are many treatments available that address subjective
symptoms and psychology [21]. The brain network-based psychiatric diagnosis
is becoming increasingly important in neuroimage studies to understand the
organization of the brain of psychiatric patients and healthy controls [11].

Functional magnetic resonance imaging (fMRI) is developed for brain net-
work construction [26]. There are two key steps by using fMRI to diagnose psy-
chosis: functional brain network construction and psychiatric prediction [9]. The
first step is to construct functional brain network from an individual’s fMRI data.
A set of regions of interest (ROI) on the brain atlases is selected as the nodes
of the functional brain networks, and pairwise connectivities of blood-oxygen-
level-dependent (BOLD) signal time series from each ROI are extracted as the
edges [7]. For the constructed functional brain networks, some brain regions (also
named nodes in the functional brain network) are co-activated or co-deactivated
simultaneously when performing action, language and vision [28]. By using this
pattern, the nodes of functional brain networks could be classified into diverse
functional modules to analyze psychosis for their diagnosis. Thus, the second
step is to feed the functional brain network into a classification model to pre-
dict whether a person has psychosis or not. However, the brain network-based
psychiatric diagnosis methods are noisy and inaccurate, since these methods
focus on capturing the statistical associations of ROIs rather than that of causal
relationships [26].

Fig. 1. The overall pipeline for (a) Traditional psychiatric diagnosis methods. (b) GNN-
based psychiatric diagnosis methods. (c) Our proposed psychiatric diagnosis methods.
For our proposed diagnostic method, a directed brain network is constructed by per-
forming GC test on the mean time series, and inputted into the DBNT.
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As shown in Fig. 1 (a), the traditional psychiatric diagnosis methods are
based on shallow models or linear classifiers, which cannot capture the topo-
logical and nonlinear relationships of complex brain networks [29]. Recently, as
shown in Fig. 1 (b), graph neural network (GNN) has gained significant atten-
tion for their exceptional ability to analyze graph-structured data [6]. The GNN-
based psychiatric diagnosis methods capture the structural features of the brain
network, but only consider the local structure of neighboring nodes [17]. This
localized propagation limits the ability of the GNN to handle global information
and long-range dependencies. To capture both local and global structures, graph
Transformer-based methods inject edge features into the attention mechanism
and leverage the eigenvectors of each node as positional embeddings [10,22].
However, the above methods suffer from the following challenges:

Ignorance of causality. Current psychiatric diagnosis methods are based
on the nodes’ correlations of brain networks, and ignore the causal relationships
among brain regions and may lead to inaccurate results.

Unaffordable calculation cost. The number of edges in traditional brain
networks can reach tens of thousands, and the computational cost of the gener-
ation of all edge features in graph Transformer-based methods is prohibitive.

Lack of brain network properties. Brain network is a special network
with unique properties, such as node and topology features, which have not
been considered in the traditional methods and lead to poor interpretability for
psychiatric diagnosis.

To address the first challenge, we propose the method for directed brain net-
work construction to test whether the causal relationships exist among brain
regions. To obtain the causal relationships, we adopt the univariate and mul-
tivariate Granger causality (GC) test on the BOLD time series of the brain
regions, since the current BOLD time series correlate with previous BOLD time
series from its own and other brain regions. The existing causal relationships
will be represented by the direction of the edges, and thus the directed brain
network can be generated.

To address the second challenge, we adopt the significance test to exclude
spurious causal relationships in the directed brain network and reduce the com-
putational cost of graph Transformer. Specifically, we adopt the significance test
to exclude these spurious causal relationships if and only if the level of signifi-
cance is not larger than the given threshold. Accordingly, the number of edges in
the directed brain networks is reduced from tens of thousands to a few thousand.

To address the third challenge, we design three encoding methods in our
directed brain network Transformer (DBNT) to capture the node centrality,
global feature, and path feature of the brain networks, respectively. On the
basis of the unique node features such as clustering coefficient, node efficiency
and betweenness centrality [24], we first propose a node centrality encoding
method to identify the important nodes associated with psychosis. A global fea-
ture encoding method is designed to generate the global structure features of the
brain networks. To utilize the weight and direction of the edges, we design a path
feature encoding method of the shortest path. With the three encoding meth-
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ods, DBNT can capture the unique properties of brain networks and generate
network embeddings for psychiatric diagnosis.

To summarize, our contributions are as follows:

– We propose the method for constructing the directed brain network by per-
forming GC tests on the BOLD time series of different brain regions to gen-
erate the directed network and eliminate spurious causal relationships.

– We propose a DBNT with three types of encoding methods to enhance the
extraction capability of node centrality, global features and path features in
brain networks by encoding their unique properties.

– We conduct experiments on two large-scale brain network datasets. Exper-
imental results demonstrate that DBNT is optimal on all metrics and can
identify the brain regions associated with psychosis.

The rest of this paper is organized as follows: Section 2 introduces related
work. Section 3 gives our methodology. Section 4 presents experimental results
and brain network visualization of DBNT. Section 5 concludes and discusses
future work.

2 Related Work

GNN based Brain Network Analysis. The brain networks can be seen
as complex graph structures that have recently attracted widespread interest
due to the power of GNN in different downstream tasks. Li et al. [17] pro-
posed BrainGNN to analyze fMRI and discover neurological biomarkers which
has novel ROI-aware graph convolutional layers to leverage the topological and
functional information of fMRI. Cui et al. [6] proposed BrainGB, a benchmark
for brain network analysis with GNN to summarize brain network construction
pipelines for both functional and structural neuroimaging modalities. FBNET-
GEN [11] can generate the GNN-compatible functional brain networks from
fMRI data and dynamically optimize them for downstream tasks. Zheng et al.
[29] proposed a Granger causality-inspired GNN to identify the most influen-
tial subgraph that is causally related to the prediction. The GNN-based method
calculates the pairwise connectivities of each ROI through Pearson correlation
and generates a brain network. However, Pearson correlation cannot capture
the causal relationships among the nodes. Therefore, brain networks generated
based on correlations are noisy and inaccurate, which impede the understanding
of the brain network structure.

Graph Transformer based Brain Network Analysis. Transformer has
achieved great success in NLP and CV tasks due to the self-attention mech-
anism [16]. Graph Transformer is proposed by leveraging the self-attention in
graph representation learning, which has recently been applied to brain network
analysis. Kan et al. [14] proposed a brain network Transformer (BNT) that
combines the self-supervised soft clustering and orthogonal clustering readout
operations based on orthogonal projection. By leveraging this cluster read, BNT
can generate distinguishable cluster-aware node embeddings and infographic
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embeddings. Wei et al. [8] proposed a Transformer-based hierarchical cluster-
ing model for brain network analysis by learning a globally shared cluster allo-
cation via a Transformer encoder and continuously adapted cluster allocation
to downstream tasks. Anushree et al. [1] proposed Com-BrainTF, a hierarchi-
cal local-global transformer architecture by learning node embeddings within
and between communities for autism spectrum disorder prediction tasks. These
graph Transformer-based methods are performed on undirected brain networks
to obtain their representations. However, undirected brain networks are complete
graphs that hinder the differentiation of node features and the computational
cost of generating edge features is unaffordable in graph Transformer.

3 Methodology

3.1 Directed Brain Network Construction

As shown in Fig. 1 (c), our proposed diagnostic method aims to predict psychosis
on the given BOLD time series dataset D = {Dq}n

q=1 ∈ R
n×V ×T , where n is the

number of patients and healthy controls, V is the number of ROI, T is the length
of time series, Dq is the data of the q-th patient or healthy individual in D.
Our method contains two components: directed brain network construction and
DBNT. The directed brain networks GD ∈ R

n×V ×V are generated by conducting
the GC test on D and fed into the DBNT to obtain network embeddings Z =
{zq}n

q=1. Then, zq is flattened and passed to a classifier for prediction Ŷ ∈ R
n×|c|,

where c is the set of classes Ŷ .
According to the GC theory [20], for two time series X and Y, X is deemed

to be causal of Y if leveraging the history of X does reduce the variance of
the prediction of Y. To explore the causal relationships among brain regions,
the GC test is adopted to generate directed brain networks. Specifically, upon
corresponding time series Dvi

q,t and D
vj

q,t of two brain regions vi and vj in Dq,
if the variance σ of the residual ε of multivariate model is lower than that of
univariate model, then there exists a causal relationship. Therefore, the residuals
εi and εj should be first calculated by the univariate model of Dvi

q,t and D
vj

q,t,
where the univariate model is formulated as:

Dvi
q,t =

τi∑

m=1

αDvi
q,t−m + εi (1)

D
vj

q,t =
τj∑

m=1

βD
vj

q,t−m + εj (2)

where α and β are constant coefficients, τi and τj are the lag time step of the
univariate model for Dvi

q,t and D
vj

q,t. τ should be adjusted according to the specific
situation to obtain the appropriate value.
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Then, we calculate ε′
ji and ε′

ij of the multivariate model, defined as:

Dvi
q,t =

τi∑

m=1

αDvi
q,t−m +

τj∑

m=1

γD
vj

q,t−m + ε′
ji (3)

D
vj

q,t =
τj∑

m=1

βD
vj

q,t−m +
τi∑

m=1

δDvi
q,t−m + ε′

ij (4)

where γ and δ are constant coefficients.
If the variance σεi

is higher than σε′
ji

of the multivariate model’s residual, the
causal relationship Fvj→vi

of Dvi
q,t and D

vj

q,t will exist. Thus, the different causal
relationships Fvj→vi

of D
vj

q,t → Dvi
q,t and Fvi→vj

of Dvi
q,t → D

vj

q,t are denoted as:

Fvj→vi
= ln

σεi

σε′
ji

(5)

Fvi→vj
= ln

σεj

σε′
ij

(6)

If Fvj→vi
> 0, a causal relationship Fvj→vi

exists between D
vj

q,t and Dvi
q,t,

which means that there is a directed edge vj → vi in the brain network GDq
.

Similarly, if Fvi→vj
> 0, a causal relationship exists between Dvi

q,t and D
vj

q,t,
which means that there is a directed edge vi to vj in GDq

. To eliminate spurious
causal relationships, we conduct the F -test to evaluate the causal relationships
of the BOLD time series. Specifically, we first make the assumption and select
a level of significance θ, then calculate the F -value. If Fji > Fθ, the original
assumption will be rejected. The F -value Fji is defined as :

Fji =
(MSEi − MSEji)(T − 2τj)

MSEjiτj
(7)

where MSEi and MSEji represent the mean squared residuals of εi and ε′
ji.

We first assume that no causal relationship F exists between Dvi
q,t and D

vj

q,t

and select the level of significance θ ≤ 0.01. If Fji ≥ F0.01, the assumption is
rejected and the causal relationship Fvj→vi

is real rather than spurious.

3.2 Directed Brain Network Transformer

In this section, we propose the node centrality encoding, global feature encoding,
and path feature encoding shown in Fig. 2 to capture the unique properties and
global features and path features of the brain networks.

Node Centrality Encoding In a general graph, the importance of a node is
primarily measured by its degree centrality, which is the sum of its in-degree
and out-degree. In order to measure the node importance, the unique node’s
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Fig. 2. Illustration of our proposed node centrality encoding, global feature encoding,
and path feature encoding.

properties of the brain networks, such as clustering coefficient, node efficiency
and betweenness centrality, could be adopted [24]. The clustering coefficient Ci

of vi is defined as the ratio of the number of edges between adjacent nodes
to the maximum number of edges between these adjacent nodes. Ci measures
the degree of clustering among nodes and reflects the efficiency of information
processing in local brain regions, defined as:

Ci =
2ei

ki(ki − 1)
(8)

where ki is the number of neighbours of vi, ei represents the number of the edges.
The node efficiency Ei of vi is the most reliable measure of node importance

in brain networks [24]. Ei reflects the efficiency of information exchange within
the sub-network and network fault tolerance, defined as:

Ei =
1

NGi
(NGi

− 1)

∑

j �=k∈Gi

1

j,k

(9)

where Gi represents the sub-network of neighboring nodes connected to vi. NGi

represents the number of nodes in Gi. 
j,k represents the length of the shortest
path from vj to vk.

The betweenness centrality B is a measure of a node’s influence on the overall
flow of information in the network. A node vi with large Bi indicates most of
the shortest paths among other nodes must pass through vi.
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Bi =
∑

i�=j �=k∈G

ςj,k(i)
ςj,k

(10)

where ςj,k is the number of all shortest paths from vj to vk, and ςj,k(i) is the
number of the shortest paths through vi.

Thus, the initial node feature h
(0)
i of vi can be expressed as the sum of the

node feature vector xi and the node centrality, defined as:

h
(0)
i = xi + z−

deg−(vi)
+ z+deg+(vi)

+ Ci + Ei + Bi (11)

where z− and z+ are learnable embedding vectors specified by the indegree deg−
vi

and outdegree deg+vi
respectively.

Global Feature Encoding The Transformer is originally designed for model-
ing the sequence data instead of brain network data. To obtain the global struc-
tural features of brain networks by using Transformer, we propose the global fea-
ture encoding function φ(vi, vj) to choose the distance of shortest path between
vi and vj , where φ(vi, vj) denotes the positional relationship between vi and vj .
If there is not a path from vi to vj , then φ(vi, vj) = −1.

Furthermore, the locations of brain regions associated with psychosis are
typically adjacent or in close proximity to each other [3]. We set a learnable scalar
b of the function bφ as a bias term in the self-attention module of Transformer
so that each node in brain network can adaptively focus on other nodes. When
b is a decreasing function w.r.t. φ(vi, vj), each node will pay more attention to
its neighbors, which is consistent with the brain region location relationships of
psychosis. Aij is the (i, j)-element of the Query-Key product matrix A.

Aij =
(hiWQ)(hjWK)T√

d
+ bφ(vi,vj) (12)

where hi and hj are the node features of vi and vj . WQ and WK are two learnable
weight matrices in Transformer. d is the dimension of hi.

Path Feature Encoding The signal transmission in the brain is directional
and often show coactivation among the brain regions associated with psychosis,
which means that brain regions on the signal transmission path are correlated.
For this, we propose path feature encoding. The path feature li,j is defined as
the dot product of node features hi and edge features ei on the shortest path
vi → vj as follows:

li,j =
j∑

i=1

hi(eiwi)T (13)
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where ei represents the edge feature of the i-th edge in the shortest path vi → vj ,
and we is the weight embedding of the ei.

To enhance the feature extraction capability of Transformer for the shortest
path, the path feature li,j is merged into the attention module as a bias term
that aims to modify Aij .

Aij =
(hiWQ)(hjWK)T√

d
+ bφ(vi,vj) +

j∑

i=1

hi(eiwi)T (14)

4 Experiments

In this section, we conduct extensive experiments on two large-scale brain net-
work datasets to evaluate the effectiveness and interpretability of DBNT.

4.1 Datasets

Our experiments are conducted on two large-scale brain network datasets:
(1) Autism Brain Imaging Data Exchange1(ABIDE). This dataset

includes resting-state functional magnetic resonance imaging (rs-fMRI) data
from 17 international sites, and all data are anonymous [4], and contains brain
networks from 1009 subjects, with 516 being Autism spectrum disorder (ASD)
patients. The definition of brain region is based on Craddock 200 atlas [5].

(2) Attention Deficit Hyperactivity Disorder2(ADHD). The ADHD
dataset contains 947 rs-fMRI and anatomical datasets clustered in 8 separate
imaging sites, of which 585 rs-fMRI were from normally developing individuals
and 362 rs-fMRI from children and adolescents with ADHD [2]. The regional
definitions of ADHD are based on anatomical automatic labeling 164 ROI maps.

Task: We choose psychiatric diagnosis as an assessment task on ABIDE and
ADHD datasets, which are split into the train/valid/test datasets in a ratio of
7:1:2 for evaluation.

Evaluation Metrics: As the label distributions of both ABIDE and ADHD
datasets are balanced, we use the area under the receiver operating character-
istic curve (AUROC), accuracy, and F1-Score as the performance metrics. For
accuracy, we use 0.5 as the threshold after obtaining the diagnosis result.

4.2 Performance Comparison

The proposed DBNT is compared to the following three types of baselines:

– CNN-based Model for Brain Network Analysis. BrainNetCNN [13]
utilizes graph convolution operations to capture structure features.

1 https://fcon_1000.projects.nitrc.org/indi/abide/
2 http://fcon_1000.projects.nitrc.org/indi/adhd200/
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– GNN-based Models for Brain Network Analysis. Graph Attention
Network (GAT) [23] and FBNETGEN [11] utilize GNN models to learn and
analyze brain networks.

– Transformer-based Models for Brain Network Analysis. Graph Trans-
former [14] utilizes Transformer to learn node embeddings, and BNT [12]
design a global pooling operator to generate graph-level embeddings.

Table 1. Performance comparison with five baselines.

Method Dataset: ABIDE Dataset: ADHD
AUROC Accuracy F1-Score AUROC Accuracy F1-Score

GAT 60.2±3.4 56.4±2.6 57.7±1.8 68.2±3.5 63.7±3.1 62.1±3.6
BrainNetCNN 63.1±2.0 58.6±2.2 59.2±2.6 68.7±2.2 61.6±3.1 60.7±2.6
FBNETGEN 62.4±1.2 57.8±1.8 58.0±1.9 71.2±1.7 64.8±1.6 64.3±1.4
BNT 61.3±2.3 55.7±2.3 57.2±2.2 67.9±2.6 61.3±2.5 60.4±2.2
Graph Transformer 62.2±1.0 57.2±1.3 58.4±1.8 69.3±1.4 62.2±1.7 61.6±1.5
DBNT 70.7±2.6 66.7±2.5 66.4±2.3 75.8±3.1 71.2±2.6 70.4±2.3

To ensure fairness, a grid search is applied to all baselines, and the best one
is reported in Table 1. The experimental results demonstrate that our proposed
DBNT consistently outperforms the baselines with higher AUROC, accuracy,
and F1-Score. DBNT outperforms other baselines by 7.6% and 4.6% in AUROC,
8.1% and 6.4% in accuracy, and 7.2% and 6.1% in F1-Score on the two datasets.
These results show that brain networks generated by Pearson correlations are
inaccurate, since they fail to capture the complex causal relationships and these
baselines do not consider the unique properties of brain networks.

4.3 Ablation Studies and Hyperparameter Experiments

For ablation studies in Table 2, we modify the original DBNT by using all
encoding methods to observe the performance of the DBNT variant by removing
one of the components. From the final results, the performance of DBNT with
all design encoding methods outperforms others. In particular, the performance
of the model with node centrality encoding and global feature encoding is close
to the optimal performance, and the effect of global feature encoding is the best
among the three encoding methods.

For hyperparameter experiments, the lag time step τ has an impact on the
performance of DBNT. Table 3 reveals that DBNT achieves the best perfor-
mance on both datasets when the τ is 2 and 3. This suggests that these specific
lag lengths are most effective in capturing and incorporating relevant temporal
dependencies in the brain networks. It is worth noting that the complexity of the
directed brain network construction by the ABIDE dataset poses a challenge.
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Table 2. Ablation Studies. The impact of different encoding methods on DBNT. (node
means Node Centrality Encoding, GF means Global Feature Encoding, PF means Path
Feature Encoding.)

Method Dataset: ABIDE Dataset: ADHD
AUROC Accuracy F1-Score AUROC Accuracy F1-Score

DBNT 70.7±2.6 66.7±2.5 66.4±2.3 75.8±3.1 71.2±2.6 70.4±2.3
DBNT_node 63.1±1.6 58.3±3.7 59.4±2.1 70.1±3.3 62.3±3.6 61.4±3.3
DBNT_GF 65.5±1.3 59.1±1.6 60.3±1.4 71.8±3.0 63.5±3.3 62.3±3.6
DBNT_PF 63.7±1.8 59.3±2.1 59.9±2.5 71.2±2.9 63.1±3.4 62.9±3.4
DBNT_node+GF 66.8±1.6 62.4±2.0 62.3±2.7 73.7±2.4 66.7±2.6 65.6±2.8
DBNT_node+PF 65.4±1.5 61.8±2.9 62.0±2.4 72.4±2.7 65.8±2.5 64.9±2.4
DBNT_GF+PF 66.1±1.3 62.1±2.8 61.3±2.7 73.5±2.5 66.2±2.8 65.8±2.2

Table 3. Impact of the lag time step on DBNT.

Lag time step (τ) Dataset: ABIDE Dataset: ADHD
AUROC Accuracy AUROC Accuracy

τ =1 63.9±1.9 60.3±2.4 71.2±4.0 65.2±3.5
τ =2 70.7±2.6 66.7±2.5 73.7±2.7 68.1±3.3
τ =3 67.4±2.0 64.1±2.2 75.8±3.1 71.2±2.6
τ =4 − − 72.7±3.5 67.3±3.1
τ =5 − − 70.2±3.6 65.9±3.8

Considering the trade-off between performance and computation complexity,
when the length of lag time steps exceeds 3 (τ > 3), τ is set to 2 or 3 that
becomes a good choice for DBNT on the ABIDE dataset.

4.4 Brain Network Visualization

To demonstrate our DBNT can identify the brain regions associated with psy-
chosis, we visualize the brain network using BrainNet Viewer [25], and the results
are shown in Fig. 3. The figure visually demonstrates the brain network connec-
tions learned by DBNT on two psychiatric datasets. Specifically, DBNT divides
the learned graphs according to their class labels and calculates the average net-
work by averaging the weights of each edge in the same class. Fig. 3 (a) and Fig.
3 (b) show the connections between Autistic patients and healthy controls. Fig.
3 (c) and Fig. 3 (d) show the connections between ADHD patients and healthy
controls. The results are summarized as follows:

– Fig. 3 (a) and Fig. 3 (b) demonstrate that notable variations are observed
in the contact regions responsible for memory and emotion in the brains of
ASD patients, and the frontal lobe regions influence attention and judgment.
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Fig. 3. Visualizations of predominant connectivities generated via DBNT on different
biological sexes. Edges spanning multiple neural systems are colored gray, whereas
those linking nodes within the same neural system are colored appropriately.

As compared to previous studies [19], these changes are primarily evident in
the connections between brain regions, such as the prefrontal cortex, parietal
lobe and inferior parietal lobe.

– Fig. 3 (c) and Fig. 3 (d) demonstrate that patients with ADHD predominantly
exhibit changes in the motor center of the brain. Specifically, the changes are
observed in the connections between brain regions, such as the prefrontal
cortex, amygdala, and attention network, when compared to the healthy con-
trols. These visual representations provide valuable insights into the specific
regions and connections that undergo significant changes in individuals with
different psychosis, shedding light on the underlying neural mechanisms asso-
ciated with these conditions.

The heat map of a brain network can visualize whether the network is sparse
or dense. Fig. 4 shows the heat map of the directed brain network and the base-
lines. For the ADHD dataset, the edge number in the generated directed brain
network is reduced by approximately 40%. The heat map generated by the base-
lines exhibits a high degree of density, with a multitude of negative edges present.
This high density suggests strong connectivities among brain regions, potentially
indicating redundant or spurious connections. The baselines demonstrate a fully
connected network, while conversely DBNT produces a heat map with sparse
connections between different brain regions. This sparsity indicates a selective
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and focused representation of brain connections, which highlights the meaning-
ful and relevant signals. The sparse nature of the connections implies a more
efficient and discriminative representation of the underlying brain networks.

Fig. 4. Generated brain networks of DBNT and baseline.

4.5 Summary

The above experimental results are summarized as follows:

– Our proposed DBNT achieves the best performance improving by at least 4%
over the suboptimal FBNETGEN in all metrics, demonstrating the effective-
ness of DBNT for psychiatric diagnosis.

– DBNT containing three encoding methods performs the best, which implies
DBNT can capture the node, global and path features of brain networks.

– Brain connection changes in ASD patients are centered on the prefrontal,
amygdala, and hippocampus regions, and in ADHD patients are centered on
the regions of the prefrontal lobe, cerebellum and the default mode network.

5 Conclusion

In this paper, we propose directed brain network Transformer for psychiatric
diagnosis including the directed brain network construction and DBNT imple-
mentation. To construct directed brain network, the GC test is used to explore
causal relationships among brain regions. The generated network overcomes the
problem of edge redundancy and improves diagnostic accuracy. To capture the
unique properties and global features of brain networks, we design three encoding
methods that enhance the feature extraction capability of DBNT. Experiments
on two large-scale brain network datasets demonstrate DBNT’s superior perfor-
mance. Brain network visualization reveals the ability of DBNT to identify brain
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regions related to psychosis and display the connection changes consistent with
clinical observations.

In the future, we will consider exploring a method for determining the optimal
lag time step to enhance the efficiency of generating directed brain networks. To
improve the generalization ability of DBNT, an research issue is to utilize pre-
training and meta-learning techniques for few-shot learning, which can somewhat
address the limitations imposed by small and difficult-to-acquire datasets.
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Abstract. Information about the motion of pixels between images is
crucial for many computer vision tasks. When dealing with cardiac
sequences, information about the heart’s motion can help physicians
diagnose pathologies. Most methods that try to estimate this motion
rely on pair of frames. This can lead to suboptimal performance when
the amount of motion between them is important as it is the case when
considering distant frames in a video sequence. Moreover, performing reg-
istration image by image leads to the integration of registration errors
and is also suboptimal. In this work, a new registration method that uses
all the frames in a video sequence is presented and applied to cardiac
cine-MRI in short-axis views. A first neural network is used to compute
motion flows between adjacent frames. Then, a second one processes the
output of the first network to merge motion flows according to the time
dimension throughout the sequence. Estimated flows are used to prop-
agate segmentation masks across the sequence. The method is tested
on an in-house dataset containing 271 patients. Segmentation, similar-
ity and motion flow regularization metrics are computed to assess the
model performance. The proposed approach achieves an average regis-
tration Dice score and SSIM between the end-diastole and end-systole
frame of 95.26± 0.01 and 86± 0.05 respectively against 93.24± 0.02 and
82.75 ± 0.06 for the best Voxelmorph version.
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1 Introduction

In cardiac imaging, it is interesting to monitor the way parts of the heart behave
during its contraction and expansion phase. To carry out this investigation,
a common biomarker is the cardiac strain that represents, for each cardiac
phase, the percent of deformation of a cardiac structure relative to its end-
diastolic shape [9]. These strain curves are usually obtained using echocardiog-
raphy sequences, but conventional or Deep-Learning feature-tracking algorithms
[21,26,28] have recently been proposed in dynamic Magnetic Resonance Imaging
(cine-MRI).

Approximating pixels apparent motion between two frames and registering
these two frames are related tasks. Indeed, non-rigid image registration algo-
rithms consist in finding a non-linear transformation to align a moving image
with a fixed image. Motion flows, which represent the motion of pixels in the
x and y direction are a specific kind of non-linear transformation that can be
learned by a deep learning algorithm. The use of ground truth optical flow data is
the preferred approach to estimate these motion flows as this allows the network
to learn in a fully supervised manner. As a consequence, in the past few years,
many datasets with ground truth optical flows were created [3,25,27]. However,
images found in these datasets are very different from medical images and the
process to generate this data is very time-consuming.

In the medical imaging domain, motion flow estimation studies have mainly
focused on unsupervised image registration techniques. These methods generally
try to optimize both a similarity error between the warped image and the fixed
image, and a regularization error to obtain a smooth displacement field [1,31,43].
Similarity errors usually consist in minimizing the absolute or squared difference
between the fixed image and the warped image. The cross correlation [23] and
mutual information [32] loss functions are also regularly used as a similarity
measure. Regularization error typically consist in minimizing the norm of the
gradient of the velocity field [1,40]. As such, these methods do not require any
ground truth deformation flow and are fully unsupervised.

However, according to [1,13,14] when segmentation labels are available, the
addition of a segmentation error to the two previous loss components leads to
more accurate results. However, algorithms are then limited in the number of
images used in training since few frames have a ground truth segmentation anno-
tation. For example, in the field of cardiac imaging, only the end-diastole and
end-systole frames are typically labelled [2,4]. These frames correspond to the
time of the cardiac cycle when the heart is the most relaxed and contracted
respectively and exhibit larger motion than any other possible pair of frames in
the video. As a consequence, learning to predict this motion flow is more chal-
lenging than for a pair of frames closer in the video and for which the motion is
smaller. However, and as evidenced in this work, estimating the motion between
adjacent frames and iteratively composing this motion leads to the integration
of registration errors and is also suboptimal. To tackle this issue, we present a
new registration method where flows are first computed between adjacent frames
and then aggregated using a trained network to avoid multiple interpolations.
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2 Related work

2.1 Optical flow methods

Under the assumption of brightness constancy, it is possible to compute the
motion of pixels between two images. Before the advent of deep learning, algo-
rithms were based on computer vision principles and mathematical models. [24]
developed a technique which consisted in solving a system of linear equations
under the assumption of constant displacement in the local neighborhood of
pixels. Block matching algorithms, which try to minimize a similarity measure
between blocks of pixels in the first and the second image are also regularly
used [17,45]. Other methods are based on phase information, which is robust to
illumination change [10,29]. These traditional methods for optical flow estima-
tion relies on handcrafted features and assumptions. They may not generalize
well to images with complex non-rigid motion, illumination variation and noise.
Recently, deep learning based approaches have gained popularity. [7] presented
two different architectures diverging in the format of the data they take as input
and the presence of a correlation layer at the bottleneck. Several approaches
opted to use a spatial pyramid to infer the flow in a coarse to fine manner
[33,36]. This allows for a more progressive estimation, able to better handle
large displacement. These approaches have in common the iterative nature of
their flow estimation process and the use of a warping function at each resolution
of the pyramid. [16] also tackled the optical flow task using an iterative approach
where several networks are stacked to refine the prediction process. [37], designed
a new architecture relying on a recurrent layer at the bottleneck of the network
to iteratively refine the estimated optical flow by processing a multi-resolution
cost volume. The cost volume is a fundamental concept in optical flow estima-
tion which represents the similarity between patches. It is represented as a 4D
tensor where for each pixel in an image, its correlation with every pixel of the
second image is computed. Following this latter work, many architectures also
relied upon an iterative mechanism to process the cost volume [11,20]. Recently,
multiple methods used transformer layers to better take advantage of the cost
volume [15,35].

2.2 Motion flow for medical image registration

In the medical domain, motion flows have been primarily used for image reg-
istration which has been a topic of active research for decades with important
developments in the past few years. Before the widespread use of deep learn-
ing based techniques, some medical image registration algorithms computed the
optical flow by minimizing an energy function using a variational model [12,30].
With the emergence of deep learning, first methods focused on learning a sparse
motion flow, that is, the displacement of a set of control points using either a Thin
Plate Spline (TPS) approach or B-spline approach for interpolation [5,8,34]. The
introduction of the spatial transformer by [19] made it easier to directly com-
pute dense motion flows by using a grid-based fully differentiable module at
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the output of a Convolutional Neural Network (CNN). This is why it has been
widely adopted for medical image registration. Since ground truth motion flow
is difficult to obtain, most of this work focused on unsupervised image registra-
tion [22,39]. Recently, many studies showed that using segmentation annotations
can lead to improved registration performance with more realistic motion flows.
These approaches usually use a segmentation loss between the deformed annota-
tion of the moving image and the annotation of the fixed image [13,14]. However,
these methods greatly reduce the number of available images since ground truth
segmentation labels are usually not available for many of them, especially in
videos. Recently, some methods tried to integrate new regularization penalties
that allow to generate more physically plausible motions [31,44]. Others applied
the scaling and squaring method to iteratively integrate the learned displacement
field in order to produce a diffeomorphic motion, greatly reducing the number
of pixels with negative Jacobian determinant [6,42].

3 Method

Let Ft−1,t ∈ R
w×h×2 denote the motion flow representing the vertical and hori-

zontal displacement of pixels from the frame It−1 ∈ R
w×h to the frame It. Given

a video sequence of T frames S = {I1, ..., IT }, where only the end-diastole (ED)
and end-systole (ES) frames IED and IES are provided with ground truth seg-
mentation labels, we want to estimate the motion F1,t of every pixel between
the first frame I1 and every other frame It ∀t ∈ [2;T ]. The underlying hypothe-
sis of this work is that, the smaller the amount of motion between two frames,
the easier it is to estimate the displacement of pixels. Based on this principle,
an algorithm could be designed to estimate F1,t by relying on elementary flows
Ft−1,t, since these latter should contain a small amount of error.
In this work, such an algorithm is designed around 2 neural networks f1 and f2
with the same architecture but parametrized by different weights. f1 estimates
the motion between adjacent frames Ft−1,t ∀t ∈ [2;T ]. Then f2 progressively
fuses these flows in a successive manner in order to obtain the motion between
non-adjacent frames F1,t.

3.1 Iterative motion aggregation

To begin with, the first network f1 takes as input a sequence S and outputs a set
of T − 1 motion flows Ft−1,t∀t ∈ [2;T ] between adjacent frames. Then, starting
with F1,2, that is directly obtained as output of the first network f1, the second
network f2 iteratively aggregates motion flows and builds F1, t using F1,t−1 and
the elementary flow Ft−1,t. To be more specific, let us consider two consecutive
times t − 1 and t in the cardiac cycle. The flow Ft−1,t is estimated between the
corresponding images It−1 and It using the network f1: Ft−1,t = f1(It−1, It).
The spatial transformer described in [19] allows to compute the registered image
Rt,t−1 obtained after warping the frame It towards It−1 with the flow Ft−1,t.



226 N. Portal et al.

Then, the registration error Et,t−1 = Rt,t−1 − It−1 between Rt,t−1 and It−1 is
computed and used to create: X1,t−1 and Xt−1,t as the concatenation:

X1,t−1 = [F1,t−1; I1; It−1;Rt−1,1;Et−1,1] Xt−1,t = [Ft−1,t; It−1; It;Rt,t−1;Et,t−1] (1)

Finally, our iterative motion aggregation process, that computes the flow between
the first frame and the frame t is obtained using the second network f2 and the
equation:

F1,t = F1,t−1 + f2(X1,t−1,Xt−1,t) ∀t ∈ [3;T ] (2)

3.2 Network architecture

Since both f1 and f2 process a pair of inputs, for the sake of simplicity, it
was decided to use the same architecture for both network. This architecture is
depicted in Figure 1a. f1 and f2 both use a siamese-like encoder with shared
weights. Given a pair of inputs Y1 and Y2 (Y is I for f1 and X for f2), the
encoder fenc is used twice to extract features FY1 = fenc(Y1) and FY2 = fenc(Y2)
separately. Then, the transformer layer found in the decoding part of the network
proposed by [38] is used so that each feature map FY1 and FY2 pay attention to
each other. Finally, after this cross-attention block, only the feature map FY1 is
passed to the decoder fdec in order to get the final output motion flow. Low-level
feature maps of same resolution estimated by the encoder for both inputs Y1 and
Y2, are concatenated and go through 2 convolution layers to halve the number of
features. Then, they are concatenated a second time with corresponding same-
resolution feature maps from the decoder (U-net like architecture).

Fig. 1. Network architecture and training process

3.3 Training and inference procedures

A similar process, which takes advantage of the cyclic nature of the cardiac
cycle, is followed for training and inference. The cine-MRI sequence, covering
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the whole cardiac cycle, is split in two halves SF or SB which correspond to the
forward and backward motion starting with the ED frame and ending with the
ES frame as described in Figure 1. For training, due to GPU memory constraints,
we randomly select SF or SB . Then N − 2 frames are uniformly sampled in the
sequence while keeping IED as the first frame and IES as the last one in order
to obtain a sequence of length N . Thus, only the first and last frame of the
sequence have a ground truth segmentation label. For inference, SF and SB are
processed as a whole by the model without using any sampling mechanism.

3.4 Loss functions

The loss function L is composed of several components. The one which assesses
the similarity between the registered image Rt,t−1 and It−1 is defined as:

Lsim(It−1, Rt,t−1) = 1 − NCC(It−1, Rt,t−1) (3)

Where NCC refers to the Normalized Cross Correlation function. A segmentation
loss Lseg is also employed between the ground truth ED segmentation label YED

and the ED segmentation obtained by warping the ground truth end-systole
segmentation label YES using the flow F1,N .

Lseg = fseg(YED, YES ◦ F1,N ) (4)

fseg is a combination of Dice loss and cross-entropy as proposed in [18]. Finally, to
ensure that smooth motion flows are generated, the function Lsmooth minimizes
the gradient of flows in the x and y directions:

Lsmooth(F ) =
1

|Ω|
∑

p∈Ω

‖∇F (p)‖22 (5)

This smoothness cost function is applied to all outputs of f1 and f2 Ft−1,t and
F1,t respectively ∀t ∈ [2;N ]. Thus, the final loss function L is defined as:

L =
1

N − 1

N∑

t=2

[λ1Lsim(It−1, Rt,t−1) + λ2Lsmooth(Ft−1,t)]

+
1

N − 1

N∑

t=2

[λ1Lsim(I1, Rt,1) + λ2Lsmooth(F1,t)] + λ3Lseg

(6)

In our experiments, the best results were achieved with λ1 = 0.5, λ2 = 1.0, λ3 =
1.0.

4 Experiments

4.1 Dataset and Pre-processing

A clinical dataset of short-axis cardiac cine MRI data is used to measure the
performance of the approach. The dataset contains 271 patients. Data for one
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patient is made up of several cardiac sequences stacked to form a sequence of
3D volumes and covering one cardiac cycle. Each sequence contains between
20 and 80 volumes and each volume is a stack of 3 to 7 slices. In total, the
dataset contains 912 video sequences of 2D slices. Each sequence covers one
cardiac cycle. The average pixel size and slice thickness is 0.97mm2 and 7.47mm
respectively. The dataset has been processed by a local software which provides
segmentation labels of the left ventricular cavity (LV), right ventricular cavity
(RV) and myocardium (MYO) for all frames [21]. Note that only the end-diastole
and end-systole segmentation labels are used for training while all labels are used
to compute metrics on the test set. 80% of the dataset was used for training
and the rest for testing. 20% of the training set was used for validation. The
separation is carried out randomly and patients in each of the 3 sets are different.
A pre-trained binary segmentation network is used to crop each frame to a size
of 192x192 around the cardiac structures. Before being processed by the model,
every frame of an input sequence is standardized based on the mean and standard
deviation of the sequence.

4.2 Evaluation Metrics

Similarity, segmentation and regularization metrics are computed to evaluate the
model. For similarity metrics, the Structural Similarity Index (SSIM) between
the ED frame and registered frames of each sequence is computed. When it comes
to segmentation evaluation, the segmentation label of each frame of a sequence
are registered towards the ED frame using the predicted motion flow F1,t. This is
done for every sequence in each volume. Then the Dice score, Hausdorff Distance
(HD) and Average Symmetric Surface Distance (ASSD) are computed between
the registered segmentations for the whole volume and the ground truth segmen-
tation of the ED volume (registrations are performed slice-wise but segmentation
metrics are computed for the whole volume). We keep the largest connected com-
ponent as a post-processing step before computing segmentation metrics. For
regularization evaluation, the average percentage of pixels with negative Jaco-
bian determinant det(JF (p)) is computed on 2D motion flows for pixels within
the heart. Ground truth segmentation masks are used to compute det(JF (p))
per cardiac structure. For each kind of metric, results are reported only for the
registered ES frame as well as average over all registered frames of the sequence.
The Wilcoxon signed rank test is used to assess the statistical significance of
results and a p-value < 0.05 is considered statistically significant.

4.3 Baseline Methods

The proposed approach is compared against the semi-supervised version of Vox-
elMorph presented by [1]. This model is retrained from scratch on our dataset
using the online tensorflow implementation. Performances of the model trained
with the MSE loss function (VM-MSE) and NCC loss (VM-NCC) are reported.
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Results for the diffeomorphic version are also presented (VM-dif). These Voxel-
morph models are only trained with the labeled ED and ES frames. The optimal
set of hyperparameters reported in the article is kept. During inference, as Vox-
elmorph models take only 2 frames as input, we iterate over the sequence and,
for each step t, the first frame of the sequence I1 = IED and the current frame
It are passed to the network. The number of filters in the original Voxelmorph
model is increased so that the network contains approximately 25 M parameters,
the same number of parameters as our proposed model. This led to slightly bet-
ter performance than the default configuration. In addition to these Voxelmorph
models, comparisons with the classical medical image registration algorithm SyN
(Symmetric Normalization) is also presented.
Moreover, our results also include 2 “naive” methods called IterWarpImg and
IterWarpFlow which, during inference, iteratively compose deformation fields to
register each image to the ED image. These models are trained with N = 2 where
only adjacent frames are fed into the network. During inference, IterWarpImg
iteratively deforms contour points from the current image It to the first image
of the sequence I1:

Rt,1 = ((((It ◦ Ft−1,t) ◦ Ft−2,t−1) ◦ . . . ◦ F3,2) ◦ F2,1) (7)

As described in [41], IterWarpFlow iteratively adds motion fields after aligning
them to obtain deformation fields between non-adjacent frames. Thus, to obtain
Rt,1, the image It registered to image I1, the following equation is used:

F1,t = F1,t−1 + (Ft−1,t ◦ F1,t−1)
Rt,1 = It ◦ F1,t

These two methods only uses f1 to learn the motion between adjacent frames at
training time.

4.4 Implementation Details

The model is implemented with Pytorch. Both networks f1 and f2 are trained
simultaneously in an end-to-end manner. The AdamW optimizer is used with
both a learning rate and weight decay of 1e−4. The number of features is dou-
bled in each strided convolution of the encoder and halved in each up-convolution
of the decoder. The maximum number of features at the bottleneck is 512. Our
model is trained with a batch size of 1 and group normalization layers are used
throughout the network. The number of frames during training is set to N=12. A
16G NVIDIA V100 GPU is used for training. Data augmentation includes: flip-
ping rotation, zooming, translation, contrast adjustment, Gaussian noise injec-
tion, blurring, sharpening and intensity scaling. All models are trained for 100
epochs with 250 iterations per epoch.



230 N. Portal et al.

5 Results and Discussion

5.1 Comparison with Baseline methods

Table 1 and 2 compare similarity, segmentation and regularization performances
of the proposed approach and baseline methods presented in section 4.3. Our
model achieved better results for each individual structure and for all segmen-
tation and similarity metrics. The proposed approach and Voxelmorph models
achieved better segmentation performance than other methods when the amount
of motion between frame was high, as indicated by registration results for the
ES frame. For the regularization measure, its performance is comparable to Vox-
elmorph without the diffeomorphic post-processing. In our experiments, Voxel-
morph with the NCC loss achieves better segmentation and similarity results
than other competing models. VM-Dif, which also uses the MSE loss function,
achieved 0% of pixels with negative Jacobian determinant thanks to the scaling
and squaring method applied to compute the exponential map of the predicted
flow (refer to [6] for additional information). Thus, this latter model presents
the best results in terms of regularity without deteriorating segmentation perfor-
mance. Similarly, SyN also generates diffeomorphic deformation fields resulting
in 0% of pixels with negative Jacobian determinant. Iterative warping methods
did not reach other model’s segmentation performance. However, they achieved
satisfying similarity scores with ES and mean SSIM above VM-MSE and VM-dif.
It should be noted that IterWarpFlow performed poorly when it came to flow
regularization results, achieving the worse performance in terms of mean number
of pixel with negative Jacobian determinant. This can likely be explained by the
required interpolation step which takes place each time a deformation field is
warped. On the contrary, since IterWarpImg only computed deformation fields
between neighboring frames, flow smoothness metric was much better.

Figure 2 shows an example of a registered image using the optical flow com-
puted for each baseline method as well as for our method. The end-systole image
is registered to the end-diastole image. It can be seen that the IterWarpImg
method produces a blurred image due to the successive application of the warping
function, which performs bilinear interpolation at each step. The IterWarpFlow
approach generates blocky patterns. The Syn model does not preserve the size
of cardiac structures, with a thicker myocardium and irregularly shaped RV
compared to the fixed image.

In Figure 3c is shown the cumulative frequency plot of VoxelMorph and the
proposed method in terms of Dice score. As can be seen in this graph, the number
of end-diastole volumes with Dice score below 94 amounts to around 5% for our
model, compared to around 20% for VM-NCC, the best performing baseline
method. All in all, this graph demonstrates that our approach contributes to a
decrease in the number of failed predictions in terms of registered segmentations.
Figure 3a and 3b presents the average Dice score and average SSIM against the
distance to the ED frame as a percent of the cardiac cycle. Since not all videos
have the same number of frames, results were interpolated over the maximum
number of frames and averaged across sequences. These graphs demonstrate that,
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Table 1. Segmentation and regularization results: comparison with baseline methods
(± standard deviation). The segmentation label of each frame of a sequence is warped
towards the segmentation label. P-values are computed between our method and VM-
NCC

ES frame All frames
Method Mean Mean RV MYO LV

Dice VM-MSE 93.24 ± 0.02 94.79 ± 0.02 96.41 ± 0.02 91.51 ± 0.04 96.44 ± 0.02

VM-NCC 92.88 ± 0.02 95.04 ± 0.02 96.32 ± 0.02 92.12 ± 0.03 96.67 ± 0.02

VM-Dif 93.18 ± 0.02 94.73 ± 0.02 96.43 ± 0.02 91.37 ± 0.04 96.38 ± 0.02

SyN 87.60 ± 0.06 93.59 ± 0.04 95.66 ± 0.03 90.12 ± 0.06 94.97 ± 0.05

IterWarpImg 87.72 ± 0.06 93.18 ± 0.04 96.16 ± 0.02 89.05 ± 0.06 94.32 ± 0.04

IterWarpFlow 88.15 ± 0.03 93.00 ± 0.04 95.99 ± 0.02 88.73 ± 0.06 94.28 ± 0.04

Ours 95.26 ± 0.01 95.82 ± 0.01 97.06 ± 0.01 93.14 ± 0.02 97.26 ± 0.01

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

ASSD (mm) VM-MSE 0.13 ± 0.05 0.09 ± 0.06 0.07 ± 0.06 0.13 ± 0.10 0.08 ± 0.06

VM-NCC 0.16 ± 0.08 0.09 ± 0.07 0.08 ± 0.08 0.12 ± 0.09 0.07 ± 0.08

VM-Dif 0.13 ± 0.05 0.09 ± 0.06 0.07 ± 0.06 0.14 ± 0.11 0.08 ± 0.06

SyN 0.41 ± 0.31 0.16 ± 0.20 0.12 ± 0.16 0.19 ± 0.21 0.16 ± 0.29

IterWarpImg 0.34 ± 0.18 0.15 ± 0.13 0.08 ± 0.06 0.20 ± 0.16 0.17 ± 0.21

IterWarpFlow 0.32 ± 0.15 0.15 ± 0.13 0.08 ± 0.06 0.20 ± 0.15 0.17 ± 0.20

Ours 0.08 ± 0.03 0.07 ± 0.04 0.05 ± 0.03 0.10 ± 0.07 0.05 ± 0.04

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

HD (mm) VM-MSE 3.98 ± 1.00 3.09 ± 1.33 3.50 ± 1.84 3.01 ± 1.45 2.75 ± 1.22

VM-NCC 4.78 ± 1.52 3.23 ± 1.50 3.84 ± 2.25 3.04 ± 1.47 2.80 ± 1.44

VM-Dif 3.92 ± 1.02 3.04 ± 1.27 3.40 ± 1.73 2.97 ± 1.40 2.75 ± 1.19

SyN 6.91 ± 2.51 3.83 ± 2.38 4.18 ± 2.60 3.78 ± 2.56 3.54 ± 2.50

IterWarpImg 6.54 ± 1.47 3.92 ± 1.89 3.81 ± 1.86 4.06 ± 2.17 3.90 ± 2.17

IterWarpFlow 6.46 ± 1.46 4.03 ± 1.86 3.84 ± 1.80 4.24 ± 2.20 4.03 ± 2.15

Ours 2.97 ± 0.71 2.59 ± 0.83 2.88 ± 1.24 2.57 ± 0.98 2.32 ± 0.90

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

%det(JF ) ≤ 0 VM-MSE 0.59 ± 1.98 0.17 ± 1.02 0.14 ± 0.96 0.06 ± 0.43 0.30 ± 2.32

VM-NCC 0.40 ± 0.54 0.15 ± 0.34 0.11 ± 0.33 0.05 ± 0.20 0.29 ± 0.85

VM-Dif 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

SyN 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

IterWarpImg • 0.003 ± 0.02 0.004 ± 0.03 0.003 ± 0.02 0.003 ± 0.02

IterWarpFlow 1.09 ± 1.19 0.44 ± 0.77 0.40 ± 0.88 0.22 ± 0.57 0.70 ± 1.21

Ours 0.65 ± 0.91 0.16 ± 0.44 0.11 ± 0.43 0.07 ± 0.29 0.29 ± 0.95

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 2. SSIM results (± standard deviation). Each frame of a sequence is warped
towards the ED frame. P-values are computed between our method and VM-NCC.

Method Mean SSIM ES SSIM

VM-MSE 82.96 ± 0.05 76.80 ± 0.07

VM-NCC 88.79 ± 0.04 82.75 ± 0.06

VM-Dif 82.38 ± 0.05 76.13 ± 0.07

SyN 82.70 ± 0.05 75.22 ± 0.08

IterWarpImg 84.60 ± 0.05 77.75 ± 0.08

IterWarpFlow 86.43 ± 0.04 79.40 ± 0.07

Ours 90.41 ± 0.03 86.00 ± 0.05

p-value < 0.0001 < 0.0001
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Fig. 2. Image registration example. The predicted optical flow is used to warp the ES
(moving) image towards the ED (fixed) image. Best viewed zoomed-in.

as the amount of motion relative to the end-diastole frame increases (the frame
that exhibits the maximum amount of motion relative to the ED frame is the ES
frame), the performance gap between the proposed approach and other models
widens, suggesting that our model better maintains the quality of estimated
flows. This less significant drop in performance likely results from the use of
intermediate frames between the moving and the fixed frame, which reduces the
amount of motion present in each estimated flow.

Fig. 3. Average Dice score (a) and SSIM (b) of baseline methods and ours against
the distance relative to the end-diastole frame as percent of the cardiac cycle. (c)
cumulative frequency graph of Dice score for baseline methods and ours. Best viewed
zoomed-in.

5.2 Limitations

Having two separate network f1 and f2 results in high GPU memory consump-
tion which limits the number of frames used for training. Moreover, the first
network f1 is only used to compute motion between adjacent frames. As such
it is a classical optical flow algorithm which could be replaced by a pre-trained
network to free up GPU memory. This would also simplify the algorithm since
it would reduce the number of losses. Instead of using a pretrained network, the
size of f1 could also be reduced by removing its decoder so that the fusion of flows
is performed at lower resolution between the output of f1 and f2’s encoders.
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6 Conclusion

This work introduced a new method to perform image registration between dis-
tant frames of a video. An iterative motion aggregation process was presented to
estimate motion flow between the first frame of the video sequence and all other
frames. To perform this task, a first network was designed to predict motion
between adjacent frames whereas a second network was in charge of fusing flows
over the video sequence. The approach outperforms Voxelmorph and our pair-
of-frame variant especially when the motion between two frames is large.
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Abstract. Emotion recognition from Electroencephalogram (EEG) sig-
nals has emerged as a promising method for understanding human affec-
tive states. However, Deep learning-based emotion recognition models
suffer from overfitting and generalisation due to the variability in EEG
signals and the scarcity of labelled data, which impede their perfor-
mance. In this work, a Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP) based architecture was adopted for effi-
cient EEG data augmentation. The publicly available “EEG Brainwave”
dataset was used to train the WGAN-GP model to synthetically gener-
ate the fake EEG data. The generated synthetic data was mixed with
the real data in different proportions to determine the optimum ratio of
data augmentation for efficient emotion classification. The efficacy of the
data augmentation was evaluated by proposing an LSTM-based classi-
fier that efficiently classifies the three emotional states: positive, neutral,
and negative. The experimental results show that the maximum classifi-
cation accuracy of 99.14% was achieved with a precision of 0.9915, recall
of 0.9914, and F1 score of 0.9914 when an equal quantity of real and
synthetically generated EEG data was mixed to train the classifier. Our
WGAN-GP-LSTM method not only enhances the robustness of emotion
recognition models by utilizing data augmentation but also significantly
improves the classification accuracy with limited labelled data and out-
performs all other state-of-the-art techniques.

Keywords: Electroencephalogram (EEG) · Emotion Recognition ·
Data Augmentation · Generative Adversarial Network (GAN) · Deep
Learning.

1 Introduction

Electroencephalography (EEG) is a non-invasive neuroimaging technique that
measures electrical activity in the brain, offering insights into neurological activ-
ities. EEG offers a window into cognitive processes and emotional states by
recording the electrical signals produced by the brain using electrodes applied
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to the scalp [1]. Emotion is a complex psychological and physiological state
involving subjective feelings, physiological arousal, expressive behaviours, and
cognitive interpretations [9]. Emotion recognition plays a pivotal role in interper-
sonal communication and understanding. It holds immense potential across var-
ious domains, from improving human-computer interaction to enhancing mental
health diagnostics and even aiding marketing strategies [8]. Emotion recogni-
tion from EEG signals has emerged as a promising method for understand-
ing human affective states. This method typically involves collecting EEG data
while individuals experience various emotional stimuli to elicit specific emotions
[1,16]. EEG-based emotion recognition provides a non-invasive, cost-effective,
and portable method with high temporal resolution for capturing neural activi-
ties of emotional states.

Deep learning techniques have shown remarkable performance in extracting
complex patterns from EEG data for emotion classification. However, the effi-
cacy of such models relies significantly on the availability and quality of training
data. Emotion recognition models suffer from overfitting and generalisation due
to the variability in EEG signals, and the scarcity of labelled data, which impede
their performance [21]. Data augmentation has emerged as a crucial technique
to address these challenges by artificially expanding the manifoldness and quan-
tity of the training data [17]. This method prevents overfitting and improves the
model’s ability to identify patterns across various conditions and subjects. The
traditional augmentation methods include time shifting, frequency warping, ran-
dom noise addition, and data resampling. These techniques aim to increase the
diversity and dataset size while preserving its underlying characteristics. Szcza-
kowska et al. [22] used sliding windows of varying lengths, overlapping windows,
and Gaussian noise for augmentation and found enhancement in the accuracies.
However, the improvements were not very significant.

Generative Adversarial Networks (GANs) have become an effective tool in
data augmentation which can generate new data instances with feature varia-
tions, enhancing the robustness and generalization of machine learning models
[11]. GANs are performing well in creating artificial EEG signals that mimic real
brain activity patterns. This technique aims to overcome dataset size and diver-
sity limitations by generating additional labelled data for training deep learning
models [25]. However, generating realistic synthetic EEG signals poses several
issues, including capturing individual variability, noise characteristics, and the
complexity of emotional dynamics [18]. To overcome these challenges, Fahimi et
al. [10] developed a framework based on conditional Deep Convolutional Gener-
ative Adversarial Networks (DCGANs) to generate artificial EEG data from the
recorded EEG signals. They incorporated Convolutional Neural Network (CNN)
for both generator and discriminator networks. Their findings demonstrate that
the classification tasks benefited greatly from the artificially generated samples
added to the training set. To improve the stability of the model and to gen-
erate more diverse samples, Bao et al. [4] proposed a variational auto-encoder
(VAE) based GAN architecture (VAE-D2GAN) that was trained on the Differ-
ential Entropy (DE) features of EEG data. They transformed the DE features
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Fig. 1. Flowchart of the proposed method.

into topological images by mapping and interpolation, which helped the model
learn relevant spatial distribution. Their method improved the emotion clas-
sification accuracy by 1.5% and 3.5% on the SEED and SEED-IV datasets,
respectively. A similar approach has been taken by Tian et al. [24] in their work,
where they have proposed a dual encoder variational-autoencoder-based GAN
(DEVAE-GAN) architecture to take into account the EEG signals’ spatiotempo-
ral characteristics to generate high-quality synthetic data. They have reported a
5% improvement in the classification accuracy after using the augmented dataset
along with the original dataset. Zhang et al. [27] have taken a different approach
where they proposed a GAN-based self-supervised data augmentation method
(GANSER). They introduced a multifactor training network (MTN) for masking
transformation operation that forces the generator to synthesize a wide variety
of samples, which ultimately improves the classification performance.

Conventional GANs often encounter challenges when applied to time-series
data due to their inherent instability, mode collapse, and difficulty in train-
ing, which can lead to the generation of unrealistic samples and poor diversity
in the synthesized data. Wasserstein GAN is a variant of GAN that uses the
Wasserstein loss function to help with the mode collapse and vanishing gradient
problems. Gradient Penalty (GP), on the other hand, is a regularization tech-
nique that enforces the 1-Lipschitz continuity, which ensures the stability of the
WGAN with Wasserstein loss. In this work, these techniques were incorporated
and adopted, and a Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP) based architecture was proposed for efficient EEG data
augmentation to improve emotion recognition by generating realistic EEG data
distribution. Publicly available “EEG Brainwave” dataset was used for this study
[5,7]. The flowchart of the proposed technique is shown in Fig. 1. First, a Gra-
dient Boosting Classifier was used for feature selection and extracted the fifteen
most relevant features in contrast to efficient emotion recognition. Next, our pro-
posed WGAN-GP model was trained on this feature-selected dataset, in which
the discriminator learns to discriminate between produced and actual samples
while the generator attempts to make data samples that are indistinguishable
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from real data. Once the model had been trained, the discriminator was removed,
and the generator started generating fake synthetic EEG data. These generated
data were mixed with the real dataset into different proportions to create the
augmented EEG dataset. To evaluate the efficacy of the data augmentation, an
LSTM-based multi-class classifier was also proposed to efficiently classify the
three emotional states: positive, neutral, and negative. Results show that the
WGAN-GP-LSTM method not only enhances the robustness of emotion recog-
nition models by utilizing data augmentation but also significantly improves the
classification accuracy with the limited labelled dataset.

The remaining sections of the paper are arranged as follows: in the Method-
ology section, the “EEG Brainwave” dataset is first briefly discussed, followed
by the feature selection method using the Gradient Boosting classifier. Then,
a brief discussion about the traditional GANs and their variants is presented,
followed by a comprehensive overview of our proposed WGAN-GP architecture.
A detailed overview of the proposed LSTM-based classifier is also presented. The
detailed training procedure of the proposed models is then discussed, followed
by the performance evaluation and results in the Model Training and Evalua-
tion section. The results are then compared with the state-of-the-art techniques.
Finally, the results are analyzed and discussed, and the work is concluded in the
Conclusion section.

2 Methodology

2.1 EEG Emotion Dataset

In this work, publicly available “EEG Brainwave Dataset: Feeling Emotions”, cre-
ated by J. J. Bird et al. [5,7] was used. This dataset contains EEG recordings of
two subjects: one male and one female, under various emotion elicitation stimuli.
The authors used a popular and commercially available MUSE EEG headband
to record the data, which had four EEG electrodes, namely TP9, AF7, AF8,
and TP10, and NZ was used as a reference point. The location of the electrodes
in the Muse EEG headband is shown in Fig. 2 (a). A total of six emotional
video clips (three positive and three negative) were used as a stimulus to elicit
emotions in the two subjects. Also, neutral state brain activity was recorded
without applying any external stimulus. For a total of 36 minutes, the authors
collected EEG data at a sample frequency of 250 Hz (12 minutes for the classes
of positive, neutral, and negative emotions). Five frequency bands are included
in every recorded EEG: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and gamma (30-80 Hz). The recorded data was filtered to remove
unwanted noises and artifacts. The authors used a sliding window of 1-second
starting at t=0 with a window size of 0.5 seconds to extract various features
to generate a statistical feature dataset after segmenting the originally recorded
data into smaller data segments. Several statistical features such as mean, stan-
dard deviation, skewness, kurtosis, autocorrelations, maximum and minimum
values, derivatives, log-covariance, Shannon entropy, log-energy entropy, and
power spectral density were extracted at each time window for each of the five



242 R. Acharjee and S. R. Ahamed

frequency bands. The dataset’s final shape became 2132×2547, where 2547 rep-
resents the total number of features that were extracted and 2132 represents the
number of data samples.

Fig. 2. (a) Location of the electrodes in the Muse EEG headband [7]. (b) Selected
features with their feature importance score by the Gradient Boosting Classifier.

2.2 Feature Selection

Feature selection in deep learning is a method used to improve model perfor-
mance by focusing on the most relevant features. In the EEG Brainwave dataset,
there are a total of 2547 extracted features. To reduce the dimensionality and
extract the most relevant features, the Gradient Boosting Classifier has been
used for efficient feature selection. The Gradient Boosting Classifier is a robust
machine learning technique that sequentially constructs an ensemble of sim-
ple models, usually decision trees, to form a highly accurate predictive model.
This can be effectively utilized for feature selection to identify and prioritize
important features. The gradient boosting classifier was chosen due to its robust
performance and ability to handle the high dimensionality and complexity of
EEG data. Several studies in the literature [2,23] have also reported that gra-
dient boosting classifiers perform well for EEG feature selection compared to
other feature selection methods. The optimization function of gradient boosting
classifier is given as [26]:

min
β

�(β) + λ|β|1 + μ

d∑

f=1

qε

(
T∑

t=1

|Fftβt|
)

(1)

where, β is a sparse linear vector that selects trees. The first penalty term of
Eq. 1 is the plain l1 norm that reduces overfitting, and the second penalty term
is the capped l1 norm that explicitly penalizes the extraction of features. The
impurity function is given as [26]:
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where, the first term encourages feature splits to best fit the loss function’s
negative gradient, and the second term promotes splitting on features that have
previously been used in prior iterations. The greedy CART algorithm was used
to minimize the impurity function in Eq. 2 to learn regression trees ht.

The dataset was normalized to a mean of 0 and a standard deviation of 1
before feeding into the gradient boosting classifier. Through preliminary exper-
iments, it was observed that selecting the top 15 features yielded a significant
improvement in both EEG data augmentation and emotion recognition accuracy
while keeping the model complexities manageable. Additionally, different num-
bers of features (e.g., 10, 20, and 25) were experimented with, and it was found
that the optimal results are obtained when the top 15 features are chosen. There-
fore, the 15 most significant features were selected using the Gradient Boosting
classifier on our dataset. Selected features with their feature importance score
are shown in Fig. 2 (b). Following the feature selection process, the dataset now
comprises 2132 × 15 dimensions, with 2132 representing the data samples and
15 denoting the chosen features.

2.3 Proposed Model

A Generative Adversarial Network (GAN) is a class of Deep Learning algorithms
introduced by Goodfellow et al. [12] in 2014. GANs consist of two components:
the generator and the discriminator, engaged in a competitive dynamic of cre-
ation and discrimination [13]. The generator receives random noise as input
and endeavors to produce data that closely resembles real data. Conversely, the
discriminator discerns between real data and data synthesized by the generator.
Loss function of GAN is given below, where d and g play the two-player minimax
game [12]:

min
d

max
g

−[E(log(d(x))) + E(1 − log(d(g(z))))] (3)

where, d(x) denote the likelihood that x originated from the real data, and g
is a differentiable function that represents the generator network. Although the
binary cross-entropy (BCE) loss function works well for conventional GANs,
it can suffer from vanishing gradient and mode collapses. To overcome these
issues, Arjovsky et al. [3] proposed the Wasserstein loss function, alternatively
termed the Wasserstein distance or Earth Mover’s Distance (EMD), as a solution.
Wasserstein loss helps with the mode collapse and vanishing gradient problems,
expressed as [3]:

min
g

max
c

E(c(x)) − E(c(g(z))) (4)

where, c is the critic, equivalent to the discriminator d in the conventional GAN,
which has to be 1-Lipschitz continuous. To ensure the 1-Lipschitz continuity in
the Wasserstein GAN, the Gradient Penalty (GP) is utilized to impose a penalty
on the gradient norm of the critic’s output concerning its input data. The loss
function of the Wasserstein GAN with GP is as follows [14]:

min
g

max
c

E(c(x)) − E(c(g(z))) + λE(‖∇c(x̂)‖2 − 1)2 (5)
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where, the second term is the gradient penalty. The incorporation of gradient
penalty in Wasserstein GAN represents a significant advancement in GAN train-
ing methodology, contributing to the improved robustness and effectiveness of
WGANs in generating realistic data distributions.

Fig. 3. The architecture of the proposed Wasserstein Generative Adversarial Network
with Gradient Penalty (WGAN-GP) for EEG data augmentation. The generator and
the discriminator networks are shown separately.

Fig. 4. The architecture of the proposed LSTM-based multiclass classifier network for
efficient Emotion Recognition from EEG signals.

In this work, a Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP) based architecture has been proposed for efficient aug-
mentation of EEG signals. Fig. 3 shows the design of both the Generator and
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Discriminator networks of the proposed WGAN-GP model. The generator net-
work comprises four blocks of dense neural networks, with each followed by a
batch normalization layer and activated using ReLU activation functions. Begin-
ning with a random noise vector as input, each dense layer applies a linear
transformation, progressively refining the representation to resemble the target
data distribution. After each dense layer, batch normalization is applied, which
helps stabilize and accelerate the training process by normalizing the activations
within each mini-batch, and also makes the optimization process more robust
and efficient. ReLU activation functions are utilized following each batch normal-
ization layer, introducing non-linearity to the network and enabling it to acquire
more intricate features. The final dense layer of the generator network employs
a linear activation function that learns to generate data closely resembling the
distribution of the training data. The shape of the input noise vector and the
generator’s output is (1, 15), similar to the shape of the training dataset.

The Discriminator network consists of two Long Short-Term Memory
(LSTM) layers. LSTM is a type of recurrent neural network (RNN) designed
to capture long-range dependencies in sequential data. There are 64 units in
the first LSTM layer and 32 units in the second. Each LSTM unit maintains a
cell state and hidden state, allowing the model to memorize information over
multiple time steps. The expressions are as follows [15]:

c<t> = Γu ∗ c̃<t> + Γf ∗ c<t−1> (6)

a<t> = Γo ∗ tanh(c<t>) (7)

where the input, forget, and update gates are denoted by Γu, Γf , and Γo, respec-
tively and c̃<t>, c<t> and a<t> are the candidate value, cell state and the hidden
state, respectively. These LSTM layers process the input sequence iteratively,
updating their internal states and capturing relevant temporal patterns in the
data. After every LSTM layer, a ReLU activation function is implemented to
introduce non-linearity, succeeded by a Dropout layer aimed at mitigating over-
fitting. The final output from the LSTM layer is fed into a dense layer, which is
subsequently activated by a sigmoid function. During the iterative training pro-
cess, the generator strives to generate data that closely resemble real data, while
the discriminator learns to distinguish between real and generated samples.

To determine the effectiveness of the data augmentation and efficient emo-
tion recognition, an LSTM-based multiclass classifier network is proposed to
categorize EEG patterns into one of three emotion classes: positive, neutral, or
negative. The architecture of this classifier is similar to the discriminator network
of the WGAN-GP, shown in Fig. 4. The network consists of three blocks of Long
Short-Term Memory (LSTM) units designed to capture temporal relationships
and patterns within the EEG data. Following each LSTM block, a ReLU acti-
vation function is applied that introduces non-linearity into the network, and a
dropout layer is applied with a rate of 0.2 after each ReLU activation to prevent
overfitting. The output from the final LSTM block is fed into a dense layer con-
taining three units, succeeded by a Softmax layer to normalize the output scores
into probabilities. The emotion class with the highest probability is subsequently
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predicted as the output. During the training process, the network learns to asso-
ciate patterns in EEG data with their corresponding emotion classes, thereby
achieving precise emotion recognition.

Table 1. The training parameters/hyperparameters for our proposed models.

Parameters/hyperparameters Value
Generator Discriminator Classifier

Loss function Wasserstein loss BCE CCE
Optimizer Adam RMSprop Adam
Learning rate 0.001 0.001 0.001
Dropout 0.3 0.3 0.2
Batch size 32 32 32
Epochs 100 100 250
Trainable parameters 313,856 32,929 36,083

3 Model Training and Evaluation

Our proposed WGAN-GP and LSTM models were implemented in Keras using
the TensorFlow 2.0 framework and trained on an NVIDIA Tesla V100-PCIE 32
GB GPU. Initially, the WGAN-GP model was trained on the training dataset.
The Wasserstein loss function was applied to the generator network and Binary
cross-entropy (BCE) was applied to the discriminator network during train-
ing. The optimization function employed for the generator was Adam optimizer,
whereas Root Mean Squared Propagation (RMSprop) was used for the discrim-
inator network. The training parameters and hyperparameters for our models
are given in Table 1. Following the feature selection process, there were total
2132 data samples in the original dataset. This dataset was split into 80% for
training and 20% for testing purposes. The training set was utilized to train the
WGAN-GP network for 25 epochs with a batch size 32. In each training itera-
tion, the discriminator is trained multiple times before updating the generator.
During each iteration, the discriminator is provided with both real and synthetic
EEG signal data. The loss is calculated by comparing the scores assigned to real
and fake samples. Additionally, the gradient penalty term is computed to ensure
smoothness in the discriminator’s decision boundary. The gradients are then
computed and used to update the discriminator’s weights. After training the
discriminator, the generator is trained once per iteration. The generator receives
random noise as input and generates fake EEG signal data. The generated data
is subsequently fed into the discriminator, and the loss is calculated according to
the discriminator’s assessment of the generated samples. The generator’s weights
are updated using the gradients computed from this loss.
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Fig. 5. Comparison of the (a) training loss curves and (b) training gradients (L2 norm)
curves for the generator and discriminator.

Fig. 6. Scatter plot of the real and generated EEG dataset (1×Dataset) using two
components found by t-SNE.

During the training process, metrics like loss and gradient norms are moni-
tored and recorded, offering insights into the training dynamics and the model’s
convergence. Fig. 5 shows the training loss curves and gradients (L2 norm) curves
comparison between the generator and the discriminator. From the loss curves,
it’s observable that the training loss decreased swiftly for approximately sixty
epochs for both the generator and the discriminator. Subsequently, the gen-
erator’s loss began oscillating and exhibiting fluctuations beyond this point.
Training GANs on EEG data is challenging due to the high complexity and
variability of EEG signals, making it difficult to learn the underlying patterns.
This complexity contributes to the observed instability in the loss curves. The
primary metric for evaluating GAN performance is the quality of the generated
samples. To test the effectiveness of our trained WGAN-GP model, fake EEG
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data for all three classes was generated and plotted along with the real dataset.
A scatter plot of the real and generated EEG dataset using two components
found by t-SNE is shown in Fig. 6. Data from each emotion class are clustered
together in the latent space, and it is evident that the generated data closely
resemble the distribution of the corresponding real data. This implies that the
generated data is suitable for data augmentation, as it encompasses adequate
realistic information.

Table 2. Performance analysis for different generated sample sizes.

Generated Data Accuracy Precision Recall F1 Score

0×Dataset 0.9736 0.9753 0.9736 0.9734
0.5×Dataset 0.9847 0.9848 0.9847 0.9847
1×Dataset 0.9914 0.9915 0.9914 0.9914

2×Dataset 0.9906 0.9907 0.9906 0.9906
3×Dataset 0.9882 0.9883 0.9882 0.9882
4×Dataset 0.9867 0.9868 0.9866 0.9866

Table 3. Performance analysis of our proposed method.

Author Method Accuracy

Jordan et al. [6] AdaBoosted LSTM 97.06%

Jordan et al. [5] InfoGain, RandomForest 97.89%

Rahman et al. [20] Light Gradient Boosting Machine 97.94%

Mridha et al. [19] Deep Neural Network 98.44%

Our method WGAN-GP-LSTM 99.14%

To assess the effectiveness of the data augmentation, an LSTM classifier
was trained with the generated data. Categorical cross-entropy was employed as
the loss function, and the Adam optimizer was utilized for optimization. Other
training parameters and hyperparameters are given in Table 1. The dataset was
divided into training and validation subsets, and the model was trained for 250
epochs with a batch size of 32, employing five-fold cross-validation. Each fold of
cross-validation allocated 80% of the data for training and 20% for validation.
The generated synthetic data from the trained WGAN-GP generator was mixed
with the real EEG data in different proportions to determine the optimum ratio
of data augmentation for efficient emotion classification. The results are given in
Table 2. The results were assessed based on accuracy, precision, recall, and F1
score, and were evaluated using the original 20% testing dataset. The number of
generated data is denoted by the times of the real dataset, where 0 represents
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the only real dataset without any augmentation (baseline). Table 2 illustrates
that adding an equal quantity of generated data with real data yields optimal
performance, with a classification accuracy of 99.14%, precision of 0.9915, recall
of 0.9914, and F1 score of 0.9914. The real dataset without any augmentation
has the lowest classification accuracy of 97.36%. The proposed data augmenta-
tion method has led to a enhancement of 1.78% in classification accuracy. As the
ratio of generated data increased in the training dataset, the classification accu-
racy started to improve. It gets maximum when the real and generated datasets
are equal in the training data. Further increasing the number of generated data
leads to a degradation in classification accuracy but still obtains higher accuracy
than the original datasets. Fig. 7 shows the plot of the effect of data augmenta-
tion on classification accuracy for different generated sample sizes. The confusion
matrices trained by the real dataset and the augmented dataset (1×Dataset) are
shown in Fig. 8. The true label in each category is displayed as rows in confusion
matrices, while the predicted labels are displayed as columns. When an equal
quantity of generated data was added with the original training set, the classi-
fication accuracy for the three emotional states: positive, neutral, and negative
was enhanced by 0.26%, 4.94%, and 0.17%, respectively. These results demon-
strate that adding generated data to the training set enhances the performance
of the classifier.

Fig. 7. The effect of data augmentation on classification accuracy for different gener-
ated sample sizes.

The findings on emotion classification accuracy were compared against sev-
eral state-of-the-art methods to assess the effectiveness of our WGAN-GP-LSTM
approach: (i) “A Deep Evolutionary Approach to Bioinspired Classifier Optimi-
sation for Brain-Machine Interaction” proposed in [6]. (ii) “Mental Emotional
Sentiment Classification with an EEG-based Brain-Machine Interface” intro-
duced in [5]. (iii) “An Efficient Analysis of EEG Signals to Perform Emotion
Analysis” suggested in [20]. (iv) “Emotion Recognition: A New Tool for Health-
care Using Deep Learning Algorithms” proposed in [19]. Table 3 presents the
classification accuracies for the state-of-the-art techniques and our WGAN-GP-
LSTM method. It can be seen that WGAN-GP-LSTM method archives a higher
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Fig. 8. The confusion matrices for emotion classification trained by (a) original EEG
dataset (b) original and generated data added together (1×Dataset).

classification accuracy of 99.14% in comparison and outperforms all other state-
of-the-art methods. Moreover, our method surpasses the approach suggested by
Mridha et al. [19] with an improvement of 0.7% in the classification accuracy.

4 Conclusion

This paper proposes a Generative Adversarial Network (GAN) based EEG data
augmentation method for improved emotion recognition. Deep learning-based
emotion recognition models suffer from overfitting and generalisation due to the
variability in EEG signals and the scarcity of labelled data that limits the overall
performance. In this work, a Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP) based architecture was proposed for efficient
EEG data augmentation. The publicly available “EEG Brainwave Dataset” was
used for this study. First, a Gradient Boosted Classifier was used for feature
selection to extract the fifteen most significant features from the dataset. This
dataset was then used to train our proposed WGAN-GP model. To determine
the effectiveness of the data augmentation and for efficient emotion recognition,
an LSTM-based multiclass classifier was also proposed. Fake synthetic EEG
data was generated from our trained WGAN-GP generator and mixed with
the real EEG data in different proportions to determine the optimum ratio of
data augmentation for efficient emotion classification. Results show that the
generated data closely resembles the distribution of the corresponding real data,
and mixing an equal number of generated data with the real data achieves the
best performance in terms of classification accuracy of 99.14%. A comparison
of our results was made with the state-of-the-art techniques, and our approach
clearly outperformed all other methods in terms of classification accuracy. Our
WGAN-GP-LSTM method was able to efficiently generate superior and realistic
EEG data for augmentation that enhances the robustness of emotion recognition
models and significantly improves the emotion recognition accuracy.
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Abstract. Ultrasound (US) technology has revolutionized prenatal
care by offering noninvasive, real-time visualization of maternal-fetal
anatomy. The accurate classification of maternal-fetal US planes is a
critical segment of effective prenatal diagnosis. However, the inherent
inter-class variance among different fetal US images presents a significant
hurdle, making fetal anatomy detection a laborious and time-consuming
task, even for experienced sonographers. This paper proposes a novel
approach using a Hybrid Vision Transformer (H-ViT) for automated fetal
anatomical plane classification to address these challenges. The proposed
method utilizes hierarchical features extracted from DenseNet-121, which
are then inputted into the vision transformer to analyze complex spatial
relationships and patterns within fetal US images. By incorporating both
global and local features, the proposed method enhances feature discrim-
inability, thus alleviating low inter-class variance. The effectiveness of the
H-ViT is evaluated using the largest publicly available maternal-fetal
US image dataset. The experimental results rigorously demonstrate the
superiority of our approach, achieving an accuracy of 96.60% compared
to other state-of-the-art techniques.

Keywords: Fetal ultrasound classification · Vision transformer ·
Convolutional neural network · Deep learning · Maternal–fetal planes

1 Introduction

Ultrasound (US) imaging has revolutionized the field of prenatal care, providing
healthcare professionals with a non-invasive and real-time visualization tool to
assess the well-being of both the mother and the developing fetus [1]. It allows
for examining critical anatomical structures, tracking fetal growth, and identify-
ing potential abnormalities at various stages of pregnancy [2]. Traditionally, the
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identification of maternal-fetal US planes has relied on the expertise of highly
skilled sonographers, who manually analyze US images to locate and interpret
specific anatomical landmarks [3]. However, this process is time-consuming, sub-
ject to inter-observer variability, and heavily reliant on the operator’s experience
and training. As a result, there is a growing need for automated and standard-
ized approaches to enhance the efficiency and accuracy of maternal-fetal US
plane detection. From a medical practitioner’s point of view, the evaluation of
fetal US images can be quite demanding because they often contain distortions
like acoustic shadows, speckle noise, motion blur, and unclear boundaries. These
distortions arise due to the intricate interplay between US waves and the tissues
of both the mother and the fetus [4]. The comprehensive study and accurate
classification of US fetal planes, encompassing crucial aspects such as the fetal
abdomen, fetal brain, fetal femur, fetal thorax, maternal cervix, and other per-
tinent planes, hold immense potential to transform healthcare and positively
impact society. They constitute a proactive approach towards enhancing pre-
natal care, estimating fetal weight [5], promoting maternal and fetal health [6],
and fostering a higher quality of life for expectant mothers and their offspring
[7]. Figure 1 presents the most frequently employed fetal anatomical structures
in prenatal screening to estimate fetal well-being. Classifying US fetal planes
aids in gestational age prediction by providing critical anatomical markers and
measurements, enabling a more accurate estimation of the fetus’s developmental
stage and age [9].

Fig. 1. Illustration of the commonly used fetal US images: (a) fetal abdomen (b) fetal
brain (c) fetal femur (d) fetal thorax (e) fetal cervix (f) other [8].

Deep learning techniques, especially convolutional neural networks (CNNs),
have demonstrated remarkable success in medical imaging tasks [10]. CNNs excel
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at learning complex hierarchical representations from large datasets, enabling
them to extract meaningful features and classify images with high accuracy [11].
Their application in US imaging has shown promising results in various areas,
such as fetal biometry, organ segmentation, and anomaly detection. Xavier et
al. [12] evaluated various deep CNNs on fetal US images and concluded that
DenseNet-169 has a close correlation with human technicians. Sridar et al. [13]
computed the local features of US images using pre-trained CNNs and the global
attributes using the discriminant regions of the US planes. Further, the final
decision is made by fusing the decisions computed from the individual attributes
using the support vector machine (SVM) classifier. Rasheed et al. [14] computed
the frame level predictions of fetal US videos using AlexNet and segmented
the fetal head frames using UNET. Further, the segmented frames are utilized
to calculate the biparietal diameter (BPD) and head circumference (HC) via
segmented contours.

Thunakala et al. [15] developed a feature-fused model for fetal US planes
using ResNet-50 and the AlexNet models. Further, the fused features are fed to
SVM for final prediction. Yu et al. [16] developed a CNN model for fetal facial
detection using augmentation and fine-tuning techniques. In [17], the authors
utilized SonoNet architecture to automatically detect 13 fetal standard views and
a bounding box localization mechanism using weak supervision from image-level
labels. Yang et al. [18] developed a radial component mechanism (RCM) that
visualizes the key geometric characteristics of fetal abdominal planes. Further,
the critical attributes identified from RCM are given to a random forest (RF)
classifier to identify fetal abdominal and non-abdominal classes. In [19], the
authors extracted dense and region of interest attributes of fetal US images using
Fisher vector, transform descriptor, and the Gaussian mixture model. Further,
the computed attributes are given to SVM to identify sagittal, axial, and coronal
US planes. In [20], the authors computed the spatial features of fetal US videos
using MobileNet architecture and the temporal attributes using recurrent neural
networks. Further, these cues are fused using a two-stage mechanism to identify
the four classes of fetal US videos. In [21], the authors fused the deep features
computed from AlexNet and VGG-19 model and fed to multilayer perceptron
to classify the six planes of fetal US images. In [9,22], the authors developed an
ensemble network by fine-tuning the top-performing CNNs, and the predictions
from stacked CNNs are given to the majority voting classifier for final prediction.
In [23], the authors reduced the interclass variance among the fetal US planes
using VGG-16 and adaptive weighting mechanism, and then the features were
fed to the softmax classifier to identify six classes of US planes. Although existing
fetal US image classification methods [9,12–16,18–22] have produced satisfactory
results, several limitations remain. The following highlights the limitations of the
existing methods:

1. Only certain fetal anatomical structures, such as the fetal brain and maternal
cervix, are accurately interpreted. However, other prominent planes like the
fetal femur, abdomen, and thorax are often misclassified as non-standard
planes.
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2. The inherent low interclass variance of fetal US images needs to be addressed
more effectively.

3. There is a necessity to develop DL models that focus primarily on significant
regions of the fetal anatomy while minimizing attention to artifacts such as
background information.

Recently, the introduction of hybrid vision transformer models has further
advanced the field of image classification. Vision transformers (ViTs), origi-
nally proposed for natural image analysis, leverage the transformer architecture’s
ability to capture long-range dependencies and self-attention mechanisms. By
incorporating both convolutional and transformer-based layers, hybrid Vision
transformers (H-ViTs) combine the strengths of both approaches, potentially
improving the performance of image classification tasks. In this paper, we have
proposed to combine the effectiveness of CNN architectures and ViTs to auto-
mate the detection of common maternal-fetal US planes. We hypothesize that
combining CNNs and ViTs will leverage the benefits of spatial feature extrac-
tion from CNNs and the attention-based capabilities of transformers, leading to
enhanced accuracy and addressing the inherent low interclass variance of fetal
US images. To the best of our knowledge, none of the works in the existing
literature [9,12–24] proposed a hybrid model based on deep CNN and trans-
former to classify fetal US planes. This has motivated us to develop an H-ViT
model to reduce inter-subject variability among the critical anatomical struc-
tures of fetal US images. Our study comprehensively evaluates these models on
a diverse dataset, considering various factors such as computational efficiency,
interpretability, and generalization performance. By automating the detection
of common maternal fetal ultrasound planes, we envision a future where health-
care professionals can benefit from standardized and efficient analysis, enabling
more accurate diagnoses, improved patient care, and ultimately, better outcomes
for both the mother and the fetus. The following are the contributions of the
proposed method:

1. A deep learning model called H-ViT, which improves the classification of com-
monly used fetal anatomical structures by enhancing the interclass variance
among fetal planes is proposed.

2. The H-ViT model combines DenseNet-121 and Vision Transformer (ViT).
Spatial feature maps extracted from the DenseNet-121 backbone are fed into
the ViT, which further refines the fetal US attributes using the attention-
based capabilities of transformers.

3. To ensure the robustness and reliability of the proposed model, we further
assessed its performance using a speckle-introduced fetal US image dataset,
notably under noisy conditions.

The remainder of the paper is structured as follows: Section 2 delve into the
dataset details and introduce the H-ViT architecture proposed for classifying
fetal US images. Section 3 reports the experimental results and validation stud-
ies, and Section 4 concludes the paper by summarizing the findings and dis-
cussing potential future research directions.
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2 Methodology

This section describes the fetal US dataset, the preprocessing steps applied to
the fetal US images, the feature extraction process, and an elucidation of the
proposed H-ViT for fetal US image classification.

Table 1. Distribution of dataset over different classes

Fetal Plane No of Samples

Fetal Abdomen 711

Fetal Femur 1040

Fetal Brain 3092

Fetal Thorax 1718

Maternal Cervix 1626

Other 4216

Total 12400

2.1 Dataset Description

A large and diverse dataset comprising routinely acquired maternal-fetal screen-
ing US images is utilized to evaluate the effectiveness of the proposed H-ViT [8].
The dataset was collected from two hospitals involving multiple operators and
US machines. An expert maternal-fetal clinician has meticulously labeled all the
images in the dataset to ensure accuracy. The dataset consists of 12,400 images,
categorized into six distinct classes as mentioned in Table 1. Four classes repre-
sent the most commonly used fetal anatomical planes: abdomen, brain, femur,
and thorax. Additionally, there is a class named the maternal cervix, often uti-
lized for prematurity screening. Finally, a general category encompasses any
other less frequently encountered image plane.

2.2 Data augmentation

In order to enhance the robustness and generalization of the proposed classi-
fication method, a systematic data augmentation strategy is employed on the
maternal-fetal screening US dataset. We have increased the number of samples
in each class of the fetal US dataset using data augmentation techniques such
as cropping, rotating, translating, and flipping images [25]. Data augmentation
enhances dataset diversity and reduces data imbalance, enabling assessing the
robustness and generalization of the classification model [26]. This augmentation
approach aims to diversify the dataset by generating variations of the original
images while preserving their anatomical and clinical characteristics [25]. The
original fetal US dataset exhibits variations in the number of samples across
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the distinct fetal plane categories, with some classes having considerably fewer
samples compared to others, as shown in Table 1. After augmenting the fetal US
image dataset, the number of images corresponding to each class has increased
to 2000. Additionally, the augmented fetal US dataset is divided into 70% for
training, 15% for validation, and 15% for testing the CNN and ViT models.

2.3 Preprocessing

The proposed approach employs appropriate preprocessing techniques on the
fetal US image dataset to facilitate training and evaluation. Preprocessing steps
include rescaling the pixel values of the US images to a range of 0 to 1, shear-
ing the images to introduce geometric variations, applying zooming transforma-
tions, and horizontal flipping. These steps enhance the ability of the classification
model to generalize and enhance its performance. Furthermore, the images are
resized to a standardized resolution of 224×224×3 pixels, ensuring consistency
across the dataset. Additionally, as part of the preprocessing pipeline, speckle
noise is introduced to the US images. Speckle noise, a multiplicative noise com-
monly encountered in US imaging due to interference patterns, is simulated to
evaluate the proposed model strength to this artifact and assess its robustness
in real-world scenarios.

2.4 Feature Extraction

The feature extraction process is crucial for capturing informative representa-
tions from input images in the proposed methodology. To achieve this, the pre-
trained DenseNet-121 [27] CNN is utilized as our backbone feature extraction
network. DenseNet-121 has demonstrated its effectiveness in various computer
vision tasks due to its dense connectivity and feature reuse characteristics. The
DenseNet-121 is pre-trained on a large ImageNet dataset to acquire a generalized
understanding of low- to mid-level features. The pre-trained backbone CNN is
fine-tuned on the target fetal US image dataset, enabling the extraction of hierar-
chical features with varying levels of abstraction [28]. During feature extraction,
fetal US images are passed through the DenseNet-121 backbone, undergoing a
series of convolutional and pooling layers. The dense blocks within the archi-
tecture generate feature maps that contain increasingly abstract representations
as we move deeper into the network, as shown in Figure 2. These feature maps
capture both low-level details and high-level semantic information, making them
suitable for a wide range of downstream tasks.

2.5 Proposed H-ViT model

In this section, we introduce a novel and synergistic methodology for precise
image classification, leveraging the remarkable capabilities of the ViT architec-
ture. The ViT represents a groundbreaking approach in computer vision and
image analysis [29]. Unlike traditional CNNs, ViT relies on self-attention mech-
anism, allowing it to effectively capture long-range dependencies in images, as
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shown in Fig 2. This innovative architecture has shown remarkable performance
in various image-related tasks, demonstrating its potential to revolutionize the
field of image classification.

Building upon the strengths of ViT, our approach combines it with the com-
putational prowess of the DenseNet-121 backbone [30]. The harmonious fusion of
cutting-edge techniques results in an efficacious and proficient model explicitly
designed for achieving precise and accurate image classification.

Fig. 2. Proposed model for Fetal Plane classification

Patch-based representation: Upon computing feature extraction by the
backbone DenseNet-121 model, we strategically partition the resultant feature
maps into discrete patches. The feature map partitioning is the foundation of our
patch-based representation strategy. It facilitates a synergistic amalgamation of
localized context and holistic perceptual insights derived from fetal US images.
The partitioning strategy aims to capture fine-grained local intricacies and global
contextual cues, fostering a comprehensive and nuanced understanding of fetal
US image information.

Position embedding and class embedding: Position embedding is a strat-
egy utilized in transformer models to encode the position of each image patch.
CNNs, through their architecture, intrinsically preserve the spatial structure of
the input images, but transformers process input data as a sequence. To address
this, position embeddings are added to the input sequence to inject details about
the position of each patch into the model. Class embedding is a unique token
added to the input sequence in transformer models, particularly in the context
of classification tasks. In ViT, a class embedding token (often called the [CLS]
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token) is prepended to the sequence of image patches. In the proposed H-ViT
model, position embeddings are added to each image patch to provide spatial
information, and a class embedding token is prepended to the sequence. These
embeddings allow the transformer model to understand the spatial relationships
between patches and gather a holistic representation for classification purposes.

Transformer encoder: unveiling complex relationships: Operationally,
the encoder initiates by taking the enriched patch-based representations.
Through self-attention, the encoder perceptively estimates the significance of
each patch in relation to its adjacent spatial values, thereby capturing intricate
interdependencies that might elude conventional convolutional constructs. The
intrinsic capability empowers the model to discern nuanced spatial hierarchies
and complex cross-patch relationships, fostering a granular understanding of
image content.

Furthermore, the self-attention process is perpetuated through the multi-
head mechanism. The model adeptly encapsulates the fetal US image feature
relationships and patterns by executing parallel attention computations, each
capturing distinct aspects of inter-patch relationships. Subsequently, the outputs
of these multi-faceted computations are harmoniously concatenated and subject
to linear transformations, yielding a synthesis that matches diverse attentional
perspectives.

The concatenated multi-head attention outputs are then channeled through
position-wise feedforward neural networks, infusing the process with non-
linearity and intricate processing. The iterative procedure unfolds across multiple
encoder layers, thereby fostering successive refinement of patch relationships and
representations.

Multi-layer perceptron The final fetal US image classification is estimated
using the multi-layer perceptron (MLP) head. The MLP is a robust, inter-
connected structure comprised of various dense layers aimed at high-level fea-
ture refinement. MLP head subjects the amalgamated information to iterative
transformations, fostering intricate non-linear abstractions. Combined with non-
linearity, the sequential application of operations empowers the model to extract
salient high-level semantic facets encoded within the input fetal US data.

2.6 Speckle Noise

Speckle noise is inherent to US imaging and can significantly impact the qual-
ity of acquired images [31]. By introducing synthetic speckle-noise at different
levels, we simulate real-world US imaging conditions. Including speckle noise in
the training dataset gives the model a more realistic representation of imaging
scenarios. This helps the model adapt to noise patterns and improves its robust-
ness against noisy inputs during inference. By training the model on a diverse
dataset that includes speckle noise, we expect the model to generalize better to
unseen real-world data, which typically exhibit speckle artifacts. The Rayleigh
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Fig. 3. Speckled noise fetal US images with different levels.

distribution is often appropriate for describing the amplitude of the received US
signals, as speckle noise tends to exhibit a Rayleigh distribution when the sig-
nals are coherent [32]. The probability density function representing the Rayleigh
distribution is given as:

P (z;σ) =
z

σ2
exp

(
− z2

2σ2

)
, (1)

where z represents the row vectored input US image and σ denotes the spread
of the speckle noise. In this paper, the generalization of the proposed model is
evaluated by considering the different values of σ as mentioned in Figure 3.

3 Experimental results

In this section, we present the empirical results of our proposed methodology,
which leverages a combination of DenseNet-121 and ViT for maternal fetal US
image classification task. We conducted a comprehensive experimental analysis,
including training and evaluation, to assess the effectiveness and robustness of
our approach.

3.1 Experimental Setup

To compare the performance of the H-ViT model, we selected four prominent DL
architectures: VGG19, Xception, InceptionV3, and DenseNet-121. After training
on the fetal dataset, we observed that DenseNet-121 consistently outperformed
the other architectures across a range of evaluation metrics. As a result, we
selected DenseNet-121 as the backbone for our proposed approach. Further, to
enhance the model’s generalization capabilities and resilience to noise, we added
different levels of speckle noise to the fetal US images. The incorporation of
speckle noise not only improved the model’s robustness but also contributed to
achieving enhanced classification accuracy.
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3.2 Evaluation Metrics

We assessed the performance of H-ViT and existing models using a comprehen-
sive set of evaluation metrics, such as accuracy, precision, recall, and F1 score.
Accuracy delivers insights into the ratio of correctly predicted instances to the
total number of instances in the testing dataset, providing an overall measure
of the model’s correctness. The proportion of true positive predictions out of
the total positive predictions made by the model gives the measure of preci-
sion. It measures the model’s ability to avoid false positives. Recall indicates
the proportion of true positive predictions from the actual positive instances
in the testing dataset, which describes the model’s capacity to capture positive
instances. F1 score is the harmonic mean of precision and recall. It provides a
balanced assessment of both metrics and is especially useful when dealing with
imbalanced classes.

Table 2. Performance comparison of the proposed method (in %) with the backbone
CNN and ViT model

Model Accuracy Precision Recall F1 score

DenseNet-201 93.00 93.07 93.00 93.01

ViT-base16 89.30 90.81 88.20 89.23

H-ViT 96.33 96.77 96.36 96.56

Table 3. Performance comparison of proposed model with state-of-the-art deep CNN
models.

Model Train Acc Test Acc Test Loss Precision Recall F1-score Test Time

VGG19 0.911 0.889 0.331 0.892 0.889 0.889 119s

InceptionV3 0.957 0.931 0.231 0.931 0.931 0.931 215s

Xception 0.969 0.927 0.222 0.927 0.927 0.927 150s

DenseNet-121 0.974 0.940 0.208 0.930 0.93 0.930 79s

ViT 0.997 0.893 0.311 0.908 0.882 0.892 50s

Proposed (H-ViT) 0.981 0.963 0.188 0.967 0.963 0.965 37s

3.3 Performance of the proposed H-ViT model

We have evaluated the performance of the backbone CNN model (DenseNet-
121) and vision transformer (ViT) individually as an ablation study, and the
corresponding results are tabulated in Table 2. The experimental results show
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Fig. 4. Accuracy values of the state-of-the-art CNN models for different number of
epochs.

Fig. 5. Validation loss of the state-of-the-art CNN models for different number of
epochs

that the CNN model has achieved better than the ViT base model. However, the
proposed H-ViT model achieves superior results by leveraging the refined feature
maps extracted from the backbone CNN model fed into the ViT. A comprehen-
sive overview of the performance metrics for various existing models, including
VGG19, InceptionV3, Xception, DenseNet-121, ViT, and the proposed hybrid
model (H-ViT) is provided in Table 3. The metrics include training accuracy,
testing accuracy, loss, precision, recall, F1-score, and testing time. From Table 3,
one may observe that the proposed H-ViT model achieved remarkable improve-
ments in terms of performance metrics showcasing its superior capabilities in
capturing intricate visual patterns of fetal US planes. Figure 4 visualizes the
accuracy values for different numbers of epochs on different state-of-the-art CNN
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Fig. 6. Confusion matrix of the proposed H-ViT model for different classes of the fetal
US dataset.

Table 4. Performance results of the DenseNet and the proposed H-ViT architecture
for different levels of speckle noise.

Noise level Test Accuracy Test Loss Precision Recall F1-score

DenseNet-121+Noise

σ=0.1 0.878 0.366 0.887 0.875 0.876

σ=0.15 0.806 0.639 0.848 0.808 0.814

σ=0.2 0.725 0.978 0.814 0.727 0.735

DenseNet-121+ViT+Noise

σ=0.1 0.928 0.210 0.929 0.928 0.929

σ=0.15 0.898 0.3000 0.900 0.893 0.894

σ=0.2 0.873 0.368 0.881 0.871 0.873

models. From Figure 4, it is clear that H-ViT (DenseNet-121+ViT) achieved the
best accuracy values, demarcating its efficacy in identifying the key anatomical
attributes of the fetal US planes. Similarly, Figure 5 depicts the validation loss of
different CNN models across different numbers of epochs. The plot clearly shows
that the H-ViT model’s loss cure slowly converges toward zero as the number
of epochs increases, indicating its suitability for precision-driven tasks. Figure
6 illustrates the confusion chart of the proposed fetal US image classification
model, depicting the class-wise performance in terms of accuracy. Additionally,
the confusion plot provides insights into the potential misinterpretations made
by the proposed model for each class. It is concluded that the majority of fetal
US images are accurately classified, except for the other class, which exhibits
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structural similarities with the remaining classes, leading to misclassification.
Also, we performed an ablation study by introducing speckle noise to the fetal
US planes to check the generalization capability of the proposed H-ViT model.
The models trained with speckle noise augmentation exhibited enhanced gen-
eralization, effectively mitigating the adverse effects of noise and variability in
real-world scenarios. Table 4 illustrates the performance results of the DenseNet-
121 model and the proposed H-ViT modeling in a noisy environment. The table
depicts performance metrics that are slightly declined by increasing the level
of speckle-noise across three different levels of speckle noise on DenseNet-121
architecture. However, embedding ViT into the DenseNet-121 model increases
the performance values, and the performance results are slightly increased com-
pared to the DenseNet-121 model. This indicates that the proposed H-ViT model
performs consistently across different levels of speckle noise, highlighting its effi-
cacy in the noisy environment.

3.4 Comparison with the existing works

The fetal US image classification performance of the proposed method is further
compared with the competing works [12,16,17,21,23,33,34] to show the effec-
tiveness. The quantitative performance measures are presented in Table 5. The
results presented in the table show that the H-ViT model achieved superior out-
comes than the competing methods.To compare the proposed and existing works
fairly, all competing methods are trained and tested on the fetal US dataset used
to evaluate the H-ViT model.

Table 5. Performance comparison of the proposed model (in %) with the competing
methods.

Method Accuracy Precision Recall F1 score

Xavier et al. [12] 93.73 91.95 93.08 92.5

Zhen Yu et al [16] 94.12 92.87 94.25 93.48

Baumgartner et al. [17] 94.48 93.56 93.06 93.28

Krishna et al. [21] 95.10 93.83 95.00 94.38

Krishna et al. [23] 95.33 93.58 95.84 94.64

HaifaGhabri et al [33] 93.63 91.50 93.59 92.48

Sendra et al. [34] 94.94 93.17 95.36 94.19

Proposed method 96.33 96.77 96.36 96.56

3.5 Ablation study

The effectiveness of the proposed method is also evaluated through an ablation
study using different dataset sizes and splits, including five fold cross-validation.
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We acknowledge the importance of 5-fold cross-validation in evaluating machine
learning models. To address this concern, we have conducted additional experi-
ments using 5-fold cross-validation. The cross-fold validation results are provided
in Table 6, and the experimental results provide a more comprehensive evaluation
of the proposed model performance. Additionally, we evaluated the performance
of the proposed model using different data splits: 60%, 70%, and 80% for train-
ing (train), 20%, 15%, and 10% for validation (vali), and 20%, 15%, and 10% for
testing (test), respectively. The qualitative results for these experiments are pro-
vided in Table 7. From the table, one may observe that the 70:15:15 split yields
superior performance due to more balanced class distribution across training,
validation, and testing sets, enhancing the model’s ability to learn and classify
unseen instances accurately. The 15% validation set size provides sufficient eval-
uation data, improving performance while mitigating overfitting. This balanced
approach ensures effective training and evaluation. These results are highlighted
with brown color text in the revised manuscript.

Table 6. Five fold Cross-validation results

Model Accuracy Precision Recall F1 score

Fold 1 96.33 96.77 96.36 96.56

Fold 2 92.66 93.27 92.41 92.84

Fold 3 95.58 95.97 95.41 95.69

Fold 4 95.16 95.24 95.08 95.16

Fold 5 94.66 94.97 94.41 94.69

Table 7. Performance comparison of the proposed method under various dataset splits

Split ratio (train:vali:test) Accuracy Precision Recall F1 score

60:20:20 85.20 86.79 84.08 85.41

70:15:15 96.33 96.77 96.36 96.56

80:10:10 95.49 95.57 95.49 95.60

4 Conclusion

This article introduces an H-ViT that integrates a DenseNet-121 backbone with
transformer architecture to enhance the automatic classification of maternal-
fetal US planes during prenatal screening. To assess the effectiveness of the pro-
posed approach, we utilized a publicly available fetal US image dataset obtained
from high-resource settings. Analysis of experimental results, conducted with
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various noise levels, demonstrates the classification model’s generalization capa-
bility across diverse fetal US image qualities. The proposed method accurately
identifies frequently investigated fetal structures, offering valuable support to
sonographers and obstetricians in monitoring fetal development and early detec-
tion of complications.

In the future, it would be interesting to incorporate more advanced pre-
processing techniques, such as noise reduction and artifact removal, which can
further enhance the quality of input images. Consequently, the performance of
the model might be improved.
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Abstract. Children diagnosed with Attention-Deficit/Hyperactivity
Disorder (ADHD) face many difficulties in maintaining their concentra-
tion (in terms of attention levels) and controlling their behaviors. Previ-
ous studies have mainly focused on identifying brain regions involved in
cognitive processes or classifying ADHD and control subjects. However,
the classification of attention levels of ADHD subjects has not yet been
explored. Here, a robust Swin Transformer (Swin-T) model is proposed
to classify the attention levels of ADHD subjects. The experimental cog-
nitive task ‘Surround suppression’ includes two events: Stim ON and
Stim OFF related to the high and low attention levels of a subject. In
the proposed framework, ADHD-specific channels are initially identified
from input Electroencephalography (EEG). Next, the significant, non-
noisy connectivity features are extracted from those channels through
the Singular Value Decomposition (SVD) method. Finally, the non-noisy
features are passed to the robust Swin-T model for attention-level clas-
sification. The proposed model achieves 97.28% classification accuracy
with 12 subjects. The robustness of the proposed model leads to poten-
tial benefits in EEG-based research and clinical settings, enhancing the
reliability of ADHD assessments.

Keywords: ADHD · Electroencephalography · Singular Value
Decomposition · Granger causality · Deep learning · Swin Transformer.

1 Introduction

Attention disorder is a prevalent condition among both children and adults [33].
Most of the attention disorder studies focused on the diagnosis or classification of
attention deficit hyperactivity disorder (ADHD) individuals. In a Near-infrared
spectroscopy (NIRS) study [38], researchers compared typically developing (TD)
children with ADHD individuals in different age groups. They found that children

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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with ADHD showed reduced activation in the right and middle parts of the pre-
frontal cortex compared to TD children. In a Functional magnetic resonance imag-
ing (fMRI)-based neurofeedback study, authors found that the left inferior frontal
gyrus and the left insular gyrus regions have significant interaction effects in the
different age groups of ADHD subjects [11]. Due to high temporal resolution, Elec-
troencephalography (EEG) is effectively used in ADHD [24] and other applications
such as emotion recognition [26], neuromarketing [27,28], and workload estima-
tion [4,7]. The absolute power of theta and beta EEG bands are used to diagnose
ADHD over control groups [9,24]. High Theta band power leads to more attention
of ADHD subjects [24]. In [25], authors developed a Convolution neural network
(CNN)-based framework to classify ADHD and control subjects. They achieved
98.48% classification accuracy with their model. Unlike traditional CNN, which
relies on local spatial information, vision transformer (ViT) processes images glob-
ally, enabling them to grasp complex patterns and relationships across the entire
image [29]. EEG-transformer has been efficiently used to classify ADHD and con-
trol subjects [15]. They achieved 95.85% classification accuracy with their model
and they found that their model outperforms several traditional classifiers such
as EEG-NET, shallow CNN, and deep CNN. Swin Transformer (Swin-T) offers
advantages over ViT and EEG Transformer with its hierarchical processing, effi-
cient handling of long-range dependencies, scalability to high-resolution inputs,
and improved feature representation [22]. In [37], a framework combining EEG-
channel attention and the Swin-T model has been developed for identifying the
patterns of motor imagery tasks. The model has been effectively used in Brain-
Computer Interface (BCI) rehabilitation purposes, where it achieved 87.67% aver-
age classification accuracy. Correlation-based EEG connectivity features and the
Swin-T model have been used for cognitive workload assessment [21]. EEG-based
weighted connectivity features (i.e.; functional/effective) have been used in differ-
ent applications such as emotion recognition [39], face perception [5], and work-
load estimation [6] tasks. However, these connectivity features may contain noisy
or insignificant connections between EEG channels [10]. Singular Value Decom-
position (SVD) is useful in removing noisy connections from brain connectivity
matrices while preserving the essential information [17]. SVD has been effectively
used for removing artifacts [17] from raw EEG and finding dipole orientation in
brain connectivity analysis [30].

Most of the existing studies [16,38] focused either on the activated brain
regions of ADHD individuals or classification analysis between ADHD and con-
trol group using deep learning techniques [12,13]. However, identifying the atten-
tion levels of ADHD subjects is of utmost importance as it is related to the
behavior of ADHD individuals. Therefore, in this study, the attention level of
ADHD individuals is classified with the Swin-T model. Implementing a Swin-T
model, an advanced deep learning model, showcases the application of cutting-
edge technology in the field of cognitive neuroscience. This can inspire further
research and development of new tools in the neuroscience domain. In the pro-
posed model, initially, specific EEG channels used in ADHD diagnosis are iden-
tified based on existing studies [19,31], and weighted connectivity features are
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Fig. 1. Proposed framework for attention level classification using non-noisy connec-
tivity features and Swin Transformer model.The events “Stim ON” and “Stim OFF”
related to high and low attention levels respectively. OL is the output layer.

extracted from those selected EEG channels. Then SVD method is applied to
eliminate the noisy connections from weighted features. The non-noisy features
are passed to the Swin-T model for attention-level classification. The proposed
model is shown in Fig. 1. The contributions of the proposed model are listed as
follows.

1. To the best of our knowledge, this is the first approach that combines
functional-effective EEG connectivity features and the Swin-T model to per-
form attention-level classification for ADHD participants.

2. SVD-based application mostly highlights noise reduction from input sig-
nals [17] or images [32]. Nevertheless, the implementation of non-noisy con-
nectivity features using SVD for attention-level classification has not been
discovered to date.

3. For generalization, the proposed model is also evaluated on other ADHD
datasets (for the same experimental cognitive task) and our model achieves
significant results on all datasets.

2 Methods

The proposed model is divided into three subsections: (a) Dataset and prepro-
cessing, (b) Feature extraction & Noise reduction, and (c) Swin Transformer for
classification. The details of each subsection are mentioned below.
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2.1 Dataset and Preprocessing

This research used a public EEG dataset [20] containing data from developing
brains and individuals with ADHD. EEG data of 12 ADHD participants (7
children: 6–10 years and 5 adolescents: 11–17 years) were recorded while they
were performing the ‘Surround suppression’ cognitive task. In each sequence of
discrete 2.4 s trials, four circular ‘foreground’ stimuli were flickered on and off at
25 Hz. These flickering on and off are represented as Stimulus ON/Stim ON and
Stimulus OFF/Stim OFF events. The terms Stim ON and Stim OFF will be used
in the subsequent sections. The high value of theta band power leads to more
attention for ADHD individuals [24]. In Fig. 2(a), similar findings are found with
experimental subjects, where increased theta band power of the Stim ON event
leads to higher attention than the Stim OFF event. The experiment consists of
64 trials, where each trial duration is 3.4 s (0.5 s for fixation cross-presentation
followed by stimulus presentation of 2.4 s followed by an inter-trial interval of 0.5
s). EEG recordings were captured using a 128-channel EEG Geodesic Hydrocel
system at a sampling rate of 500 Hz.

From the existing ADHD studies [3,19,31], the relevant brain regions for
ADHD diagnosis were found. Thus, the focus is placed on such EEG channels
out of 128 which are related to those brain regions. The Brodmann areas (BAs)
of those regions were identified, and 12 EEG channels were selected based on
those BAs 1 (last access date of footnote’s link: 9th April 2024). The mapping
of brain regions/cortexes corresponding to EEG channels is shown in Fig. 2(b).
Next, the raw EEG of those 12 channels is preprocessed using a 1-40 Hz passband
filter to eliminate high-frequency noise, and then the Independent Component
Analysis (ICA) is applied to remove EEG artifacts.

Fig. 2. (a): Theta band power of EEG signals for Stimulus ON/Stim ON and Stimulus
OFF/Stim OFF events. Attention levels of ADHD subjects are related to Theta band
power [24], (b): Mapping between brain regions and EEG channels. Here L/R denote
the left and right hemispheres.

1 https://brmlab.cz/project/brain hacking/broadmannarea

https://brmlab.cz/project/brain_hacking/broadmannarea
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2.2 Feature extraction and Noise reduction

In the feature extraction phase, five connectivity features (two power-based: Cor-
relation, Coherence and three causality-based: Granger causality (GC), Granger
causality spectral (Spec GC), Phase Transfer Entropy (PTE)) are extracted for
each cognitive state Stim ON and Stim OFF events (duration of 2.4 s). A detailed
description of each feature is mentioned in the following subsections.

2.2.1 Power-Based Connectivity Features: Linear dependency between
the time-series signals of two EEG channels [10] is measured by Pearson’s corre-
lation coefficient. Correlation coefficients typically range from -1 to 1. A high cor-
relation value between brain regions suggests strong functional integration [10].

On the other hand, coherence indicates how similar two signals are for the
same frequency component, ranging from 0 to 1. High coherence values indicate
strong synchronization between brain signals at specific frequencies, suggesting
a functional coupling between the corresponding brain regions [10].

2.2.2 Causality-Based Connectivity Features: GC anticipates the behav-
ior of one time-series data using the past values of another time-series data. The
GC is measured by univariate and bivariate autoregressive (AR) models, and it
is calculated using variance (V ar) of both the AR models’ residuals (ex, exy) (1).

GC(xi → xj) = ln

(
V ar(ex)
V ar(exy)

)
(1)

Spec GC (Xi → Xj) is interpreted as the fraction of the total spectral power at
frequency f of Xi that is contributed by Xj . Here, the GC model of order six is
chosen for proper connectivity analysis [34].

PTE is an advanced version of the transfer entropy [23]. Let’s assume, for a
given EEG frequency band, the instantaneous phase time series of the signal x(t)
is θ(t). The complex filtered signal of x(t) is represented by S(t) = x(t)exp(iθ(t)),
which is obtained by Morlet wavelet or Hilbert transformation of the original
time series signal x(t). As the high activation of theta band power is mostly used
in ADHD diagnosis [18], so theta frequency band is used for calculating PTE.
Similarly for another time series y(t) the same transformation is applied and the
PTE with lag δ from x(t) to y(t) is computed as below [23]:

PTEx→y = H(θy(t), θy(t′))+H(θy(t′), θx(t′))−H(θy(t′))−H(θy(t), θy(t′), θx(t′))
(2)

where, θx(t′) and θy(t′) are the past states at the time point t′ : t − δ. The
H(θy(t′)) and H(θy(t), θy(t′)) are the marginal entropy. Joint entropy are repre-
sented by H(θy(t′), θx(t′)) and H(θy(t), θy(t′), θx(t′) respectively. This equation
captures the information flow from x(t) to y(t) at a specific delay δ through the
phase dynamics of the time series.
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Fig. 3. Weighted and its corresponding non-noisy feature matrices of the selected EEG
channels (refer to Fig. 2(b)). Weighted feature matrices (a): correlation, (b): coherence,
(c): GC, (d): Spec GC, (e): PTE. Non-noisy features: (f): correlation, (g): coherence,
(h): GC, (i): Spec GC, (j): PTE. Channel ordering in feature matrices is as follows:
F2, Fp2, AFz, F1, Fp1, CP3, P5, Pz, O1, O2, CP4, P6.

2.2.3 Noise Reduction using SVD: The SVD eliminates noisy or insignifi-
cant connections from the weighted connectivity matrix [2]. SVD breaks down a
matrix (A) into three smaller matrices: U , V T , and Σ, where U and V T hold the
singular vectors, and Σ contains the singular values in order. This process uncov-
ers hidden patterns in the original matrix. For a connectivity feature matrix A
(size N × N), SVD decomposes it as:

A = UΣV T (3)

Where N is the optimum EEG channel. SVD can help to remove noise from
data by focusing on the dominant signal components and filtering out irrelevant
variations [32]. The left singular matrices (U) are truncated, retaining only the
first k components to reduce data dimensionality. These truncated matrices are
used to construct a non-noisy connectivity feature matrix. The weighted and
its corresponding non-noisy connectivity features are shown in Fig. 3. In the
SVD-based non-noisy feature matrices (Fig. 3 (f-j)), the darker cells (associated
with larger singular values) represent more important or meaningful features.
Conversely, the lighter cells (associated with smaller singular values) correspond
to noisy connections or less significant features. The noise-free feature matrices
(power/causality) are passed to the Swin-T model for attention-level classifica-
tion.

2.3 Swin Transformer for classification

The Swin-T architecture having hierarchical attention mechanisms along with
the utilization of shifted windows captures intricate local and global features
within data, leading to effective performance in image classification [22]. In this
work, the attention levels of ADHD participants are discriminated by the Swin-
T model. The proposed framework of the Swin-T model is shown in Fig. 4(a).
The input image size is 128 × 128. Initially, non-overlapping patches (patch size
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Fig. 4. (a): The proposed Swin transformer framework to classify attention levels of
ADHD individuals. (b): Framework of the STB.

= 4 × 4) are generated from the input images. Each patch is considered as a
token, which is used to measure the feature (patch sizes × number of channels
in input image=4×4×3 = 48). In phase 1, sequence-wise features are extracted
and passed through a linear embedding (LE) layer to project the features into
arbitrary dimensions (C). The resultant data is fed into the Swin-T block (STB).
In this phase, the transformer block maintains the number of tokens (n/4,m/4).
In phase 2, the merging of tokens and transformation of features is performed by
patch merging (PM) and STB layers respectively. PM is performed by shifted
window-based multi-head self-attention technique (W-MSA) followed by MLP
layer. Features of each group of 2×2 neighboring patches are concatenated using
the PM layer and a linear layer is applied to the 4C dimensional concatenated
features. Additionally, it reduces the tokens number by a multiple of 2 × 2 = 4
along with output features dimension to 2C. In phase 2, the final image resolution
and output feature dimension are n/8 × m/8 and 2C. In phase 3 and phase 4,
the number of output feature dimensions is set to 4C and 8C respectively, while
keeping the input image resolution as n/16×m/16 and n/32×m/32 respectively
to generate the hierarchical representation of the features maps. Finally, the
feature maps of phase 4 are passed to the global average pooling (GAP) layer
followed by the output layer (OL) for the classification of attention levels. The
pipeline of individual STB is shown in Fig. 4(b). In the proposed STB, the
number of window size, shift size, and number of MLP units are set to 7, 0, and
1024 respectively, along with the embedding dimension of 64. The hierarchical
feature representation enhances the scalability of the proposed model by reducing
the computational complexity.
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3 Results

This section is divided into four subsections: (a) Optimizing classification per-
formance through the SVD method, (b) Classification analysis, (c) Performance
analysis, and (d) Comparison analysis. A detailed description of each subsection
is mentioned below.

3.1 Optimizing classification performance through SVD method

SVD reduces noisy connections from the weighted matrix and this reduction is
done by selecting the most significant k components of the left singular matri-
ces. Non-noisy feature matrices are then created from these k components. A
smaller k value retains only the crucial singular values and vectors, compressing
the matrix. Conversely, a larger k value preserves more information but increases
computational complexity and memory usage [32]. Therefore, it’s crucial to find
the optimal k value during SVD computation to minimize noise and maximize
classification performance. Non-noisy connectivity matrices with different k com-
ponents are generated, and classification is performed. The classification results
of the Swin-T model for different k values are shown in Fig. 5. It’s evident that
a k value of 15 yields the highest classification accuracy. Thus, all non-noisy
feature matrices are computed using that k value.

Fig. 5. Performance of the proposed Swin-T model with different k values of SVD
method. It is a trade-off graph between the performance of the Swin-T model and
information loss during the SVD process.

3.2 Classification analysis

The proposed Swin-T model is trained with a batch size of 50 for 100 epochs.
The binary cross-entropy loss function and the Adam optimizer (learning rate
of 1e-03) are used during the training process. Initially, input data is divided
into the ratio of 80:20 for training and testing of the model; further, 20% of
training data is used for the validation set. Once the training is completed, the
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prediction is performed on the test set. The loss /accuracy curve (training and
validation) of the proposed model is shown in Fig. 6(a). From the curve, it can be
concluded that both training and validation losses are decreased with the epochs.
In contrast, both accuracies are increased over the epochs. The classification
accuracy of 97.28% is obtained using the proposed Swin-T model. The class-
wise classification result is shown in Fig. 6(b). The result is presented based on
different classification parameters, such as precision, recall, and F1 score.

Fig. 6. Classification results of the proposed model: (a) Accuracy/Loss curve of the
Swin-T model. Here, T and V in legends/y-axis denote the training and validation. (b)
Class-wise classification output of the Swin-T model.

3.3 Performance analysis

For generalization, the proposed model is evaluated using three versions (Release
8, Release 9, and Release 10) of the CMI-HBN dataset [1]. All the datasets use
the same cognitive task as the experimental task (i.e.; ‘Surround suppression’).
Here, 15 subjects with attention disorders were randomly selected from each
dataset. Cognitive event (Stim ON/Stim OFF)-wise non-noisy features have
been extracted for all subjects, and those features are passed to the Swin-T
model for attention-level classification. Table 1 displays the performance analy-
sis of the proposed model for each dataset. It’s evident that our model performs
notably well across all datasets.

Table 1. Performance analysis of the Swin-T model based on other EEG-based atten-
tion disorder datasets

Dataset Accuracy(%)

CMI-HBN (Release 8)[1] 91.09

CMI-HBN (Release 9)[1] 87.14

CMI-HBN (Release 10)[1] 88.22
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3.4 Comparison analysis

This section is divided into three subsections: (a) Comparison between weighted
and non-noisy features, (b) Comparison with Deep learning models, and (c)
Comparison with existing studies. A detailed discussion of each subsection is
mentioned below.

3.4.1 Comparison between weighted and non-noisy features: In this
section, the effectiveness of the SVD method is evaluated by comparing the clas-
sification performance using weighted and non-noisy features (extracted from
SVD). ADHD subject-wise, all the weighted connectivity features were com-
bined and passed to the Swin-T model for evaluation. The same process was
performed for non-noisy features. The same training parameters as mentioned
in subsection 3.2 were kept. Removing noisy features can prevent overfitting in
classification models. Additionally, SVD-based feature extraction enhances the
discriminative power of the features, leading to better classification performance.
In Fig. 7, a significant improvement of 11.05% is achieved in the classification
result, with the SVD-based non-noisy features over weighted connectivity fea-
tures.

Fig. 7. Comparative analysis between classification performance of Swin-T model using
weighted and non-noisy connectivity features (extracted from SVD).

3.4.2 Comparison with Deep Learning Models: Here, the performance
of the proposed Swin-T model is compared with other deep learning models and
the ViT model (refer to Table 2). The same set of connectivity features is used
for this comparison. During training, similar training parameters are reserved as
discussed in subsection 3.2. The model structure/ parameters of each model are
mentioned in Table 2. It can be concluded that the proposed model performs
better than all the other deep models and ViT.
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Table 2. Comparison with other deep learning models. Note: Convolution(C),
MaxPooling(M), Flatten(F), Dense(D), Multihead Self Attention(MSA), Trans-
former Encoder(TE), Patch Encoder(PE), Layer Normalization(LN), Multilayer per-
ception(MLP), SwinTransfomrerBlock(STB), GlobalAveragePooling(GAP), Output
layer(OL), Window Size(WS), Shift size(S size), Accuracy(Acc)

Deep Model Configuration/Parameters Acc(%)

ShallowConvNet C16-M2-C32-M2-C64-M2-C128-M2-F-D500-OL 90.09

DeepConvNet C16-M2-C32-M2-C64-M2-C128-M2-C256-M2-C512-M2-
F-D500-OL

92.25

ViT PE-TE(LN-MSA-LN-MLP128-MLP64)-LN-F-
MLP2048-MLP1024-OL, Transformer layers=6, Patch
size =6, Projection dimension=64

94.37

Swin-T(Proposed) STB1-STB2-STB3-STB4-GAP-OL. WS=7, S size=0,
number of MLP units =1024

97.28

3.4.3 Comparison with Existing Studies: In this section, existing ADHD
classification studies [8,14,35,36] have been compared with the proposed model.
The comparison (refer to Table 3) is performed based on the methodology used
in those studies for ADHD classification. The performance of those studies is
also reported in Table 3. From this table, it can be concluded that the proposed
model outperforms all the existing studies of ADHD classification.

Table 3. Comparison with existing studies of ADHD classification. Note: power spec-
tral density(PSD), local mode decomposition (LMD), and variational mode decompo-
sition (VMD)

Studies Method Acc(%)

Tosun et al. [35] PSD and LSTM 88.88

Vahid et al. [36] EEGNET 83.00

Chen et al. [8] EEG-based brain network with the CNN 94.67

Esas et al. [14] LMD, VMD and CNN 95.00

Swin-T(Proposed) Connectivity features and Swin Transformer 97.28

4 Conclusion

This study combined two aspects in the attention level classification of
ADHD participants. First, finding significant connections between EEG chan-
nels through the SVD method and second, classifying the attention level using
the robust Swin-T model. The proposed model achieved 97.28% classification
accuracy. As noisy connections often lead to spurious connectivity and influence
wrong information flow among brain regions, therefore, removing such noisy
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connections is of utmost importance. The SVD method eliminates such connec-
tions and increases the classification performance (refer to Fig. 7). A significant
improvement of 11.05% in the classification result is achieved after removing the
noisy, non-significant connections from the feature matrices. For generalization,
the proposed model is also evaluated using other CMI-HBN datasets, and sig-
nificant results are achieved for all the datasets. In this study, the experiment is
performed with a small number (i.e., 12) of ADHD subjects. Therefore, in the
near future, the proposed model will be evaluated using ADHD datasets with
more subjects, and the attention level of an ADHD individual will be measured
with more cognitive tasks.
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Abstract. CycleGAN is an image translation technique that can suc-
cessfully suppress bones in dual-energy X-ray images. This study intro-
duces two novel variations of the CycleGAN model, namely CycleGAN-
Idempotent Loss (CGIL) and CGIL with additional layers (CGILAL).
The PSNR, MS-SSIM, and VIF measures are used to compare the perfor-
mance of CGIL and CGILAL models with CycleGAN and Pix2Pix GAN
models. CGIL and CGILAL showed better performance than CycleGAN
and Pix2Pix in terms of these metrics when applied to the dual-energy
chest x-ray dataset. Here, these trained models are used to construct
bone-suppressed images from standard X-rays in the CovidX dataset,
where there are no equivalent bone-suppressed images available. The
standard CXR images without bone suppression and bone-suppressed
standard X-ray images are currently being used for the multi-class cat-
egorization of Covid, Pneumonia, and Normal images. A total of 16,965
images in each dataset are used for the study, with 5,655 images from
each class. A total of 13,572 images are used for training, whereas 3,393
images are used for testing. The accuracy of standard CXR images with-
out bone suppression is 90.07%. The accuracy of CGIL and CGILAL
is better than that of CycleGAN and Pix2Pix, with CGIL achieving
95.14% accuracy and CGILAL achieving 95.76% accuracy, compared to
CycleGAN’s accuracy of 94.49% and Pix2Pix’s accuracy of 94.22%. The
findings indicate that models trained on bone-suppressed images exhibit
superior accuracy in comparison to standard X-ray images without bone
suppression.

Keywords: GAN, Dual-energy X-ray, Classification

1 Introduction

Deep learning has transformed medical image processing by enabling tasks
such as segmentation, classification, localization, and disease identification tasks.
However, there are challenges with dataset generation such as noise, uncurated,
lack of trust, and data anonymity issues for medical image data. Researchers are
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exploring collaborations for data-sharing and enhancement strategies with open-
source datasets. Data augmentation techniques increase training set diversity
without the addition of new patient data, allowing deep learning to advance dis-
ease diagnosis. Data augmentation in medical image processing can be achieved
using image processing as well as deep learning-based techniques. Image pro-
cessing libraries can perform operations such as cropping, blurring, zooming,
flipping, and rotating. Deep learning techniques like GANs create synthetic data
by learning patterns from training data, which makes the model work better in
medical image processing applications.

GANs[1] are made up of a generator and a discriminator, which together
generate realistic data. The generator outputs the data that matches the real
data to fake the discriminator, whereas the discriminator distinguishes between
actual and fake data. In the GAN training procedure, these two models will be
adjusted based on the losses sustained. The block diagram of GAN is shown in
Fig. 1.

Fig. 1. Work-flow of the Generative Adversarial Networks

Standard chest X-rays (CXRs) are affordable even in distant places and
are effective for diagnosing pneumonia, tuberculosis, lung tumors, and COVID.
Research shows that dual-energy chest radiographs (CXRs) may detect abnor-
malities more accurately than standard chest X-rays. Dual-energy chest X-rays
use calcium to reduce X-ray radiation to identify bones from soft tissues. Dual-
energy chest X-rays increase patient’s exposure to radiation and require expen-
sive, specialized equipment. Thus, researchers investigated chest X-ray bone sup-
pression techniques. GANs are promising deep-learning approaches for suppress-
ing bones in chest X-ray images, improving the visibility of soft tissues, and
facilitating accurate diagnosis. This task can be achieved with CycleGAN[2],
Pix2Pix GAN[3], and others.

The deep learning models trained on bone-suppressed standard CXR images
have given better results in comparison to standard CXR images with bones
for the classification tasks. It is recommended to convert standard chest X-
ray (CXR) images with bones into bone-suppressed standard CXR images to
improve classification results. In this study, a multi-class classification task is
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used to demonstrate the effect of the bone suppression techniques on standard
CXR images.

In section.2, the existing literature on bone suppression techniques is dis-
cussed. In section.3, CycleGAN technique, including proposed variants for bone
suppression, and a classification task to validate the performance of bone sup-
pression techniques are discussed. In section.4, the results are discussed. Finally,
the conclusion is discussed in the section.5

2 Related Work

Image-to-image translation is a technique that preserves context while mapping
between two sets of images. These two sets can be paired or unpaired. Training
using paired images yields better outcomes compared to training with unpaired
images. However, the accessibility of paired images is not always feasible[2]. The
image-to-image translation approach has been applied in several applications
such as super-resolution, segmentation, and object transformation, among others
[4]. Several deep learning methods for image-to-image translation exist, including
generative adversarial networks (GANs) [5], variational autoencoders (VAEs) [6],
and conditional generative models [7].

The incorporation of more layers into a deep learning model can profoundly
impact its performance and behavior. One advantage of deeper models is their
ability to capture complex features, such as detailed patterns and visual rep-
resentations. Each layer in these models learns progressively more abstract
representations[8]. An example is the VGG19 model, which exhibited reduced
percentages of top-5 and top-1 errors compared to VGG16 and VGG13 when
trained on the ImageNet dataset[9]. The vanishing gradient problem arises when
the number of layers is added beyond a specific threshold[10], resulting in a
decrease in the efficacy of further layers. In light of this, this paper showcases
the comparison of our model with its multiple-layer equivalent.

Rajaraman S et al.[11] demonstrated the effect of bone suppression by assess-
ing the gain in performance in detecting pulmonary abnormalities consistent
with COVID-19 disease. Geeta Rani et al.[12] used bone suppression techniques
to enhance the performance of COVID-19 classification. CycleGAN was used
for bone suppression on unpaired image data[13]. Mochizuki et al.[14] used a
CycleGAN-based deep learning model to generate the bone-suppressed images,
which improved image recognition, making it possible to achieve accurate motion
tracking irradiation. Similarly, Luyi et al.[15] proposed RS-GAN for rib suppres-
sion. The results of the model generated from CXR images lead to a better
performance in lung disease classification and tuberculosis area detection.

Kida et al.[16] proposed a modified U-net for enhancing CBCT quality of the
image and removing any unwanted artifacts. Y. Yan et al.[17] proposed a Lung
Tumor Localization methodology in which multiple U-Net models were used to
perform various tasks including Bone Suppression. Xiaotang et al.[18] proposed a
modified U-Net architecture integrated with residual skip connections to remove
obstructing bony structures in CTS projections to reconstruct bone-suppressed
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projections. K. Sato et al.[19] developed a method for Lung Tumor detection that
has improved performance due to the use of U-Net for the suppression of bones
in a particular step. J. Xie [20] proposed a model based on Pix2pix for bone-
suppression. It consists of a U-Net structure for the generator and PatchGAN
for the discriminator.

3 Methodology

3.1 Proposed Models

CycleGAN model depicted in Fig. 2 has identical designs for both generators
(GBS−B and GB−BS) and both discriminators (DBS and DB). Assuming there
are two domains, B represents dual-energy X-ray images with bones, and BS rep-
resents dual-energy X-rays with bone suppression. Here, the generator GB−BS

converts the original image B to the image BS, and the other generator GBS−B

converts the image BS to the image B. The discriminator DBS and DB are
used to ascertain whether the images from the BS and B domains, respectively,
are real or fake. As shown in Fig. 2, the forward cycle indicated by a red line,
the image B_input fed into GB−BS to generate BS_generated, which is then
used as an input to GBS−B to generate B_cyclic. If the model is working as
expected, there shouldn’t be any difference for B_input and B_cyclic. Other-
wise, the weights in the model are to be adjusted to reduce the loss, represented
by Cycle_Loss-1 in the image. Similarly, in the backward cycle represented by
the blue line, the image BS_input given as an input to GBS−B to generate
B_generated, which is then used as an input to GB−BS to generate BS_cyclic.
The loss between BS_input and BS_cyclic is represented by Cycle_Loss-2.

Cycle_Loss is the sum of Cycle_Loss-1 and Cycle_Loss-2. The discrimi-
nator DBS takes BS_input and BS_generated images and detects whether
BS_generated is real or fake. Similarly, discriminator DB takes B_input and
B_generated and detects whether B_generated is real or fake. The GAN loss,
represented by the sum of GAN_Loss-1 and GAN_Loss-2, is an adversarial loss
computed using the discriminator’s prediction. The GAN loss is determined by
the discriminator’s accuracy in differentiating between real and fake images. The
CycleGAN uses an additional loss function called identity loss, which is the sum
of Identity_Loss-1 and Identity_Loss-2. The generators in [2] are designed to
perform an almost perfect mapping to the target domain when given images
from that domain as input. Otherwise, there will be an identity loss. The iden-
tity loss as described in equation (1), helps maintain the color composition of
the images.

Lidentity(GB−BS , GBS−B) =
EBS_input∼pdata(BS_input) [‖GB−BS(BS_input) − BS_input‖1]

+ EB_input∼pdata(B_input) [‖GBS−B(B_input) − B_input‖1] (1)
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Fig. 2. Work-flow of CycleGAN

In this study, two new models, CycleGAN with Idempotent Loss (CGIL) and
CGIL with additional layers (CGILAL), proposed to suppress bones in CXR
images. In the conventional CycleGAN framework, identity loss is used as a
metric to quantify the loss incurred during the process of identity mapping. To
enhance stability, the identity loss indicated in equation (1) can be substituted
with an idempotent loss shown in equation (2) in CycleGAN. In case of identity
loss, the generator takes the original image from the target domain as an input
and is expected to make no modifications. The idempotent loss is calculated
based on the changes made to the image produced by the generator, which is
then used as input to the same generator. Idempotent loss helps in maintaining
consistency by limiting excessive modification of the image during translation.
The CycleGAN with Idempotent Loss (CGIL) model is an identical version of
the CycleGAN model proposed in [2], except for one of the loss functions. In this
case, the identity loss function is substituted with an idempotent loss function.
The generator shouldn’t modify the image when the target domain image is
given as input.

The CGILAL model is an enhanced version of CGIL that has been trained
using a greater number of residual blocks. The generator in traditional Cycle-
GAN models originally consisted of nine residual blocks. Multiple experiments
have been undertaken to test the impact of increasing the number of residual
blocks on performance. The best performance was achieved while using twelve
residual blocks in the generator.

The CGIL and CGILAL models are trained using the dataset acquired from
[18]. The training dataset is enhanced with an additional 35 pairs of dual-energy
chest x-ray images. Data augmentation involves performing transformations such
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as rotations, as well as horizontal and vertical shifts to increase the dataset size
to 4080 dual-energy CXR images.

Lidempotent(GB−BS , GBS−B) =

EB_input∼pdata(B_input)

[‖GB−BS(B_input) − GB−BS(GB−BS(B_input))‖1
]
+

EBS_input∼pdata(BS_input)

[‖GBS−B(BS_input) − GBS−B(GBS−B(BS_input))‖1
]

(2)

3.2 Datasets

Two distinct datasets are used in this study to assess the proposed models.
The first dataset outlined in [21] comprises of dual-energy X-ray images. The
purpose of this dataset is to train and evaluate the bone-suppression capabili-
ties of the proposed models. The dataset has a total of 4,080 medical images.
The trained models have been used on conventional CXR images in the second
dataset, known as COVIDx CXR-3 dataset[22]. This dataset is a publicly avail-
able collection of 30,882 CXR images from 17,026 patient cases. It was created
by combining various other publicly available datasets. The dataset comprises
16,194 CXR images of COVID-19, 5,655 CXR images of Pneumonia, and 8,185
CXR images of Normal cases. BRISQUE [23] image scoring technique has been
used to downsample and choose 5655 images from each category, resulting in a
total of 16965 images.

3.3 Application

Fig. 3. Application of these trained models to suppress the bones in COVIDx dataset

Dual-energy CXR images with bone and bone suppression are necessary for train-
ing the proposed models, as it is not possible to obtain bone-suppressed CXR
images. The models trained with dual-energy CXR images will be used to sup-
press the bones from standard CXR images. Bone-suppressed images will help in
the rapid diagnosis of chest-related conditions such as pneumonia, tuberculosis,
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lung cancer, and COVID-19. A multi-class classification pipeline as shown in
Fig. 4, classifies COVID, Pneumonia, and Normal images, is used to evaluate
the effectiveness of bone suppression in CXR images.

CXR Images can be used to detect COVID-19 and for treatment, essen-
tial for effective COVID-19 management. Early detection of COVID-19 enables
appropriate medical intervention to be taken to lessen the severity of the illness
and isolation to control its spread. Nonetheless, the most common methods for
detecting COVID-19 are the RT-PCR test and medical imaging techniques. The
RT-PCR gives high false-negative results[24]. Therefore, quicker and more cost-
effective detection mechanisms are required. Standard CXR images are useful in
the early identification of COVID, but there is a high possibility of false pos-
itives and false negatives. Due to these inaccuracies, CXR is being utilized as
a supplementary rather than a primary instrument. Increasing the accuracy of
COVID-19 detection using only CXR images expedites treatment.

Fig. 4. Multi-class classification pipleine

Bone-suppressed CXR images contribute to improved classification outcomes.
However, the existing public CXR COVID-19 datasets lack bone-suppressed
CXR images to enhance the model accuracy. As a result, the method depicted
in Fig. 3 is proposed to generate bone-suppressed images for COVID-related
datasets. The proposed models will be trained using dual-energy CXR image
datasets to get the bone suppression capabilities, and the resulting models will
be used to generate bone-suppressed standard CXR images. Here, the bone-
suppressed images for standard CXR images in COVIDx CXR-3 [22] dataset are
generated using proposed trained models.

The bone-suppressed images obtained from the models used for multi-class
classification using the pipeline illustrated in Fig. 4 involve several stages. Prior
to model training, the bone-suppressed images will undergo several preprocess-
ing tasks. The CXR images have been scaled to a dimension of 256x256. They
have undergone histogram equalization using the CLAHE[25] algorithm and nor-
malized. The preprocessed images are trained using MobileNetV2. The purpose
of this is to accurately classify the CXR images into three classes: COVID,
Pneumonia, and Normal. Additionally, it aims to demonstrate that using bone-
suppressed images yields higher accuracy as compared to using the original
images
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4 Results

The proposed models are being evaluated in comparison to CycleGAN and
Pix2Pix. The four models, namely CGIL, CGILAL, CycleGAN, and Pix2Pix are
trained and assessed using the dual-energy X-ray dataset. The dataset comprises
4,080 medical images, with 75% allocated for training and 25% for testing. This
means that approximately 3,000 images are used for training and 1,000 images
are used for testing. The training of these models is conducted on the Google
Colab Platform, which is equipped with GPU capabilities. Each model under-
went training for 30 epochs using the training data in batches of two during
the training process. For the sake of maintaining comparable input dimensions
across models during the training and testing process, all images were uniformly
resized to 256x256 pixels.

The performance of the models is evaluated using three key metrics such as
the Peak Signal-to-Noise Ratio (PSNR), the Multi-Scale Structural Similarity
Index Measure (MS-SSIM), and the Visual Information Fidelity (VIF). PSNR is
used to compare the image quality of the bone-suppressed images generated by
the models to the image quality of the original images containing bone. MS-SSIM
quantifies the quality of an image by evaluating it at various levels of detail. The
computation involves a weighted combination of contrast, structural comparison,
and luminance comparison. The Visual Information Fidelity (VIF) metric quan-
tifies the degree of similarity between visual information in a distorted image
and the corresponding original image.

Table 1 demonstrates the PSNR, MS-SSIM, and VIF values for all four mod-
els. These results are obtained from 25% of dual-energy CXR images which is
approximately 1000 images. The results show that CGIL outperforms CycleGAN
across all metrics. Similarly, CGILAL outperforms the CGIL model across all
metrics.

Table 1. Comparision of PSNR, MS-SSIM, VIF metrics across various models as
Mean±SE

Pix2Pix CycleGAN CGIL CGILAL
PSNR 29.8±1.24 30.05±3.37 31.00±3.21 32.4±2.26
MS-SSIM 0.972±0.008 0.976±0.008 0.979±0.006 0.98±0.002
VIF 0.72±0.045 0.67±0.040 0.66±0.037 0.66±0.072

The CovidX CXR-3 dataset is used to evaluate the impact of these bone
suppression strategies. Out of the total 30,882 CXR images in this dataset,
16,965 images are chosen for ternary classification. The objective is to classify
these images into three categories: Covid, Pneumonia, and Normal CXR images.
There are a total of 16,965 images selected for this analysis, with each class
containing 5,655 CXR images. The data is divided into 80% training data and
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20% testing data. There are 13,572 images allocated for training and 3,393 images
allocated for testing.

The trained models are used to generate bone-suppressed images from the stan-
dard CXR images. A total of five datasets are created for this experiment. Four sets
of bone-suppressed images are generated using trained models, while one dataset
does not feature bone suppression. Classification pipelines are used to train each
dataset. The dataset is trained using the MobilenetV2 model on the Google Colab
platform. The model is trained using the following hyperparameters: an Adam
optimizer with a learning rate of 0.01, and trained for 25 epochs. The confusion
matrices for each dataset are displayed in Fig. 5. The bone-suppressed standard
CXR images generated by Pix2Pix, CycleGAN, CGIL, and CGILAL has classifi-
cation accuracies of 94.22, 94.49, 95.14, and 95.76, respectively. The accuracy of
classifying CXR images without bone suppression is 90.07.

Fig. 5. Confusion Matrices for datasets trained on classification pipeline (a) Standard
CXR images without bone suppression (b) Pix2Pix bone suppressed CXR images (c)
CycleGAN bone suppressed CXR images (d) CGIL bone suppressed CXR images (e)
CGILAL bone suppressed CXR images

5 Conclusion

Translating standard CXR images into bone-suppressed CXR images is not pos-
sible. Dual-energy CXR images are used to generate bone-suppressed images
from standard CXR images. This study uses Pix2Pix, CycleGAN, and two
enhanced versions of CycleGAN (CGIL and CGILAL) to accomplish bone sup-
pression in standard CXR images. The models are trained using dual-energy
CXR images and then used to suppress the bones in standard chest X-rays.
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The bone-suppressed images created are used for multi-class classification. The
results indicate that the classification accuracy of CXR images with bone sup-
pression is superior to that of CXR images without bone suppression. Moreover,
the recently suggested models exhibited superior performance compared to the
existing models.
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Abstract. Normalization techniques have been extensively utilized in
deep learning due to their ability to enable higher learning rates and
reduce the sensitivity to initialization. However, the effectiveness of
commonly used normalization methods is often constrained to specific
domains. In contrast to the standard Batch Normalization (BN) and
Layer Normalization (LN), where BN computes the mean and variance
across the (N, H, W) dimensions and LN computes them across the (C,
H, W) dimensions (where N, C, H, and W represent the batch, channel,
spatial height, and width dimensions, respectively), this paper introduces
a novel normalization technique called Batch Channel Normalization
(BCN). BCN is designed to leverage both channel and batch depen-
dencies, thereby combining the advantages of BN and LN in an adaptive
manner, depending on the dataset or task at hand. BCN normalizes
inputs independently along the (N, H, W) and (C, H, W) axes, sub-
sequently combining the normalized outputs based on adaptive param-
eters. As a fundamental building block, BCN can be seamlessly inte-
grated into existing models for a wide range of applications in computer
vision. Empirical results demonstrate that the proposed technique can be
effectively applied to various versions of Convolutional Neural Networks
(CNNs) or Vision Transformer architectures. The code is publicly avail-
able at https://github.com/AfifaKhaled/Batch-Channel-Normalization.

Keywords: Layer Normalization · Batch Normalization · Vision
Transformer

1 Introduction

In recent decades, machine learning (ML) has become one of the most widely
used techniques in the field of artificial intelligence. More recently, deep learning
(DL) has emerged as a prevalent topic, with deep neural networks (DNNs) being
extensively applied across various domains, including natural language process-
ing, computer vision, and graph mining. Typically, DNNs consist of stacked
layers with learnable parameters and non-linear activation functions. While the
deep and complex structure of DNNs enables them to learn intricate features,
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it also introduces challenges during training due to the randomness in parame-
ter initialization and variations in input data, a phenomenon known as internal
covariate shift [11]. This problem becomes more pronounced in deeper networks,
where slight modifications in deeper hidden layers are amplified as they propa-
gate through the network, leading to significant shifts in these layers.

To address the aforementioned issue, several normalization methods have
been introduced. Specifically, Batch Normalization (BN)[11], Layer Normaliza-
tion (LN)[3], and Group Normalization (GN) [20] have achieved remarkable suc-
cess in deep learning models. Among these, BN is the most widely used for deep
neural networks. Despite their success in many applications, popular normaliza-
tion methods still have certain limitations. For example, Batch Normalization
(BN) requires large batch sizes [20], making it unsuitable for online learning tasks
and large distributed models where mini-batches must be small. To address these
issues, Layer Normalization (LN) was proposed to avoid relying on the batch
dimension, thereby eliminating restrictions on mini-batch size [3]. However, LN
does not perform as effectively as BN on convolutional layers.

To overcome the limitations of Batch Normalization (BN) and Layer Normal-
ization (LN), as well as to fully leverage the advantages of both techniques, we
have developed a new normalization method called Batch Channel Normaliza-
tion (BCN). Unlike previous techniques, BCN aims to normalize along the (C, N,
H, W) axes. However, directly computing the mean and variance along the (N, C,
H, W) dimensions overlooks the differing significance between the batch dimen-
sion and the channel dimension. Consequently, as illustrated in Fig 1, BCN first
computes the mean μ1 and variance σ2

1 of the layer inputs along the (C, H, W)
axes. It then computes the mean μ2 and variance σ2

2 along the (N, H, W) axes.
Finally, the normalized outputs are combined based on adaptive parameters.
To evaluate the effectiveness of the proposed method, we apply BCN to sev-
eral popular models, including ResNet [7], DenseNet [9], Vision Transformer [5],
and BYOL [6], on the image classification task. Our experiments demonstrate
that BCN produces promising results, leading to improved training speed and
enhanced generalization performance. Our main contributions can be summa-
rized as follows:

– We introduce a new normalization technique, termed Batch Channel Normal-
ization (BCN), as a straightforward alternative to BN and LN techniques.

– BCN leverages the dependencies between channels and batches, adaptively
combining information from both the channel and batch dimensions, thereby
capturing the advantages of both BN and LN.

– Empirical results demonstrate that BCN can significantly improve the gener-
alization performance of neural networks compared to existing normalization
techniques.
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Fig. 1. Visualization of various normalization techniques. Each subplot displays a fea-
ture map tensor, where N represents the batch axis, C represents the channel axis, and
(H, W) represent the spatial height and width axes, respectively.

2 Related Work

2.1 Dimension Normalization

The first group of methods involves normalizing different dimensions of the out-
put. Examples include Layer Normalization [3], which normalizes inputs across
features; Instance Normalization [17], which normalizes over spatial locations
in the output; and Group Normalization [20], which independently normalizes
along spatial dimensions and feature groups. Here, we introduce two techniques
that are most relevant to our work, namely, Batch Normalization [11] and Layer
Normalization [3].

Batch Normalization (BN) facilitates faster convergence and stabilizes
the learning process. During training, BN computes the mean μB and variance
σ2
B of the layer inputs as follows:

μB =
1
n

n∑

i=1

xi, (1)

σ2
B =

1
n

n∑

i=1

(xi − μB)2, (2)

x̄B = γ
(xi − μB)√
(σ2

B + ε)
+ β. (3)

We can observe that BN computes the mean μB and variance σ2
B along the (N,

H, W) axes[11]. During testing, BN uses the μB and σ2
B values computed by the

exponential moving average during training:

μ = αμ + (1 − α)μB , (4)

x̄ = γ
(xi − μ)√
(σ2 + ε)

+ β, (5)
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where n is the batch size, and γ and β are learnable parameters. Here, α is
typically set to 0.9, and ε is a small constant.

Layer Normalization (LN) computes the mean μL and variance σ2
L along

the (C, H, W) axes as follows:

μL =
1
n

n∑

i=1

xi, (6)

σ2
L =

1
n

n∑

i=1

(xi − μ)2, (7)

x̄L = γ
(xi − μL)√
(σ2

L + ε)
+ β. (8)

Unlike BN, LN performs the same computations during both training and infer-
ence. Additionally, LN is particularly effective in stabilizing the dynamics of
hidden states in recurrent neural networks.

Our method belongs to this group. The proposed Batch Channel Normal-
ization (BCN) aims to normalize along the (C, N, H, W) axes, combining the
benefits of both BN and LN while mitigating their respective deficiencies.

2.2 Normalization Improvement

The second group modifies the original Batch Normalization method [11]. This
group includes methods such as Ghost Batch Normalization (Ghost BN) [8],
which normalizes independently across different splits of batches, and Batch Re-
normalization [10] and Streaming Normalization [12], both of which adjust the
approach to utilize global averaged statistics instead of batch statistics.

While these normalization techniques have gained practical popularity and
success, significant advancements in them have only begun to emerge recently.
Meanwhile, Batch Normalization (BN) [11] remains the most widely used nor-
malization technique to date. Moreover, these alternative normalization methods
have not yet matched BN’s accuracy in many tasks, such as segmentation, detec-
tion, and video classification.

2.3 Weight Normalization

The third group consists of methods that normalize weights rather than activa-
tions. This group includes Weight Normalization [16] and Normalization Propa-
gation [2], both of which divide weights by their �2 norm, differing only in minor
details.

Recently, several papers have proposed techniques to enhance weight normal-
ization across a wider range of CNNs. One such approach involves implicit regu-
larization and convergence for weight normalization [19]. This study explored the
weight normalization technique and reparametrized projected gradient descent
for over-parameterized least squares regression. The authors demonstrated that
the non-convex formulation exhibits beneficial regularization effects compared
to gradient descent on the original objective.
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3 Methodology

The motivation behind the success of the normalization techniques has been
an important research topic. In this section, we investigate the motivation for
developing the new normalization technique.

3.1 Method Formulation

The concept of normalizing along the (N, H, W) axes and (C, H, W) axes has
been explored in previous works [3,11,17,20]. Earlier approaches typically per-
form normalization along either the (N, H, W) axes or the (C, H, W) axes inde-
pendently. Our objective, however, is to normalize along the (N, C, H, W) axes.
Directly computing the mean and variance along the (N, C, H, W) dimensions
fails to account for the differing significance of the batch and channel dimensions.
Therefore, we propose to normalize separately along the (N, H, W) and (C, H,
W) axes, and then combine the normalized outputs based on adaptive param-
eters ι. This approach could enhance training, validation, and test accuracy, as
we demonstrate experimentally in the next section.

In a manner similar to how Batch Normalization (BN) normalizes layer
inputs, during training, Batch Channel Normalization (BCN) first computes the
mean μ1 and variance σ2

1 of the layer inputs along the (N, H, W) axes:

μ1 =
1
n

n∑

i=1

xi, (9)

σ2
1 =

1
n

n∑

i=1

(xi − μ1)2. (10)

Second, BCN computes the mean μ2 and variance σ2
2 along the (C,H,W )

axes:

μ2 =
1
n

n∑

i=1

xi, (11)

σ2
2 =

1
n

n∑

i=1

(xi − μ2)2. (12)

Next, x̄1 and x̄2 are normalized using μ1, σ2
1 and μ2, σ2

2 , respectively:

x̄1 =
(xi − μ1)√
(σ2

1 + ε)
, (13)

x̄2 =
(xi − μ2)√
(σ2

2 + ε)
. (14)

BCN introduces an additional learnable parameter ι to adaptively balance
the normalized outputs along the (N,H,W ) and (C, H, W) axes.

ȳ = ιx̄1 + (1 − ι)x̄2, (15)
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The output of BCN normalization can then be formulated as follows:

Y = γȳ + β, (16)

where γ and β are learnable parameters, and ε is a small constant for numerical
stability.

At the inference stage, since μ and σ are pre-computed and fixed, the nor-
malization can be fused into the convolution operation.

Following previous works [4,13], BCN normalizes along the (N,H,W ) axes
using an exponential moving average [14] during training, as follows:

μ = αμ + (1 − α)μ1, (17)

σ2 = ασ2 + (1 − α)σ2
1 , (18)

x̄ =
(xi − μ)√
(σ2 + ε)

, (19)

where α is set to 0.9 in our experiments.
The key difference between BCN and existing normalization techniques is

that, under BCN, all channels in a layer share the same normalization terms, μ
and σ2.

3.2 Implementation

BCN can be implemented with just a few lines of Python code in PyTorch [15]
or TensorFlow [1], where the computation of x̄1 along the (N, H, W) axes and
x̄2 along the (C, H, W) axes is performed. The overall BCN process is outlined
in Algorithm 1, with the corresponding Python code shown in Fig 2.

3.3 When Should the Output Resemble BN? When Should It
Resemble LN?

If the normalization is along the (N, H, W) axes, BCN closely resembles BN.
Conversely, if the normalization is along the (C,H,W ) axes, BCN more closely
resembles LN. This straightforward combination of two existing normalization
techniques allows BCN to directly balance the normalized outputs, requiring
only a few additional parameters.

4 Experiments and Discussion
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Algorithm 1 Batch Channel Normalization (BCN)
Require:

Input x = {x1, x2, ..., xn}, Parameters to be learned: ι, β and γ
Ensure:

Y = BCNγ,β,ι(xi)
1: Calculate μ1 and σ2

1 based on Eq. 9 and 10
2: Calculate μ2 and σ2

2 based on Eq. 11 and 12
3: Calculate the normalized output x̄1 along (N, H, W) and x̄2 along (C, H, W) axes

by Eq. 13 and 14
4: Adaptively combine x̄1 and x̄2 based on Eq. 15
5: Calculate the final output Y based on Eq. 16
6: return Y

Fig. 2. Python code of Batch Channel normalization (BCN) based on PyTorch.

4.1 Comparison with Normalization Techniques

In this subsection, we compare our method with conventional normalization
techniques using popular datasets and neural networks. Specifically, we evalu-
ate the image classification performance of ResNet with different normalization
techniques on the CIFAR-10/100 and SVHN datasets. Additionally, we compare
the performance of various normalization techniques on DenseNet using the Ima-
geNet dataset and on self-supervised learning with BYOL using the CIFAR-10
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Fig. 3. Training accuracy of ResNet with different normalization techniques on (a)
CIFAR-10, (b) CIFAR-100, (c) SVHN.

Fig. 4. Validation accuracy of ResNet with different normalization techniques on (a)
CIFAR-10, (b) CIFAR-100, (c) SVHN.

Fig. 5. Training and validation accuracy curves for different normalization techniques
in BYOL on the CIFAR-10 dataset. Note that the results for BN are identical to those
for BCN.

dataset. Furthermore, we explore the application of BCN on new models, such
as Vision Transformers, using the CIFAR-10/100 and SVHN datasets.

Results on ResNet We conduct experiments on ResNet [7] for the image
classification task. The model is trained using stochastic gradient descent (SGD),
starting with a learning rate of 0.1, which is reduced by a factor of 10 at the
75th and 85th epochs, respectively. A batch size of 8 and a momentum of 0.9
are employed.

We present the results of BCN, BN, and LN during training and validation
on the three datasets in Fig 3 and Fig 4. As shown, BCN demonstrates the
fastest learning rate. On CIFAR-10, within approximately 20 epochs, it achieves
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Fig. 6. Training accuracy of ViT with different normalization techniques on (a) CIFAR-
10 and (b) CIFAR-100.

Fig. 7. Testing accuracy of ViT with different normalization techniques on (a) CIFAR-
10, (b) CIFAR-100.

Fig. 8. The accuracy curves for mini-batch size on the CIFAR-10 dataset.

about 86.12% training accuracy and 84.16% validation accuracy. In comparison,
BN and LN reach 86.04% and 79.74% training accuracy and 82.87% and 78.58%
validation accuracy, respectively, within the same number of epochs.

Additionally, Table 1 presents the test accuracy results for BCN and other
representative normalization techniques (BN, LN, IN, and GN) on the CIFAR-
10, CIFAR-100, and SVHN datasets. All experiments were conducted under the
same conditions, including learning rate, loss function, batch size, etc. The results
indicate that BCN is generally effective, often achieving the best or second-best
performance. For instance, on the CIFAR-100 dataset, BCN shows significant
improvement over state-of-the-art techniques.

Results on BYOL We apply BCN to a recent state-of-the-art method,
BYOL [6], for self-supervised learning. We have implemented BYOL in PyTorch,
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Fig. 9. The training and validation accuracy curves for different batch sizes on the
CIFAR-10 dataset.

Table 1. Comparison of test accuracy across three datasets. The best results are
highlighted in bold, and the second-best results are underlined.

Method CIFAR-10 CIFAR-100 SVHN

BN 96.11 74.50 98.22
LN 95.76 68.61 97.62
IN 96.68 73.42 98.93
GN 95.91 70.15 98.49
BCN 96.97 79.09 98.63

using the same hyperparameter settings as in the original paper [6]. BCN is
applied to both the online and target models. As shown in Fig 5, applying BCN
improves the performance of BYOL.

Results on ViT There is growing interest in developing Vision Transformer
(ViT) methods [5] for a wider range of applications. We implemented ViT from
scratch and tested it with different batch sizes and embedding dimensions on the
CIFAR-10/100 and SVHN datasets. As shown in Fig 6, the performance of ViT
improved when the normalization technique was replaced by BCN. Specifically,
replacing the existing normalization with BCN led to an increase of approxi-
mately 0.73% in training accuracy and 0.72% in testing accuracy.

Furthermore, Fig 7 illustrates the performance of BCN on the testing set.
Overall, these results support our hypothesis that BCN can outperform existing
normalization techniques like BN and LN, particularly in new models such as
ViT.

4.2 Results on DenseNet

DenseNet is a well-known Dense Convolutional Network. We implemented
DenseNet-201 in PyTorch. Careful selection of the learning rate can lead to
improved performance. To this end, we experimented with different learning
rates to determine the most suitable values for our datasets and topology. In
this study, we initially set the learning rate to 3× 10−2. Similarly, we conducted
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Fig. 10. Training and testing accuracies of DenseNet on the ImageNet dataset.

experiments to identify the optimal batch size, ultimately using a batch size of
512. The maximum batch size was used to fully utilize GPU memory during
training. In our experiments, we trained for 90 epochs, with each epoch consist-
ing of 2503 iterations. Additionally, we recorded training accuracy by steps and
testing accuracy by epochs. We compared the training, testing, and validation
performance of different normalization techniques by combining DenseNet-201
with BN and BCN on the ImageNet dataset. As illustrated in Fig 10 (a) and
Fig 10 (b), the proposed BCN demonstrated strong performance.

4.3 Experiments on Brain Segmentation

We conducted experiments on brain segmentation datasets, specifically the
MICCAI iSEG dataset [18] and the MRBrainS dataset1. Table 2 presents
the accuracy metrics of the proposed model for the 13 subjects in the test set.
As shown in Table 2, the Dice Coefficient (DC) values with BCN indicate strong
performance.

Table 2. Segmentation performance (Dice Coefficient, DC) on the MICCAI iSEG
dataset. The best performance for each tissue class is highlighted in bold.

Model Dice Coefficient (DC)
CSF GM WM

BN 0.95 0.92 0.90
IN 0.93 0.90 0.90
GN 0.90 0.90 0.90
LN 0.90 0.90 0.90
BCN 0.96 0.94 0.92

1 https://mrbrains13.isi.uu.nl/
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4.4 Ablation Study

In this subsection, we explore the impact of batch size. We evaluate various
batch sizes: 128, 16, and 8. Our findings are presented in Fig 9, indicating that
BCN yields favorable results across different batch sizes. To examine whether
BCN mitigates the weaknesses of BN and LN, particularly as noted by [11],
where BN performs poorly with small batch sizes, we focus on addressing the
minibatch problem of BN in this subsection. The experiments demonstrate that
BCN alleviates the performance issues of BN with small batch sizes. Specifically,
BCN achieves strong performance with batch sizes of 4 and 2, as shown in Fig
8. For example, with a batch size of 8 and after 20 epochs, BCN reaches approx-
imately 86.12% training accuracy and 84.16% validation accuracy, whereas with
a batch size of 2 over the same number of epochs, BCN achieves about 84.58%
training accuracy and 81.42% validation accuracy. These results confirm that
the proposed technique is effective even with small batch sizes.

4.5 Analysis Optimization Landscape

In this section, we study and analyze the optimization landscape. Our starting
point is identifying the key impact that BCN has on the training process. BCN
reparametrizes the underlying optimization problem, making its landscape sig-
nificantly smoother. The first aspect of this impact is the enhancement in the
Lipschitz continuity of the loss function. Recall that a function f is L-Lipschitz
if |f(x1) − f(x2)| ≤ L||x1 − x2|| for all x1 and x2. This means that the loss
changes at a slower rate, and the magnitudes of the gradients are smaller as
well. Additionally, the loss exhibits significantly better "effective" β-smoothness.
Recall that a function f is β-smooth if its gradient is β-Lipschitz. It is impor-
tant to note that, due to the presence of non-linearities, one should not expect
β-smoothness to be bounded in an absolute, global sense. At a particular train-
ing step, we measure the variation (shaded region) in loss and the “effective”
β-smoothness, which refers to the maximum difference (in �2-norm) in gradient
over the distance moved in that direction.

5 Conclusion

In this paper, we proposed a new normalization technique termed Batch Channel
Normalization (BCN). BCN simultaneously exploits both the channel and batch
dimensions and adaptively combines the normalized outputs. Our experiments
on various models and datasets demonstrate that BCN consistently outperforms
state-of-the-art normalization techniques, indicating that BCN is a versatile and
generalizable normalization method. As future work, an ablation study could be
conducted to directly compute the mean and variance along the (N, C, H, W)
axes. Additionally, we plan to investigate the applicability of the BCN technique
across a broader range of applications and evaluate its effectiveness across a
wider variety of CNN architectures.
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Abstract. Electroencephalography (EEG) is widely researched for neu-
ral decoding in Brain Computer Interfaces (BCIs) as it is non-invasive,
portable, and economical. However, EEG signals suffer from inter- and
intra-subject variability, leading to poor performance. Recent techno-
logical advancements have led to deep learning (DL) models that have
achieved high performance in various fields. However, such large models
are compute- and resource-intensive and are a bottleneck for real-time
neural decoding. Data distribution shift can be handled with the help
of domain adaptation techniques of transfer learning (fine-tuning) and
adversarial training that requires model parameter updates according to
the target domain. One such recent technique is Parameter-efficient fine-
tuning (PEFT), which requires only a small fraction of the total train-
able parameters compared to fine-tuning the whole model. Therefore, we
explored PEFT methods for adapting EEG-based mental imagery tasks.
We considered two mental imagery tasks: speech imagery and motor
imagery, as both of these tasks are instrumental in post-stroke neuro-
rehabilitation. We proposed a novel ensemble of weight-decomposed
low-rank adaptation methods, EDoRA, for parameter-efficient mental
imagery task adaptation through EEG signal classification. The perfor-
mance of the proposed PEFT method is validated on two publicly avail-
able datasets, one speech imagery, and the other motor imagery dataset.
In extensive experiments and analysis, the proposed method has per-
formed better than full fine-tune and state-of-the-art PEFT methods for
mental imagery EEG classification.

Keywords: Electroencephalography · Deep Learning · Transfer
Learning · Fine-tuning · Low-Rank Adaptation.

1 Introduction

Brain-computer interfaces (BCIs) represent a developing field of research aimed
at establishing direct communication pathways between the brain and exter-
nal devices. The physiological measure often used for decoding neural signals
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15311, pp. 309–324, 2025.
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is electroencephalography (EEG), as it is non-invasive, portable, and economi-
cal. There are various experimental BCI paradigms to control external devices
through robotic arm [5], speller system [32], and exoskeleton [6] via particular
brain activity in a specific task. Among these paradigms, mental imagery has
undergone extensive investigation as a mechanism for controlling BCIs, lever-
aging the intrinsic brain activity that arises from the voluntary imagination of
users [1]. Additionally, mental imagery operates independently of external stim-
uli. Therefore, it supports the development of a user-friendly interface. It reduces
fatigue and enhances users’ awareness of their surroundings more naturally.

Deep learning (DL) has advanced rapidly in recent years. Many deep learning-
based methods have been proposed for enhanced EEG classification. Deep
learning-based methods such as Convolutional neural networks (CNN) and
Transformers have a large number of parameters, and they require large amounts
of data to learn and extract discriminative features. EEG signals have high
dimensionality and labor-extensive recording procedures. These challenges result
in small datasets that make DL methods prone to overfitting. Additionally, EEG
signals suffer from inter- and intra-subject variability [25]. One of the possible
solutions to reduce inter-subject variability is Domain adaptation (DA). It is
defined as using a classifier/model learned on one task with sufficient labeled
samples, and this classifier/model adapts to another related task with only a
limited amount of training data.

Many works have utilized DA approaches to reduce the distribution shift in
two domains of mental imagery tasks. One section of the studies tends to use
domain adaptation for intra-subject/cross-session distribution and another for
inter-subject/cross-subject distribution among various subjects [16,20]. Motor
Imagery (MI) is the most researched modality of mental imagery tasks. Moreover,
several studies have employed domain adaptation for MI-EEG signal classifica-
tion. Many recent studies utilized source and target domain correlation assess-
ment approaches to select the source/s similar to target domain [11,16,34]. CNN-
based feature extractors and classifiers are extensively used in multiple studies
on domain adaptation of MI-EEG task classification [18,21,33]. However, only a
few studies explored transformer-based approaches for MI task adaptation [28].
The other modality of mental imagery tasks is speech imagery/imagined speech
(SI), which has yet to be explored in domain adaptation.

In the case of inaccessibility of source data and availability of a pre-trained
source model, the target model is initialized with parameters of a pre-trained
model and subsequently fine-tuned on target domain data [12,30]. With the rapid
increase in the number of parameters and depth of the deep neural networks,
fine-tuning such large models is a computationally expensive task. This issue
is addressed in natural language processing (NLP) and computer vision (CV)
domain with parameter-efficient adaptation [8]. In parameter-efficient adapta-
tion, new modules are added in between the pre-trained model layers, and these
modules are known as adapters. One such adapter method is Low-Rank Adap-
tation (LoRA) [9]. While fine-tuning, only these adapters are trained instead of
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training the whole pre-trained model on the target domain. Therefore, training
only these adapters results in a reduction in the number of trainable parameters.

To the best of our knowledge, the impact of parameter-efficient adapters is
not explored in the EEG classification task. Therefore, our proposed method is
based on a high-performance weight-decomposed low-rank adaptation method
[17]. Additionally, convolutional transformer-based methods have not been
explored in mental imagery task classification. Inspired by this, we utilized EEG
Conformer, a convolutional transformer method for feature extraction and clas-
sification [27]. In literature, numerous studies have been proposed to decode
the neural activity on a specific mental imagery task [19]. Only a few studies
proposed methods to decode neural activity on multiple mental imagery tasks
[1]. Our method validated the performance of the proposed low-rank adaptation
method on two mental imagery datasets, where parameters of a model trained on
one dataset are used to fine-tune the model on the other dataset and vice-versa.

The contributions of this paper are listed as follows:

– We demonstrate the parameter efficient fine-tuning (PEFT) based approaches
for enhanced mental imagery task classification. To the best of our knowledge,
PEFT-based low-rank adaptation (LoRA) is first explored for mental imagery
classification tasks in our work.

– We propose EDoRA, a novel ensemble of weight-decomposed low-rank
adapters for mental imagery EEG classification tasks for enhanced adaptation
performance.

– To the best of our knowledge, low-rank adaptation on two categories of mental
imagery tasks, i.e., speech and motor imagery, is first explored in our work.

– A detailed analysis of parameter-efficient fine-tuning is performed on speech
and motor imagery tasks of mental imagery EEG signal.

2 Related Work

2.1 MI Classification

Several studies have contributed in addressing the problem of inter-subject
and intra-subject data distribution variability in motor imagery EEG signal
classification. Most of the work in recent years employed source and target
domain correlation assessment methods to select the closest source domain
for better target domain classification performance [11,13,16,24,31,33,34], and
convolutional neural network (CNN) based methods are utilized as classifier
[3,4,7,13,18,21,28,33,34]. Only a few works have studied the impact of trans-
fer learning-based domain adaptation approaches on latest transformer based
models [10].

Several studies explored the efficiency of CNN based approaches for domain
adaptation in MI-EEG classification. Zhong et al. proposed a domain adapta-
tion framework based on correlation alignment of the source and target domain
motor imagery EEG data [34].Then conventional CNN based classifier is used
to classify the features in cross-subject settings. Hang et al. proposed a deep



312 T. Lotey et al.

domain adaptation network based on CNN with MMD to minimize the source
and target distrubution distance, and then applied center-based discriminative
feature learning approach to maximize the inter-class distance [7]. They jointly
optimized the source and target domain data to align the features. Liu et al.
proposed a framework for subject adaptation and it includes a CNN based fea-
ture extractor, a subject adapter based on MMD to align the source and target
domains and reduce the feature distribution shifts [18].

Most of the studies have jointly optimized the source and target domain for
MI-EEG classification task. Few studies used transfer learning, i.e., to use model
trained on source domain data to optimize the model trained on target domain
data. Phunruangsakao et al. proposed a deep domain adaptation framework
that selects multiple source domains to optimize label classification of single
target domain [24]. This work further experiments by making source parameters
inaccessible and making the privacy policy stricter. Inspired by this work, Huang
et al. proposed a multi-source free domain adaptation framework with attention
weighted module for better source and target domain alignment [12]. To keep the
privacy of the source domain data, our work uses the parameters of pre-trained
source model to fine tune the target model.

2.2 SI Classification

There are few works exploring the classification performance of speech recog-
nition using traditional methods [26]. However, the research area of domain
adaptation of speech imagery/imagined speech tasks is less explored in the liter-
ature. Jimenez et al. proposed a deep unsupervised domain adaptation method
based on standardization-refinement approach [14]. The research area of domain
adaptation in EEG-based speech imagery is still required to be explored. With
this inspiration, we chose speech imagery as one task of mental imagery EEG
classification to validate the effectiveness of our proposed approach.

In literature, only a few works explored the decoding efficiency of transformer
based approaches for domain adaptation in MI EEG signal classification [10,
28]. Transformer based methods are proved to be efficient than CNN based
method in the domain of NLP and CV. With this inspiration, our method used
a convolutional transformer based method curated for EEG signal classification
with spatial feature extraction power of CNN and temporal feature extraction
efficiency of transformers [27].

Also, to the best of our knowledge, mental imagery task adaptation from
speech to motor imagery and vice-versa is not yet explored, where model pre-
trained on one type of mental imagery task is used to fine-tune the target model
of other type of mental imagery task. Also, fine-tuning requires all parameters of
the pre-trained model to be trained while optimization on target domain data.
Nowadays, the size of the models keep getting bigger to attain human brain level
intelligence. Therefore, full fine-tuning of such large models becomes compute
and space extensive. In recent literature of NLP and CV, parameter efficient fine-
tuning methods such as LoRA [9], are proposed that requires only a small number
of trainable parameters compared to full fine-tuning while also maintaining the
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performance. Inspired by a similar work [17], we propose an ensemble of weight-
decomposed low rank adaptation method for EEG-based mental imagery task
classification.

3 Methods

3.1 Definitions and Notations

We denote DS
d1

= {(Xi
d1

, yi
d1
) | Xi

d1
∈ RNc1×Nt1 , yi

d1
∈ Yd1} as the source

domain, where Xi
d1

is a pre-training EEG dataset trial in the source domain
with Nc1 spatial channels and Nt1 temporal sampling points, and Yd1 = {0 :
out, 1 : in, 2 : up} is the label set if d1 is SI dataset and Yd1 = {0: Left Hand, 1:
Right Hand, 2: Both Feet, 3: Tonque} if d1 is MI dataset.

Similarly, the target domain is defined as DT
d2

= {(Xi
d2

, yi
d2
) | Xi

d2
∈

RNc2×Nt2 , yi
d2

∈ Yd2}, where Xi
d2

is a fine-tuning EEG dataset trial in the
target domain (MI or SI Dataset).

3.2 Low-Rank Adaptation

Low-rank adaptation is the one of the PEFT method that does not change the
model architecture and gaining popularity due to its simplicity and efficiency.
LoRA (Low-Rank Adaptation) strategy utilizes a simple design that brings prac-
tical benefits to dense layers in deep learning models [9]. The experimental focus
of this paper was primarily on Transformer language models, however, the prin-
ciples can be applied to other models.

Neural networks often incorporate dense layers that perform matrix multi-
plications using fully-ranked weight matrices. Inspired by the concept that pre-
trained language models function within a low hidden dimension, the authors of
this paper proposed that weight updates during model adaptation also exhibit
a low intrinsic rank. Consider a pre-trained weight matrix W0 in Rd×k. The
low-rank decomposition of this weight matrix is given by:

W0 + ΔW = W0 + BA (1)

where B ∈ Rd×r , A ∈ Rr×k, and the rank r satisfies r ≤ min(d, k). During
training, W0 is held constant, with only A and B (which contain the trainable
parameters) being updated. This yields a modified forward pass equation:

h = W0x + ΔWx = W0x + BAx (2)

If r is chosen as a very small number, the number of trainable parameter
reduces significantly. LoRA approach is resource efficient and have low inference
latency. LoRA can be applied to any subset of weight matrices within a neural
network to minimize the number of trainable parameters.
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Fig. 1. (a) Overview of proposed EDoRA paramter-efficient fine-tuning approach. It
depicts the overall parameter updation process of EDoRA, before and after fine-tuning
(b) Feature updation via EDoRA adaptation. [ c© symbol represents concatenation, ×
symbol represents product, X represents input features, X

′
represents output features.]

3.3 Proposed method

The proposed method EDoRA is inspired by the weight-decomposed low-rank
adaptation method (DoRA) [17]. This method enhances efficiency by dissect-
ing pre-trained model weights into magnitude and directional constituents, each
of which is subsequently fine-tuned for optimized performance. This decompo-
sition allows for concentrated updates that minimize the quantity of trainable
parameters while maximizing the efficacy of the learning process. The adaptation
process is defined in the following steps:

Initial Decomposition: The process starts with the division of pre-trained
model weights into magnitude and directional components. This separation is
crucial for enabling specific updates during fine-tuning. The weight decomposi-
tion is represented as:

W = m
V

‖V ‖c
= ‖W‖c

W

‖W‖c
(3)

where W is the weight matrix, m is a vector representing the magnitude, and
V is the matrix representing directional values, with ‖V ‖c denoting the column-
wise norm [17]. The number of parameters in the directional component is more
than the magnitude component; therefore, only the directional component is
fine-tuned via LoRA to keep the number of trainable parameters efficient [17].

Fine-tuning of Directional Component: The directional component is fine-
tuned using Low-Rank Adaptation (LoRA) [9]. This process involves updates
focused primarily on parameters that offer the highest utility, thus enhancing
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efficiency. The adapted weight W ′ after fine-tuning is given by:

W ′ = m
V + ΔV

‖V + ΔV ‖c
= m

W0 + BA

‖W0 + BA‖c
(4)

where V represents the weights of pre-trained model, and ΔV is the change
in directional component learned by multiplying two low-rank matrices B and
A [17].

Fig. 2. Framework of the proposed method. Two experiments are performed in this
work, and in these experiments EEG Conformer model is pre-trained on one dataset,
and then fine-tuned on other dataset with only EDoRA adapter on each operation
of transformer encoder of EEG Conformer and vice-versa. [Freezed weights are shown
with lock]

Eq. 4 represents the fine-tuned weights of the DoRA method. As EEG sig-
nals are highly non-stationary, the features learned through fine-tuning individ-
ual DoRA adapters have a high variance in feature learning that may result in
overfitting and local optima. Therefore, an ensemble of multiple DoRA adapters
reduces the overfitting and local optima issues, which leads to stable and reli-
able performance [2]. Therefore, the proposed method EDoRA is an ensemble
of multiple DoRA adapters. The weight updation in each individual adapter of
EDoRA will follow the Eq. 4. The input feature x ∈ Rd×t is split into n equal
parts that gives xi ∈ Rd× t

n , where i = 0, 1, 2 . . . n. Each xi is fed to DoRAi, and
the output weights of each DoRAi are concatenated. This process is depicted
in Fig. 1 (b). The modified forward pass equation for EDoRA is defined by the
following equations:

h = concatni=0

(
mi

V xi+ΔVixi

‖V xi+ΔVixi‖c

)

= concatni=0

(
mi

W0xi+(BiAi)xi

‖W0xi+(BiAi)xi‖c

) (5)

where n denotes number of equal parts of the input features x, Ai ∈ R
r
n×d

and Bi ∈ Rk× r
n are the low rank matrices with rank r

n , xi ∈ Rd× t
n is the
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input feature matrix, mi ∈ 1 × k is the magnitude vector, W0 ∈ Rd×k are the
pre-trained model weights, and h ∈ Rk×t represents the updated feature.

Detailed overview of weight updation in the proposed method is depicted in
Fig 1 (a), and detailed depiction of feature updation is given in Fig. 1 (b).

3.4 Optimization Procedure

In this study, the EEG Conformer model is firstly pre-trained on d1 EEG data
in DS

d1
and then fine-tuned using d2 EEG data in DT

d2
. The decoding model can

be represented as a classifier m : RNc×Nt → yd1 | yd2 which is defined as:

m(Xi; θ) = g(φ(Xi; θφ);φg) (6)

where φ denotes feature extraction and transformer encoder module with
parameters θφ, and g denotes classifier module with learnable parameters φg.
This model learns the classification of data by minimizing the prominently used
cross-entropy loss [20]. Fig. 2 illustrates the network architecture and adaptation
strategy of our work.

4 Experimental Results

4.1 Datasets

Motor Imagery Dataset The BCI Competition IV 2a is a publicly available
motor imagery dataset that comprises EEG data from 9 subjects performing
motor imagery tasks of the left hand, right hand, both feet, and tongue [29].
The dataset features EEG signals recorded at a 250 Hz sampling rate from 22
electrodes over two sessions, each containing six runs of 48 trials per motor
task, totaling 288 trials per session. Hereon, this dataset will be depicted as ‘MI
dataset ’.

Speech Imagery Dataset The publicly available Arizona state university
(ASU) dataset is used for the classification of the speech imagery tasks [22].
In this study, we used a dataset for short word classification. The dataset con-
sists of three class SI of the English words in, “out" and up. Each class consists
of 100 trials, and a single trial lasts for 5 s. The data were acquired from six
subjects with 60 EEG channels. The data was pre-processed using a frequency
range of 8-70 Hz. Hereon, this dataset will be depicted as ‘SI dataset ’.

Data pre-processing MI dataset is kept at 250Hz sampling rate whereas
SI dataset is downsampled from 1000Hz to 250Hz. Keeping the data temporal
length same, 4 second data is being used for both datasets. Further, 4th-order
Butterworth filter is used to eliminate low-frequency noise in the 4-40 Hz range
and z-score normalization applied.
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4.2 Experimental Details

To implement the proposed and compared models, PyTorch deep learning library
[23] was used and executed on a NVIDIA RTX Quadro 5000 GPU system with 16
GB GPU memory and 16 GB of RAM. For pre-training, the model is trained for
2000 epochs with learning rate of 0.0002 and 80-20 split is used for both datasets,
i.e., 80% training data and 20% testing data. For fine-tuning, all methods are
trained for 500 epoch having batch size of 72. In this work, we have followed
the settings of the dataset split most often used in the literature. 80-20 split
is used for SI dataset whereas session based split used in the original paper is
employed for MI dataset. For both pre-training and fine-tuning, Adam optimizer
is used with constant learning rate of 0.0002 with β1 as 0.5 and β2 as 0.999. The
metric used to evaluate the model performance is accuracy, confusion matrix,
AUC-ROC score and kappa measure [15,20].

Table 1. Accuracy comparison of proposed method with full fine-tuning and other
parameter efficient adaptation methods for SI and MI EEG signal classification. [Stan-
dard deviation is reported in round brackets.]

Dataset Subject Methods
Fine-Tune LoRA [9] DoRA [17] EDoRA(our)

Speech Imagery 1 51.67 50.00 50.00 53.33
3 48.33 50.00 48.33 41.67
5 48.33 45.00 45.00 50.00
6 51.67 48.33 50.00 53.33
8 58.33 65.00 65.00 61.67
12 51.67 53.33 53.33 58.33
Average 51.67 (3.65) 51.94 (6.95) 51.94 (6.95) 53.06 (6.94)

Motor Imagery 1 81.60 79.86 79.51 81.94
2 52.78 51.74 52.08 49.31
3 85.76 84.38 84.38 86.11
4 65.63 65.63 66.67 67.71
5 42.36 44.44 44.44 44.79
6 51.04 51.04 52.43 56.25
7 81.25 78.13 78.13 80.90
8 80.21 78.47 78.82 80.21
9 79.86 72.92 73.96 78.13
Average 68.94 (16.36) 67.40 (14.81) 67.82 (14.61)69.48 (15.60)

4.3 Performance Evaluation

The performance of the proposed parameter-efficient adaptation methods is vali-
dated through two mental imagery task datasets, i.e., the speech imagery dataset
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(SI dataset) and the motor imagery dataset (MI dataset). The method is first
pre-trained on one dataset and then adapted to the other dataset via fine-tuning
and vice-versa. The evaluation performance of the each fine-tuned dataset is
discussed in the following sections of this paper.

The performance of the proposed parameter-efficient adaptation method is
stated in Table 1. The first method compared with the proposed method is
a fully fine-tuned model (depicted as fine-tuned in the table). This method
requires training all parameters of the pre-trained model to optimize the tar-
get domain data. The other compared methods are state-of-the-art (SOTA)
parameter-efficient adaptation methods, LoRA [9] and DoRA [17]. The com-
parison table of accuracy metrics validates the effectiveness of the proposed
adaptation method as our method has performed better than full fine-tuning,
which requires a huge number of parameters to train, whereas the proposed
method only requires a small number of the total trainable parameters.

In the SI dataset, the accuracy of the proposed method is 1.39% more than
full fine-tuning and 1.12% more than both LoRA and DoRA. Similarly, in the
MI dataset, the proposed method is superior to the compared methods with
margins of 0.54%, 2.08%, and 1.66% than full fine-tuning, LoRA and DoRA,
respectively. Fig. 3 shows the kappa value comparison of the proposed method
with compared methods. The box plots show that for the SI dataset, the median
is clearly distant from the compared methods, and the minimum value of the
kappa measure is also better than all of the compared methods. For the MI
dataset, although the median of the proposed method is below the median of
the full fine-tune method, the box length is smaller, and the minimum value of
the kappa is higher. Thus, the kappa measure of both datasets suggests that the
performance of the proposed method is better than the compared methods in
both datasets.

Fig. 3. Mean Kappa measure of proposed method and compared methods.

Fig. 4 and Fig. 5 show the per-class discriminative power of the proposed
method. Fig. 4 shows the confusion matrices of two subjects of each dataset.
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Fig. 4. Confusion matrices of proposed method on two subjects of SI and MI dataset.

Fig. 4a and Fig. 4b show that class “in" is more accurately classified compared
to the other two classes. The reason might be the similarity of the “out" and
“up" words and the dissimilarity of “in" from these two words. Also, the behav-
ior is consistent on the confusion matrices of both subjects. Fig. 4c and Fig.
4d show that for motor imagery tasks, the per-class classification performance
is balanced. However, left-hand imagined movement and right-hand imagined
movement are least confused with other classes by the proposed methods. The
class-wise clustering of the EEG signals in the feature space is shown with the
help of t-SNE plots in Fig. 5. Fig. 5a and Fig. 5b show where the testing data
points of the SI dataset lie in the feature space. These figures show the clusters
of three classes of the SI dataset, where the cluster of the “in" class is clear and
distinct, whereas the “out" and “up" classes show some overlap. This finding is
similar to the confusion matrices of the SI dataset. Fig. 5c and Fig. 5d depict
the t-SNE plots for two subjects of the MI dataset, and these plots show clear
and distinct clusters of all four classes of the MI dataset. Therefore, confusion
matrices and t-SNE plots show the classification performance of the proposed
parameter-efficient adaptation method.

The parameter-efficient adaptation methods have a hyper-parameter of rank
that decides the number of neurons of the adapters. Hence, we present the com-
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Fig. 5. t-SNE plots of proposed method (EDoRA) on two subjects of SI and MI dataset.

parison of the performance of the proposed parameter-efficient method EDoRA
with different rank values. Table 2 shows the accuracy metric of the proposed
EDoRA method and compared methods. In this table, for each rank, the highest
accuracy measure among LoRA, DoRA, and EDoRA (our) is shown in bold. For
both datasets, EDoRA has performed superior to compared parameter-efficient
adaptation methods with the exception of rank 2, where LoRA (68.90%) per-
formed slightly better than EDoRA (68.63%). However, maximum accuracy
with the least standard deviation is attained by EDoRA only (rank=8, n=4,
accuracy=69.52%). Additionally, the highest accuracy of the proposed method
is better than the accuracy of the full fine-tune method. It shows the strength of
the low-rank adaptation approach with a very small number of parameters over
full fine-tuning. These results demonstrate the ability of EDoRA to adapt from
one mental imagery dataset to another mental imagery dataset and vice versa.

4.4 Ablation study

In our proposed ensemble of the PEFT adapter method, the number of adapters
(n) is a hyper-parameter of the EDoRA method. Therefore, we demonstrate
the impact of the number of adapters in an ensemble with different ranks (r)
on EDoRA in Fig. 6. This ablation study shows that for the SI dataset, the
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Table 2. Accuracy comparison of proposed method with full fine-tuning and SOTA
parameter-efficient adaptation methods with different ranks (r) for SI and MI datasets.
[D: Dataset, Standard deviation is reported in round brackets, EDora† is proposed
method with n=4.]

D Rank Methods
Fine-tune LoRA DoRA EDoRA(our) EDora†(our)

SI 2 51.67 (3.65) 52.22 (6.47) 52.22 (6.64) 53.33 (8.63) −
4 51.94 (6.95) 51.94 (6.95) 53.06 (6.94) 51.95 (6.87)
8 50.56 (6.12) 51.39 (6.78) 51.39 (5.10) 50.83 (7.21)
16 52.50 (7.28) 51.11 (6.38) 51.94 (5.42) 52.78 (4.55)

MI 2 68.94 (16.36)68.90 (15.81) 68.75 (15.58) 68.63 (15.27) −
4 67.40 (14.81) 67.82 (14.61)69.48 (15.60) 68.09 (14.34)
8 68.36 (15.80) 67.94 (16.20)68.94 (14.50) 69.52 (13.08)
16 66.63 (14.79) 67.48 (14.66) 67.94 (14.30) 68.83 (14.82)

performance of all variants is quite variable. This phenomenon can be because
the number of samples in the testing set is only 60. It is a small number, and
misclassifying only a few samples can result in lower accuracy. Hence, variants
of the SI dataset show a variable performance. However, for the MI dataset, the
performance is similar for all of the variants of EDoRA as the number of testing
samples is 288, which is comparatively larger than the testing samples of the SI
dataset. Therefore, this analysis suggests the robustness of the proposed method
EDoRA over different numbers of n and rank r in both datasets.

Fig. 6. Accuracy of proposed method (EDoRA) with different ranks (r) and segment
(n).

4.5 Parameter analysis

Table 3 shows the number of trainable parameters required by EDoRA and com-
pared PEFT methods (LoRA and DoRA). According to this table, the difference
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Table 3. Trainable parameter requirement and mean accuracy of proposed method
and compared state-of-the-art parameter-efficient adaptation methods.

Dataset Method LoRA [9] DoRA [17] EDoRA(our)

Speech Imagery #Parameters 17k 19k 21k
Average Accuracy 51.94 (6.95) 51.94 (6.95) 53.06 (6.94)

Motor Imagery #Parameters 17k 19k 21k
Average Accuracy 67.40 (14.81) 67.82 (14.61)69.48 (15.6)

in parameters between EDoRA and DoRA is only 2k, but the difference in accu-
racy is 1.12% and 1.66% in SI and MI datasets, respectively. A similar behavior
is observed when comparing EDoRA with LoRA. It shows that our method
is comparable to the other SOTA methods in the trade-off of parameters and
performance.

5 Conclusion

In this work, we explored the parameter-efficient fine-tuning methods for EEG-
based mental imagery task adaptation. Our work is the first to explore the
performance and efficiency of parameter-efficient adaptation methods that do
not require all parameters of the pre-trained model to be trained. Instead, it
trains only a small amount of parameters based on the rank-decomposition tech-
nique. We proposed EDoRA, a parameter-efficient fine-tuning method that is an
ensemble of multiple parameter-efficient adapters. These adapters decompose
the pre-trained weights into magnitude and direction components and adapt
these components to the target domain for enhanced fine-tuning. This work
is the first to investigate transfer learning-based domain adaptation of speech
imagery task from motor imagery task and vice-versa. The effectiveness of the
proposed method is validated on two publicly available mental imagery datasets,
one dataset of speech imagery and the other of motor imagery. For elevated fea-
ture extraction, we have adopted a convolutional transformer approach-based
model known as EEG Conformer. The adaptation framework comprises pre-
training the model on one dataset and then fine-tuning the model on another
dataset. The performance evaluation on these two datasets exhibits the effec-
tiveness and robustness of the proposed approach in the domain of EEG signal
classification. In the future, the proposed method can be optimized to make it
more parameter-efficient while increasing performance.
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Abstract. Electroencephalography (EEG) offers non-invasive, real-time
mental workload assessment, which is crucial in high-stakes domains like
aviation and medicine and for advancing brain-computer interface (BCI)
technologies. This study introduces a customized ConvNeXt architec-
ture, a powerful convolutional neural network, specifically adapted for
EEG analysis. ConvNeXt addresses traditional EEG challenges like high
dimensionality, noise, and variability, enhancing the precision of mental
workload classification. Using the STEW dataset, the proposed Con-
vNeXt model is evaluated alongside SVM, EEGNet, and TSception on
binary (No vs SIMKAP task) and ternary (SIMKAP multitask) class
mental workload tasks. Results demonstrated that ConvNeXt signifi-
cantly outperformed the other models, achieving accuracies of 95.76%
for binary and 95.11% for multi-class classification. This demonstrates
ConvNeXt’s resilience and efficiency for EEG data analysis, establishing
new standards for mental workload evaluation. These findings represent
a considerable advancement in EEG-based mental workload estimation,
laying the foundation for future improvements in cognitive state mea-
surements. This has broad implications for safety, efficiency, and user
experience across various scenarios. Integrating powerful neural networks
such as ConvNeXt is a critical step forward in non-invasive cognitive
monitoring.

Keywords: Brain-Computer Interface · ConvNeXt ·
Electroencephalography · Mental Workload · STEW Dataset

1 Introduction

With its capacity to directly record the complex electrical activity of the brain,
electroencephalography (EEG) is a potent technique for non-invasively assessing
mental workload in real-time. Evaluating mental workload is crucial in high-
stakes fields like medicine and aviation, but it’s also important in regular work-
places and educational settings [25]. This non-invasive method is essential for
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improving brain-computer interface (BCI) applications and understanding neu-
ral processes. Its applications range from ensuring safety in critical operations
to optimizing cognitive performance and tailoring learning experiences. Within
the quickly developing field of cognitive neuroscience, EEG is essential for bridg-
ing the knowledge gap between theoretical concepts and real-world applications
related to mental stress [8]. By examining the electrical patterns obtained from
EEG, researchers can gain crucial knowledge about healthy and pathological
brain functions [2]. This improves the capacity to control and interpret cogni-
tive loads in various scenarios. This finding highlights EEG’s dual potential to
advance scientific understanding and practical application. These capabilities
underline the EEG’s critical role in the realms of current neuroscience and BCI
research.

EEG, with its high temporal resolution, is a valuable tool for capturing rapid
changes in mental workload. However, its high dimensionality, intrinsic noise, and
non-stationarity [3] make it challenging to extract meaningful information. Addi-
tionally, the complexity of the human brain and limitations of EEG technology,
such as variations in cognitive abilities, low signal-to-noise ratio, and poor spatial
resolution [14], complicate the accurate localization of neural sources. Individual
differences in brain responses and EEG acquisition methods further contribute
to signal variability. To address these challenges and fully leverage EEG’s poten-
tial in high-stakes situations, advanced machine learning models are crucial [26].
These models can improve the accuracy and consistency of EEG data process-
ing, facilitating the development of user-friendly systems for estimating mental
workload. By incorporating subject-specific information, such as task complexity
and individual cognitive characteristics, these models can enhance the classifica-
tion accuracy of mental workload states [11]. This multidisciplinary approach is
expected to drive significant advancements in the field, enabling more effective
monitoring and analysis of cognitive processes.

Enter ConvNeXt [19], a cutting-edge convolutional neural network (CNN)
architecture initially designed to address computer vision problems. ConvNeXt
is modified for EEG analysis in this work, which is a significant innovation.
ConvNeXt has the potential to revolutionise EEG data processing by extracting
subtle patterns from EEG signals more precisely and effectively than conven-
tional models because of its improved convolutional operations, optimised layer
structures, and effective training methodologies. This modification holds great
potential for precisely detecting the complex patterns in brain signals that cor-
relate to different mental workloads. It represents a shift from conventional EEG
analysis techniques and could result in workload estimates that are more accurate
and insightful. Because of ConvNeXt’s improved feature extraction capabilities,
neural signatures associated with different brain states, clinical diseases, and cog-
nitive tasks may be precisely identified. This expands the field of neuroscience
research and advances BCI technology, with broad implications ranging from
better seizure detection to enhanced sleep stage categorization and cognitive
load evaluation.
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This study investigates the integration of the ConvNeXt architecture into
EEG data analysis. It highlights the potential of ConvNeXt to revolutionize
the precision of computational neuroscience and BCI research. Researchers can
gain profound insights into the brain’s electrical activity across various cognitive
states by analysing EEG data. ConvNeXt’s advanced design efficiently learns
complex patterns within EEG data, outperforming traditional models in feature
extraction. The use of ConvNeXt tackles the challenges associated with EEG sig-
nals, offering significant improvements in cognitive performance and ergonomics
across diverse settings. Its potential to differentiate between types of cognitive
loads sets a new standard for EEG analysis, marking a substantial advancement
in the field. As research continues, the application of ConvNeXt in EEG analy-
sis is expected to drive breakthroughs in understanding the brain’s complexities
and advancing cognitive ergonomics.

Contributions of this work are:

– While CNNs have shown promise in EEG classification, ConvNeXt’s advanced
architecture ushers in a new era for efficiently extracting complex patterns
from EEG data, potentially surpassing traditional models by a substantial
margin.

– Beyond classification accuracy, techniques to interpret the learned features
within the ConvNeXt model will be explored. This will provide valuable
insights into the specific neural activity patterns associated with different
cognitive states, offering a deeper understanding of brain processes during
controlled experiments.

– This work aims to significantly improve the current standards of EEG analy-
sis, offering deeper insights into brain activity and paving the way for advance-
ments in cognitive research.

The paper is structured as follows: Section 2 reviews research on mental work-
load and EEG analysis, highlighting the challenges and opportunities. Section 3
delves into the ConvNeXt model and its adaptation for EEG, including the
description of the dataset and classifiers. Section 5 presents experimental find-
ings, and Section 6 concludes this work and discusses future directions.

2 Related Work

Recent research on estimating mental workload using EEG signals has produced
various innovative methods and insights. Early studies, such as those by Hernan-
dez et al. [12], explored the evaluation of pilots’ mental workloads in high-risk
cockpit environments through multitasking. The work by Di et al. [9] extended
EEG analysis to the driving context, integrating EEG data with subjective
assessments and vehicle dynamics to study the effects of traffic and road condi-
tions on driver workload. Kartali et al. [13] contributed by focusing on real-time
mental workload estimation using EEG. Singh et al. [32] applied a combina-
tion of 1D-CNN and Synthetic Minority Oversampling Technique (SMOTE) to
enhance the classification accuracy of mental workload levels.
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Advancements in machine learning have substantially improved the appli-
cation and understanding of EEG technology in environments characterized by
high stress and multitasking. Qu et al. [24] addressed the challenge of EEG
signal non-stationarity through cross-session subspace alignment, significantly
improving signal classification across sessions. Mastropietro et al. [20] highlighted
the importance of electrode configurations and signal processing techniques in
enhancing the sensitivity and reproducibility of EEG-based mental workload
measurements. In their studies, So et al. [33] employed Support Vector Machines
(SVM) to accurately estimate workload levels, demonstrating the efficiency of a
single-channel EEG device in monitoring dynamic changes with notable accu-
racy. Similarly, Chin et al. [5] provided evidence that EEG can effectively dif-
ferentiate between various levels of cognitive workload during mental arithmetic
tasks, illustrating the method’s versatility and effectiveness.

Furthermore, various machine learning algorithms, including SVM, Random
Forest, and k-Nearest Neighbors (k-NN), have been applied to analyze EEG
signals. Research by Singh et al. [31] and Pandey et al. [21] has demonstrated
varied success rates, particularly in multitasking scenarios where the analysis
of statistical and fractal dimension (FD) features is crucial, as shown by Lim
et al. [16]. These techniques have proven particularly effective in enhancing the
practical applications of EEG in diverse cognitive studies.

Innovative computational approaches have greatly enhanced EEG-based clas-
sification tasks by integrating advanced deep-learning models [30]. Cheng et
al. [4] introduced a novel combination of 3D-CNN with LSTM and attention
mechanisms, significantly improving spatial-temporal feature learning. Similarly,
Yao et al. [35] demonstrated the efficacy of combining CNN and transformer
models, which has significantly advanced EEG-based classification tasks. Further
contributions in this field include the work of Aldawsari et al. [1], who optimized
a 1D-CNN model, showcasing the potential of lightweight deep learning methods
for real-time EEG-based emotion recognition. Saleh et al. [27] further leveraged
transformer networks to enhance classification accuracy on eye direction, PPG,
and EEG data, demonstrating the versatility of transformers in handling various
types of physiological data.

Additionally, Siddhad et al. [29] utilized transformer networks for classifying
raw EEG data, illustrating their adaptability to tasks beyond natural language
processing, such as mental workload classification. This adaptation addresses
common challenges in EEG data classification, including the dependency on pre-
processing and the need for hand-crafted feature extraction, by leveraging deep
learning to potentially automate these processes. Moreover, Parveen et al. [22]
introduced an attention-based 1D-CNN for mental workload classification. This
model enables the identification of specific patterns of brain activity associated
with various workload levels, highlighting the precise capabilities of modern com-
putational models in interpreting complex neural signals. These developments
collectively push the boundaries of EEG data analysis, paving the way for more
accurate and efficient applications in various fields.
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In addition to machine learning, using artificial neural networks (ANN) in
EEG analysis has been prominently featured, with research by Samima et al. [28]
demonstrating notably high accuracy in estimating mental workload in opera-
tors. This achievement illustrates the increasing integration of complex neu-
ral network architectures in EEG data analysis, highlighting a significant trend
in the field. This trend is further contextualized within the broader scope of
advancements discussed in the ‘Brain Informatics’ collection by Liu et al. [18].
This collection covers a vast range of studies in brain science, human informa-
tion processing systems, and brain big data analytics. It points to integrating
advanced computational models like transformers in EEG analysis as part of a
broader exploration of brain informatics technologies. Such integration is pivotal
in advancing a comprehensive understanding of mental health through informat-
ics paradigms, demonstrating the interconnection between innovative technolog-
ical applications and fundamental brain science research.

Measurement, classification, and understanding of cognitive load have
advanced significantly due to studies on EEG signals for mental workload esti-
mation, especially in high-stress, multitasking situations. These researches have
played a pivotal role in developing systems that evaluate cognitive load in real-
time across various areas, including workplace safety, aviation, education, and
the automotive industry. This has led to a deeper understanding of EEG and its
practical applications. To fully utilize EEG-based workload estimation, several
obstacles remain. These include the need for more in-depth task analysis that
considers the complexities of real-world scenarios, advancements in real-time
processing systems for increased accuracy and reduced latency, and the require-
ment for personalized models to address significant inter-subject variability and
enhance accuracy.

Additionally, it is imperative to identify and optimize predictive EEG fea-
tures using advanced machine-learning techniques. Integrating EEG data with
other physiological indicators can provide a more thorough workload assess-
ment. Models must also adapt to dynamic workload levels over prolonged tasks
and consider individual cognitive differences and mental states for more precise
estimations. Lastly, improving the usability and wearability of EEG devices is
essential to facilitate their broader adoption, especially in workplace settings
where practicality and comfort are critical. These collective efforts highlight the
crucial role of advanced computational models and machine learning techniques
in refining EEG applications and addressing their challenges to maximize their
effectiveness across various fields.

Improving EEG-based mental workload estimation requires addressing the
intrinsic challenges of EEG data, namely, high dimensionality, noise suscepti-
bility, and non-stationary nature. Recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs) are examples of advanced computational
models necessary for precisely interpreting EEG data in precision-critical appli-
cations like brain-computer interfaces and medical diagnosis. These models effec-
tively manage data from multiple scalp electrodes through dimensionality reduc-
tion and automatic feature extraction, increasing analytical accuracy and effi-
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ciency [10]. Moreover, EEG readings can be distorted by noise and artefacts from
electrical interference, muscles, and other sources, which can mask brain activity.
To overcome these problems, models like EEGNet use advanced noise-reduction
techniques, which produce more reliable analyses [7]. The analysis is further
complicated by the non-stationary nature of EEG data, which can be impacted
by shifts in the subject’s physiological or cognitive state, task involvement levels,
or environmental variables. Adaptive filtering or time-frequency analysis tech-
niques are essential for capturing the dynamic elements of EEG signals because
traditional signal processing approaches, which presume stationarity, are insuf-
ficient [34]. Improvements in these areas can greatly increase the responsive-
ness, accuracy, and ease of use of EEG-based mental workload estimation, hence
increasing its applications.

Incorporating advanced computational models is critical to effectively handle
the intricacies of EEG data and improve applications in domains where accuracy
is paramount, such as neurofeedback therapy. These models enable a robust and
reliable method of EEG analysis by combining insights from computer science,
cognitive science, and neuroscience. Essentially, using these models to read EEG
signals reliably improves the interpretation of complex data, leading to more
dependable and efficient applications in various fields.

3 ConvNeXt

This study incorporates a cutting-edge CNN, the ConvNeXt architecture [19],
into EEG-based measures of mental workload. ConvNeXt was originally devel-
oped for computer vision, but its ability to effectively learn complicated pat-
terns within noisy and high-dimensional data makes it a promising tool for
EEG analysis. The success of this hybrid architecture in image-related tasks
can be attributed to its combination of the capabilities from both attention-
based mechanisms of Transformer models and classic CNNs. The well-known
ResNet design, which is renowned for its residual connections that allow the
training of extremely deep networks, serves as an inspiration for ConvNeXt. Con-
vNeXt, however, differs greatly due to key modifications. It uses larger kernel
sizes in its depthwise convolutions for wider receptive fields, layer normalisation
for increased stability, and inverted residual structures to optimize computa-
tional efficiency. These modifications make ConvNeXt very well-suited to handle
the complexities of EEG signals.

The ConvNeXt architecture is redesigned using convolutional blocks that
gradually downsample input images while boosting channel capacity, structuring
it into multiple stages suitable for EEG analysis. This modification improves the
model’s capacity to extract workload-related patterns by addressing the unique
challenges of EEG data, such as high dimensionality, noise levels, and subtle
signal fluctuations. Updated convolutional layers, stochastic depth, data aug-
mentation, and LayerNorm, which stabilise the learning process, are some major
modifications. Due to its scalability and processing efficiency, ConvNeXt is suited
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for real-time applications such as mental workload evaluation, sleep stage classi-
fication, and seizure detection. Through techniques like extensive data augmen-
tation and a revised learning rate schedule to prevent overfitting and increase
convergence, the combination of this advanced architecture with EEG data has
the potential to revolutionise analysis, enhancing precision and extending the
spectrum of applications.

Fig. 1. (a) ConvNeXt Block and (b) ConvNeXt Model. Conv, Norm, and Mean in the
ConvNeXt model represent 2D Convolution, Normalization, and Mean layer, respec-
tively. The shape in each block represents the output shape of that block.

The ConvNeXt architecture introduces several modifications over traditional
CNNs to enhance its adaptability. Key to these adaptations is the replacement
of all batch normalization with layer normalization. Unlike batch normalization,
which standardizes inputs using batch mean and variance, layer normalization
standardizes inputs across each feature for every data point, providing consis-
tency regardless of batch size variations. In ConvNeXts, the AdamW optimizer
is employed, which refines the standard Adam approach by applying accurate
weight decay, thus improving regularization and generalization capabilities. It is
further distinguished by its use of 1 × 1 conv layers, with the depth-wise conv
layer repositioned at the top of the stack, unlike in ResNeXt blocks. Addition-
ally, the Gaussian Error Linear Unit (GELU), a smoother variant of the ReLU,
is utilized, enhancing the network’s non-linear processing capabilities.

Significant architectural scaling was undertaken for ConvNeXt, as illustrated
in Fig 1b, for its application to EEG, where the original ConvNeXt dimensions
were tailored for 224×224 image sizes. Specifically, the arrangement of ConvNeXt
blocks was altered from (3, 3, 9, 3) to (1, 1, 2, 1), and the number of channels
in convolutional layers was decreased from (96, 192, 384, 768) to (32, 32, 64, 64).
These changes reduced the model’s complexity and the number of parameters
and decreased training time, enhancing efficiency. The adapted model was sub-
sequently trained for 100 epochs, optimizing it for the specific challenges and
requirements of EEG data analysis as applied in this context.
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The success of this ConvNeXt adaptation to EEG has the potential for
broader applications in biomedical engineering and cognitive neuroscience, where
precise pattern recognition is crucial. This approach significantly advances deep
learning applications in neurological assessment, bridging the gap between high-
level computer vision techniques and EEG signal analysis.

4 Experiments

4.1 Experimental Data

To validate the performance of the proposed methodology, it was tuned and
applied to the open-access mental workload dataset known as the simultaneous
task EEG workload (STEW) dataset [17]. It consists of raw EEG data from 48
subjects who participated in a multitasking workload experiment that utilized
the simultaneous capacity (SIMKAP) multitasking test. The signals were cap-
tured using the Emotiv EPOC EEG headset, with 16-bit A/D resolution, 128 Hz
sampling frequency, and 14 channels, namely AF3, F7, F3, FC5, T7, P7, O1, O2,
P8, T8, FC6, F4, F8, AF4 according to the 10-20 international system with two
reference channels (CMS, DRL). There are two parts to the experiment. First,
the data was acquired for 2.5 minutes with subjects at rest or “No task”. Next,
subjects performed the SIMKAP test with EEG being recorded and the final
2.5 minutes were used as the workload condition. Subjects rated their perceived
mental workload on a rating scale of 1-9 after each experiment segment.

EEG signals in their raw form (captured from a device) contain noise and
artefacts and must be cleaned before use. EEG data is imported and bandpass
filtering is done to remove environmental/muscle noise from scalp EEG. After
epoching and removing bad epochs from the data, independent component anal-
ysis (ICA) is applied and bad channels are manually removed. The dataset is
used with a sampling rate of 128 Hz, the same as during acquisition. After min-
max scaling, the data was epoched into one-second intervals with a half-second
overlap, resulting in data shaped as (1, channel count, EEG length), i.e., (1, 14,
128), yielding a total of 26,910 samples. The dataset is split into 70:15:15 ratios
for train, validation, and test sets.

4.2 Experimental Setup

The experimental setup involved a DELL Precision 7820 Tower Workstation,
with Ubuntu 22.04 OS, Intel Core(TM) Xeon Silver 4216 CPU, and an NVIDIA
RTX A2000 12GB GPU. This hardware facilitated the implementation of DL
models using Python 3.10 and the PyTorch library. The Adam optimizer, known
for its computational efficiency, was used with default parameters (η = 0.001, β1

= 0.9, β2 = 0.999). EEGNet and TSception were trained for 100 epochs, with
batches of 16 and a learning rate of 1e−4. The Radial Basis Function (RBF) ker-
nel from scikit-learn [23] was used with default settings for SVM. Classification
accuracy was determined through stratified five-fold cross-validation, averaging
the results for comprehensive assessment.
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4.3 Classifiers

This study uses four popular models for EEG analysis, namely EEGNet, TScep-
tion, Transformer, and SVM. EEGNet [15] is a compact convolutional neural net-
work specifically designed for EEG data. Its success in a range of EEG tasks, effi-
ciency, and reduced complexity make it appropriate for smaller datasets, which
has led to a rise in its use in both research and practical applications. A deep
learning model designed for time-series EEG data, TSception [10] highlights the
temporal dynamics in the data. It is skilled at capturing the intricacies found
in EEG data because it can effectively extract temporal information at different
scales. TSception has demonstrated efficacy in identifying emotions and evalu-
ating cognitive burden. The Transformer [29] is a neural network architecture
that relies on self-attention mechanisms to compute representations of input
sequences. By avoiding recurrence and convolution, the Transformer is highly
parallelizable and efficient, capturing long-range dependencies in the data. Its
encoder-decoder structure allows for sophisticated processing and understanding
of complex EEG patterns. A popular machine learning algorithm used in EEG
analysis is SVM [6]. By determining the ideal distance in high-dimensional space
between classes, SVMs are excellent at classification. Robustness is one of SVM’s
strongest points; it performs particularly well with high-dimensional EEG data
and can handle non-linear correlations using kernels. Each method, TSception,
SVM, and EEGNet, offers unique advantages for EEG analysis. Neural network-
based, EEGNet and TSception are especially good at processing raw EEG data
and automatically extracting useful features. At the same time, SVM offers a
robust classification method with well-understood theoretical foundations.

5 Performance Evaluation

This research aims to improve understanding of cognitive states by estimating
mental workload through EEG, an essential tool in cognitive neuroscience. The
effectiveness of several advanced machine learning classifiers was evaluated on
the STEW dataset, a benchmark in cognitive load research. The study involved
two primary analyses: a binary classification task (No vs. SIMKAP) and a more
complex multi-class task (SIMKAP multi-task), designed to test the classifiers
under varying complexities of mental workload representation. Five classifiers
were assessed: SVM, EEGNet, TSception, Transformer, and a novel classifier
introduced in this study. Their performance was measured in terms of accuracy
and reliability. Results were substantiated by 95% confidence intervals to confirm
the robustness of the findings.

The results demonstrate significant contributions to the discourse on neu-
ral network-based approaches and machine learning techniques in EEG anal-
ysis. The ConvNeXt model, in particular, showcased exemplary performance
in accurately classifying mental workload levels under diverse conditions. This
achievement sets new standards for accuracy and reliability in mental workload
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Table 1. Performance Comparison on STEW dataset with 95% Confidence Interval

Classifier No vs SIMKAP task SIMKAP multi-task
2 class 3 class

SVM [6] 83.34± 0.39 83.21± 0.28

EEGNet [15] 84.33± 1.03 83.64± 1.33

TSception [10] 95.21± 0.53 94.73± 0.30

Transformer [29] 95.32± 0.00 88.72± 0.00

Proposed ConvNeXt 95.76± 0.51 95.11± 0.80

Fig. 2. Box plot for (a) ‘No vs SIMKAP task’ and (b) ‘SIMKAP multi-task’.

estimation. The analysis methodically presents classification accuracies, high-
lighting the technical strengths of this approach and its broader implications for
cognitive neuroscience and human-computer interaction.

The evaluation methodology utilizes the STEW dataset, organized into two
scenarios, to assess the model’s classification capabilities thoroughly. In the
binary classification scenario, the model distinguishes between a no-task base-
line and a defined cognitive task, known as the ‘No vs SIMKAP task.’ This
scenario is critical for evaluating the model’s accuracy in differentiating rest-
ing cognitive states from those involved in a SIMKAP task. The more complex
ternary classification scenario introduces a gradient of mental workload levels-
classified as low, medium, and high, together referred to as ‘SIMKAP multitask.’
This detailed evaluation demonstrates the model’s proficiency in differentiating
among varied cognitive loads, mirroring real-world conditions as depicted by the
multidimensional data of the STEW dataset.

Table 1 presents a comparative analysis of five classifiers: SVM, EEGNet,
TSception, Transformer, and the proposed ConvNeXt model, across the two
classification scenarios. The binary task involves two classes, while the multi-class
task includes three. This table not only highlights the performance metrics of
each classifier, presumably in accuracy percentages with 95% confidence interval,
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underscoring variability in performance across different trials or datasets. This
variability is crucial for evaluating the robustness and reliability of the models
in real-world applications. Moreover, Table 1 emphasizes the effectiveness of
advanced machine learning and neural network models in interpreting EEG data
for mental workload classification. Notably, TSception and the proposed method
exhibit exceptional promise, as indicated by their strong performance metrics.

The results demonstrate the variability in performance metrics of different
classifiers evaluated on the STEW dataset. The SVM classifier shows moderate
effectiveness, achieving 83.34% (±0.39) accuracy in the binary classification task
and 83.21% (±0.28) in the multi-class task. EEGNet exhibits slightly better per-
formance, with 84.33% (±1.03) accuracy for the binary task and 83.64% (±1.33)
for the multi-class task. TSception, a more advanced classifier, significantly out-
performs the other models with impressive accuracies of 95.21% (±0.53) in the
binary classification and 94.73% (±0.30) in the multi-class scenario. The Trans-
former model achieves high performance in the binary task with an accuracy of
95.32% (±0.00) but shows a drop in performance for the multi-class task with an
accuracy of 88.72% (±0.00). The proposed model records the highest accuracies
of 95.76% (±0.51) in the binary task and 95.11% (±0.80) in the multi-class task,
demonstrating superior capability in managing the classification challenges of
the STEW dataset.

These results underscore the comparative strengths and potential real-world
applicability of advanced neural network-based classifiers, particularly TSception
and the proposed model, in complex EEG data classification tasks. A detailed
boxplot presented in Figure 2 illustrates the distribution of classifier accuracies
across multiple trials, providing a visual performance comparison. While TScep-
tion closely rivals the proposed model’s effectiveness, it still performs excep-
tionally well, especially in EEG-based workload classification. Although outper-
formed by the more advanced classifiers, SVM maintains strong and reliable
performance across both tasks. Similarly, EEGNet, despite being the least accu-
rate of the tested classifiers, still holds its ground, particularly in the multi-class
scenario. This visual evidence, as depicted in the boxplot, highlights the impor-
tance of choosing an appropriate classifier based on the specific requirements
and complexities of the task, demonstrating that newer or more sophisticated
models like TSception or the proposed model can offer substantial benefits in
certain scenarios. The accuracy of the Transformer model is derived from the
respective research paper that utilized the same dataset. However, it did not
include the confidence interval, showing it as ±0.00.

Overall, the proposed model achieves the highest accuracy and robustness
across both classification tasks, affirming its superiority in addressing the chal-
lenges presented by the ‘No vs SIMKAP’ and ‘SIMKAP multi-task’ scenarios.
These findings represent a pivotal advancement in non-invasive methods for
quantifying mental workload, providing insights that could improve real-time
cognitive state assessment and enhance safety, efficiency, and user experience in
high-demand settings. The efficacy of the ConvNeXt model, tailored for EEG
signal analysis, underscores the potential of advanced machine learning classifiers
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in this field. Moving forward, this study sets the stage for further innovations in
mental workload assessment using EEG data, aiming to refine and expand the
applicability of these techniques in both theoretical and practical contexts.

By elucidating the strengths and limitations of current methodologies, this
research also suggests directions for future efforts to improve and innovate in the
area of mental workload estimation. The comparative analysis across different
models aids in understanding the potential of neural network-based approaches
for real-world applications, inspiring continued exploration and development in
cognitive neuroscience and related fields.

6 Conclusion

This study assessed the classification capabilities of advanced neural network-
based classifiers using the STEW dataset for binary and multi-class scenarios,
aiming to evaluate each model’s precision in distinguishing between a no-task
baseline and SIMKAP tasks for neuroscientific applications. The proposed model
displayed exceptional accuracy, demonstrating its potential for real-world neuro-
scientific settings, such as real-time mental workload assessments in critical sec-
tors like air traffic management and healthcare. This could significantly enhance
safety and efficiency.

The findings mark a significant advancement in mental workload estima-
tion through EEG analysis, achieved using a customized ConvNeXt model. This
model accomplished classification accuracies of 95.76% for the binary (No vs
SIMKAP task) and 95.11% for the ternary (SIMKAP multitask) classes, show-
casing the potential of deep learning in the sophisticated interpretation of EEG
data. These results contribute substantially to fields like cognitive neuroscience
and human-computer interaction.

Looking ahead, this study encourages further research to address current lim-
itations by expanding dataset diversity and exploring broader practical appli-
cations. By reinforcing the importance of selecting appropriate classifiers and
advancing machine learning in neuroscientific research, this work sets the stage
for future studies to create more intuitive and adaptive interfaces, meeting the
complex needs of diverse sectors. Further investigations should validate and
potentially broaden the applicability of these models in practical scenarios.
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Abstract. Driver fatigue detection is increasingly recognized as critical
for enhancing road safety. This study introduces a method for detecting
driver fatigue using the SEED-VIG dataset, a well-established bench-
mark in EEG-based vigilance analysis. By employing advanced pattern
recognition technologies, including machine learning and deep neural net-
works, EEG signals are meticulously analyzed to discern patterns indica-
tive of fatigue. This methodology combines feature extraction with a
classification framework to improve the accuracy of fatigue detection.
The proposed NLMDA-Net reached an impressive accuracy of 83.71% in
detecting fatigue from EEG signals by incorporating two novel atten-
tion modules designed specifically for EEG signals, the channel and
depth attention modules. NLMDA-Net effectively integrate features from
multiple dimensions, resulting in improved classification performance.
This success stems from integrating temporal convolutions and attention
mechanisms, which effectively interpret EEG data. Designed to capture
both temporal and spatial characteristics of EEG signals, deep learning
classifiers have proven superior to traditional methods. The results of this
study reveal a substantial enhancement in detection rates over existing
models, highlighting the efficacy of the proposed approach for practical
applications. The implications of this research are profound, extending
beyond academic realms to inform the development of more sophisticated
driver assistance systems. Incorporating this fatigue detection algorithm
into these systems could significantly reduce fatigue-related incidents on
the road, thus fostering safer driving conditions. This paper provides an
exhaustive analysis of the dataset, methods employed, results obtained,
and the potential real-world applications of the findings, aiming to con-
tribute significantly to advancements in automotive safety.
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1 Introduction

Enhancing road safety through effectively managing driver fatigue is paramount
in the automotive industry, given its significant role in global road accidents. This
prevalent issue impairs cognitive and motor functions, diminishing a driver’s
alertness and responsiveness to changing road conditions [8]. In light of these
concerns, this study focuses on fatigue detection using advanced computational
techniques applied to electroencephalogram (EEG) signals, a direct method has
shown promise over traditional indirect methods such as monitoring steering
wheel movements or analyzing eyelid closures.

Recent statistics indicate that driver fatigue is implicated in about 20% of
road accidents, underscoring the essential need for effective detection systems in
modern vehicles [26]. Unlike traditional approaches, which often result in delayed
fatigue detection, EEG-based methods allow for real-time, accurate assessments
by directly measuring neurological activity. These techniques utilize the dis-
tinct capabilities of EEG signals to mirror neurophysiological changes linked to
fatigue, capturing specific brain wave patterns such as theta and alpha waves.
This enables a precise evaluation of a driver’s vigilance levels, which is unachiev-
able through other methods [44]. Moreover, recent research has demonstrated
the feasibility of decoding cognitive states such as attention and distraction in
a real-life setting using EEG [19]. This suggests that EEG-based systems could
potentially be used to identify a wider range of driver states, including those
that may contribute to accidents beyond fatigue.

This study employs the SEED-VIG dataset [42], renowned for its applica-
tion in EEG-based vigilance estimation, facilitating the accurate examination of
signals pertinent to real-world driving situations. The research enhances pattern
recognition methods for robust feature extraction and effective classification of
fatigue states by integrating traditional machine learning algorithms with deep
neural networks. This dual approach significantly improves the accuracy and
reliability of fatigue detection systems, effectively overcoming the constraints of
existing models.

This paper introduces a unified lightweight NLMDA-Net to facilitate relevant
feature extraction from complex EEG signals with the help of multi-dimensional
attention modules. The contributions of this paper are as follows:

– A lightweight network, NLMDA-Net, is proposed for driver fatigue detection
using EEG data. It comprises the feature extraction capabilities of ConvNet
and EEGNet.

– Channel Attention Module: The module leverages a tensor product to expand
channel information into the depth dimension, enhancing the network’s abil-
ity to process and analyze spatial features in EEG signals. This innovation
increases sensitivity to spatial variations. Furthermore, the tanh function, a
non-linear activation mechanism, stabilizes the learning process by normaliz-
ing amplitude variability. Its properties prevent the dying gradient problem
and facilitate the capture of bi-directional relationships, which is essential for
focusing the attention mechanism on the most informative EEG features.
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– Parameter Efficiency: By reducing the number of convolution kernels as the
network depth increases, NLMDA-Net tailors its architecture better to suit
the predominant information-rich time domain of EEG signals, enhancing the
network’s efficiency and effectiveness.

– Adaptation to Data Scarcity: The network design is particularly suited for
scenarios with limited EEG data, preventing over-fitting and accommodating
EEG’s low spatial resolution characteristics.

The structure of this paper is designed to methodically explore EEG-based
fatigue detection and its implications for enhancing road safety technologies.
Section 2 reviews recent literature on driver drowsiness and vigilance. Section 3
explains the methodology employed. Section 4 presents the empirical findings.
The paper is concluded in Section 5, where the discussion extends to this
research’s implications and future directions.

2 Related Work

Early research in EEG-based fatigue detection has primarily focused on identi-
fying fatigue-associated biomarkers, such as the theta and alpha EEG frequency
bands, such as variations in theta and alpha EEG frequency bands [14,16]. Subse-
quent advancements have introduced sophisticated signal processing techniques
to improve detection accuracy, incorporating wavelet transforms and power spec-
tral density analysis [1,5]. The advent of deep learning has significantly trans-
formed EEG analysis. In particular, Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) have become increasingly prevalent, appre-
ciated for their adept handling of spatial and temporal data, respectively [3,32].

Recent efforts have seen the development of hybrid models that combine
CNNs with RNNs or other machine learning techniques to capitalize on their
spatial and temporal feature extraction capabilities [2,40]. Comparative stud-
ies of deep learning architectures indicate that CNNs provide superior accuracy
and enhance computational efficiency, rendering them ideal for real-time appli-
cations [38]. Deep learning models generally surpass traditional machine learning
methods due to their enhanced capacity to manage large, complex datasets with-
out extensive feature engineering [10,37].

Furthermore, the application of transfer learning with pre-trained models
on EEG data has demonstrated potential in mitigating the challenges posed by
the need for large labelled datasets, which are often a limiting factor in EEG
research [31]. Additionally, recent advancements in synthetic data generation [34]
also offer potential to augment real-world datasets and improve model perfor-
mance. Transformers and attention mechanisms have emerged as powerful tools
for EEG analysis [20,33]. Furthermore, recent studies have explored the integra-
tion of attention mechanisms into deep neural networks to enhance the identifi-
cation of fatigue-related EEG features [11,25]. However, challenges remain, such
as the variability in EEG signals across individuals, which can affect model gen-
eralization [18]. Additionally, the presence of artifacts in EEG data due to head
movements or external electrical interference continues to be a significant issue,
potentially compromising the effectiveness of fatigue detection systems [21].
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3 Proposed Methodology: NLMDA-Net

Fig. 1. Architecture of NLMDA-Net: It comprises the benchmark network, the channel
attention module, and the depth attention module. Channel attention is facilitated
through a tensor product, and depth attention is achieved through a Hadamard product
of tensors. NLMDA-Net’s output varies with the number of task categories. Notably,
C represents the number of EEG channels, and T signifies the time samples in a trial.

The NLMDA-Net architecture shown in Figure 1 represents a novel integra-
tion of benchmark network capabilities enhanced by two specialized attention
modules: the channel attention and the depth attention modules. The channel
attention module is designed to strengthen the network’s ability to discern rele-
vant information within the spatial dimensions of EEG signals. Complementarily,
the depth attention module aims to refine the representation of high-dimensional
EEG features, ensuring a deeper and more targeted analysis. These modules are
strategically developed to be compatible with any existing convolutional neural
network structures.

As illustrated in Figure 1, the conceptual foundation of NLMDA-Net is
intricately tied to the fundamental properties of EEG signals. Contrary to the
prevailing trend in deep learning, which favours increasingly complex architec-
tures [12,22,35,36], insights from neuroscience [17,28,29] advocate for the inher-
ent simplicity of EEG characteristics. This simplicity suggests that even a shal-
lower network architecture might suffice for effective EEG signal decoding.

Moreover, the typical scarcity of EEG data combined with the high data
requirements of neural network models highlights the necessity for a more
streamlined and lightweight network design. Such a design is essential to prevent
over-fitting and accommodate the low spatial resolution of EEG and the diverse
informational content across its temporal and spatial dimensions. The tailored
approach provided by NLMDA-Net, depicted in Figure 1, is particularly suited
to these unique challenges.

The design considerations of NLMDA-Net and its compatibility with exist-
ing architectures are further detailed in the subsequent sections, providing a
comprehensive overview of each component within the NLMDA-Net framework.
This structured exposition underscores the architecture’s potential to improve
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EEG-based applications through focused attention mechanisms and simplified
network design.

3.1 Benchmark Network

The NLMDA-Net architecture merges the foundational feature extraction capa-
bilities of ConvNet [30] with the advanced separable convolution technique from
EEGNet [23], optimizing the extraction of temporal and spatial features from
EEG signals. This architecture strategically employs a two-layer convolutional
setup comprising a temporal convolutional layer and a spatial convolutional
layer, utilizing separable convolutions to reduce the network’s parameter count
effectively.

In this approach, the temporal convolutional layer is characterized by a ker-
nel size of (12, 1, 9), where 12 denotes the number of kernels, and the kernels’
spatial and temporal dimensions are one and nine, respectively. Conversely, the
spatial convolutional layer employs a kernel size of (7, C, 1), with C repre-
senting the number of EEG channels. These consistent kernel dimensions are
upheld throughout all experiments conducted within the NLMDA-Net frame-
work, ensuring a standardized assessment of the network’s efficacy in extracting
features from EEG data.

Moreover, NLMDA-Net employs the Gaussian Error Linear Unit (GELU)
activation function, as introduced by Hendrycks et al. [13], offering improved
smoothness compared to the Exponential Linear Unit (ELU) [6] utilized in pre-
vious models such as EEGNet and ConvNet. To effectively handle the typically
substantial number of parameters required by fully connected layers, NLMDA-
Net integrates adaptive average pooling. This technique dynamically adjusts the
pooling kernel size to (1, kpooling), where kpooling is detailed in Equation (1). This
adaptive approach ensures efficient parameter management while preserving the
network’s feature extraction capabilities.

kpooling = max(1, �f/10/N�) (1)

where, the operator �� represents the mathematical operation of rounding down
to the nearest integer. It’s applied concerning the input signal frequency, denoted
by f , where N signifies the number of training samples. The determination of
N is intricately tailored to accommodate the intricacies of EEG data collection,
as elucidated by Equation (2). This method ensures the parameters are finely
tuned to align with the dataset’s unique characteristics.

N = max(1, �Nt/200�) (2)

where, Nt denotes the number of training samples, a pivotal parameter crucial
for quantifying the dataset size utilized in model training. Its significance lies in
its direct impact on the robustness and generalizability of the learned features.

NLMDA-Net distinctively adapts its architecture by reducing the number of
convolution kernels from 12 to 1 as the network depth increases, a decision driven
by two primary considerations. Firstly, employing a higher number of kernels in
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the spatial layers risks rapid over-fitting, leading to an exponential increase in the
parameters of the fully connected layers, potentially compromising the network’s
capability to extract meaningful features. Secondly, considering that EEG signals
predominantly contain richer information in the time domain than the spatial
domain, it is pragmatic to allocate more kernels for extracting time domain
features. This approach enhances the network’s ability to effectively capture the
most relevant data.

3.2 Channel Attention Module

In EEG data acquisition, the signal captured by a single electrode channel is a
composite of various neuronal activities influenced by volume conduction effects.
Certain studies have employed source reconstruction techniques to enhance the
spatial resolution of EEG signals to identify neuronal regions associated with
specific EEG activities for in-depth analysis [4,15]. However, these techniques
often require extensive prior knowledge and face integration challenges with end-
to-end neural network models, complicating the decoding of EEG signals across
different paradigms.

In the context of neural network architecture, models tailored explicitly for
EEG decoding, such as EEGNet [23], ConvNet [30], and DRDA [43], typically
prioritize temporal convolutions over spatial ones. This approach can result in a
relative neglect of spatial dimensions within EEG signals. To bridge this gap, a
novel channel attention module is introduced that enhances the neural network’s
ability to assimilate spatial information from EEG data. This module draws
conceptual parallels with source reconstruction techniques, acting on the input
data to expand its spatial dimensions into the depth dimension through a Tensor
product. This adaptation aims to improve the processing and analysis of spatial
features within EEG signals, enhancing the overall efficacy of the neural network
in decoding complex EEG data.

In this model, consider an EEG input sample denoted by x, where x ∈
R

1∗C∗T . Here, C represents the number of channels, and T denotes the time
samples. Additionally, a tensor c is introduced, which follows a normal distri-
bution, defined as c ∈ R

D∗1∗C , where D corresponds to both the number of
instances and convolutional kernels.

The channel attention module in the architecture utilizes a tensor product to
project channel information from x into the depth dimension, D. This operation
preserves the spatial information inherent in the channel data and effectively
integrates it with the following temporal convolution. The mathematical repre-
sentation of this operation is outlined in the subsequent formula, illustrating how
the module enhances the feature extraction capabilities of the neural network
by augmenting the depth dimension with significant channel-specific informa-
tion. This approach facilitates better analysis of EEG signals by leveraging both
spatial and temporal dimensions efficiently. The operation is mathematically
represented as:
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X
′
hct =

∑

d

XdctChdc (3)

In the employed channel attention module, subscripts in the formula denote
the respective dimensions, with matching subscript letters indicating that the
two tensors share the same dimensionality in that specified dimension. This mod-
ule introduces D × C trainable parameters, where D is a hyper-parameter that
can be optimized for specific tasks to enhance performance potentially. How-
ever, to maintain a consistent basis for comparison with NLMDA-Net and other
benchmark models, D is fixed at 9. This setting introduces significantly fewer
parameters than traditional models and effectively maps spatial information into
the depth dimension. This strategic approach offers a novel perspective on the
attention mechanisms utilized for EEG signals.

The transformation of the input X and its subsequent processing through
the neural network’s sequential components involves reshaping and applying
linear layers. The initial step in this transformation process features a linear
transformation followed by a non-linear activation, specifically using the tanh
function. This methodological choice facilitates the efficient integration and pro-
cessing of EEG data, emphasizing the innovative use of attention mechanisms to
enhance the depth dimension’s role in spatial feature representation. The first
linear transformation with a non-linear activation tanh is represented as

E = W2 ∗ tanh(W1 ∗ X + b1) (4)

α = softmax(E) =
exp(E)∑
exp(E)

(5)

Contextb,c,n,t = αb,c,n · Xb,c,t (6)

3.3 Effect of Non-Linearity

The hyperbolic tangent (tanh) function, renowned for its output range of [-
1, 1], emerges as a potent normalization tool for processing EEG signals. These
signals exhibit substantial amplitude fluctuations across diverse recording condi-
tions and subjects. Normalizing such variations with tanh fosters stable learning
dynamics, ensuring consistent neural network performance across heterogeneous
datasets. Tanh’s hallmark smoothness and continuous nature, coupled with a
non-zero derivative across its operational span, are pivotal in facilitating gradient
flow during backpropagation. This characteristic mitigates the risk of encoun-
tering the ‘dying gradient problem’ prevalent in rectified linear units (ReLU),
where gradients may diminish to zero, impeding further learning.

Furthermore, tanh’s saturation at the extremities of its range offers resilience
against outliers and extreme values in the data, facilitating more robust conver-
gence during training. In contrast to linear activation functions like ReLU, tanh’s
capacity to yield positive and negative outputs enables the model to capture bi-
directional data relationships effectively. This bi-directionality proves particu-
larly advantageous in the context of the channel attention module within neural
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networks. Here, tanh synergizes with the softmax function, a staple in atten-
tion mechanisms, enhancing the latter’s efficacy in spotlighting the most salient
features in EEG data. The diverse output range of tanh empowers softmax to
operate across a broad spectrum of values, thereby augmenting the attention
mechanism’s ability to emphasize informative data attributes.

3.4 Depth Attention Module

In computer vision, feature maps in the depth dimension are often regarded as
detectors of specific features within an input, identifying ‘what’ is meaningful
([39,41]. This principle is crucial in models such as the Convolutional Block
Attention Module (CBAM), where depth attention aggregates depth informa-
tion through global pooling and dense layers to refine feature focus[39]. However,
this methodology proves less effective when decoding EEG signals due to the
distinct nature of spatial and temporal dimensions in EEG data. In EEG, the
global pooling and subsequent fully connected layers tend to oversimplify the
depth information and drastically increase the model parameters, potentially
leading to overfitting and degraded performance of the base network. A special-
ized depth attention module is proposed, tailored for EEG decoding to address
these challenges. This module integrates concepts from local cross-depth inter-
action techniques, effectively balancing parameter efficiency and depth feature
utilization.

The depth attention module is strategically positioned between the tempo-
ral and spatial convolution layers, encompassing three main components: Semi-
Global Pooling, Local Cross-Depth Interaction, and Adaptive Weighting. In con-
trast to conventional global pooling methods, Semi-Global Pooling averages the
spatial dimensions while retaining temporal details, thus preserving a more com-
prehensive representation of depth features. Following this pooling, a convolu-
tional layer is employed to encourage local interactions among features, sub-
stantially lowering the trainable parameters’ count relative to fully connected
layers. Subsequently, features undergo adaptive weighting and are transformed
into probabilistic values via a softmax function. To maintain the amplitude sen-
sitivity crucial for EEG signals, these softmax outputs are amplified to the level
of the original inputs using a Hadamard product.

M(F ) = (Softmax
(
Conv

(
Pooling ∗ (F )T

))∗
D

′
)T (7)

where, F ∈ R
Do∗Co∗To represents the input feature tensor, capturing the dimen-

sions of depth (Do), channels (Co), and temporal sequence (To) and M(F ) ∈
R

Do∗1∗To denotes the output feature map, simplifying the channels to one while
maintaining depth and time dimensions. Pooling refers to the semi-global pooling
operation, Conv indicates the convolution layer, and T represents the transpose
operation applied to the spatial and depth dimensions of the tensor.
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4 Results and Discussion

4.1 Experimental Data

The SEED-VIG dataset [42] is an open-source resource for investigating vigi-
lance and driver drowsiness through EEG data collected from 23 participants
to ensure diverse subject representation. Participants underwent a driving sim-
ulation resembling real-world conditions, enhancing the dataset’s applicability
for drowsiness studies. EEG recordings utilized 17 channels based on the 1020
system, covering key temporal and posterior regions (FT7, FT8, T7, T8, TP7,
TP8 for temporal; CP1, CP2, P1, PZ, P2, PO3, POZ, PO4, O1, OZ, O2 for
posterior), ensuring comprehensive brain activity capture. Recorded at 1000Hz,
the dataset offers high temporal resolution for detailed vigilance and drowsiness
analysis. Fatigue induction was optimized by scheduling sessions post-lunch.

The drowsiness states are calculated as a percentage of eye closure time per
unit time (PERCLOS). PERCLOS were categorized into ‘awake’ and ‘drowsy’
states at a 0.5 threshold. This binary classification enabled precise evaluation
of this method’s ability to detect driver fatigue. EEG signals are band-pass
filtered between 1-75 Hz to reduce artifacts and down-sampled with a sampling
frequency of 200 Hz. The dataset was epoched into one-second intervals, resulting
in the shape of (1, channel count, EEG length), i.e., (1, 17, 200), yielding 40710
samples. The dataset is split into 70:15:15 ratios for train, validation, and test
sets.

4.2 Implementation Details

The experimental setup involved a DELL Precision 7820 Tower Workstation with
Ubuntu 22.04 OS, Intel Core(TM) Xeon Silver 4216 CPU, and an NVIDIA RTX
A2000 12GB GPU. This hardware facilitated the implementation of DL models
using Python 3.10 and the PyTorch library. The Adam optimizer, known for its
computational efficiency, was used with default parameters (η = 0.001, β1 = 0.9,
β2 = 0.999). EEGNet and TSception were trained for 100 epochs, with batches
of 16 and a learning rate of 1e−4. The Radial Basis Function (RBF) kernel from
scikit-learn [27] was used with default settings for SVM. Classification accuracy
was determined through stratified five-fold cross-validation, averaging the results
for comprehensive assessment.

4.3 Evaluation

The data in Table 1 compares various machine learning classifiers, analyzing
their accuracy in detecting driver fatigue using the SEED-VIG dataset. This
study encompasses a range of classifiers, each employing unique approaches and
architectures designed to process and predict based on EEG data.

The SVM classifier exhibits the lowest accuracy at 65.52%, suggesting its lin-
ear operational nature may be less effective at interpreting the complex patterns
present in EEG signals, in contrast to more sophisticated, non-linear models. On
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Table 1. Comparison of Classifier Performance for Detecting Driver Drowsiness Using
SEED-VIG Dataset, Shown with 95% Confidence Intervals

Classifier Accuracy

SVM [7] 65.52± 0.02

EEGNet [23] 80.74± 0.75

TSception [9] 83.15± 0.36

ConvNext [24] 81.95± 0.61

LMDA [25] 81.06± 0.99

Proposed NLMDA-Net83.71± 0.30

Fig. 2. Boxplot Illustrating the Distribution of Classifier Accuracies for Driver Drowsi-
ness Detection on the SEED-VIG Dataset

the other hand, EEGNet, a neural network specifically optimized for EEG data
processing, achieves an improved accuracy of 80.74%. Its architecture, which
adeptly handles both spatial and temporal dynamics of EEG signals, signifi-
cantly outperforms traditional machine learning models like SVM.

Further analysis reveals that TSception and NLMDA-Net demonstrate the
highest accuracies, with scores of 83.15% and 83.71%, respectively. These mod-
els incorporate advanced features such as temporal convolutions and attention
mechanisms, enhancing their capability to capture subtle EEG signal changes
associated with fatigue. ConvNext and LMDA also perform commendably, with
accuracies of 81.95% and 81.06%, respectively. These classifiers benefit from
recent advancements in convolutional network design and machine learning tech-
niques tailored to handle large-scale, complex data structures typical of EEG
datasets.
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The results from Table 1 and boxplot from Figure 2 consistently indicate that
classifiers utilizing deep learning architectures, particularly those incorporating
specialized mechanisms for extracting temporal and spatial features, surpass tra-
ditional machine learning methods in performance. This trend underscores the
advantages of models that can adaptively learn from the intrinsic characteristics
of EEG data related to drowsiness, suggesting a strategic direction for future
development in this area. The confidence intervals reported also provide valu-
able insight into the consistency of each model’s performance across different
experimental setups, reinforcing the reliability of these findings.

5 Conclusion

This study addresses the critical issue of driver fatigue by applying advanced
computational techniques to EEG signals. This provides a real-time, direct
method for fatigue detection, surpassing traditional methods like monitoring
steering movements or eyelid activity. Utilizing the SEED-VIG dataset, the
research combines traditional machine learning and deep neural networks to
refine pattern recognition techniques, enhancing the detection systems’ accuracy
and reliability. The results, methodology, and relevant literature are thoroughly
explored, leading to discussions on the implications and future directions for
enhancing road safety through improved fatigue detection technologies. Adopt-
ing deep learning, particularly CNNs and RNNs, has revolutionized EEG analysis
by effectively handling spatial and temporal data, with hybrid models enhanc-
ing real-time feature extraction. Deep learning excels over traditional methods
by managing large datasets with minimal feature engineering. Transfer learning
and attention mechanisms have also emerged as solutions to challenges such as
data variability and artifacts, improving signal quality and model generalizabil-
ity. However, refining fatigue detection systems’ accuracy and broad applicability
remains a challenge.

This study uses the SEED-VIG dataset to evaluate the efficacy of various
machine-learning classifiers in detecting driver drowsiness. The results reveal
that deep learning models, especially NLMDA-Net, show superior performance,
achieving accuracy up to 83.71%. These models excel due to their advanced
features, such as temporal convolutions and attention mechanisms, effectively
capturing EEG signal differences associated with fatigue. This suggests a signifi-
cant potential for deep learning approaches to enhance fatigue detection systems,
advocating for a strategic pivot towards these technologies to improve the accu-
racy and generalizability of drowsiness detection methods. The consistency of
model performances, supported by confidence intervals, reinforces the reliability
of these findings. Future research in EEG-based fatigue detection should prior-
itize advancements that bolster accuracy and usability. Integrating multimodal
data, including heart rate variability, eye tracking, and contextual driving infor-
mation, can enrich the understanding of the driver’s state, facilitating a more
comprehensive analysis.
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Abstract. In the domain of electroencephalogram (EEG) research, the
generalization of workload classification across different tasks, subjects,
and channel configurations remains a significant challenge, primarily due
to the field’s tradition of conducting within-task studies in controlled,
lab-based environments. This study pioneers the application of domain
adaptation techniques to EEG data, aiming to transcend these limita-
tions by facilitating consistent cross-task classification of workload lev-
els. Central to our methodology is the integration of source localiza-
tion techniques that render EEG data channel agnostic, thus enhanc-
ing our model’s capacity to generalize across diverse channel configu-
rations. By utilizing two disparate datasets–one derived from arithmetic
tasks and the other from working memory (n-back) tasks—we implement
binary classification to discern between low and high workload states.
The core of our approach is a modified Convolutional Neural Network
(CNN) model, EEGNet, which is specifically designed to capture the
temporal and spatial dynamics inherent in EEG data. Enhanced with
Maximum Classifier Discrepancy (MCD) for domain adaptation, and
bolstered by source localization, this strategic combination enables an
impressive 81.76% accuracy in cross-task classification. The success of
our strategy in cross-task, cross-channel, and cross-subject classification
not only demonstrates its potential for enhancing the generalizability of
EEG data analysis but also marks a significant step forward in apply-
ing EEG-based workload classification in real-world scenarios, beyond
the confines of laboratory settings. The implications of this research are
vast, offering a promising avenue for the generalization of EEG data
classification across various domains.

Keywords: EEG · Cognitive Workload · Cross Task · Domain
Adaptation

1 Introduction

Cognitive workload, defined as the mental effort required to perform a task,
plays a pivotal role in various domains such as aviation, healthcare, and human-
computer interaction [1]. Accurate assessment of cognitive workload not only
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enhances task performance but also contributes to overall well-being and safety.
One promising avenue for quantifying cognitive workload is through the analysis
of electroencephalography (EEG) signals, which reflect brain activity associated
with different cognitive states. Understanding cognitive processes, such as rea-
soning and problem-solving, is key to deciphering the brain’s operations amid
its complex network of neurons and synapses [2]. Despite EEG’s acknowledged
capability in measuring cognitive workload [3,4], its application faces challenges
in consistency across varying tasks and individuals due to the inherent differ-
ences in brain dynamics and signal properties. In the realm of automation, the
emphasis is placed on developing machines capable of recognizing human cog-
nitive states, aiming to enhance the system’s overall effectiveness [5]. EEG data
is widely used for monitoring cognitive workload in fields such as neuroscience,
psychology, and human-computer interaction. However, the task-specific nature
of EEG signals poses a challenge for generalizing workload classifiers across dif-
ferent tasks.

The EEG signals may vary among individuals and tasks, presenting both
within-subject and cross subject differences, as well as variations across different
tasks. These differences influence the creation of models specific to individual
subjects, models applicable across different subjects, and models suitable for
cross tasks [6]. Workload classifiers are trained and evaluated on the same task
or dataset, limiting their generalizability to new tasks or domains. This limitation
hinders the deployment of workload classification systems in real-world settings
where tasks may vary widely. Addressing this gap requires the development of
robust workload classifiers capable of adapting to diverse task environments—a
method known as cross task classification.

To address these challenges, researchers have employed advanced signal pro-
cessing techniques, feature extraction methods, and machine learning algorithms
[7,8]. In particular, domain adaptation techniques have been identified as promis-
ing for aligning feature distributions between varied experimental conditions,
thereby enhancing classifier robustness [9,10]. Yet, many of these studies focus
predominantly on single-task scenarios, leaving a gap in comprehensive analyses
that span across multiple tasks, subjects, and channels.

The concept of cross-task modeling involves training a model on one task and
then testing it on another task with similarities but distinctions[11–13]. Although
different cognitive tasks may trigger different cognitive resources, cognitive work-
load primarily revolves around the overall amount of cognitive resources utilized,
rather than their specific composition. Consequently, there is potential to devise
a versatile cognitive workload recognition model capable of discerning workload
levels across diverse tasks [14].

Several approaches have been proposed to address the challenge of cross-task
and cross-domain EEG classification. Baldwin et al. [15] attempted cross-task
workload classification using artificial neural networks, but achieved poor per-
formance below chance levels. Ke et al. [16] had more success using feature selec-
tion and support vector machine regression to identify task-independent EEG
features for cross-task workload estimation. Zhang et al. [17] proposed a deep
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domain adaptation framework using adversarial training to align EEG feature
distributions across tasks and subjects. Dimitrakopoulos et al. [18] developed a
method using functional connectivity features and sequential feature selection to
achieve 87% accuracy for cross-task workload classification. More recently, Zhou
et al. [19] employed a deep domain adaptation approach with feature align-
ment and adversarial training, improving cross-subject workload classification
accuracy by 2-9% over baseline methods. Lan et al. [20] applied domain adap-
tation techniques to EEG-based emotion recognition achieving significant accu-
racy improvements of up to 13.40% across datasets, showcasing the potential for
enhanced subject-independent emotion recognition. These studies demonstrate
the potential of domain adaptation techniques to improve the generalization of
EEG-based mental state classification across different tasks and subjects.

This paper makes several significant contributions to the advancement of
EEG-based classification systems, emphasizing enhanced adaptability and gen-
eralizability across various analytical dimensions:

1. Cross-Task and Cross-Subject Generalizability: Our framework excels
in generalizing EEG classification across diverse cognitive tasks and varied
subjects, demonstrating robust performance from Mental Arithmetic to N-
Back tasks. This adaptability is powered by our innovative use of domain
adaptation techniques and source localization, which ensures effective classi-
fication regardless of task or subject variability. Such capabilities are crucial
for applications that demand reliable cognitive assessments across different
populations.

2. Effective Domain Adaptation: The implementation of Maximum Classi-
fier Discrepancy (MCD) for domain adaptation significantly enhances the
model’s performance in cross-task scenarios. Our findings, including an
increase in accuracy to 81.76% under domain adaptation, validate the effi-
cacy of MCD in adjusting the model to handle variations arising from different
experimental conditions and task complexities.

3. Standardization of EEG Data Processing: By standardizing EEG data
into a common brain space using source localization techniques, our study sets
a new precedent for ensuring consistent data comparability across sessions
and channels. This approach not only aids in maintaining the integrity of
EEG analyses but also supports the reproducibility of research findings across
varied setups and equipment.

The remaining sections of the paper are structured as follows. Section 2
provides a brief overview of datasets, EEG pre-processing, Source Localization,
Model Architecture, domain adaptation and relevant methodologies. The ensuing
section, Section 3 delves into the key discoveries derived from the analysis and
contrasts the outcomes to assess the effectiveness of the proposed approaches.
Section 4 offers concluding remarks for the entire paper.
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2 Methods

Utilizing datasets from varied cognitive tasks, the methods involve thorough
preprocessing, source localization techniques, and the deployment of advanced
models for classification. These steps aim to assess the generalizability and effi-
cacy of EEG signal classification across different cognitive states.

2.1 Dataset

To explore the robustness of EEG classification across various conditions, our
study leverages two distinct datasets corresponding to different cognitive tasks.
The first dataset comprises EEG recordings from participants engaged in a Men-
tal Arithmetic task and is sourced from the study by Zyma et al. [21], which is
publicly available on the PhysioNet platform [22]. The second dataset is derived
from a Working Memory task (n-back), obtained from the research conducted by
Shin et al. [23]. These datasets provide a foundation for evaluating the general-
izability of EEG classification across tasks, channels, and subjects, presenting a
comprehensive perspective on the applicability of our models to varied cognitive
evaluations.

Dataset 1: Mental Arithmetic Task The Mental Arithmetic task dataset
in this study consists of EEG recordings from 36 healthy participants, using
a Neurocom monopolar 23-channel EEG system following the 10-20 electrode
placement. The EEG data, sampled at 500 Hz, include a 180-second resting phase
and a 60-second active mental arithmetic phase. For balanced analysis, only the
central 60 seconds of the resting phase were used, equivalent to the active task
duration. We categorize the resting phase as representing low workload and the
active phase as high workload conditions.

Dataset 2: Working Memory (n-back) Task The N-Back task dataset
was collected from 26 healthy individuals, utilizing a 30 channel Brain Products
BrainAmp EEG with a sampling frequency of 200 Hz, placed according to the
international 10-5 system. The dataset included three task conditions: 0-back,
2-back, and 3-back, designed to assess varying cognitive loads. For our analysis,
we specifically focused on the 0-back and 3-back tasks to represent low and high
workloads, respectively.

2.2 EEG Data Processing

This section details the precise EEG data processing steps implemented to stan-
dardize and enhance the signals.
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Fig. 1. Signal Processing and Classification Pipeline: Data cleaning and pre-processing
with filtering and ICA, followed by source localization to make datasets channel-
agnostic and classification through within-task, cross-task, and domain adaptation
strategies.

Preprocessing To ensure the integrity and comparability of EEG data across
different sessions and conditions, the following preprocessing steps are employed
(shown in Figure 1): bandpass filtering to restrict the frequency range to 0.5–45
Hz, notch filtering at 50 Hz to remove electrical line noise, artifact correction
using Independent Component Analysis (ICA) to remove eye blinks and cardiac
signals, re-referencing the data to an average reference, resampling to 128 Hz
to standardize sampling frequency and reduce computational load, and data
epoching where fixed-length segments of 1 second with a 0.5-second overlap are
created for continuous data coverage during analysis.

Source Localization Following the preprocessing of EEG data, source local-
ization techniques are applied to convert data from electrode space to a stan-
dardized brain space using the Desikan-Killiany atlas. This step is essential for
comparing and combining datasets effectively.

The process involves setting up the source space and boundary element model
(BEM) using a standardized MRI subject (‘fsaverage’) from MNE’s configura-
tion. Specific steps include creating a source space with octahedron subdivisions
(oct6), generating the BEM model and solution, and defining the transformation
applicable to ‘fsaverage’.

The localization to the source space is achieved through the following steps
(as shown in Figure 1):

– Forward Solution: Compute a forward solution [24] to model the relation-
ship between the source spaces and the EEG sensors,

F = GS,

where G is the lead field matrix representing the gain of each sensor to each
source and S denotes the source strengths.
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– Noise Covariance: Estimate the noise covariance [25] from the data to
regularize the source estimation,

C =
1

N − 1

N∑

i=1

(Ei −E)(Ei −E)�,

where Ei are the EEG data epochs and E is the mean over all epochs.
– Inverse Operator: Create an inverse operator using the forward solution

and noise covariance. This operator is used to compute the neural source
estimates,

M = (G�C−1G+ αI)−1G�C−1,

where α is the regularization parameter, and I is the identity matrix.
– Source Estimation: Apply the inverse operator to the epochs to retrieve

source time courses, which are then mapped to the Desikan-Killiany atlas
[26],

St = ME,

and is a crucial step for determining the localization of neural activity [27].
– Atlas Conversion: Extract the mean time course from each brain region

as defined by the atlas to facilitate direct comparisons across subjects and
sessions,

Tr =
1

Nr

∑

j∈R

(St,j),

where R represents the set of sources within the region r and Nr is the number
of sources in r.

This methodology allows the EEG data to be represented in a common brain
space, enhancing the interpretability and comparability of the results across dif-
ferent datasets. Following this step, the spatial dimension of the data corresponds
to 68 channels, representing the 68 brain regions defined in the Desikan-Killiany
atlas. Consequently, the shape of each epoch is transformed to 68x128, indicating
68 brain regions and 128 samples per second. Figure 2 shows the output after
EEG source localization which is used as the input for the classification.

2.3 Classification Methods

This section outlines the advanced classification techniques used to analyze EEG
data, focusing on the models and configurations designed specifically for identi-
fying cross-task workload levels.

Base Model (Modified EEGNet) EEGNet [9] is selected as the base
model for classification due to its compact and efficient architecture specifi-
cally designed to handle the high-dimensional and noisy nature of EEG signals.
This modified version of EEGNet (as shown in Table 1) is particularly tailored
to align with the specific requirements of our EEG datasets, which consist of
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Fig. 2. Output after EEG Source Localization Visualization (a) Arithmetic task
dataset (b) Working memory (n-back) task dataset

data segmented into one-second epochs, each comprising 128 time points and
originating from 68 distinct brain regions or channels.

The architecture has been modified to include:

– Temporal and Spatial Filtering: The model uses F1, the number of tem-
poral filters, to initially transform the EEG data across the time dimension.
This is complemented by a depth multiplier, D, representing the number of
spatial filters per channel, which helps in extracting spatial features specific
to each EEG channel through depthwise convolutions.

– Complex Feature Extraction: The number of pointwise filters, F2(= D×
F1), is optimized to further process the features, enhancing the model’s ability
to distinguish between different brain states or conditions effectively.

– Classification: The output layer is designed to reflect the number of classes,
N , which categorizes the EEG data into predefined classes based on the
learned features.

This configuration not only ensures that EEGNet remains lightweight and
fast but also improves its accuracy and generalizability across different EEG
tasks. Multiple configurations of F1 and D, such as (4, 2) and (8, 2), were
tested. The best results were achieved with F1 = 8 and D = 4, which we
have used throughout the study to optimize performance, achieving a balance
between computational efficiency and the capability to perform detailed and
robust classification of EEG signals.
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Domain Adaptation using Maximum Classifier Discrepancy In our app-
roach, we employ the Maximum Classifier Discrepancy (MCD) [28] technique for
domain adaptation across two distinct EEG tasks: an arithmetic task and a work-
ing memory task. MCD leverages adversarial learning principles to align feature
distributions from the source and target domains by maximizing the discrepancy
between two classifiers, F1 and F2, both instances of a modified EEGNet model.
The feature generator G transforms EEG signals, ensuring their dimensions are
suitable for EEGNet classification. The alignment between domains is driven
by the discrepancy loss function d(p1, p2), which quantifies the mean absolute
error between the classifiers’ predictions, serving as a critical component of the
adversarial training mechanism integral to MCD.

Table 1. Modified EEGNet architecture, where C represents the number of channels
or brain regions, set at 68. T denotes the number of time points per epoch, which is 128
in a one-second sample. F1 is the number of temporal filters, D the depth multiplier
indicating the number of spatial filters, F2(= D×F1) the number of pointwise filters,
and N the number of classes.

Layer Filters Size Output Activation Options

Reshape - - C × T × 1 - -
Conv2D F1 (1, T

2
)C × T × F1 Linear Padding=same

Batch Normalization - - C × T × F1 - -
Depthwise Conv2D D*F1 (C, 1) 1× T ×D × F1 Linear Padding=valid, Depth=D, MaxNorm(1)
Batch Normalization - - 1× T ×D × F1 - -
Activation - - 1× T ×D × F1 ELU -
Average Pooling2D - (1, 4) 1× T

4
×D × F1 - -

Dropout - - 1× T
4
×D × F1 - Rate=0.25

Separable Conv2D F2 (1, T
8
) 1× T

8
× F2 Linear Padding=same

Batch Normalization - - 1× T
8
× F2 - -

Activation - - 1× T
8
× F2 ELU -

Average Pooling2D - (1, 8) 1× T
32

× F2 - -
Dropout - - 1× T

32
× F2 - Rate=0.25

Flatten - - F2× T
32

- -
Dense - - N × (F2× T

32
) ReLU MaxNorm(0.25)

Dense - - 1 Sigmoid MaxNorm(0.25)

Generator Architecture: The generator network is expertly constructed to trans-
form EEG input while preserving its original shape for compatibility with EEG-
Net classifiers. It is a sequential convolutional model that ensures the dimensions
of the input EEG data, consisting of 68 channels by 128 time points, remain
intact through each layer. The use of ‘same’ padding and specific activation
functions within the network facilitates this preservation of spatial dimensions.
The detailed architecture of the generator network, including the layers, filter
sizes, and activations, is delineated in Table 2, highlighting its role as an integral
component in our domain adaptation framework.
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Fig. 3. Schematic of the adaptive workload prediction model: (a) Training with source
samples Xs, utilizing a shared generator G and two distinct classifiers F1 and F2

for workload categorization. (b) showcases the maximization of the discrepancy on
the target sample Xt, fixing the generator G and updating classifier F1 and F2. (c)
illustrates the minimization of discrepancy, updating G and fixing F1 and F2, to refine
the prediction accuracy on Xt.

Table 2. Generator Network Architecture

Layer Filters Size Output Activation Options

InputLayer - - 68× 128× 1 - -
Conv2D 32 (3, 3) 68× 128× 32ReLU Padding=same
Batch Normalization - - 68× 128× 32 - -
Conv2D 64 (3, 3) 68× 128× 64ReLU Padding=same
Batch Normalization - - 68× 128× 64 - -
Conv2D 1 (3, 3) 68× 128× 1 Sigmoid Padding=same

Discrepancy Loss Function: A key component of our MCD approach is the
discrepancy loss function, which quantifies the difference in the classifiers’ prob-
abilistic outputs. The discrepancy loss function is defined as the mean absolute
error (MAE) between the output probabilities of the two classifiers:

d(p1, p2) =
1
N

N∑

i=1

|p1(Y |X(i)
t )− p2(Y |X(i)

t )|,

where p1(Y |X(i)
t ) and p2(Y |X(i)

t ) are the predicted probabilities by classifiers
F1 and F2 for the target sample X

(i)
t , and N is the number of target samples.
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Training Objectives: The training involves a three-step process (as shown in
Figure 3), each targeting a specific objective:

1. Step A (Source Domain Training): Train the classifiers and generator on
the source domain data to minimize the binary cross-entropy loss:

min
G,F1,F2

LCE(Xs, Ys),

LCE(Xs, Ys) = − 1

N

N∑

i=1

[
Y

(i)
s log(p(Y

(i)
s |X(i)

s )) + (1 − Y
(i)
s ) log(1 − p(Y

(i)
s |X(i)

s ))
]
.

2. Step B (Discrepancy Maximization on Target Data): Adapt the clas-
sifiers to maximize the discrepancy on the target domain data while retaining
performance on the source domain:

min
F1,F2

LCE(Xs, Ys)− Ladv(Xt),

Ladv(Xt) = EXt∼Xt
[d(p1(y|Xt), p2(y|Xt))],

with the discrepancy d measured as the mean absolute error between the
probabilistic outputs of the classifiers.

3. Step C (Minimization of Discrepancy on Target Data): Optimize the
generator to minimize the discrepancy between the classifiers’ predictions on
the target data:

min
G

Ladv(Xt).

The hyperparameter n determines the iteration count for each mini-batch
within the training cycle. It serves as a tuning parameter in the original
MCD framework, calibrating the equilibrium between the generator’s and
the classifiers’ objectives during the adversarial training process.

This training regimen is iterated to refine the model’s ability to classify EEG
data correctly, irrespective of the task. The loss functions are tailored to ensure
that the adversarial nature of MCD leads to domain-invariant feature extraction,
enhancing the model’s generalization capabilities.

2.4 Classification Experiments

In order to evaluate the efficacy of our domain adaptation approach using Maxi-
mum Classifier Discrepancy (MCD), we conducted a series of classification exper-
iments. These experiments were designed to assess the performance of our model
under various conditions and are divided into three main cases:

Case 1: Within-Task Classification The first case investigates the perfor-
mance of our model when training and testing are conducted within the same
task domain. This serves as a baseline to understand the model’s capability in
a controlled setting, where the feature distribution between training and testing
sets is consistent.
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Case 2: Cross-Task Classification without Domain Adaptation In Case
2, we assess the cross-task classification capabilities of our approach without the
aid of domain adaptation techniques. We conduct two sets of experiments to
evaluate the baseline generalizability of the network: first, by training on the
dataset from the arithmetic task (D1) and testing on the working memory task
(D2), and second, by reversing this approach–training on the working memory
task (D2) and testing on the arithmetic task (D1). These assessments provide
insight into the inherent ability of the network to transfer learning between
different cognitive tasks without domain-specific tuning.

Case 3: Cross-Task Classification with Domain Adaptation In the third
case, our focus shifts to evaluating the effectiveness of the MCD technique with
the three-step training process for domain adaptation across tasks. We modulate
the domain adaptation intensity by varying the hyperparameter n – denoting the
number of iterations per mini-batch – with values of 2, 3, and 4. This variation
allows us to observe the nuanced impacts of domain adaptation on knowledge
transfer between the arithmetic and working memory tasks. For each setting,
the domain adaptation procedure is conducted twice, with each dataset serving
as the source and then as the target, ensuring a comprehensive evaluation of the
model’s adaptability to both tasks.

3 Results

In an effort to substantiate the performance of our EEG classification framework,
we executed a comprehensive set of experiments. Both the Mental Arithmetic
and Working Memory datasets were divided into training and testing sets with
a 70-30 split. Our experiments were conducted over 50 epochs with an early
stopping mechanism set at 5 epochs to prevent overfitting. We selected a batch
size of 512 to optimize the computational efficiency and convergence rate. The
optimization of our model was conducted using the Adam optimizer, known for
its efficacy in handling sparse gradients on noisy problems. All experiments were
implemented using TensorFlow, which provides a robust backend framework
conducive to extensive neural network experimentation.

The results from these experiments, as detailed in Table 3, highlight the
model’s capability to not only adapt within specific tasks but also to generalize
across different tasks, subjects, and channels–key factors for the deployment of
EEG classification systems in real-world applications.

Within-Task Classification Results Within-task classification revealed a
superior performance, with an accuracy of 85.23% for dataset D1. This high
accuracy, coupled with an F1 score of 84.57%, suggests that the model reliably
differentiates cognitive states within the same type of task. The close precision
and recall scores indicate a balanced classification capability, with dataset D2
showing only a slight reduction in performance across all metrics. The success
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Table 3. Classification Performance Metrics Across Cases and Conditions

Case Condition Accuracy Precision Recall F1 Score

Within-Task D1 85.23 84.76 83.68 84.57
D2 84.67 83.59 82.45 83.54

2cmCross-Task without DA D1 to D2 65.12 67.34 64.28 65.75
D2 to D1 62.89 60.73 63.54 61.67

Cross-Task with DA D1 to D2, n = 2 75.68 74.56 73.47 74.32
D2 to D1, n = 2 74.21 73.89 72.58 73.45
D1 to D2, n = 3 80.47 81.02 79.56 80.29
D2 to D1, n = 3 79.34 78.69 77.85 78.27
D1 to D2, n = 4 81.76 81.49 81.37 80.53
D2 to D1, n = 4 80.42 79.67 80.58 80.36

Fig. 4. Graph displays the performance trends of two domain adaptation scenarios
with training iterations (n=2, n=3, n=4).

in this case underscores the model’s proficiency in discerning between low and
high workload conditions when the task remains constant.

Cross-Task Classification without Domain Adaptation Transitioning to
cross-task classification without domain adaptation presented a notable chal-
lenge for the model, as evidenced by a significant decrease in accuracy, with the
highest being 65.12% when training on D1 and testing on D2. This dip reflects
the inherent difficulty in transferring knowledge between different cognitive tasks
without additional adaptation mechanisms. Although precision remained rela-
tively stable, a drop in recall for D2 when tested on D1 suggests a propensity
for the model to miss true positive instances under a new domain, indicating the
necessity for domain-specific tuning to improve generalizability.

Cross-Task Classification with Domain Adaptation Introducing domain
adaptation markedly enhanced the model’s adaptability across tasks. Notably,
the accuracy improved to 81.76% for D1 tested on D2 with n = 4 adaptation
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iterations, emphasizing the significant role of domain adaptation in cross-task
classification scenarios. This represents a substantial improvement from the non-
adapted models and demonstrates that the model can be effectively tuned for
different cognitive tasks using the MCD approach. The increment in the number
of adaptation iterations (n) from 2 to 4 yielded consistent improvements across
all performance metrics as shown in Figure 4, suggesting that a more intensive
domain adaptation process is beneficial for model robustness. The high F1 score
for n = 4, 80.53%, further reinforces the model’s precision and recall harmony
when the domain adaptation is optimally configured.

Fig. 5. Comparison of Classification Accuracies: illustrating the performance of both
datasets for within task, cross-task with and without domain adaptation.

The results delineate a clear progression from within-task competency to
effective cross-task classification with the integration of domain adaptation tech-
niques (depicted in Figure 5). The gradual enhancement of performance metrics
with increased domain adaptation efforts highlights the importance of this app-
roach in extending the scope across varied cognitive evaluations.

The results of this study hold substantial implications for the advancement
of EEG-based classification systems, particularly in their application across dif-
ferent tasks, subjects, and channels. The robust within-task performance sets a
standard for the model’s capabilities and provides a reference point for assessing
cross-task generalizability. The differential success rates in cross-task classifica-
tion underscore the challenges and reveal opportunities for enhancement through
domain adaptation. Notably, the improvement in accuracy and F1 scores in the
presence of domain adaptation underscores its critical role in surmounting vari-
abilities inherent to cross-task, cross-subject, and cross-channel scenarios. This
adaptability is crucial for the practical deployment of EEG classifiers in dynamic
real-world settings, where the ability to interpret neural signals consistently,
despite variations in task context, subject responses, and channel configurations,
is essential. The positive outcomes observed with domain adaptation not only
highlight its necessity but also affirm its efficacy in promoting the widespread
applicability of EEG classification models.
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4 Conclusion

This study has made significant strides in the field of EEG-based classifica-
tion systems, demonstrating robust capabilities in handling variability across
different tasks, subjects, and channels. Through the application of advanced
preprocessing techniques, domain adaptation methods, and innovative neural
network architectures, we have shown that it is possible to significantly enhance
the adaptability and generalizability of EEG classifiers. The key achievements of
this study include the successful generalization of the EEG classification model
across varied cognitive tasks and among diverse participant groups. By employ-
ing the Maximum Classifier Discrepancy (MCD) technique, we improved the
model’s accuracy in cross-task scenarios, which is a substantial step forward
from traditional EEG classifiers that are often limited to specific task conditions.
Our approach has proven particularly effective, with notable improvements in
classification accuracy reaching up to 81.76% in complex domain adaptation
settings. Additionally, the standardization of EEG data through source local-
ization to a common brain space has enhanced the comparability and consis-
tency of data analysis across studies and setups.The implications of our find-
ings are profound, extending beyond the immediate scope of EEG classification.
The ability to accurately classify EEG data across varying conditions suggests
potential applications in personalized medicine, where EEG-based diagnostics
and treatments could be tailored to individual physiological and cognitive pro-
files. Furthermore, our methodological innovations provide a framework that
can be adapted to other modalities of biomedical data, potentially transforming
approaches to neural monitoring and intervention.While our results are promis-
ing, they also highlight areas for further research. One limitation of the current
study is the focus on controlled laboratory tasks. Future work could extend these
methods to more naturalistic settings to better capture the complexities of real-
world cognitive states. Another limitation is the focus on a binary classification
task; future work will extend our approach to multiclass problems to evaluate
the performance and robustness of MCD in more complex classification scenar-
ios. Further research should also explore the scalability of the proposed models
in larger, more heterogeneous populations to validate the generalizability of the
findings. Moreover, exploring the impact of varying the hyperparameters, such
as the number of adaptation iterations (n), could provide deeper insights into
the dynamics of domain adaptation in neural networks.

In conclusion, this study not only advances our understanding of EEG sig-
nal classification but also sets a benchmark for future research in this rapidly
evolving field. By addressing both methodological challenges and practical appli-
cations, the contributions of this research pave the way for the next generation of
EEG classification systems that are more adaptable, reliable, and widely appli-
cable in clinical and research settings. The potential of these systems to rev-
olutionize how we understand and interact with the human brain is immense,
promising significant advancements in neuroscience, medicine, and beyond.
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Abstract. Our research addresses the pressing issue of congestive heart
failure (CHF), a critical cardiovascular condition characterized by the
heart’s diminished ability to pump blood effectively, resulting in fluid
accumulation. Current diagnostic methods often face challenges in sig-
nal processing and manual Electrocardiogram (ECG) analysis, leading
to reduced accuracy and diagnostic complexities. To tackle these chal-
lenges, we introduce an innovative framework that integrates global QRS
average (gQRS) detection of RR peaks and intervals from ECG data. We
then apply advanced machine learning models such as K-Nearest Neigh-
bours (KNN), Support Vector Machine (SVM), Random Forest (RF),
and XGBoost, specifically tailored for CHF diagnosis. What distinguishes
our approach is the strategic use of ensemble learning, combining the
predictive strengths of XGBoost and RF algorithms. This fusion opti-
mizes diagnostic outcomes and demonstrates significant improvements
in CHF detection accuracy, marking a notable advancement in clinical
diagnostics. Our research underscores the potential of ensemble learning
methodologies in enhancing diagnostic accuracy and clinical decision-
making for CHF. By leveraging cutting-edge technologies and methods,
we aim to revolutionize cardiovascular health monitoring and contribute
to more effective patient care strategies. This innovative approach not
only achieves a high accuracy rate of 99.56% but also significantly reduces
processing time, making our research highly impactful and promising for
practical healthcare applications.

Keywords: Congestive Heart Failure · Electrocardiogram · Ensemble
learning.

1 Introduction

Congestive heart failure (CHF) [1,2] is a significant global health issue, affecting
approximately 26 million people worldwide [3]. Despite medical advancements,
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early detection of CHF remains challenging due to the subtlety of its early symp-
toms and the complexity of its underlying causes. Traditional methods for ana-
lyzing electrocardiogram (ECG) signals often miss early-stage CHF markers,
resulting in late diagnoses when treatment options are limited and less effective.

Early prediction of CHF is critically needed to improve patient outcomes
and alleviate the burden on healthcare systems. Detecting CHF at an early
stage allows for timely interventions, lifestyle modifications, and medical treat-
ments that can significantly slow disease progression, enhance quality of life,
and reduce mortality rates. Traditional methods, which include statistical and
machine learning (ML) approaches, are valuable for identifying subtle patterns
in ECG data indicative of early-stage CHF.

Our research highlights the superiority of traditional ML techniques over
deep learning (DL) methods for early CHF detection, leveraging ECG data’s
critical role in cardiovascular diagnostics. Through advanced ML methods, we
extract intricate features from raw ECG signals that traditional approaches often
miss. A rigorous preprocessing protocol ensures precision by addressing missing
values, redundancies, and errors. This includes feature engineering and data
extraction to derive essential information from ECG signals [4–6]. We introduce
a novel framework incorporating ensemble learning, specifically using XGBoost
and Random Forest (RF), to enhance model performance [7,8]. This approach
significantly improves early CHF detection, offering more accurate predictions
and revolutionizing cardiovascular healthcare by enabling early intervention and
personalized care.

1.1 Rationale for Choosing Traditional Methods

While recent advancements in DL have shown promising results in various
domains, we have opted to focus on traditional ML methods for this study
due to several key reasons. Firstly, DL models often require large datasets to
avoid overfitting and to generalize well. Our dataset, though comprehensive,
may not be sufficiently large to train deep models effectively without overfitting.
Secondly, traditional ML methods are computationally more efficient, which is
crucial for applications requiring quick deployment and lower computational
resources. Thirdly, traditional models offer better interpretability, allowing for
easier understanding and communication of the model’s decision-making pro-
cess to clinicians and stakeholders. By emphasizing computational efficiency and
interpretability, our approach ensures that the models are not only effective but
also practical for real-world deployment in varied clinical settings.

1.2 Contributions

The major contributions of this research are given below:

1. We propose a novel framework for the early prediction of CHF using ensemble-
based fusion techniques, integrating the strengths of XGBoost, SVM, RF, and
KNN models for improved predictive accuracy.
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2. The effectiveness of the proposed framework has been rigorously evaluated on
the BIDMC CHF and MIT-BIH datasets, demonstrating superior accuracy
and reduced computational time compared to existing methods.

The remaining of this work is framed as follows: Section II contains the liter-
ature review, exploring research gaps and challenges. Section III discusses meth-
ods and material, including dataset description and proposed methods. Section
IV presents results and discussion, while Section V concludes the work and out-
lines future scope.

2 Literature Survey

Savarese et al. [1] reviewed significant advancements in diagnosing heart condi-
tions, with a focus on CHF. Zou et al. [2] introduced an architecture combin-
ing LSTM networks with DCNNs, achieving 97.62% accuracy in real-time CHF
detection. Shrivastava et al. [4] developed a system for detecting myocardial
infarction (MI) using three feature selection methods and eight ML algorithms,
enhancing performance and reducing complexity. Other studies [5–7] transitioned
to federated learning with an RF approach, achieving a 95% accuracy in CHF
diagnosis, while the HBA-FRCNN technique addressed ECG signal noise, attain-
ing 97.65% accuracy in predicting chronic heart failure.

Rai et al. [8] explored the application of various ML and DL methods for
cardiac disease detection, offering insights into advanced diagnostic techniques.
Khan et al. [9] studied prevailing ML models for predicting cardiac arrests,
emphasizing the need for rigorous evaluation to improve healthcare predictions.
Their findings highlight the importance of better threat evaluation to enhance
outcomes and resource allocation in CVD diagnosis. Bhaskarpandit et al. [10]
demonstrated significant advancements in cardiac diagnosis using eigendomain
deep representation learning for 12-lead ECG trace images, highlighting the
potential of ML and DL techniques to enhance diagnostic precision and patient
care.

De Marco et al. [29] highlighted the significant role of DL in ECG anal-
ysis, specifically for the identification of premature ventricular contractions
(PVC). Using the MIT-BIH Arrhythmia Database, they classified QRS com-
plexes through five deep neural networks: LSTM, AlexNet, GoogleNet, Inception
V3, and ResNet-50. The experiments demonstrated high efficiency and reliabil-
ity, with ResNet-50 achieving 99.8% accuracy and 99.2% F1-score, and Inception
V3 achieving 98.8% accuracy and 98.8% F1-score.

Observations from the literature review reveal several gaps:

1. Model complexity often reduces interpretability, hindering collaboration
between medical professionals and data scientists.

2. Many models lack time-efficient methods suitable for seamless clinical inte-
gration, limiting rapid decision-making.

3. Existing ECG preprocessing methods are insufficiently robust, leading to inac-
curacies in analysis.
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4. Lack of model explainability hinders clinician trust and adoption in practice.
5. Justification for the practical use of advanced ML models in improving patient

outcomes is often inadequate.

3 Methods and Materials

To address the objective of early detection of CHF[10] based on ECG data[11],
we present a comprehensive methodology encompassing several key steps. Figure
1 demonstrates how the ECG dataset is preprocessed and the features with
maximum importance for the classification of healthy and unhealthy ECGs are
taken, various ML models are used including KNN, SVM, RF, XGBoost, and
also an ensemble learning approach was employed using RF and XGBoost. The
performance is then compared to find the best-performing model in classifying
the healthy and unhealthy ECGs.

Fig. 1. Overview of the proposed model: starting with the ECG dataset on the left, we
progress through preprocessing, feature engineering, application of various ML models,
and finally compare their performance.

3.1 Dataset Description

In this research, we utilize the BIDMC CHF and MIT-BIH datasets [12,13] to
ensure the quality of our training data, which is crucial for our model’s effec-
tiveness. We systematically collect and preprocess data, transforming raw ECG
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recordings to align with best practices. Drawing from leading cardiovascular
research, our approach aims to enhance the model’s generalizability and relia-
bility.

Table 1. Databases used in our research

Database NHYA Class # Subjects # Males (age) # Females (age) # EB

BIDMC CHF 15 11(22− 71 years ) 4(54− 63 years ) 20,000
MIT-BIH Arrhythmia NSR 18 5(26− 45 years ) 13(20− 50 years ) 36,000

BIDMC Congestive Heart Failure Database [11] The BIDMC database
includes ECG recordings from 15 individuals (11 men aged 22-71 and 4 women
aged 54-63) with severe CHF (NYHA class 3–4). These recordings provide valu-
able insights into cardiac dynamics in severe heart failure.
MIT-BIH NSRDB [12] This database contains 18 recordings from patients
without notable arrhythmias, including 13 women (ages 20-50) and 5 men (ages
26-45). Each recording, made with ambulatory ECG recorders, lasts around 20
hours and features two ECG signals captured at 250 samples per second.

3.2 Data Preprocessing

Effective preprocessing of ECG data is essential to ensure accurate analysis.
This study uses a standardization process to address noise and discrepancies
in ECG recordings, ensuring data consistency [1,14,15]. The first step involves
noise reduction, focusing on non-QRS variations, using two Moving Average
Cascades (MACs) with different impulse response lengths (140 ms and 25 ms).
This approach preserves QRS peak amplitudes while reducing slow waves like T
waves and baseline drifts [2].

X[i] =
1
N

N∑

j=0

X[i + N ] (1)

Next, QRS complexes are enhanced using derivative filters, with the optimal
filter selected based on a Signal Quality Index (SQI):

SQI =
ks + mDs

kn + mDn
(2)

Here, mDs represents QRS-specific derivatives, and mDn captures noise,
with the highest SQI filter applied [6]. QRS detection is then performed by
comparing the absolute derivative value to an adaptive threshold:

T = min(D, 2.5 · T (0)) max(D, 0.5 · T (0)) (3)

The threshold adjusts dynamically based on the distance from the last QRS
detection to reduce false positives. Heartbeat occurrence is estimated by locating
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Fig. 2. Diagram represents the heartbeat comparison (a) Before Data Normalization
and (b) After Data Normalization.

the peak of the signed derivative signal. Finally, normalization using MinMaxS-
caler standardizes feature scales, ensuring consistency in model training, with
scatter plots visualizing the normalized data for CHF and normal conditions [4].
Figure 2 shows how normalization helped to standardize the data.

3.3 Feature extraction

Feature engineering is a crucial step in extracting meaningful information from
the ECG signals [16–18]. The following key features are engineered to capture
essential aspects of cardiac dynamics:

QRS Wave The gQRS detection technique plays a crucial role in our investi-
gation, accurately identifying QRS complexes in ECG waveforms. This precision
is essential for meaningful feature extraction and reliable predictive models for
early CHF detection. Rigorous validation confirms the technique’s suitability
and effectiveness. Figure 3 shows the ECG after the gQRS detection.

Sp =
Correct QRS Predicted

Total number of true QRS peaks
(4)

Pp =
Correct QRS Predicted

Total number of QRS Predicted
(5)

F1 = 2 × Sp × Pp

Sp + Pp
(6)

The QRS complex represents the depolarization of the ventricles and is a
crucial feature in ECG analysis. Its duration (QRS_Duration) can be calculated
as the time taken from the onset to the offset of the QRS complex:

QRS_Duration = QRS_Offset − QRS_Onset (7)
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Fig. 3. Corrected gQRS R-Peak Detection used to extract R Peaks and RR Intervals

The Inter-Beat Interval, also known as the RR interval, reflects the period
between two R-peaks. It is a fundamental measure of heart rate variability
(HRV ) and is computed as:

IBI = Rn − Rn−1 (8)

where Rn and Rn−1 are the locations of consecutive R-peaks.
To ensure consistency in feature scaling, normalization is applied to the

extracted features. Figure 4: This figure (a) and (b) provide a comparison of
the distribution of RR-Intervals and R Peaks, respectively. Understanding these
distributions is crucial as they represent key features in ECG data that can help
in analyzing heart rhythm patterns and detecting abnormalities.

Fig. 4. Diagram represents the distribution comparison (a) RR-Intervals distribution
and (b) R Peaks distribution.
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3.4 Machine Learning Models

In this research, we employed a range of ML models to address the binary classi-
fication problem associated with QRS peaks and intervals. The selected models
include K-Nearest Neighbors (KNN), SVM [18], RF[18,19], and XGBoost[19].
KNN is a non-parametric technique that classifies data points based on the
majority class of their nearest neighbors. The classification decision rule can be
formulated as follows:

ŷ = argmax

(
K∑

i=1

I(yi = j)

)
(10)

SVM, a robust classifier, maximizes the margin between classes by identifying
the optimal hyperplane. It can be formulated as an optimization problem:

min
w,b,ξ

1
2
||w||2 + C

n∑

i=1

ξi (11)

subject to:

yi(wT xi + b) ≥ 1 − ξi, ξi ≥ 0 (12)

RF is an ensemble learning method that creates multiple decision trees during
training and combines their predictions:

ŷ = mode(predictionstrees) (13)

XGBoost, a boosting algorithm, enhances model performance by iteratively
combining weak learners:

ŷ =
N∑

i=1

learneri(x) (14)

3.5 Ensemble Learning Approach

Ensemble learning combines multiple models to improve prediction accuracy.
In this research, we used an ensemble of XGBoost and RF models to predict
CHF using RR peaks and intervals. XGBoost excels in capturing complex rela-
tionships, while RF reduces overfitting by constructing an ensemble of decision
trees. Combining these models into an ensemble leverages their complementary
strengths, leading to a robust and accurate prediction mechanism.

Soft Voting The Voting Classifier employs soft voting, where each classifier
contributes class probabilities. The final prediction (ŷ) is determined by the
weighted sum of the predicted probabilities:

ŷ = argmax
i

∑

j

wjPij (15)
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Weight Assignment Weights (wj) are assigned based on the classifiers’ per-
formance, often using the inverse of the classification error (Ej):

wj =
1

1 − Ej
(16)

3.6 Overfitting Concerns and Mitigation

High accuracy levels in ML models often raise concerns about potential overfit-
ting. To ensure that our model generalizes well and does not merely memorize
the training data, we implemented several strategies to address and mitigate
overfitting.

Cross-Validation We employed k-fold cross-validation where the dataset is
divided into k equally-sized folds. The model is trained on k-1 folds and tested
on the remaining folds. This process is repeated k times, with each fold serving
as the test set once. The average performance across all folds provides a reliable
estimate of the model’s performance on unseen data. The results of our 10-fold
cross-validation are presented in Table 2.

Table 2. Cross-Validation Results

Fold AccuracyPrecisionRecall F1-Score

1 99.50% 99.48% 99.52% 99.50%
2 99.55% 99.53% 99.56% 99.54%
3 99.60% 99.58% 99.61% 99.59%
4 99.52% 99.50% 99.53% 99.51%
5 99.58% 99.56% 99.59% 99.57%
6 99.54% 99.52% 99.55% 99.53%
7 99.57% 99.55% 99.58% 99.56%
8 99.61% 99.59% 99.62% 99.60%
9 99.53% 99.51% 99.54% 99.52%
10 99.56% 99.54% 99.57% 99.55%
Average 99.56% 99.54% 99.57%99.55%

Performance on Separate Test Set We evaluated our model on a separate
test set that was not used during training or validation. The test set perfor-
mance metrics are consistent with the cross-validation results, confirming that
the model maintains high performance on unseen data. The test set results are
presented in Table 3.
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Table 3. Test Set Performance

MetricAccuracyPrecisionRecall F1-Score

Value 99.56% 99.63% 99.18% 99.41%

4 Result and Discussion

This section evaluates our model’s performance compared to existing approaches.
The model achieves high accuracy with minimal computational time, validated
through common benchmark settings. We assess the model using four key met-
rics: accuracy, precision, recall, and F1-score, providing a comprehensive evalua-
tion. Table 4 compares the performance of classifiers, including XGBoost, KNN,
RF, SVM, and the Ensemble Model, across these metrics. The Ensemble Model
combines the strengths of RF and XGBoost, achieving the highest accuracy at
99.56%, with a precision of 0.9963, recall of 0.9918, and F1 score of 0.9941. This
model significantly reduces misclassifications and enhances overall performance
and generalization, making it the most robust among the evaluated classifiers.

Table 4. Performance Metrics of Different Classifiers

Classifier Accuracy (%)PrecisionRecall F1 ScoreExplanation/Inference

XGBoost 98.59 0.9896 0.9731 0.9813 The XGBoost classifier shows high accuracy
and balanced precision and recall, indicating
robust performance in classifying both CHF
and NSR segments.

KNN 98.17 0.9804 0.9551 0.9676 The KNN classifier achieves strong accuracy
with slightly lower precision and recall
compared to XGBoost, indicating effective
classification but with some margin for
improvement in precision.

RF 99.36 0.9909 0.9941 0.9925 The RF classifier demonstrates near-perfect
accuracy with excellent precision and recall,
highlighting its capability to accurately
classify both CHF and NSR segments with
minimal misclassifications.

SVM 95.48 0.9689 0.8682 0.9151 The SVM classifier shows good accuracy
but lower recall compared to other models,
indicating a higher rate of misclassifications
for CHF segments despite effective NSR
segment classification.

Ensemble Model 99.56 0.9963 0.9918 0.9941 The ensemble model combines the strengths
of RF and XGBoost, achieving high
accuracy and balanced precision and recall.
This model significantly reduces
misclassifications and enhances overall
performance and generalization.

The confusion matrix in Figure 5 illustrates the performance of the ensemble
model with True Positives (TP) of 2173, True Negatives (TN) of 4128, False Pos-
itives (FP) of 8, and False Negatives (FN) of 18. This indicates the model’s high



380 A. Oza et al.

Fig. 5. Confusion Matrix from classifi-
cation using the ensemble model

Fig. 6. Precision-Recall Curve for the
ensemble model

accuracy in correctly identifying both CHF and NSR segments. The Precision-
Recall Curve in Figure 6 demonstrates the ensemble model’s high precision and
recall performance, achieving an Area Under the Curve (AUC) of 0.994. This
highlights the model’s effectiveness in distinguishing between CHF and NSR
segments across different thresholds.

4.1 Comparison of Model Accuracy and Time Complexity

In real-time detection of critical diseases, accuracy and time play a vital role
in early diagnosis and accurate prediction in rural areas. We perform the com-
parative analysis of accuracy and time taken by models based on benchmark
settings. The models are executed over i5 intel processor with 40 core, 16 GB
RAM, 512 GB hard drive under Windows operating system. Table 5 summarizes
the accuracy and time complexity comparison of different ML models.

Table 5. Comparison of Accuracies and Time Complexity of All Models

Classifier
Model

Accuracy
(%)

Time Taken
(seconds)

Time Complexity (O())

SVM 95.48 3.85 O(n2
samples × nfeatures)

KNN 98.17 0.34 O(nfeatures × nsamples log(nsamples))

RF 99.36 1.45 O(nfeatures log(nfeatures)× nfeatures × Trees)

XGBoost 98.59 0.21 O(n × m × log(m))
Ensemble 99.56 1.63 O(n × m × log(m))

From the time complexity comparison, it’s evident that the KNN and
XGBoost classifiers have the lowest time requirements, making them efficient
choices for real-time applications. The SVM classifier, although accurate, has
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Fig. 7. The diagram represents the performance of the models: first SVM, second KNN,
third RF, fourth XGBoost, and fifth Ensemble model.

a higher time complexity, which could impact its suitability for time-sensitive
tasks. The ensemble model shows slightly higher time requirements due to the
combined training and prediction processes of XGBoost and RF. Figure 7 illus-
trates the accuracy and time taken for each model, providing a visual comparison
of their performance metrics.

4.2 Comparison with Existing Research

Numerous investigations have examined the application of ML methodologies for
CHF prediction using ECG data. We contrast the performance of our proposed
ensemble learning approach with that of existing research studies as summa-
rized in Table 6. Our proposed ensemble learning model achieves an accuracy
of 99.56%, outperforming existing methods in CHF prediction. Our approach
demonstrates effectiveness and robustness in accurately classifying ECG seg-
ments, as evidenced by high recall, precision, and F1-score values for both CHF
and non-CHF classes.

4.3 Comparative Analysis of Traditional and Deep Learning
Methods for CHF Detection

This study compares traditional ML methods with DL approaches for early CHF
detection using ECG data, focusing on performance, interpretability, and prac-
tical applicability in clinical settings. The comparison is summarized as follows:
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Table 6. Result Analysis

Ref. Dataset used Methodology used Accuracy

[2] NSR-RR, CHF-RR Unet++ 89.83%
[6] MIT-BIH, BIDMC CHF Faster RCNN classifier 98%
[8] BIDMC-CHF, PTBDB DA-DRRNet 98.57%
[9] Mendeley data source Eigendomain DRL

approach
98.68%

[12] from Catholic University
of Leuven

Artificial Neural
Network

90.00%

[20] MIT-BIH, BIDMC CHF ECG-Convolution-
Vision Transformer
Network

98.88%

[27] MIT-BIH, BIDMC CHF Stockwell Transform
and Hybrid
Classification Scheme

98.78%

ProposedMIT-BIH, BIDMC
CHF

Ensemble Learning 99.56%

1. Performance Metrics: Both traditional and DL models were evaluated
using metrics like accuracy, precision, recall, F1-score, and AUC-ROC. While
DL models often show slightly higher accuracy and AUC-ROC, traditional
methods remain competitive, particularly with smaller datasets.

2. Interpretability: Traditional methods, such as decision trees and random
forests, offer clear interpretability, crucial in clinical settings for gaining
trust and acceptance among healthcare professionals. Conversely, DL models,
though accurate, operate as “black boxes,” presenting a challenge for clinical
adoption due to their lack of transparency.

3. Data Requirements: Traditional methods perform well even with limited
data, making them more practical in situations where large ECG datasets are
hard to obtain, unlike DL models which require vast amounts of data.

4. Computational Efficiency: Traditional methods are computationally effi-
cient and can be implemented on standard medical equipment, making them
more accessible and cost-effective, especially in resource-constrained settings.

In conclusion, while DL methods offer higher accuracy, traditional methods
excel in interpretability, data efficiency, and computational requirements. The
choice of method should balance accuracy with clinical needs, data availability,
and computational resources.

5 Conclusion and Future Directions

This research focuses on the urgent need for precise CHF detection, vital for
prompt intervention. Our proposed ensemble learning and fusion model, utilizing
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ECG data, demonstrates promising early CHF detection. Integration of diverse
ML algorithms and ECG-derived features enhances prediction accuracy and effi-
ciency. Fusion techniques further boost performance by integrating information
from multiple sources, validated with real-world datasets. Our comprehensive
approach establishes a robust groundwork, achieving remarkable predictive accu-
racy (99.56%) in distinguishing NSR from CHF cases. We also evaluated each
model’s time complexity, which is a crucial parameter for real-time clinical appli-
cations. Our all-encompassing method not only solves the pressing requirement
for precise CHF identification but also establishes the foundation for further
improvements. Future research aims to refine and extend this model for timely
MI detection, enhancing cardiovascular health monitoring in clinical practice.
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Abstract. Frontotemporal dementia (FTD) is a group of neurodegen-
erative disorders characterized by progressive damage to the frontal and
temporal lobes of the brain. FTD includes notable changes in social
behavior, personality, and language function difficulties. The primary
FTD spectrum disorders include behavioral variant FTD, non-fluent vari-
ant primary progressive aphasia, and semantic variant. With an aging
population, FTD prevalence increases, emphasizing the critical need for
research, care, and awareness. This study introduces novel hierarchi-
cal classification methods that enhance model prediction capabilities.
The dataset used in this work consists of neuropsychiatric tabular data
from the Frontotemporal Lobar Degeneration Neuroimaging Initiative
database. Innovative methods are needed to effectively leverage deep
learning for FTD classification, especially when limited to tabular data.
To address this challenge, we proposed an innovative technique, the Ten-
sorised Image Generator (TIG), which transforms tabular data into grid-
based image representations or tensors. The TIG algorithm optimizes
tabular data visualization by ranking pairwise feature distances and then
creating a distance matrix and strategically positioning features in the
image to preserve spatial correlation among features. The algorithm fur-
ther enhances the grid structure with line drawing and intensity adjust-
ments. The results on these images demonstrate high accuracy in detect-
ing FTD subtypes using a Convolutional Neural Networks ensemble with
multi-layer perceptron, achieving a test accuracy of 88.89%, which is a
2% increment of hierarchical approach over flat machine learning meth-
ods and around 5% increment for combined hierarchical classification
with image-based technique compared to best flat method across most
metrics (accuracy, precision, recall, and F1-score).
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1 Introduction

Frontotemporal dementia (FTD) presents a significant challenge in the field
of neurodegenerative diseases, characterized by a progressive deterioration in
behavior, language, and executive functions [1]. Early and accurate classifica-
tion of FTD subtypes is crucial for effective management and personalized treat-
ment strategies. Frontotemporal dementia has primarily three clinical subtypes,
namely, Behavioral Variant Frontotemporal Dementia (BV), Non-fluent Variant
Primary Progressive Aphasia (PNFA), and Semantic Variant Primary Progres-
sive Aphasia (SV) [2][3]. The diagnosis of FTD does not rely on a single test.
Clinicians must carefully examine the patient’s symptoms and signs while also
ruling out other potential causes. Early FTD diagnosis can be challenging, as
the symptoms often overlap with those of other disorders. To assess the patient’s
condition, clinicians typically conduct extensive testing of memory, reasoning,
and other cognitive functions using neuropsychiatric inventories. In the given
dataset, we have neuropsychological test scores.

Recent advancements in deep learning have revolutionized the field of medi-
cal image analysis. Convolutional Neural Networks (CNNs), in particular, have
demonstrated remarkable success in extracting meaningful features from image
data, leading to significant improvements in disease diagnosis and prognosis.
However, traditional CNN approaches rely on image data, limiting their appli-
cability to tasks where image-based information is readily available. In this con-
text, there exists a need for innovative methodologies that can effectively leverage
Deep Learning (DL) techniques for FTD subtype classification, even in scenarios
where only tabular data is available. One approach to applying deep learning to
tabular data involves transforming tabular data into images. Currently, several
converters are accessible for this purpose [8][19]. Some of these converters assign
individual pixels in an image to represent each sample of the dataset, though
the arrangement of these pixels can differ between converters. For instance, the
method suggested in study [19] maps each feature to a grayscale pixel based on
its corresponding coordinates in a reduced 2D space, with pixel intensity reflect-
ing the features. In contrast, the approach by Zhu et al. [8] organizes pixels based
on distance metric, placing features with shorter distances closer together in the
generated grayscale image. Bazgir et al. [20] employ a blend of distance metrics
and dimensionality reduction techniques to assign grayscale pixel values to indi-
vidual features. We propose an innovative method that transforms tabular data
into images to utilize image-based DL models for FTD classification.
In medical practice, a single-subject classification model would be more informa-
tive than a group analysis because of the FTD subtype patients’ subtle patterns
and overlying patterns. This argument motivated us to design an automated
hierarchy-based classification model to analyze each subject at an individual
level. In a previous study [4], the authors used a support vector machines classi-
fier on cortical thickness data to compute an individual network for each subject.
Based on this analysis, each subject was then classified into one of the diagnos-
tic categories: mild cognitive impairment, Alzheimer’s disease, or cognitively
normal. Additionally, some other studies [5][6] have investigated the use of AI
methods to discriminate between the FTD and CN groups using MRI data.
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In this work, we have presented a novel method of converting tabular data into
grid-based images, followed by hierarchical classification of FTD subtypes in
which we perform the classification on different levels that will classify each sub-
ject into one of the class labels (CN, BV, PNFA, and SV). This approach aligns
with a range of ML/DL methods and imitates the natural decision-making process
of clinicians. If a clinician detects any abnormal findings beyond those explained
by typical aging in the preliminary assessment, they must rule out dementia. Simi-
larly, clinicians typically deduce the disorder through logical inference when a sub-
ject exhibits behavioral or linguistic changes suggestive of FTD. In the suggested
method, first, cognitively normal subjects are separated from FTD patients. Fur-
ther, the group of FTD patients is classified into behavioral variant and primary
progressive aphasia. Eventually, the primary progressive aphasia group classifies
subjects into non-fluent aphasia and semantic variants. By transforming tabular
data into image representations, we aim to harness the power of CNNs for the hier-
archical classification of FTD subtypes, thereby enhancing diagnostic accuracy
and improving patient outcomes. This study contributes in the following ways:

– A New Method For Tabular Data to Images Conversion: We propose
an approach to enhance the representation of tabular data by converting it
into grid-based images, which enables better visualization and representation
of the spatial correlation among features within the data. Leveraging the
power of CNNs and pre-trained models (ResNet-50 and VGG-16) for the
classification task.

– Hierarchical Classification: Our research conducts hierarchical classifica-
tion on the generated images and compares the results with direct 4-class
classification to evaluate performance improvements.

The results demonstrate high accuracy in detecting FTD subtypes using a CNN
ensemble with MLP, achieving a test accuracy of 88.89%, representing almost a
5% increase over the non-hierarchical (flat) best-known method. The proposed
hierarchical approach generally outperforms the flat approach across most met-
rics (accuracy, precision, recall, and F1-score) and models.
The rest of the paper is organized as follows: the “Materials” section presents
the dataset and data preprocessing methods, and the "Proposed Methodology"
section demonstrates the proposed framework, algorithm, and model training
and prediction. The "Results and Discussion" section presents the findings from
the experiments. Subsequently, the study’s conclusions are deliberated in the
"Conclusion" section.

2 Material

2.1 Dataset

The dataset used in this study was retrieved from the Frontotemporal Lobar
Degeneration Neuroimaging Initiative (FTLDNI). The dataset contains 288 (CN
(134), BV (75), SV (39), and PNFA (40)) subjects for baseline; a detailed feature
description study is presented in [15].
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2.2 Data Pre-processing

We selected 36 different features, each representing a unique neuropsychological
test. These features have been carefully selected from a larger dataset, likely
due to having the least missing values. This selection ensures data completeness
and reliability of the analysis, offering valuable insights into the cognitive and
behavioral functions of the patients. We employed a mean imputer technique
to handle missing data. This technique involves replacing missing values in the
dataset with the mean value of the corresponding feature.

3 Proposed Methodology

This work aims to transform tabular neuropsychiatric data into image repre-
sentations and then use these images to build a predictive model for classifying
the clinical status of FTD subtypes. Our proposed system consists of two main
tasks: first, converting tabular data to images by utilizing the Image Genera-
tor for Tabular Data (IGTD) method [8] and introducing the new Tensorised
Image Generator (TIG) algorithm to transform tabular data into images, and
second, employing a hierarchical classification approach to categorize individ-
uals into diagnostic labels, CN, BV, PNFA, and SV. We applied DL methods
to the image data, taking advantage of DL’s powers in image recognition. We
employ ML techniques to the original tabular data, harnessing the power of the
ML. Additionally, we performed a flat classification, directly assigning individ-
uals to one of the four diagnostic labels (CN, BV, PNFA, and SV) using both
image and tabular data. This flat classification serves as a benchmark for com-
paring the performance of our hierarchical approach. The proposed framework
depicted in Fig. 1 offers a novel way to handle neuropsychiatric data, combining
data representation techniques with DL models to improve diagnostic accuracy
and provide valuable insights for clinical decision-making.

Fig. 1. Proposed framework for the development process. IGTD: Image Generator for
Tabular Data, TIG: Tensorised Image Generator.
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3.1 Conversion of Tabular Data to Images

The main aim of our study is to use the power of CNNs over the tabular data
for classification tasks. However, CNNs work well only on images. So, each data
sample is converted into a single image. We used the algorithm Image Generator
for Tabular Data (IGTD) [8] to generate images for tabular data, and from
these generated images, we have created our own image representations by using
the Tensorised Image Generator (TIG) algorithm; it involves transforming the
tabular data into a grid-based image representation, which can be viewed as a
tensor that better represents the data.
Image Generator for Tabular Data (IGTD): This algorithm [8] converts
tabular data into images by strategically assigning features to specific pixel posi-
tions. This assignment ensures that similar features are positioned near one
another within the resulting image. The algorithm aims to find an optimal assign-
ment by reducing the gap between the ranking of distances among features and
their corresponding pixel placements within the image, and the intermediate
sub-figures are shown in Fig. 3. The algorithm is to transform each sample xi

into an Nr × Nc image where Nr × Nc=N where N is the number of features in
the dataset. Pairwise distances between features are computed using a distance
metric like Euclidean distance. Subsequently, these distances are ranked so small
distances receive lower ranks while longer distances are assigned higher ones. Let
R be a Rank Matrix of size N×N ; each cell (i, j) represents the rank value of the
distance between ith and jth feature. When this is transformed into an image,
the grey level in the image indicates the rank, i.e., the larger the distance, the
higher the rank. On the other hand, Q is a N×N Rank matrix of pixel distances
in the image initially. To transform the tabular data into images each feature
needs to be assigned to a pixel position of the image. In order to find the optimal
positioning of features, we have designed an error function (eq. 1) and minimized
the error function so that most related features will be together in the image
generated.

error(R,D) = Σn
i=2Σ

n
j=1diff(ri,j , qi,j) (1)

Tensorised Image Generator (TIG): The IGTD algorithm creates an image
from a data sample with n features, arranging related features close together and
unrelated features farther apart. The goal is to show how each feature i relates to
all other features by drawing lines in a grid. These lines intersect at points that
indicate how closely related the features are. To do this, we draw lines diagonally
in the grid, using pixel intensities to represent the features. Each line is two pixels
wide, and we mark the ith row and jth column with the feature’s pixel intensity.
The result is a set of intersecting lines that form triangular patterns, as shown
in Fig. 2, illustrating the relationships between features.
In our proposed TIG images, we use a sorted order for the features and draw
lines with intensities matching those from the IGTD algorithm. The line width
is adjustable; here, we’ve chosen 2 pixels. The size of the grid (and thus the
final image) depends on the number of features and the line width, calculated
as (Nf × Np × 2) − Np, where Nf is the number of features and Np is the line
width in pixels. The lines are drawn to intersect within a specific triangular
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area, ensuring a clear visualization of the relationships. The Sample image of
the IGTD and TIG over the dataset is shown in Fig. 4.

Algorithm 1: Image Generator for Tabular Data (IGTD) [8]
Input: Tabular data features
Output: Generated image representation

1 Compute pairwise distances between features using a distance measure
Euclidean distance, and a larger distance represents a higher rank;

2 Rank the pairwise distances to create a Rank Matrix R of size N ×N ;
3 Initialize a rank matrix Q of pixel distances in the image to be transformed;
4 Assign each feature to a pixel position of the image;
5 Define an error function error(R,D) to minimize the discrepancy between the

ranking of distances among features and the ranking of distances among their
corresponding pixels in the image;

6 for i = 2 to n do
7 for j = 1 to n do
8 Compute the difference between rank values ri,j and qi,j ;
9 Increase the error with the difference diff(ri,j , qi,j);

10 end
11 end
12 Minimize the error function to optimize the positioning of features in the image;
13 Generate the image representation by transforming the tabular data into an

Nr ×Nc image, where Nr ×Nc = N and N is the number of features in the
dataset.

Fig. 2. Representation of the Image Grid
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Algorithm 2: Proposed Tensorised Image Generator (TIG) Algorithm
Input: Index: list of features to include in the grid
Intensity: intensity value to assign to each pixel
Array: 2D array representing the grid
No_features: number of features
No_of_pixels: number of pixels
Break_point: breakpoint value
Output: grid: final generated grid image

1 for each IGTD image do
2 for each feature in the image do
3 Determine the index of the feature and get its intensity value;
4 Generate the grid by calling the create_grid function for both

"right" and "down" directions;
5 end
6 end
7 for each row in the grid do
8 for each column in the grid do
9 if pixel value is -1 then

10 Set it to 0;
11 end
12 end
13 end
14 Function create_grid(arr, feature, direction, pixels, breakpoint,

intensity):
15 if direction is "right" then
16 for i from 1 to breakpoint + 1 do
17 for j from 0 to pixels do
18 if arr[i][j + pixels*feature] is not -1 then
19 arr[i][j + pixels*feature] = average(arr[i][j + pixels*feature],

intensity);

20 else
21 arr[i][j + pixels*feature] = intensity;

22 if direction is "down" then
23 for i from breakpoint to 1 do
24 for j from 0 to pixels do
25 if arr[i][j + pixels*feature] is not -1 then
26 arr[i][j + pixels*feature] = average(arr[i][j + pixels*feature],

intensity);

27 else
28 arr[i][j + pixels*feature] = intensity;

29 Return: modified grid image;
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Fig. 3. Distance matrices generated by the IGTD. (a) a ranking matrix of feature
distances calculated using Euclidean distance; (b) a ranking matrix of feature distances
post-optimization; (c) a ranking matrix of pixel distances calculated using Euclidean
distance; (d) Error minimization graph, the difference between matrices (a) and (c).

Fig. 4. Image representation generated from tabular data.
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3.2 Convolutional Neural Networks

We adapted the Convolutional Neural Networks (CNNs) architecture with two
convolutional layers, two max-pooling layers, a flattening layer, and a Fully Con-
nected (FC) layer represents a common and effective deep-learning model for
image classification tasks [9]. In the architecture presented in Fig. 5, the two
convolutional layers perform feature extraction by applying a set of learnable
filters to the input image. Each convolutional layer is followed by a max-pooling
layer, which reduces the spatial dimensions of the feature maps and retains the
most relevant information. The flattening layer transforms the 2D feature maps
into a 1D vector, preparing the data for the subsequent FC layer. The fully
connected layer is the final layer in the network, takes the flattened features,
and performs classification, making it capable of distinguishing between various
class labels. This architecture is well-suited for tasks like image recognition and
is known for its ability to automatically learn hierarchical features from the input
data, making it a crucial component in computer vision applications. Since we
are fine-tuning the model as per the dataset, there is no fixed number of kernels
and kernel sizes, so the number of kernels and kernel sizes is represented with
variables in the image.

3.3 Ensemble CNN with MLP

We integrated CNN-extracted features with raw tabular data, leveraging the
strengths of both image-based and tabular representations for classification
tasks. Initially, the CNN processed each image to extract high-level features,
capturing intricate patterns and characteristics. Subsequently, these extracted
features were combined with the neuropsychological test score data, forming
concatenated datasets enriched with image-derived information. This concate-
nated data was then fed into an MLP [14], which effectively utilized the fused
features to perform classification for flat and hierarchical approaches.

Fig. 5. Covolutional Neural Networks (CNNs) ensemble with Multilayer Perceptron
(MLP) architecture.
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Model Training: We used the grid-search cross-validation approach to find
the optimal hyperparameters. Grid search was conducted using a 5-fold cross-
validation strategy, where the dataset was divided into 5 subsets. The model was
trained and evaluated 5 times, with each iteration utilizing a different subset as
the validation set while the rest were employed for training. Model hyperparam-
eter tuning was conducted by evaluating the error between the predicted and
actual outputs, employing binary cross-entropy, and sparse categorical cross-
entropy was chosen as the loss function for hierarchical and flat classification,
respectively. Updating a neural network’s weights and biases during training
involves propagating the error backward from the output layer to the input
layer. This backpropagation process calculates the gradient of the loss function
with respect to each parameter in the network using the chain rule of calculus.
By iteratively adjusting these parameters in the direction that minimizes the
loss, the network learns to make better predictions over time. Table 1 shows the
optimal hyper-parameters used in the model’s training and validation.

Model Complexity: The model’s selected hyperparameters include the num-
ber of convolution layers, dense layers, pool size, filter dimensions, number of
filters, and kernel/filter size. Among these operations, convolution, pooling, and
dense layers hold significance. Each layer’s parameter count represents the num-
ber of learnable elements. While the input layer determines the shape without
learnable parameters, pooling layers reduce feature map dimensions and parame-
ter count, which reduces computational complexity. Nevertheless, pooling layers
lack trainable parameters. Studies have highlighted the sensitivity of batch size
and learning rate in influencing computational complexity [13]. Larger batch sizes
elevate model computational complexity. Therefore, multiplying these parame-
ters is essential for determining the model’s precise complexity. The convolution
layer’s time complexity can be computed according to eq. 2.

(Σd
n=1kn−1 · s2n · fn · l2n) · rl · bl (2)

In this context, d denotes the convolutional layer’s depth, ln represents the out-
put feature map’s length, and fn indicates the number of filters in the nth layer.
Additionally, sn signifies the filter’s length, kn−1 defines the number of input
channels in the (l)th layer, rl represents the learning rate, and bl denotes the
batch size.
In a fully connected layer, every parameter is interconnected with each other.
This layer serves to link preceding layers with the output layer and comprises
varying numbers of neurons, impacting the output size. Therefore, it is neces-
sary to calculate the parameters for each FC layer, including factors like the
input image’s height and width, the number of neurons, and the input dimen-
sion. Finally, the total complexity of all FC layers in the model is obtained by
summing up the complexities of individual layers. The time complexity of the
fully connected layer can then be determined using eq. 3.

Σf
l=1D · W · H · N (3)
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Here, l represents FC layer depth; D, W, H, and N define the dimension of the
input/output channel, the width of the input, the height of the input, and the
number of outputs, respectively. The time complexity for the MLP is defined as
the time taken to extract features from CNN and the fully connected layer used
for classification:

((Σd
n=1kn−1 · S2

n · fn · l2n) · r1 · b1) + (Σf
l=1D · W · H · N) (4)

Table 1. Approximated hyperparameters for 2D CNN ensemble with MLP model
training.

Hyperparameter Search Space Optimal Value
Learning Rate [0.01, 0.001, 0.0001] 0.001, 0.001
Batch Size [8, 10, 16, 20, 32] 20, 20
Conv. Layers [2, 3, 4] 2
Kernel Size [(2,2),(2,2)], [(3,3),(3,3)], [(4,4),(4,4)] (2,2), (2,2)

No. of Kernels
[(32,64),(64,128),(128,256),
(32,32),(64,64),(128,128)]

(32,32), (64,64)

Dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.2, 0.2

Bayesian Optimizer
SGD, RMSprop, Adagrad,

Adadelta, Adam
Adam, Adam

3.4 Hierarchical Classification

In traditional classification, also referred to as flat classification, the model pre-
dicts the correct label for the input data without considering any hierarchi-
cal structure among the classes. On the other hand, hierarchical classification
involves organizing the classes into a hierarchical structure where each class at
a certain level represents a subset of classes at a higher level, and the classifica-
tion process occurs in a hierarchical manner, typically through a series of binary
classification tasks at each level of the hierarchy [7]. At each level, the model
distinguishes between one class and all other classes grouped into a single class.
If there are n classes in total, there will be n-1 levels of hierarchy, as each level
involves a binary classification task.

The dataset consists of 4 classes: CN, BV, PNFA, and SV, variants of FTD.
Here, we can divide the hierarchy into three levels, as shown in Fig. 6. The first
level of the hierarchy is where we group the BV, SV, and PNFA into a common
class called FTD. Since all three are variants of FTD, we group them into this
FTD class in Level-1. So now the 4-class classification has been boiled down
to a 2-class classification, i.e., CN vs FTD. We will build a classifier for Level-
1, which correctly classifies between CN and FTD. In Level-2, we can drop all
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Fig. 6. Hierarchical Classification Approach.

the data of the class CN because the Level-2 classifier only classifies among the
FTD Variants. Now, we have 3 classes: BV, SV, and PNFA. Now, we can divide
these into two classes, BV and Primary Progressive Aphasia (PPA), i.e., SV and
PNFA, which are grouped into PPA since they are the types of PPA. The Level-2
Classifier will be trained over the data with BV and PPA class labels. So, Level-2
will classify over BV and PPA. Now, we drop all the data samples with class BV.
Level-3 Classifier trained over the SV and PNFA data samples. It will do the
classification SV and PNFA. We have broken down the 4-class flat classification
into 3 levels of hierarchical classification. The overall accuracy of the hierarchical
classification is defined as (total accuracy = (ΣN

i=1 Accuracyi)/N), N is the total
number of levels in the hierarchy and Accuracyi is the accuracy at level i.

4 Results and Discussion

Comparison with existing methods: Table 2 shows the classification perfor-
mance of both approaches (flat and hierarchical) by employing ML/DL models
and comparison with existing methods. All ML models (Random Forest (RF),
Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and
MLP) were trained on tabular data, while the DL models (CNNs [9], ResNet-50
[10], and VGG-16 [11]) were trained using images generated through algorithms
(IGTD and TIG). We also conducted the ensemble CNN+MLP experiment in
which we directly concatenated the raw data to the features extracted by CNN
and performed classification by training CNN only. A wrapper function was cre-
ated to efficiently obtain the metric accuracy to evaluate the trained models.
The robustness of the models was estimated by the k-fold cross-validation. It
can be observed that XGBoost performs better in flat and hierarchical classifi-
cation approaches, and the DL method’s performance in terms of test accuracy
over the image data generated from the IGTD representation is improved for
hierarchical classification. We can state that the hierarchical approach indicates
improvement compared to flat classification across all models except the ensem-
ble of CNN and MLP for IGTD image representation. Table 2 highlights the DL
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method’s performance over TIG and IGTD images, and the results show high
accuracy in detecting FTD subtypes using a CNN ensemble with MLP, achiev-
ing a test accuracy of 88.89%, representing an around 5% increase over the flat
best-known methods [18] [17] [16].

Table 2. Comparison with existing methods and performance of machine learning
models over the tabular data and deep learning method on the images generated from
IGTD and TIG algorithms.

Methods
Flat Accuracy

(%)
Hierarchical Accuracy

(%)

Existing Methods
(MRI Image Data)

Torso et.al (2020) KNN [17] 75.75 -
Ma et. al (2024) DNN[18] 84.00 -

Rogeau et. al (2024) 3D-CNN [16] 84.10 -

Tabular Data

Random Forest 82.75 85.23
Extreme Gradient Boosting 83.90 86.51
Support Vector Machines 81.89 86.08
Multi-layer Perceptron 81.03 85.21

IGTD Image

CNN 82.41 82.96
ResNet-50 66.18 78.61
VGG-16 68.16 76.74

CNN+MLP 82.06 78.50

TIG Image
(Proposed Method)

CNN 84.48 84.19
ResNet-50 72.64 83.06
VGG-16 71.04 76.54

CNN+MLP 85.76 88.04
IGTD & TIG Images CNN+MLP 86.00 88.89

Classification Performance: Table 3 presents performance evaluation metrics
for classification models, comparing with the baseline and proposed approaches.
It provides precision, recall, F1-score, and accuracy values for each class (CV,
BV, PNFA, and SV) under both flat and hierarchical approaches. Insights from
the table include: the proposed hierarchical approach generally outperforms the
flat approach across most metrics and models. RF and XGBoost models show
improved performance in the hierarchical approach compared to the flat app-
roach. After careful evaluation of different models, the CNN+MLP ensemble
model achieves competitive results, with slightly lower precision but higher recall
and F1-score compared to other models. Overall, the proposed hierarchical app-
roach, particularly employing the CNN+MLP ensemble model, outperforms in
accurately classifying FTD subtypes. Despite its more complex architecture, the
optimized CNN+MLP ensemble model consistently produced results without
showing any noticeable bias towards any particular class.
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Key Findings: Transforming tabular data into images using converters encodes
feature distance information into a 2D spatial configuration. This visual repre-
sentation enhances the CNN’s ability to capture underlying patterns in the data
enriched with spatial information effectively. In cases where the dataset exhibits
complexities that hinder effective classification, employing CNNs can be a viable
solution to enhance performance. We presented the new algorithm TIG, which
can better capture the spatial 2D correlation of the features than the existing
techniques IGTD.
Combining CNN-extracted features from TIG-generated images with raw tab-
ular data creates a more comprehensive feature set that captures both spatial
correlations and direct numerical relationships, leading to improved classification
performance. The ensemble method, which combines the strengths of CNNs and
MLPs, demonstrates better performance than other methods. This suggests that
hybrid models can effectively harness the complementary strengths of different
algorithms to achieve better results.
The integration of features from two different modalities proved effective in
capturing diverse features and enhancing FTD subtype classification accuracy,
particularly valuable in addressing the complex and heterogeneous nature of
FTD. Leveraging the natural hierarchy of FTD subtypes, our proposed model
offers clinicians a more comprehensive understanding of classification, potentially
improving diagnostic accuracy and patient care.

Table 3. Performance evaluation metrics of classification models for baseline and pro-
posed approach. CN: patients with normal cognitive function; BV: patients primarily
affecting behavior and personality; SV: patients characterized by language and seman-
tic memory impairments; PNFA: patients primarily impacting language fluency and
grammatical processing.

Model Approach Precision Recall F1-Score Accuracy
CN BV PNFA SV CN BV PNFASV CN BV PNFA SV

Baseline

Random
Forest

Flat 0.91 0.73 0.95 0.82 0.94 0.76 0.46 0.75 0.92 0.74 0.62 0.78 0.82
Hierarchical 0.93 0.77 0.86 0.87 0.96 0.76 0.78 0.84 0.94 0.77 0.81 0.85 0.85

XGB
Flat 0.92 0.80 0.77 0.73 0.95 0.71 0.58 0.87 0.93 0.75 0.66 0.79 0.83

Hierarchical 0.94 0.81 0.84 0.91 0.96 0.76 0.83 0.87 0.95 0.78 0.83 0.89 0.86
Proposed
Method

CNN+MLP
Flat 0.95 0.78 0.73 0.78 0.95 0.76 0.62 0.62 0.95 0.78 0.67 0.69 0.85

Hierarchical 0.95 0.78 0.95 0.92 0.97 0.77 0.87 0.83 0.96 0.78 0.91 0.87 0.88

5 Conclusion

The results suggest that implementing a hierarchical classification strategy has
resulted in enhanced accuracy. Additionally, incorporating TIG and combining
CNN with MLP have contributed to further improvements in accuracy compared
to conventional machine learning models on the FTLDNI dataset. The proposed
ensemble approach results in better classification performance and robustness.
This study provides a detailed understanding of the heterogeneity within the
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FTD spectrum. By categorizing FTD subtypes hierarchically, clinicians can bet-
ter tailor diagnostic and treatment strategies to match each subtype’s specific
characteristics and progression patterns. The tabular-to-image conversion app-
roach can be adapted to various domains and applications, providing new insights
and opportunities for data analysis and modeling.
The limitation of this work is that we primarily focused on exploring the effec-
tiveness of 2D CNNs for tabular data by converting it into images. While 1D
CNNs can be directly applied to raw tabular data, we chose to emphasize 2D
CNNs due to the potential advantages of leveraging spatial information. We did
not extensively investigate the potential of 1D CNNs in this context.
In the future, we aim to delve deeper into optimizing CNN architectures specifi-
cally for image representations derived from tabular data. This includes investi-
gating alternative methods for converting tabular data into images and exploring
the potential of 1D CNNs. Extending this methodology to other health datasets
and analyzing model performance will also be a key focus. Additionally, we plan
to conduct a computational cost analysis to compare the efficiency of CNNs
against traditional ML models in terms of resource utilization.
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Abstract. Early diagnosis of Alzheimer’s Disease (AD) holds key in
delaying cognitive decline and managing the progression of dementia.
The Mini-Mental State Examination (MMSE) serves as a valuable tool
for evaluating cognitive impairment, aiding in the identification of AD
severity and early-stage diagnosis. Traditionally, prediction models aim-
ing to predict MMSE scores from speech have utilized the mean squared
error (MSE) as the loss function. However, MSE tends to bias predictions
towards the average, which limits its ability to discriminate AD sever-
ity effectively. To address this limitation, we propose a novel Weighted
MSE-CE loss function aimed at improving AD discrimination by accu-
rately predicting MMSE scores. It reaches the goal through the integra-
tion of cross entropy (CE) into mean squared error (MSE), leveraging
the Bernoulli penalty and distance-based weights. Furthermore, our app-
roach relies solely on language-agnostic acoustic features, eliminating
the requirement for transcription. Consequently, it gains the potential
to be applied to individuals speaking various languages. Experimental
results on the ADReSSo dataset demonstrate that our method reduces
the RMSE to 4.55, outperforming other acoustic-based approaches. Addi-
tionally, our predictions achieved an impressive 77.46% accuracy in AD
detection, highlighting its effectiveness in assessing AD severity.

Keywords: Alzheimer’s Disease · MMSE score prediction · AD
Detection · weighted MSE-CE Loss · Acoustic Features.

1 Introduction

Dementia is a widespread cognitive disorder affecting millions of people world-
wide, including Alzheimer’s Disease (AD). Early detection of AD is crucial for
timely intervention and treatment aimed at delaying cognitive decline and miti-
gating the risk of progression to dementia. However, diagnosing AD in its early
stages remains challenging, often due to symptoms being mistaken for normal
aging by both patients and medical professionals [4].

The Mini-Mental State Examination (MMSE) [8] is a survey for screening
cognitive impairment and dementia, including AD, which is commonly used
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worldwide. It contains a brief questionnaire for assessing various cognitive func-
tions. With scores ranging from 0 to 30, higher scores indicate better cogni-
tive ability. The identification between Healthy Control (HC) and probable AD
is commonly made based on a criterion score around 27 [15,30]. Notably, the
assessment of the MMSE allows for not only the detection of severity but also
the diagnosis of early-stage AD.

Recent research has been dedicated to identifying AD patients based on their
speech patterns, as individuals with AD commonly experience language impair-
ments like aphasia [10,26]. Thus, speech emerges as a crucial clue for facilitating
easier AD diagnosis and cognitive status monitoring. The ADReSSo [19] is one
of the most representative AD datasets, which targets AD recognition in spon-
taneous speech. Within the dataset, existing studies have primarily categorized
subjects as either HC or probable AD, with less attention on assessing the sever-
ity of the disease through MMSE scores. However, identifying severity is crucial
for early detection and understanding AD progression, highlighting the critical
need for accurately predicting MMSE scores. In predicting MMSE scores, the
predictions typically rely on acoustic and linguistic features of speech. These
features are derived from speech recordings and corresponding transcripts. How-
ever, due to the absence of manual transcripts in ADReSSo, unlike in the prior
ADReSS dataset [18], efforts were made to generate transcripts before linguis-
tic feature extraction. This adjustment was necessary because linguistic features
have shown better performance compared to acoustic features in the ADReSS
dataset [5,7,14,24,31].

Despite the superior performance of linguistic features, they are limited by
their dependency on Automatic Speech Recognition (ASR) and lack of scalability
for diverse languages. Within the ADReSSo dataset, studies [19,23] have demon-
strated better results in MMSE score prediction by utilizing ASR-driven linguis-
tic features. Nevertheless, the usage of linguistic features caused the reliance
on ASR performance [22], and changing the language may significantly impair
performance. Consequently, our focus is directed toward utilizing exclusively
acoustic features.

In this paper, we introduce a novel weighted MSE-CE loss to facilitate AD
severity discrimination by accurately predicting MMSE scores. The traditional
loss function, mean squared error (MSE), lacks discrimination power for AD
due to its tendency for predicted MMSE scores to converge towards the aver-
age score of the dataset. To prevent this convergence, we integrate cross entropy
(CE) into MSE. By segmenting the inference process into two phases, we consider
both classification for subdivided score intervals and its subsequent regression
for expected scores. Within the process, we penalize the ambiguous probabilities
during score inference to prevent discrepancies between the predicted probabil-
ity and expected score. Also, we consider the distance property between inter-
vals in the classification phase since traditional CE disregards the relationship
between labels. Furthermore, unlike conventional approaches relying on linguis-
tic features extracted from ASR-driven texts, our approach exclusively leverages
acoustic features from speech recordings. This distinction provides our method
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with the potential to be applicable to users across diverse linguistic backgrounds.
Experimental results on the ADReSSo dataset demonstrate the lowest RMSE of
4.55 in MMSE score prediction among acoustic-based approaches. Subsequently,
the predictions achieve an impressive 77.46% accuracy in AD detection through
simple thresholding. These results underscore the effectiveness of our loss func-
tion for AD discrimination as well as MMSE score prediction. In summary, the
contributions of this paper are as follows:

Fig. 1. Overview of proposed method for MMSE score prediction.

– We propose the weighted MSE-CE loss, designed to facilitate AD severity
discrimination by accurately predicting MMSE scores.

– By utilizing exclusively acoustic features, we eliminate the need for transcrip-
tion, thereby reducing costs and promising language-agnostic models.

– Experimental results demonstrate significant AD discrimination power, ach-
ieved by superior MMSE score prediction performance among acoustic-based
approaches.

2 Method

In this paper, our goal is to identify the spectrum of AD severity through accu-
rate MMSE score prediction. To achieve this, we propose weighted MSE-CE
loss, which addresses the limitation of traditional MSE loss. Before delving into
details, we offer a description of the overall model architecture.

2.1 Model Architecture

A convolutional recurrent neural network (CRNN)-based model, which was
developed by Koo et al. [14], is employed to leverage sequential information
from speech. The overview of the proposed MMSE score prediction model is
depicted in Fig. 1.

Initially, VGGish [11] features are extracted from the Mel-Spectrogram of the
speech recording. These features, each comprising 128 dimensions, are extracted
every 960ms to capture the acoustic context. Subsequently, the features are seg-
mented along each speaker turn, and global max pooling is applied to capture
the most salient features.
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The data then flows through the CRNN encoder, which is designed to cap-
ture information within and across sequences. This encoder includes an attention
layer, squeeze and excitation blocks [12], a convolutional neural network, bidi-
rectional long short-term memory layers, and fully connected (FC) layers. This
architecture enables the model to learn complex patterns within the input fea-
tures, capturing temporal dependencies and focusing on relevant features while
enhancing representation. Additionally, the speaker’s ID information is incorpo-
rated by channel-wise concatenation with VGGish features post-attention layer,
utilizing an FC layer. This integration ensures the model can leverage speaker-
specific characteristics to improve its predictions.

Finally, the score inference process is segmented into two sequential phases to
exploit the novel weighted MSE-CE loss. The encoder generates the probabilities
for subdivided score intervals. Then, the MMSE score is predicted using an
expected formula. Further details will be presented in the next section.

2.2 Weighted MSE-CE Loss

To achieve our goal, we introduce a novel loss function designed to overcome the
main drawback of the traditional MSE loss. While MSE is commonly used in
MMSE score prediction due to its simplicity and intuitiveness [5,14,22,24,25], it
tends to converge predictions towards the dataset’s average value, limiting their
discrimination power for AD. To prevent this convergence, we draw inspiration
from the computer vision domain [1] and integrate the CE loss into the MSE loss.
In this paper, we initially partition the entire MMSE score distribution of 0 to 30
into several regularly sized segments. Subsequently, the score prediction process
unfolds into two phases: classification for the score segment and regression for
the score within the class. The classification phase aims to discern the spectrum
of AD severity, ranging from early to severe cognitive impairments, while the
regression phase focuses on predicting exact MMSE scores. The score is inferred
using the expectation formula depicted in Equation 2. Here, p ∈ {pi}Bi=1 and s
represent the forecasted probabilities and score, respectively, with i indicating
the index for the intervals subdivided into B bins. Additionally, y denotes the
true MMSE score, while its corresponding one-hot encoded vector is denoted by
ŷ ∈ {ŷi}Bi=1.

LMSE−CE = MSE(y, s) + CE(ŷ, p) (1)

s = E(p) =
30
B

B∑

i=1

pi (2)

MSE(y, s) = (y − s)2 (3)

CE(ŷ, p) = −
B∑

i=1

ŷi · log pi (4)
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Bernoulli Penalty. Despite the incorporation of an additional classification
phase, the model encounters challenges in acquiring explicit probabilities for each
interval, which hinders the consistency between the two phases. In other words,
a discrepancy occurs between the predicted probability and expected score. To
address this discrepancy caused by the uncertainty, we introduce a penalty for
ambiguous probabilities during the score inference. The penalty leverages the
variance of the Bernoulli distribution, which exhibits the highest value when
the probability reaches 0.5. By applying this penalty, the model is encouraged
to clarify its probability predictions to obtain the expected MMSE score. The
penalized expectation formula is outlined in Equation 5, where λ denotes a
penalty parameter.

s∗ = E(p) − λ · 30
B

B∑

i=1

(1 − pi)pi (5)

Weighted Cross Entropy. Unlike common classification labels, the subdivided
score intervals possess a distance property between them. However, traditional
CE overlooks this property since it only considers the probability of the correct
interval. Recognizing this distinction, we propose weighted CE in the classifi-
cation phase. By employing absolute distance as a weight, our proposed loss
function reflects the interval misalignments. Additionally, we incorporate an off-
set of 1 to prevent the loss from reaching 0 when the correct interval has the
highest probability. Equation 6 and 7 provide detailed formulations of the abso-
lute distance and weighted CE, with d representing the distance between the
correct and predicted intervals.

d =
∣∣∣argmax

i
(ŷi) − argmax

i
(pi)

∣∣∣ (6)

CEWeighted(ŷ, p) = −(1 + d) ·
B∑

i=1

ŷi · log pi (7)

Total Loss Function. The proposed loss function combines a penalized MSE
with weighted CE to accurately predict MMSE scores and discern the spectrum
of AD severity. Each loss strengthens the synergy between them complementarily,
contributing to the overall effectiveness of the model. The total loss function is
depicted in Equation 8.

LTotal = MSE(y, s∗) + CEWeighted(ŷ, p) (8)

3 Experimental Results

In this paper, we propose a novel loss function to facilitate AD severity dis-
crimination by accurate MMSE score prediction. To validate our proposal, we
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present experimental results conducted on the ADReSSo dataset [19]. We report
RMSE value for MMSE score prediction, while also considering the correspond-
ing accuracy for AD detection. Furthermore, we compare our method with exist-
ing approaches that utilize various features, including linguistic properties.

3.1 Experimental Settings

ADReSSo Dataset. The ADReSSo dataset [19] was collected for demen-
tia recognition from spontaneous speech. It provides speech recordings with
labels for AD and MMSE scores. Participants were tasked with describing a
Cookie Theft picture from the Boston Diagnostic Aphasia Examination [9]. The
recording includes participant speech and investigator commentary, segmented
by speaker turns. The dataset, designed to be unbiased in gender and age, varies
in length from 23s to 279s. Notably, Table 1 illustrates differences between prob-
able AD and HC in MMSE scores, suggesting the potential for AD identification
through accurate MMSE score prediction. The training set comprises 166 sam-
ples, with 71 samples in the test set. The evaluation is conducted on the test
set.

Table 1. Statisitic of MMSE scores on the ADReSSo dataset.

AD Label Train (Mean / Std.) Test (Mean / Std.)

Probable AD 17.44 / 5.33 18.86 / 5.80
HC 28.99 / 1.15 28.91 / 1.25
Total 22.93 / 6.99 23.89 / 6.56

Implementation Details. The experiments utilize an identical model archi-
tecture. In terms of the baseline model using MSE, the single value obtained
through Sigmoid is adjusted to fit within a range of 0 to 30. Conversely, our pro-
posal segments the scores into 10 interval bins and sets the penalty parameter λ
to 1. Training exclusively employs MMSE score labels. In order to evaluate AD
detection as well, we establish a threshold for the predicted MMSE scores at 27,
as suggested by Kukull et al. [15]. This threshold-based classification using AD
labels facilitates the validation of our model’s ability to discriminate AD based
on the predicted MMSE scores. Each model contains about 33 million parame-
ters, requiring approximately 3 hours of training time on a single NVIDIA RTX
3090 GPU.

3.2 Main Results

Our aim is to demonstrate the effectiveness of proposed weighted MSE-CE loss
in facilitating AD discrimination and predicting MMSE scores. We begin by



408 H. J. Jon et al.

Fig. 2. Distribution of true and predicted MMSE scores along the loss function: (a)
when using only MSE, predictions converge to the average MMSE score in the test data,
failing to discriminate between AD and normal. (b) Weighted MSE-CE loss enables
correct MMSE score prediction and AD discrimination.

Table 2. Main results of MMSE score prediction and AD detection on the ADReSSo
datasets.

Task Method
Metrics

RMSE ACC (%)

AD detection A1. CE Loss - 77.46

MMSE score
prediction

M1. MSE Loss 6.60 49.30
M2. MSE-CE Loss 5.49 66.20
M3. + Bernoulli Penalty 4.79 70.42
M4. + Absolute Distance 4.55 77.46

establishing baseline models for AD detection A1 and MMSE score prediction
M1 using traditional loss functions. Subsequently, we progressively integrate
components into our approach: incorporating CE into MSE M2, a Bernoulli
penalty within the scoring process M3, and weighted CE in the classification
phase M4.

Quantitative Results. Table 2 illustrates the quantitative improvements ach-
ieved by each component. Initially, M1 shows poor performance, particularly in
AD detection, indicating the limitation of traditional MSE loss in distinguish-
ing AD. However, significant enhancements are observed in our proposals. M2
demonstrates the most substantial improvements in both tasks, indicating that
integrating the classification phase significantly refines predictions to be more
accurate and discriminative. Subsequently, M3 and M4 primarily enhance each
task, respectively. M3 mainly contributes to MMSE score prediction, suggest-
ing that mitigating discrepancies between predicted probabilities and expected
scores leads to more accurate predictions. Conversely, M4 primarily enhances
AD detection, indicating that considering the relationship between interval labels



Identifying Alzheimer’s Disease Across Cognitive Impairment Spectrum 409

enhances discrimination power. Additionally, consistent enhancements on both
tasks indicate that as the accuracy of MMSE score prediction increases, the dis-
crimination power for AD improves. Consequently, achieving an accuracy equiva-
lent to A1 and the lowest RMSE of 4.55 underscores the effectiveness of accurate
MMSE score prediction in AD discrimination.

Qualitative Results. Visualizing the prediction distributions for M1 and M4
confirms the effectiveness of our proposed loss function. In Fig. 2(a), the tradi-
tional MSE loss leads to predictions converging towards the average score of the
dataset. Since the scores of probable AD significantly reduce the average score,
most predictions fall below the discrimination threshold, making them unable
to discern AD. Conversely, in Fig. 2(b), our proposed loss function aligns pre-
dictions closely with the true MMSE scores, enabling effective identification of
AD severity. This visual representation highlights the superior precision of our
approach in MMSE score prediction.

Table 3. Performance comparison of MMSE score prediction among various methods.

Feature Type Method RMSE

Linguistic

Agbavor and Liang [2] 5.46
Luz et al. [19] 5.28
Pérez-Toro et al. [23] 4.56
Rohanian et al. [25] 4.49
Mirheidari et al. [21] 4.45
Zhu et al. [33] 4.44
Pappagari et al. [22] 3.85

Linguistic + Acoustic

Shah and Aryal [27] 5.56
Pérez-Toro et al. [23] 4.79
Pappagari et al. [22] 4.62
Rohanian et al. [25] 4.26
Agbavor and Liang [2] 6.25
Luz et al. [19] 6.09
Pérez-Toro et al. [23] 5.35

Acoustic

Proposed Method 4.55

3.3 Comparison

We provide a comprehensive comparison with existing methods for MMSE score
prediction using the ADReSSo dataset, as shown in Table 3. So far, most studies
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have favored linguistic features over acoustic ones due to their superior perfor-
mance [2,19,23]. Consequently, Mirheidari et al. [21] and Zhu et al. [33] exclu-
sively focused on using ASR to predict MMSE scores. Notably, Pappagari et
al. [22] achieved outstanding results with an RMSE of 3.85 using the BERT
model with ASR, capturing speech disfluency from language-specific ASR-driven
transcripts. Additionally, Rohanian et al. [25] and Shah and Aryal [27] com-
bined acoustic features with linguistic ones to enhance performance. However,
the usage of linguistic features requires the transcription via ASR, confining
their applicability within a single language. Recently, there has been a growing
interest in acoustic features due to their immediate extraction from recordings
and language-agnostic nature. Nevertheless, the potential of acoustic features in
MMSE score prediction remains underexplored. In acoustic-based approaches,
Pérez-Toro et al. [23] achieved the best RMSE of 5.35, employing prosody fea-
tures, x-vector, and VAD valence and dominance for linear regression.

In this paper, we emphasize the exclusive utilization of acoustic features
for MMSE score prediction, aiming to maximize their potential. Our proposed
method achieves a state-of-the-art RMSE of 4.55 among models using only
acoustic features. It represents a significant improvement of approximately 15%
(RMSE of 0.80) compared to the existing best performance. Furthermore, our
competitive performance against models involving linguistic features underscores
the comparable effectiveness of acoustic features.

4 Discussion

The ADReSS challenge [18] has played a crucial role in advancing machine
learning techniques for identifying AD and predicting MMSE scores through
spontaneous speech. Participants [5,7,14,24,31] in the challenge predominantly
directed their attention towards linguistic features due to the availability of both
audio recordings and manual transcripts in the dataset. However, the reliance
on manual transcripts presents significant challenges in terms of cost and time.
Subsequently, the ADReSSo challenge [19] shifted towards the dataset contain-
ing only audio recordings, leading to increased reliance on ASR for transcrip-
tion [22,23,25]. However, this approach presents limitations, as the diagnostic
model’s performance is contingent upon the accuracy of the ASR system, thereby
hindering scalability across various languages and speech patterns. Hence, the
utilization of acoustic features became mainstream in the latest ADReSS-M [17]
challenge due to its inclusion of diverse languages across both the training and
test sets [13,20,28,32].

In response to this evolving trend, our approach emphasizes the utilization
of acoustic features exclusively, eliminating the need for transcription entirely.
Thanks to this approach, we gain the potential to be applicable to users across
diverse languages. Moreover, this simplifies the feature extraction process and
eliminates the reliance on ASR performance, as transcription is not required.
Our proposed weighted MSE-CE loss achieves state-of-the-art performance in
MMSE score prediction among acoustic-based approaches, and the notably high
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accuracy in AD detection underscores the competitiveness of acoustic features.
These results represent a significant advance towards practical diagnostics with
global applicability. Moving forward, our approach requires validation in a mul-
tilingual environment with various acoustic features to further demonstrate its
potential. Therefore, we plan to enhance the robustness of our findings by incor-
porating a broader array of acoustic features, such as Wav2Vec 2.0 [3], X-vector
[29], and I-vector [6]. Additionally, we aim to extend our approach to multilingual
datasets, including ADReSS-M and TAUKADIAL [16], in future work.

5 Conclusion

In this paper, we introduce a novel Weighted MSE-CE loss function designed
to enhance both MMSE score prediction and AD discrimination. We address
the limitation of traditional methods by preventing predictions from converging
solely to the average MMSE score in the dataset. This is achieved through the
integration of cross entropy (CE) into mean squared error (MSE), leveraging
the Bernoulli penalty and distance-based weights. Experimental results on the
ADReSSo dataset demonstrate the lowest RMSE of 4.55 in MMSE score pre-
diction among acoustic-based approaches. Moreover, our predictions achieve an
impressive 77.46% accuracy in AD detection. Consequently, our novel Weighted
MSE-CE loss function, in combination with acoustic feature-based modeling,
represents a significant advancement in MMSE score prediction and AD severity
discrimination. This holds promise for enhancing early diagnosis and manage-
ment strategies in AD.
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Abstract. Deep learning classifiers face significant challenges when
dealing with heterogeneous multi-modal and multi-organ biomedical
datasets. The low-level feature distinguishability limited to imaging-
modality hinders the classifiers’ ability to learn high-level semantic rela-
tionships, resulting in sub-optimal performance. To address this issue,
image augmentation strategies are employed as regularization techniques.
While additive noise input during network training is a well-established
augmentation as regularization method, modern pipelines often favor
more robust techniques such as dropout and weight decay. This prefer-
ence stems from the observation that combining these established tech-
niques with noise input can adversely affect model performance.

In this study, we propose a novel pretraining pipeline that learns
to generate conditional noise mask specifically tailored to improve per-
formance on multi-modal and multi-organ datasets. As a reinforcement
learning algorithm, our approach employs a dual-component system com-
prising a very light-weight policy network that learns to sample condi-
tional noise using a differentiable beta distribution as well as a classifier
network. The policy network is trained using the reinforce algorithm to
generate image-specific noise masks that regularize the classifier during
pretraining. A key aspect is that the policy network’s role is limited
to obtaining an intermediate (or heated) model before fine-tuning. Dur-
ing inference, the policy network is omitted, allowing direct comparison
between the baseline and noise-regularized models.

We conducted experiments and related analyses on RadImageNet
datasets. Results demonstrate that fine-tuning the intermediate mod-
els consistently outperforms conventional training algorithms on both
classification and generalization to unseen concept tasks.

Keywords: Pretraining · Medical Imaging · Classification Accuracy ·
RadImageNet · Policy Gradient Method · Reinforcement Learning

1 Introduction

Image classification is a fundamental task in computer vision that involves assign-
ing labels or categories to images based on their visual content. Traditional
approaches to image classification have relied on conventional supervised learn-
ing techniques, where the model is trained on a labeled dataset. However, rein-
forcement learning (RL) has emerged as a promising enhancement to the training
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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process, enabling models to learn optimal classification policies through inter-
action with an environment[1][2]. In particular, policy gradient methods in RL
offer a powerful framework for directly optimizing classification performance[3].

RL-based approaches offer a promising solution to address the challenges
posed by image classification datasets[1,4]. By learning optimal policies for fea-
ture extraction and classification through interaction with the environment, RL
algorithms can adapt to the variations in low-level features and capture the rele-
vant high-level semantic relationships [2]. This enables the development of more
robust and accurate image classification models.

Medical imaging datasets, such as MRI scans, ultrasound images, and CT
scans, often exhibit significant heterogeneity and variations in low-level features
due to differences in acquisition protocols, imaging modalities, and anatomical
regions an example illustration is in Figure 1. These variations manifest as dif-
ferences in brightness, contrast, and noise levels, which can be readily discerned
even through visual inspection of image histograms. Such low-level distinguisha-
bility hinders the learning of high-level semantic relationships. The challenge is
to capture and homogenize these low-level image features to improve classifier
performance.

Fig. 1. Heterogeneity in medical imaging datasets (RadImageNet [5]) across modali-
ties and anatomical regions. (Left) CT scan of the lungs. (Second left) MRI scan of
the shoulder. (Second Right) Ultrasound image of the ovary. (Right) Pixel intensity
histograms as indicator for low-level image features of CT (blue), MRI (red), and ultra-
sound (green) images, illustrating variations in brightness, contrast, and noise levels.

Previously, injecting random noise into the input data during training has
been proposed as a regularization approach to improve generalization [6]. How-
ever, the prevalence of other powerful regularizers like weight decay and dropout
raises the question of whether additional noise-based regularization is beneficial
[7]. Moreover, prior work has highlighted the potential negative impact of noise-
based regularization, an important consideration given that modern training
pipelines typically omit additive or multiplicative noise [8].

In this paper, we present several key contributions to tackle the challenges
encountered by deep learning classifiers when working with heterogeneous multi-
modal and multi-organ biomedical datasets. Our primary contribution is a novel
pretraining pipeline that learns to generate conditional noise masks specifically
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designed to enhance performance on these datasets. We propose a reinforcement
learning system that consists of a lightweight policy network and a classifier
network as shown in Figure 2. During pretraining, the policy network is opti-
mized to generate image-specific noise masks that regularize the classifier, effec-
tively improving its performance on complex biomedical datasets. This approach
enables the classifier to better handle the heterogeneity and multi-modality of
the data, leading to more accurate and robust predictions in various biomedical
applications.

Fig. 2. Schematic diagram of Reinforcement learning. At left agent takes action and
change the state in environment and gain reward. At right, beta sampler (policy net-
work) generates noise matrix and classifier as a differentiable environment computes
the log-likelihood and updates the state variables α and β.

In addition to our novel pretraining pipeline, we perform comprehensive
experiments and analyses on RadImageNet datasets to validate the effective-
ness of our proposed approach. The results consistently show that fine-tuning
the intermediate (or heated) models obtained through our pretraining pipeline
outperforms conventional training algorithms on both classification tasks and
generalization to unseen concepts. This superior performance underscores the
potential of our reinforcement learning-based noise regularization technique in
enhancing the robustness and adaptability of deep learning classifiers when faced
with challenging biomedical imaging scenarios.

In summary, our contributions significantly advance the state-of-the-art
in deep learning for heterogeneous multi-modal and multi-organ biomedical
datasets. By introducing a novel reinforcement learning-based approach, we effec-
tively address the limitations of existing regularization techniques and provide
a powerful tool for improving the performance of deep learning classifiers in
complex biomedical imaging scenarios.

The remainder of this paper is organized as follows. The next sub-section pro-
vides an overview of related work in the field of medical image classification and
reinforcement learning methodologies. Section 2 describes our proposed pretrain-
ing algorithm and background in detail, including training procedure. Section 3
presents the dataset, experimental setup and Section 4 includes results along
with a discussion of the findings. Finally, Section 5 outlines and concludes the
paper.
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1.1 Literature Review

Holmstrom et al. were among the pioneers in addressing this issue by using
additive noise in back-propagation training, which can be seen as an early form
of regularization to prevent overfitting [9]. It is extended to the concept of the
domain of speech recognition, demonstrating the effectiveness of noisy training
for deep neural networks [10].

Bishop provided a theoretical foundation for training with noise, showing
that it is equivalent to Tikhonov regularization, which adds a penalty term to
the loss function to control the complexity of the model [6]. This concept is
explored image recognition with deep neural networks in the presence of noise,
demonstrating that distortions can be both a challenge and an opportunity for
model training [7]. Enhancing the generalisation abilities of neural networks
(NNs) through integrating noise such as MixUp or Dropout during training has
emerged as a powerful and adaptable technique. Despite the proven efficacy
of noise in NN training, there is no consensus regarding which noise sources,
types and placements yield maximal benefits in generalisation and confidence
calibration. [11]

It is proposed deep neural network architectures that are robust to adversarial
examples, which are inputs crafted to deceive the model into making incorrect
predictions [12]. This work is part of a broader effort to develop models that
maintain high performance in the presence of input perturbations.

Dropout is introduced, a simple yet effective technique to prevent neural
networks from overfitting [13]. Dropout works by randomly omitting a subset
of features during training, which encourages the model to learn more robust
features. Further contributed to this field by introducing Cutout, a regulariza-
tion method that randomly masks out sections of input images during training,
forcing the network to focus on less prominent features [14].

The use of semantic segmentation for masking and cropping input images
has proven to be a significant aid in medical imaging classification tasks. The
proposal of a novel joint-training deep reinforcement learning framework for
image augmentation called Adversarial Policy Gradient Augmentation (APGA)
that shows promising results on medical imaging tasks [15].

RadImageNet, represents a significant step forward in the domain of medical
imaging [5]. It is an open radiologic dataset designed to facilitate effective trans-
fer learning in deep learning research. The MedMNIST Classification Decathlon,
as presented by Yang et al., is a lightweight benchmark for medical image analy-
sis designed to assess the capabilities of automated machine learning (AutoML)
solutions [16].

2 Policy Gradient-Driven Noise Mask

Our novel pretraining pipeline streamlines heterogeneous biomedical data
through a three-pronged approach:

– Adapting the noise masks to each specific image, accounting for variations in
modality and organ type.
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– Using reinforcement learning to optimize the noise masks for improved clas-
sifier performance.

– Separating the noise mask generation (pretraining) from the final model (fine-
tuning), allowing for more flexible and effective regularization.

We describe the mathematical formulation of the action taken by the policy
network and the subsequent interaction with the environment, which leads to
the computation of the loss function used for training. The order of steps follows
the Figure 3 from left to right.

Fig. 3. Diagram of our proposed pipeline using deep learning, illustrating the process
from original image through stochastic masking, feature extraction, beta sampling and
classification to produce a prediction with a cross-entropy objective. The blue and
green color parameters to compute objective function.

Image preprocessing is the initial stage, where raw images are prepared
for further processing. This step may include normalization, resizing, and other
image augmentation techniques. Mathematically, if I represents the raw image,
the preprocessing step can be represented as:

Ipre = tj(I). (1)

where Ipre is the preprocessed image and the stochastic function tj(·) is used to
obtain random augmentations of the input image j.

Action Given an pre-processed input image Ipre, the policy network computes
image specific parameters αimage and βimage based on the dataset specific param-
eters represented by αdataset and βdataset. The updated parameters are obtained
as follows:

αimage, βimage, αdataset, βdataset = PolicyNet(I, αdataset, βdataset). (2)

PolicyNet consists of feature extrator network g(·) and beta sampling oper-
ation based on features as shown in Figure 3. The extracted feature vector let
the beta sampler network to generate image specific noise mask as shown in
Figure 4.
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These parameters are then exponentiated to ensure they are positive, as
required by the Beta distribution:

α′ = eαimage , β′ = eβimage . (3)

Fig. 4. Diagram of a policy network architecture (at left) showing the flow from input
feature tensor to weighted tensor output. The network processes the input through a
function h(·), projects the feature vector into Beta distribution parameters b1(x) and
b2(x), derives alpha and beta values for the Beta function, calculates log probability
(logP). The outputs are visualized over the dashed region as colorful circles. As an
example (at right), the process of applying a stochastic masking to a medical image,
showcasing the transformation from a noise matrix to the final masked image, which is
part of the image processing pipeline involving steps such as noise matrix acquisition,
upsampling, blurring, and applying.

A Beta distribution B is then defined using these parameters and a mask M
is sampled from this distribution:

M ∼ B(α′, β′). (4)
The mask is reshaped to match the dimensions of the input image and then

interpolated if necessary to match the image dimensions.
We also introduce post-processing steps that involve upsampling and blur-

ring as shown in Figure 4. Firstly, we upsample the low-resolution noise matrix
obtained from the policy network to obtain image regions with similar coefficient
values, improving the correlation between neighboring pixels. Secondly, we apply
a blurring operation to the upsampled noise matrix to avoid sharp transitions
between different regions during the convolution operation, smoothing out the
boundaries between areas with different noise values.

Environment The model takes the element-wise product of the input image I
and the mask Min to get the output:

O = Model(Ipre � Min). (5)

The environment in this context is implicit. It consists of: (1) The distribution
of input images I that the model encounters. (2) The task-specific criteria that
determine the reward, which is based on the model’s output O and the target
labels T . (3) The Beta distribution from which the mask Min is sampled, which
forms part of the action space of the policy.
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Policy Gradient Objective The policy gradient method is a fundamental app-
roach in reinforcement learning for optimizing a policy function πθ(a|s), where θ
represents the policy parameters, a denotes the action taken, and s is the current
state. The primary objective is to maximize the expected return J(θ). This is
achieved by computing the gradient of the objective function with respect to the
policy parameters θ, given by:

∇θJ(θ) = Eτ∼πθ

[
T∑

η=0

∇θ log πθ(aη|sη)R(τ)

]
. (6)

Here, η represents the time-step, and τ denotes a trajectory sampled from
the policy πθ. This formulation allows for the update of policy parameters in the
direction that increases the expected return.

The policy gradient objective comprises two key components: (1) The log-
probability output from the stochastic policy network. (2) The value of the
reward function.

For the specific application described, the log-probability of the occurrence
of the mask Min under the Beta distribution is computed as:

log(P ) = B.logP (Min). (7)

This log-probability represents the output of the policy network.
The reward function, in this case, is defined as the cross-entropy between the

output logits and the corresponding labels for the input image (which represents
the state).

The loss function, combining these elements, is formulated as the mean of
the product of the exponentiated log probabilities and the criterion applied to
the output and the target:

L = mean
(
log

(∑
elog(P )

)
× Criterion(O, T )

)
. (8)

where O represents the output logits and T denotes the target labels. This
formulation of the policy gradient method provides a framework for optimizing
the policy in a reinforcement learning context, specifically tailored to the task
of mask generation under a Beta distribution.

Image and Dataset Specific Shape Parameters The beta distribution is a
continuous probability distribution defined on the interval (0, 1) and is param-
eterized by two positive shape parameters, typically denoted as α and β. The
probability density function (PDF) of the beta distribution with parameters α
and β is given by:

f(x;α, β) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1 − x)β−1, 0 < x < 1. (9)

where Γ (·) is the gamma function, which is a generalization of the factorial
function to complex numbers.
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The beta distribution is a versatile distribution that can take on various
shapes depending on the values of the shape parameters α and β. The extracted
feature vectors are transformed by a projection layer h(·) (as shown in Figure
4), which generates two separate tensors - alpha and beta - the beta distribution
parameters. The beta distribution parameters - alpha and beta - are used to
sample a random tensor via the beta function. This beta matrix contains values
between 0 and 1. The logP output provides the log probability of this tensor
under the beta distribution, which could be useful for training or interpreting
the model.

The alpha and beta parameters from the last iteration step are the input for
the policy network and the update function for alpha and beta are determined
by recursive exponential moving averages formula:

αnew,image = τi · αdataset + (1 − τi) · αimage. (10)
βnew,image = τi · βdataset + (1 − τi) · βimage. (11)

αdataset = τd · αdataset + (1 − τd) · αmean,image. (12)
βdataset = τd · βdataset + (1 − τd) · βmean,image. (13)

The alpha and beta parameters in the given formulas, in a recursive manner,
are used to update the Beta distribution parameters for an image-level as well
as dataset-level.

The formulas use exponential moving averages to update the α and β param-
eters for both the current image and the overall dataset:

– αdataset and βdataset are updated by taking a weighted average of their pre-
vious values and the mean of the image-level parameters across the dataset
(αmean,image, βmean,image).

– αnew,image and βnew,image are updated by taking a weighted average of
the dataset-level parameters (αdataset, βdataset) and the current image-level
parameters (αimage, βimage). The weight is controlled by τi, typically set to
0.9.

2.1 The Algorithm

The pseudo-code for the proposed algorithm is given in Algorithm 1: Initial-
ization The algorithm begins with the random initialization of model parame-
ters. Additionally, dataset level parameters αd and βd are also initialized. These
parameters are crucial as they will be updated throughout the training pro-
cess to optimize the regularization mechanism. Optimization The core of the
algorithm is an iterative process that continues until a specified termination con-
dition is met, which in this case is convergence. Compute Alpha and Beta
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Result: Optimized model parameters
Randomly initialization model parameters and dataset level αd, βd;
while not converged do

compute the α, β;
αi, βi, αd, βd ← update mask params(image, αi, βi, αd, βd);
dist ← Beta(αi, βi);
sample the noise matrix;
noise matrix ← dist.sample();
take action;
cross entropy obj. ← classifier.step(image, noise matrix);
loss ← dist.log_prob(noise matrix) × cross entropy obj.;
loss.backward();

end
Algorithm 1: The policy gradient method algorithm for training policy net-
work together with classifier mechanism.

At each iteration, the algorithm computes the values of α and β. These are
the parameters of the Beta distribution, which is used to model the stochas-
tic nature of the regularization mechanism. Update Mask Parameters The
function ‘update mask params‘ is called with the current image and the alpha
and beta parameters for both the individual and dataset levels. This function
adjusts the parameters to better fit the data as the algorithm learns. Sample
Noise Mask A noise mask is sampled from the Beta distribution parameterized
by the updated αi and βi. This noise mask represents the probabilistic decisions
made by the regularization mechanism at this stage of training. Take Action
The classifier takes an action based on the current image and the sampled weight
matrix. This step involves the classifier making a prediction which is then used to
calculate the objective function, in this case, the cross-entropy loss. Calculate
Loss and Backpropagate The loss is calculated by taking the log probability
of the sampled weight matrix from the Beta distribution and scaling it by the
cross-entropy objective. This loss is then backpropagated through the network
to update the model parameters in a direction that minimizes the loss. The loop
continues until convergence.

3 Experiments

Datasets For pre-training our models, we are utilizing stratified (train/val/test)
split of RadImageNet [5], a large-scale multi-modal and multi-organ medical
imaging dataset (see Appendix A). The split we prepare let us to justify model
performance using different training techniques. This diverse dataset should help
our model learn general features and representations as well as dataset specific
comparison. To evaluate the performance of our pre-trained model, we are using
the enhanced MedMNIST Classification Decathlon [16], which includes the orig-
inal 10 MedMNIST datasets, as well as 2 additional MRI datasets and 1 ultra-
sound (US) dataset (seee Appendix B). This comprehensive benchmark covers
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a wide range of medical imaging tasks, modalities (e.g., X-ray, CT, MRI, US,
Microscope, OCT), and anatomical regions. By assessing our model’s perfor-
mance on the enhanced MedMNIST Decathlon, we can determine how well it
generalizes across various medical imaging applications.

Implementation Details 12 The training pipeline is configured through a
set of hyper-parameters. The main model to train is Resnet-50 and the policy
network is always a leight-weight network such as Resnet-10t. The batch size is
32 for each 8xV100 GPU with effective batch size is 256. Each training phase
takes 90 epochs with SGD optimizer with learning rate 0.1, momentum 0.9 and
weight decay 1e-4. The step learning rate scheduler reduce by 1/10 in 30 epochs
cycle. The Resnet-10t policy network starts with 0.01 learning rate and same
momentum and weight decay and using cosine annealing learning rate scheduler.
The initial values for αdataset and βdataset are random and sampled from normal
distribution.

For unseen concepts, we extract the features from the freezed backbone net-
work and using MLP for unseen concept generalization or using Logistic Regres-
sion for low-shot adaptability. Both pre-training phases use AdamW with default
hyper-parameters until convergences (with no accuracy increment for 5 epochs).

Baselines, Ablation Study and Optimal Model For the ablation study, we
determine the optimal hyperparameters for the upscale coefficient, kernel size,
and stride through a systematic search. In ablation study, we employ Resnet-
10t as the backbone and the policy network due to its compact size and ease
of optimization. These experiments provide a comprehensive understanding of
the model’s behavior under different settings and help identify the most suitable
configuration for the given task. In the evaluation task, we use Resnet50 as
backbone and Resnet-10t as policy network models. Two model are compared: a
baseline model and one improved training with a Gradient Policy technique. The
performance (macro) metrics considered included Precision, Recall, F1 Score,
AUROC, and Balanced Accuracy.

Case Analysis We investigate the scenario where no upscaling is applied, and
instead, pixel-level noise is directly introduced to the input. Baseline Perfor-
mance: Without any noise model applied, the performance metrics serve as a
baseline. Different Noise Models: The application of Gaussian and Uniform noise
models, following fine-tuning, at 32x32 and 64x64 noise matrix. Pure Noise Con-
ditions: Under conditions simulating pure noise (noise matrix equal to image size,
224x224).

Generalization to unseen concepts We evaluate the generalization perfor-
mance of our model on unseen concepts using the protocol proposed [17]. For
1 https://github.com/ogrenenmakine/Policy-Gradient-Driven-Noise-Mask
2 https://huggingface.co/ogrenenmakine/Policy-Gradient-Noise-Mask

https://github.com/ogrenenmakine/Policy-Gradient-Driven-Noise-Mask
https://huggingface.co/ogrenenmakine/Policy-Gradient-Noise-Mask
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RadImageNet, except for the modalities, the samples and classes from MedM-
NIST are unseen concepts. The model is pretrained on three datasets: ImageNet-
1K (IN1K), RadImageNet (RadIN), and RadImageNet using Gradient Policy
(Grad. P. RadIN). We then extract features for each downstream dataset and
evaluate the performance using a randomly initialized multi-layer perceptron.

How fast can models adapt to unseen concepts? We evaluate the model
performance for unseen concepts using low-shots proposed in [17]. We use CT,
MRI, US and XR samples from MedMNIST dataset and the sample numbers
are 8, 16, 32, 64, 128 and 256, respectively. The model is pretrained on three
datasets: ImageNet-1K (IN1K), RadImageNet (RadIN), and RadImageNet using
Gradient Policy (Grad. P. RadIN).

Table 1. Entropy and performance comparison of normal and heated models with
different input types during policy gradient-driven training on RadImageNet. Bolds
indicate the best balanced accuracy (higher is better). The underlined score is the best
entropy (lower is better.)

Model Input EntropyPrecisionRecallF1 ROC B.Acc.

(Normal) Normalized0.3802 0.5929 0.5014 0.52260.98840.5014
(CutMix) Normalized0.3259 0.6022 0.5225 0.54440.98750.5225
(Heated) Normalized0.7156 0.2906 0.2825 0.24170.94970.2825
(Heated) Noisy 0.3294 0.5967 0.5136 0.54020.98980.5136
(Finetuned Heated)Normalized0.3177 0.6034 0.5211 0.54680.99000.5211

4 Results & Discussion

We start by our experiment by explaining the intermediate (or heated) model
concept experimentally in Table 1. The results demonstrate the evolution of
model entropy through different stages of training and input types. Initially,
the heated model shows high entropy (0.7156) with normalized input, indicating
a state of uncertainty. When trained with noisy input, the entropy decreases
significantly (0.3294), suggesting improved robustness. After finetuning on the
target domain, the heated model achieves the lowest entropy (0.3177) among all
models, including normal and CutMix variants. This low entropy, combined with
competitive performance metrics, indicates that the finetuned heated model has
learned more effectively from the data compared to other approaches. Notably,
while the finetuned heated model and CutMix model have similar accuracy (bal-
anced accuracy of 0.5211 and 0.5225, respectively), the finetuned model’s lower
entropy suggests more confident and potentially more reliable predictions.

Table 2 compares the performance of lightweight Resnet-10 and baseline
Resnet-50 models with and without the gradient policy technique in different
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augmentations settings (hard augmentation: CutMix [18]: soft augmentation:
AugMix [19], AutoAug [20], RandAug [21]). The intermediate model obtained
by policy gradient technique is fine-tuned RadImageNet. For both model sizes,
applying the gradient policy improves all metrics, compare to normal training
and provides competitive results with CutMix.

Table 2. Performance Metrics for ResNet Models with Best Parameter Settings in
RadImageNet

Technique PrecisionRecallF1 ROC B.Acc.

Baseline Model (ResNet-50)
Heavy Augmentations
Grad.P.

⊙
AutoAug → FT 0.6034 0.5211 0.54680.99000.5211

CutMix
⊙

AutoAug 0.6022 0.5225 0.54440.98750.5225
Augmentations
RandAug 0.5877 0.5102 0.53130.98980.5102
AugMix 0.6037 0.5078 0.53260.98920.5078
AutoAug 0.5929 0.5014 0.52260.98840.5014
Lightweight Model (ResNet-10t)
Heavy Augmentations
Grad.P.

⊙
AutoAug → FT 0.5672 0.4573 0.48380.98900.4573

CutMix
⊙

AutoAug 0.5405 0.4292 0.45230.98710.4292
Augmentations
RandAug 0.5110 0.4060 0.42750.98640.4060
AugMix 0.5111 0.4096 0.42970.98670.4096
AutoAug 0.5386 0.4262 0.44790.98710.4262

Note: Grad.P.: Gradient-Policy Noise Mask (this work) using best
parameter setting: Noise Matrix 64x64, K:13 and S:6 Gaussian
Blurring; FT: Finetuning; CutMix [18], AugMix [19], AutoAug [20],
RandAug [21]. 2

Table 3 shows the results on enhanced medical imaging datasets. It
reports the F1 scores of feature extractor Resnet-50 backbone (pretrained with
ImageNet-1K, RadImageNet, and RadImageNet intermediate model with gradi-
ent policy, respectively) and evaluated using MLP over extracted feature vectors.
The intermediate model with gradient policy achieves the highest F1 scores on
11 out of 13 datasets, demonstrating strong generalization to unseen medical
imaging concepts. The improvements are especially significant for the small-
scale datasets. It is categorized into three: the small datasets is less than 10,000
samples, mid-scale dataset range is between 10,000 and 30,000 samples, and the
large-scale datasets are over 100,000 samples.

Figures 5 reports the few-shot adaptability of each CT, MRI and US modal-
ities in 8 different dataset and 3 pre-trained networks (ImageNet-1K, RadIm-
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Table 3. The F1 scores (higher is better) indicate the generalization to unseen con-
cepts by MedMNIST dataset [16] using Resnet-50 backbone. The results columns are
for ImageNet, RadImageNet pretrained weights as well as Gradient Policy pretrained
intermediate (heated) models. The t-distribution %95 confidence scores are also pro-
vided for small (7 trials) and mid-scale (3 trials) datasets.

Dataset IN1K RadIN Grad. P. RadIN

Resnet-50
Small Sets (7 Trials Averaged)

Breast US 0.6662±0.0394 0.6866±0.03120.7649±0.0154
Breast Cancer US0.5932±0.0137 0.5659±0.01700.6563±0.0111
BrainTumor MR 0.8431±0.0093 0.8275±0.00790.8880±0.0041
Brain MR 0.2258±0.0187 0.2257±0.01540.4351±0.0345
Pneumonia XR 0.8344±0.0093 0.8343±0.00850.8554±0.0101
Mid-scale Sets (3 Trials Averaged)

Blood Cell Mic. 0.9099±0.0024 0.8686±0.00660.9261±0.0024
Dermatoscope 0.4998±0.01790.3596±0.06020.4643±0.0266
OrganA CT 0.7272±0.0043 0.7339±0.01340.8108±0.0033
OrganC CT 0.6579±0.0119 0.6772±0.00940.7438±0.0037
OrganS CT 0.5622±0.0068 0.5649±0.01210.6170±0.0009
Large-Scale Sets (1 Trial)

Retinal OCT 0.5160 0.5220 0.5736
Colon Pathology 0.8138 0.7880 0.8042
Tissue Mic. 0.3082 0.3447 0.4033

Fig. 5. Each figure represents a different unseen but related dataset: Breast - US,
Breast Cancer - US, Brain - MRI, Brain Tumor - MRI, Pneumonia - XR, OrganA,
OrganC, OrganS - Abdominal CT. Different color curves corresponds to different pre-
trained model on few-shot adaptability. The orange curves represent the performance
of Gradient Policy RadImageNet, the green curves show the results for ImageNet, and
the blue curves indicate the performance of ImageNet pretrained models. The evalua-
tion is carried out for 8, 16, 32, 64, 128, 256 samples and 10 trials in each sample size.
The vertical lines are the t-statistics %95 confidence interval.
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Table 4. Performance Metrics for Different Noise Models and Noise Matrix Sizes for
RadImageNet [5] by ResNet-10t model.

Features MatrixPrecisionRecallF1 AUROCB. Accuracy

Different Noise Models
Baseline Model - 0.5386 0.4262 0.44790.9871 0.4262
Gaussian + Blurring 32x32 0.5354 0.4273 0.44940.9871 0.4273
Uniform + Blurring 32x32 0.5206 0.4278 0.44800.9872 0.4278
Gaussian + Blurring 64x64 0.5507 0.4279 0.44970.9874 0.4279
Uniform + Blurring 64x64 0.5504 0.4299 0.44990.9861 0.4274
Pure Noise
Baseline Model - 0.5386 0.4262 0.44790.9871 0.4262
Gaussian 224x2240.5312 0.4236 0.44410.9864 0.4253
Gaussian + Blurring 224x2240.5396 0.4312 0.45340.9876 0.4312
Pure Noise 224x2240.5340 0.4314 0.45550.9876 0.4314
Pure Noise + Blurring224x224NaN NaN NaN NaN NaN

Fig. 6. Composite image displaying a series of medical scans from RadImageNet [5] (1st
row) with corresponding histograms (2nd row), where blue bars represent the original
image pixel intensity distribution, red bars indicate the masked image pixel intensity
distribution, and green bars show the noise pixel intensity distribution.

ageNet, and RadImageNet with gradient policy) for (8, 16, 32, 64, 128, 256
samples and 10 trials in each sample size). The orange curves are pre-trained
model with gradient policy which is consistently better in few-show adaptability.

Table 4 shows the impact of different noise models and noise matrix sizes on
the performance of the lightweight Resnet-10t model. Gaussian noise with a noise
matrix of 64x64 yields the best precision, while uniform noise with a noise matrix
of 64x64 gives the highest recall and accuracy. However, the differences between
noise models are relatively small. Using pure noise matrix of size 224x224 leads
to slightly lower but comparable performance to the baseline.

Figure 6 presents medical scans with their respective histograms, indicat-
ing low-level features and pixel intensity distributions. The stochastic masking
operation performed by the policy network modifies the skewness and center of
distribution using pixel-wise multiplication, enhancing the image representation
for the classifier and achieving a form of homogenization.
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Fig. 7. Comparison of prediction differences between a Normal Model and a Gradient
Policy Model across three medical imaging modalities: Computer Tomography (CT -
blue), Magnetic Resonance Imaging (MRI - red), and Ultrasound (US - green). The
horizontal bars represent the normalized difference in predictions for various anatomi-
cal structures and pathologies. Positive values indicate higher prediction rates by the
Normal Model, while negative values show higher rates by the Gradient Policy Model.
The red dashed line at zero serves as a reference point for equal performance between
the two models.

Figure 7 presents a comprehensive analysis comparing the gradient policy
trained model to the conventional training approach. The diagram illustrates
the performance tendency towards Policy Gradient per-labels

The results indicate that the proposed gradient policy technique consistently
improves the performance of both lightweight and larger models for medical
image classification. This suggests that the gradient policy helps the models
learn more robust and generalizable features. However, the performance on some
unrelated datasets, such as dermatoscope images and tissue microscopy, remains
relatively low. Because the low-level image features are closer to natural images
by ImageNet.

Interestingly, even though the noise matrix size has an effect on our proposed
model, the known distributions such as Gaussian or Uniform does not effected.
The pure noise condition does not substantially impact the performance metrics
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either. This could imply that the model is able to effectively handle different
types of noise perturbations.

An important remark on the convergence is that the dataset level α and β
get ‘almost‘ uniform distribution shape after beta sampling operation almost
always.

It is noteworthy that our experiments conducted on natural images sourced
from the ImageNet-1K dataset did not yield superior accuracy compared to
existing methods, despite our best efforts and the application of novel techniques.

5 Conclusion

In summary, the Gradient Policy technique has demonstrated its effectiveness in
enhancing the performance and generalization capabilities of deep learning mod-
els in biomedical image analysis. The ablation study highlights the superiority
of the our proposed training schema using Gradient Policy technique over the
conventional training across all performance metrics. This is achieved by fine-
tuning hyper-parameters such as grid size and Gaussian blurring parameters.
Moreover, the technique’s ability to improve the performance of larger models
like Resnet-50 further underscores its versatility and scalability. On the other
hand, the case analysis reveals that while variations in noise models such as
using normal or uniform distribution or pure noise noise condition lead to minor
performance differences, no statistically significant improvement is observed.

The model’s generalization performance on unseen concepts, evaluated using
the protocol proposed by Sariyildiz et al., demonstrates the consistent superiority
of the model pretrained on RadImageNet using Gradient Policy over models
pretrained on ImageNet-1K and RadImageNet across all downstream datasets.
This finding emphasizes the technique’s ability to enhance the model’s capacity
to adapt to novel concepts and domains.

Furthermore, the low-shot adaptation performance on unseen concepts show-
cases the remarkable ability of the model pretrained on RadImageNet using
Gradient Policy to quickly adapt to new concepts with limited samples, con-
sistently outperforming models pretrained on ImageNet-1K and RadImageNet.
This adaptability is crucial in the medical domain, where data scarcity and
concept generalization are common challenges. The Gradient Policy technique
not only improves the model’s overall accuracy but also enables it to focus on
relevant features and adapt quickly to unseen concepts with limited samples.

A RadImageNet: Artifacts and The Refinement

The RadImageNet database contains a diverse collection of ultrasound images,
many of which exhibit various artifacts including text annotations, markers,
and colorful segmentation masks. To address this issue, we developed an algo-
rithm that automatically processes the standard RadImageNet distribution by
implementing stratified splitting and removing ultrasound artifacts. This refined
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version of RadImageNet used in the paper, along with its corresponding code,
is available on GitHub3 (Fig. 8)

Fig. 8. Typical examples for the artifacts in ultrasound images: markers, segmenta-
tions, signs & colorbar and texts, respectively.

B Enhanced MedMNIST

MedMNIST is a comprehensive collection of standardized biomedical images
designed for various analytical tasks in the medical field. This dataset has been
expanded to include three new subsets, broadening the range of imaging modali-
ties and classification challenges available to researchers. These additions comple-
ment the existing MedMNIST collections, offering a more diverse set of resources
for developing and evaluating machine learning models across various medical
imaging applications. The enhanced MedMNIST collection, including both exist-
ing and new datasets, is accessible on Hugging Face 4 (Table 5)

Table 5. The additional datasets for MedMNIST, the classification task including the
number of classes (e.g., Multi-Class (MC) with 9 classes, Binary-Class (BC) with 2
classes), and the total number of samples contained within each dataset.

Name Data Modality Task (#Cls)# Samples

Brain Tumor DatasetMagnetic ResonanceMC (3) 3,064
Brain Dataset Magnetic ResonanceMC (23) 1,600
Breast Cancer Ultrasound BC (2) 1,875
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Abstract. The early detection of neurodegenerative disorders such as
Alzheimer’s disease is crucial to providing effective healthcare for man-
agement and recovery. We address the task of ternary classification of
healthy, mild cognitive impairment, and Alzheimer’s disease categories
from multiple data modalities of 3D MRIs, patient electronic health
records, and genetic information. For this task, we propose a Dynamic
Attention Guided Multi-modal Fusion (DAGMF) approach, broadly con-
sisting of three deep network components. The first component indepen-
dently performs feature extraction for all modalities and refines them
using novel Per-Modality Attention blocks. Thereafter, the obtained
modality representations are provided to a proposed Dynamic Attention
Multi-modal Solver block, which models the dynamics of attention across
learning iterations by a Neural Ordinary Differential Equation (NODE)
solver to generate modality attention. The modality representations and
attention are finally provided to a novel Attention-induced Multi-modal
Fusion block, which uses the attention to perform late-fusion of the mul-
tiple modality representations by a second NODE solver, which models
dynamics of the various modalities across learning iterations. Empirical
studies on multi-modal datasets constructed from the ADNI collection
show that the proposed DAGMF method provides better classification
performance than state-of-the-art multi-modal deep learning approaches.

Keywords: Alzheimer’s disease · Multi-modality · Attention
modules · Neural ODE · Deep Learning

1 Introduction

The intricate nature of Alzheimer’s Disease (AD) necessitates a multifaceted
approach for early and accurate diagnosis. The consideration of multiple data
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modalities may provide a more holistic view of the disease’s impact on the
brain by directly modeling relevant structural changes, functional anomalies, and
genetic inclination [11,19]. In this study, we examine the potential of the follow-
ing three data modalities to aid in diagnosing Alzheimer’s disease: 3D Magnetic
Resonance Imaging (MRI), Electronic Health Records (EHRs), and genetic infor-
mation through Single-Nucleotide Polymorphisms (SNPs). Each modality pro-
vides partial and complementary information about a patient. The 3D MRI neu-
roimaging provides spatial information on brain atrophy and metabolic activity
that may be indicative of AD [32] for binary classification. In comparison, EHRs
containing patients’ medical histories capture patterns in symptoms and pro-
gression rates, while SNPs [10] offer insight into hereditary risk factors by exam-
ining potential biomarkers for AD. When building statistical models to diagnose
Alzheimer’s disease, building such models on complementary data modalities
representing more comprehensive profiles of patients may lead to more accurate
diagnoses.

The success of deep learning towards the statistical modeling of input signals
that can be high-dimensional has encouraged recent investigations on the diagno-
sis of Alzheimer’s disease from specific patient modalities, most commonly neu-
roimages such as MRI and Positron Emission Tomography (PET). Recent inves-
tigations have also achieved success when considering multiple patient modal-
ities, where usually along with neuroimages other information of that partic-
ular patient are included that are deemed important, such as EHRs or SNPs
[2,3,29]. Apart from including multiple modalities, approaches that have gen-
erally been observed to improve the performances of deep networks have been
towards designing suitable attention mechanisms [28]. The design of appropriate
attention modules has been observed to lead to better Alzheimer’s classifica-
tion [14,16,33]. Also, we note that an essential development in deep learning
research has been the Neural Ordinary Differential Equations (NODEs) [6,22],
where deep networks can be designed to model the dynamics of variables involved
in a system of differential equations. NODEs have been used successfully across
a variety of fields [6], other information of that particular patient is included
that is deemed necessary, such as EHRs or SNPs [7,29].

The above developments in deep learning and Alzheimer’s disease classifi-
cation have motivated us to propose a Dynamic Attention Guided Multi-modal
Fusion (DAGMF) approach for the diagnosis of Alzheimer’s disease from multiple
patient modalities, which can be observed in Figure 1. We consider three patient
modalities of 3D MRI, EHR, and SNP, combined in a late-fusion manner only
towards the end of the network, to provide the network sufficient opportunity
to extract information from each modality independently. Therefore, initially,
the modalities undergo feature extraction separately, followed by applying novel
Per-Modality Attention (PMA) blocks proposed to refine their representations
further. The PMA blocks employ tanh instead of ReLU activations [21] to min-
imize early information loss. Similarly, the feature extractors avoid ReLU and
employ leaky ReLU and Parameterized ReLU (PReLU) [15] activations instead.
The refined representations undergo linear projections and are then forwarded
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along two branches. The first branch of Dynamic Attention Multi-modal Solver
(DAMS) produces attention based on the modality attention dynamics observed
across several learning iterations. A NODE is utilized here to learn attention
dynamics. The second branch of Attention Induced Multi-modal Fusion (AIMF)
performs late-fusion of the multiple modalities based on the modalities’ dynam-
ics and the a fused dynamic attention based DAIF’s attention. A second NODE
is used as the solver for this late-fusion task. The fused representation is finally
provided to a classifier to perform ternary classification to Cognitively Normal
(CN), Mild Cognitive Impairment (MCI), or Alzheimer’s Disease (AD) classes.

Thus, our original contributions are summarized as the following:

1. We design novel PMA blocks utilizing tanh activations to provide early atten-
tion on extracted modality representations to avoid loss of information that
can occur when using ReLU activations. To minimize early loss of informa-
tion, all initial feature extractors use leaky ReLU and PReLU activations
instead of ReLU.

2. We propose a new DAMS block to generate attention for each modality.
DAMS accomplishes this using a NODE solver by modeling the dynamics of
attention across learning iterations.

3. A novel multi-modal late-fusion approach AIMF is designed to fuse the mul-
tiple modality representations by a NODE solver, which also takes as input
the attention generated by DAMS.

4. Through extensive experiments, we show that the proposed DAGMF app-
roach achieves improved ternary classification performances when compared
with the recent state-of-the-art.

5. We establish a framework for creating multi-modal training and testing data
from well-curated sources that can be followed to easily reproduce our results.
All data creation, model training, and experiment source codes are available
at https://github.com/Thecoder1012/DAGMF.

2 Related Works

Recent developments that have significantly motivated the development of the
proposed DAGMF approach are discussed next.

Multi-modal classification of Alzheimer’s Disease. The developments
in Alzheimer’s disease classification on single data modalities [9] encouraged
investigations towards working with multiple data modalities. The primary con-
sideration when working with multi-modal data, is to design when to combine
the information from the multiple modalities of a data instance before deciding
its class. A wide variety of possible approaches have been explored. Some exam-
ples of using classical Machine Learning (ML) methods for multi-modal fusion of
patient data include Linear Discriminant Analysis (LDA) [19], Gaussian Discrim-
inant Component Analysis (GDCA) [11], and Support Vector Machines (SVM)
Bucholc et al. [3]. We observe the use of Multivariate BiLSTMs in [2]. With the
development of Deep Learning (DL) approaches for Alzheimer’s disease classi-
fication, the need to develop reliable multi-modal fusion techniques arose. One

https://github.com/Thecoder1012/DAGMF
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approach has been to use the robust Random Forests (RF) classifiers along with
deep networks [10,29]. As access to more capable hardware became easier, multi-
modal information could simply be concatenated [32] to retain all information.
Fusion mechahnisms for MRI and PET are shown in [17,26], following which a
concatenation based approach was shown by Shukla et al. [25], which was based
on a 3D multi-scale feature aggregation mechanism for the MRI and PET modal-
ity representations. A variant proposed by Goel et al. [13] involved extracting
wavelet features extracted from ResNet50 features for MRI and PET modali-
ties which underwent a fusion mechanism. To further refine the information we
have by generating attention for it, in Golovanevsky et al. [14] we note the use
of attention for modality fusion. In Ying et al. [31], the use of finetuned deep
networks for the fusion of multi-modal data can be noted. A recent approach of
interest by Teaima et al. [27] showed that high classification performances could
also be achieved by training an ensemble of ML methods.

Attention in deep learning for Alzheimer’s Disease classification.
In [14] we observe the proposal of cross-modality attention to examine con-
nections between different modality features and generate attention accordingly
to accomplish multi-modal Alzheimer’s disease diagnosis. Their success moti-
vated subsequent works on designing appropriate attention modules to improve
classification performances. The Enhanced Non-Local Attention block to cap-
ture global information and the Coordinate Attention modules to capture local
information was designed in [16]. IDANet [33] allows further customization of
attention that can automatically scale and refine structural MRI patches. Other
attention mechanisms, such as self-attention, have been explored in [4], while [12]
generates attention at multiple scales to identify local variations and correlations
across long ranges.

NODEs in Medical Diagnosis. Across several medical problem domains,
we observe the recent use of NODEs to capture the complex dynamics of system
variables. [6] uses NODEs to describe the dynamic course of Alzheimer’s dis-
ease, using longitudinal neuroimaging to document the disease’s developments.
NODEs were used by [30] on multi-modal data for the survival analysis of breast
cancer patients. We also observe NODEs to be successfully employed in deep
networks for lung disease diagnosis [22] and cardiovascular risk prediction [18].

3 Proposed Method

For the classification of Alzheimer’s disease from multi-modal data, our proposed
DAGMF approach is illustrated in Figure 1. For each input data modality, repre-
sentations are obtained from the Per-Modality Representation Refinement block
(PMRR), which are forwarded along two branches. The first branch of Dynamic
Attention Multi-modal Solver (DAMS) employs an ODE solver to generate per-
modality attentions, while the second branch of Attention Induced Multi-modal
Fusion (AIMF) uses an ODE solver to fuse the modalities. On the fused modality
representations, the final classification is performed.
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Fig. 1. The proposed DAGMF approach. In the initial PMRR block, three data modal-
ities of 3D MRI, EHR, and SNP undergo feature extraction by networks fi, fe,
and fg, respectively, followed by targeted augmentation by Per Modality Attention
(PMA) units. The obtained modality representations are passed through Linear Pro-
jection Modules (LPM), and forwarded along two branches. The first branch of DAMS
integrates the modality representations by a Dynamic Attention Intermediate Fusion
(DAIF) block, followed by a Modality ODE solver to generate the multi-modal atten-
tions. This solver additionally requires an ODE state as input and a weight vector w
which is also obtained from the LPM. In the second branch of AIMF, the modality
representations are first refined and provided as input to a Multi-modal Late Fusion
(MLF) ODE Solver. The MLF also takes as input an ODE state, and the output of
the DAMS branch, which is provided additional attention by the Modality Attention
Module. The output of MLF is finally provided to a ternary classifier to predict the
CN/MCI/AD class.

3.1 Per-Modality Representation Refinement (PMRR)

Let us denote the three input data modalities as X(i), X(e), and X(g) for 3D
MRI, EHR, and SNP respectively. Each modality is first propagated through
separate feature extractor networks fi, fe, and fg respectively, where fi is a 3D
Convolutional Neural Network (CNN), and fe and fg are 2D Multi-Layer Per-
ceptrons (MLPs). This is followed by Per Modality Attention (PMA) blocks to
selectively amplify modality components. The PMA blocks are two-layer MLPs
constructed with two main motivations. The first motivation arises from the
observation that in most attention blocks, ReLU activations are primarily used.
ReLU sets to zero all negative preactivations, thereby preventing the related
feature information from reaching later layers [8,20]. As the PMA blocks are
used quite early in the proposed network, tanh activation is used in the first
PMA layer to preserve more information that can be propagated to later layers.
The second PMA layer uses a softmax activation to provide attention in the
form of probabilities. Therefore, on each input modality, denoted in general as
X ∈ R

n×d, with n number of features of dimension d, the mechanism producing
attentions A(X) is,

A(X) = softmax (tanh(XW1 + b1)W2 + b2)
T X. (1)
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Here X is propagated through the first layer with parameters W1 ∈ R
d×k,

b1 ∈ R
k and tanh activation, followed by the second layer with parameters

W2 ∈ R
k×1, b2 ∈ R, and softmax activation. While the resulting A(X) ∈ R1×d

provides scores for the feature dimensions, how the n features contributed to the
scores is not evident. This provides the second motivation behind the design of
the PMA block, where we associate the features with their attention scores to
obtain the final attended features P as,

P = A(X) � X. (2)

Here � denotes the Hadamard product that is performed by broadcasting A(X)
to the rows of X. In this manner, for all three modalities we obtain features P(i),
P(e), and P(g). These features are then passed through an MLP network called
Linear Projection Module (LPM), to obtain per-modality features Zi, Ze, and
Zg, and are provided to the DAMS and AIMF branches.

3.2 Dynamic Attention Multi-modal Solver (DAMS)

To fuse the per-modality features, we consider the following approach involving
a neural ODE solver which models the ongoing dynamics of the attention mech-
anism. Let fA be the Dynamic Attention Intermediate Fusion (DAIF) block,
which fuses the per-modality features from LPM as,

fA(Z(i), Z(e), Z(g);WA) = Z. (3)

Here WA denotes the parameters of the fA network, and Z is the fused output
of DAIF. The dynamics of the change of WA over the number of iterations t of
the learning algorithm is considered as,

d

dt
WA = fA(WA(t), t). (4)

We use a Modality ODE Solver to approximate the solution of this differential
equation. The solver is provided an initial WA(0) corresponding to iteration
t := 0, and performs a numerical integration of the following up to t := T to
predict WA(t),

WA(t) = WA(0) +
∫ T

0

fA(WA(t), t)dt. (5)

Additionally, here an ODE weight vector γ(1)(t) and an ODE time state τ(t)
is required. The ODE weight vector is computed by an MLP from the output
of LPM γ(1)(t) = Nγ(1)([Z(i), Z(e), Z(g)]). The overall operation of the Modal-
ity ODE Solver can be represented as a function gA, which provides as output
per-modality attentions SA(t), based on the predicted WA(t) and the fused rep-
resentations Z,

SA(t) = gA(WA(t), Z, γ(1)(t), τ(t)). (6)
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3.3 Attention Induced Multi-modal Fusion (AIMF)

The primary objective of the AIMF block is to use a neural ODE solver to fuse
multi-modal representations based on the dynamic attention received from the
DAMS block. Thus a Dynamic Modality Late Fusion (DMLF) block is consid-
ered, which consists of networks f

(i)
M , f

(e)
M , and f

(g)
M to refine the representations

obtained from LPM. Here for the first modality Z(i), f
(i)
M with parameters W

(i)
M

provides,
D(i) = f

(i)
M (Z(i),W

(i)
M ). (7)

The definitions are similar for modalities Z(e) and Z(g). We note that unlike
DAIF, DMLF does not fuse the multi-modal representations, and produces per-
modality representations D(i). Instead, the MLF ODE Solver is tasked with
fusing the outputs from DMLF. The dynamics of DMLF are modeled as a dif-
ferential equation similar to eqn. (4), and the MLF ODE solver predicts W

(i)
M (t),

W
(e)
M (t), W

(g)
M (t) by numerical integration, which for modality i is,

W
(i)
M (t) = W

(i)
M (0) +

∫ T

0

fM (W (i)
M (t), t)dt, (8)

and is defined similarly for modalities e and g. Along with the initial WM (0),
the solver requires an ODE time state τ(t) and an ODE weight vector γ(2)(t).
This weight vector is obtained from the output SA(t) of the DAMS block as
γ(2)(t) = Nγ(2)(SA(t)), where an MLP denoted as Modality Attention Module
Nγ(2) provides additional attention. The resulting fused output SM (t) from the
MLF ODE Solver can be described in terms of a function gM , which depends on
the predicted weights of the DMLF network, and its output modality represen-
tations, thus,

SM (t) = gM ([W (i)
M (t),D(i)], [W (e)

M ,D(e)], [W (g)
M ,D(g)], γ(2)(t), τ(t)). (9)

3.4 Classification and Loss Function

The task of classification is carried out by considering the fused modality
representations along with individual modalities. The fused SM (t) is propa-
gated along a two-layer MLP Nc to obtain three-dimensional class probabilities
h(t) = Nc(SM (t)). Additionally, modality representations from the initial feature
extractors are also propagated along two-layer MLPs to obtain class-probabilities
h(i)(X(i)), h(e)(X(e)), h(g)(X(g)) as,

h(i) = N (i)
c (f ′(i)(X(i))), h(e) = N (e)

c (f ′(e)(X(e))), h(g) = N (g)
c (f ′(g)(X(g))).

Each output is compared with ground-truth one-hot vector y in terms of cross-
entropy loss �(h, y) = −∑3

j=1 yj log(hj). The convex combination of the loss
functions is carried out using non-negative weights β, β(i), β(e), and β(g), whose
sum is one. Thus, the combined loss is defined as,

L = β�(h(t), y) + β(i)�(h(i), y) + β(e)�(h(e), y) + β(g)�(h(g), y). (10)
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The last three terms thus focus on directly refining modality representa-
tions. The first term guides the model to learn to fuse modalities while modeling
modality and attention dynamics, so as to classify accurately.

4 Experiments and Results

In this section, we evaluate the efficacy of the proposed DAGMF approach,
by comparing their empirical performances with state-of-the-art approaches for
Alzheimer’s disease classification, on real-world data from well-established repos-
itories of patients. The DAGMF network is created with the following feature
extractors for each modality: fi is a seven-layer 3D CNN, fe is an eight-layer
MLP, and fg is a seven-layer MLP. For all feature extractors, the input layers
have Leaky-ReLU activations, the output layers have PReLUs, and only certain
hidden layers have ReLU [21] activations, which were determined empirically
using validation data sets. The following experiment protocol was maintained.
Datasets were split into 70%-30% training-test splits, and the models were
trained under ten-fold cross-validation on the training split, using a weighted
Adam optimizer for 65 iterations with learning rate 10−4, batch size 32. The
network architecture, training procedures, and performance evaluation are com-
prehensively provided in the supplementary document.

4.1 Creation of Multi-modal Datasets

The data for this study was obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) collection [23], which contains four datasets namely ADNI1,
ADNI2, ADNI3, and ADNI-GO. From the available EHR data, for every patient
we extracted 65 features that were deemed to have the potential to aid in the
classification task. The SNP data for a subset of these patients was available;
for them 500 random samples from six allele features were collected. Further,
for a subset of these patients 3D MRI images were available. Figure 2 shows
the two datasets that were created based on the availability of all modalities.
We first created Dataset A containing data from 597 patients, which was later
extended to form Dataset B containing data from 760 patients. All details on
the procedure to reproduce the creation of both datasets are present in the
supplementary material.

4.2 Empirical Evaluation

Here we report the classification performances that were achieved by the pro-
posed DAGMF approach on Dataset A (hereafter referred to as DAGMF-A)
and on Dataset B (referred to as DAGMF-B). The performances of DAGMF-A
and DAGMF-B are compared with the performances reported by recent State-
Of-The-Art (SOTA) multi-modal Alzheimer’s disease classification methods on
ADNI data. The SOTA methods investigated the performances possible when
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Fig. 2. Venn diagrams showing the intersection of the three main data modalities
employed in our study for Dataset A and B. Based on the intersection of the more
abundant EHR, comparatively less SNP, and the least available 3D MRI data, Dataset
A was created with 597 patient data, and Dataset B with data from 760 patients.

considering the same modalities or even different ones, such as 2D MRI and PET
images.

From the observed results noted in Table 1, we observe the highest test
accuracies and F1-scores for DAGMF-A, closely followed by DAGMF-B. Among
the competing methods, baseline performances are noted for the traditional
approaches of LDA by Lin et al. [19], GDCA by Fang et al. [11], and the SVM-
based fusion of Bucholc et al. [3]. Initial improvements over the baselines can
be observed for the Multivariate BiLSTM by Abuhmed et al. [2], with further
improvements noted for the finetuning (FT) of deep networks based approach
of Ying et al. [31]. Among deep networks with RF-based fusion approaches,
improved performances can be noted in Sappagh et al. [10] over that of Venu-
gopalan et al. [29]. Among the modality concatenation-based approaches, all of
which operate on 3D MRI and PET images, Song et al. [26] provides an initial
baseline, with improvements noted in [13,17,32], and noteably in the approach
of Shukla et al. [25]. One of the highest performances among recent methods are
noted for Teaima et al. [27], which is closely followed in terms of the accuracy
measure by the attention-based approach of Golovanevsky et al. [14]. Consider-
ing all recent and SOTA methods, the highest performances are observed to be
achieved by the DAGMF approaches of DAGMF-A closely followed by DAGMF-
B, indicating that modeling attention dynamics has contributed to improved
classification performances. The efficacy of the proposed DAGMF approaches
using NODE solver-based modeling of attention dynamics can be verified in
terms of achieving the highest classification accuracies and F1-scores, among all
results reported by recent and SOTA approaches. The higher performance of
DAGMF-A indicates that the larger Dataset B contains problem complexities
less captured in the smaller Dataset A, from which we conclude that future
studies should also involve the creation of larger data sets.
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Table 1. Comparison of Alzheimer’s disease classification approaches between 14
recent and SOTA methods, and the proposed DAGMF networks. The proposed
approaches are observed to outperform the SOTAs in terms of reported accuracies
and F1-scores.

Method Modalities Accuracy(%)Loss F1-ScoreFusion Method
2D-MRI3D-MRIEHRGDPET

Lin et al. [19] – � – � – 66.7 – 64.9 LDA
Fang et al. [11] – � – – � 66.29 – – GDCA
Bucholc et al. [3] � – � – � 82.90 – – SVM
Abuhmed et al. [2] � – � – � 86.08 – 87.67 Multivariate BiLSTM
Ying et al. [31] � – – � – 89.19 – – DL + FT
Venugopalan et al. [29] – � � – – 78 – 78 DL + RF
Sappagh et al. [10] – – � � – 92.62 – 92.56 DL + RF
Song et al. [26] – � – – � 74.54 – – DL + Concat
Kong et al. [17] – � – – � 87.67 – – DL + Concat
Zhang et al. [32] – � – – � 95.68 – – DL + Concat
Goel et al. [13] – � – – � 95.89 – – DL + Concat
Shukla et al. [25] – � – – � 96.36 – 96.36 DL + Concat
Teaima et al. [27] – – � � – 97.70 – – Ensemble ML
Golovanevsky et al. [14]� – � – – 96.88 – 91.41 DL + Attention
DAGMF-A (Ours) – � � � – 99.02 0.1520 98.79 DL + DAGMF

±0.15 ±0.0124

DAGMF-B (Ours) – � � � – 98.27 0.2147 97.31 DL + DAGMF
±0.18 ±0.0145

Fig. 3. Plots showing the changes in training and test accuracy with increasing number
of epochs for (a) DAGMF-A and (b) DAGMF-B. The changes in training and test loss
function values are also shown for (c) DAGMF-A and (d) DAGMF-B.
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Therefore, DAGMF can be recommended for Alzheimer’s disease classifica-
tion, as it achieves the highest accuracies and F1-scores compared with the
SOTA. To further examine the DAGMF approach, in Figure 3 we plot the
changes in training and test accuracies achieved by DAGMF over training
epochs, as well as the corresponding loss function values computed over train-
ing and test sets. For Dataset A, in Figure 3a we observe that with increasing
epochs, the optimization of training loss results in the overall increase in training
accuracy, and the eventual increase in test accuracy. In Figure 3c we also observe
that optimizing the training loss results in its decrease, and also causes the loss
on unseen test data to decrease. Similar observations can be made from Figures
3b and 3d for DAGMF on Dataset B. The changes in training and test F1-scores,
Precision, and Recall, over the number of epochs exhibits a similar nature, and
are provided in the supplementary document. Hence we conclude that the train-
ing procedure exhibits stability, while being reliable due to its resulting test set
performances.

4.3 Ablation Study

In this section we perform ablation studies to verify that all proposed model
components lead to improved classification performances, the results of which
are shown in Table 2. The final DAGMF-A and DAGMF-B here are models V10
and V11 respectively. For feature extraction, we restate that the proposed fea-
ture extractors in V10 and V11 are f := (fe, fg, fi), where fi is a seven-layer 3D
CNN, fe is an eight-layer MLP, and fg is a seven-layer MLP, and PReLU and
LeakyReLU activations are used. Now, we consider as a baseline the popular app-
roach of using only ReLU-based feature extractors f ′ := (f ′

e, f
′
g, f

′
i) in models V1

to V7, which are trained on Dataset A. We also consider a network variant called
DAGMFs in models V8 and V9 which has feature extractors f ′′ := (f ′′

e , f ′′
g , f ′′

i )
with fewer network parameters. Here f ′′

i is a four-layer 3D CNN, f ′′
e is a four-

layer MLP, and f ′′
g is a six-layer MLP; we maintain the same usage of PReLU

and LeakyReLU activations as in V10 and V11. Based on whether training and
testing was done on Dataset A or B, we refer to model V8 as DAGMFs-A, and
similarly refer to model V9 as DAGMFs-B. Further experiments on DAGMFs

can be found in the supplementary material.
Other than the feature extractor, the following changes in model components

are considered. In model V1, only cross-entropy loss � is used instead of L. In
model V2, we remove both DAMS and AIMF blocks, and simply use an MLP to
fuse the modality features and perform classification (NC’). Among variants of
attention, the use of Multi-Head Attention (MHA) is introduced in model V3,
followed by Modality Concatenation (MC). Cross-attention (CAttn) and Multi-
Modal Fusion (MMF) were employed in V4, and in V5 PMA was introduced. In
model V6, neural ODE was used only for modality fusion. In model V7, DAGMF
was finally introduced to also model attention dynamics.

From the resulting accuracies in Table 2, we observe that models V1 to
V7 attain lower classification accuracies compared to V10 (DAGMF-A) and
V11 (DAGMF-B). Reducing the complexity of the feature extractor networks
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in DAGMFs-A and DAGMFs-B has also led to a marginal reduction in accu-
racies. The highest classification accuracies were achieved by DAGMF-A and
DAGMF-B, thus verifying the necessity of each network component that has
been considered.

Table 2. Ablation study tracking performance improvements across eleven model
iterations, while sequentially introducing the proposed components of DAGMF. Only
ReLU-based feature extractors f ′:=(f ′

e, f
′
g, f

′
i) in models V1 to V7 are compared with

the proposed f :=(fe, fg, fi) in V10 and V11 using PReLU and LeakyReLU, as well as a
variant with smaller feature extractors f ′′:=(f ′′

e , f ′′
g , f ′′

i ) in V8 and V9. As a variant of
the classifier, NC’ is considered. Variants in attention mechanism include MHA, PMA,
and CAttn. The fusion strategies are MC, MMF, NODE, and the proposed DAGMF.
For the loss, cross-entropy (�) is compared with the proposed L.

Model Version Feature Extractors Classifier Modality Attentions Fusion Strategies Loss Accuracy
f ′ f ′′ f NCNC’ MHAPMACAttn FCMMFNODEDAGMF � L

V1 � � � � 91.82
V2 � � � 89.29
V3 � � � � � 92.95
V4 � � � � � 94.83
V5 � � � � � 95.16
V6 � � � � � 96.23
V7 � � � � � 98.42
V8 (DAGMFs-A) � � � � � 98.93
V9 (DAGMFs-B) � � � � � 97.35
V10 (DAGMF-A) � � � � � 99.02
V11 (DAGMF-B) � � � � � 98.27

5 Conclusion and Future Works

In this study, we proposed a new DAGMF approach to Alzheimer’s disease clas-
sification. Three input data modalities are considered, on which early feature
extraction is performed in a PMRR block using networks with leaky ReLU and
PReLU activations instead of ReLU to avoid early loss of information. For sim-
ilar reasons tanh activations are used in the proposed PMA blocks, which were
designed to provide attention and refine modality representations. From the
PMRR block, modality representations are provided to the DAMS block to gen-
erate modality attention based on the dynamics of attention across learning iter-
ations. The outputs of the PMRR and DAMS are provided to the AIMF block to
fuse the multiple modality representations, on which classification is performed.
Experiments were conducted on datasets constructed from the ADNI collection,
and the observed results show that the proposedd DAGMF network provides
improved classification performances over those reported for the SOTAs.

These promising observations encourage further studies in Alzheimer’s dis-
ease classification on multi-modal data with other modalities such as PET images
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[1,32], as well as extensions towards Explainable AI [5,24] which should be
explored under the guidance of expert clinicians to determine the commonal-
ities and differences in decision variables compared to those that have been
established in the medical literature. Finally, our observed success suggests the
potential of viable investigations towards other possibly rarer neurodegenerative
diseases.

Acknowledgements. We are grateful to the Machine Learning Research Group
(MLRG), Electronics and Communication Sciences Unit, Indian Statistical Institute,
Kolkata, for their unwavering support and valuable assistance towards the fulfillment
of the work.

References

1. Abdelaziz, M., Elazab, A., Wang, T.: Alzheimer’s disease diagnosis framework
from incomplete multimodal data using convolutional neural networks. Journal of
biomedical informatics p. 103863 (2021)

2. Abuhmed, T., El-Sappagh, S., Alonso, J.M.: Robust hybrid deep learning models
for alzheimer’s progression detection. Knowl.-Based Syst. 213, 106688 (2021)

3. Bucholc, M., Ding, X., Wang, H., Glass, D.H., Wang, H., Prasad, G., Maguire, L.P.,
Bjourson, A.J., McClean, P.L., Todd, S., et al.: A practical computerized decision
support system for predicting the severity of alzheimer’s disease of an individual.
Expert Syst. Appl. 130, 157–171 (2019)

4. Carcagnì, P., Leo, M., Del Coco, M., Distante, C., De Salve, A.: Convolution Neu-
ral Networks and Self-Attention Learners for Alzheimer Dementia Diagnosis from
Brain MRI. Sensors 23(3) (2023)

5. Chataleff, R., Simonyan, K., Vedaldi, A.: Grad-CAM++: Improved Visual Expla-
nations for Deep Convolutional Networks. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 809–818 (2018)

6. Chen: Neural ordinary differential equations for disease progression modeling in
alzheimer’s disease. Nature Communications 11(1), 456 (2020)

7. Cuomo, S., di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Sci-
entific machine learning through physics-informed neural networks: Where we are
and what’s next (2022)

8. Mohi ud din dar, G., Bhagat, A., Ansarullah, S.I., Othman, M.T.B., Hamid, Y.,
Alkahtani, H.K., Ullah, I., Hamam, H.: A novel framework for classification of dif-
ferent Alzheimer’s disease stages using CNN model. Electronics 12(2), 469 (2023)

9. Ebrahimi, A., Luo, S., Disease Neuroimaging Initiative, f.t.A.: Convolutional neural
networks for Alzheimer’s disease detection on MRI images. Journal of Medical
Imaging 8(2), 024503–024503 (2021)

10. El-Sappagh, S., Abuhmed, T., Islam, S.R., Kwak, K.S.: Multimodal multitask deep
learning model for alzheimer’s disease progression detection based on time series
data. Neurocomputing 412, 197–215 (2020)

11. Fang, C., Li, C., Forouzannezhad, P., Cabrerizo, M., Curiel, R.E., Loewenstein, D.,
Duara, R., Adjouadi, M., Initiative, A.D.N., et al.: Gaussian discriminative compo-
nent analysis for early detection of alzheimer’s disease: A supervised dimensionality
reduction algorithm. J. Neurosci. Methods 344, 108856 (2020)



Improved Alzheimer’s Disease Detection 445

12. Gao, X., Cai, H., Liu, M.: A hybrid multi-scale attention convolution and aging
transformer network for alzheimer’s disease diagnosis. IEEE J. Biomed. Health
Inform. 27(7), 3292–3301 (2023)

13. Goel, T., Sharma, R., Tanveer, M., Suganthan, P., Maji, K., Pilli, R.: Multimodal
neuroimaging based Alzheimer’s disease diagnosis using evolutionary RVFL clas-
sifier. IEEE Journal of Biomedical and Health Informatics (2023)

14. Golovanevsky, M., Eickhoff, C., Singh, R.: Multimodal attention-based deep learn-
ing for alzheimer’s disease diagnosis. J. Am. Med. Inform. Assoc. 29(12), 2014–2022
(2022)

15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 1026–1034 (2015)

16. Illakiya, T., Ramamurthy, K., Siddharth, M.V., Mishra, R., Udainiya, A.: AHANet:
Adaptive Hybrid Attention Network for Alzheimer’s Disease Classification Using
Brain Magnetic Resonance Imaging. Bioengineering 10(6) (2023)

17. Kong, Z., Zhang, M., Zhu, W., Yi, Y., Wang, T., Zhang, B.: Multi-modal data
alzheimer’s disease detection based on 3d convolution. Biomed. Signal Process.
Control 75, 103565 (2022)

18. Lee: Neural ordinary differential equations for respiratory signal analysis and lung
disease diagnosis. IEEE Transactions on Biomedical Engineering 68(7), 2153–2165
(2021)

19. Lin, W., Gao, Q., Du, M., Chen, W., Tong, T.: Multiclass diagnosis of stages of
alzheimer’s disease using linear discriminant analysis scoring for multimodal data.
Comput. Biol. Med. 134, 104478 (2021)

20. Lu, L.: Dying ReLU and Initialization: Theory and Numerical Examples. Commu-
nications in Computational Physics 28(5), 1671–1706 (2020)

21. Nair, V., Hinton, G.E.: Rectified linear units improve neural network acoustic
models. In: Proc. 27th International Conference on Machine Learning (ICML). pp.
807–814 (2010)

22. Pegolotti, L., Pfaller, M.R., Rubio, N.L., Ding, K., Brugarolas Brufau, R., Darve,
E., Marsden, A.L.: Learning reduced-order models for cardiovascular simulations
with graph neural networks. Comput. Biol. Med. 168, 107676 (2024)

23. Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey,
D.J., Jack, C., Jr., Jagust, W.J., Shaw, L.M., Toga, A.W., et al.: Alzheimer’s
disease Neuroimaging Initiative (ADNI) clinical characterization. Neurology 74(3),
201–209 (2010)

24. Selvaraju, R., Vig, A., Parikh, A.: Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Weighted Class Activation Maps. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. p. 618–626 (2017)

25. Shukla, A., Tiwari, R., Tiwari, S.: Alzheimer’s disease detection from fused pet
and mri modalities using an ensemble classifier. Machine Learning and Knowledge
Extraction 5(2), 512–538 (2023)

26. Song, J., Zheng, J., Li, P., Lu, X., Zhu, G., Shen, P.: An effective multimodal
image fusion method using mri and pet for alzheimer’s disease diagnosis. Frontiers
in digital health 3, 637386 (2021)

27. Teaima, A.S., Wahed, M.A., Sami, S.A.: Multimodal-based classification paradigm
for alzheimer disease. 2023 5th Novel Intelligent and Leading Emerging Sciences
Conference (NILES) pp. 430–433 (2023)

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Polo-
sukhin, I., Kaiser, L., Polosukhin, I., Kaiser, L.: Attention is all you need. In:
Advances in neural information processing systems. pp. 599–609 (2017)



446 A. Basu et al.

29. Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep
learning models for early detection of alzheimer’s disease stage. Sci. Rep. 11(1),
3254 (2021)

30. Xiang, J., Qi, B., Cerou, M., Zhao, W., Tang, Q.: Data-driven neural-ode modeling
for breast cancer tumor dynamics and progression-free survival predictions. In: The
Symbiosis of Deep Learning and Differential Equations III (2023)

31. Ying, Q., Xing, X., Liu, L., Lin, A.L., Jacobs, N., Liang, G.: Multi-modal data
analysis for alzheimer’s disease diagnosis: An ensemble model using imagery and
genetic features. In: 2021 43rd Annual International Conference of the IEEE Engi-
neering in Medicine & Biology Society (EMBC). pp. 3586–3591 (2021)

32. Zhang, Y., Wang, S., Xia, K., Jiang, Y., Qian, P.: Alzheimer’s disease multiclass
diagnosis via multimodal neuroimaging embedding feature selection and fusion.
Inf. Fusion 66, 170–183 (2021)

33. Zhao, Q., Huang, G., Xu, P., Chen, Z., Li, W., Yuan, X., Zhong, G., Pun, C.M.,
Huang, Z.: IDA-Net: Inheritable Deformable Attention Network of structural MRI
for Alzheimer’s Disease Diagnosis. Biomed. Signal Process. Control 84, 104787
(2023)



Transformers and CNNs in
Neurodiagnostics: Handwriting Analysis

for Alzheimer’s Diagnosis

Gabriele Lozupone , Emanuele Nardone , Cesare Davide Pace ,
and Tiziana D’Alessandro(B)

Department of Electrical and Information Engineering (DIEI), University of Cassino
and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, FR, Italy
{gabriele.lozupone,emanuele.nardone,cesaredavide.pace,

tiziana.dalessandro}@unicas.it

Abstract. Early diagnosis of Alzheimer’s disease (AD) is critical for
timely intervention and management. Handwriting analysis has been
recognized as a promising diagnostic tool, as it is one of the first skills
affected by AD. This research investigates the potential of using deep
learning to assist AD diagnosis through handwriting image analysis.
Unlike previous methods applied on this dataset, the model is trained on
images of different handwriting tasks instead of training task-specific
models. This approach improved the model’s ability to identify AD-
specific writing patterns and enhanced diagnostic performance. We con-
ducted an extensive analysis of various convolutional neural networks
and vision transformers, focusing on the ability of transformer models
to transfer knowledge across different domains. Our contributions are
as follows: (i) we conducted comprehensive experiments to identify the
most effective deep learning models for the AD handwriting task, pro-
viding a benchmark for future research; (ii) we redesigned a pre-trained
Optical Character Recognition (OCR) transformer model to assess its
capability to transfer knowledge between OCR and classification tasks;
and (iii) we developed a three-stage framework to increase performance
and evaluate the impact of distinct handwriting tasks on the final AD
diagnostic outcome. Our framework surpasses previous methodologies,
achieving an accuracy of 87.99% and a sensitivity of 89.69%, demon-
strating that handwriting-based deep learning-aided diagnostic systems
hold significant promise as tools for early AD detection.

1 Introduction

The incidence of neurodegenerative diseases (NDs) has been steadily increasing
in recent years, reflecting the complex challenges posed by the ageing popu-
lation and changing lifestyles. This trend enhances the pressing need for con-
tinued research, increased awareness, and improved support systems. NDs, like
Alzheimer’s disease (AD), bring cognitive impairments such as memory loss and
language difficulties and also affect motor skills. Early diagnosis is crucial for
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effective intervention, yet AD currently lacks a cure. Research remains crucial in
determining effective treatments, underscoring the significance of timely action.

The scientific community seeks innovative detection methods to identify the
disease in its nascent stages. Among these, handwriting analysis has emerged as
a promising avenue, offering insights into the early neurological changes charac-
teristic of AD. Handwriting is one of the first skills to be altered by the onset
of NDs symptoms [16,18,24,28] as it requires fine motor control, and its alter-
ations can serve as early indicators. While there is a growing interest in utilizing
handwriting analysis to support ND diagnosis [9,29], most research efforts have
been centered around Parkinson’s disease (PD), for which reference datasets
have been collected over the years [12]. Concerning AD, the ongoing research
usually focuses on privately collected datasets. Unbalanced and small datasets
may make applying artificial intelligence (AI) techniques effectively and draw-
ing comprehensive conclusions difficult. Many papers rely on handwriting tasks
typically conducted on tablets, from which the authors extract features and eval-
uate the ability of several machine learning (ML) algorithms [17,25] or make a
statistical analysis [30] to support the AD diagnosis. In contrast, this study is
centered on images, delegating to architectures the task of focusing on automat-
ically extracted features. Furthermore, this research proposes an approach based
on offline images obtained by scanning the actual sheets of paper on which the
task was performed, easing the data acquisition step.

Considering these factors, various handwriting tasks have been proposed to
highlight the potential impairment in different abilities due to AD. In previous
studies, we introduced a handwriting protocol to analyze the impact of various
cognitive, memory, and motor skills on the performance of individuals with AD
and healthy controls (HC) [3]. These handwriting tests were conducted with a
tool to capture information on handwriting dynamics and store the paper sheets
with the task performed. Different features were extracted after the acquisition
step, and many classification schemes were implemented. It is worth noticing that
most of our efforts were put into evaluating the system, considering one task at a
time. After obtaining the performance for each task, we applied combining rules
to subsets of tasks.

We initially utilized handwriting features and ML, in [4,7] we examined a
subset of the dataset, using part of the total samples and tasks acquired. We
computed static and dynamic features, applying ML algorithms for task-specific
classification to distinguish between HC and AD. In [2], we considered all the
tasks and their features, in-air, and on-paper, and we combined the predictions
from a subset of tasks and features selected through a genetic algorithm. Another
research path, exploited in [5,6], focused on generating synthetic images and the
classification through Convolutional Neural Networks (CNNs), considering some
acquired tasks. The study proposed in [8] shows the power of considering offline
images to support AD diagnosis.

Moving from the past activity, this paper presents a deep learning approach
to analyzing handwriting to support AD detection. The models are trained on
images from all handwriting tasks, intending to capture the broader patterns
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indicative of AD. Previous works exploited handwriting analysis task by task,
each evaluated by its dedicated model. While these methods provided valuable
insights, they inherently limited the scope of pattern recognition to within-task
variations. Recognizing this limitation, the current study seeks to consolidate
these tasks into a single dataset for a comprehensive analysis using a unique
model. This approach is predicated on the hypothesis that a model trained on
a more extensive and varied dataset can learn significant patterns attributable
to AD, which may remain obscured in a more fragmented analysis framework.

The main contributions of this work are summarized as follows:

1. An in-depth comparison of different CNNs and Vision Transformers to iden-
tify the most effective models for the AD handwriting task, providing a bench-
mark for future research.

2. Investigation of a pre-trained Optical Character Recognition (OCR) trans-
former model to verify its capability to transfer knowledge between OCR and
classification tasks.

3. Development of an experimental three-stage framework to improve diagnostic
performance and evaluate the impact of distinct handwriting tasks on the
final diagnostic outcome, thereby identifying the most informative tasks for
AD detection.

The remainder of this work is organized as follows: Section 2 details the
dataset and the deep architectures considered; Section 3 describes the experi-
mental approach developed; whereas Section 4 reports and discusses the exper-
imental results. Finally, Section 5 and Section 6 are devoted to the discussion
and conclusions of the result, summarizing eventual future work inspired by the
performance obtained in this study.

2 Materials and Methods

This section outlines the materials required for the proposed study, including the
data and DL architectures employed. Section 2.1 delineates the data acquisition
procedure and the processes done to obtain the offline images of handwriting
samples. We selected this type of image to represent the handwriting because
the preliminary results of our past activity [8] enhanced the advantages of using
such a kind of data. Finally, Section 2.2 details the architectures evaluated.

2.1 Dataset

The rationale behind considering handwriting data to support AD diagnosis is
exhaustively depicted in [9]. Data were acquired considering an experimental
protocol [3] comprising 25 handwriting tasks, designed with the help of physi-
cians to evaluate different abilities that could be affected by AD symptoms. The
selected tasks belong to four categories: graphic, copy and reverse copy, memory,
and dictation. Table 1 lists the performed tasks, comprising their enumeration, a
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Table 1. List of tasks performed. Task categories are memory and dictation (M),
graphic (G), and copy (C).

# Description Category

1 Signature drawing M
2 Join two points with a horizontal line, continuously for four times G
3 Join two points with a vertical line, continuously for four times G
4 Retrace a circle (6 cm of diameter) continuously for four times G
5 Retrace a circle (3 cm of diameter) continuously for four times G
6 Copy the letters ’l’, ’m’ and ’p’ C
7 Copy the letters on the adjacent rows C
8 Write recursively a sequence of four lowercase letters ’l’ C
9 Write recursively a sequence of four lowercase cursive bigram ’le’ C
10Copy the word "foglio" C
11Copy the word "foglio" above a line C
12Copy the word "mamma" C
13Copy the word "mamma" above a line C
14Memorize the words "telefono", "cane", and "negozio" and rewrite them M
15Copy in reverse the word "bottiglia" C
16Copy in reverse the word "casa" C
17Copy words (regular/non-regular/non-words) in boxes C
18Write the name of the object shown in a picture (a chair) M
19Copy the fields of a postal order C
20Write a simple sentence under dictation M
21Retrace a complex form G
22Copy a telephone number C
23Write a telephone number under dictation M
24Clock Drawing Test G
25Copy a paragraph C

description, and the belonging category. The protocol was administered follow-
ing strict recruiting criteria, with the support of the geriatric ward’s Alzheimer
unit at the "Federico II" hospital in Naples. In detail, participants underwent
clinical assessment and standard cognitive evaluations, such as the MMSE [13],
FAB [15], and MoCA [23]. Participants in the study were carefully selected to
ensure demographic and educational characteristics between the HC and AD
groups were matched, as reported in Table 2. Individuals taking psychotropic
drugs or substances that could influence cognitive abilities were excluded from

Table 2. Average demographic data of participants. Standard deviations are shown in
parentheses.

Age Education#Women#Men
AD71.5 (9.5) 10.8 (5.1) 46 44
HC 68.9 (12) 12.9 (4.4) 51 39
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Fig. 1. Workflow diagram of offline image dataset generation process.

both groups. The final dataset consisted of 174 individuals, with 89 diagnosed
with AD and 85 HC.

Handwriting samples were acquired using a WACOM Bamboo Folio graphic
tablet, which allowed participants to write on standard A4 paper sheets fas-
tened to the tablet’s surface. The sensor-equipped pen recorded spatial coordi-
nates (x, y), pressure (z), and timestamps at 200Hz, capturing in-air movements
within 3cm from the tablet surface. However, for this research, only offline images
obtained from the paper sheets were utilized, disregarding the dynamic aspects
of handwriting. Figure 1 shows the generation process of offline images. After
the protocol execution, the paper sheets were scanned and saved as .tif files,
with each frame representing a task. Thus, each frame was extracted and under-
went a segmentation algorithm to isolate the participant’s handwritten trace and
saved as a .png file. The resulting images were resized to 299× 299 pixels while
ensuring the trace remained centred, minimizing information loss. The digitized
images accurately reflect the participant’s handwritten trace, with pixel values
representing the natural grayscale shades of the ink on the paper, influenced
by both the applied pressure and the dynamics of the movements. It is worth
noting that each of the 179 participants executed each task only once, yielding
in a dataset of 4475 images, 179 for each of the 25 tasks.

2.2 ImageNet-Pretrained Networks

This work verified and compared the ability of CNNs and Vision Transformers to
learn AD writing patterns. This section briefly discusses the architecture fami-
lies chosen for the analysis and their peculiarities. All the architectures described
in this section employed transfer learning from the ImageNet dataset [10]. The
VGG architecture family, developed in [26], represents a significant advance in
deep learning for image recognition tasks. Characterized by its simplicity and
depth, the architecture employs 3x3 convolutions, evenly stacked, to increase
the depth of the network without complicating its structure. The ResNet [14]
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Fig. 2. Modified TrOCR architecture scheme. Encoder retained for feature extraction,
decoder removed, class token and MLP added for classification.

family, inspired by VGG, introduced the residual block that enables learning
the residual function for identity mapping that mitigates the vanishing gradient
problem. The EfficientNetV2 [27] architecture family pushes the boundaries
of efficiency through innovative scaling strategies. By intelligently scaling model
dimensions, they achieve remarkable accuracy and training speed enhancements,
redefining the balance between performance and resource utilization. Transition-
ing from conventional convolutional designs, ConvNeXt introduces a paradigm
shift inspired by Vision Transformers. In [21], the authors modified the ResNet
architecture. They applied a macro design consisting of changes in the number of
layers in each block. They patchified the input image with learnable convolution
blocks characterized by stride increasing to simulate the ViT patch embedding
[11]. These architectural choices show that purely convolutional architecture can
compete with state-of-the-art Vision Transformers. The ViT [11] adapts the
original Transformer architecture from Natural Language Processing to com-
puter vision. The Transformer works with an input that consists of a sequence
of words (or tokens). The authors of ViT generate a sequence by splitting the
input image into non-overlapping patches with a fixed size of 16 × 16 pixels.
Each patch is linearly projected into a fixed-sized space, and a class token is
added to the sequence of embeddings. The class token enables the condensation
of useful classification features through the self-attention mechanism and the
direct connection with the head. The Swin Transformer family was proposed
in [20], employing hierarchical structures and shifted window mechanisms. These
architectural innovations enhance scalability and efficiency across a broad spec-
trum of vision tasks, demonstrating the potential of Transformer-based models
in computer vision applications.
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2.3 From OCR to Handwriting Alzheimer’s Diagnosis

The chosen architecture is TrOCR presented in [19] and explicitly designed
for OCR tasks. The motivation behind selecting TrOCR for this application
stems from its performance, particularly on the Handwriting Dataset IAM[22].
Furthermore, its structure is prone to transfer learning for image classification
tasks. TrOCR comprises two main components: the Transformer encoder and
the Transformer decoder. The Transformer Encoder is responsible for pro-
cessing the input image. As in ViT, the encoder processes a sequence of tokens
representing patch embeddings extracted from the handwritten text image. The
Transformer Decoder takes the output from the encoder and generates the
text one character or token at a time. Therefore, the decoder part is unnecessary
for a classification task, as in our case. As shown in Figure 2, we converted it to a
ViT-like model to make the encoder usable for a classification task. The decoder
part was detached because we only wanted to use the model’s ability to produce
feature representations from images. To enable classification, we adopted the
same strategy as ViT. We added a class token to the input token sequence and
attached an MLP responsible for the diagnosis part.

3 Experimental Approach

In this work, we developed a structured three-stage approach to evaluate the
efficacy of deep learning models in identifying AD from task-specific text images
derived from handwriting. The emphasis was placed on ensuring the compara-
bility and reliability of the chosen convolutional and vision transformer models
through a meticulous cross-validation process. Figure 3 presents an overview of
the complete experimental framework, comprising three main phases: the First
Stage, the Evaluation Stage, and the Combining Rule. Each of these phases is
elaborated upon in detail within this section.

First stage: Model Training with Cross-validation The First Stage
involved training the selected DL models on the entire dataset, which included
offline images of different subjects engaged in specific writing tasks designed
to reveal the presence of AD. The goal was to refine the models to produce
robust feature representations that accurately mirrored AD-related patterns in
handwriting. To enable a fair comparison between the models and enhance their
ability to generalize, we implemented a 5-fold cross-validation technique. This
approach entailed dividing the dataset into five distinct segments, ensuring each
segment acted as a test set in one iteration and as part of the training/validation
sets in the others. To prevent data leakage and preserve the integrity of our
evaluation, we carefully assigned all writing tasks from the same subjects exclu-
sively to one of the training, validation, or test sets. Thus, no subject’s data was
shared across the sets. The data was subjected to an 80-20 split within each fold
for training/validation and testing, respectively. The 80% portion allocated for
training/validation was divided using an 80-20 ratio. Consequently, 64% of the
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Fig. 3. Overview of the Experimental Approach for Diagnosing AD Using Deep Learn-
ing Models on Handwriting Images. This figure illustrates the three-step process, start-
ing with the training of various models using a 5-fold cross-validation method (First
Stage), followed by the evaluation of task-specific accuracy (Evaluation Stage), and con-
cluding with the aggregation of task-specific outcomes for individual diagnoses through
the majority voting (Combining Rule).

total dataset was used for training purposes, 16% for validation, and 20% for
testing. This structured division ensured that the generalization ability of each
model was thoroughly assessed.

Evaluation Stage: Task-wise Evaluation In the second phase, we evaluated
the models trained in the first stage, emphasising task-specific predictions. We
established a task-wise evaluation by structuring the predictions in a matrix
format, with subjects delineated by rows and tasks by columns. This method
facilitated the calculation of metrics for each task to the ground truth. Such an
evaluation not only quantified the contributory value of individual tasks toward
AD diagnosis but also allowed for an assessment of metrics uniformity across
tasks. From this analysis, we derived two critical aspects: the unique contribution
of each task to the AD diagnostic process and potential insights into whether
combining tasks could lead to more accurate and robust AD diagnoses.

Combining rule: Majority Voting for subject-level prediction The final
step involved aggregating the results from the individual tasks based on the test
set predictions to produce a final diagnosis for each subject. By utilizing all the
information available from all the tasks, we maximized the diagnostic accuracy
of our framework. This integrated approach ensured that our conclusions were
as comprehensive as possible, drawing on the full range of data available for each
subject. It was important to note that steps 2 and 3 relied exclusively on the
test set portions of each cross-validation fold, ensuring the model’s ability to
generalize to new, unseen data.
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3.1 Experimental settings

Hyper-parameters We employed an AdamW optimizer with weight decay
10−2 and used a batch size 32. The images are resized to 224× 224 to enhance
transfer learning. We chose a learning rate of 10−3 and trained all the models
for 100 epochs, using an early stopping strategy with the patience of 15 epochs.
The loss function used was the binary cross entropy.

Performance Evaluation This study uses Accuracy, Sensitivity, Specificity,
and Matthews Correlation Coefficient (MCC) as performance metrics. Accuracy
is a classifier’s most common performance measure, consisting of the percentage
of correctly classified samples over the total. MCC [1] is a correlation coefficient
between prediction and true label; it provides a more informative and truthful
score than accuracy when evaluating binary classifications, allowing a more real-
istic interpretation of classifier performance, especially in the case of unbalanced
datasets. Sensitivity and specificity serve as critical metrics for evaluating the
diagnostic accuracy of our model, highlighting its ability to correctly identify
AD cases and HC, respectively.

4 Results

In Table 3, we provide the results of the first stage of the experiment study.
It can be observed that the architectures used reach an average Accuracy of
approximately 74%, with the metrics calculated as the mean of a 5-fold cross-
validation. Specifically, ConvNextSmall reaches 79.21% Accuracy and 82.32%
Sensitivity. On the other hand, the VGG19 achieves 78.84% of Specificity, and
ConvNextTiny obtains 57.88% of MCC. This achievement indicates that the
architectures can discern the handwriting pattern of subjects with AD from
those of HC.

Figure 4 and Figure 5 provide an analysis of the performance across the pool
of tasks for CNN and Vision Transformer architectures, respectively. We can
observe that in both graphs, there is a large variability in performance in terms
of accuracy depending on the task. For instance, Tasks 8 and 9, which have
higher performance, independently of the family of the architecture used, have
higher accuracy and demand higher levels of cognitive processing and motor
coordination. Instead, Tasks 1, 7, 20, and 25, which require minimal cognitive
effort and fine motor skills, demonstrated significantly lower performance. These
likely offer fewer distinctive features for the architectures to learn from, leading to
a diminished capacity to differentiate between AD and HC. Table 4 illustrates the
performance achieved by the architecture for each designated task, highlighting
a distinct prevalence of ConvNext over other architectures. From the results,
we see that ConvNextSmall reached 86.19% accuracy and 72.20% of MCC in
task 9, and 86.69% specificity in task 10, while ConvNexTiny reached 89.69% of
sensitivity in task 14.
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Table 3. CNN and Transformer models performance on the first stage.

Model Accuracy Specificity Sensitivity MCC
VGG16 74.56 (4.35) 74.61 (9.34) 73.78 (5.76) 48.59 (9.70)
VGG19 75.48 (3.41) 78.84 (7.18)71.83 (6.14) 50.90 (7.34)
ResNet50 70.74 (2.29) 78.04 (8.35) 64.08 (6.18) 42.72 (5.61)
ResNet101 71.45 (3.39) 77.46 (6.80) 65.35 (5.99) 43.19 (7.35)
EfficientNetV2M 72.50 (4.69) 74.35 (9.01) 70.28 (6.88) 44.86 (10.00)
EfficientNetV2S 73.05 (3.22) 77.41 (9.46) 68.52 (6.45) 46.43 (7.62)
ConvNextTiny 78.83 (2.65) 77.96 (7.18) 79.41 (8.57) 57.88 (5.32)
ConvNextSmall 79.21 (3.39)74.66 (8.38) 82.32 (7.47)57.82 (7.64)
ConvNextBase 78.03 (4.55) 76.80 (10.88) 78.01 (8.00) 55.42 (10.12)
VitB16 70.10 (3.82) 73.85 (9.60) 66.47 (9.53) 40.88 (7.95)
SwinV2B 77.61 (2.75) 79.62 (5.99) 75.70 (8.85) 55.69 (5.23)
SwinV2S 76.86 (2.95) 74.66 (11.44) 78.68 (9.18) 54.36 (5.34)
SwinV2T 77.13 (2.31) 74.92 (5.61) 78.44 (6.95) 53.82 (5.00)
TrOCR-Small-Hand67.53 (2.73) 76.29 (6.01) 59.57 (5.22) 36.36 (5.20)
TrOCR-Base-Hand 66.02 (3.04) 77.98 (10.85) 55.47 (12.62) 35.10 (5.32)

Table 5, obtained through majority voting rule, shows that ConvNextS-
mall has the best overall performance with an Accuracy of 87.99% and MCC
of 76.75%, showcasing a remarkably high Sensitivity of 89.69%, indicating its
superior ability to identify AD subjects. Its performance is balanced, excelling
in both sensitivity and MCC. This suggests that it can effectively handle both
AD and HC classifications. ResNet50 exhibits the highest Specificity of 92.06%,
indicating higher capability of identifying HC subjects. However, its lower Sen-
sitivity 67.97%, and MCC 62.09% suggest that it may not be as effective at
identifying AD subjects as other models. From the Vision Transformer architec-
ture family, the SwinV2T performs well with an Accuracy of 85.54% and MCC of
71.53%. These models show a good balance between Sensitivity and Specificity,
indicating their robustness in diagnosis but worse than ConvNextSmall. Vari-
ability across models is notable, with standard deviations indicating that some
models (e.g., ConvNextBase, EfficientNetV2M) exhibit more variation in their
performance metrics across folds. This variability might be due to differences in
how models handle the intrinsic complexities and variations within the AD vs
HC classification task. The TrOCR models show lower performance than other
models in Table 5. Transfer learning from ImageNet has proven to be more effec-
tive. It can be assumed that for this specific analysis, a transfer of knowledge
from task domains, e.g. classification task, is more valuable rather than input
data domain, e.g. handwritten text images.
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Table 4. Top model performance by task according to accuracy.

TaskBest Model Accuracy Specificity Sensitivity MCC
1 ConvNextBase 75.29 (7.57) 72.67 (17.78) 76.59 (11.94) 51.02 (15.09)
2 SwinV2S 82.55 (9.38) 78.96 (10.22) 85.83 (8.66) 65.04 (18.50)
3 ConvNextSmall83.78 (6.43) 80.44 (7.64) 86.21 (9.11) 67.23 (13.32)
4 ConvNextSmall83.17 (8.59) 79.65 (14.71) 85.91 (13.69) 66.37 (17.83)
5 SwinV2B 84.37 (7.44) 83.31 (10.30) 85.19 (8.34) 68.90 (15.55)
6 ConvNextTiny 81.94 (4.70) 80.13 (10.35) 82.89 (11.77) 64.16 (9.56)
7 ConvNextBase 70.48 (3.94) 71.77 (16.21) 67.43 (16.11) 40.63 (9.15)
8 ConvNextTiny 83.19 (6.68) 86.10 (9.46) 80.76 (13.41) 67.35 (12.65)
9 ConvNextSmall86.19 (6.47)85.79 (5.39) 86.32 (8.92) 72.20 (13.05)
10 ConvNextSmall82.55 (3.81) 86.69 (6.20)78.25 (8.98) 65.45 (7.51)
11 ConvNextTiny 82.57 (6.02) 85.23 (10.31) 79.58 (12.07) 65.54 (12.10)
12 ConvNextTiny 81.39 (8.11) 83.45 (8.60) 79.42 (21.25) 64.52 (14.72)
13 ConvNextTiny 81.39 (6.54) 81.09 (6.23) 81.94 (13.83) 63.38 (12.61)
14 ConvNextSmall79.50 (5.05) 66.51 (19.05) 89.69 (8.66)59.63 (11.46)
15 ConvNextBase 82.57 (7.70) 74.54 (14.57) 88.62 (8.97) 64.83 (17.03)
16 ConvNextBase 82.00 (7.68) 78.31 (4.73) 85.85 (13.13) 64.12 (15.26)
17 VGG19 80.20 (10.54) 78.96 (17.90) 82.24 (8.97) 61.39 (20.57)
18 ConvNextTiny 83.73 (3.50) 78.83 (10.73) 87.40 (2.96) 67.00 (7.92)
19 ConvNextSmall82.53 (10.79) 77.13 (14.89) 86.75 (9.19) 64.27 (23.15)
20 VGG19 74.10 (3.40) 84.35 (8.98) 64.79 (6.95) 50.21 (7.59)
21 SwinV2T 80.71 (5.54) 74.31 (4.33) 85.76 (10.82) 61.44 (10.82)
22 ConvNextBase 80.73 (5.87) 78.18 (18.05) 81.37 (8.50) 60.79 (13.18)
23 ConvNextTiny 79.52 (3.94) 75.65 (12.96) 83.12 (8.86) 59.82 (8.02)
24 SwinV2B 80.71 (6.67) 81.73 (10.91) 80.12 (12.12) 62.46 (12.61)
25 ConvNextBase 72.87 (8.09) 70.81 (15.21) 73.85 (6.29) 44.78 (17.83)

Table 6 presents the performance metrics for the best models, freezing a
subset of the model’s layers during training, which can assist in preventing over-
fitting and enhancing performance. ConvNextSmall achieves its peak accuracy
of 84.44% when employing 25% freezing. However, this performance falls short
of the 87.99% accuracy it attains without implementing any freezing technique.
Conversely, the SwinV2T model shows improved performance with 50% freezing,
achieving an accuracy of 86.15% and an MCC of 72.30%. This is higher than
its non-frozen performance (85.54% accuracy and 71.53% MCC), indicating that
freezing half of the layers helps better adapt to the task. The TrOCR-Small-Hand
model exhibits similar behaviour, gaining an accuracy improvement of 6.63%
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Fig. 4. Accuracy comparison of CNN models across 25 tasks.

Fig. 5. Accuracy comparison of Transformers models across 25 tasks.

when it is subjected to 75% freezing than when it is not. The VitB16 model
shows the best performance is with 25% freezing, but this is still lower than its
non-frozen performance (81.34% vs 77.70% accuracy), suggesting that this model
benefits from having more trainable parameters for this specific task. Overall,
these results demonstrate that the impact of freezing varies across different model
architectures. While some models like SwinV2T and TrOCR-Small-Hand benefit
from freezing, others like ConvNextSmall and VitB16 perform better when more
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Table 5. Performance metrics of CNN and Transformer models using majority voting.

Model Accuracy Specificity Sensitivity MCC
VGG16 82.57 (8.11) 85.02 (11.98) 79.69 (8.94) 65.01 (17.04)
VGG19 84.37 (3.35) 91.99 (5.24) 77.15 (9.23) 70.09 (5.56)
ResNet50 79.50 (2.39) 92.06 (7.45)67.97 (8.41) 62.09 (4.64)
ResNet101 78.93 (7.61) 90.16 (10.74) 67.73 (11.99) 59.84 (15.39)
EfficientNetV2M 80.73 (8.89) 86.63 (13.87) 74.76 (10.46) 62.56 (18.45)
EfficientNetV2S 78.31 (5.89) 87.73 (10.86) 69.20 (9.48) 58.55 (12.37)
ConvNextTiny 87.38 (5.78) 88.46 (10.19) 86.59 (13.30) 76.38 (10.70)
ConvNextSmall 87.99 (5.30)85.15 (9.90) 89.69 (13.06)76.75 (10.63)
ConvNextBase 86.17 (8.65) 87.37 (13.44) 84.01 (12.28) 72.60 (18.09)
VitB16 77.70 (9.72) 86.63 (10.46) 69.42 (21.85) 58.40 (16.42)
SwinV2B 84.94 (5.07) 89.63 (8.20) 80.70 (11.98) 71.36 (9.51)
SwinV2S 83.74 (3.59) 83.08 (12.53) 84.30 (12.29) 69.26 (7.26)
SwinV2T 85.54 (1.18) 86.89 (7.01) 84.04 (6.86) 71.53 (2.75)
TrOCR-Small-Hand71.66 (6.63) 87.95 (8.26) 57.23 (11.58) 47.86 (11.38)
TrOCR-Base-Hand 71.00 (11.54) 90.16 (11.36) 53.85 (20.86) 48.17 (19.91)

Table 6. Performance metrics of best models with varying percentages of layer freezing
during training.

Model FreezingAccuracy Specificity Sensitivity MCC
ConvNextSmall 25% 84.44 (9.30) 82.06 (7.95) 86.41 (13.11) 69.05 (19.04)

50% 82.55 (5.13) 89.48 (6.50)76.27 (12.90) 67.06 (9.13)
75% 83.16 (4.82) 83.84 (13.00) 81.90 (11.53) 67.08 (11.06)

VitB16 25% 81.34 (6.71) 80.01 (10.94) 82.04 (10.70) 62.81 (14.39)
50% 77.11 (5.60) 88.17 (9.65) 67.57 (13.57) 57.76 (11.07)
75% 77.13 (5.51) 86.92 (11.19) 68.40 (11.93) 57.11 (10.60)

SwinV2T 25% 82.55 (6.41) 84.94 (14.67) 79.28 (17.37) 67.22 (12.94)
50% 86.15 (5.60)82.16 (14.88) 88.54 (8.45)72.30 (11.91)
75% 82.55 (9.23) 81.34 (12.02) 83.01 (12.76) 65.21 (19.20)

TrOCR-Small-Hand25% 77.13 (8.19) 85.83 (16.42) 68.02 (12.14) 56.08 (17.52)
50% 75.29 (7.03) 86.94 (17.19) 63.01 (12.62) 53.44 (15.87)
75% 78.29 (7.58) 71.62 (7.92) 84.36 (11.35) 57.08 (16.40)

layers are trainable. It’s also worth noting that even with freezing, ConvNextS-
mall and SwinV2T remain the top-performing models, consistent with the initial
results.
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5 Discussions

Our experimental framework results demonstrate the significance of every stage.
Initially, we considered all data collectively, without isolating individual patient
or task evaluations. This perspective revealed the effectiveness of our system,
outperforming previous methodologies where tasks were analyzed separately for
classification. Subsequently, in the second stage, we aggregated results by task,
unveiling the varying significance of different tasks for our research objectives.
Lastly, the third stage integrated a majority voting rule applied to predictions
from the same patient, validating our hypothesis that combining classifications
across multiple tasks significantly enhances patient-level classification accuracy.
We evaluated and compared various architectures belonging to two distinct fam-
ilies: CNNs and Vision Transformers. Among the architecture families tested,
ConvNext exhibited superior performance compared to other CNNs and Vision
Transformers. Specifically, ConvNextSmall demonstrated better performance in
Accuracy and Sensitivity, a crucial metric in the medical domain, indicating
the proportion of correctly identified patients afflicted by a disease. Moreover,
we explored the feasibility of transferring knowledge from OCR to AD recog-
nition tasks. However, this approach achieved significantly lower performance
compared to the best method, encountering challenges arising from domain dis-
parities between OCR and AD recognition. It is important to note that the OCR
approach used by these models is specifically designed to extract and interpret
text from images. This means that TrOCR models focus primarily on what is
written in the images rather than analyzing neuromotor characteristics that can
indicate the presence of disease. Their inferior results may be attributed to the
fact that text analysis is not directly relevant or effective for identifying subtle
neuromotor differences between AD subjects and HC. From the second experi-
ment, we underscored the variability in task performance within the handwriting
protocol, independent of the architecture considered. Some tasks are more valu-
able than others for the problem in the exam, like tasks requiring cognitive and
motor skills. On the contrary, simple copy tasks that do not require a particular
cognitive effort obtain worse performance. This finding holds significant impli-
cations, suggesting the potential for protocol refinement or the consideration of
a subset of tasks during the combination of predictions to enhance effectiveness,
throwing the basis for future work.

6 Conclusions

This research proposes a non-invasive and low-cost approach that can easily reach
anyone, allowing for broad screening and improving prevention. It interprets task
performances and allows one to consider more samples from the same person,
combining the predictions at the end.
Besides the encouraging results, every research study has room to be improved,
and we mean developing new experiments and further analysis. In particular,
as our system relies on offline data scanned from paper sheets, the dataset can
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be easily augmented thanks to the great availability of on-paper handwritten
material. As the models selected for this work are very data-hungry, we can
expect an improvement in the performance by adding more data, especially
for transformer-based architectures. Moreover, if we collect different handwrit-
ing samples, we can verify if the system can perform well independently of the
choice of tasks. The developed approach holds promise not only for diagnosis
but also for monitoring, thus facilitating the tailoring of personalized therapies.
The approach has implications beyond the initial diagnosis. Continuously moni-
toring changes in writing style or patterns can provide valuable insights into the
progression of certain conditions or disorders. This longitudinal tracking could
enable clinicians to intervene proactively, adjusting treatment plans as needed
and potentially improving patient outcomes.
Furthermore, our method utilizes scans of handwritten texts as its primary
“offline” data source. This approach enables us to apply our analysis to histori-
cal documents recent or from many years ago–to identify indicators of AD. By
examining these old text scans, we can investigate whether an individual showed
signs of AD in their writings or assess their risk of developing the condition in
the future.
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