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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. With the increasing interest in explainable attribution for
deep neural networks, it is important to consider not only the importance
of individual inputs, but also the model parameters themselves. Existing
methods, such as Neuron Integrated Gradients [18] and Conductance
[6], attempt model attribution by applying attribution methods, such
as Integrated Gradients, to the inputs of each model parameter. While
these methods seem to map attributions to individual parameters, these
are actually aggregated feature attributions which completely ignore the
parameter space and also suffer from the same underlying limitations of
Integrated Gradients. In this work, we compute parameter attributions
by leveraging the recent family of measures proposed by Generalized
Integrated Attributions, by instead computing integrals over the prod-
uct space of inputs and parameters. This usage of the product space
allows us to now explain individual neurons from varying perspectives
and interpret them with the same intuition as inputs. To the best of
our knowledge, ours is the first method which actually utilizes the gradi-
ent landscape of the parameter space to explain each individual weight
and bias. We confirm the utility of our parameter attributions by com-
puting exploratory statistics for a wide variety of image classification
datasets and by performing pruning analyses on a standard architecture,
which demonstrate that our attribution measures are able to identify
both important and unimportant neurons in a convolutional neural net-
work.
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1 Introduction

As deep learning architectures grow in size and complexity, the push for explain-
ability of model predictions and performance continues. While existing attri-
bution methods are able to generate importance values for model inputs and
extracted features, it is also critical to consider the model parameters them-
selves in the context of the ambient parameter space.

We first briefly summarize the several types of attributions for clarity of
terminology in the following subsections. Figure 1 provides an illustration of
these attribution types.

Input attributions assign importance values, or some other value of inter-
est, to each dimension of the input. For the particular case of image recognition
this means assigning importance values to each pixel of the input, or ideally to
each pixel’s color channels individually.

Intermediate Feature Attributions assign importance values to the fea-
ture maps generated by layers and modules within a neural network, in a method
similar to input attribution. Since these feature maps are simply transformations
of the input data, we can conveniently treat them using the same attribution
methodology as we used for inputs.

Parameter Attributions facilitate computing importance values for indi-
vidual model parameters, i.e. the weights and biases in a convolutional neural
network. Since the model itself is an entirely different class of object than either
the inputs or extracted features, we must develop a new methodology for extend-
ing the theory of attributions to the parameter space.

1.1 Our Contribution

In this work, we achieve a more complete and faithful method of parameter
attribution, leveraging the reformulated attribution framework of Generalized
Integrated Attributions [21]. Similar to Neuron Integrated Gradients [18] and
Conductance [6], we assign an integrated measure to a parameter within a model.
However, unlike these previous methods, we do not aggregate path-integrated
feature attributions, but rather use the generalized volume-integral formulation
proposed in [21], and account for the parameter space by integrating over the
product space of inputs and parameter values. By integrating over a set in the
parameter space, we are able to interpret the resulting parameter attributions
using the same theory as for input and feature attributions. Additionally, this
formulation allows us to assign unique attribution values to each weight and
bias in a convolutional neural network, which was not possible using previous
methods.

To ensure that the computed measures reflect the dataset of interest rather
than some arbitrary or counterfactual baseline value, we follow the approaches
of Expected Gradients [7] and Generalized Integrated Attributions [21] and take
the expectation in the input space over a set from the training dataset. Using this
new formulation of Parameter Explanations using the Product Space (PEPS), we
are able to extend each of the measures proposed in [21] to model parameters
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in addition to inputs. Our experiments confirm that our measures are able to
successfully identify important and unimportant neurons, and we summarize
our findings regarding the distribution of these measures for several datasets,
model training statuses, and hyperparameter combinations using exploratory
plots. Furthermore, our measures are able to un-learn a specific class from the
trained model without destroying the model’s performance on the remaining
classes, and we identify several trends within the distributions of our attributions
which might be used for future training diagnostics and improved robustness.

Fig. 1: Mock-up visualization of attributions corresponding to different types
of explainable objects. Even once the extracted features cease to resemble the
original input, we can still compute attributions using the same methodology
as used for input attributions. However, model parameters require a different
approach in order to reflect the behavior of the model’s own gradient landscape.

2 Related Work

2.1 Input Attributions

Many methods for attributing model predictions to specific features of the input
utilize information contained in the model gradients [3,8,19,20,22,24]. Sun-
dararajan et al. devised an attribution method called Integrated Gradients [22]
which computes the integral of feature gradients over a linear path from an input
to a reference. The value of this integral can then be tracked with respect to each
pixel of the input in order to obtain a pixel-wise attribution map. In a similar
approach, DeepLift [17] propagates contribution scores according to differences
from a reference, which, akin to integrated gradients, requires some justification
for correct or appropriate reference values. By incorporating the theory asso-
ciated with classical Shapley values, Lundberg et al. [14] contextualize several
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attribution methods such as DeepLift as additive explanations, and uses the the-
ory of SHAP values to unify these different approaches to attribution under a
single framework. Ancona et al. [2] show that many gradient-based attribution
methods are closely related and can be described with a unified formulation, and
propose the metric Sensitivity-n to evaluate these methods.

In contrast to gradient-based methods, other approaches to quantifying fea-
ture importance such as the search-based Parallel Local Search (PLS) [10] are
able to outperform other state-of-the-art attribution methods. Still, while these
search-based methods can be highly useful, they lack much of the a-priori and
intuitive explainability offered by gradient-based methods.

A recent reformulation known as Expected Gradients [7] was proposed by
Erion et al. to directly improve upon the original method of Integrated Gradi-
ents, by computing attributions as an expected value of gradients over the input
dataset, thus alleviating the issue of counterfactual baselines. This prompted
yet another recent reformulation in the form of Generalized Integrated Gradi-
ents [21].

2.2 Intermediate Feature Attributions

It can often be beneficial to consider the intermediate features extracted by
machine learning models when collecting attribution information, either for the
purpose of improving input attributions as in [3], or in order to assign attri-
butions to model parameters. Using an integration-based method similar to
Integrated Gradients, Leino et al. [13] compute an influence-directed attribu-
tion measure which can be applied to internal neurons within a model. In two
very similar approaches, Shrikumar et al. [18] and Dhamdhere et al. [6] pro-
pose Neuron Integrated Gradients and Conductance respectively by applying
the principles of Integrated Gradients to the inputs of a given parameter. These
feature attributions are then pooled and assigned to the parameter. Although
these methods do assign attribution values to individual model parameters, these
values are actually aggregated feature attributions rather than representations
of the model’s own gradient landscape. Additionally, since both of these methods
integrate feature gradients over a path in the input space, these aggregated fea-
ture attributions are relevant only to this path, entirely neglecting the parameter
space itself.

2.3 Parameter Attributions

While methods like [24] intentionally avoid using gradient information when
determining neuron importance, our experiments demonstrate that there is a
wealth of useful information available within model gradients. Other work on
neuron-level analysis has been conducted in the Natural Language Processing
(NLP) space [16], but it remains to extend these methods to other domains such
as vision. Our method is also similar to the Shapley-value approach of [9], which
uses permutations of model parameters in a multi-armed bandit algorithm to
determine neuron importance values, as well as the neuron ablation approach
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of [1] which uses majority voting. While these two methods can be effective for
specific use cases, such algorithmic approaches lack the flexibility, intuition, and
generalizability of our method for accomodating diverse subjective user needs.

3 Approach

While previous methods consider only integrals within the input space with
respect to a single point in parameter space (the model weight state), we instead
consider the product space of inputs and parameter values (Fig. 2). By integrat-
ing over a set in the product space, we can explain a parameter not only with
respect to a given set of inputs, but also with respect to other possible parameter
values. We verify the effectiveness of this method in Sect. 4.

Fig. 2: For each neuron, we integrate over the product space of inputs and param-
eter values in order to collect importance information about that parameter’s
relation to the set of inputs. Pictured above, we visualize the product space
corresponding to three samples for weight wi and three input samples from the
dataset.

3.1 Parameter Explanations Using the Product Space (PEPS)

We first recall the formulation of Generalized Integrated Gradients in Eq. 1 from
[21] for an input x and a model F , over a set Sx in the input space, as well as
the even more general Eq. 2 for an attribution function A and a distribution pSx

:

GeneralizedIntegratedGrads(Sx) ::=
1

|Sx|
∫
Sx

∇F (x)dx

= ESx
[∇F ]

(1)
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GeneralizedIntegratedAttribution(A, F,Sx, pSx
)

::=
∫
Sx

A(F, x)pSx
(x)dx

(2)

We apply this formulation to model attributions rather than input attribu-
tions by treating a parameter or parameter group (such as a convolutional filter)
θ as we treated the input x for input attribution. This simultaneous effect of
inputs and parameters yields a tuple representing a single point (x, θ) in the
input × parameter product space. We can now compute the gradients of the
parameter θ with respect to the input x, so we then integrate over a set of inter-
est Sθ and distribution pSθ

in the parameter space as well as over a set of interest
Sx and distribution pSx

in the input space to obtain Eqs. 3 and 4:

GeneralizedModelIntegratedGradients(Sx,Sθ)

::=
1

|Sx|
∫
Sx

1
|Sθ|

∫
Sθ

∇Fθ (x) dθdx

=
1

|Sx||Sθ|
∫
Sx

∫
Sθ

∇Fθ (x) dθdx

=ESx
[ESθ

[∇Fθ (x)]]
=ESx×Sθ

[∇Fθ (x)]

(3)

GeneralizedIntegratedModelAttribution(A,Sx, pSx
,Sθ, pSθ

)

::=
∫
Sx

[∫
Sθ

A(θ, x)pSθ
(θ)dθ

]
pSx

(x)dx

=
∫

φ∈Sx×Sθ

A(φ)pSx×Sθ
(φ)dφ

(4)

Using this method, we can compute model attributions corresponding to each
of the input attribution statistics proposed in [21]: Expected/Integrated Gradi-
ents, Gradient Variance, Stability, and Consistency. We compute these attri-
butions for each parameter (weights, biases, etc.), and just as individual pixel
attributions can be aggregated to obtain an attribution for an entire image, we
can also aggregate parameter attributions as desired to obtain coarser attribu-
tions for parameter groups, modules, layers, or the entire model (Eqs. 5 and
6).

Attribution(Parameter Group) = E [Attributions(θ)]
θ ∈ Parameter Group

(5)

Attribution(Model) = E [Attribution(Parameter Group)]
Parameter Group ∈ Model

(6)

Note that this aggregation step is sensitive, as positive and negative measure
values can potentially cancel out and obfuscate the true effect at the filter and
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model-level. For more accurate and thorough attributions, alternative aggrega-
tion methods can be applied to combine hierarchically nested attributions, or
individual filters and even the entire model might be treated as a single entity
for computation of each integrated measure, though this approach may require
additional overhead or special considerations with respect to sampling the latent
parameter space.

4 Evaluation

We perform two types of quantitative analysis to demonstrate the utility of our
method. We first perform pruning experiments to verify that our novel attri-
bution measures are able to identify important and unimportant neurons in a
trained model. We then collect additional distributional information for a wider
variety of datasets to confirm that our attributions can distinguish between a
trained model and an untrained model. For each integrated attribution mea-
sure, we select our set Sθ to be the ball centered at a parameter of locality
radius hyperparameter ε proposed in [21]. We choose our ε values from a large
range in our experiments in an attempt to sample both local and nonlocal gra-
dient behavior. We also fix Sx to be the training set, and follow the same Monte
Carlo integration method of [21] in which we sample points from Sx and Sθ.

4.1 Pruning

We demonstrate the effectiveness of our method in determining neuron impor-
tance by performing a series of pruning experiments (Figs. 3, 4, and 6) as was the
approach of [1,9], in which we set a proportion of individual model parameters to
zero. If model performance degrades faster or slower when pruning according to
ranked attribution values compared to pruning randomly, then we will have suc-
cessfully identified the important or unimportant neurons respectively. In each
experiment, we prune the same proportion of weight and bias parameters from
each layer, except for the final output layer which we leave intact.

Pruning Experiments. We perform experiments for the CIFAR-10 dataset
[11], shown in Fig. 3, using a ResNet-18 architecture trained for 20 epochs using
a standard categorical cross-entropy with learning rate of 0.01 with no momen-
tum or weight decay, and a batch size of 32. We also perform similar experiments
for the ImageNet dataset [5], shown in Fig. 4, using a pretrained ResNet-34
architecture. For all pruning experiments, we show the mean F1-Score on the
respective test set over 10 replicates and the associated 95% confidence interval.
We investigate the effect of our locality radius ε for 32 input sample points and
32 parameter sample points. We also include an investigation of the effect of
the number of sample points in the input space and parameter space for in our
supplemental information, and we briefly show the benefit of larger sample sizes
in Fig. 5. We can notice from Figs. 3 and 4 that our Integrated Gradients and
Gradient Variance measures are able to successfully identify important neurons
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Fig. 3: Pruning of a ResNet-18 model trained on CIFAR-10. We can observe
that different choices of locality radius ε reveal different types of attribution
information for certain measures. For each of the four measures, we observe
statistically significant differences from random pruning, verifying that we have
collected information relevant to the model’s performance.

for all three of the tested locality radii, but that our Stability measure identi-
fies important neurons for a large radius and unimportant neurons for a small
radius. We note the our Consistency measure currently only appears useful for
large radii, so this may indicate that we need to explore a wider range of radii
and sample points in future studies. We also assume that first multiplying our
attributions by −1 will result in the opposite behavior as observed in Figs. 3 and
4, but we must confirm this in future studies.

Pruning to Target a Single Class. We also demonstrate the ability of our
method to select for neurons important to a specific class. By fixing Sx as a spe-
cific subset of the input space (i.e. a specific class), we can determine a neuron’s
importance with respect to that class. We otherwise perform these experiments
using the same methodology as Figs. 3 and 4. Shown in Fig. 6 are the two exper-
iments which demonstrate the most selectivity for a single class while preserving
performance on the remaining classes, the remaining experiments are available
in supplemental information. Our results show resounding success in destroying
the model’s test set F1-Score for the targeted class, which may prove to be useful
for applications related to unlearning [4].
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Fig. 4: Pruning of a ResNet-34 model trained on Imagenet. Note the same overall
trends for each measure as observed for the CIFAR-10 dataset in Fig. 3, indicat-
ing that the utility of our measures successfully generalizes to larger datasets.

Fig. 5: Pruning of a ResNet-18 model trained on CIFAR-10 for varying input
and parameter sample sizes. In general we observe that increased sample size
results in more accurate attributions reflecting a neurons relative importance or
unimportance.
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4.2 Distributional Analysis

We investigate the distribution of our attribution measures for trained and ran-
domly initialized models using several small-scale image classification datasets:
CIFAR-10 [11], MNIST [12], FashionMNIST [23], and SVHN [15], using a
ResNet-18 architecture trained using the same methodology as for the pruning
experiments, except for that on the smaller datasets (MNIST, FashionMNIST,
and SVHN) we trained only for 10 epochs. We also include data for partial train-
ing on the CIFAR-10 dataset (10 out of 20 epochs) to further illustrate how the
distributions converge as the model trains. For these distribution analyses we use
10 sample points from the input space and 20 sample points from the parameter
space, and we investigate the distributions of measures corresponding to ε = 1.0
and ε = 104.

Fig. 6: Single-class targeted pruning of a ResNet-18 model trained on CIFAR-
10. Note that we are able to reduce the F1-Score for the targeted class to zero
while maintaining ∼ .60 F1-Score on the overall dataset. This indicates that our
measures could be used to very effectively unlearn specific classes as needed for
privacy or security applications.

We demonstrate below that the distributions of each of our four integrated
model attribution measures are highly dependent on model training status. See
Figs. 7, 8, 9, and 10 for histograms and discussion of Integrated Gradients, Gradi-
ent Variance, Stability, and Consistency. We can observe distributions resembling
several parametric families in the generated histograms, namely the Student’s
t-distribution for Integrated Gradients, the Gamma distribution for Gradient
Variance, and possibly Beta distributions for Stability and Consistency. While
we do not in this study fit any parametric distributions to the data, these distinct
distributions offer a quantitative and parametric source of model explanation and
evaluation.
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Fig. 7: Parameter-level histograms for the Integrated Gradients measure for mod-
els trained on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. Values
outside the .9 quantile are excluded from the histogram range. The attributions
appear to be roughly distributed according to a Student’s t-distribution for both
choices of locality radius ε, which is consistent with the fact that Integrated Gra-
dients is computed as a sample mean of gradients in the Monte Carlo integral
assuming gradients in the underlying latent space are normally distributed.

Fig. 8: Filter-level histograms for the Gradient Variance measure for models
trained on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. For these
histograms we present filter-level attributions rather than parameter-level attri-
butions due to the large volume of extreme values at the parameter-level. Values
outside the .9 quantile are excluded from the histogram range, but even though
we are plotting the filter-level distribution, due to the large number of extreme
values this range restriction still results in distributions which are difficult to
qualitatively evaluate for locality radius ε = 104. The attributions appear to
be distributed according to a gamma distribution for both choices of locality
radius ε, which is consistent with the fact that filter attributions are sums of
per-parameter Gradient Variances, which each follow a chi-square distribution
assuming that gradients in the underlying latent space are normally distributed.
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Fig. 9: Parameter-level histograms for the Stability measure for models trained
on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. Values outside the
.9 quantile are excluded from the histogram range. The attributions appear to
be similarly distributed for both choices of locality radius ε, and while there does
appear to be some dependence on model training for the CIFAR-10 (ε = 1.0)
results, any additional trends are not immediately qualitatively clear. Since the
Stability measure is defined on a bounded support of [−1, 1] as the expectation of
a cosine, we should strongly consider distributions such as the beta distribution
for development of future statistical tests and inferences based on Stability.

Fig. 10: Parameter-level histograms for the Consistency measure for models
trained on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. Values out-
side the .9 quantile are excluded from the histogram range. We can note the two
distinct paradigms for locality radius ε = 1.0 and ε = 104, and a clear distinction
between the distributions for trained and untrained models in both cases. Like
the Stability measure, since the Consistency measure is defined on a bounded
support of [−1, 1], we should be mindful of this when developing any statistical
tests.
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5 Conclusions

We have developed a novel methodology for explaining model parameters, and
have verified its ability to identify important and unimportant neurons. By con-
sidering the product space of inputs and parameter values, we are now able to
generalize the family of integrated attribution measures proposed in [21] from
only input and intermediate feature attribution to also accommodate parameter
attribution. We have identified several unique sources of parameter attribution
information by using our new formulation to compute the four measures pro-
posed in [21] for varying locality radius. Since the underlying family of attribu-
tions is very diverse, our initial success in identifying important neurons justifies
a much more thorough investigation into the various relevant hyperparameters
(input sample size, parameter sample size, locality radius, etc.) and merits the
development of additional measures beyond the four which we have explored in
this work. Furthermore, we have demonstrated our method’s ability to identify
neurons important specifically for single classes. If our parameter attributions are
incorporated into more sophisticated unlearning and model reduction methods,
we will likely observe even better utility. We have also identified several prelim-
inary trends and patterns with respect to the distributions of Integrated Gradi-
ents, Gradient Variance, Stability, and Consistency for trained versus untrained
models. Our study confirms that this family of attribution measures is a rich
source of relevant model information which begs further study toward the end of
both explaining and improving model behavior. Since our methodology is imme-
diately applicable to any machine learning model for which parameter gradients
can be computed, and can accommodate any new measures developed using the
framework of Generalized Integrated Attributions, we should expect the utility of
this method to only increase as additional novel and useful integrated measures
continue to be proposed.

5.1 Future Work

While we include much additional pruning data in the supplemental information,
we should still explore a wider range of locality radii and perform experiments in
which we prune in ascending order of attribution value as opposed to descending
value, or in which we sort each parameter using multiple attribution measures at
once. Additionally, While we have collected data for the Resnet-18 and Resnet-34
architectures for several image datasets, we can also investigate a wider variety
of model architectures and data tasks beyond image recognition.

In the future we may be able to visualize the semantic effect and role of the
model’s important parameters by inspecting the types of features extracted by
these parameters. This, coupled with input and feature attribution, may give us
a broader understanding of model attention.

The qualitative trends observed in the distributional study above justify a
more rigorous statistical analysis such as Analysis of Variance (ANOVA) in the
future to search for higher order and mixed effects. The distributions of each
attribution measure can also be fit to parametric distributions such as Student’s
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t, gamma, and beta distributions in order to directly quantify the effect of model
training and other hyperparameters. In particular, since we directly derived that
Integrated Gradients and Gradient Variance measures should follow Student’s
t and gamma distributions respectively, we can immediately begin developing
statistical tests to explain and improve models based on these two measures.
We can additionally continue to collect more data regarding how attributions
depend on model training and accuracy. We can similarly continue to investigate
how hyperparameters such as the locality radius ε, the training dataset, number
of classes, and filter size affect the distribution of attributions. We might also
inspect class-wise attribution distributions as a means of further quantifying and
explaining how each model responds to a particular class.

Finally, though out-of-scope for this work, future studies should pursue train-
ing models using the method of attribution priors proposed by [7]. It is possible
that the attribution measures studied in this work could be used to train models
more robustly and accurately, so any such opportunities for explainable improve-
ment should be investigated.
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Abstract. Medical image segmentation is one of the domains where sufficient
annotated data is not available. This necessitates the application of low-data
frameworks like few-shot learning. Contemporary prototype-based frameworks
often do not account for the variation in features within the support and query
images, giving rise to a large variance in prototype alignment. In this work,
we adopt a prototype-based self-supervised one-way one-shot learning frame-
work using pseudo-labels generated from superpixels to learn the semantic seg-
mentation task itself. We use a correlation-based probability score to generate a
dynamic prototype for each query pixel from the bag of prototypes obtained from
the support feature map. This weighting scheme helps to give a higher weightage
to contextually related prototypes. We also propose a quadrant masking strat-
egy in the downstream segmentation task by utilizing prior domain information
to discard unwanted false positives. We present extensive experimentations and
evaluations on abdominal CT and MR datasets to show that the proposed simple
but potent framework performs at par with the state-of-the-art methods.

1 Introduction

Semantic Segmentation is one of the critical applications in computer vision. Applica-
tions of semantic segmentation to medical image analysis for assisting medical person-
nel in disease diagnosis are also plenty. For efficient and reliable analysis of medical
images, contemporary deep-learning methods require large-scale datasets annotated by
expert medical personnel. However, unlike natural image datasets, obtaining annotated
high-quality medical image datasets is time-consuming and labour-intensive. To avoid
the scarcity of large-scale datasets in medical image analysis, the few-shot learning
paradigm has gained popularity among researchers.

In this work, we adopt the few-shot learning approach for learning to segment
organs from MR or CT query scans, from a limited number of given support MR or
CT slices and their corresponding ground truth segmentation masks. Depending on the
pipeline, few-shot segmentation frameworks can be primarily of two types: prototype
feature learning and affinity learning [18]. Prototype feature learning consists of con-
structing prototypes utilizing the support image and the support mask information. Each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15310, pp. 16–33, 2025.
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prototype represents a defined spatial region in the support image. These prototypes
are used to find pixels in the query image which are similar to them and are scored
accordingly to segment it into foreground and background. Prototype-based features
are more robust to noise than pixel-based features [18]. Prototypical methods also drop
spatial information, which is important when the variation between support and query
images is considerably significant [18]. Prototypical methods are also responsible for
losing discriminability because of the masked pooling process to generate prototypes
[18]. To address this issue, we create prototypes for foreground and background pix-
els, which preserve the contextual spatial information required for effective discrimi-
nation between the foreground and background pixels. To prevent loss of information,
we adopt a correlation-weighted aggregation approach such that the information of all
the prototypes corresponding to foreground or background is present in the aggregated
prototype.

In PANet [33], a prototypical alignment-based strategy was proposed, wherein the
masked support image embedding is mapped to the feature space, and the query mask
is predicted by matching the query prototypes to the nearest prototype in the embed-
ding space. However, PANet resorts to a global masked pooling operation, which is not
suitable for medical image segmentation, as it can result in the loss of spatial orienta-
tion information. In ALPNet [25], which is also a prototype-based framework, a local
prototype-based approach is adopted to preserve local information using an adaptive
local prototype pooling framework. However, such an approach ignores the global con-
textual information. In this work, we generate a single prototype for each pixel in the
query feature map, that encodes both the global and local spatial context. We resort to
a correlation-based aggregation approach, where the prototypes which are similar to a
particular query pixel or located close in terms of spatial context, as well as its neigh-
bourhood, will get a higher score than prototypes that are located far away in terms of
spatial context. The probability scores are used to generate a weighted prototype for
each query pixel. The correlation-based probability weighting scheme allows dynamic
prototype generation for each query pixel by giving more weight to contextually related
prototypes. In addition to the framework design mentioned above, we also utilize prior
domain information to further reduce the effect of false positives in the final downstream
task by using quadrant masking scheme.

The main contributions of our work are as follows.

– We propose a novel correlation-weighted prototype aggregation-based self-
supervised one-way one-shot learning framework for the segmentation of organs
from abdominal magnetic resonance or computed tomography scans.

– We also propose a prior domain knowledge-informed quadrant masking scheme for
discarding false positives in medical image segmentation tasks.

– Extensive experimental evidence on two datasets on abdominal magnetic resonance
imaging and computed tomography shows the efficacy of the proposed simple but
potent method.
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2 Related Work

2.1 Few Shot Segmentation

One of the first pioneering works in Few Shot Segmentation (FSS) was presented in
[28], where a conditioning branch was used to predict weights, which serves as classifier
weights for the query image feature obtained from the segmentation branch. The idea
was extended in [26] using sparse positive and negative support pixels. In [27], a guided
network is used to utilize information from the latent representation from the FSS task
to segment query pixels. This work was further improved and extended in [3,29,30,37].

[7] presents one of the first works in the Prototypical Learning paradigm, by fus-
ing prototypes from support images with the query image features using similarity
scores. A leap in the paradigm of prototype learning was shown in [33], where the pro-
totype alignment strategy was introduced for maintaining cyclic consistency between
the ground truth and the predicted segmentation mask inducing regularizing effect in
training. Instead of altering the input structure as in [7,26], the authors in [38] adopted
a separate segmentation guidance framework based on similarity. [21] argue that the
previous prototype-based methods do not take into account the various appearance of
different parts in an object and propose a prototype-based part-aware framework to cap-
ture rich and fine-grained features. [35] also pointed out that the primary disadvantage
of existing prototype-based methods is the pooling operations which destroy the spatial
layout information of the objects, and thereby proposed a prototype mixture model to
solve the semantic ambiguity in prototype-based models.

To preserve the spatial correspondence between support and query image pixels,
[20] uses a partial optimal transport-based matching. A multi-level variation of the same
was done in [32]. [8,18] also aim to solve the same problem. [19,36] aim to capture the
intrinsic details to improve segmentation quality. [4,14] attempts to reduce testing bias
in the FSS setting. An attempt to improve the discrimination between similar classes is
presented in [22].

2.2 Self-supervised Segmentation

The application of self-supervised learning frameworks in segmentation, although lim-
ited, follows two paths. One where the pre-training task is different from the down-
stream task of segmentation, and the other where both are the same. Works like
[5,11,13,15,16,23,31,39] uses a pre-training stage to learn representations from the
base dataset and then utilises the representation for a downstream semantic segmenta-
tion task. [10] uses unsupervised saliency to generate object proposals and then opti-
mizes a contrastive learning objective on the features obtained from the proposals to
learn representations for semantic segmentation. For the second type, pseudo-masks are
used as the segmentation masks in the pre-training stage. The above strategy is adopted
in [1,2,24,25]. In [2], the authors use the output masks of a momentum update net
as target pseudo-masks. In [24,25], the pseudo-masks are generated using the Felzen-
szwalb algorithm [9] and the model using a few-shot learning strategy, the query image
is an augmented version of the support image itself.
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In our work, to address the issue of false positives and also to preserve the spatial
layout information [35], we propose a dynamic prototype-based framework that will
weigh the background prototypes according to correlation with the pixel features.

3 Methodology

Fig. 1. The figure depicts the entire working principle of the proposed framework. For clarity,
we have also indicated the novel proposed correlation-weighted prototype aggregation step using
a dotted red bounding box. T (Color figure online) indicates the transformation applied to the
support image to generate the query image only in the pre-training stage. Pool denotes pool-
ing the feature map of the region denoted by the mask. MatMul denotes Matrix Multiplication.
‘EM+SOC’ denotes Element-wise Multiplication and Sum over Channels. Concat denotes the
concatenation operation. (Best viewed at 300%)

3.1 Problem Definition

In the few-shot learning framework, the dataset is split into two parts, training dataset
Dtrain and testing dataset Dtest. In both training and testing datasets, each sample
consists of the input and the associated ground truth, (X ,Y). In our work, X and Y
correspond to slices from the abdominal MR or CT scans and the associated superpixel
pseudo-masks generated in the pre-training stage, respectively. Whereas, in the eval-
uation or testing stage, the original ground truth masks for each organ are used with
the MR or CT slices. Furthermore, no overlap should be present between the classes
present in Dtrain and Dtest.

In the few-shot learning framework, we need to consider two sets of data, the Sup-
port set S and the Query set Q. The Support set S consists of the tuple {X i

s ,Yi
s(l)}k

i=1,
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where X i
s is the i-th sample in the Support set with the segmentation mask Yi

s(l) for the
class l, where l belongs to the set of novel classes available during the testing phase.
The primary objective is to learn an approximate function f which takes as input the
support set S and the query image Xq and predicts the binary mask Ŷq of the unseen
classes in Xq, denoted by the support mask Ys(l).

The support set S is a subset of Dtrain. During training, the input to the model is
(S,Xq). Such a pair is called an episode. If during training, the value of k is 1, that is,
we use only a single image in the support set, then the learning is known as one-shot
learning, which we adopt in this work. If k > 1, it is known as few shot learning. If the
number of classes is N , then we call it N -way k-shot learning.

3.2 Overview of the Proposed Approach

We propose a self-supervised approach for one-shot learning of segmentation in MR
and CT scans. The skeleton of our framework is based on a prototype-based segmen-
tation strategy. For the first step, we use superpixel-based pseudo-segmentation mask
generation. In our work, we adopt a dynamic prototype generation approach, one for
each query feature map pixel. The dynamic nature of the prototype is the result of the
aggregation step using correlation-based probability scores. The final score is obtained
by calculating the correlation score of each query pixel to their assigned prototype.

In the downstream segmentation phase, we utilize the slide index information as in
[24], to filter out false positives (FP) obtained from other organs or regions on abdom-
inal scans. Furthermore, we also propose to use the spatial location information of the
respective organ (l) to segment.

3.3 Generation of Pseudo Segmentation Masks

We follow the same strategy as in [24] for the generation of pseudo-segmentation
masks. As stated in [24], superpixel-based segmentation satisfies two properties: for
each class, the representations should be clustered to be discriminative under a simi-
larity metric, and the representations should also be invariant across images to ensure
robustness. Otherwise, the regions that denote the same class in the support and query
images would not be mapped together in the feature space. A superpixel-based cluster-
ing strategy ensures that regions with similar pixel features are clustered together. This
ensures consistency over each of the pseudo-labels as well.

For every slice in abdominal scans (say Xi), the Felzenszwalb image segmentation
algorithm [9] F is applied to the slice to generate the super pixels, Sp = F [X i]).
During self-supervised training, a superpixel is randomly chosen, ls ∼ U [0, |Sp| − 1]
and converted to a binary mask to be used as the segmentation mask. A sample of the
superpixels obtained is shown in Fig. 1.

Ys = [Sp ∈ {ls}] (1)



Correlation Weighted Prototype-Based Self-supervised One-Shot Segmentation 21

3.4 Feature Extraction

Each episode (S,Xq) is passed through the encoder fθ, which gives us the support and
query feature maps, which we denote by fθ(Xs) and fθ(Xq). In our case, the encoder
takes an input of dimension 3 × 256 × 256 and outputs a feature map with dimen-
sions 256 × 32 × 32. We use the deeplab_v3 version of ResNet101 available from
the torchvision library. To ensure that the output dimensions match the specifications
mentioned above, we used dilation in the last two layers of the encoder, similar to [25].

3.5 Correlation Weighted Prototype Aggregation

The principle component of our proposed framework is the prototype aggregation mod-
ule. This novel correlation-weighted prototype-aggregation module primarily consists
of four steps: 1) Prototypes Extraction, 2) Correlation computation, 3) Probability score
computation, and 4) Prototype Aggregation. The prototype aggregation steps are done
separately for foreground and background.

Prototype Extraction. We do not extract the foreground features by merely doing
global average pooling using the support mask Ys. In this case, we follow the steps
described in [24], for extracting the foreground and background prototypes. The first
step to obtaining the foreground (or background) prototypes is to downsample the seg-
mentation mask to spatial dimension H × W using an average pooling operation with
a window of spatial dimensions 4 × 4. However, using an average pooling operation
may result in values that are not binary (0 or 1). To get a downsampled binary mask,
we threshold the interpolated mask. For the foreground, we select a threshold that is
0.8 times the maximum value of the downsampled mask. For the background, we use a
threshold that is equal to the mean of the downsampled mask, following [34].

Ys(H×W ) = [AvgPool4×4(Ys) > τ ] (2)

where AvgPool refers to the Average Pooling operation applied on the binary mask
Ys, and τ is the threshold. However, we find that, for the label sets containing Liver
and Spleen, using a threshold of 0.95 for both foreground and background worked bet-
ter than the aforesaid thresholds (See Table 3). Next, the locations w where the down-
sampled binarized mask Ys(H×W ) is non-zero are processed. The pixels in the support
feature map fθ(Xs) ∈ R

D×H×W , whose locations match those in w, are chosen as pro-
totypes. For the foreground prototypes, we also include the global prototype with the
obtained prototypes to avoid an empty set of prototypes resulting from the averaging
over the small area of the foreground, following [25].

P = fθ(Xs)[Ys(H×W ) ∈ {1}] (3)

Before calculating the cosine similarity between the prototypes P ∈ R
D×Npro and

the pixels of the query feature map fθ(Xq), we subtract the mean of each of the Npro

prototypes along the channel dimension.

Pj = Pj − 1
D

D∑

d=1

Pj [d] (4)
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where Pj is the j-th prototype. The steps mentioned above are done for both the fore-
ground and background prototypes. To obtain the foreground prototypes, we simply
take Ys as the foreground mask YFG

s , whereas for the background prototypes, we take
YBG

s = 1 − YFG
s as the background mask.

Query Features Centering. The same mean subtraction operation is also done for the
query pixels in the output feature map, as follows,

fθ(Xq)h,w = fθ(Xq)h,w − 1
D

D∑

d=1

fθ(Xq)h,w[d] (5)

where, {h,w} denotes the location of the pixels in the feature map.

Correlation Computation. Having obtained the query feature map fθ(Xq) of dimen-
sionsD×H×W and prototypesP of dimensionsD×Npro, we proceed to compute the
cosine similarity between these entities. This results in a correlation matrix or a cosine
similarity matrix C, which has dimensions Npro × H × W . This 3D matrix represents
the correlation score of all the prototypes obtained in the previous step for each pixel in
the query feature map.

C(j, h, w) = fθ(Xq)(h,w) � Pj (6)

where � indicates the operation of the dot product, fθ(Xq)(h,w) denotes the feature
at the location (h,w), and Pj is the j-th prototype. C(j, h, w) has dimensions Npro ×
H × W . The correlation score indicates how similar each prototype is to the query
feature map pixels. Intuitively, a prototype p ∈ P with a higher correlation score with
a pixel on the query feature map fθ(Xq)(h,w) can be said to be more similar than a
prototype with a lower correlation score, in terms of feature similarity. As the feature
extractor uses dilation, the receptive field of each pixel in the output feature map has a
very large receptive field. Hence, contextual or neighbourhood information is encoded
in each foreground prototype PFG. This contextual information will help distinguish
the region indicated by the support mask Ys and the other regions.

Probability Score Computation. The probability of each prototype being similar to a
particular query pixel is calculated by taking softmax over the prototypes as follows:

Mprob(h,w) = softmaxj∈P [C(h,w)/t] (7)

where Mprob(h,w) denotes the probability of the prototypes P with respect to the
query pixel at the location (h,w), and t is a temperature parameter. Mprob(h,w) has
dimensions Npro × H × W .

When calculating the scores for the background prototypes PBG, the background
query pixels which are spatially close to a particular background query pixel (say,
fθ(Xq)(h,w)), will yield different correlation scores. This may result in erroneous
predictions or increased false positives if we weigh all the prototypes equally. The
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background prototypes which are spatially farther from fθ(Xq)(h,w) region or feature-
wise dissimilar will bring the final score down, thereby increasing false positives. This
requires a dynamic prototype that captures contextual information effectively. This is
made possible by giving a probabilistic weightage to contextually similar prototypes.

Fig. 2. Predictions in training phase at 25K, 50K, 75K, 100K iterations. The left image in Figs. 2a-
2d is the support image Xs and the support mask is denoted in green. The right image in Figs. 2a-
2d is the query image. The ground truth is denoted by green and the predicted mask is indicated
by red. (Use 300% zoom for better visibility)

Prototype Aggregation. The weighting scheme necessary for a dynamic and contex-
tual prototype generation is done by aggregating the prototypes on the basis of proba-
bility scores obtained from the correlation values between the prototypes and the query
pixels. The aggregated dynamic prototype is obtained by a weighted average of all the
prototypes using the probabilities obtained in the previous step, as follows:

Pagg(h,w) =
Npro∑

j=1

Mprob(h,w) · Pj (8)

where Pagg(h,w) ∈ R
D×1×1 denotes the aggregated prototype for the query pixel at

location (h,w), Pj ∈ R
D×1×1 denotes the j-th prototype.

3.6 Mask Prediction

Computing the Final Score. Once we have the aggregated prototype, we can compute
the final scores for each query pixel. Thefinal score is calculated by simply calculating
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the cosine similarity of the aggregated prototype Pagg(h,w) with the pixel feature of
the query in location (h,w), as follows.

sFG(h,w) = PFG
agg (h,w) � fθ(Xq)(h,w) (9)

sBG(h,w) = PBG
agg (h,w) � fθ(Xq)(h,w) (10)

where sFG(h,w) and sBG(h,w) are the scores for the query pixels with respect to
the foreground and background prototypes, respectively, and PFG

agg and PBG
agg are the

aggregated prototypes for the foreground and background, respectively.

Final Prediction. The final prediction is obtained by choosing the class with the high-
est probability or the similarity scores for the foreground and background for each query
pixel. Thus, the final prediction for each query pixel is obtained as follows:

Ŷq(h,w) = argmax
{BG,FG}

softmax
{BG,FG}

[sBG, sFG] (11)

where Ŷq(h,w) is the predicted query mask. A few examples of the query predictions
and the associated ground truth from the training stage are shown in Fig. 2.

3.7 Training Pipeline

In each iteration t, we take an episode ((Xs,Ys),Xq) as input, and the model predicts
Ŷq as output. The query image Xq is obtained by applying geometric and intensity
transformations on the support image Xs, that is, Xq = Tgeo(Tint(Xs)). The pseudo-
ground truth is obtained by only applying the geometric transformation Tgeo on the
support mask Ys for a randomly chosen pseudo-superpixel class.

Geometric transformations Tgeo consist of affine and elastic transformations to emu-
late the changing shapes of the class labels in the downstream task. Intensity transfor-
mations Tint consist of gamma transformation to account for the varying intensity of
the pixels between scans of different patients. The parameters for the geometric and
intensity transformation are the same as used in [24].

Since the encoder fθ output is of spatial dimension 32 × 32, we interpolate the
final prediction to 256 × 256 before calculating the loss using bilinear interpolation.
To optimize the model parameters, we minimize the cross-entropy loss Lt

ssl for all the
query pixels.

Lt
ssl(θ) = − E

h,w

[
λh,wTgeo(Yt

s)(h,w) log
(
Ŷt

q(h,w)
)]

(12)

where Ŷt
q(h,w) is the predicted output of Tgeo(Yt

s)(h,w) taking Xq = Tgeo(Tint(Xs))
as query. (h,w) denotes the location in the predicted query mask or pseudo-ground-
truth mask. λh,w denotes the class weight applied during training.

Similar to [24], we also adopt the Cyclic Consistency Regularization (CCR) follow-
ing [33]. To implement CCR, we interchange query and support images. For the support
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mask, we use the predicted query output Ŷq as the foreground mask, and the support
mask Ys in the forward iteration is used as the pseudo-ground-truth. The episode in the
CCR step consists of ((Xq, Ŷq),Xs). In the CCR step, we use an initial threshold of
0.95 in the prototype extraction step to filter out noisy predictions, following which the
aforementioned steps are followed. Otherwise, we see a drop in performance by about
2% in dice score. The CCR loss is represented as

Lt
reg(θ) = − E

h,w

[
Yt

s(h,w) log
(
Ŷt

s(h,w)
)]

(13)

where Ŷt
s(h,w) is the predicted output of ˆYt

q)(h,w) taking Xs as a query.
Hence, the total loss is as follows,

Lt = Lt
ssl + Lt

reg (14)

To handle the imbalance, we set the class weights at 0.05 for the background pixels
or the class label 0, and a weight of 1.0 for the foreground pixels or the class label 1.

Furthermore, it is to be noted that during training, we divide the class labels in
abdominal CT or MR into two parts, namely, upper abdomen consisting of right kidney
and left kidney, and lower abdomen consisting of liver and spleen. When training on
slices from the upper abdomen, we do not include slices containing lower abdomen
classes and vice versa.

3.8 Validation Without Fine-Tuning

Following [24,25], we evaluate our model on a validation split, without further fine-
tuning on the whole dataset. Although we don’t fine-tune the model, we do use the
class label information from the dataset. For a class label l, we only take the slices
[zmin, zmax] in which l is present for the final predictions.

One-Shot Segmentation. The evaluation strategy follows a one-shot segmentation
task. Among the scans in the validation split, the last scan (if arranged in order) is
selected as the support scan. The range of slices [zmin, zmax] in both support and query
scans is divided into 3 parts following the evaluation strategy followed in [12]. From
the three support scan splits, the middle slice is selected as the support image for the
whole of the corresponding query part. The evaluation step then follows the flow of the
one-shot segmentation task, that is, a tuple ((X p

s ,Yp
s ),X p,i

q ) is fed to the pre-trained

model fθ as input to obtain the predicted query mask ˆYp,i
q , where p is the part in which

the slices belong and i ∈ [zq
min, zq

max] is the index of the slices of query scan in which
the class label l is present.

Quadrant Masking Scheme. During training, the classes in abdominal MRI or CT
datasets are split into two parts, the upper abdomen (right and left kidneys) and the
lower abdomen (liver and spleen). During validation, we divide each slice into quad-
rants. For each class label l, we identify which quadrants are occupied by it. The final
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predictions obtained from the one-shot segmentation step are masked such that the pre-
dictions from the quadrants in which the class label l is present, are considered for
the final metric calculation. For example, the class right kidney is present in the left
half of an MRI or CT slice. Hence, we mask the right half of each slice while making
the final prediction. The quadrant masking scheme uses the quadrant information as a
piece of soft prior information about the location of the target organ. To the best of
our knowledge, no work has employed this scheme before. To fully understand the role
of this quadrant masking scheme, we conduct an ablation study in Sec.4.4, where we
observe the significant effects of the soft prior knowledge in boosting the segmentation
performance.

Validation Metric. To measure the performance of the proposed model, we use the
Dice score as a metric, as is usually done in the medical image segmentation literature
[24,25,33].

4 Experiments and Results

4.1 Implementation Details

Training and evaluation were implemented using PyTorch. The training was done on a
24GB NVIDIA A5000 GPU. The average training time for each training run consisting
of 100K iterations was about 4.5 h. We used a batch size of 1. The initial learning rate
of the SGD optimizer was set to 1e − 3 and decayed at 0.95 per 1K iterations.

4.2 Datasets

To demonstrate the effectiveness of the proposed approach, we diversified the input
modalities by including both Magnetic Resonance (MR) and Computed Tomography
(CT) scans in our work.

For the Magnetic Resonance (MR) modality, we used the Combined Healthy
Abdominal Organ Segmentation (CHAOS) Challenge (Task 5) from ISBI 2019 [17].
This dataset contains 20 3D T2-SPIR MRI scans.

For the Computed Tomography (CT) modality, we used data from the 2015 MIC-
CAI Multi-Atlas Abdomen Labeling Challenge (SABS). It contains abdominal scans
from 30 patients.

For the experiments, we used a five-fold cross-validation setting, that is, in an exper-
imental run, one-fifth of the dataset (a fold) is used as a validation set while the rest is
treated as a training set.

4.3 Results and Comparison

Quantitative Performance Analysis. In this section, we present the results obtained
by the proposed model on the two datasets: CHAOS and SABS. From Tables 1 and 2,
we can see that the proposed framework outperforms ALPNet [24] and also outper-
forms several current state-of-the-art methods in several classes. The bold font and the



Correlation Weighted Prototype-Based Self-supervised One-Shot Segmentation 27

underlined text indicate the best and the second-best performance, respectively. The
proposed algorithm outperforms CRAPNet on the CHAOS dataset and produces com-
petitive results on the SABS dataset without any further fine-tuning of hyperparameters.
This shows that the dynamic prototype aggregation technique improves the representa-
tion learning and generalizability of the model.

Table 1. DICE score on Abdominal MR (CHAOS) Dataset. Reported Values are with Single
Support Scan.

Method Supervised RK LK Liver SpleenMean

SE-Net [12] � 61.32 62.11 27.43 51.80 50.66

Vanilla PANet [33]� 38.64 53.45 42.26 50.90 46.33

ALPNet [24] � 58.99 53.21 37.32 52.18 50.43

SSL-PANet [24] × 47.95 47.71 64.99 58.73 54.85

SSL-ALPNet [24] × 78.39 73.63 73.05 67.02 73.03

CRAPNet [6] × 82.77 74.66 73.82 70.82 75.52

CoWPro (Ours) × 80.45 75.30 75.77 71.51 75.56

Table 2.DICE score on Abdominal CT (SABS) Dataset. Reported Values are with Single Support
Scan.

Method Supervised RK LK Liver SpleenMean

SE-Net [12] � 14.34 32.83 0.27 0.23 11.91

Vanilla PANet [33]� 17.37 32.34 38.42 29.59 29.43

ALPNet [25] � 30.40 34.96 47.37 27.73 35.11

SSL-PANet [24] × 34.69 37.58 61.71 43.73 44.42

SSL-ALPNet [24] × 54.82 63.34 73.65 60.25 63.02

CRAPNet [6] × 67.33 70.91 70.45 70.17 69.72

CoWPro (Ours) × 58.99 62.66 73.11 67.97 65.83

The qualitative performance of the proposed model can be seen from the predic-
tions presented in Fig. 3. We can see the predictions for different organs on two dif-
ferent modalities compared to the ground truth. We can see that the model produces
segmentation results close to the ground truth.
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Fig. 3. Figure showing the predictions obtained for 4 organs, Right Kidney, Left Kidney, Liver,
and Spleen for two different modalities MR (CHAOS dataset) and CT (SABS dataset). (green)
Ground Truth, (red) Prediction, (yellow) Ground Truth and Prediction overlap. (Use 300% zoom
for better visibility) (Color figure online)

4.4 Ablation Studies

Studying the Effect of Fixed Vs. Dynamic Thresholding. The effect of threshold on
the performance of the proposed framework can be seen in Table 3, where we see the
use of two different types of threshold, dynamic and fixed, for different sets of labels. In
the CHAOS dataset, the use of a dynamic thresholding scheme similar to the one used
in [34] works better for the labels right kidney and left kidney, whereas a fixed threshold
of 0.95, similar to [25] works better for the other two labels. However, for experiments
on SABS, we do not see much variation in performance with the change in thresholds.
The dynamic thresholding scheme assigns a threshold of 0.8 times the max value of
the downsampled foreground mask, whereas for the background it uses the mean value
of the downsampled background mask. The dynamic thresholding scheme allows the
model to adapt to the local pixel intensities and infuses a local spatial information in
the process. However, for large organs like the spleen and liver, the effect of dynamic
thresholding is not positive.

Table 3. Dice score obtained on abdominal CT and MR datasets using different thresholding
schemes without Quadrant masking scheme.

Threshold Abdominal MR Abdominal CT

R. Kidney L. Kidney Liver Spleen R. Kidney L. Kidney Liver Spleen

Fixed 79.06 72.24 75.04 71.19 58.99 62.47 73.19 66.67

Dynamic 79.54 74.59 73.87 66.33 58.24 62.66 73.71 67.97

Effect of Quadrant Masking. In Table 4, we observe the effect of the quadrant mask-
ing scheme on the segmentation performance on both the MR and CT datasets. Barring
a few exceptions, the quadrant masking scheme has improved the dice score for all the
organs. The primary reason behind the slight drop in performance can be attributed to
the hard quadrant boundary assigned to the corresponding organs.
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Table 4. Dice score obtained on abdominal CT and MR datasets with and without quadrant
masking scheme with fixed thresholding.

Quadrant MaskingAbdominal MR Abdominal CT

R. Kidney L. Kidney Liver Spleen R. Kidney L. Kidney Liver Spleen

Yes 79.66 75.30 75.77 71.51 58.99 63.31 73.18 66.85

No 79.06 72.24 75.04 71.19 58.99 62.47 73.19 66.67

Effect of Number of Aggregated Prototypes. The correlation-weighted prototype-
aggregation step aims to incorporate the information from all the prototypes to pre-
vent loss of information, as is generally the case in prototype-based methods. However,
one may argue, that using all the prototypes may induce an unintended negative effect
from anatomically different but semantically similar regions, consequently causing a
degradation in performance. In this ablation study, we take the Top-100%, 50%, 10%,
5%, and 2% most similar prototypes to predict foreground or background regions. This
study also establishes the efficiency of our model in encoding contextual information,
which is evident from the insignificant variation in the dice scores with the decrease in
the number of prototypes. In Table 5, we show the dice scores for varying numbers of
prototypes in the inference stage for the left and right kidney over all the folds.

Table 5. Dice score for 2× 2 and 4× 4 averaging window without Quadrant Masking.

Averaging Window 2× 2 4× 4

Organ RK LK RK LK

Percentage of prototypes 100% 79.99 76.22 80.77 72.87

50% 79.89 76.24 80.72 72.94

10% 79.49 75.22 80.94 73.81

5% 78.16 73.46 81.08 74.43

2% 75.69 70.42 80.68 74.86

Effect of Averaging Window. In Table 5, we observe the effect of changing the aver-
aging window in the prototype generation step. We chose the left and right kidneys
from the abdominal MR dataset to study the effect of the averaging window, as the two
kidneys are almost similar in shape and size but vary only in the spatial context. We
observe that using the same averaging window as in training, that is, an averaging win-
dow of 4× 4, the performance of the proposed framework is better for the right kidney,
than using an averaging window of 2 × 2. On the contrary, using an averaging window
of 2 × 2 yields better performance than using an averaging window of 4× 4 on the left
kidney. We believe that this discrepancy in the trend is primarily due to the different
spatial contexts of the two organs.
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5 Conclusion

In this work, we have presented a prototype-based framework for self-supervised one-
shot learning of medical image segmentation tasks. Instead of taking a pre-training rep-
resentation learning approach, we take a task-learning-based approach. To address the
issue of variations in background information between the support and query images,
we propose a correlation-based weighting scheme to aggregate the support prototypes
according to how related the prototypes are to the query image. Therefore, each pixel
on the feature map of the query has a custom prototype. The score for foreground or
background is obtained by calculating the cosine similarity of the query feature map
pixels with their corresponding prototype. The primary objective of constructing a pro-
totype for each query feature map pixel is to reduce false positives in the predictions by
weighing down the contribution of dissimilar prototypes in the final prediction. Despite
the limitations of the proposed method, we can see that the proposed method is on par
with most contemporary self-supervised segmentation methods.
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Abstract. As there has been a rise in the usage of in silico approaches, for assess-
ing the risks of harmful chemicals upon animals, more researchers focus on the
utilization of Quantitative Structure Activity Relationship models. A number of
machine learning algorithms link molecular descriptors that can infer chemical
structural properties associated with their corresponding biological activity. Effi-
cient and comprehensive computational methods which can process huge set of
heterogeneous chemical datasets are in demand. In this context, this study estab-
lishes the usage of various machine learning algorithms in predicting the acute
aquatic toxicity of diverse chemicals on Fathead Minnow (Pimephales promelas).
Sample drive approach is employed on the train set for binning the data so that
they can be located in a domain space having more similar chemicals, instead of
using the dataset that covers a wide range of chemicals at the entirety. Here, bin
wise best learning model and subset of features that are minimally required for the
classification are found for further ease. Several regression methods are employed
to find the estimation of toxicity LC50 value by adopting several statistical mea-
sures and hence bin wise strategies are determined. Through experimentation, it is
evident that the proposed model surpasses the other existing models by providing
an R2 of 0.8473 with RMSE 0.3035 which is comparable. Hence, the proposed
model is competent for estimating the toxicity in new and unseen chemical.

Keywords: QSAR · Aquatic Toxicity · Lethal Concentrations · LC50 · Fathead
Minnow · Pimephales promelas

1 Introduction

REACH (Registration, Evaluation, Authorization and restriction of CHemicals) a regu-
lation of European Union aims to improve the conservation of living organism’s health
and environment from risks that may be posed by chemicals. To conform with the direc-
tives, the chemical companies which involve in drug design, production of consumer
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goods products and industrial processes must determine and manage or communicate
the risk. The toxic concentration of a compound is ascertained by experiments using
in vivo or in vitro models [1] measuring the end points. On the other hand, these tech-
niques pose some issues as they are very much time consuming, expensive and demands
the living organisms to put to the test. To overcome these challenges, in silico methods
[1] have been gaining attention much due to their low cost, time efficiency and particu-
larly without harming any living organism. Consequently, in silico methods flourished
as an alternative method for the risk full assessment of chemicals by not posing any
adverse effects on animals [1]. Hence, mathematical models that can be used to predict
the physicochemical, biological and environmental properties of compounds from the
knowledge of their chemical structure has drawn surpassing considerations in the present
years.

Quantitative Structure-Activity Relationship (QSAR) modeling is an empirical and
statistical approach by which chemical structure is quantitatively correlated with biolog-
ical activity. The biological activity can be conveyed quantitatively as the concentration
of a chemical substance needed to stimulate a certain biological reaction. The modeling
can be used to predict toxicity of a chemical compound from the physical characteristics
of the structure of chemicals called molecular descriptors. This modeling has several
well known applications in estimation of toxicity of chemical compounds, drug discov-
ery, interactions between structural domains of proteins, etc., [2]. Fish Acute Toxicity
Syndrome is the functional reactions in fish as a consequence of critical exposure to a
lethal concentration of a toxic chemical compound which can produce an unfavorable
effect in it. A number of QSAR models have been developed to predict the acute toxic-
ity towards various aquatic organisms by estimating the quantitative parameter usually
LC50, which represents the concentration of a chemical compound required to kill 50%
of test population in 96 h of administration.

Most of the studies employed similarity-basedmethods which could not handle huge
set of features properly. Also, in consensus modeling, same set of features were used
for the entire model. In addition to these, the dataset is varied in nature having diverse
chemicals. So, modeling techniques that can better model the portion of data rather
than the whole dataset is in need. Subsets of data may exhibit variant properties which
might be learned better by differentmodel. Thismotivated us to drive focuswith different
viewpoint. In this paper, an approach is proposed where pseudo bins are generated based
on the closeness of the target parameter and then finally estimation of LC50 is computed.

The ultimate aim of this study is to estimate the acute toxicity through molecular
descriptors in terms of LC50, a lethal concentration of a chemical compound required to
kill 50% of test population of Fathead minnow in 96 h of administration. The aim of this
study are stated as follows: (i) To develop an effective way of binning the dataset with
various levels using bin dependent best learning model and minimal subset of feature
selection. (ii) To locate the unseen chemical in a near optimal bin having subset of
samples. (iii) To predict LC50 based on sample driven regression model. (iv) Unlike
other learning-based models which use a common learning model across all samples of
the population; here we recommend adapting best performing learning models for each
level and for each bin while predicting LC50 value.
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The organization of this paper is as follows. Section 2 reviews the literature onQSAR
modeling about aquatic toxicity. In Sect. 3, the proposed methodology is explained.
Further, the analysis of model performance is done in Sect. 4. The final section concludes
the paper.

2 Literature Review

Most in silico models are trained on extensive, diverse datasets that are gathered from
multiple sources and combined into a single database [5].

The QSAR Toolbox is developed by the Organization for Economic Co-operation
andDevelopment to aid in risky assessment of chemicals. It contains 53 databases having
nearly 100, 000 chemicalswith above3millionmeasured and recordeddata in version 4.5
under four categories as physical chemical properties, environmental fate and transport,
ecotoxicological information and human health hazards. The prevalent databases used
for experimentations are ECOTOX, ECHAREACH and Aquatic OASIS. The CompTox
Chemicals Dashboard is a part of a set of databases and applications developed by
Chemical Safety for Sustainability Research Program of US Environmental Protection
Agency. These databases aid research efforts in computational toxicology to develop
methods to modify how chemicals are currently assessed for potential health risks. The
dashboard has chemical toxicity and exposure information for over 900,000 chemicals.
ToxValDB is a comprehensive collection of quantitative data from public datasets i.e., 34
unique sources including EPA (risk assessment), ECHA (industrial chemicals, human
and eco), EFSA (food additives, human and eco), DOE (Ecotoxicology risk assessments)
[15]. The database contains 700,000 records for over 25,000 chemicals. The data is being
made public through EPA CompTox Chemicals Dashboard.

TopTox is a software for computing element-specific topological descriptors
(ESTDs) for toxicity endpoint predictions and it is available online through Wei Lab,
Michigan State University, USA. The preprocessed train and test sets from TopTox were
used; where original data is available in ECOTOX, http://chem.sis.nlm.nih.gov/chemid
plus/chemidheavy.jsp [6]. ChemIDPlus from National Library of Medicine (NLM), US
is an online dictionary of chemicals and its structures. The dataset has end points for
four different quantitative toxicity. They are LD50, IGC50, LC50 and LC50-DM. These
endpoint measures have been used in toxicology for estimating the toxicity of a given
chemical compound on a given population of a given organism [6]. Our study uses the
LC50 dataset for the experimentation purpose. LC50measures the toxicity concentration
of a given chemical compound to kill 50% of the test population of Fathead minnow, a
species of temperate freshwater fish after 96 h of exposure. The unit of measurement of
LC50 is −log10 (T mol/L). The dataset comprises of total 823 chemicals with its 995
descriptors.

Many works in the literature attempted in estimating the LC50 value through
similarity-based k-Nearest Neighbor (KNN) regression and linear regression. KNN
regression was applied for LC50 estimation and Genetic algorithms were used to select
molecular descriptors and to optimize the number of nearest neighbors [1]. Multiple lin-
ear regression and artificial neural network were used to predict LC50 [2, 3]. Recursive
partitioning was implemented for partitioning on mode of actions as reactive or narcosis

http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
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before building a regressor [2]. An ensemble stacking QSAR modeling was built to pre-
dict both LC50 and points of departure [4]. Two variants of similarity-based algorithms
were used in [5] for the prediction of acute aquatic toxicity as distance weighted KNN
andLocallyweighted Least SquaresKernel regression and it was found that kernel-based
regression performs well. In [6], meta ensemble method was proposed by providing five
different feature representation and finally the aggregated estimation was retrieved from
a deep learning model. A new strategy is introduced in Artificial Neural Network (ANN)
for QSARmodeling where residuals of Linear Regression along with molecular descrip-
tors were given as input to the neural network [3]. Both bagging and boosting types of
ensemble learning was adopted to predict toxicity on multiple aquatic organisms [7].
In [8], Regression analysis had been applied to examine the structure-activity relation-
ships regarding acute fish toxicity. Here, logP dependent baseline toxicity model was
developed. A hybrid quantum particle swarm optimization was used to optimize the key
molecular descriptors as well as the parameters of Radial Basis Function and then it was
used to estimate the acute toxicity [9].

The chemical compounds were classified based on different narcosis mode of action
using Bayesian approach and then regression was applied for the estimation [11]. To
overcome the biased assessment of predictor performance, two different strategies of
cross validation were proposed as ‘transformation-out’ and ‘solvent-out’ based on reac-
tions going under new conditions [13]. Logistic Regression, Multi-layer perceptron,
Random Forest classifiers were employed to analyze various end points having imbal-
ancedness [14]. A variant of 21 types of errors which frequently occurs in QSAR liter-
ature were found. Recommendations were suggested for the avoidance of such errors
[12]. k-Nearest Neighbor method was used with Mahalanobis distance to measure the
similarity between the specific molecule and its neighbors for prediction of toxicity of
DaphinaMagna.GeneticAlgorithmwas coupled to select the relevantmolecular descrip-
tors [16]. The ability of three global models such as response surface model, stepwise
linear regression and neural network to model the toxicity of phenols was investigated
and found that linear regression using mechanistically interpretable descriptors perform
well as neural network analysis [17]. The tree ensemble Random Forest models for
prediction of acute toxicities of three trophic level organisms R. subcapitata, D. Magna
and fish were carried out. Genetic algorithm was used for pruning the descriptors [18].
A global prediction model for mode of action and two local models for organic com-
pounds that exhibit narcosis and excess toxicity were developed using genetic algorithm
and multiple linear regression [19].

3 Proposed Methodology

The proposed approach for LC50 estimation through molecular descriptors is discussed
in this section.

A new approach is proposed in this study for estimating the lethal concentration of
aquatic toxicity. The architectural diagram of the proposed model is given in Fig. 1. Data
preparation is performed to make the data suitable for the analysis. The observations
with invalid non-numeric data, features with constant values are discarded. The dataset
is sorted in ascending order based on the target LC50 value. Initially same bin value
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is assigned to all samples. The entire dataset is made into several initial level bins by
fixing a threshold value on first order differences of LC50 (FOD) as in Eq. 1. A new
bin is created only if the first order difference between the current and previous sample
exceeds the threshold value.

Bin(i) =
{
(Bin(i − 1) + 1 LC50(i) − LC50(i − 1) > Th1

(Bin(i)) Otherwise
for i = 1, 2, . . . , n (1)

where, n is the no. of samples, Bin(i) is the Bin of ith sample and LC50(i) is the Lethal
Concentration of ith sample.

Then, successive levels of binning are done when theWeighted Mean Square Differ-
ence (WMSD) of a specific bin is greater than a specified threshold which is expressed
in Eq. 2. Thus, the respective bins which are to be partitioned into sub bins are identified.
Once it is identified, the bins are partitioned into sub bins by fixing a threshold value on
first order differences of LC50 of samples of that respective bin.

WMSD = wi(maxLC50i − minLC50i)2∑
W

> Thj for i = 1 to No. of samples in respective bin

(2)

where, Thj is the threshold at jth level,
wi is the number of samples in the Bin Bi.
w is the total number of samples.
The above strategy is repeated till a bin violates the condition in Eq. 2.
Various classifiers are considered and trained on the level wise samples based on

the bins and the best learning model is found for the recommendation purpose. The
features are ranked using various supervised feature selection methods and the scores
are recorded. The minimal subset of ranked features required to classify the bins into
sub partitions is observed by utilizing the best model identified. Bin wise best learning
model and subset of required feature are identified for all levels by applying k-fold cross
validation. It is stored for further recommendation purpose.

Once the binning is done, the regression is applied at the leaf nodes so that the final
toxicity level LC50 can be estimated. Three different strategies are applied here based
on the number of samples present in the specific leaf bins. If there is a single sample in
the leaf bin, then there is a direct assignment of LC50 value. If there are two samples
present in the leaf bin, then the average of both the LC50 values are taken as predicted
LC50. If there are more than two samples in the leaf bin, a different strategy is adopted.
Variants of regression models are considered and trained for the bins individually. Then
the predicted LC50 values out of the regressionmodels are subjected to further statistical
analysis based on different statistical measures. By the way, the finally computed LC50
of each bin is recorded to assign for unseen record which falls into the respective bin in
future testing.

The statistical measures utilized in this experimentation aremean, mean of first order
difference over cut points, midrange, inter quartile mean and mid hinge. The way these
statistical measures computed on predicted values of LC50 are given below from Eq. 3
to Eq. 7.
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Fig. 1. Schematic Representation of the Proposed Model

Measure 1: Mean

m∑
i=1

pred_LC50(i)/m (3)

where ‘m’ is the no. of regression models
Measure 2: Mean of First Order Difference Over Cut Points

∀iFODi = pred_LC50(i + 1) − pred_LC50(i), i = 1, ..,m

∑k
i=j pred_LC50(i)

k
, i = pred_LC50

[
j
]
to pred_LC50[k] (4)

where, j = max(FOD) and k = SecondMax (FOD)
Measure 3: Mid Range

[
max(pred_LC50) − min(pred_LC50)

]
/2 (5)
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Measure 4: Inter Quartile Mean

∑k
i=j pred_LC50(i)

k
, i = pred_LC50

[
j
]
to pred_LC50[k] (6)

where, j = 25th percentile(Pred_LC50) and k = 75th percentile(pred_LC50)
Measure 5: Mid Hinge

[
25th percentile(pred_LC50) − 75th percentile(pred_LC50)

]
/2 (7)

Thus, the proposed method helps in locating the test data in the near optimal bin.
Therefore, the respective attachedLC50 value of the bin is assigned for the new chemical.

4 Experimental Results

4.1 About Dataset

As it is mentioned earlier, the compiled dataset is taken from the study [4]. There are
totally 995 molecular descriptors as predictor features characterizing a chemical com-
pound. The target feature LC50 records the toxicity of a given compound causing death
in 50% of test Fathead minnow, a species of temperate freshwater fish within 96 h of
exposure. The initial size of the dataset is 823 × 995. In some samples, certain features
contain invalid characters. Specifically, some continuous-type features are recorded with
the text value. After the removal of those invalid data among the predictors, the original
dataset dimension is reduced to 642 × 995. Then variance is found to eliminate the
features with constant values by fixing variance threshold as 0. The number of features
removed in this case is 153. The remaining dataset is taken for the further processing.

The acute toxicity of the data ranges from 0.15 to 9.261 mmol/L. The data distri-
bution significantly impacts the statistical quality of any predictive model. Therefore,
a histogram is generated to check if the endpoints contain poorly distributed or empty
regions. The histogram developed indicates normality with a mean of 4.3605, standard
deviation (SD) of 1.3987 respectively. The median is found to be 4.2555 and as the mean
and median are closer to each other, the dataset is more or less evenly distributed from
the lowest to highest values of LC50 preserving the normality. It is expressed in Fig. 2.
The x-axis represents the quantity of lethal concentration LC 50 in mmol/L. The y-axis
represents the normal distribution as density of probability.

4.2 Model Performance

The train and test set are split in the ratio of 80:20 for model development and validation
respectively. The entire train set is initially partitioned into several bins based on the
Eq. 1 by fixing a FOD threshold Th1 on subsequent sample target value difference as
0.05. Then, the bins are checked for possibility of dividing it into further and subsequent
binning happened in the next levels. The subsequent binning is done using Eq. 2. The var-
ious thresholds fixed such as WMSD and FOD on different levels upon experimentation
is given in Table 1.
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Fig. 2. Normal Distribution of Target Variable Lethal Concentration LC50

Table 1. Threshold values for FOD and WMSD

Level FOD Threshold WMSD Threshold

Level 1 0.05 –

Level 2 0.03 0.0001

Level 3 0.01 0.001

Fig. 3. Level wise number of bins

The following bar chart in Fig. 3 shows the number of bins generated in each level.
For each level of binning, 3 different classifiers are learnt such as K-Nearest Neigh-

bor Classifier (KNN), Support Vector Machine Classifier (SVM) and Random Forest
Classifier (RF). Thus, the bin wise best learning model is identified as the nature of the
samples taking part in the learning is different as per the bins. Similarly, for each bin,
a set of feature selection technique is applied and a best feature selection technique is
identified based on the F1-score and the subset of features for the testing purpose. The
features with rank 0 are discarded and other features are taken into account and a model
is trained based on it to find the optimal subset of features. In the first level binning,
a set of 23 descriptors are selected. Then in the subsequent levels, for each large bin
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which are partitioned into sub bins, best learning model and subset of important features
are found. It is represented in Table 3. But the performance analysis was done through
experimentation on all classifiers and feature selection techniques that were taken for
the analysis. The overall performance is given in the below Table 2.

Table 2. Performance of Classifiers with respect to bins

Level Bin Number Learning
Model/Feature
Selection Technique

Chi2 Mutual Info
Classif

f-Classif

1 Overall KNN-C 0.801 0.8069 0.7815

SVC 0.8127 0.8127 0.8147

RFC 0.7952 0.801 0.8127

2 14 KNN-C 0.865 0.8606 0.8671

SVC 0.884 0.8798 0.882

RFC 0.8735 0.8692 0.8735

15 KNN-C 0.8146 0.8071 0.7941

SVC 0.886 0.8606 0.87

RFC 0.8602 0.85 0.8572

16 KNN-C 0.8159 0.8206 0.8241

SVC 0.8712 0.8708 0.8803

RFC 0.88 0.8727 0.882

3 15:06 KNN-C 0.8055 0.7973 0.7945

SVC 0.8274 0.8203 0.819

RFC 0.8219 0.8192 0.8192

15:07 KNN-C 0.8278 0.83 0.8174

SVC 0.8883 0.8917 0.8862

RFC 0.8652 0.8719 0.8613

15:08 KNN-C 0.8206 0.8303 0.8194

SVC 0.8471 0.85 0.8392

RFC 0.8197 0.8374 0.8063

Four different ways of performance evaluation has been done. Each experiment is
conductedwith 15 trials, and themean value is calculated. The training dataset undergoes
5-fold cross-validation. Additionally, a 15 × 2 cross-validation approach is employed,
consisting of 15 repeats of 5-fold cross-validation.

Ground Truth Associated with Bins
Each bin has non-overlapping range values. Each chemical in the test set is passed
over the proposed tree generated and reaches the leaf bin. The correctness of the bin
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Table 3. Binwise optimal number of features with learningmodel and feature selection technique

Level Bin Number Learning Model Feature Selection
Technique

No. of features required
for binning

1 Overall SVC f_classif 23

2 14 SVC Chi2 5

15 SVC Chi2 3

16 RF f_classif 12

3 15–6 SVC Chi2 89

15–7 SVC mutual_info_classif 56

15–8 SVC mutual_info_classif 6

assignment is checked using Eq. 8. Then the error rate and accuracy of the bin assignment
are calculated accordingly.

Bin(Chemical)

= (Correct) if LC50(Chemical) > MinLC50(Bin) and ≥ Max LC50(Bin)
(Incorrect) Otherwise

(8)

The mean error rate and mean accuracy are found to be 9.41 and 90.59 respectively.

Performance Through Regression
The test set is taken sample by sample and admitted to the testing process. Hence, the
exact bin for the test sample is found based on the bin wise best learning model by using
only the recommended subset of features. Once it reaches the leaf bin, the attached LC50
value is assigned for that chemical.

In Table 4, we present the statistics that represents the performance of the proposed
model. Q2 for internal validation, Coefficient of determination (R2) for external vali-
dation, Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Ratio of
Performance to Deviation (RPD) are computed by comparing experimental value and
predicted value. Internal cross validation refers to the 5-fold cross validation done using
training dataset and external validation refers to the 20% of data that is kept aside as test
set.

After binning, regressors are applied individually for the purpose of comparison
of performance with the proposed model without computing statistical measures for
estimation. The R2 score obtained are; 0.7752, 0.7986 and 0.7418 for KNN Regression,
SupportVectorRegression andRandomForestRegression respectively.But the proposed
model provides R2 score of 0.8305 which is comparatively higher than applying the
individual regressors. Hence, it is found that, sample driven bin wise application of
regression along with statistical computation performs well in estimating the final LC50
value.
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Table 4. Performance Evaluation of the proposed model

Model Evaluation Method Proposed Model Existing Study [6]

Q2 for Internal Cross Validation 0.8953 –

R2 for External Validation 0.8305 0.792

RMSE 0.3044 0.668

MAE 0.2965 0.479

RPD 6.9546 –

Evaluation Through Range Interval
Once the sample in the test set reaches the respective leaf bin, the closest range of LC50
(either minimum or maximum) value of that specific bin is assigned as the final LC50.
Then, the coefficient of determination (R2) is calculated. The mean R2 and mean RMSE
are 0.8473 and 0.3035 respectively.

Evaluation Through Regression Within Bin
Linear regression is performed in each leaf bin and the model is stored for the testing
purpose. Once the sample arrives at the leaf bin, using that stored regression model,
the LC50 value is estimated. The mean R2 and RMSE values are 0.8014 and 0.4158
respectively.

The R2 and RMSE metrics, obtained from an independent test set sourced from
existing research [6], exhibit values of 0.792 and 0.668 respectively. Through experi-
mentation in this study, the R2 and RMSE values are 0.8473 and 0.3035 respectively
which are comparable.

From the experimentation, it is inferred that, bin wise learning model and subset
of features are very much useful as they are sample driven and hence contributes in
improving the overall accuracy.

5 Conclusion

The aim of this research is to estimate the aquatic toxicity value, LC50, for Fathead
Minnow using machine learning models, leveraging the molecular descriptors of chem-
ical compounds. Bin wise best learning model and minimal subset of features needed
for further classification into bins are identified. The main advantage of this approach
is instead of using the entire dataset for the estimation spanning a broad range of chem-
icals, it uses only the data most similar to the given fitting point. Then, the regression
models which best suits for individual bins are identified and through various statisti-
cal measures, the final estimation of LC50 is done. The proposed model outperforms
the application of individual machine learning model for this QSAR study. Also, the
performance of the proposed model is compared with the existing study and it is evi-
dent that our model performs efficiently in terms of evaluation metrics R2 0.8473. The
findings from this study provide further evidence of the benefits of using statistical
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measures on the aggregated output of the regressors. Hence, this study precisely charac-
terizes the relationship between the response and predictor variables in heterogeneous
aquatic toxicology data. Study on association amongst molecular descriptors and finding
out clustering of descriptors for effective way of reducing features could be our future
interesting work.
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Abstract. The aim of surface defect detection is to identify and localise
abnormal regions on the surfaces of captured objects, a task that’s
increasingly demanded across various industries. Current approaches
frequently fail to fulfil the extensive demands of these industries,
which encompass high performance, consistency, and fast operation,
along with the capacity to leverage the entirety of the available train-
ing data. Addressing these gaps, we introduce SuperSimpleNet, an
innovative discriminative model that evolved from SimpleNet. This
advanced model significantly enhances its predecessor’s training con-
sistency, inference time, as well as detection performance. SuperSim-
pleNet operates in an unsupervised manner using only normal training
images but also benefits from labelled abnormal training images when
they are available. SuperSimpleNet achieves state-of-the-art results in
both the supervised and the unsupervised settings, as demonstrated
by experiments across four challenging benchmark datasets. Code:
https://github.com/blaz-r/SuperSimpleNet.

Keywords: Surface Defect Detection · Surface Anomaly Detection ·
Industrial Inspection · Supervised Learning · Unsupervised Learning

1 Introduction

A critical aim of the manufacturing process is to achieve high-quality products
and increased efficiency. Surface Defect Detection (SDD) plays a pivotal role in
this pursuit, as it aims to identify and classify defects or irregularities on the sur-
face of manufactured components. Traditional manual inspection methods are
time-consuming, subjective, and prone to human error. In contrast, automated
SDD systems offer the potential for real-time monitoring, precise defect local-
isation, and improved product quality. The integration of deep learning algo-
rithms into SDD systems [3,4,16,28] has shown promising results, indicating
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their potential to revolutionise quality control processes and streamline manu-
facturing operations.

Fig. 1. Model comparison for both the supervised (KSDD2 [4] and SensumSODF [16])
and the unsupervised (MVTec AD [3] and VisA [28]) setting. The Y-axis represents
the anomaly detection performance measured in AUROC, and the X-axis represents
inference time in milliseconds using an NVIDIA Tesla V100S (more details in Sect. 4.4).
The size of the circles represents the model’s parameter size. Additionally, the table
below indicates whether each model meets specific speed requirements (if its inference
time is below 10ms) and whether it is capable of working in the unsupervised and/or
the supervised setting. If a model is designed specifically for either the supervised or the
unsupervised setting but theoretically applicable to the other, we marked the opposing
cell with a ’*’. Two methods (marked with ’-’) lack publicly available code, preventing
us from assessing their speed. SuperSimpleNet stands out as the only model meeting
all criteria.

To bridge the gap between academic research and real-world manufacturing
processes, developed models must meet all industry-defined requirements. These
requirements fall into two main categories: performance and flexibility. Perfor-
mance requirements pertain to the model’s anomaly detection efficacy and its
inference time. The model should exhibit a high anomaly detection rate alongside
rapid inference capabilities. Although the performance aspects of these require-
ments have been extensively studied [2,12], flexibility requirements have largely
been overlooked. Flexibility requirements are concerned with the model’s adapt-
ability to various training regimes encountered in actual manufacturing settings.
Different levels of annotations are available for various objects during training,
requiring the model to be capable of using all available data effectively. This
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implies the necessity for a model to be trainable in both the supervised and
the unsupervised setting, a feature seldom found in existing methods [20,25].
Another important yet often overlooked requirement is the stability of training,
which should lead to consistent detection results, regardless of the specific train-
ing run. Unfortunately, a high level of consistency is not met by many existing
methods. Our objective was to devise a method that fully meets these criteria:
(i) detection and localisation performance, (ii) low inference time in both (iii)
the supervised and the unsupervised setting, and (iv) a stable and consistent
learning process.

To meet all specified requirements, we introduce SuperSimpleNet, an inno-
vative model that builds on the foundation laid by SimpleNet [12]. While Sim-
pleNet has demonstrated great performance in the unsupervised setting, achiev-
ing these results consistently requires multiple training runs. This limitation,
coupled with the industry’s demand for efficient and more resilient models,
prompted us to refine the training approach and architecture of the original
model. These enhancements have rendered it more robust and suitable for prac-
tical applications.

The main contributions of our work are as follows:

– We propose SuperSimpleNet - a strong discriminative defect detection model
tailored to meet industry standards. We optimised the originally proposed
architecture and introduced a novel synthetic anomaly generation procedure,
resulting in a more stable learning process and improved performance. With
an inference time of 9.3 ms and a throughput of 268 images per second,
SuperSimpleNet outspeeds most contemporary models while achieving state-
of-the-art defect detection results.

– We have extended the architecture, initially designed for the unsupervised
setting, to incorporate abnormal training images and utilise available labels.
Additionally, we’ve integrated a separate classification head into the model,
which helps the model consider the image’s global context. This unification of
unsupervised and supervised approaches significantly boosts anomaly detec-
tion capabilities, positioning SuperSimpleNet among the top performers in
both unsupervised and supervised scenarios. This versatility renders it highly
suitable for industrial applications.

We have performed extensive experiments on four challenging datasets. First,
we show that SuperSimpleNet achieves state-of-the-art results in the supervised
setting on two standard defect detection datasets – SensumSODF and KSDD2,
with an AUROC of 97.8% and a detection AP of 97.4%, respectively. Then, we
show that SuperSimpleNet achieves state-of-the-art results in the unsupervised
setting on two standard anomaly detection datasets – MVTec AD and VisA, with
an AUROC of 98.4% and 93.4%, respectively. With the state-of-the-art results
achieved in both scenarios, as depicted in Fig 1, we demonstrate the versatility
of SuperSimpleNet and its suitability for real-life scenarios.
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2 Related Work

Unsupervised methods
Unsupervised methods have become a cornerstone in surface anomaly detec-
tion because they can detect outliers in settings where labelled defect data is
scarce or non-existent. To address such scenarios, various paradigms of models
emerged. The reconstructive approaches made the first attempts, which train
an autoencoder-like network [24] with the idea that the model will successfully
reconstruct only the anomalous regions whilst leaving the normal regions intact.
Methods under this paradigm also used different kinds of generative networks,
such as GANs [1] or transformers [15]. The successful reconstruction of anoma-
lous regions does not always hold, leading to an overall bad performance.

Another prominent paradigm involves leveraging the features extracted from
a pretrained network, such as a ResNet [8]. The extracted features are then used
to learn normality by utilising approaches such as a normalising flow [18,21], a
memory-bank [17], a student-teacher architecture [27] or distillation [5].

The remaining set of approaches, the discriminative methods, are trained
using synthetic anomalies. These anomalies can be generated on images [7,23,27],
while the recent SimpleNet [12] generates them in latent space by perturbing
the entire copy of features with noise. Another, more sophisticated approach to
generating synthetic anomalies in the latent space is introduced in DSR [25],
where a Perlin noise mask conditions the area of anomalies.

While these methods have demonstrated success, their complexity in design
and implementation often hinders efficient execution, leading recent research
efforts to also prioritise efficiency [2]. Even though these methods show great
results in the unsupervised setting, most of them lag behind on datasets [4]
curated for the supervised setting, as they cannot utilise labelled defects during
training.
Supervised methods
Although defective samples are initially rare, their availability in industrial
settings increases over time. However, the unsupervised methods often aren’t
designed to utilise such data effectively. Consequently, supervised anomaly detec-
tion is prevalent in industrial settings to maximise performance. Industrial-grade
methods such as SegDecNet [4], TriNet [16], and MaMiNet [14] leverage both
normal and anomalous samples, with the capability to incorporate image-level
labels in a weakly-supervised setting, thus alleviating the work of manual pixel-
precise annotation. A downside of this approach is that anomalous data is still
needed, albeit not annotated, and presents quite a different paradigm from unsu-
pervised learning.

There have been attempts to use one-class classification methods for anomaly
detection, enabling unsupervised and supervised training. However, methods
such as Deep SAD [19] and FCDD [13] demonstrate poor performance compared
to recent methods, especially in the unsupervised setting.

Other recent approaches, such as BGAD [20], PRN [26], and DRA [6], have
extended the supervised approach with synthetic anomaly generation. The main
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disadvantage of such methods is that they require many known anomalous sam-
ples to outperform recent unsupervised methods, and their performance in a
strictly unsupervised setting may be inadequate. Furthermore, these methods
generate anomalies at the image level, although recent advancements in data
augmentation could benefit from latent space generation. Additionally, the com-
plexity of architectures, e.g. BGAD and PRN, leads to longer inference times,
potentially limiting their applicability in industrial settings.

3 SuperSimpleNet

The proposed SuperSimpleNet, as illustrated in Fig. 2, builds upon the founda-
tion laid by SimpleNet [12]. It begins with feature extraction via a pretrained
convolutional network (detailed in Sect. 3.1), followed by upscaling and pooling
processes designed to encapsulate the neighbouring context. Subsequently, these
features are adapted to a common latent space via a feature adaptor (further
described in Sect. 3.2). A notable enhancement over the original model is the
introduction of an innovative approach for generating synthetic anomalies, play-
ing a pivotal role in the model’s enhanced performance across both unsupervised
and supervised scenarios. This advancement is primarily attributed to the cre-
ation of anomaly regions at the feature level, employing a binarised Perlin noise
mask (expounded in Sect. 3.3). The refined features are then funnelled into the
segmentation and classification modules (outlined in Sect. 3.4).

This method exclusively depends on the synthetically produced masks and
labels in the unsupervised setting. However, the inclusion of synthetic anomalies
markedly elevates the system’s efficacy also in the supervised setting, particu-
larly when integrated with actual ground truth data (discussed in Sect. 3.3 and
Sect. 3.5). During inference, the framework operates in a seamless end-to-end
fashion (Sect. 3.6).

Subsequent sections will provide a thorough exposition of each module,
encompassing training and inference details, ensuring a comprehensive under-
standing of the system’s architecture and functionality.

3.1 Feature Extractor

Following the design principles of SimpleNet [12], we employ a ResNet-like [8]
convolutional neural network pretrained on ImageNet as the feature extractor.
Specifically, we utilise a WideResNet50 [22], extracting features from its 2nd and
3rd layers. Due to ResNet-like networks’ architectural characteristics, output
features are of relatively low resolution. This limits the effective detection of
smaller anomalies and compromises the segmentation precision.

To effectively address this challenge, we have extended the base SimpleNet
extractor by incorporating a new upscaling strategy prior to feature concatena-
tion. Our methodology introduces an additional layer of upscaling, effectively
doubling the previously applied scaling factor. As a result, layer 3 is enlarged by
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Fig. 2. SuperSimpleNet’s architecture. Features are first extracted, upscaled, and
adapted. During training, synthetic anomalies are generated in latent space by adding
Gaussian noise to the adapted feature map A. The noise is limited to regions generated
by binarised Perlin mask and non-anomalous regions (depicted by ε̃). The perturbed
feature map P is then used as the input for the segmentation head to predict an
anomaly mask Mo. The predicted anomaly mask Mo and the perturbed feature map
P are then used as the input for the classification head, producing the anomaly score
s. The produced anomaly score s and the predicted mask Mo are during the training
supervised by the anomaly mask M and y, where y is set to 1 if the image contains an
anomaly (synthetic or real) and to 0 otherwise. During inference, the anomaly gener-
ation phase is omitted, and Mo and s are produced directly from the adapted feature
map A.

a factor of 4, while layer 2 undergoes a doubling in size. This approach ensures
both layers achieve equal dimensions, thus allowing for a seamless concatenation.

Afterwards, as in SimpleNet [12], the neighbouring context is encapsulated
through the application of local average pooling, employing a mean kernel of size
3× 3. This step yields an upscaled feature map where every element is enriched
with information from its surroundings.

3.2 Feature Adaptor

While the representations from pretrained backbones can transfer well to the task
of anomaly detection [9], a feature adaptor as in SimpleNet [12] is employed to
further improve the features for the task. It is implemented as a simple linear
layer, producing the adapted features, denoted as A.
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3.3 Feature-Space Anomaly Generation

Supervised

Unsupervised

Fig. 3. Synthetic anomaly generation. Synthetic anomaly masks Ma are generated
using Perlin Noise. In the unsupervised setting, Gaussian noise is added to all the
regions denoted by the thresholded Perlin Noise mask Mt. In contrast, in the supervised
setting, noise is omitted from the regions with actual anomalies, denoted by Mgt. The
final anomaly mask M is constructed from Ma and Mgt, and holds information on both
where the Gaussian Noise is added and where the actual anomalies lie.

The anomaly generation process (visualised in Fig. 3) begins with the creation
of a Perlin binary anomaly mask Mt by thresholding a generated Perlin noise
image Mp (similarly as in [7,23,27]). All the regions containing actual anomalies,
delineated by Mgt, are removed from Mt, resulting in Ma (Fig. 3 – green section).
In the unsupervised setting, Mgt is always empty during training (Fig. 3 – blue
section). Subsequently, Gaussian noise ε, sampled from the Gaussian distribu-
tion N (μ, σ2), is selectively applied only within the confines defined by Ma, as
illustrated in Fig. 3, and then added to the adapted features A to produce the
perturbed feature map P. To increase the stability of the training regime, the
duplication of the adapted features is retained, but unlike the original SimpleNet,
noise is applied to both the original and the copy following the process described
above. Through this refined strategy, SuperSimpleNet achieves a higher level of
precision in anomaly simulation, focusing on creating more realistic, spatially
coherent, yet highly randomised anomalous regions. This inherent randomness
safeguards the model against overly depending on specific patterns, which might
not be representative of unseen data.

A direct method for the supervised learning setting might involve substitut-
ing the synthetically generated anomaly mask, Ma, with the actual ground truth
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anomaly mask, Mgt. Yet, we recognised that the defects present in the training
dataset often fail to fully encompass the vast spectrum of potential defects.
To address this limitation, we supplement the model with additional synthetic
anomalies created using the methodology employed in the unsupervised frame-
work to represent the defect distribution more comprehensively. Gaussian noise
is added solely to non-defective areas to ensure the model gets as much actual
defect data as possible. Consequently, the anomaly masks M for the supervised
learning scenario are formulated from a blend of authentic ground truth data and
synthetic anomalies, enriching the model’s exposure to a wider array of defect
variations and bolstering its detection and generalisation capabilities.

3.4 Segmentation-Detection Module

We have further extended the architecture to enhance anomaly detection per-
formance by introducing a classification head, Dcls, while maintaining the seg-
mentation head, Dseg, as it was in SimpleNet. The classification head’s design
is straightforward, consisting of a single 5 × 5 convolutional block and a linear
layer. This structure allows the model to understand the global semantics of the
image, reducing the overall count of false positives. It also makes it easier for
the model to detect significant changes in small areas, thereby increasing the
detection rate of smaller anomalies that might have gone unnoticed before.

As displayed in Fig. 2, an anomaly mask Mo is first produced using the seg-
mentation head. This mask Mo is then concatenated with the adapted feature
map A (or noise-augmented feature map P during training) and used as input
for the convolutional block of the classification head. Both, the output from
the convolutional block and the anomaly map Mo undergo average pooling and
max pooling, after which they are combined and fed into the final linear layer,
producing an image-level anomaly score s.

3.5 Loss Function

The truncated L1 loss is used for the segmentation head. The loss consists of
two cases defined in Eq. 1 where th is the truncation term preventing overfitting
(in our case, 0.5):

li,j =

{
max(0, th − Dseg(Pi,j)); if M[i, j] = 1
max(0, th + Dseg(Pi,j)); otherwise

. (1)

The total truncated L1 loss, denoted by L1t, is computed by averaging the loss
li,j across all elements within the predicted anomaly mask. To better guide and
stabilise the training process, we additionally incorporate focal loss [11] due to
its improved performance in scenarios with unbalanced data, resulting in the
formulation of the final segmentation loss, denoted as Lseg:

Lseg = L1t + Lfoc . (2)
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For the classification loss Lcls, the focal loss [11] is employed:

Lcls = Lfoc . (3)

The final loss is the sum of the segmentation and classification loss:

L = Lseg + Lcls . (4)

The target in segmentation loss is the anomaly mask M, which delineates the
regions with synthetic and real anomalies. The target anomaly label y for classi-
fication loss is derived from M, i.e. y is set to 1 if the image contains an anomaly
(synthetic or real) and to 0 otherwise.

3.6 Inference

During inference, the network predicts the anomaly map and anomaly score
by bypassing the anomaly generation phase. The segmentation head outputs
an anomaly mask Mo. This mask undergoes interpolation to match the input
image’s size and is further refined by applying a Gaussian filter with σ = 4,
yielding the final anomaly map. The anomaly score for each image is given by
the value s, produced by the classification head Dcls.

4 Experiments

An extensive evaluation of the proposed method is performed in both the super-
vised and the unsupervised setting. The setup is described first, followed by the
results.

4.1 Datasets

The performance in the supervised setting is evaluated on two real-world, reli-
able, and well-annotated datasets: Sensum Solid Oral Dosage Forms (Sensum-
SODF) [16] and Kolektor Surface-Defect Dataset 2 (KSDD2) [4]. SensumSODF
consists of two categories, each a different type of solid oral dosage form: a capsule
and a softgel. Both categories contain normal and annotated anomalous samples
with defects of varying complexity and size. SensumSODF does not contain a
predefined train-test split. Due to that, we followed an already defined proto-
col [16], involving a 3-fold cross-validation. KSDD2 is constructed from images
of production items captured using a visual inspection system. Both train and
test split contain normal and precisely annotated anomalous samples with many
in-distribution defects. Figure 4 shows some examples from both datasets.

The unsupervised regime is evaluated on two established datasets: MVTec
AD [3] and VisA [28]. MVTec AD encompasses 15 categories, while VisA com-
prises 12 different categories. Each category consists of a training set with only
normal images and a test set with normal and pixel-precise annotated anoma-
lous images. Anomalies present in both datasets are of various types, shapes,
and scales. Figure 5 shows some examples from both datasets.
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4.2 Evaluation Metrics

Evaluation metrics depend on the used dataset and recent literature. Image-
level performance for SensumSODF, MVTec AD, and VisA is evaluated using
the Area Under the Receiver Operator Curve (AUROC). Recent works have
strayed away from using pixel-level AUROC for the pixel-level evaluation on
these three datasets and rather opted for Area Under the Per-Region Overlap
(AUPRO). We chose the same. In the case of KSDD2, a vast majority of recent
works evaluate the image and pixel-level performance using Average Precision
(APdet and APloc). Once again, we followed the suite of previous works.

4.3 Implementation Details

The model is trained for 300 epochs with a batch size of 32 using the AdamW
optimiser. The adaptor module has a learning rate set to 10−4, while both the
segmentation and classification head have it set to 2 ∗ 10−4 with a weight decay
of 10−5. To improve the inference time of the feature adaptor and the segmen-
tation head, we exchange the feature vector reshaping and the consequent fully
connected layers with a simple 1× 1 convolution, which yields the same results.

The learning rate scheduler is utilised to enhance training stability, multi-
plying the learning rate by 0.4 after 240 and 270 epochs. To further stabilise the
training, the gradient is adjusted by stopping the gradient flow from the classi-
fication head to the segmentation head in the unsupervised setting and clipping
the gradient in the supervised setting to norm 1.

Following SimpleNet [12], Gaussian noise is sampled from N (0, σ2) with
σ = 0.015. Perlin noise is binarised using a threshold of 0.6 for VisA, KSDD2,
and SensumSODF, generating thinner and smaller anomalies. Since MVTec AD
contains larger anomalies, a threshold of 0.2 is used. Synthetic anomalies are
added to 50% of the images.

All input images are normalised using ImageNet normalisation. MVTec AD
and VisA use image dimensions of 256 × 256 without center-crop. For KSDD2,
following the original protocol, a 232×640 resolution is used. For SensumSODF,
capsule and softgel categories have resolutions of 192×320 and 144×144, respec-
tively. To extend the anomalous samples, flipping is used as in [16] where batches
are composed of equal anomalous and normal samples, as in [4]. As stated in Sub-
sect. 4.1, we followed predefined train-test splits for KSDD2 [4], MVTec AD [3],
and VisA [28], while we used 3-fold cross-validation for SensumSODF, as defined
in the original paper [16].

For comparison, we extended the original SimpleNet to support training in
a supervised manner. This was done by changing the loss design to consider the
labelled defects, i.e. predicting the defective regions inside the ground truth mask
(Mgt) as anomalous. All other parameters are kept the same as the original [12].

The metrics are calculated based on the model resulting from the final epoch
in both settings and all categories. For SuperSimpleNet and SimpleNet, the
average performance of 5 runs with different seeds is reported, along with the
corresponding standard deviations.
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4.4 Experimental Results

Results in the supervised setting. We compared our method with the cur-
rent state-of-the-art methods for the supervised setting: SegDecNet [4], DRA [6],
BGAD [20], PRN [26], TriNet [16] and SimpleNet [12]. The results on Sensum-
SODF are displayed in Table 1, where SuperSimpleNet achieves the best result
with a mean anomaly detection AUROC of 97.8%, surpassing the previous state-
of-the-art by 0.9 percentage points (p.p.), reducing the error by 29%. Anomaly
detection and localisation results in a supervised setting on KSDD2 are shown in
Table 2. SuperSimpleNet achieves a state-of-the-art APdet of 97.4%. We hypoth-
esise that SuperSimpleNet achieves such a high performance in the supervised
setting due to the classification head, which can efficiently learn to capture more
global information due to the presence of real and synthetic anomalies during
training.

Table 1. Results of Supervised anomaly detection (AUROC) and localisation
(AUPRO) on the SensumSODF dataset.

[4] [6] [20] [26] [16] [12] Ours

Detection 83.490.194.380.696.988.4 (± 1.84)97.8 (± 0.13)
Localisation75.2 - 97.066.0 - 89.6 (± 1.14)93.0 (± 0.54)

Table 2. Results for supervised anomaly detection (APdet) and localisation (APloc)
on the KSDD2 dataset.

[25] [4] [6] [20] [26] [14] [10] [12] Ours

Detection 95.295.489.392.778.696.299.993.5 (± 1.05)97.4 (± 0.25)
Localisation85.567.6 - 76.548.2 - - 75.9 (± 2.40)82.1 (± 0.50)

Figure 4 shows qualitative results of our supervised model on KSDD2 [4] and
SensumSODF [16]. It can be discerned that SuperSimpleNet improves upon pre-
vious methods in two aspects: first, it outputs more precise masks in comparison
to its competitors PRN [26], BGAD [20] and its baseline SimpleNet [12]. PRN
outputs masks that majorly underestimate the total area of the defect, whilst
BGAD heavily overestimates it. The more precise masks are due to the upscaling
module and improved training.SuperSimpleNet improves upon both and reduces
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Fig. 4. Qualitative comparison of anomaly maps produced in the supervised setting:
the input image, the ground truth, and the overlaid anomaly map for SuperSimpleNet,
SimpleNet, PRN, and BGAD. The first row displays two samples from KSDD2; the
second and third are SensumSODF capsule and softgel respectively. The anomaly score
is displayed in the top right corner of each overlaid anomaly map. The anomaly score
from the classification head proves to be more reliable than the established maximum
value of the anomaly mask.

the area of the false positive regions produced by the baseline SimpleNet [12].
Secondly, SuperSimpleNet estimates the image-level anomaly score more accu-
rately than its competitors due to its classification head. While SimpleNet and
PRN often predict scores below 0.5, SuperSimpleNet predicts scores near the
upper limit.

Results in the unsupervised setting. We compared our method with the cur-
rent state-of-the-art methods for the unsupervised setting: AST [18], DSR [25],
EfficientAD [2], FastFlow [21], Patchcore [17], DRÆM [23] and SimpleNet [12].
Table 3 reports performance on the MVTec AD dataset.

SuperSimpleNet achieves state-of-the-art performance with mean anomaly
detection of 98.4%. Results on the VisA dataset are shown in Table 4. Super-
SimpleNet reaches state-of-the-art performance with anomaly detection AUROC
of 93.4%. Whilst the classification head can’t learn as efficiently as in the super-
vised setting, the improved synthetic anomaly generation improves the models’
discriminative capabilities, leading to better downstream anomaly detection.
Qualitative results of the unsupervised model on MVTec AD [3] and VisA [28]
are shown in Fig. 5. Like the supervised model, SuperSimpleNet outputs more
precise masks than SimpleNet and outputs higher anomaly scores. Similarly,
SuperSimpleNet outputs a lower rate of false positives in the background than
SimpleNet.
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Table 3. Anomaly detection and localisation (AUROC/AUPRO) on MVTec AD
dataset.

[18] [25] [2] [21] [17] [23] [12] Ours

Carpet 98.3/89.499.9/92.499.3/92.797.5/92.998.7/93.097.0/92.997.8/92.398.4/92.3
Grid 98.7/79.7 100/88.9 99.9/88.9 100/96.0 98.2/91.999.9/98.499.6/93.599.3/93.1
Leather 100/90.4 99.6/97.3 100/98.3 100/99.1 100/96.9 100/97.8 100/96.0 100/96.9
Tile 99.1/72.0 100/85.6 100/85.7 99.9/87.3 100/87.9 99.6/98.598.8/85.499.7/84.2
Wood 99.2/71.992.2/84.599.5/90.298.9/93.199.1/85.799.1/93.597.3/77.799.3/84.7
Bottle 100/86.0 99.8/95.9 100/95.7 100/89.3 100/94.0 99.2/97.0 100/92.9 100/90.4
Cable 98.0/75.696.6/88.595.2/92.593.9/89.999.5/94.191.8/75.698.9/90.698.1/88.5
Capsule 98.8/88.196.7/89.897.9/97.698.1/95.498.5/93.498.5/91.098.0/91.398.7/92.3
Hazelnut 100/89.5 99.5/94.799.4/95.798.9/95.6 100/95.1 100/98.6 99.3/89.499.8/94.5
Metal nut 97.8/75.699.8/91.899.6/94.499.6/92.399.9/94.198.7/94.099.1/88.399.5/90.9
Pill 99.0/71.798.3/95.998.6/96.196.7/93.995.1/93.998.9/88.297.0/93.398.1/94.2
Screw 99.1/87.195.8/91.397.0/96.484.5/89.797.3/94.693.9/98.288.7/91.392.9/95.3
Toothbrush97.5/67.1 100/95.8 100/93.3 89.2/87.095.3/85.7 100/90.3 89.9/91.892.2/85.1
Transistor 98.9/90.693.5/78.999.9/91.298.5/92.099.8/94.893.1/81.499.5/90.099.9/91.5
Zipper 99.1/83.299.7/91.199.7/93.498.5/93.799.2/94.7 100/96.2 99.4/94.599.6/93.1
Average 98.9/81.298.1/90.899.1/93.596.9/92.598.7/92.798.0/92.897.6/90.598.4/91.1

Stability comparison. We also evaluated the stability of the training. A
comparison in anomaly detection performance and the standard deviation
between several training runs with SimpleNet is shown in Fig. 6. SuperSim-
pleNet improves the performance of SimpleNet and reduces the standard devi-
ation between several training runs, making it more reliable and robust. The
same holds even for the unsupervised setting for which SimpleNet was specifi-
cally designed.

Computational efficiency. Fig. 1 showcases the balance between performance
and computational efficiency, measured using an NVIDIA Tesla V100S. Super-
SimpleNet is the only model designed to work well in both supervised and
unsupervised regimes. At the same time, SuperSimpleNet offers great anomaly
detection performance while fulfilling the low inference time requirement with
an inference time of 9.3 ms and a throughput of 268 images per second. The pro-
tocol from [2] is followed to measure computational efficiency. A more detailed
description and additional metrics are presented in Supplementary Material.
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Table 4. Anomaly detection and localisation (AUROC/AUPRO) on VisA dataset.

[18] [25] [2] [21] [17] [23] [12] Ours

Candle 99.4/94.186.4/79.798.4/95.796.8/93.798.6/96.492.7/92.792.5/89.897.1/93.6
Capsules 85.4/68.293.4/74.593.5/96.983.0/89.376.4/57.590.2/85.478.9/84.881.5/80.1
Cashew 95.1/79.185.2/61.597.2/94.290.0/84.797.9/88.885.5/67.691.9/82.693.0/86.3
Chewing gum 100/78.5 97.2/58.299.9/83.199.8/86.898.9/75.995.2/58.099.0/84.199.3/87.7
Fryum 99.0/58.793.0/65.596.5/86.798.6/72.994.8/80.888.6/80.495.4/90.396.8/79.3
Macaroni 1 93.9/87.291.7/57.799.4/99.094.8/94.195.8/75.094.2/86.394.2/97.393.1/95.9
Macaroni 2 72.1/80.479.0/52.296.7/98.880.5/87.377.7/49.186.6/96.371.8/85.975.0/89.7
PCB1 99.2/89.389.1/61.398.5/97.195.5/91.298.9/91.375.9/61.192.5/88.796.9/92.9
PCB2 98.4/85.796.4/84.999.5/95.096.1/87.097.1/85.798.9/76.293.6/89.097.5/85.4
PCB3 97.4/87.797.0/79.598.9/94.094.0/77.696.3/73.294.4/83.592.6/90.394.4/83.0
PCB4 99.7/80.198.5/62.198.9/92.798.4/88.699.4/88.798.6/73.497.9/81.698.4/87.3
Pipe fryum 99.4/89.494.3/80.599.7/94.799.6/89.099.7/94.597.6/74.694.6/91.197.6/88.0
Average 94.9/81.591.8/68.198.1/94.093.9/86.894.3/79.791.5/78.091.2/88.093.4/87.4
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Fig. 5. Qualitative comparison of anomaly maps produced by unsupervised SuperSim-
pleNet and SimpleNet. The top row shows the input anomalous image. The second row
displays the ground truth anomaly mask. The third and fourth rows contain anomaly
maps generated by SuperSimpleNet and SimpleNet, respectively. The anomaly score is
displayed in the top right corner of each anomaly map.

Fig. 6. Comparison of SuperSimpleNet with SimpleNet in anomaly detection in terms
of AUROC and its standard deviation on all four datasets.
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5 Ablation Study

To determine the contributions of each component in SuperSimpleNet, each
newly introduced module is evaluated by excluding it from the architecture.
Quantitative results are shown in Table 5, while the qualitative results are shown
in Fig. 7.

Table 5. Ablation study results on anomaly detection and localisation (AUROC
/ AUPRO) in the supervised setting (mean value of results on SensumSODF and
KSDD2) and the unsupervised setting (mean value of results on MVTec AD and VisA),
as well as the average of both settings. SSN stands for SuperSimpleNet, while SN
stands for SimpleNet.

Method
Anomaly generation Architecture Super. Unsup. Average

SuperSimpleNet SimpleNet Upscale Cls. head Opt. train. Det. Loc. Det. Loc. Det. Loc.

SSN (Ours) � � � � 98.6 95.6 95.9 89.3 97.3 92.4
SSNno_upscale � � � 98.2 93.0 94.9 88.3 96.6 90.6
SSNno_cls � � � 95.5 96.2 96.2 89.6 95.9 92.9
SSNno_cls&SN_anom � � � 94.9 96.6 96.0 89.1 95.4 92.8
SSNold_train � � � 98.2 93.5 92.7 85.3 95.5 89.4
SSNoverlap Overlap � � � 98.3 95.9 95.9 89.3 97.1 92.6
SSNSN_anom � � � � 97.9 96.5 88.0 87.5 93.0 92.0
SSNno_anom � � � 98.1 89.8 - - - -

SNSSN_anom � 91.3 91.0 94.6 86.2 93.0 88.6
SN � 93.2 93.2 94.4 89.3 93.8 91.2

Upscaling module. Excluding the upscaling of features (SSNno_upscale) causes
a decline in detection performance, a 0.4 p.p. decrease for the supervised setting
and a 1.0 p.p. in the unsupervised setting. A noticeable decline also occurs in
the localisation performance with a drop of performance by 2.6 p.p. and 1.0 p.p.
for the supervised setting and the unsupervised setting, respectively. The results
suggest the importance of feature size in the final predictions, as also visible
from less precise segmentation in Fig. 7.

Classification head. The exclusion of a classification head (SSNno_cls - where
the anomaly score s is obtained as the maximum value from the anomaly map)
notably reduces anomaly detection performance (by 3.1 p.p) in the supervised
setting. This is due to stronger discriminative capabilities inside the classifica-
tion head, which are beneficial when both synthetic and real data are available.
The decreased detection performance is also indicated by lower anomaly scores
in Fig. 7. However, excluding the classification head in the unsupervised setting
leads to slight improvement (by 0.3 p.p). This is because the strong discrimi-
native properties can hinder performance when relying solely on synthetic data.
The gradient also flows from the classification head to the segmentation head in
the supervised setting, adjusting the anomaly map to be more suitable for clas-
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Fig. 7. Qualitative comparison of anomaly maps produced by different versions of
SuperSimpleNet from ablation study. a) shows a sample from the supervised setting;
b) and c) show two samples from the unsupervised setting. The anomaly score is
displayed in the top right corner of each overlaid anomaly map. Observing both the
anomaly map and the anomaly score provides an insight into how each component
contributes towards our final model.

sification. Removing the classification head thus slightly increases localisation
performance.

Improved training. The effect of upgrading the loss, incorporating a scheduler,
and gradient adjustments can be deduced from the SSNold_train experiment in
the table. These modifications notably impact both detection (by 0.4 p.p. and by
3.2 p.p.) and localisation (by 2.1 p.p. and by 4.0 p.p.). Unsupervised performance
is particularly improved, largely due to a more stable training process, which
prevents poor final results like the capsules in Fig. 7 – row c.

Addition of synthetic anomalies to anomalous regions. In the supervised
setting, synthetic anomalies are exclusively generated within non-anomalous
regions. The results of the SSNoverlap experiment showcase the impact of
anomaly generation without this constraint. This approach leads to slightly
worse detection performance (0.3 p.p.). We hypothesise that augmenting already
anomalous regions leads to the loss of genuine anomalous information. Since this
change only applies to the supervised setting, the unsupervised results remain
unaffected.

Anomaly mask generation. The importance of anomaly mask generation was
evaluated by using the feature duplication strategy from SimpleNet. SimpleNet
copies the features and adds the noise to the entirety of the copy. The strategy
from SimpleNet (SSNSN_anom) leads to a decrease in detection performance
in both the supervised (by 0.7 p.p.) and the unsupervised setting (by 7.9 p.p.).
We hypothesise the major decline in unsupervised performance is due to the
incompatibility of this mask generation strategy with the classification head, as
it struggles to efficiently learn defect bordering regions. This hypothesis is further
supported by the SSNno_cls&SN_anom experiment, where SimpleNet strategy is
used for SuperSimpleNet with the classification head removed. This improves the
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unsupervised performance but leads to poor supervised performance, indicating
that our anomaly generation strategy is crucial for good simultaneous supervised
and unsupervised performance when using a classification head.

Synthetic anomaly generation strategy. To evaluate the importance of syn-
thetic anomalies in the supervised setting, only real anomalies were used during
training. As evident from the SSNno_anom experiment in the table, the detection
performance achieves a decline of 0.5 p.p., whilst the localisation performance
achieves a major decline of 5.8 p.p. The results indicate the importance of syn-
thetic anomalies during training. The results from the unsupervised setting are
omitted due to the inability of the model to learn a boundary without the pres-
ence of synthetic anomalies during training, also seen in Fig. 7.

6 Conclusion

A novel discriminative anomaly detection model, SuperSimpleNet, has been pro-
posed to meet the industry’s requirements (performance, speed, robustness, and
stable training). It offers the flexibility to be trained in both the supervised and
the unsupervised setting, making full use of all available training data. This abil-
ity is rarely achieved in previous methods. The proposed model is also robust,
achieving a predictable performance independent of the training run. The effi-
ciency of SuperSimpleNet is validated in both the supervised and the unsuper-
vised setting. In the supervised setting, the method is evaluated on two well-
established benchmarks, SensumSODF and KSDD2, achieving 97.8% AUROC
on SensumSODF and 97.4% APdet on KSDD2. On SensumSODF, SuperSim-
pleNet surpasses all previous methods by 0.9%. SuperSimpleNet also achieves
state-of-the-art results in the unsupervised setting on two well-established bench-
marks, MVTec AD and VisA, with 98.4% and 93.4% AUROC, respectively. It
achieves state-of-the-art results whilst holding an inference time of 9.3 ms and a
throughput of 268 images per second.

Limitations and future work. SuperSimpleNet mostly struggles in the unsu-
pervised setting with categories containing multiple objects. SuperSimpleNet is
also heavily dependent on the used backbone, as the magnitude of the Gaussian
noise needs to be adjusted for each backbone. Also, anomaly detection perfor-
mance deteriorates if the backbone fails to extract meaningful features. In the
future, we will extend the model to also operate in weakly-supervised and mixed-
supervised settings. This means we will have pixel-level annotations for only a
subset of defective images while having image-level annotations for the entire
training set. Such a change will further improve direct usability and alleviate
the need for pixel-level annotations. The results also indicate that combining
the knowledge from the unsupervised and the supervised domain is a viable step
for the anomaly detection field in the future.
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Abstract. Data-driven neural network models trained on human
motion data facilitate human activity recognition and identity verifica-
tion applications. However, large annotated and processed human motion
datasets are scarce, leading to the overfitting of models to training
data. Thus, it is important to investigate data augmentation techniques
to generate additional data to facilitate model generalisation. In addi-
tion, the choice of augmentation techniques severely impacts the per-
formance of self-supervised learning. Thus, this work experiments and
evaluates various augmentation techniques on seven sensor-based human
activity datasets. Three supervised neural network models and one self-
supervised learning model were experimented with. We note that due to
the high variability in the performance of algorithmic augmentation tech-
niques on time-series human activity datasets, generative data is highly
influential in this domain.

Keywords: Human activity recognition · Augmentation ·
Generation · Human motion · Self-supervised learning

1 Introduction

With the advent of Internet-of-Things (IoT), smart devices for daily living, and
sensor-based technologies for industries, time-series data has increased interest
in research and development. Sensor-based time-series data facilitate activity
recognition, subject re-identification, health and ergonomy analysis, and moni-
toring with the help of neural networks. However, the availability of annotated
datasets is often limited [23]. In addition, dataset imbalance is a common occur-
rence. As a result, neural network models tend to overfit the training data. To
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overcome these issues, data augmentation (DA) techniques are of interest [11].
Authors of [7,11] note that, compared to image data, time-series data augmen-
tation techniques are not extensively explored. In addition, the applicability of
time-series data augmentation is specific to the dataset and neural network used
[11]. It is unclear what features of the dataset or the neural network lead to the
variation in the impact of the augmentation technique.

Further, [9,12] suggests that the algorithmic time-series augmentation tech-
niques must be explored before focusing on generative models for synthetic data
creation. For instance, [9] notes that traditional augmentations may perform
better than Generative Adversarial Networks (GANs), as GANs may radically
change the structure of the time-series data even though the data utilized may
fool the discriminator. Synthetic data generation is not limited to generative net-
works. With the support of motion capture (MoCap) data, a concept of virtual
inertial measurement units (IMUs) is used to obtain synthetic sensor readings
from a location of the MoCap skeleton [16]. Consequently, a cumulative eval-
uation of the augmentation techniques focused on activity datasets may help
develop an augmentation application strategy.

Augmentation strategies are integral to self-supervised learning (SSL). Due
to the expensive nature of annotated sensor-based human activity data, a shift
of interest from supervised to self-supervised learning is visible [30]. As augmen-
tation techniques play an essential role in self-supervised learning, exploring and
possibly developing augmentation application strategies for time-series human
activity data could benefit the development of robust self-supervised learning
for activity recognition [27]. This work aims to answer the following research
questions.

RQ1 : How do neural network models respond to the augmentations in the
human activity training data?
RQ2 : How can one choose the data augmentation techniques for their dataset
for a specific network model?
RQ3 : Is it better to focus on generative models than algorithmic methods for
tackling the problems of dataset imbalance and model generalisation?
RQ4 : Which augmentation techniques benefit self-supervised learning?

The paper is organised as follows: Sect. 2 explores the recent work on augmen-
tation of time-series datasets, including their application to SSL. Section 3 elab-
orates on the various augmentation techniques experimented with in this work.
Section 5 and Sect. 6 explain the experiments’ results and the derived conclu-
sions, respectively.

2 Related Work

The authors of [11] survey various time-series data augmentation techniques
focusing on magnitude, time and frequency domain transformations and pat-
tern mixing. The augmentation techniques were evaluated on various networks,
such as VGG, ResNet, MLP, and LSTM networks. Slicing, window warping, and
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dynamic guided warping (DGW) showed a positive impact. Multi-layer percep-
tron (MLP) and Long Short Term Memory (LSTM) presented significant per-
formance degradation in the presence of augmented data. The authors note that
effective augmentation techniques vary depending on the model and dataset.
[5] performed experimentation of eight datasets of time-series representative
value and noted that rotation, in combination with permutation, improves net-
work performance. Scaling, magnitude warping, and time warping were effective
augmentation techniques. However, augmentation techniques specific to HAR
datasets are of interest to account for the activity performed in the time-series
recording.

Few works focus on generating synthetic data from the human movement
recordings of videos and motion capture systems. [10] proposed pose reconstruc-
tion to synthetic IMU data. Virtual sensors placed on an SMPL mesh of a
MoCap sequence facilitated synthetic data generation. The authors use a bi-
directional RNN to train a Deep Inertial Poser network to learn the mapping
between human poses and IMU data. Using finite differences, synthetic poses
were computed through forward kinematics and their respective linear acceler-
ations. The authors of [1] proposed transfer learning of pose annotations from
video datasets to support HAR on IMU datasets. The authors use the pose
annotations from videos as multi-channel time series data of human movements.
Then, the authors apply a smooth piece-wise spline interpolation to the human
joint pose sequences. These interpolations are considered to be synthetic IMU
data. The synthetic data is used to train the network as part of transfer learn-
ing. [1] showed that source and target datasets of transfer learning, with similar
activities, improved performance.

Lastly, extending upon IMU generation data from pose or motion sequences,
[14] proposed an IMUGPT, which uses ChatGPT to generate prompts to gener-
ate 3D human motion sequences using inverse kinematics; the motion sequences
are converted to virtual IMU data.

SSL on unlabelled human activity data has the potential to facilitate and
improve HAR. For instance, [30] applied SSL on a large activity tracker dataset
with 700.000 person-days of unlabelled data. A ResNet-V2 network with 18
layers and a 1D convolutions model outperformed the baselines on seven bench-
mark datasets with an average accuracy improvement of 18.4%. Augmentation
techniques focusing on the temporal dependencies of human motion, such as
reversing in time, permutation, time-warping and weighted sampling augmen-
tation, were evaluated. Following the work of [28], [27] applied noise, scaling,
3D rotation, reversing, flipping, warping, shuffling channels, and perturbation as
augmentation for cross-domain HAR using SSL.

These related works point towards a distinct gap in having a holistic view of
the effect of augmentation techniques on supervised and unsupervised neural net-
works and their impact on new models of neural networks, such as transformers.
Furthermore, exploring and comparing generative and kinematic transformation
as part of dataset augmentation is interesting. Consequently, this work focuses
on bridging the above-mentioned gaps.
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Fig. 1. Data Augmentations applied in this work.

3 Augmentation Techniques

This work explores and analyses various augmentation techniques, specifically
for supervised and self-supervised learning, for human activity recognition as an
application. Thus, we address three data augmentation groups for multi-channel
time-series HAR: random transformations, generative models, and kinematics
from pose data1. Further, the work attempts to outline the effect of these tech-
niques on different use cases, such as dataset balancing, enhancement, variation,
and even learning strategies in specific, self-supervised learning. To further elab-
orate, the goal is to support ML practitioners and/or researchers in identifying
which augmentation technique would be ideal for their goal – for example, if a
dataset requires class or subject data balancing within a dataset, directly explor-
ing generative methods may be more valuable to augment the training dataset
than exploring random transformations on the dataset. Figure 1 presents the
augmentation techniques utilized in this work.

Random Transformation. This work refers to random transformation as an
algorithmic augmentation technique. As discussed in [11], random transforma-
tions refer to a function f(.) applied on a segment x to obtain a modified segment
x′. The implementation of these algorithmic augmentations, unless mentioned
otherwise, are adapted from [11,12].

Generative Augmentations. Considering use cases where the datasets are
imbalanced, generative models are helpful as an augmentation strategy, creat-
ing samples of underrepresented activity classes. Given the understanding from
[9] that synthetic data generated from GAN may be structurally different from
time-series data, an autoencoder design was chosen for the generative model. The
autoencoder model can learn the structural features of the original time-series
data while introducing randomness in motion. A tCNN architecture developed
from the work of [20] was used as the encoder. The encoder consists of four
convolutional layers with no pooling layer and ReLU activations. The fully con-
nected layers are replaced with 1 × 1 convolutional layers to facilitate the data
1 The code and parameters of the networks are available on https://github.com/

nilahnair/ICPR2024 DataAugmentation.

https://github.com/nilahnair/ICPR2024_DataAugmentation
https://github.com/nilahnair/ICPR2024_DataAugmentation
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Fig. 2. Architecture of the temporal autoencoder. The grey dashed boxes indicate the
parts of the autoencoder referenced in the text. Parts of tCNNencode: �: four 1 × 5
temporal convolutions based on the baseline tCNN. �: additional 1 × 1 convolution
layers. n and m represent the amount of feature maps for the two 1 × 1 convolution
layers. Parts of tCNNdecode: �: three 1×1 Deconvolution layer. n and m represent the
amount of feature maps for the first and second 1x1 deconvolution layers. �: four 5×1
Deconvolution layers. Parts of Attrpred: �: optional Poolinglayer. �: fully connected
layer with 19 Neurons for attribute vector calculation. �: Sigmoid activation function.
(Color figure online)

reconstruction from the computed feature representation. This change helps pre-
serve the time information of the data for synthetic data generation [15]. The
encoder will be indicated as tCNNencode.

The decoder is tasked with reconstructing the data from the feature repre-
sentation generated by the encoder. It has six deconvolutional layers with ReLU
activation layers. The final decoder layer comprises Sigmoid activations, as the
output range is expected to be between zero and one. This method is a conse-
quence of the normalisation of the input data. It is to be noted that, due to the
ReLU activation in the encoder, the reconstruction is a consequence of linear
regression. This decoder part will be called tCNNdecode.

Inspired by [29], we propose a fully connected layer parallel to the decoder
layer followed by a multi-head output layer. Thus, the extracted feature represen-
tation is passed to a fully connected layer with Sigmoid activation for computing
an attribute representation of activity classes as in [21] or softmax activation
function [20]. This parallel layer will be called Attrpred (Fig. 2).

The autoencoder has two parallel output layers - tCNNdecode and Attrpred.
Traditionally, reconstruction is trained using a Mean Squared Error (MSE) loss
function. The authors of [22] used Binary Cross Entropy (BCE) loss for Attrpred.
Thus, the autoencoder is trained with a combined loss function, MSE plus BCE.

Kinematic Augmentations. Inspired by the inverse kinematics calculation
in robotics [4], the authors in [18] propose a method to compute inertial mea-
surements from the derivation of sequences of joint poses of a human, e.g., from
marker-based Motion Capturing System (marker-based MoCap). These deriva-
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tives will act as a Synthetic On-body Devices (SOBDs), located on the human.
The SOBDs will provide linear acceleration a and angular velocity ω of the
human joints. Figure 3 shows an example of a SOBD located on left wrist of the
LARaMoCap [21], a marker-based MoCap dataset. The linear acceleration of the
SOBDs is computed by a combination of the linear acceleration and the angu-
lar rotation of the joint to a global or given origin frame {{O}}2. Equation (1)
presents the acceleration {O}

{J} a (t) equation for a frame attached to the joint {J}
with respect to the origin frame. {O}

{J} ω (t) and {O}
{J} ω̇ (t) are the angular velocity

and acceleration of the frame attached to the joint {J} with respect to a origin
frame; and pj the vector from joint {J} to the given origin frame.

Fig. 3. Example of the linear acceleration of a Synthetic On-body Device (SOBD) from
marker-based MoCap from two consecutive poses of the joint {J} located on left wrist
of the LARa-MoCap (LARa-M) dataset. A frame attached to joint {J} is represented
by the unitarian vectors towards (X,Y, Z), specified by �, �, �. The linear acceleration
O
{J}aj (t) on origin frame is presented in �. The vector from pose p{J} (t− 1) to pose
p{J} (t) is given in �. The linear acceleration of the joint {J} given in origin frame O

and frame {J}, including the gravity {J}aj (t) is shown in �. The gravity vector g is
given in �.

2 The origin frame {O} depends on the specifications of a marker-based MoCap sys-
tem.
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{O}
{J} aj (t) ={O}

{J} a (t)+{O}
{J} ω (t)×

({O}
{J} ω (t) ×{O} pj (t)

)
+{O}

{J} ω̇ (t)×{O}pj (t) , (1)

{O}
{J} a (t) is computed from the second derivative of a smooth spline approx-

imation of degree three on a small time-interval from a sequence of joint-pose
estimations. Similarly, the first and second derivative of a cubic spline interpola-
tion from a sequence of joint rotations is used to compute {O}

{J} ω (t) and {O}
{J} ω̇ (t).

This approach differs from the SOBDs using finite differences for human pose
estimation in that it assumes that local temporal neighbourhoods are likely to
be correlated. Specifically, a SOBD dataset is created from the derivatives of
overlapping sequences of human-joint recordings. Gravity influences real IMU
data. Thus, {O}

{J} aj (t) is summed with gravity in the direction of Z and is rotated
to its corresponding joint frame resulting in

{J}aj (t) ={J}
{O} R (t) ·

({O}
{J} aj (t) + g

)
(2)

where, {J}
{O}R (t) = Rz (t)Ry (t)Rx (t) and g = (0, 0,−9.8m/s)T .

4 Neural Networks and Training Methodology

This work experiments with two learning strategies: supervised learning and
self-supervised learning. For supervised learning, we explored three architectures:
convolutional neural network (CNN), LSTM, and CNN-transformer (transformer
with input embedding created with a convolutional layer). For self-supervised
learning, we focused on CNN. Within the CNN architecture, further structural
changes are considered depending on the channel density of the dataset. The
CNN for high channel density datasets is the temporal CNN-IMU network from
[20]. The CNN-IMU network assigns a branch of four convolutional layers to
sensors attached to each human limb (legs, hands and torso). Further, the con-
catenated features are provided to a multi-layer perception (MLP) to provide
activity classifications. In the case of low channel density datasets with a single
sensor attached to a single limb, the same network is modified to consist of a
block of four convolutional layers, followed by MLP. In contrast, dataset chan-
nel density is not considered for the LSTM and CNN-Transformer architectures.
The LSTM has four hidden layers of 256 dimensions, followed by two MLP
layers and a softmax activation layer. The CNN-Transformer is adapted from
the work of [25]. The network consists of a convolutional backbone that gener-
ates latent sequence embedding provided to the transformer encoder. The latent
sequence is further aggregated and provided to the classifier head. The cross-
entropy loss function trains the classifiers for the supervised learning method.
Adam’s Optimiser was effective in the case of CNN-Transformer, while Root
Mean Square Propagation (RMSProp) propagation was effective for the CNN
and LSTM architectures. To establish baselines for the study, a hyperparameter
study on batch size, learning rate, and epoch was conducted on each network for
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Table 1. Datasets used and their features. Here, LARamc, LARamb, and LARamm

stands for LARa MoCap, LARa-mbientlab and LARa-motionminers, respectively.
Sampl.Rate refers to the sampling rate chosen by the respective dataset creators.
#Subj. refers to the number of subjects and #Act. refers to the number of activity
classes in the dataset. Win. Size refers to the window size provided to the network.

Dataset #OBDs #Sensors Sampl. Rate (Hz) #Subj. #Act. Win. Size Overlap

MobiAct [24] 1 3 20 50 9 200 50

LARamc [21] - - 200 16 7 200 25

LARamb [21] 5 3 100 7 7 100 12

LARamm [21] 3 3 100 7 7 200 25

Motionsense [17] 1 3 50 24 6 200 25

Sisfall [26] 1 3 200 38 15 200 50

MotionMiners [19] 3 3 100 5 4 100 12

the datasets in the experiment. The weights of the autoencoder are initialised
using the orthonormal initialisation method. The RMSProp optimisation is used.
Gaussian noise with mean μ = 0.0 and standard deviation ρ = 0.01 is added to
the sensor measurements to simulate sensor inaccuracies [20].

In SSL, earlier successes in applying contrastive learning in computer vision
showed the importance of choosing the proper augmentations to create pairs
of images depicting the same classes [2]. This work explores solutions for the
same fundamental challenge in HAR. We chose the simple siamese representation
learning method SimSiam [3], as it has been proven to be simple and efficient
without the need for large batch sizes [2], tracking a running queue of previous
features [8] or a momentum encoder [6]. To identify the necessary augmentations
to successfully apply SSL in HAR, we perform self-supervised pre-training with
a fixed setup for every augmentation and every dataset. We use a batch size of
512, a learning rate 0.05 with cosine annealing and train for 256 epochs using the
Adam optimizer. Subsequently, linear probing is performed for every pre-trained
model with the same configuration and fixed seed. During linear probing, we use
a batch size of 50, a constant learning rate of 0.01 and train for 32 epochs.
For each combination of dataset and augmentation, we keep the model with the
best accuracy on the validation split of the corresponding dataset. Following the
standards of linear probing, convolutional layers are not trained to isolate the
impact of a given augmentation.

5 Experimental Results

As discussed previously, the effect of data augmentation methods varies based on
the networks used for training and the datasets upon which the augmentation
takes place [11]. Consequently, this work experiments varied techniques with
seven different datasets to account for these factors. The datasets were explicitly
selected to vary on the number of sensors,activities, sampling rate, and recording
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method. Table 1 shows the details of the selected datasets. It is to be noted that
as part of the pre-processing of the training data, no changes to the sampling
rate of the original datasets were performed.

Fig. 4. Augmentation parameter analysis on Sisfall dataset on pre-trained CNN
and LSTM

5.1 Algorithmic Augmentation

Unlike image data, a major issue with augmenting time-series data is that the
impact of augmentation is not human-perceivable. For instance, when adding
noise to a segment of activity data recording, it is often unclear to what extent the
vital information required for recognising the activity is retained and when the
complete information is lost. Thus, in a preliminary experiment, we augmented
the test data and ran an augmentation parameter variation testing phase on a
network trained without augmentation. The performance of the test data indi-
cated the extent the augmentation technique modified the test data features.
Further, this augmentation parameter analysis presented interesting observa-
tions. For instance, the Sisfall dataset performs quite well with jitter augmen-
tation in the test set, exhibiting its resistance towards noisy data. However, as
Fig. 4 shows, increasing the permutation parameter decreased the accuracy of
the test set.

Figure 5 presents the performance of the networks trained on each dataset
with one specific augmentation applied randomly at 50% probability. In addition,
a network trained without augmentation, referred to as Baseline, is presented
for all networks and datasets. We present the results graphically to analyse the
variation of performance of the networks on different datasets for each augmen-
tation method. In particular, the performance variation that an augmentation
technique brings compared to the baseline. Overall, one can see that with most
of the augmentation techniques, a fall in performance compared to the baseline is
apparent. In rare cases, the network performance improves for an augmentation
technique beyond the baseline.

In general, in alliance with the work of [11], a trend on the impact of the
augmentation techniques on the datasets is not present. The number of sensors,
the activities included in the dataset, and the labelling affect the performance.
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For instance, relatively similar performance can be seen between datasets with
a single sensor compared to datasets with more than one sensor. Furthermore,
CNN networks seem to be more accepting of augmented data. However, both
the gain and drop in performance are minuscule. A variation can be seen in
the Sisfall dataset where time-warping and permutation provide improvement
while slicing and vertical flip further reduce performance. In general, time-based
warping techniques increase performance. A similar benefit can be seen with
the random resampling and spectral denoising techniques. Vertical flipping of
the data as part of augmentation severely affects all the datasets except the
MotionMiners. A similar but more pronounced impact can be seen on the CNN-
Transformer.

Similar to Fig. 5, Fig. 6 presents the augmentation techniques’ impact on
half the dataset but with augmentations using the same parameters. Interest-
ingly. more pronounced variations in the impact of the augmentation techniques
can be found here. In the case of CNN networks, an interesting trend can be
noticed. LARamb, LARamm and MotionMiners, which have sensors placed in var-

Fig. 5. Implication of augmentation on the respective dataset for CNN, LSTM and
CNN-Transformer. � indicates LARamb, � indicates Mobiact, � indicates Motionsense,
� indicates Sisfall, � indicates MotionMiners, and � indicates LARamm. (Color figure
online)

Fig. 6. Implication of augmentation on the respective half dataset for CNN, LSTM and
CNN-Transformer. � indicates LARamb, � indicates Mobiact, � indicates Motionsense,
� indicates Sisfall, � indicates MotionMiners, and � indicates LARamm. (Color figure
online)
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ied body locations, drop in performance with spectral denoising, while the other
datasets with one sensor generally improve performance. Unlike the complete
training Motionsense set, the half training set do not show visible improvement
with augmentations but rather a steep drop in performance. Unfortunately, Sis-
fall datasets performance on CNN-Transformer falls rapidly with augmentations
techniques except for magnify and spectral denoising techniques.

5.2 Generative Augmentations

To evaluate the Generative-based augmentation, we first experimented with the
temporal autoencoder model to find the best architecture for the reconstruction
task. Next, the experiments on creating and using the synthetic data gener-
ated by the temporal autoencoder are presented. We choose the LARamc data
for these experiments to facilitate visualisation. The weighted F1 (wF1) score
and accuracy (Acc) are computed to measure the extracted features’ quality.
A semantic attribute vector is calculated for the data to compute the metrics.
This vector is then used to classify the activity based on the nearest neighbour
search and compute the metrics for the experiments. Thus, human movements
can be transformed into discriminative feature representations that can be recon-
structed3.

Having found the hyperparameters of the temporal autoencoder that give
high activity classification accuracy (details are given in the supplemental mate-
rial), we generate synthetic data by introducing Gaussian noise to the feature
representation. The LARamc data is used as an example to facilitate visualisa-
tion. To create a balanced dataset, an attempt was made to match the Handling-
Center activity samples that dominated the LARa dataset, as Fig. 1a in supple-
mentary shows. Thus, copies of the other activity classes were created to match
the sample size of Handling-Center activity class. These copies are given as the
input to the modified temporal autoencoder to generate synthetic data. A total
of 208768 samples of synthetic data were generated in which all classes occur
equally. In other words, we created 156229 more samples to create a balanced
dataset.

To evaluate the quality and impact of the temporal autoencoder-generated
synthetic data, the baseline tCNN network is trained for solving HAR using
semantic attribute vectors on the LARamc. Classification performance of wF1[%]
raises from 73.62 to 75.22 when balancing the LARamc using the generative
model. Table 2 shows the classification performance on the datasets when train-
ing using 50% and 100% of the training set and augmented to obtain a balanced
data generated by the generative model–column Gen.–, and comparing with no
augmentation. The performance of the classification network was found to have
mixed results for the datasets, being significantly higher for the MobiAct and
Motionsense when using 100% of the training set, and LARamm when having
available 50% of the training set.

3 Fig. 1b in supplementary shows that the autoencoder reconstructions are similar to
the original input data.
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5.3 Kinematic Augmentations

The total acceleration considering the linear and angular changes of the joint
poses along time is computed to generate SOBD data. These SOBDs will be
source domains for parameter-based transfer learning of HAR. The LARamc

is deployed for creating the subset LARa-Synthetic OBD (LARa-SOBD). The
LARa-SOBD is sampled at 200Hz, 100Hz, 50Hz, and 20Hz matching the sam-
pling rate of the target datasets.

Table 2. Classification performance in terms of wF1% CNN-IMU applied on the
inertial datasets, when balancing the datasets using generative models (Gen.), and the
kinematic technique (Kin.) utilising the LARamc as a data source. Values in bold are
significant with respect to the No Augmentation case by means of a permutation test.

LARamb LARamm MobiAct Motionsense Sisfall

wF1% No Aug. Gen. Kin. No Aug. Gen. Kin. No Aug. Gen. Kin. No Aug. Gen. Kin. No Aug. Gen. Kin.

50% 74.40 71.64 73.77 42.11 67.24 67.28 89.62 88.22 87.99 76.57 23.56 78.93 58.68 48.64 59.17

100% 74.59 75.00 76.32 71.21 71.85 67.08 94.20 94.55 95.25 86.79 96.01 88.04 63.75 17.36 58.92

Acc% No Aug. Gen. Kin. No Aug. Gen. Kin. No Aug. Gen. Kin. No Aug. Gen. Kin. No Aug. Gen. Kin.

50% 74.72 72.75 74.03 56.94 67.33 68.76 89.75 88.11 87.37 76.72 31.42 79.04 59.37 52.18 59.74

100% 75.55 75.33 77.08 71.89 72.01 67.62 94.38 94.73 95.35 86.80 96.07 88.016 63.98 24.76 59.24

Table 3. Classification performance in terms of wF1[%] and Acc[%] from the CNN-
IMU applied on the MotionMiners dataset when applying the kinematic technique
utilising the LARamocap as data source. Values in bold are significant with respect to
the No Augmentation case by means of a permutation test.

50% 100%

No Aug. Kinematic No Aug. Kinematic

wF1[%] Acc[%] wF1[%] Acc[%] wF1[%] Acc[%] wF1[%] Acc[%]

49.15 ± 7.0959.29 ± 1.1580.45± 0.7880.64± 0.7482.89 ± 0.5883.80 ± 0.6686.11± 0.2186.22± 0.50

In general, the performance improves according to the proportion of the
dataset. The learnt features from human poses and their derivatives can be
deployed on inertial data. This suggests that filters learnt short temporal rela-
tions from the sequence inputs per channel independently of the rather related
domain. Since time sequences of human poses and inertial measurements are
physically related, the number of channels differs, and the source and target
belong to the same problem, i.e., activity classes. The activities in the LARamb

dataset are performed in a warehouse environment, whereas the source datasets
consider activities of daily living. As Table 2 shows, the performance signifi-
cantly improves when considering the 50% and 100% of the LARamb, 50% of
the LARamm and Motionsense—not significantly for Sisfall ; and 100% of the
LARamm and MobiAct.
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In the case of the industrial dataset MotionMiners with few subjects and only
three On-Body Devices (OBDs), the classification performance gets significantly
boosted by the use of SOBDs from a wF1% = 49.15 ± 7.09 to 80.45 ± 0.78 for
the 50% training dataset and from wF1% = 82.89 ± 0.58 to 86.22 ± 0.50 for
the 100% of the training set. These improvements show the potential of this
technique when data is limited, as Table 3 shows.

Table 4. Test accuracies after linear probing per dataset and augmentations used
in self-supervised pre-training. During linear probing, only fully connected layers are
trained, while convolutional layers are frozen. Values in bold or bold gray identify the
best augmentation or second and third best augmentation per dataset, respectively.

Augmentation LARamb MotionMiners LARamm Motionsense MobiAct Sisfall

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Supervised Baseline 76.74 75.70 83.27 81.68 74.32 72.94 95.78 95.69 95.13 94.90 71.23 70.82

Flipping 57.56 44.28 59.33 44.18 59.18 49.12 91.50 91.48 86.36 84.60 52.71 50.10

Vertical Flip 59.63 46.84 59.15 44.10 57.18 41.60 68.53 59.28 84.04 81.35 14.90 6.12

Jittering 58.80 48.90 64.37 63.35 57.91 43.40 61.50 53.81 89.0387.8259.7458.88

Magnify 57.57 43.52 59.51 44.65 57.73 43.80 70.54 63.84 88.17 86.60 60.2458.92

Tilt 58.39 47.77 68.23 67.68 57.18 41.60 24.34 9.53 92.1991.54 43.85 38.58

Scaling 64.6959.78 62.39 58.10 57.23 41.76 89.40 89.27 89.2488.08 51.51 48.25

Permutation 60.10 49.36 81.31 79.33 59.41 47.01 67.56 60.20 31.34 14.96 57.74 56.64

Resampling Random71.8368.1568.54 64.80 66.3663.57 87.41 86.55 64.51 52.30 31.67 22.94

Slicing 56.80 41.16 59.33 44.18 57.18 41.60 72.35 68.42 31.34 14.96 58.34 57.34

Spectral Denoising 58.68 47.87 59.32 44.39 58.00 43.72 62.49 54.94 31.34 14.96 49.62 48.48

Magnitude Warping 56.80 41.16 59.34 44.21 61.3852.5291.96 91.98 31.34 14.96 58.9457.40

Time Warping 65.3060.39 59.33 44.18 60.8553.2592.32 92.23 87.93 86.51 10.89 2.14

Window Warping 61.47 53.37 59.33 44.18 57.18 41.60 92.92 92.87 31.34 14.96 50.97 48.86

5.4 Self-supervised Learning

Following the method explained in Sect. 4, we report test accuracies after linear
probing in Table 4. For Motionsense, MobiAct and Sisfall, we used tCNN, while
for LARamb,MotionMiners and LARamm, we used tCNN-IMU with five and
three branches respectively.

For three of the six tested datasets, SSL pre-training achieves comparable
results as the supervised baseline, although not exceeding it. Unlike in research
from the vision domain [2,13] the results do not show a general recommenda-
tion of augmentations across datasets. For example, on Sisfall time warping
achieve the worst performance, while at the same time, applying time warping
achieves second or third best performances on most other datasets. However, less
severe, similar behaviour is noticeable when applying augmentations in super-
vised training (compare Fig. 5). Contrary to supervised learning, choosing the
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wrong augmentation in SSL leads to a catastrophic drop in possible performance.
Additionally, we investigate the quality of learned embedding spaces under the
constraint of fewer available annotated data during linear probing by halving
the training data. We report these results in the supplementary material. While
the results show that with fewer data, the performance drops slightly, the per
dataset trends observed in Table 4 are still observable here.

6 Conclusion

This work analyses various augmentation techniques and their impact on three
networks and two learning strategies on seven datasets used in varied contexts.
We find that neural network models, specifically CNNs, are more receptive to
algorithmic augmentation techniques. In contrast, LSTM and CNN-Transformer
performance show more variability, thus answering RQ1 on the response of neu-
ral networks to augmentations. In fact, most of the algorithmic augmentation
techniques resulted in severe performance drops compared to gains. Thus, unlike
in the domain of images, the use of varied augmentation techniques can be
deemed not useful in augmenting and increasing the variability within the train-
ing data, thus resulting in a non-concrete answer to RQ2 on the possibility of
providing a method to choose the augmentation technique for a specific dataset.
However, the results indicate that CNN-Transformers prefer the actual quantity
of data to better performance than being provided augmented data. In compari-
son, a pronounced and stable gain in performance is observed when using gener-
ative and kinematic augmentation techniques, specifically when one attempts to
use the generated data to fine-tune the networks. As a result, addressing the data
imbalance and model generalisation through generative and kinematic models
is advisable, answering RQ3 on choosing between generative and algorithmic
augmentation techniques. Finally, the research indicates that similar to super-
vised learning, one cannot obtain a trend in the performance of augmentation
techniques for SSL. However, certain augmentation techniques can achieve per-
formance close to supervised learning, thus answering RQ4 on the identification
of augmentation techniques beneficial for SSL.

As part of future work, further experimentation and evaluation of augmen-
tation techniques with SSL is required. Furthermore, inspired by the availability
of accessible and efficient augmentation libraries in computer vision, develop-
ing a standardized augmentation library for multi-channel time-series data is
desirable, ideally for HAR. In an interesting research direction, augmentation
techniques could be fused, e.g., using data generation to create pairs for SSL
methods by synthesizing a sample conditioned on original data. Finally, gener-
ative networks can be conditioned on deep representations of subjects’ inertial
data; synthetic data augmentations by interpolating among subjects could be a
feasible way of generating additional plausible data.
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Abstract. We propose an adversarial automatic data augmentation
with hard sample suppression by incorrect class likelihood for time series
data. Automatic data augmentation (ADA) is a practical framework
when the number of training data is small. In particular, an ADA based
on adversarial loss, such as TeachAugment, can improve classification
accuracy in optimizing complex transformation parameters with class
and instance dependencies. In this paper, we aim to extend adversarial
ADA for image recognition to time series data. The critical challenge is
that data augmentation for time series data is more difficult than that
for images in designing a transformation function that does not cross
the discriminant class boundary. When existing ADA frameworks are
naively applied to time series data, the transformation function often
generates augmented data similar to the incorrect class. As a result, this
overly hard-to-identify data degrades the accuracy of a target classifier.
In general, this hard-to-identify data near the class boundary has a high
likelihood both in the correct and incorrect classes. The proposed method
can reduce this hard-to-identify data by introducing a novel fidelity loss
that suppresses only the likelihood of the incorrect class. Comprehensive
experiments on two datasets demonstrate the effectiveness of the pro-
posed method. The project code is included in the supplemental mate-
rial.

Keywords: Data augmentation · Time series · Classification

1 Introduction

Data augmentation is one of the most practical approaches in various tasks such
as image, time-series signals, and audio when training data is small because
deep learning is data-hungry. The training data can be virtually increased by
applying random transformations during training. Various transformations are
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used for data augmentation, including transformations that preserve semantics
and transformations that improve the robustness of the model [24,27].

Automatic data augmentation (ADA), which automatically searches for an
appropriate set of transformations (i.e., policy), has been widely studied, mainly
in general image recognition. This is because it is difficult to properly select and
set the strength of data augmentation among various transformations. A practi-
cal approach to efficient search among the enormous policy space is to perform an
adversarial strategy [20,25]. The adversarial strategy, which searches for a policy
that maximizes the task loss of the target model, allows for policy search that
can empirically improve model generalization while reducing the computational
load. The point of the adversarial strategy is that it efficiently trains discrimina-
tive boundaries by generating data that is difficult to classify for a target model
on training. In particular, TeachAugment [25], which leverages a teacher model
to moderate the adversarial updates of augmentations, has improved accuracy in
optimizing complex transformation parameters with class and instance depen-
dencies.

Classifier’s 
boundary

Class-wise
density

Teacher’s 
boundary

Classifier’s 
boundary

TeachAugment Ours

Fig. 1. Concept of augmentation criterions in TeachAugment and our method.

In this paper, we aim to extend those sophisticated adversarial data augmen-
tations for image domain to time series one. Existing adversarial data augmen-
tations, e.g., TeachAugment, are designed for general image classification tasks
like CIFAR10/100 [13,14] and ImageNet [5]. A vital assumption in ADA for
the images is the ease of designing transformation functions, i.e., it is intuitive
and easy for humans to design “transformation functions that do not change the
belonging class of each sample." For example, based on visual intuition, we adopt
chromatic and geometric transformations as candidates that do not change the
belonging class of each sample.

On the other hand, for time-series data, it is difficult to design a suitable
transformation function that does not change the belonging class of each sample
because this implicit assumption based on human intuition is unavailable. In
the time series domain, ambiguous samples located between classes are often
generated due to applying adversarial augmentation frameworks that proactively
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generate samples located around discriminative boundaries, as shown in Fig. 1
(left). The frequent generation of ambiguous samples that are difficult to identify
as their class is detrimental to performance. A method that is applicable to time-
series data while taking advantage of ADA’s strengths for the image domain is
strongly needed.

This paper proposes an adversarial automatic data augmentation using hard
sample suppression for time series data. The key is suppressing the absolute
likelihood value for incorrect classes to avoid hard-to-identify samples. The gen-
eration of hard-to-identify data can be reduced by introducing a novel fidelity
loss that can suppress only the incorrect class likelihoods because the hard-to-
identify samples near the discrimination boundary are the part where the correct
and incorrect class likelihoods coexist, as shown in Fig. 1 (right). Comprehen-
sive experiments on two datasets demonstrate the effectiveness of the proposed
method.

The contributions of this paper are as follows:

– We propose an adversarial automatic data augmentation using hard sample
suppression for time series data.

– We introduce a loss function (Fidelity loss) that suppresses transformations
that would change classes to other ones.

– We demonstrate the effectiveness of the proposed method for time series
dataset where existing adversarial data augmentation fails to suppress trans-
formations that adversely affect performance.

2 Related Work

The methods for finding effective transformations for data augmentation have
been widely explored, mainly in image recognition tasks. One of the earliest
methods, AutoAugment [4], searches augmentation policy to get smaller valida-
tion loss through reinforcement learning. Although AutoAugment uses a smaller
model on a subset of the training set in the search phase, it requires high compu-
tational cost in retraining for many times. Subsequent works proposed effective
variations: population-based training of augmentation schedules [9], alternation
of criterion by density matching [17], and utilizing a shared pre-trained model
to warmstart AutoAugment [12]. Gradient-based bi-level optimization further
improved the efficiency of the augmentation search [7,8,16,26]. Although most
previous works rely on default augmentations as a fixed part of augmentation,
DeepAA [29] showed it can search multi-layer transformation from scratch by
layer-wise search using gradient matching criterion. SLACK [19] further enabled
us to learn the joint probability of multiple transformations directly by the sta-
bilization of gradient updates using a cold-start strategy and a Kullback-Leibler
regularization.

As shown in RandAugment [3], optimal augmentation parameters depend on
the amount of training data. Adversarial AutoAugment [20] proposed to tune
augmentations in online manner during training models on whole train set by
updating augmentation to increase a train loss. Similarly, PointAugment [15]
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updates transformation to increase classification loss to some limit value pro-
portional to loss on original data. Recently, TeachAugment [25] proposed a min-
max formulation of joint training of the model and augmentations using a teacher
model. It minimizes adversarial loss and classification loss of the teacher model,
which can be another model trained on the same data or the exponential mov-
ing average of a model on training. This method can suppress indiscriminative
data due to strong augmentation without prior knowledge, and also successfully
trains class-dependent and instance-dependent augmentations.

While many works on automatic data augmentation are designed for image
recognition tasks, several works explore the optimization of data augmentations
on time series. There are many transformation candidates for the general time
series, as summarized in the survey paper [27]. Fons et al. [6] calculates losses for
original and augmented samples by all transformation candidates, and reweight
them with trainable parameters or trim ones of top-K and bottom-K values.
Rommel et al. [22] showed the importance of class-dependence of augmentations,
but their method fails to improve final accuracy on class-dependent settings by
gradient-based bi-level optimization.

We focus on adversarial augmentation because it can search data augmenta-
tion parameters with all training data, and have been shown to successfully find
class-dependent or instance-dependent augmentation.

3 Method

The goal of the automated data augmentation is to find better augmentation
to get a target model with high accuracy on unseen test data when trained
on train data augmented by the augmentation. Let x and y be input data and
label sampled from train data Dtrain, respectively. Train data Dtrain contains Nk

samples in class k ∈ 1, ...,K. We denote a learnable augmentation parameterized
φ as aφ.

In the following, we first describe the overview of the proposed method. Then,
the module and loss functions in our method are described in Sects. 3.2, 3.3, and
3.4. Finally, we explain the learnable data augmentation for time-series data in
Sect. 3.5.

3.1 Overview

The proposed method “PostAugment” is based on an adversarial data augmenta-
tion. The adversarial data augmentation approach does not attempt to maximize
performance on validation data created by separating from train data; instead,
it maximizes the training loss for a target model on train data while the model
is training using all the train data.

TeachAugment [25] updates the augmentation parameters to decrease a loss
for the “teacher model” in addition to the adversarial loss for the target model
because naive maximization of the training loss may lead to indiscriminative
data generation. When augmentations with the updated parameters can change
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the class labels into different ones, TeachAugment tends to generate augmented
samples around inter-class boundaries to balance the teacher and the adversarial
losses. As a result, the target models’ performance is degraded due to training
on indiscriminative samples generated by the augmentations.

In contrast, our method introduces a novel fidelity loss to decrease the like-
lihood of augmented data being incorrect class using the per-class density esti-
mation on feature space instead of the teacher’s prediction based on the teacher
model. The overview of our method PostAugment is shown in Fig. 2. Our method
iteratively updates a target model with a density estimator and an augmentation
model. The keys are the above-mentioned fidelity loss and the isolation of the
density estimator training from the augmentation to avoid fitting label-confusing
transformation candidates.

Fig. 2. Overview of the proposed method. Our method trains the density estimator in
addition to the target model. Augmentation parameters are updated by backpropaga-
tion from adversarial loss and fidelity loss, alternately with the target model and the
density estimator.

The detailed training procedure in our method is shown in Appendix A. We
employ the following techniques as in [25]: sliced Wasserstein distance regular-
ization for (with coefficient 10.0) and experience replay of the augmentation
function aφ.

3.2 Density Estimator for Fidelity Loss

We introduce the per-class density estimator for calculating the fidelity loss
based on epistemic uncertainty modeling in the form of Dirichlet distribution.
This density estimator module enables us to check if augmented data is similar
to data in different classes based on observed train data.

The proposed per-class density estimation module is inspired by PostNets [2],
proposed originally for modeling the epistemic uncertainty for out-of-distribution
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(OOD) data detection without training on OOD data. The proposed estima-
tion module outputs pseudo counts of each class on a feature space, which can
be regarded as parameters of Dirichlet distribution over class probability. The
pseudo counts for class k is a density qk integrated to Nk using normalization
flow layers [21]. We utilize this qk as the likelihood of class k. In our experiments,
the architecture of this module is fixed to an eight-layer radial flow.

The proposed per-class density estimation module is attached to a given
target model as an additional branch in parallel to the last linear layer to keep
the model’s test-time architecture unchanged. The density estimation branch
has a projection layer to reduce dimension (e.g., to 8 in our implementation)
because the feature dimension is often too high for density estimation.

3.3 Loss Functions for Model with Density Estimator

The task loss Lcls to update the target model is a cross-entropy loss in this
paper. Any classification losses can alternate this choice. We calculate Lcls both
on raw and augmented samples to ease the density estimation of raw samples.

The density loss to train the density estimation module is below:

Lde(x, y) = Ψ(1 + qy(x)) − Ψ(
K∑

k=1

(1 + qk(x))) + ρH(q(x)), (1)

where Ψ(·) is digamma function and H is entropy regularization term to pro-
mote smoothness with coefficient ρ (set to 1.e-5) [2]. The first two terms are
derived from an expectation value of cross entropy over Dirichlet distribution.
The gradients from this loss are stopped before the projection layer in order not
to affect updates of the target model. The feature extractor in the target model
is updated independently of the density loss; therefore, this branch may fail to
keep fit on train data density. In our experiments on trajectory data in Sect. 4.1,
the accuracy for this branch is comparable to that of the target model.

3.4 Loss Functions for Augmentation

The objective of augmentation models is minimizing the sum of two components:
adversarial loss Ladv and fidelity loss Lfdl.

Lφ = Ladv + αLfdl, (2)

where α is a hyperparameter (set to 10.0 if not mentioned).
The adversarial loss Ladv is makes augmentations difficult for the target

model, promoting efficient training and better generalization. In the proposed
method, we employ the non-saturating loss adopted as in [25]:

Ladv(x′, y) = −
K∑

k=1

ỹk log (1 − fk(aφ(x′, y))), (3)
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where ỹ is a soft target, original target label y after label smoothing (with a
smoothing parameter 0.1).

The fidelity loss Lfdl in Eq. (2) is introduced to suppress transformations that
change data difficult to classify. It is difficult to judge the true labels of trans-
formed samples; therefore, we only penalize transformations that make samples
similar to raw samples in different classes. We utilize the density estimation
results as a likelihood qk(x) that a transformed sample is in each class k.

Lfdl(x′, y) =
∑

k �=y

log (1 + qk(x′)). (4)

Here, the offset 1 is inserted to prevent gradients of this loss from divergence
at small qk. This loss sufficiently contributes to the updates of augmentation
parameters for a minority class in an imbalanced dataset because confusion to
majority classes is penalized heavily by qk with normalization coefficients pro-
portional to population Nk.

3.5 Stochastic Learnable Data Augmentation for Time-Series Data

The learnable augmentation aφ in this paper is designed as sequential trans-
formations of all candidates. The transformations are parameterized through
probabilities and magnitudes for candidates. We consider two settings: instance-
aware and class-aware.1

Instance-Aware. The instance-aware setting is a one-dimensional version of
augmentations in TeachAug [25], originally implemented for two-dimensional
image data. It consists of color transformation and geometric transforma-
tion. The one-dimensional color transformation is changed to amplitude scal-
ing with different scaling coefficients and offsets by input dimensions. The one-
dimensional geometric transformation is scaling in the temporal axis. The class-
dependent probabilities to apply each transformation are approximated by the
differentiable form using Gumbel-Softmax [11] and applied to corresponding
magnitudes. The magnitude parameters are sampled as the normalized outputs
of multi-layer perceptrons that receive a random noise vector concatenated with
a class label, and only for color augmentation, that also receive data for local
instance dependency.

Class-Aware. The class-aware setting is a simpler modeling, where the magni-
tude parameters are sampled from a common distribution for all data in the same
classes. We sample a random variable from a Gaussian, normalize it by a sig-
moid function, and multiply a learnable magnitude parameter to it. We assigned
independent magnitude parameters for the geometric transformation to scaling
up and down limits. In this setting, we add jittering, which adds random noise,
where the magnitude is the maximum noise amplitude.

1 We focus on the criterion for augmentation optimization in this paper. We leave
improving parameterized candidates for time series augmentation for future work.
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Implementation Details. It is important to care about the initialization of
augmentation parameters. In the instance-aware setting, all parameters are ini-
tialized to zero, which means zero magnitudes and 0.5 probabilities. It enables
augmentation updates and training from raw data. In the class-aware setting,
the initialization to zero means the magnitudes are set to half the maximum val-
ues. The non-zero magnitude initialization must be considered when applying
discrete augmentation, such as spatial flip (with gradient approximations).

4 Experiments

We conducted two sets of experiments. The first set is the experiments on our
private dataset for trajectory classification. The second set is the experiments on
UEA Multivariate Time Series Classification Archive, public time series dataset.

4.1 Trajectory Dataset

Dataset. Trajectory data are tracks of small particles in transparent liquid con-
tainers. The classes are defined as “class0” for foreign particles, “class1” for
bubbles, and “class2” for scratches and detection noises. Each trajectory is
generated by object tracking of videos and consists of eight components: time,
horizontal coordinate, vertical coordinate, size, size in log-scale, mean bright-
ness, variance of brightness, and two-dimensional positional encoding (all com-
ponents are calculated for each detected blob and normalized into [0, 1]). Posi-
tional encoding here is designed for this dataset to tell if current positions are
in a container and under a liquid surface in the respective dimension. All videos
capture the same movement of the containers, including two static sections at
different poses after rotations to induce the movement of particles in liquid. The
trajectory in these static sections “section I” and “section II” are used as different
datasets. Their input length is in [26, 1000] and [20, 340], respectively. The test
sets (two splits, A and B, for each section) are separated not to include the data
extracted from common videos in the training sets. The resulting numbers of
samples and example plots are shown in Appx. B.

Experimental Setup. A model architecture used in this experiment is Adap-
tive Multi-Scale Convolutional Neural Network [23] proposed to classify frag-
mented time series such as trajectory data. All models are trained by SGD with
momentum 0.9 and batch size 32 using cross-entropy loss for 80 epochs. The
learning rate is scheduled to warm up linearly to 0.01 in the first 10 epochs and
multiplied by 0.1 at 60. We report miss rates (MRs) on the test set at the best
and the last epoch as the average of 5 runs with different random seeds.

We compare our method with three baselines: i) None trains a target model
only with a default augmentation random crop. ii) Fixed Random uses all train-
able augmentations at random within max magnitudes after random crop. iii)
TeachAugment [25] is the existing method that updates all trainable augmenta-
tions to reduce the sum of the adversarial loss in Eq. (3) for the target model
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and the target loss for a teacher model generated by exponential moving aver-
age of the target model with decay rate 0.999. In the instance-aware setting,
the optimizer for augmentation parameters is AdamW [18] as in TeachAugment
experiments. In the class-aware setting, it is changed to SGD with momentum
0.9 because the parameters saturated early in the training stage with only small
updates with AdamW. The max range of magnitudes for color, geometric, and
jittering transformation are set to [0.5, 1.5], [0.5, 1.5], and [0.0, 0.5], respectively.

Main Results. The results are shown in Table 1. Fixed Random increased miss
rates compared with None in the trajectory dataset. TeachAugment shows better
results compared to Fixed Random in most cases, and our method achieved much
lower miss rates. On section II dataset, there are the case our method cannot
reach the performance of None. This may be due to the difficulty to update
transformation probabilities to zero because it needs large value.

Table 1. BestMR and LastMR results on our trajectory data. Data augmentation with
class parameters is evaluated. Augmentation with class-wise parameters on trajectory
data. The best/second results are shown in bold/italic, respectively.

(a) BestMR Results
Section I Section II

Method Split-A Split-B Split-A Split-B Average
None 7.120 (.172) 3.353 (.142) 2.489 (.138)1.410 (.059) 3.617
Fixed Random 8.333 (.286) 3.792 (.360) 4.220 (.152) 3.018 (.360) 4.863
TeachAugment 7.994 (.277) 3.676 (.331) 4.278 (.250) 2.604 (.314) 4.660
PostAugment (Ours) 6.877 (.193)3.145 (.151) 2.546 (.218) 1.426 (.198) 3.520

(b) LastMR Results
Section I Section II

Method Split-A Split-B Split-A Split-B Average
None 7.977 (.168) 4.185 (.412) 2.904 (.293) 1.592 (.069) 4.195
Fixed Random 13.40 (3.41) 4.393 (.661) 4.220 (.152) 4.444 (.140) 6.699
TeachAugment 14.30 (4.53) 4.879 (1.04) 4.278 (.250) 4.643 (1.84) 7.124
PostAugment (Ours) 7.783 (.201)4.092 (.422)2.804 (.297) 1.725 (.237) 4.129

Next, we evaluate the initialization dependency by changing the initializa-
tion conditions of augmentation parameters. The original setting (medium init.)
sets all parameters to 0, which means probabilities and magnitudes are set to
0.5 and half-maximum values. They are changed to −1 in low init. and 1 in
high init. setting. We insert three epochs with no augmentation for safe train-
ing in high init. cases because the class-dependence of augmentations may leak
the class label to the target model due to training on mainly augmented data.
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Fig. 3. Initialization dependency of the proposed method and TeachAugment by chang-
ing initialization of augmentation parameters. The proposed method outperforms
TeachAugment in all initial values.

The resulting miss rates are shown in Fig. 3. We also compare the tendency of
parameter updates in Fig. 4. Both methods change parameters little for class1
with the smallest number of data due to less frequent updates. In our method,
the probabilities are updated to lower values for class0 than class2 even if it
needs larger updates for class0 with a smaller number of data than class2.
This result indicates that the loss in our method can suppress transformations
well, even for class-imbalanced datasets.

We also compare TeachAugment and our method on the instance-wise setting
(Table 2). The results on TeachAugment are almost better than the results on
the class-aware setting in Table 1. This result may be caused by zero magnitude
initialization in instance-wise setting, which is important for TeachAugment.
Although Our method shows a little worse results compared to class-aware set-
ting, it is still better than TeachAugment.

Table 2. Augmentation with instance-wise parameters on trajectory data. The best
results are shown in bold.

Datasets Split BestMR LastMR
TeachA PostA (ours) TeachA PostA (ours)

Section I A 7.184(.184)7.087(.306) 7.767(.334)7.524(.313)
Section I B 3.815(.231)3.468(.283) 5.064(.719)4.671(.397)
Section II A 3.619(.200)2.804(.155) 4.692(.706)3.648(.622)
Section II B 1.907(.194)1.443(.172) 2.206(.139)1.675(.206)
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Fig. 4. Parameter updates in TeachAugment(top) and PostAugment(bottom) on split
A of section I. Probabilities averaged over 5 runs for different initial values. Each
column is corresponding to the respective probability of color, geometric and jittering
transformation described in Sect. 3.5.

Ablation Study and Sensitivity Analysis. Table 3 shows the effect of raw
data training, training target models both on augmented and original data simul-
taneously, on our method. There is clear increase of miss rates without raw data
training. Our fidelity loss is calculated by density estimators of the raw data
features by itself, and density fitting can be harder when the input features
extracted by models trained only on augmented data.

The main hyperparameter in our method is α, which determines the relative
weight of the fidelity loss to adversarial loss. Figure 5 compares resulting miss
rates over different values of α. We also change the weight of the teacher loss
in TeachAugment (the original version is corresponding to α = 1). The results
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Table 3. Ablation study on section I.

Method Split BestMR LastMR

PostAugment A 6.942(.184) 7.589(.359)
w/o raw data training 7.751(.522) 12.38(2.94)
PostAugment B 3.121(.216) 4.185(.310)
w/o raw data training 3.861(.240) 4.647(.207)

show the best miss rates are found in α = 15 on the average. There are large
margins between our PostAugment and TeachAugment even for large α.
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Fig. 5. Sensitivity to coefficient α for the fidelity loss or the teacher loss.

4.2 UEA Multivariate Time Series Classification Archive

Dataset. The UEA multivariate time series archive [1] contains 30 classification
datasets with various characteristics, as summarized in Appendix C.

Experimental Setup. We evaluate each augmentation method using Incep-
tionTime [10] without ensembling. The training settings are mostly chosen fol-
lowing the existing work that applied augmentations to the same datasets [28]:
the optimizer is AdamW [18] with weight decay rate 10−5, the batch size is 64,
the maximum epoch is 1, 500, the base learning rate is initially 0.001 and sched-
uled by multiplying 0.5 when training loss has not decreased for 50 consecutive
epochs down to the minimum value 0.0001. We stopped training if the minimum
validation loss was not updated for 100 epochs. All experiments are repeated
five times with different splits of the datasets, including the original train test
split of the dataset. The rest four splits were generated by random resampling
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Table 4. Accuracy comparison on three groups of UEA multivariate time series archive
devided by train set sizes. Each column show accuracy on None and accuracy improve-
ment from None on the rest. The best results are shown in bold.

Dataset (#Train<100) None RandomRandA SLACK TeachA PostA
StandWalkJump 36.00 -9.33 -5.33 -2.67 +6.67 +8.00
AtrialFibrillation 21.33 +10.67 +5.33 +12.00 +12.00 +14.67
ERing 86.18 -0.16 -1.97 -69.51 +1.54 +1.78
BasicMotions 100.0 -0.50 -6.00 -50.00 +0.00 -0.50
DuckDuckGeese 63.20 +4.00 -0.80 -40.80 +3.20 +3.20
Best counts 1 1 0 0 1 3

Dataset (100<#Train<1000) None RandomRandA SLACK TeachA PostA
Cricket 88.59 +3.59 -48.44 +5.02 +6.88 +2.03
UWaveGestureLibrary 79.63 +9.25 -4.88 +3.62 +5.38 +0.13
Epilepsy 95.79 +1.46 +0.52 +1.89 +3.48 +2.40
Handwriting 40.47 +4.00 -18.29 +1.98 -12.32 -13.02
RacketSports 88.82 -0.56 -1.08 -0.79 -0.07 -1.49
HandMovementDirection 52.50 -18.97 -9.44 +2.64 +0.63 -1.16
Libras 80.61 -6.02 -1.25 +3.39 +3.62 +6.04
NATOPS 91.53 +1.25 +0.79 +3.58 +2.12 +2.36
SelfRegulationSCP2 48.37 +2.03 +4.98 +8.52 +7.20 +4.78
Heartbeat 64.90 +1.21 -1.78 +11.88 +1.59 +1.52
EthanolConcentration 27.04 -2.02 -3.71 +2.62 +6.97 +7.22
PEMS-SF 86.53 -41.61 -44.38 +3.41 -9.70 -13.04
SelfRegulationSCP1 79.51 -0.17 -0.73 +9.84 +6.40 +3.41
JapaneseVowels 94.41 +0.64 -10.73 +1.26 +1.45 +2.25
ArticularyWordRecognition 94.20 -2.41 -0.35 +1.80 +1.28 +2.03
MotorImagery 47.03 -2.14 +1.51 +11.77 +11.32 +9.67
FingerMovements 60.78 -1.65 -5.87 +1.42 -0.82 +4.43
Best counts 1 2 0 7 2 5

Dataset (#Train>1000) None RandomRandA SLACK TeachA PostA
CharacterTrajectories 97.54 +0.50 -16.89 +1.51 +1.44 +1.39
LSST 43.46 +1.85 -6.12 +19.19 -0.15 -11.12
PhonemeSpectra 20.38 +5.02 -0.11 +6.16 +6.36 +4.94
FaceDetection 68.82 -5.88 -0.53 +4.50 +3.13 +1.60
SpokenArabicDigits 92.14 +5.23 +6.00 +7.40 +6.97 +7.19
PenDigits 97.39 +1.75 +0.48 +2.17 +1.89 +1.94
InsectWingbeat 65.98 +1.78 -0.37 +2.91 +1.33 +1.06
Best counts 0 0 0 6 1 0
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from the combined train and test datasets with a preset seed value, such that
the new class populations matched the original ones.

We compare our method with TeachAugment [25] and four baselines: None
trains a target model without any augmentations. Random uses all trainable
augmentations at random within max magnitudes. RandAugment [3] is a simple
grid search (using a quarter of train set for validation here) on reduced aug-
mentation parameters: the number of augmentations to apply at once and the
magnitude level of fixed strength of augmentations (five levels here). SLACK [19]
is one of the latest methods based on the maximization of a target model’s per-
formance on a validation set. SLACK first trains a model on half of the train
set without augmentation and searches for augmentation policy by training the
pre-trained model with each policy and evaluating it on the rest half. Then, the
model is trained with the policy on a whole train set. Note that the augmentation
parameterization in SLACK is not the same as that of others.

Results. The results are shown in Table 4, grouped by the number of train
samples: less than 100 (top), 100 to 1000 (middle) and more than 1000 (bot-
tom). Our method shows better results on small datasets. In contrast, SLACK
is better on large datasets. This result can be explained as the optimization
in SLACK, based on the split validation set, degrades on an extremely small
dataset due to insufficiency of validation data. In contrast, our PostAugment
and TeachAugment can utilize the whole train set to optimize augmentations.

5 Conclusion

We proposed the adversarial automatic data augmentation with hard sample
suppression by incorrect class likelihood for time series data. The key challenge
is that data augmentation for time series data is difficult to design a transforma-
tion function that does not cross the discriminant class boundary. The proposed
method can reduce to generate this hard-to-identify data by introducing a novel
fidelity loss that suppresses the likelihood of the incorrect class. Comprehen-
sive experiments on two datasets demonstrated the effectiveness of the proposed
method.
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Abstract. Annotating frame-level strong labels for training a dis-
tributed multi-microphone sound event detection model to both rec-
ognize and temporally localize sound events within sequences is diffi-
cult and requires considerable time and effort. For a given distributed
multi-microphone data, the strong labels identify the sound event cat-
egories in the environment along with their start and end times. Con-
versely, annotating sequence-level weak labels, which denote only the
presence of sound events in the multi-microphone data without tem-
poral information, is simpler. However, employing weak labels to train
a distributed multi-microphone sound event detection model presents
challenges. In this study, we propose leveraging weak labels within a
distributed multi-microphone sound event detection framework to iden-
tify and temporally locate sound events across the multiple microphones.
Our approach initially generates pseudo-strong labels for the distributed
multi-microphones using the weak labels provided. Subsequently, a latent
embedding estimation model for the audio data are learned using the gen-
erated pseudo-strong labels. Using transfer learning, the trained latent
embedding estimated model are then integrated within a sound event
detection model, which identifies and temporally localize sound events.
By integrating the latent embedding estimation model that is learnt from
the pseudo-strong labels with the sound event detection model, the pro-
posed framework leverages the knowledge from the weak labels and trans-
fers it for the sound event detection. We evaluated the proposed frame-
work on the MM Office dataset and compared it with state-of-the-art
baseline algorithms. The experimental results demonstrate that incorpo-
rating weak labels within the sound detection framework enhances the
event detection accuracy.

Keywords: Weak Supervision · Distributed Multi-Microphone Sound
Event Detection · Metric Learning

1 Introduction

Distributed multiple microphone sound event recognition is the research problem
of recognizing and temporally localizing sound events from data captured by
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multiple microphones scattered in a target scene. In a distibuted environment,
such as office or home, a single source data is limited to sound events in its
field-of-view. To effectively recognize sound events localized in different areas or
sound events which span across different areas in the target scene a distributed
multi-microphone data is required. For example, as shown in Fig 1, in an office
environment with multiple rooms, to effectively recognize events, such as “person
handing over documents to secretary”, multiple microphones distributed across
the office is required.

Fig. 1. An overview of different audio configurations. Unlike the other two configura-
tions, the distributed setup has the capability to capture individual events that span
across multiple microphones, as well as events confined to specific areas within the
environment.

Table 1. Label properties for sound event detection

Property Strong LabelsWeak LabelsPseudo-strong Labels

Num. Samples Limited (N) Large (M) Large (M)
M � N M � N

Event Start/End Time. � × �
Event Uncertainty × × �
Manually Annotated � � ×
Generated × × �

Traditionally, training a model for sound event detection requires strong
labels, that annotate sound events along with their temporal information in
a single-source audio sequence. However, obtaining these strong labels is a labo-
rious and time-consuming. This challenge is exacerbated in the context of dis-
tributed multi-microphone sequences, where annotations necessitate considera-
tion of data from the microphones distributed across different areas in the target
scene. Conversely, weak labels, which merely identify sound events in an audio
sequence without temporal information, are easier to annotate. Nonetheless,
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leveraging weak labels for training distributed multi-microphone sound event
detection models to estimate sound events along with their temporal character-
istics is non-trivial, as weak labels lack temporal information.

In this paper, a novel distributed multi-microphone sound event detection
framework that leverages easily available weak labels for sound event detection is
proposed. The characteristics of the different labels are shown in Table 1, where
the easily available weak labels are devoid of the temporal information, and
strong labels with temporal information are limited in quantity. In the proposed
framework, to effectively leverage the knowledge from the weak labels for sound
event detection, firstly, a pseudo-strong label generation algorithm is proposed
to estimate the pseudo-strong labels containing the temporal information for
the weak labels. Moreover, owing to the availability of limited strong label data,
a transfer learning strategy is adopted, wherein a latent embedding estimation
model, trained using the estimated pseudo-strong labels, is integrated within the
sound event detection model. By estimating the pseudo-strong labels and inte-
grating the trained latent embedding estimation model within the sound event
detection model, the proposed framework effectively leverages weakly labeled
data to enhance the robustness and accuracy of sound event detection systems.

The proposed framework operates in three stages. The first step generates
the pseudo-strong labels and class confident labels from the distributed multi-
microphone data and its weak labels using a pseudo-strong label generation
(PSLG) algorithm. Given that pseudo-strong labels are generated from weak
labels, there exist inherent uncertainties linked with their generation. These
uncertainties are expressed through the utilization of class confident labels. Using
them the second step trains a latent embedding estimation (LEE) model, trained
by metric learning along with the pseudo-strong label classification. Finally, in
the third step, the trained LEE model is integrated into the sound event detec-
tion model. The sound event detection model is trained using limited number
of distributed multi-microphone data with strong labels which contain the tem-
poral information. The proposed framework leverages the knowledge from easily
available weak labels to recognize and localize sound events in distributed multi-
microphone data.

The proposed framework is evaluated using the MM Office dataset [16], which
comprises distributed multi-microphone data with a lot of weak labels and a
few strong labels. The experiment section includes a comparative analysis with
the baseline algorithms and a detailed ablation study. Results demonstrate the
efficacy of the proposed framework in leveraging weak labels for sound event
detection. This study contributes to the literature in the following ways:

– Proposal of a method that leverages weak labels for distributed multi-
microphone sound event detection. Existing literature primarily focuses on
using weak labels for single-source sound event detection.

– Development of a novel pseudo-strong label generation algorithm to estimate
pseudo-strong labels and class confidence labels from weak labeled data.

– Proposal of a novel latent loss function for training the latent embedding
estimation model.
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The remainder of this paper is structured as follows. Section 2 presents a lit-
erature review. Section 3 details the framework. Section 4 discusses the validation
of the framework and presents experimental results. Finally, Sect. 5 summarizes
the findings and outlines the future research directions.

2 Literature Review

Sound event detection (SED) is the problem of recognizing and localizing sound
events in an audio sequence [11]. Deep learning-based SED frameworks report
state-of-the-art results using the CNN [4], CRNN [2], and 3D CNN models [10].
To increase the robustness of the SED, and to perform the recognition over
a wider area, researchers utilize multiple microphones scattered in a scene for
the event detection. The literature on distributed multi-microphone sound event
detection (SED) focuses on efficiently utilizing multi-microphone data to recog-
nize and localize sound events [1,3,14]. Casebee et al. [3] propose a deep learning
network for sound classification, where the network is trained on a fixed number
of channels, and the trained network is tested with varying number of micro-
phones. Phan et al. [14] propose a network, where four subnetworks handling
four low-level audio representations are used. The learned embeddings from these
subnetworks are used for the multi-microphone sound classification. The afore-
mentioned literature reports state-of-the-art detection accuracy but requires the
availability of strong labels.

In recent years, researchers have addressed this limitation by utilizing readily
available weak labels to train the SED models [5,9,12,13,15]. Shao et al. [15]
propose a multiple instance learning framework using CNN-based audio embed-
dings to leverage weak labels for the model training. In the work by Miyazaki
et al. [12] and Kong et al. [9], a transformer and a self-attention mechanism are
used within a weakly-supervised learning formulation. While reporting state-of-
the-art performance, the existing literature on leveraging weak labels for SED is
primarily restricted to single view audio processing.

Compared to the literature, in this paper, we propose to utilize weak labels
for a distributed multi-microphone SED framework. Moreover, a novel pseudo-
strong label generation algorithm is first proposed to estimate pseudo-strong
labels from the weak labels.

3 Proposed Framework

The proposed distributed multi-microphone SED framework is trained using
a dataset obtained from S microphones scattered in a scene. One sample of
the data is represented as a set of spectrograms, X = (X1, . . . ,XP ) with P
patches. Here, the p-th patch contains spectrograms from S microphones and
is represented as Xp = (xp,1, . . . ,xp,S). The strong label that is annotated
for every frame to recognize and localize the sound events for X is given as
gλ = (gλ

1 , . . . ,gλ
P ), where gλ

p = (gλ
p,1, . . . , g

λ
p,C), and ∀c ∈ {0,. . .C}, gλ

p,c ∈ {0, 1}
for the p-th patch in X. Strong label annotation, i.e., frame-level annotation,
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Fig. 2. An overview of the (i) testing phase and the (ii) training phase of the proposed
framework.

is laborious to annotate for distributed multi-microphone dataset, while weak
label annotation, i.e., sequence-level annotation, is easier. Thus, a large num-
ber of weak-labeled data can be obtained. The weak labels that identify the
sound events without temporal information for a sequence X are given as
gω = (gω

1 ,. . . , gω
C), where ∀c in{1, . . . C}, gω

c ∈ {0, 1}, and shared within the
patches in the sequence X.

Since the weak labels are easier to annotate, the distributed multi-microphone
dataset used to train the proposed framework contains M samples with weak
labels and N samples with strong labels, where M � N . The weakly labeled
samples are represented as {(Xω,gω)}M and are termed as the weak label
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dataset. The strong label samples are represented as {(Xλ,gλ)}N and are termed
the strong label dataset.

As shown in Fig 2-i, in the proposed framework, the trained distributed multi-
microphone SED model estimates the strong labels for a given multi-microphone
audio input. A trained latent embedding estimation model is integrated within
the SED model to leverage the knowledge from the weak labels for the strong
label prediction. The proposed framework is implemented in three steps (Fig 2-
ii). In the first step, the pseudo-strong label generation algorithm generates the
pseudo-strong and class confident labels for the weak label dataset. Subsequently,
using the generated labels the latent embedding estimation model, which is a
feature extractor for the next step, is trained. The trained latent embedding
estimation model is then integrated into a distributed multi-microphone SED
model, which is trained using the strong label dataset. Next, we describe each
step in detail.

Fig. 3. A detailed overview of the architecture of the (i) feature extraction model,
(ii) latent embedding estimation model, and (iii) sound event detection model in the
proposed framework.

3.1 Pseudo-Strong Label Generation (PSLG) Algorithm

Given the weak label dataset, pseudo-strong labels are generated from the
available weak labels. As a precursor to the PSLG algorithm, we first formu-
late a feature extraction model, fA, to extract a sequence of features Fω =
(fA(xω

i )|xω
i ∈ Xω) for a sequence Xω. The feature extraction model, fA, is imple-

mented using multiple blocks termed the feature extraction block, which contains
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a CNN encoder block, embedding block, multi-head attention transformer block,
and post-transformer block.

The shared CNN encoder block is shared across the multi-microphone data.
The feature extraction model is trained using an output head, which predicts
the weak label. The architecture of the feature extraction model, fA, and its
implementation are presented in Fig 3-i and Sect. 4.

Using the set of extracted features and corresponding weak-labels
{(Fω,gω)}M , the PSLG algorithm generates pseudo-strong labels gθ =
(gθ

1,. . . ,gθ
P ), for all Xω, where gθ

p = (gθ
p,1,. . . , gθ

p,C+1) and ∀c ∈ {1, . . . , C + 1},
gθ

p,c ∈ {0, 1} for the p-th patch. The additional class label C+1 indicates uncer-
tain class in the pseudo-strong label generation. Given that pseudo-strong labels
are generated from weak labels, there exist inherent uncertainties linked with
their generation. These uncertainties are expressed using a binary class confi-
dence vector denoted as η ∈ R

C , wherein each component ηc assumes a value of
zero to denote classes characterized by uncertain generation and one otherwise,
indicating certainty. Using η, the PSLG algorithm estimates the patch-level class
confidence labels ψ = (ψ1,. . . ,ψP ), where ∀p ∈ {1, . . . , P}, ψp ∈ {0, 1} denotes
the confidence of the estimated pseudo-strong label.

The PSLG algorithm first creates clusters, and computes the multivariate
Gaussian parameters for every class incrementally. Then, pseudo-strong labels
are annotated to all patches in the dataset by comparing with the computed mul-
tivariate Gaussian parameters. A detailed description of the PSLG algorithm is
presented in Algorithms 1 and 2. In Algorithm 1, the multivariate Gaussian
parameters and class certainty vector for the weak label dataset are computed.
The pseudo-strong and class confidence labels are then computed using Algo-
rithm 2. An illustration of the algorithms are presented in Fig. 4.

3.2 Latent Embedding Estimation (LEE)

The LEE model estimates the latent space by performing a patch-level embed-
ding of the distributed multi-microphone data Xω

p using the generated pseudo-
strong gθ

p and class confidence labels ψp. The LEE model is implemented using
the feature extraction block and two output heads. The first output head pre-
dicts the pseudo-strong labels for the distributed multi-microphone input and
the second output head obtains the patch-level latent embedding of the dis-
tributed multi-microphone input. This model is trained by a multi-task learning
framework.

To estimate the latent space, an extension of the triplet hard loss is proposed.
The original triplet hard loss [6] is used to estimate the latent space by minimiz-
ing the distance between the positive pairs and maximizing the distance between
the negative pairs. In the proposed extension, a batch hard mining strategy is
utilized to build triplets of anchors, “confident” positive data, and negative data,
which are used in the extended triplet hard loss calculated as,

Lf = loge(1 + eα), (1)

α = d(a,pψ) − d(a,n) (2)
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Algorithm 1: Algorithm for Calculating Gaussian Parameters
Input : Set of extracted features and weak labels, {Fω,gω}M

Output: Multivariate Gaussian parameters, μ = {μ0, . . . , μC}.;
Covariance Σ = {Σ0, . . . , ΣC}.;
Class confidence vector η ∈ R

C

// Initialize class confidence vector and selected classes set
η = 0 ∈ R

C ; Cs ← {}; Cu ← {0, . . . , C};

// Compute multivariate Gaussian parameters for background class
Retrieve patches from sequences with all-zero weak labels.;
Compute μ0 and covariance Σ0 using the retrieved patches;
Update the selected classes set Cs ← {0};
Update the zeroeth index in the class confidence vector η0 ← 1;

// Compute multivariate Gaussian parameters for each class
while Cs �= Cu do

// Create an unselected classes set
Cs = Cu \ Cs;
for unselected class c in Cs do

Retrieve sequences from Fω with gω
c = 1 and gω

c = 0 ∀c ∈ Cs \ c;
for p-th patch in k-th sequence do

// Check if p-th patch belongs to Cs or not using
Mahalanobis distance

ds = {MahalanobisDistance
(
Fω

p , (μĉ, Σĉ)
)
, ∀ ĉ ∈ Cs}

if all(d > threshold in ds) then
Add p-th patch to the class-wise cluster set for unselected class
c;

end
end
Compute μc and covariance Σc using the class-wise cluster set;
Update the c-th index in class confidence vector ηc ← 1;
Update the selected classes set Cs ← Cs ∪ c;

end
end

where, anchor data a corresponds to the patch embedding in the latent space.
The “confident” positive data, pψ, for a given anchor, corresponds to the patch
embedding with the same class label and non-zero class confidence label ψp = 1.
Note that a nonzero confidence label is used only to select the positive data,
whereas the negative class data could have any class confidence label.

For a given anchor, the extended triplet hard loss only minimizes the dis-
tance to the “confident” positive data while ignoring “unconfident” positive data.
On the other hand, the anchor maximizes the distance to all negative data. In
the case of an “unconfident” anchor, the positive class being “unconfident” is
ignored, while both “confident” and “unconfident” negative data are considered.
The architecture and implementation details of the LEE model are presented in
Fig 3-ii and Sect. 4.
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Algorithm 2: Algorithm for Generating Pseudo-strong Labels
Input : Set of extracted features and weak labels, {(Fω,gω)}M ; Multivariate

Gaussian distribution parameters, μ = {μ0, . . . , μC} and
Σ = {Σ0, . . . , ΣC}, and Class confidence vector η.

Output: Pseudo-strong labels {gθ
p}M , where

gθ
p(m)M = (gθ

p,1(m),. . . , gθ
p,C+1(m)), and their class confidence labels

{ψp}M ;

for (m) and gω(m) in the weak label dataset do
Cs = {i|gω

i (m) = 1};
// Check the class confidence vector’s value for the subset Cs

// If there exists an unconfident class amongst Cs

if ∃{ηi = 0}Cs
i=0 then

for p-th patch in m-th sequence do
// Class confidence label assignment
ψp(m) = 0;
// Pseudo-strong label assignment

gθ
p,i(m) =

{
1 if i = C + 1

0 otherwise
end

end
else

for p-th patch in m-th sequence do
// Class confidence label assignment
ψp(m) = 1;
// Compute pseudo-strong labels
j∗ = argminj∈Cs

MahalanobisDistance(F ω(m), (μj , Σj));

gθ
p,i(m) =

{
1 if i = j∗

0 otherwise
end

end
end

3.3 Sound Event Detection (SED) Model

The SED model is formulated to recognize and localize the sound events in the
distributed multi-microphone data. The trained LEE model is integrated within
the SED model to leverage the information learned from the weak labels. In
addition to the trained LEE model, the SED model is implemented with the
feature extraction block and an output head. The output head recognizes and
localizes the sound events in the multi-microphone audio data. The SED model
is trained using the strong label dataset, (Xλ,gλ)N .

The input to the SED model is the distributed multi-microphone data Xλ

with P patches. The trained LEE model estimates the latent embedding B
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Fig. 4. An illustration of PSLG Algorithms.

from the multi-microphone input. The latent embedding and the output of the
feature extraction block is concatenated and given as input to the output head.
The architecture and implementation details of the sound event detection model
are presented in Fig 3-iii and Sect. 4.
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4 Experiment

4.1 Dataset

The proposed algorithm is evaluated using the public MM Office dataset [16],
which contains weak and strong label datasets. For both the weak and strong
label datasets, distributed multi-microphone data is obtained from 8 micro-
phones in an indoor office environment. The weak label dataset contains M = 720
distributed multi-microphone sequences obtained from S = 8 microphones, for a
total of 5, 760 audio sequences. Each distributed multi-microphone data contains
weak labels represented by C = 13 sound classes without their temporal infor-
mation. The strong label dataset contains N = 88 distributed multi-microphone
sequences obtained from 8 microphones, with strong labels represented by 13
sound classes along with their start and end times.

The length of the audio sequences in the weak label dataset varied between
25 and 45 s. The length of the audio sequences in the strong label dataset vary
between 1 min and 4 min 50 s. Consequently, the shorter sequences are pre-
processed by zero padding to ensure that all audio sequences have a length of
45 s for the weak label dataset and 4min 50 s for the strong label dataset.

4.2 Implementation

Multi-Microphone Input: The distributed multi-microphone input to the
proposed framework is represented as the log-Mel-spectrogram. Each log-mel-
spectrogram for a particular view is obtained using a sampling rate of 16 000 Hz,
hop length 300, and 128 Mel bins. The log-Mel-spectrogram for the weak label
dataset is obtained with size 128 × 2, 401. The spectrogram for the strong label
dataset is obtained with size 128×15, 370. In our framework, the spectrogram is
split into P patches, with each p-th patch corresponding to a spectrogram patch
of size 128 × 53. The weak label dataset contains 45 patches for the 45 second
data, and the strong label dataset contains 290 patches for the 290 seconds.

Feature Extraction Block: The feature extraction block contain the CNN
encoder block, embedding block, multi-head attention transformer block, and
post transformer block. The CNN encoder block is shared across the multi-
microphone data. The encoder is implemented with three 1D convolution layers
with 64, 32, and 32 filters with 3 kernels and ReLU activation, followed by a
fully-connected layer with 256 units and ReLU activation.

The embedding block is implemented using Embedding layers for the patch
and sensor indices, which embed the patch and sensor indices to a 256-dim
vector. The output of the embedding block is added to the output of the feature
extraction block.

The transformer block contains eight transformer branches corresponding to
each view. Each transformer branch, firstly, computes the multi-head attention
using 4 heads. The attention output is then added to the residual transformer
input to obtain the added attention output. This output is subsequently pro-
jected using two fully-connected layers with 32 and 256 units with ReLU and



Generating Pseudo-Strong Labels from Weak Labels 109

linear activations. The projected output is added to the added attention output
to obtain the final output.

In the post transformer block, the outputs of the eight transformers are first
concatenated, along the view dimension corresponding to the different micro-
phones and a max pooling is performed along it to obtain the max features.

Output Head of the Feature Extraction model: The input to the out-
put head is obtained using the Flatten layer, which makes the multi-dimensional
max features one-dimensional. The output head is implemented with two fully-
connected layers with 512 and 13 units with ReLU and sigmoid activation labels.
The output head predicts weak labels. The feature extraction model is trained
using a binary cross-entropy function.

Output Heads of the LEE model: There are two output heads in the LEE
model, and both the inputs correspond to the multi-dimensional max features.
The first output head is implemented with two fully-connected layers with 512
and 14 units with ReLU and sigmoid activation labels to predict pseudo-strong
labels. The output head is trained using a binary cross entropy function. The
second output head outputs the latent embedding using a fully-connected layer
of 256 units with a linear activation function, followed by L2 normalization. The
output head is trained using the extended triplet hard loss function.

Output Heads of the SED model: The input to the output head for the
SED model correspond to the concatenated vector of the max feature and latent
embeddings. The output head is implemented using two fully-connected layers
with 512 and 13 units with ReLU and sigmoid activation labels. The SED model
is trained using a binary cross-entropy function.

4.3 Training Parameters

The proposed framework was implemented with Tensorflow 2 using NVIDIA
3090 GPUs on an Ubuntu 20.04 desktop. The model parameters are selected
empirically with learning rate of 0.001, β1=0.5 and β2=0.99 for all three models.
The models are trained for 100 epochs.

4.4 Baseline Algorithms

The first baseline, based on John et al. [8], adapted for multi-microphone data,
utilizes the feature extraction block with an output head in the LEE model to
estimate the latent space. The latent space is learnt using a weak latent label
loss. The trained LEE model is integrated within the SED model.

The second baseline, adapted from Mei et al. [10], employs 3D CNN with
two layers of Conv 3D with 32 filters of size 1× 3× 3 for feature extraction from
distributed multi-microphone, followed by SED output head.

In the third baseline, the proposed framework is modified, without any
latent space learning. The fourth baseline modeled after Boes et al. [2], uti-
lizes the shared CNN encoder block, view-specific RNN with four units, and
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post-transformer block followed by SED output head. The fifth baseline is sim-
ilar to the fourth baseline, but the view-specific RNN layers are replaced with
LSTM layers.

Finally, the sixth baseline utilizes Audio Spectrogram Transformer (AST) [7]
extended to 8 views, with separate transformer branches for each view. The
output from the different views are sent to post-transformer block and SED
output head.

Only the baseline inspired by John et al.[8] utilizes knowledge transfer from
weak label-based learning via a latent space generation model. Other baselines
employ transfer learning for knowledge transfer from weak labels. These base-
lines are initially trained with weak labels using feature extraction output heads
(Sect. 4.2). Subsequently, the pre-trained baseline model are fine-tuned with the
strong label dataset. For the fine-tuning, the output head of the baseline models
are replaced with the SED output head (Sect. 4.2).

Table 2. Comparative Analysis of the Baseline Algorithms

Algorithm Feature Ext. Transformer Knowledge Latent Class.
Model Transfer Loss Acc

Proposed CNN-1D � Latent space Ext. triplet86.55
John et al. [8] CNN-1D � Latent space Weak lat. 85.58
CNN 3D. [10] CNN-3D × Transf. learn. × 82.70
CNN-Trans. CNN-1D � Transf. learn. × 85.13
CNN-RNN [2] CNN-1D × Transf. learn. × 78.50
CNN-LSTM CNN-1D × Transf. learn. × 78.50
AST [7] Patch Embed. � Transf. learn. × 80.41

Table 3. Ablation Study of the Proposed Framework

Algo. Knowledge Cluster Param. Dist. Meas. LEE Latent loss Class.
Transfer (Algo 1) (Algo 2) model function Acc

Prop. Latent space (μ, Σ) Mahalanobis LEE Ext. triplet 86.55
Abl.-ALatent space (μ, Σ) Mahalanobis ALS Ext. triplet 84.25
Abl.-B Latent space Only μ Euclidean LEE Ext. triplet 84.98
Abl.-CLatent space (μ, Σ) Mahalanobis LEE Triplet hard 83.10

4.5 Ablation Study

An ablation study is performed to validate the different components of the pro-
posed framework, as presented in Table 3. In the first variant, Ablation-A, the
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latent space is generated directly from the multi-source data using an output
head which performs the latent embedding using a fully-connected layer of 256
units with a linear activation function, followed by L2 normalization. We term
this model, without the feature extraction block, the Audio Latent Space (ALS)
model.

In the second variant, Ablation-B, in Algorithm 1 only the cluster mean μ is
computed for the cluster parameters. Subsequently, in Algorithm 2, Euclidean
distance is used as the distance measure to compute the pseudo-strong labels.
In Ablation-C, the latent space is learned using the triplet hard loss instead of
the extended triplet loss function.

4.6 Distributed Multi-Microphone Vs Single-Source Dataset

The proposed framework is implemented and validated on the distributed multi-
microphone dataset [16]. The proposed framework is implemented using eight
microphones of the MM Office dataset. We perform a comparative study of
the proposed framework on the MM Office dataset by varying the number of
microphones in Table 4. For the experiment studies, the proposed framework
is trained and evaluated with the subsets without any modifications. For the
evaluation with the individual microphones, the sensor embedding and the post-
transformer branches are removed in the different models.

Table 4. Comparative analysis using various subsets in the MM Office dataset

Complete Set. Set of Four Mics. Set of Two Mics. Individual Mics.

Eight Mics:86.55 Odd Mics: 83.89 Mic 1,5: 82.82 Mic 1:82.63 Mic 5:83.29
Even Mics: 85.52 Mic 2,6: 84.95 Mic 2:83.23 Mic 6:83.34

Mic 3,7: 83.28 Mic 3:82.13 Mic: 783.75
Mic 2,6: 84.69 Mic 4:84.13 Mic: 883.29

4.7 Results and Discussion

Table 2 shows that the proposed framework has better accuracy than the baseline
algorithms. We further analyse the result in detail.

Transformer: Compared to baselines using the RNN and the LSTM, the
transformer effectively captures the long-range dependencies by employing atten-
tion mechanisms. The embedding block in the transformer to address its limita-
tions of being permutation equivariant. The patch and sensor embedding infor-
mation allows the transformer to process distributed multi-microphone sequences
without losing the sensor layout, and patch-wise sequential information. The
post-transformer block effectively captures the important information across the
different views, while ignoring the unimportant features.
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Knowledge Transfer: The proposal to utilize latent space for the knowl-
edge transfer instead of transfer learning is shown to be effective. The proposed
framework and John et al. [8] report better performance than the other baselines.
These frameworks utilize metric learning, where in the learned latent embed-
dings, the data from similar classes are embedded close to each other in the
latent space, and the data from different classes are kept apart from each other.

Latent Space: In Table 2 and Table 3, the advantages of the proposed
extended triplet loss can be observed. The proposed framework with the
extended triplet loss reports better accuracy than John et al. [8], which uses
the weak latent loss, and Ablation-C, which uses the original triplet hard loss to
learn the latent loss. Compared to the other two latent losses, only the extended
triplet loss includes the class confidence vector ψ in its loss calculation (Eq. 2)
to minimize the distance between the anchor and “confident” positive data.

PSLG Algorithm: In Table 3, an experiment is performed to evaluate the
PSLG algorithm. More specifically, the choice to estimate the multivariate Gaus-
sian parameters and the Mahalonobis distance to estimate pseudo-strong labels
is evaluated. A comparison of the results of the proposed framework with those
of Ablation-B, where only the mean of the clusters is computed, shows that the
proposed framework yields better results. This can be attributed to the multi-
variate Gaussian parameters μ and Σ which represent the cluster distributions
better than the mean alone.

LEE Model: Experimentation in Table 3 favors our LSG model employing
a standard transformer block in a multi-tasking framework, surpassing perfor-
mance of the ALS model.

Varying Subsets: The results indicate that employing all available micro-
phones leads to superior performance compared to using different subsets of
microphones. This enhanced performance can be attributed to specific events in
the MM Office dataset either spanning multiple microphones or being confined
to particular ones. Additionally, the findings demonstrate that the framework
can be adapted to individual microphones with minimal modifications. Future
work will focus on refining and testing this adaptation.

5 Conclusion

In conclusion, this paper introduces a novel framework for distributed multi-
microphone sound event detection, utilizing weak labels for sound event detec-
tion. Here, pseudo-strong labels are generated from the weak labels, and used
to train the latent embedding estimation model, which is subsequently inte-
grated within the sound event detection model. The evaluation on the MM
Office dataset demonstrates the effectiveness of the proposed approach com-
pared to baseline algorithms, supported by a comprehensive ablation study. In
the future work, we will extend the framework to distributed multimodal data.
To facilitate the extension, we will also acquire a distributed multimodal dataset
in an indoor home or office environment.
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Abstract. Recognizing actions from a limited set of labeled videos
remains a challenge as annotating visual data is not only tedious but
also can be expensive due to classified nature. Moreover, handling spatio-
temporal data using deep 3D transformers for this can introduce signifi-
cant computational complexity. In this paper, our objective is to address
video action recognition in a semi-supervised setting by leveraging only a
handful of labeled videos along with a collection of unlabeled videos in a
compute efficient manner. Specifically, we rearrange multiple frames from
the input videos in row-column form to construct super images. Subse-
quently, we capitalize on the vast pool of unlabeled samples and employ
contrastive learning on the encoded super images. Our proposed app-
roach employs two pathways to generate representations for temporally
augmented super images originating from the same video. Specifically,
we utilize a 2D image-transformer to generate representations and apply
a contrastive loss function to minimize the similarity between representa-
tions from different videos while maximizing the representations of iden-
tical videos. Our method demonstrates superior performance compared
to existing state-of-the-art approaches for semi-supervised action recog-
nition across various benchmark datasets, all while significantly reduc-
ing computational costs. (Project page: https://cvir.github.io/projects/
sitar)

Keywords: semi-supervised learning · contrastive learning · action
recognition

1 Introduction

Video action recognition (VAR) in computer vision remains a long-standing
challenge [3,11,19,33,35]. Earlier approaches relied on optical flow [17,27] or
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3D convolutions using spatio-temporal kernels [33] for feature extraction. How-
ever, recent advancements have introduced transformer architectures [1,8] to
address this task. A key challenge in achieving high accuracy for VAR lies in the
scarcity of large-scale, meticulously labeled videos. The hunger for annotated
data has further aggravated with the advent of 3D video transformers [1] which
continuously surpass the performance by 2D vision transformers but requires
significantly higher amount of labeled videos to perform. At the same time, 3D
Transformers have more parameters, making it computationally more inefficient
compared to ConvNets or 2D transformers. Though carefully annotating videos
is expensive and labor-intensive, with the proliferation of video cameras and
internet millions of videos without labels are available in the wild.

In scenarios with limited labeled training data alongside a substantial amount
of unlabeled samples, semi-supervised learning (SSL) [43] has shown significant
promise. Despite the inherent promise of semi-supervised video action recogni-
tion, it remains a relatively under-explored area compared to its fully super-
vised counterpart. A straightforward approach of applying image based semi-
supervised learning techniques to videos might not be sufficient to bridge the
performance gap. The reason being the additional temporal dimension in videos.
However, if properly used, temporal information can be a friend instead of a foe
to semi-supervised video action recognition. Barring a few canonical activities
(e.g., walking vs jogging) actions do not change if a video is played fast or slow.
A robust video action recognition system should have the capability to identify
actions regardless of the speed of the video. Recent works [10,38] demonstrate
the effectiveness of training models to be invariant across different play-rates
of the same actions. However, these approaches are still supervised and utilise
Convolutional Neuron Networks (CNNs) to process the videos. Learning invari-
ances among different versions of same samples as a means of self-supervision has
been showing promising results with the emergence of contrastive learning. Stud-
ies such as [4,14] have exhibited superior performance compared to supervised
learning approaches in image classification. This concept has been extended to
videos [7,23], where [23] utilizes temporally distant clips from a video alongside
spatial augmentations as positives, while negatives are selected from different
videos.

Inspired by the success of utilizing both slow and fast versions of video
for supervised action recognition and the success of contrastive learning frame-
works [22,23], this work presents a new approach for semi-supervised video action
recognition (VAR) that leverages unlabeled video data in both computationally
and label efficient manner. Our method differs from traditional approaches by
first rearranging video frames into informative super images [24]. Our approach
initially transforms a 3D video into a 2D image by rearranging a sequence of
input video frames into a super image based on a predetermined spatial layout.
These super images capture both spatial and temporal information within video
segments, enabling the model to learn representations efficiently. Like images,
with super images too, an image transformer can be used.
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To leverage temporal information, we introduce a two-pathway model. Each
pathway processes temporally augmented versions of the same video (e.g., slow
and fast versions). In the fast pathway, the super image is formed using dou-
ble the number of frames compared to the super image in the slow pathway.
Despite this variation, these super images share the same semantic content
when they come from the same unlabeled video. The model learns to maxi-
mize this semantic similarity. At the same time, the model tries to minimize
the similarity between the representations coming from the super images of two
different videos in these two pathways. It is achieved by using a contrastive
loss [4] formulation. We extensively experiment with three benchmark datasets
employing the Swin Transformer [21] as the backbone. Our approach Semi-
Supervised Image Transformer for Action Recognition (SITAR), demonstrates
superior performance outperforming previous approaches. Additionally, SITAR
also exhibits better computational and parameter efficiency compared to exist-
ing semi-supervised video action recognition approaches.

2 Related Works

Video Action Recognition. Convolutional Neural Networks (CNNs) [9,10,34]
and transformers [1,8,20] have emerged as dominant approaches for action recog-
nition in videos. Although, 3D CNNs [9,10,34] have been dominant in earlier
works, their large number of parameters necessitates vast training datasets.
Additionally, CNNs limited receptive field hinders accurate motion modeling,
hindering performance. Drawing inspiration from the success of transformers in
natural language processing, vision-transformers based architectures like TimeS-
former [2], MViT [8] and MViTv2 [20] have emerged as powerful alternatives
achieving state-of-the-art performance and also efficient arcitectures [26]. Recent
works also underscore the ability of transformers [32,40] on fewer data. However,
these existing video action recognition approaches are supervised and rely on 3D
operations greatly increasing the compute complexity. Our work addresses this
challenge by utilizing a 2D Image Transformer in a semi-supervised setting for
video action recognition. This strategy aims to not only achieve better perfor-
mance but also significantly lower the computational requirements.

Semi-supervised learning. While extensive research has yielded successful
semi-supervised learning methods in images, directly applying them to VAR
proves suboptimal due to the non-exploration of temporal dynamics inherent in
videos. Pioneering image-based approaches like Pseudo-Labeling established a
foundation, which leverages the predicted confidence scores (softmax probabili-
ties) from the model itself to generate pseudo-labels for unlabeled data. Subse-
quently, these pseudo-labels are employed to train the network along with a lim-
ited set of labeled data. Later works focused on improving pseudo-label quality,
e.g., UPS [25], FixMatch [29]. FixMatch utilizes weakly augmented unlabeled
instances to generate pseudo-labels and ensures consistent predictions against
their strongly augmented counterparts. FixMatch showed superior performance
with its influence extending to detection [36] and segmentation [47].
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Semi-supervised Video Action Recognition. Despite the emergence of sev-
eral semi-supervised video action recognition approaches [5,15,28,41,47], most
of them primarily extend image-based approaches to videos, ignoring the cru-
cial temporal dynamics inherent in video data. Existing semi-supervised VAR
approaches like VideoSSL [15] replaces a 2D ResNet with a 3D ResNet [13] but
is limited to using pseudo-labels and distillation from an image CNN when it
comes to exploiting unlabelled videos. The marginal gain over pure image-based
baselines highlights the limitations of directly transferring image-based methods.
With time, more sophisticated video-specific methods, such as TCL [28] have
emerged, focusing on exploiting temporal information of the video. MvPL [41]
and LTG [39] utilize multi-modal data such as optical flow or temporal gradi-
ent information, respectively, to generate high-quality pseudo-labels for training
the network. Whereas, CMPL [42] introduces an auxiliary network that requires
processing more frames during training, potentially increasing computational
complexity. Additionally, all these prior approaches rely on 2D [28] or 3D convo-
lutional neural networks [39,41,42], which can necessitate longer training times.
The recent SOTA, SVFormer [40], introduces the exploration of 3D video trans-
formers for semi-supervised action recognition. It incorporates a robust pseudo-
labeling framework, utilizing an Exponential Moving Average (EMA) Teacher
network, to effectively manage unlabeled video samples.

However, these approaches are computationally expensive. Our method
addresses this by constructing informative super images from video frames,
enabling efficient contrastive learning with a two-pathway model. This innova-
tive approach significantly reduces computational costs while achieving superior
performance on semi-supervised action recognition tasks.

3 Methodology

3.1 Problem Definition

This work addresses the challenge of semi-supervised action recognition in videos
using an Image Transformer. The input to the model has two subset - Labeled
Videos (Dl) and Unlabeled Videos (Du). The labeled video set (Dl), comprises
of Nl video-label pairs. Each pair (V i, yi) represents the ith video and its corre-
sponding activity label, where i ranges from 1 to Nl and each yi belongs to the
label set Y = {1, 2, ..., C}, representing C distinct action categories. Unlabeled
Videos (Du) comprises a significantly larger set Nu (� Nl) of videos without
labels(U i), where i ranges from 1 to Nu. we create two different versions of each
unlabeled video by playing them at two different frame rates: fast and slow.

3.2 SITAR Framework

The proposed Semi-Supervised Image Transformer for Action Recogni-
tion(SITAR) framework, as illustrated in Fig. 2, processes video inputs through
two distinct pathways: primary and secondary. The primary pathway handles
fast super image Si

f , while the secondary pathway handles slow super image Si
s.

Next we describe how exactly the super images for the two pathways are formed.
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Fig. 1. Construction of Super Image. Aligning
frames to form a grid using three different temporal
orderings: normal, random, and reverse.

Super Image Construc-
tion: For the primary path-
way, each video from U i

is represented as a set of
M frames i.e., U i

f = {F i
f,1,

F i
f,2, · · · , F i

f,M} sampled uni-
formly from consecutive non-
overlapping segments follow-
ing the approach in [37]. Sim-
ilarly, for the secondary path-
way, the same video is rep-
resented by N frames (N <
M and usually N = M

2 ) as
U i
s = {F i

s,1, F i
s,2, · · · , F i

s,N},
also sampled uniformly using
the same method. The sam-
pled frames are then trans-
formed into purely 2D spatial
patterns, generating super
images. Inspired by the work
[24], we create informative
super images from the input
video frames. This involves
arranging the M or N input
frames (respectively from the
fast (U i

f ) or the slow version (U i
s)) in a grid format as shown in Fig. 1. The

grid size (m × m) is determined by the square root of M , ensuring efficient
representation. Any remaining empty spaces in the grid are filled with padding
images. The resulting super image for the fast video is denoted as Si

f , while the
super image for the slow video is denoted as Si

s. Both pathways utilize the same
image transformer backbone, denoted by g(.). Next we describe the details of
the different training stages within our framework.

Phase 1: Supervised Learning Initially, the Swin Transformer [21] (a 2D
Image Transformer backbone) is trained exclusively with the small labeled data
set (Dl) by passing it through the Primary Pathway (refer Fig. 2). The represen-
tation g(V Si) of the super image V Si generated from video V i in our framework
is derived from the logits of the Swin Transformer. We minimize the conventional
supervised cross-entropy loss Lsup on the labeled dataset as follows:

Lsup = −
C∑

c=1

(yi)c log(g(V Si))c (1)

Phase 2: Semi-supervised Learning Starting with this initial backbone
obtained under limited supervision, our objective is to develop a model capable
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Fig. 2. SITAR framework: The proposed framework uses two pathways to process
the unlabeled videos, namely, Primary and Secondary, using an image-transformer
backbone and sharing the same weights. The Primary pathway is initially trained
with limited labeled data. Then, we generate two versions of super images for the
unlabeled videos, one fast, having more frames and other slow, having lower frames
and pass them through Primary and Secondary pathways respectively. The training
objective is to maximize the agreement between the output predictions of the two
pathways. To achieve this, we employ two types of contrastive losses. First, an instance
contrastive loss to align the representations of a given unlabeled super image across
both the pathways. Second, a group contrastive loss to align the average representations
of unlabeled super images grouped using pseudo-labels. During inference, only the
Primary pathway is used to indentify actions. (Best viewed in color.)

of leveraging a vast pool of unlabeled videos to enhance activity recognition. To
achieve this, we incorporate instance and group contrastive losses as follows:

Instance-Contrastive Loss We utilize the temporal augmentations within
unlabeled videos, where each video is transformed into both slow (Si

s) and fast
(Si

f ) super images, and then the pairwise contrastive loss is enforced. In a mini-
batch containing B unlabeled videos, the model is trained to align the represen-
tation g(Si

f ) of the fast super image of video U i with g(Si
s) from the slow super

image, forming the positive pair. The remaining B−1 videos form negative pairs
g(Si

f ) and g(Sk
p ), where the representation of the kth video can originate from

either pathway (p ∈ {f, s}). As these negative pairs consists of different videos
with distinct content, the representations from different pathways are diverged
through the application of contrastive loss Lic.
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Lic(Si
f , Si

s)=−log h
(
g(Si

f ),g(S
i
s)

)

h
(
g(Si

f ),g(Si
s)
)
+

B∑
k=1

p∈{s,f}

1{k �=i}h
(
g(Si

f ),g(Sk
p )

) (2)

where, h(u,v) = exp
(

u�v
||u||2||v||2 /τ

)
represents the exponential of cosine simi-

larity and τ denotes the temperature hyperparameter. The instance-contrastive
loss is calculated for all positive pairs, namely (Si

f , Si
s) and (Si

s, Si
f ), within

the minibatch. This loss function aims to minimize similarity not only between
different videos within each pathway but also across both pathways.

Group-Contrastive Loss Standard contrastive loss on unlabeled videos can
struggle to capture high-level action semantics without class labels. As shown in
Fig. 3, it might learn distinct representations for videos with the same action in
absence of labels. To address this, we employ group contrastive loss. This app-
roach uses pseudo-labels assigned to unlabeled videos based on the dominant
action class (highest activation). Let ŷi

f and ŷi
s denote the pseudo-labels respec-

tively of the fast (Si
f ) and slow (Si

s) super images of the video U i. Videos with
the same pseudo-label within a pathway form a group. The group’s representa-
tion is the average of its member super image representations (detailed below).
This strategy encourages the model to learn more consistent representations for
super images with similar actions.

Rl
p =

B∑
i=1

1{ŷi
p=l}g(U i

p)

T
(3)

where 1 is a binary function that yields a value of 1 for super images within
pathway p ∈ {f, s} whose pseudo-label matches class l ∈ Y . T represents the
total number of such super images (with pseudo-label l) in pathway p within the
minibatch. Considering the strong agreement between two groups with identical
labels in both pathways, it’s crucial for these groups to demonstrate comparable
features in the feature space. Consequently, within the group-contrastive objec-
tive, all pairs (Rl

f , Rl
s) serve as positive pairs, whereas negative pairs consist of

pairs (Rl
f , Rm

p ) where p ∈ {f, s} and m ∈ Y \ l, ensuring that the constituent
groups differ in at least one pathway

Lgc(Rl
f ,Rl

s)=−log
h(Rl

f ,Rl
s)

h(Rl
f ,Rl

s) +
C∑

m=1
p∈{s,f}

1{m �=l}h(Rl
f ,Rm

p )
(4)

Like instance-contrastive loss, we compute the group-contrastive loss for all
positive pairs (Rl

f , Rl
s) and (Rl

s, R
l
f ) over the minibatch. This combined loss,

along with the supervised loss Lsup on the labeled data (Dl), forms the overall
objective function L used to train our model.
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Fig. 3. Instance contrastive loss vs Group contrastive loss. SITAR employs two
different contrastive losses to leverage on the unlabeled super images. The Instance
contrastive loss maximized the agreement between two instances of the same videos
which minimizing the agreement with the other videos in a given mini-batch. This risks
the same action samples of the mini-batch to be inadvertently pushed apart (right).
To mitigate this we employ a Group contrastive loss, which first groups videos with
the same activity class (left) as predicted by high-confidence pseudo-labels. Then the
average representation is obtained for each group and the contrastive learning policy
is applied at this group level. (Best viewed in color.)

L = Lsup + γ ∗ Lic + β ∗ Lgc (5)

where, γ is the weight assigned to the instance-contrastive loss and β is the
weight of the group-contrastive loss.

4 Results and Discussions

In this section, we first present the experimental settings (Section 4.1). Building
on some of the previous works [39,40,42], we show results using different amount
of labeled data across three datasets (Section 4.2). Furthermore, we conduct
extensive ablation experiments in Section 4.3. For consistency, we utilize the
same splits of data as those used by the authors in SVFormer [40].

4.1 Experimental Settings

Datasets. Kinetics-400 [16] is an extensive dataset tailored for human action
recognition, containing over 300K clips distributed across 400 distinct classes of
human actions. Following the standard practice [40–42], we experimented with



122 O. Iqbal et al.

two different scenarios in Kinetics-400. These two scenarios assume only 1% and
10% of all the videos are labeled while the rest are unlabeled. This amounts
to 6 and 60 labeled training videos per category in this dataset. UCF-101 [30]
is another commonly used human action recognition dataset, encompassing a
diverse range of categories such as human-human interaction, human-object
interaction, playing musical instruments, daily sports etc. With 13, 320 video
samples, UCF-101 is spread across 101 classes. Consistent with CMPL [42], we
assume only 1% and 10% of all the videos to be labeled (resulting in 1 and
10 labeled samples respectively per category) in this dataset also. Addition-
ally, HMDB-51 [18] comprises human motion data encompassing a variety of
actions, including facial expressions combined with object manipulation, gen-
eral body movements, and movements related to human interaction. With 51
categories and a total of 6, 766 videos, HMDB-51 is a comparatively smaller
dataset. Adhering to the experimental framework established by LTG [39] and
VideoSSL [15], we explore three scenarios assuming 40%, 50%, and 60% of the
data to be labeled.

Baselines. We benchmark our method against several baselines and existing
semi-supervised VAR approaches. Initially, we investigate a supervised base-
line where we report the performance of training a 3D-ResNet-50 only on the
labeled data. This acts as the lower bound of performance. Second, we compare
with state-of-the-art semi-supervised learning approaches, including FixMatch
(NeurIPS’20) [29], VideoSSL (WACV’21) [15], TCL (CVPR’21) [28], Actor-
CutMix (CVIU’21) [46], MvPL (ICCV’21) [41], CMPL (CVPR’22) [42], LTG
(CVPR’22) [39], TACL (TCSVT’22) [31], L2A (ECCV’22) [12] and SVFormer
(CVPR’23) [40]. Notably, most of these are computation heavy as 3D videos are
processed, unlike our method, which solely relies on 2D Image processing.

Implementation Details. We employ uniform sampling to generate video
inputs for our models, dividing each video into multiple segments of equal length.
In SITAR, we employ uniformly sampled 8-frame segments for the fast super
image and 4-frame segments for the slow super image. These images are then
fed into the primary and secondary pathways, respectively. The super image size
remains constant at (572×572) for both the primary and auxiliary pathways. As
a result, the frame size in the fast and slow super images is adjusted to 192 and
288 each side, respectively. Note that initially when the model is trained only
with the handful of labeled videos, we pass 8-frame super images from them
via the primary pathway. We start with Swin-B and Swin-S backbones [21] pre-
trained on ImageNet-21K [6]. Initially, we apply random scaling and cropping for
data augmentation. Additionally, for Phase-1 of supervised learning, we employ
Mixup [45] and CutMix [44] with the respective mixing coefficients of 0.8 and
1.0, respectively following the work [24]. The drop path is set with a rate of 0.1
and label smoothing at a rate of 0.1. Training is conducted using NVIDIA V100
GPUs. For Phase 1 and Phase 2 (refer Sec. 3.2), we conduct experiments for 25
and 50 epochs, respectively, across all datasets. We used AdamW optimizer with
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a weight decay of 0.05 along with a cosine learning rate scheduler having a base
learning rate of 0.0001. For training, we utilize a mini-batch having Lb labeled
samples and μ×Lb unlabeled samples. We set the values of μ and τ (refer Eqn. 2)
to 4 and 0.5 respectively while the γ and β values (refer Eqn. 5) are set to 0.6
and 1, respectively, unless otherwise stated. During inference, only the primary
pathway is used with 8 frame super images as inputs. Additional dataset details
and experimental results are provided in the supplementary material.

Table 1. Comparisons of performance on UCF-101 and Kinetics-400. We
report the top-1 accuracy of SITAR along with different state-of-the-art approaches
over two different labeled data proportions. As observed, SITAR achieves the best per-
formance in both the datasets over the different amounts of labeled data. Also, SITAR
significantly reduces the compute needs as it uses much less model parameters. The
values in bold denote the highest top-1 accuracy across all the specified models, respec-
tively.

Method Backbone Paramsw \ ImgNetUCF-101 Kinetics-400
1% 10% 1% 10%

Supervised 3D-ResNet-50 � 6.5 32.4 4.4 36.2

FixMatch (NeurIPS’20) [29] SlowFast-R50 � 16.1 55.1 10.1 49.4

VideoSSL(WACV’21) [15] 3D-ResNet-18 � - 42.0 - 33.8

TCL (CVPR’21) [28] TSM-ResNet-18 - - 8.5 -
ActorCutMix (CVIU’21) [46]R(2+1)D-34 � - 53.0 9.02 33.8

MvPL (ICCV’21) [41] 3D-ResNet-50 22.8 80.5 17.0 58.2

CMPL (CVPR’22) [42] R50+R50-1/4 � 25.1 79.1 17.6 58.4

LTG (CVPR’22) [39] 3D ResNet 18 - 62.4 9.8 43.8

TACL(TCSVT’22) [31] 3D-ResNet-50 � - 55.6 - -
L2A (ECCV’22) [12] 3D-ResNet-18 � - 60.1 - -
SVFormer-S(CVPR’23) [40] TimeSformer-S* 81M � 31.4 79.1 32.6 61.6

SITAR-S(Ours) Swin-S 49M � 37.981.836.764.1
SVFormer-B(CVPR’23) [40] TimeSformer(Default)121M � 46.3 86.7 49.169.4
SITAR-B(Ours) Swin-B 87M � 47.087.139.0 66.5

*Following SVFormer, as TimeSformer only have ViT-B models, SVFormer-S
model is implemented from ViT-S.

4.2 Main Results

We evaluate our SITAR’s performance on three benchmark datasets: Kinetics-
400 [16], UCF-101 [30], and HMDB-51 [18]. As can be seen in Tables 1 and 2
our SITAR-S model consistently achieves superior performance on these datasets
compared to the state-of-the-art, SVFormer-S [40], while utilizing significantly
less model parameters. When using only 1% labeled data, our SITAR-S outper-
forms SVFormer-S by a significant margin of 6.5% on UCF-101 and 4.1% on
Kinetics-400 (Table 1). This trend continues at the 10% labeled data setting,
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Table 2. Comparisons with state-of-the-art methods on HMDB51. We report
the top-1 accuracy of SITAR along with different state-of-the-art baselines over three
different labeled data proportions. As observed, SITAR achieves the best performance
over the different amounts of labeled data.

Method Backbone 40% 50% 60%

VideoSSL [15] 3D-R18 32.7 36.2 37.0

ActorCutMix [46]R(2+1)D-34 32.9 38.2 38.9

MvPL [41] 3D-R18 30.5 33.9 35.8

LTG [39] 3D-R18 46.5 48.4 49.7

TACL [31] 3D-R18 38.7 40.2 41.7

L2A [12] 3D-R18 42.1 46.3 47.1

SVFormer-S [40] TimeSformer-S* 56.2 58.2 59.7

SITAR-S(Ours) Swin-S 60.662.665.1
SVFormer-B [40] TimeSformer(Default)61.6 64.4 68.2

SITAR-B(Ours) Swin-B 63.465.568.2
*Following standard procedure of SVFormer, as TimeSformer
only have ViT-B models, SVFormer-S model is implemented
from ViT-S.

with improvements of 2.7% and 2.5% for UCF-101 and Kinetics-400, respec-
tively. Similarly, on HMDB-51 (Table2), SITAR-S surpasses SVFormer-S by a
substantial margin across all scenarios using different portions of labeled data
(40%, 50%, and 60%).

Our larger model, SITAR-B, is at par with SVFormer-B while maintaining a
significant parameter efficiency. In UCF-101, SITAR-B performs slightly better
in both 1% and 10% labeled data settings compared to SVFormer-B. Although
our model is only second to SVFormer-B Kinetics-400, it has a significantly
lower number of parameters compared to SVFormer-B. Specifically, our model
utilizes 28% fewer parameters than the highest-performing model. On HMDB-51,
SITAR-B exhibits improvements of 1.8% and 1.1% in the 40% and 50% settings,
respectively, while being at par at 60%. These results highlight the effectiveness
of SITAR in achieving high accuracy with reduced model complexity.

4.3 Ablation Results

We perform several ablation studies on HMDB-51 dataset to evaluate the effec-
tiveness of the different components of our SITAR framework.

Impact of Group Contrastive Loss. The importance of group contrastive
loss in capturing high-level action semantics is evident from an ablation where we
exclude Group Contrastive Loss from our framework (refer Section 3.2) leading
to a drop in top-1 accuracy from 60.6% to 60.1% shown in Table 3.
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Table 3. Ablation Studies on HMDB-51. Numbers
show top-1 accuracy with 40% labeled data.

Approch Top-1 Accuracy

SITAR-S w/o Group-Contrastive Loss 60.1

SITAR-S w/ Pseudo-Label Consistency Loss 58.5

SITAR-S (Ours) 60.6

Importance of Con-
trastive Loss. To eval-
uate the efficacy of con-
trastive loss, we com-
pared it to the pseudo-
label consistency loss
used in FixMatch [29]. As
shown in Table 3, training with our contrastive loss achieved a significant
improvement in top-1 accuracy on the HMDB-51 dataset, outperforming pseudo-
label consistency loss by 2.13%. This finding highlights the effectiveness of con-
trastive loss in capturing meaningful relationships between unlabeled videos.

Table 4. Effect of different Frame rates in Super Image. We evaluate on HMDB-
51 and report the top-1 accuracy by changing the layout to 4 × 4 and 3 × 3, incorpo-
rating 16 and 8 frames in the respective pathways. This was achieved in two ways: by
keeping the size of super image constant and by increasing the super image size. The
effect of computation on increasing the super image size is depicted in column ‘Flops’.

Model #Frames in Fast SI*#Frames in Slow SI*SIze of SI*Flops(G)Top-1 Accuracy

SITAR-S 4 3 576 61 59.4

SITAR-S 4 3 768 109 61.9

SITAR-S(Ours)3 2 576 61 60.6

*SI=Super Image

Table 5. Effect of temporal Order in Super
Image. We report the top-1 accuracy for HMDB-
51 using 40% labeled data with reverse, random and
normal order.

Approch Top-1 Accuracy

SITAR-S w/ reverse frame order 59.6

SITAR-S w/ random frame order 58.9

SITAR-S (Ours) 60.6

Ablations on Super Images.
In Phase-2 of training, our
framework employs super
images of layouts 3 × 3 and
2 × 2 in the Primary and
Secondary pathways, respec-
tively. Here, we explore the
impact of changing the layout
to 4 × 4 and 3 × 3, incorpo-
rating 16 and 8 frames in the
respective pathways (with one extra padded frame in each case). This can be
achieved in two ways: Firstly, by increasing the number of frames to 16 and
8 while keeping the super image size constant (i.e., 576 × 576), thus reducing
the size of each frame. Secondly, by maintaining the size of each frame constant
and increasing the super image size (i.e., 768 × 768). The results in Table 4
demonstrate that maintaining the super image size constant while increasing
the number of frames leads to information loss due to the reduction in frame
size and reduces Top-1 accuracy (shown in the first row of Table 4). Conversely,
in the second experiment, increasing the super image size enhances the Top-1
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accuracy, albeit at the expense of increased computation (model flop going from
61G to 109G) (shown in the second row of Table 4).

In another ablation experiment we examine the effect of the temporal order
of frames in the super image. We evaluate our model’s performance across
three input types with different temporal orders: normal, random, and reverse
(refer Fig. 1). In the normal order, the temporal sequence of the video remains
unchanged during super image generation. Conversely, for the reverse and ran-
dom orders, sampled frames are arranged in the super image in reverse and
random orders, respectively. Table 5 showcases the impact of altering the input
order on the performance of the HMDB-51 dataset. These findings exemplifies
the significance of having normal input frame order in model learning for action
recognition tasks.

Fig. 4. Effect of hyperparameters on HMDB51, (Left) Varying the ratio of unlabeled
data to the labeled data (μ), (Right) Varying the instance-contrastive loss weight (γ)

Impact of Hyperparameters. We investigate the impact of the ratio of unla-
beled data to labeled data (μ) and note that setting μ to 2, 4, 6, 8 with a fixed
γ = 0.6 yields similar outcomes on HMDB-51 (see Fig. 4). However, given the
high computational demands associated with scaling μ, we opt to set it to 4
across all experiments to strike a balance between efficiency and accuracy in
our model. Additionally, we observe that the weight of the instance-contrastive
loss (γ) influences performance in semi-supervised learning. We check for γ by
setting it to 0.1, 0.2, 0.4, 0.8, 1. We find that γ = 0.6 gives the best result and we
used this value of γ throughout in our experiments.
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Table 6. Comparison of performance on UCF-101,
HMDB-51 and Kinetics-400 using Swin-L backbone
We report the top-1 accuracy of SITAR along with state-of-
the-art approach SVFormer-B over different labeled data pro-
portions. As observed, SITAR achieves the best performance
in all the datasets over different amounts of labeled data bar-
ring Kinetics-400 with 1% labeled data.

Method Params
UCF-101 HMDB-51 K-400

1% 10% 40% 50% 60% 1% 10%

SVFormer-B(CVPR’23) [40] 121M 46.3 86.7 61.6 64.4 68.2 49.1 69.4

SITAR-B(Ours) 87M 47.0 87.1 63.4 65.5 68.2 39.0 66.5

SITAR-L(Ours) 195M 47.0 87.2 64.4 67.7 68.6 44.0 70.1

Larger backbones.
We conducted addi-
tional experiments
with a larger swin
transformer backbone
Swin-L resulting in,
SITAR-L, having
approximately 195M
parameters. We
report that the
results for SITAR-L
which outperforms
SVFormer-B (refer
Table 6). SITAR-L demonstrates superior performance across different percent-
ages of labeled data in different datasets (barring the scenario when 1% of
Kinetics-400 data is used with labels). Note that SITAR-L is also able to outper-
form SVFormer-B in Kinetics-400 10% labeled data setting which SITAR-B was
falling short (refer Table 1).

Table 7. Comparison of parameters and FLOPs. We
show the comparison of parameters and total operations
between our SITAR and next best method SVFormer.

Method Backbone Params(M) FLops(G)

SVFormer-B [40] TimeSformer(Default) 121 196

SITAR-B(Ours) Swin-B 87 106

Flops and Param-
eters Comparison.
In Table 7, we com-
pare the total number
of trainable param-
eters and the total
number of operations
(FLOPs) between SITAR and the next best approach, SVFormer [40]. It is evi-
dent that SITAR-B utilizes 28% fewer parameters compared to SVFormer-B, and
the flops count is notably reduced by 45.9%. Despite having fewer parameters
and a lower flop count, our model surpasses the Top-1 Accuracy for UCF-101
and HMDB-51 across all labeled data setting (refer Table 1 and 2).

5 Conclusions

This paper presents a novel approach for semi-supervised action recognition in
videos using 2D image transformer. By condensing input frames into a single
super image, our method provides a straightforward yet potent means of re-
purposing image classifiers for action recognition significantly reducing the com-
pute cost. Employing a temporal contrastive learning framework maximizes the
similarity between encoded representations of unlabeled videos transformed into
super images at varying speeds, while minimizing similarity between different
videos. Through the utilization of contrastive loss and exploration of high-level
action semantics within video groups, our approach greatly mitigates the need of
video annotations. Our work outperforms several competitive approaches across
three standard benchmark datasets. These findings magnifies the potential of
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super images and temporal contrastive learning in advancing video understand-
ing tasks, warranting further exploration and research in this area.
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Abstract. Current modularity-based community detection algorithms
attempt to find cluster memberships that maximize modularity within
a fixed graph topology. Diverging from this conventional approach, our
work introduces a novel strategy that employs modularity to guide the
enhancement of both graph topology and clustering quality through a
maximization process. Specifically, we present a modularity-guided app-
roach for learning sparse graphs with high modularity by iteratively prun-
ing edges between distant clusters, informed by algorithmically generated
clustering results. To validate the theoretical underpinnings of modu-
larity, we designed experiments that establish a quantitative relation-
ship between modularity and clustering quality. Extensive experiments
conducted on various real-world datasets demonstrate that our method
significantly outperforms state-of-the-art graph construction methods in
terms of clustering accuracy. Moreover, when compared to these leading
methods, our approach achieves up to a hundredfold increase in graph
construction efficiency on large-scale datasets, illustrating its potential
for broad application in complex network analysis.

Keywords: Modularity · Graph · Clustering

1 Introduction

Graph-based methodologies are pivotal in numerous machine learning and data
mining tasks, owing to the graph’s inherent strength in encapsulating the intri-
cate structures and interrelationships within data sets. The efficacy of a graph-
based approach hinges on the integrity of the graph itself, as the quality of
the graph profoundly influences the algorithm’s solution quality. Over the past
decades, a variety of graph construction (or learning) techniques have been intro-
duced.

The k-nearest neighbor (k-NN) graph, for instance, is widely adopted due
to its simplicity and effectiveness in capturing the local manifold structure of
data. In a k-NN graph, each node is linked to its k nearest neighbors, which
helps to maintain robustness against outliers. Nevertheless, the fixed-size neigh-
borhood used in k-NN graphs can restrict their ability to represent the global
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manifold structure adequately. The ε-neighborhood graph offers an alternative
by connecting each node to all other nodes within a specified distance ε. How-
ever, selecting an appropriate ε value is challenging and sometimes impractical,
especially when clusters within the data vary significantly in size. [1] suggested
enhancing the k-NN graph by extracting consensus information to prune noisy
edges, where edges with a consensus value below a certain threshold are elimi-
nated. While this method mitigates the effect of noisy connections, it may also
inadvertently discard valuable structural information. More recent research has
explored the use of graph signal processing (GSP) techniques to refine graph
learning methods. These approaches aim to estimate sparse graph Laplacians
more accurately. For example, [2] introduced a method that constrains the pre-
cision matrix to be a graph Laplacian and maximizes the posterior estimate of
a Gaussian Markov Random Field (GMRF), incorporating an l1-regularization
term to maintain graph sparsity. Additionally, [3] developed an approach that
employs approximate nearest-neighbor methods to decrease the number of vari-
ables in the optimization process, thereby enhancing computational efficiency.
However, these advanced Laplacian estimation techniques typically require com-
putational time on the order of O(n2) for each iteration, which poses a significant
challenge for their application in large-scale real-world problems. Therefore, effi-
ciently constructing a high-quality graph remains a challenging task.

In this paper, we propose leveraging modularity to enhance the quality of the
graph. Modularity is a key concept in community detection algorithms. In these
algorithms [4–6], for a given community network, the aim is to find a clustering
division that maximizes modularity as the outcome of community partitioning.
Unlike the conventional use of modularity in these methods, we introduce a
framework that utilizes modularity to optimize the graph’s topological struc-
ture. Specifically, we use modularity to iteratively identify and remove redun-
dant and incorrect edges. In our framework, the quality of graph-based clustering
algorithms and the graph’s topological structure mutually reinforce each other,
improving alternately. When the iterative process can no longer increase modu-
larity, we output the final graph topology. Running graph clustering algorithms
on this optimized graph topology can significantly enhance clustering accuracy.
Experiments on multiple real-world benchmark datasets of large scale indicate
that, compared to state-of-the-art graph construction methods, our approach
can build graph topologies that significantly improve the accuracy of graph clus-
tering algorithms. Moreover, our graph construction is hundreds of times more
efficient than the state-of-the-art methods.

Another contribution of this article is the empirical quantification of the
relationship between modularity and clustering accuracy through the method
we propose, thus substantiating the modularity theory. In community detection
tasks, most clustering divisions lack a ground truth, or they involve multi-label
partitions with extremely complex overlap relationships[7,8]. In many research
papers on community detection, the value of modularity is directly used as the
quantitative evaluation [4–6], which is clearly not very persuasive. Therefore,
how to quantitatively evaluate the effectiveness of community detection algo-
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rithms remains a highly controversial issue, with no consensus reached thus far
[7,8]. This paper introduces a modularity-based graph clustering algorithm that
enables the use of standard datasets with a unique ground truth label for each
sample to obtain the quantitative relationship between modularity and cluster-
ing accuracy. Experimental results on the Pendigits dataset using our algorithm
indicate that modularity and clustering accuracy increase synchronously.

2 Preliminary

2.1 Modularity

Modularity, denoted by Q, is a metric used in community detection to assess the
quality of a network division. It measures the strength of division of a network
into communities by comparing the density of edges within communities to the
density of edges between communities. The modularity Q is defined as [4]:

Q =
1
2m

∑

ij

[
Aij − kikj

2m

]
δ(ci, cj), (1)

where Aij represents the adjacency matrix of the network, with Aij = 1 if
there is an edge between nodes i and j, and Aij = 0 otherwise. The degree of
node i is represented by ki, and m is the total number of edges in the network.
The Kronecker delta function δ(ci, cj) is 1 if nodes i and j belong to the same
community, and 0 otherwise.

Community detection algorithms such as the Louvain Method [5] and the Lei-
den Method [6] leverage modularity to identify meaningful communities within
complex networks. Modularity serves as a quality measure that quantifies the
degree to which a network can be divided into distinct communities. These
methods iteratively optimize modularity by reassigning nodes to communities,
with the goal of maximizing the difference between observed and expected intra-
community connections. This process results in the detection of cohesive groups
of nodes that exhibit higher connectivity within their respective communities
compared to what would be expected by chance. These algorithms efficiently
uncover community structures, making them valuable tools in network analy-
sis, social sciences, biology, and other domains where understanding network
organization is essential.

2.2 The Significance of Graph Topology in Clustering

Graph topology plays a crucial role in detecting non-convex and linearly non-
separable patterns. To illustrate this, we use the most fundamental clustering
task in artificial intelligence as an example.

The widely adopted k-means algorithm, a non-graphical clustering method,
primarily relies on distance metrics to minimize the total distances between
data points and their respective cluster centroids. However, it often falls short
in providing satisfactory clustering results for complex datasets, exemplified by
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well-known scenarios like the two moons and two circles datasets. As shown in
Figure 1, in the two moons dataset, where the ground truth clusters correspond
to two slightly entangled moon-shaped regions, k-means fails to produce accurate
clustering results. Similarly, in the two circles dataset, where the ground truth
clusters correspond to two concentric circles, k-means yields incorrect results.

In contrast, graph-based algorithms, such as spectral clustering, leverage the
connectivity information embedded in the graph topology. This allows them
to overcome the limitations of k-means and generate more accurate clustering
results for complex, non-linear data distributions.

Fig. 1. Clustering results generated by non-graphical and graph-based clustering meth-
ods.

3 Methods

3.1 Overview

In broad terms, our approach draws inspiration from recent modularity-based
community detection methods. However, it deploys modularity in a distinct
manner to accomplish a unique objective. Unlike existing methods that employ
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modularity to guide node clustering within a fixed and predefined graph topol-
ogy, our method introduces a novel perspective.

Existing modularity-based algorithms such as Leiden and Louvain algorithms
iteratively adjust the cluster membership of individual nodes, seeking to reach
the point of maximal modularity. Once this maximum modularity is achieved,
the algorithm terminates, and the resulting cluster memberships are considered
the final clustering results. In contrast, our approach deviates from the con-
ventional paradigm by redefining the role of modularity within the clustering
process. Instead of the traditional approach of altering node cluster member-
ships within a fixed graph topology to maximize modularity, we aim to optimize
the topology based on a given clustering result by maximizing modularity. Once
we obtain an improved graph topology through this optimization process, run-
ning clustering algorithms on this enhanced topology enables us to achieve more
accurate clustering results.

3.2 Algorithm Details

Let us delve deeper into the definition of modularity as given in (1) in
Section 2.1.

When edges between two clusters are removed, it directly affects the modu-
larity calculation by altering both the adjacency matrix Aij and the total number
of edges m. Generally, removing inter-cluster edges tends to increase modularity
since modularity rewards network structures with dense intra-cluster connections
and sparse inter-cluster connections.

More specifically, removing edges between different communities reduces the
kikj

2m term in the equation because m (the total number of edges) decreases,
and since δ(ci, cj) = 0 for nodes in different communities, no subtraction of
actual existing edge contributions occurs. Consequently, the removal of edges
between communities usually leads to an increase in modularity, reflecting a
more distinct community structure. However, there is a limit to this increase.
If too many edges are removed, the network may become too fragmented, and
communities may become disconnected, at which point modularity may no longer
be a good measure. Therefore, removing edges to increase modularity should be
done without compromising the connectivity within communities.

Based on the above analysis, we propose utilizing modularity to direct the
optimization of graph topology and the enhancement of clustering accuracy.

The initial challenge in our method is that at the beginning, we neither have
a sufficiently optimized topology nor highly accurate clustering results. If we
proceed to remove edges between different clusters based on inaccurate cluster
memberships, this will not only fail to optimize the topology but may also result
in the removal of numerous correct edges, thereby worsening the topology. To
address this, for each cluster, we calculate the centroid and identify the cluster
that is furthest away by comparing the distances to the centroids of all other
clusters, and then we remove all edges between it and the cluster that is furthest
away. Although the initial accuracy of the clustering results may not be high,
the points within a cluster and those in the cluster that is furthest away are
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still very likely to not belong to the same class. Therefore, removing the edges
between them is a safe and confident approach.

Subsequently, after removing the edges, we rerun the clustering algorithm
on this optimized topology. The clustering algorithm should yield more accurate
results on the optimized topology. Then, based on this more accurate clustering
result, we search for the furthest cluster from each cluster and remove the edges
between them.

Based on the aforementioned process, the quality of the graph topology and
the accuracy of graph-based clustering enhance each other, improving iteratively.

3.3 Termination Criteria

In our method, the quality of the graph and the accuracy of the clustering algo-
rithm are alternately and synergistically improved. Initially, for a given graph, we
optimize the graph topology by removing edges based on the clustering results.
Then, we use the optimized topology to further improve the accuracy of the
graph-based clustering method. This process is iterative. At the end of each iter-
ation, we calculate and record the modularity of the graph. We then compare
this modularity with that at the end of the previous iteration. If we observe that
the modularity no longer increases or if it reaches the preset maximum number
of iterations, we stop the process.

The complete algorithm flow has been shown in Algorithm 1.

Algorithm 1 Modularity guided graph topology optimization
Input: A given graph G, number of divisions p. Output: The optimized graph.

1: while the modularity of the graph does not increase compared to the previous
iteration or the maximum number of iterations is reached do

2: Perform clustering algorithm to divide the latest graph into p clusters;
3: for each cluster Ci do
4: Find the farthest cluster Cj from it based on the distance between cluster

centroids;
5: Remove all the edges between Ci and Cj ;
6: end for
7: Check the termination criterion.
8: end while

3.4 Complexity Analysis

In Algorithm 1, the time complexity is dominated by the clustering algorithm
employed. It should be noted and emphasized that our method is not designed
for any specific clustering algorithm, but rather it is a generalized optimiza-
tion approach applicable to all graph-based clustering algorithms. Currently,
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the latest research progress have reduced the time complexity of representative
graph-based clustering algorithms, such as spectral clustering, to near-linear [14].
Therefore, if we use the spectral clustering algorithm for clustering in Algorithm
1, the complexity of Algorithm 1 is near-linear.

4 Experiment

In this paper, we construct the initial graph topology using the most commonly
employed k-Nearest Neighbors (k-NN) method and perform clustering with the
classic spectral clustering algorithm. The value of k is set to 10 in the k-NN
method. Experiments are performed using MATLAB running on the Laptop.

4.1 Data Sets

COIL-20 includes 1,440 grayscale images of 20 different objects. Each object is
placed on a motorized turntable against a black background, and the turntable
is rotated through 360 degrees to capture images at 5-degree intervals, result-
ing in 72 images per object. These images are down-sampled to a resolution of
32x32 pixels, leading to each image being represented by 1,024 attributes. This
dataset is commonly used for object recognition and classification tasks due to
its controlled environment and diverse object representations.

PenDigits includes 7,494 handwritten digit samples collected from 44 writ-
ers. Each writer contributed multiple instances of the digits 0 through 9, result-
ing in a diverse and extensive collection of handwritten digits. Each digit is
represented by 16 attributes that capture the pen-tip coordinates as the digit is
drawn. This dataset is widely used for evaluating handwriting recognition algo-
rithms and has a good balance of inter-class diversity and intra-class variability.

USPS includes 9,298 images of handwritten digits from the USPS postal
service. Each digit image is resized to a 16x16 pixel grayscale image, resulting
in 256 attributes per image. This dataset is well-known for its use in machine
learning and pattern recognition research, particularly in the context of digit
classification. The USPS dataset provides a challenging testbed for algorithms
due to variations in handwriting styles and digit shapes.

4.2 Comparison Methods

We compare the proposed method against both the baseline and the state-of-
the-art graph learning (construction) methods by applying the same spectral
clustering algorithm to the graphs constructed by these various methods and
evaluating the accuracy of the clustering results. The methods being compared
include:
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1) k-NN graph: the most widely used graph construction method. Each node
is connected to its k nearest neighbors.

2) Consensus k-NN graph [1]: the state-of-the-art graph edge selection meth-
ods for improving the performance of k-NN graph. It improves the robustness
of the k-NN graph by using the consensus information from different neighbor-
hoods of a given k-NN graph.

3) LGSS [3]: the most recent progress in graph learning field from the GSP
perspective. It can automatically select the parameters of the model for achiev-
ing the desired graph properties.

4) Spectral edge sparsification method [15]: The state-of-the-art method for
detecting non-critical, misleading, and superfluous edges in the graph via spectral
analysis.

4.3 Evaluation Metric

We measure the quality of clustering with two metrics: clustering accuracy
(ACC) and normalized mutual information (NMI) between the clustering results
generated by clustering algorithms and the ground-truth labels provided by the
data sets. The two metrics are defined as follows:

Clustering Accuracy The clustering accuracy is defined as:

ACC =

n∑
j=1

δ(yi,map(ci))

n
, (2)

where n is the number of data instances in the data set, yi is the ground-truth
label provided by the data set,and Ci is the label generated by the cluster-
ing algorithm. δ(x, y) is a delta function defined as: δ(x, y)=1 for x = y, and
δ(x, y)=0, otherwise. map(•) is a permutation function that maps each cluster
index ci to a ground truth label, which can be realized using the Hungarian
algorithm [10]. A higher value of ACC indicates better clustering quality.

Normalized Mutual Information For two random variables P and Q, nor-
malized mutual information is defined as [13]:

NMI =
I(P,Q)√

H(P )H(Q)
, (3)

where I(P,Q) denotes the mutual information between P and Q, while H(P ) and
H(Q) are entropies of P and Q. In practice, the NMI metric can be calculated
as follows [13]:
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NMI =

k∑
i=1

k∑
j=1

ni,j log(
n·ni,j

ni·nj
)

√
(

k∑
i=1

nilog ni

n )(
k∑

j=1

nj log
nj

n )

, (4)

where n is the number of data points in the data set, k is the number of clusters,
ni is the number of data points in cluster Ci according to the clustering result
generated by algorithm, nj is the number of data points in class Cj according
to the ground truth labels provided by the data set, and ni,j is the number of
data points in cluster Ci according to the clustering result as well as in class
Cj according to the ground truth labels. The NMI value is in the range of [0,
1], while a higher NMI value indicates a better matching between the algorithm
generated result and ground truth result.

4.4 Clustering Quality Results

We perform spectral clustering algorithm on the graphs generated by the four
graph construction methods. The clustering accuracy results and NMI results
are shown in Table 1 and Table 2, respectively.

As shown in Table 1, the proposed method can consistently lead to dramatic
performance improvement over the given graph. By applying our optimization
method on k-NN graph, it achieves more than 6%, 12% and 16% clustering
accuracy gains on the three data sets, respectively. For the Pendigits dataset,
our method has 12% clustering accuracy gain over the second-best method. The
superior clustering results clearly demonstrate the effectiveness of the proposed
method. As shown in Table 2, for both the Pendigits and the USPS data sets,
our method provides best NMI results among all the compared methods. Based
on the experimental results, our method outperforms the spectral sparsifica-
tion approach on all three datasets. Both the spectral sparsification method and
our method involve constructing a sub-graph of the original graph. However,
the spectral sparsification method achieves this by performing spectral domain
analysis to identify and remove edges that have little impact on the key spectral
properties of the original graph. In contrast, our method removes edges that,
when eliminated, can increase the modularity of the graph. Compared to spec-
tral sparsification, which merely eliminates redundant connections, our approach
directly promotes the clarification of the graph’s clustering structure. Therefore,
our algorithm can lead to a greater improvement in clustering accuracy.

Table 1. Clustering Accuracy (%)

Data Set k-NN Consensus LGSS Spectral Spar Our method

COIL20 75.72 81.60 85.49 76.27 82.22
PenDigits 74.36 71.08 74.53 83.26 86.42
USPS 64.31 68.54 81.50 70.74 80.55
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Table 2. NMI

Data Set k-NN Consensus LGSS Spectral Spar Our method

COIL20 0.86 0.90 0.95 0.86 0.88
PenDigits 0.79 0.79 0.77 0.78 0.81
USPS 0.79 0.81 0.84 0.81 0.85

4.5 Graph Construction Time Results

To assess the efficiency of graph construction, we report the time required for
building graphs with both our method and current state-of-the-art methods, as
shown in Table 3.

Table 3. Graph learning (construction) time (Seconds)

Data Set Consensus LGSS Our method

COIL20 2.43 13.56 6.32
PenDigits 172.51 1085.43 7.87
USPS 574.28 2074.78 5.01

It can be seen that our method is much more efficient compared to other
methods. For the Pendigits data set, our method achieved 22X and 138X times
speedup over the Consensus method and the LGSS method, respectively. For
the USPS data set, our method achieved 115X and 415X times speedup over
the Consensus method and the LGSS method, respectively. These results indi-
cate that, compared with state-of-the-art graph construction methods, our graph
optimization approach not only yields higher-quality graphs that significantly
enhance clustering accuracy but also greatly improves efficiency.

4.6 Quantitative Empirical Validation of the Relationship Between
Modularity and Clustering Quality

Although many algorithms in the field of community detection optimize clus-
tering based on modularity, to the best of our knowledge, there have been no
empirical quantitative results regarding the relationship between modularity and
the quality of clustering to date. In this paper, we design experiments based on
our proposed method and provide quantitative evidence confirming the relation-
ship between modularity and clustering effectiveness.

The clustering accuracy and modularity results through iterations of our
method have been shown in Figure 2 and Figure 3, respectively. It can be
observed that the clustering accuracy and modularity increase concurrently,
which substantiates the validity of the modularity theory.
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Fig. 2. Clustering accuracy through iterations of the Pendigits data set.

Fig. 3. Modularity through iterations of the Pendigits data set.

5 Conclusion

In this work, we present a modularity-guided graph topology optimization
method. We show that the graph topology learning problem can be solved by
iteratively identifying and removing redundant and misleading edges to increase
the modularity of the graph. Unlike traditional modularity-based approaches
which focus on updating cluster-membership of samples to maximize the modu-
larity, our method aims to optimize the graph topology through the modularity
maximization process. When comparing with state-of-the-art graph construction
(learning) approaches, our approach is more efficient and leads to substantially
improved solution quality of graph-based clustering. The paper also validates
the modularity theory through quantitative empirical evidence of the relation-
ship between modularity and clustering quality.
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Abstract. This paper proposes a Positive Unlabeled (PU) learning app-
roach to narrow down the prediction area in the context of good fish-
ing ground prediction. PU learning, a type of semi-supervised learning,
is particularly suitable for scenarios characterized by limited positive
examples and abundant unlabeled data, as often encountered in fishing
ground prediction tasks, where the explored sea areas identified as pro-
ductive fishing spots are treated as positive instances and the vast unex-
plored sea areas as unlabeled data. Conventional methods often struggle
to accurately model the characteristics of good fishing grounds, result-
ing in overly broad prediction areas or overly restrictive constraints. To
tackle this challenge, we present a PU learning-based method designed
to identify negative examples from the unlabeled data and consequently
refine the area predicted as positive. Specifically, we train a prediction
model for fishing duration, which can be considered a surrogate indicator
of good fishing grounds. Subsequently, we apply this model to predict the
fishing duration for unexplored areas; those areas exhibiting short fish-
ing durations are deemed reliable negative examples. By incorporating
both past positive examples and selected negative examples into a binary
classification framework for predicting good fishing grounds, we aim to
fine-tune the prediction area. To the best of our knowledge, this study
represents the first application of PU learning in the domain of good fish-
ing ground prediction. Experimental comparisons conducted using data
from bullet tuna trolling validate the efficacy of the proposed methodol-
ogy.
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1 Introduction

Predicting optimal fishing locations is essential for assisting fishers in decision-
making, thereby enhancing operational efficiency. This is expected to result in
increased catch yields while minimizing fuel costs and time spent on explo-
ration and movement. To achieve precise predictions of favorable fishing spots,
many studies have employed machine learning methodologies [1,2,5–7,10,11,17–
19,21]. Many of these approaches have focused on forecasting favorable fishing
locations by leveraging local catch data and oceanographic information within
specific regions. However, obtaining local fishing yields typically requires equip-
ping fishing vessels with expensive sensors, which presents a challenge for many
types of fishing activities. Moreover, the observable data typically stems solely
from the GPS log positions of productive fishing grounds, which are consid-
ered positive instances in the prediction of good fishing grounds. In areas where
the vessel is not in motion, no information is available about whether a par-
ticular location constitutes a good fishing ground. These challenges pertain to
constructing prediction models using a limited number of positive instances and
a majority of unlabeled data, a scenario known as positive unlabeled (PU) learn-
ing problems. Despite these challenges, there are currently no instances of PU
learning being applied to the prediction of good fishing grounds.

PU learning, a specialized case of semi-supervised learning, involves learning
from a limited number of positive examples and a large amount of unlabeled
data [3]. Good fishing ground prediction is framed as a PU learning problem
because areas of the sea lacking fishing records cannot be designated as negative
examples but rather remain unlabeled. Such tasks, comprising positive exam-
ples and unlabeled data, are prevalent in real-world scenarios such as medical
diagnosis, anomaly detection, and landslide prediction, attracting considerable
attention in recent years [4,16,20,22–24]. One method for leveraging unlabeled
data in PU learning is through two-step techniques [3,13]. This involves first
identifying reliable negative examples from the unlabeled data and then using
labeled positive examples alongside these reliable negative examples for learning.
In this paper, we propose applying two-step techniques to the task of predicting
good fishing grounds.

Furthermore, existing methods for predicting favorable fishing locations have
not explicitly considered the quality of fishing grounds, such as catch volume.
These approaches have employed convolutional autoencoders and determined
the suitability of a sea area as a good fishing ground based on the magnitude of
reconstruction errors [6]. If the error is small, the sea area is classified as a good
fishing ground; otherwise, it is deemed unsuitable. However, due to the scarcity of
negative examples during training and the omission of factors like catch volume,
these methods tended to overpredict a large area as positive (i.e., over-detection),
which did not sufficiently assist fishers in decision-making. To address this issue,
the attribute-dependent thresholding (ADT) model was introduced, incorporat-
ing prior knowledge such as location and depth [10]. Since bullet tuna fishing
tends to occur in similar geographical areas and depths, this model succeeded in
narrowing down the prediction area. However, it overly constrained the area by
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relying too heavily on prior knowledge, leading to predictions limited to areas
with a high frequency of past good fishing grounds and missing the opportunity
to identify a broader range of unknown spots where fish might be found.

Fig. 1. Overview of proposed two-step method for PU learning-based development of
good fishing ground predictor. Step 1 involves creating model to predict fishing dura-
tion and using it to extract negative examples from unlabeled data. Step 2 constructs
binary classifier to differentiate each sea area into good and poor fishing locations using
observed positive and estimated negative examples.

This study aims to leverage a significant volume of unlabeled data to narrow
down the prediction area without relying on prior knowledge such as geograph-
ical locations and depths. To accomplish this, we propose a PU learning-based
approach for predicting good fishing grounds, as depicted in Fig. 1. The pro-
posed method consists of two primary steps: i) developing a model to predict
fishing duration, specifically the time spent fishing in a particular sea area, and
extracting negative examples from unlabeled data based on the predicted dura-
tion (where a longer duration indicates a more favorable location), and ii) con-
structing a binary classifier to distinguish each sea area into good and poor fish-
ing spots. By utilizing historical positive examples and the estimated negative
examples, our aim is to enhance the discriminative capability in identifying good
fishing grounds, thereby refining the prediction area. To validate the effective-
ness of our proposed method, we use operational data from bullet tuna trolling
activities conducted between 2014 and 2017. Although the proxy prediction task
in step 1 may seem very specific and limited, our methodology of constructing a
predictor based on features related to the final task and subsequently extracting
examples using that predictor can be broadly applicable to many PU learn-
ing real-world applications. For instance, in healthcare predictive analytics, our
methodology could be applied to predict patient outcomes based on historical
health records. The proxy prediction task could be adapted to forecast interme-
diate health indicators, which subsequently inform long-term health outcomes.
Therefore, the insights gained from this experiment are anticipated to not only
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contribute to PU learning for predicting good fishing grounds but also address
various PU problems encountered in real-world scenarios.

The remainder of this paper is structured as follows. Section 2 discusses
the data employed, encompassing meteorological and oceanographic data, catch
data, and operational information. Section 3 explains the details of the proposed
two-step method for PU learning in good fishing ground prediction. Section 4
demonstrates the effectiveness of the proposed method. Finally, Sect. 5 provides
a summary of the paper.

2 Data

In this study, we utilize data related to the bullet tuna trolling activities carried
out off the coast of Tosa-Shimizu City, Kochi Prefecture, Japan, from October
2014 to March 2017. This data comprises fishing vessel trajectories obtained
from GPS, statistical information regarding favorable fishing locations derived
from these trajectories, and meteorological and oceanographic data during fish-
ing operations. In this case, the monitored sea area is divided into a grid with
dimensions of approximately 2.6 km north-south and 2.4 km east-west, and pre-
dictions for productive fishing grounds are made for each grid cell. The grid size
is determined by the resolution of the oceanographic simulations employed to
gather oceanographic data.

2.1 Fishing Vessel Trajectories and Past Good Fishing Grounds

The GPS trajectories of fishing vessels are utilized to identify productive fishing
grounds, gather statistical data on previously productive fishing grids, and esti-
mate the duration of fishing activities within each grid. In the absence of local
catch data, we consider fishing duration as a proxy for catch volume.

The actual fishing locations were determined from the GPS trajectory data of
the fishing vessels. An example of this data is illustrated in Fig. 2a, where the red
line depicts the trajectory. The GPS trajectory data comprises time, latitude,
longitude, and heading (the direction in which the bow is facing), recorded every
second. During bullet tuna trolling, vessels consistently execute left turns while
fishing, facilitating the identification of fishing locations based on changes in
heading.

As depicted in Fig. 2b, positive labels were assigned to roughly 80% of the
consecutive points where fishing occurred, spanning from the beginning to the
end of the operation. This assumption is based on the notion that approximately
80% of these points represent stable fishing spots where fish are reliably caught,
as indicated by feedback from fishermen.

Figure 3 illustrates the distribution of previously observed productive fishing
grounds. From this figure, it is apparent that areas with a high frequency of
productive fishing grounds are clustered near the fishing port at coordinates
(32◦8’N, 133◦E) and along the coast between (32◦5’N–32◦6’N, 132◦75’E–133◦E).
A comparison between the predicted good fishing ground locations and the actual
distribution of productive fishing grounds is conducted in Sect. 4.3.
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Fig. 2. (a) Illustration of fishing vessel’s trajectory obtained from GPS sensors on
November 4, 2014. Continuous left turns are executed during fishing operations. (b)
Example of positive label annotation. Positive labels were attributed to approximately
80% of points spanning from starting point to ending point of operation.

2.2 Oceanographic and Meteorological Information

The experimental features encompassed oceanographic parameters such as water
temperature, salinity, north-south current velocity, and east-west current veloc-
ity, along with meteorological data. The oceanographic parameters were sourced
from the JCOPE-T reanalysis dataset [8], characterized by a horizontal grid
resolution of 1/36-degree. This dataset is compiled by assimilating data from
satellite altimetry, sea surface temperature, in-situ temperature, and salinity
measurements into an ocean circulation model. The JCOPE ocean forecasting
system, which generates this dataset, regularly updates its forecasts by incorpo-
rating as much observation data and satellite altimetry data as feasible [14,15].

The data utilized for predicting good fishing grounds includes:

– Spatial range: 32–33◦N, 132–134◦E
– Data-extracted Depth: 0, 5, 10, 20, 30, 40, 50m
– Period: 2014/10/01–2017/3/31
– Variables: north-south current velocity, east-west current velocity, potential

water temperature, salinity

The oceanographic data comprises an 11×11 grid surrounding the target
prediction grid, encompassing seven depths ranging from 0m to 50m, and three
hours of data up to two hours before the observation and prediction time, result-
ing in a total of 2541 dimensions. The size of each area is approximately 2.6km
× 2.4km, which corresponds to the dimensions of each grid depicted in Fig. 7.

Meteorological data were sourced from the Shimizu Observatory, located
nearest to the fishing area in Tosashimizu, Kochi Prefecture. Table 1 enumer-
ates the 18 data types utilized in the experiments, which are accessible via the
website of the Japan Meteorological Agency [9]. Wind direction data, provided in
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Fig. 3. Distribution of past good fishing grounds. Each grid is color-coded according to
percentiles of values, indicating 0, 25, 50, 75, and 100 percentiles. Darker red indicates
higher frequency, while lightest red indicates no observed good fishing grounds. (Color
figure online)

Table 1. Meteorological information used.

Attribute Details Dim

Temperature [◦C] Ave., Max., Min. 3
Humidity [%] Ave., Min. 2
Precipitation [mm] Total, Max. in 1 h, Max. in 10 min. 3
Mean atmospheric pressure [hPa] Local, Sea level 2
Wind speed [m/s] Ave., Max., Instantaneous max. 3
Wind direction [cos, sin] Max., Instantaneous max. 4
Sunshine hours [h] Sunshine hours 1

Total 18

azimuth, were pre-processed into cosine and sine components. The meteorologi-
cal data input into the model encompassed two days of observations from the day
prior and two days preceding the prediction date, resulting in a 36-dimensional
feature.

3 PU Learning for Good Fishing Ground Prediction

This section provides a detailed procedure for the proposed PU learning method-
ology. Areas with short fishing durations can be regarded as negative instances,
indicating areas that are not conducive to good fishing grounds. Thus, fish-
ing duration data is estimated from GPS trajectories (Sect. 3.1) and utilized
to train a model for estimating fishing duration (Sect. 3.2). Subsequently, this
model is employed to estimate fishing durations in unexplored sea areas, with
areas exhibiting short durations identified as reliable negative instances. These
estimated reliable negative instances, along with observed positive instances, are
utilized to construct a model for predicting good fishing grounds via binary clas-
sification, discerning whether an area qualifies as a productive fishing ground
(Sect. 3.3).
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Fig. 4. Example of fishing duration acquisition: Duration, measured in seconds, of
positive instances is obtained for each grid on hourly basis.

3.1 Estimation of Fishing Duration

As depicted in Fig. 4, we aggregate the positive examples for each designated grid
and calculate the duration of positive examples (referred to as fishing duration)
in seconds for each grid on an hourly basis.

Figure 5a illustrates the obtained distribution of fishing duration, which is
subject to distortions due to limitations in data acquisition. This distribution
exhibits a skewed shape, with a peak in the count near 0 s that decreases as
the duration increases, spiking again at 3600 s. The high frequency near 0 s is
attributed to the timing or grid boundaries, as fishing activity is aggregated
hourly for each grid. The spike at 3600 s corresponds to the maximum dura-
tion a vessel can continue fishing within a single grid, calculated as 60min ×
60 s = 3600 s. Any duration exceeding 3600 s indicates multiple vessels engaging
in fishing activities simultaneously. Consequently, the fishing duration obtained
through this process cannot directly serve as an indicator of good fishing grounds.

To address the constraints in data acquisition and allow the duration to
serve as an indicator of good fishing grounds, temporal and spatial smoothing
is employed. During the smoothing process, if fishing activity is detected in the
grid or its vicinity one hour prior or if there is concurrent fishing activity in the
vicinity, the fishing duration is extended. This adjustment facilitates duration
elongation in areas with continuous or neighboring fishing activities.

Let (x, y) denote a grid and t represent the time. We define R(x, y, t) as the
actual fishing duration without smoothing and S(x, y, t) as the duration with
smoothing. In this case, the detailed smoothing process is formulated as

S(x, y, t) = R(x, y, t) + αS(x, y, t − 1) + β
x+1∑

i=x−1
i�=x

y+1∑

j=y−1
j �=y

R(i, j, t), (1)
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Fig. 5. Distribution of fishing duration: Horizontal axis represents fishing duration,
while vertical axis represents count. Due to constraints in data acquisition, Fig. 5a
exhibits spikes near 0 s and prominent spike at 3600 s (one hour). In contrast, Fig. 5b,
with smoothing applied, displays more natural shape without prominent spikes.

where at time t, α signifies the coefficient for the smoothed fishing duration of
grid (x, y) at time t − 1, and β represents the coefficient for the actual fishing
duration of neighboring grids at time t. This equation facilitates temporal and
spatial smoothing, incorporating the smoothed fishing duration from one hour
before and the actual fishing duration of neighboring grids at time t into the
actual fishing duration of grid (x, y) at time t.

Figure 5b illustrates the distribution of fishing durations after applying
smoothing with α = 0.5 and β = 0.25. In comparison to Fig. 5a, there is no
longer a spike around 3600 s, and the graph exhibits a more natural shape with
a peak around 1800 s. To determine the values of α and β, fishing duration data
from the training dataset was utilized. Nine different conditions, varying the
values of α and β, were tested. The combination that appeared smoothest was
selected based on visual assessment. This smoothing procedure has rendered it
viable to regard the duration of stay in fishing grounds as an indicator of good
fishing locations. Hence, S(x, y, t) is employed as the fishing duration at grid
(x, y) and time t.

3.2 Extraction of Negative Instances from Unlabeled Data

The accurate detection of negative examples from unlabeled data is crucial for
the success of PU learning based on the two-step approach.

Fishing Duration Modeling. Firstly, our objective is to develop a model that
estimates fishing duration for each grid using corresponding meteorological and
oceanographic data. As discussed in Sect. 3.1, fishing duration can act as a proxy
indicator for identifying good fishing grounds. Therefore, grids with longer fishing
durations in historical positive data are likely to represent good fishing grounds,
while those with shorter durations are less likely to be productive. Consequently,
when the model predicts a small value (indicating a short fishing duration), the
corresponding grid is classified as a negative example (representing a poor fishing
ground).
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Fig. 6. Network architecture of fishing duration estimation model and good fishing
ground prediction model. Final output of fishing duration estimation model is non-
negative numerical value, while for prediction of good fishing grounds, output falls
between 0 and 1.

The architecture of the fishing duration estimation model is depicted in Fig. 6.
The model comprises a combination of three-dimensional convolutional layers
and one-dimensional linear layers. Oceanographic parameters such as water tem-
perature, salinity, and north-south/east-west current velocity are processed by
the three-dimensional convolution layers, while the linear layers handle meteoro-
logical data. By representing oceanographic information in a three-dimensional
convolution with three channels, the model is designed to capture the spatio-
temporal characteristics associated with good fishing grounds. The final output
of the model is the fishing duration, which is a non-negative numerical value.
Note that no activation function is applied for the final layer in this model.

Extraction of Negative Examples from Unlabeled Data. The developed
fishing duration estimation model is applied to identify reliable negative exam-
ples from unlabeled data. Initially, the meteorological and oceanographic data
from unlabeled grids, representing unobserved sea areas, serve as inputs to the
fishing duration estimation model. Subsequently, a weighted random sampling
is conducted based on the output of the model, favoring grids with lower values
to be more likely extracted as reliable negative examples. For each date and
time with at least one positive example, an equivalent number of negative exam-
ples are sampled. For example, if there are four positive examples at 11:00 on
November 9, 2014, four negative examples are drawn from the unlabeled grids.

3.3 Good Fishing Ground Prediction as Binary Classification

We train the model for predicting good fishing grounds using both previously
observed positive examples and estimated negative examples within the frame-
work of PU learning using two-step techniques. In this stage, all past posi-
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tive examples are treated as positive examples, regardless of their fishing dura-
tions. This approach is guided by two primary considerations. Firstly, previously
observed positive examples are inherently more reliable than estimated nega-
tive examples. Secondly, given the limited availability of positive examples, it is
imperative to gather more positive instances to improve performance. By incor-
porating reliable negative examples derived from unlabeled data into the training
process for binary classification, we anticipate an enhancement in discriminative
performance and a more refined prediction area (i.e., further narrowing down
the prediction area).

Figure 6 depicts the architecture of the good fishing ground prediction model.
This architecture closely resembles that of the fishing duration estimation model,
except for the final output. The primary difference between the two models lies
in the final layer: the fishing duration estimation model performs regression, and
this model performs classification. The activation function for the final layer in
this model is a Sigmoid function, so the final output ranges between 0 and 1.
Positive examples are labeled as 1, while extracted negative examples are labeled
as 0.

4 Good Fishing Ground Prediction Experiment

To assess the efficacy of the proposed approach in narrowing down the predic-
tion area of productive fishing grounds using unlabeled data, experiments were
conducted using operational data from bullet tuna trolling from 2014 to 2017.
Given the preference of bullet tuna for shallow waters, the target prediction area
encompasses waters with a depth of 800m or less within the region of 32–33◦N
and 132–134◦E.

4.1 Experimental Setup

In the experiments, the data from October 2014 to March 2017 was partitioned
into five data folds, and five-fold cross-validation was conducted to account for
the annual and seasonal variations in the patterns of good fishing grounds.
Table 2 presents the fold ID, corresponding period, along with the number of
positive examples and extracted negative examples for each fold. In each iter-
ation, the four folds were used for training, and the remaining fold was used
for testing, ensuring complete separation of training and testing folds to prevent
data overlap and leakage. The four folds were used for training and negative
sample extraction in Step 1, and for training in Step 2. The remaining fold was
used exclusively for testing in Step 2.

We conducted a comparison between modeling techniques employing the pro-
posed PU learning and conventional inlier modeling, which utilizes only positive
examples. For inlier modeling, we explored both attribute independent training
(AIT) and attribute dependent training (ADT) [6,10], the latter being suitable
for refining prediction results. These two models (AIT and ADT) were imple-
mented using PyTorch and trained for 250 epochs with a learning rate of 0.0001.



Leveraging Data from Vast Unexplored Seas 153

Table 2. Details of each fold: Positive examples consist of observed data, whereas
negative examples are extracted from unlabeled data.

Fold ID Period # Positive examples # Negative examples

A01 2014/10–2015/03 1151 1151
A02 2015/04–2015/05 1178 1178
A03 2015/06–2015/12 1097 1097
A04 2016/02–2016/09 1484 1484
A05 2016/10–2017/03 1594 1594

These hyperparameters were selected based on preliminary experiments using
the A1 fold. The proposed model underwent training using five different epochs,
specifically 15, 20, 25, 30, and 35.

4.2 Evaluation Metrics

The evaluation metric for predicting fishing duration is the mean absolute error
(MAE). For the binary classification of good fishing ground prediction, we utilize
the Area Under the Curve (AUC), where the ratio of grids estimated to be
positive (RGEP) is plotted on the x-axis and the recall is plotted on the y-axis,
with varying thresholds. Here, the RGEP and recall are defined as follows:

– Ratio of grids estimated to be positive (RGEP) Pr[f(X) = 1]: This
metric indicates how well the predicted area of good fishing ground is nar-
rowed down (lower values are desirable).

– Recall r = Pr[f(X) = 1|Y = 1]: This metric indicates how well actual good
fishing grounds are detected (higher values are desirable).

Here, f(X) = 1 denotes that the input area X is predicted as a good fish-
ing ground, and Y = 1 indicates that the actual area is indeed a good fishing
ground. A metric r2/RGEP calculated from the above metrics is often utilized
as an alternative to the F score in PU problems where negative examples are
unavailable [12]. However, unlike in [12], we utilize the AUC described below
instead of the F-score because the optimal threshold for determining good fish-
ing grounds varies annually and seasonally, making AUC more appropriate than
the F-score for fundamental technology development.

The RGEP serves as a substitute for the precision when comprehensive obser-
vation of good fishing ground data is impractical. Typically, classification prob-
lems employ the precision and recall as evaluation metrics. However, the precision
cannot be computed in this task because there is no means to verify whether the
predicted grid is genuinely positive or not. In its place, the RGEP is employed
since it still allows for the determination of the proportion of the area predicted
as positive.
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Table 3. Fishing duration estimation results for A01 to A05.

Fold ID Pred value [s] True value [s] MAE [s]

A01 1908.8 2688.5 1541.7
A02 2105.2 3531.1 2092.2
A03 2218.1 3648.8 2280.1
A04 2970.8 3853.0 2078.4
A05 1531.5 2917.2 1893.5

The AUC represents the area under the curve plotted with the RGEP on
the x-axis and the recall on the y-axis for each threshold. As the predicted area
of positive examples becomes narrower and more past positive examples are
identified as positive, the AUC approaches one. Hence, values closer to one are
desirable. The AUC, derived from the RGEP and recall, is well-suited for assess-
ing data comprising positive examples and unlabeled data and finds application
in landslide susceptibility prediction evaluations [4].

4.3 Experimental Results

Fishing Duration Estimation and Negative Example Extraction.
Table 3 lists the results of experiments conducted on predicting smoothed fish-
ing duration. The “Pred value” column presents the mean of predicted values
for positive examples, “True value” represents the mean of actual values for pos-
itive examples, and “MAE” signifies the mean of mean absolute error between
predicted and actual values for positive examples.

The data in Table 3 shows that across all folds, the mean of predicted values
consistently undershoots those of the actual values. Moreover, the MAEs are
relatively high compared to typical regression problems. Given this insufficient
performance of the fishing duration estimation model, relying solely on it for
predicting good fishing grounds is impractical. Instead, we primarily utilized
this model to derive negative examples from unlabeled data. Therefore, this
significant error may be considered negligible.

Table 2 lists the results of extracting negative examples from unlabeled data,
with the same quantity as the positive examples for each fold.

Binary Classification for Predicting Good Fishing Grounds. Table 4
presents the results of binary classification for identifying good fishing grounds
using past positive and extracted negative examples. Predictions were made for
periods A01 to A05 using seven models.

The results in Table 4 highlight that the proposed PU learning models consis-
tently achieved the highest values (highlighted in bold) for each period (A01 to
A05), surpassing the performance of the existing AIT and ADT models. Notably,
the top-performing model, PU learning model (30 epochs), demonstrated a per-
formance improvement of 13.6% (0.660→0.750) compared to the baseline ADT
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Table 4. Good fishing ground prediction results (AUC).

Model Name A01 A02 A03 A04 A05 Mean SD

inlier (AIT) 0.759 0.546 0.645 0.587 0.772 0.662 0.101
inlier (ADT) 0.704 0.567 0.708 0.563 0.756 0.660 0.089

PU (15 epochs)0.890 0.510 0.821 0.631 0.800 0.730 0.156
PU (20 epochs) 0.884 0.531 0.821 0.652 0.797 0.737 0.143
PU (25 epochs) 0.871 0.567 0.806 0.677 0.816 0.747 0.124
PU (30 epochs) 0.856 0.617 0.775 0.659 0.844 0.750 0.108
PU (35 epochs) 0.839 0.571 0.756 0.677 0.765 0.722 0.102

model. This quantitative evaluation confirms the effectiveness of the proposed
approach, demonstrating its capability to narrow down the prediction area with-
out relying on geographical location and depth.

Example of Good Fishing Ground Prediction Maps. Figure 7 presents
the success and failure cases of the prediction maps generated by three mod-
els, with the A01 period used as the test data. The success case corresponds
to the prediction map at 06:00 on March 28, 2015, while the failure case cor-
responds to the prediction map at 10:00 on October 30, 2014. Focusing on the
success cases, Fig. 7.1(a) illustrates the prediction map generated by the AIT
model, indicating a wider area predicted as positive. Subsequently, Fig. 7.2(a)
presents the prediction map produced by the ADT model. The implementa-
tion of the new thresholding system resulted in a reduction in the proportion
of the predicted area compared to the overall target area (i.e., RGEP), effec-
tively narrowing down the prediction area. However, the past positive examples
were not identified as positive examples, leading to a low recall rate. In con-
trast to these models, Fig. 7.3(a) demonstrates the success of the proposed PU
learning model in narrowing down the prediction area while maintaining a high
recall rate. Furthermore, when compared to the distribution of past good fishing
grounds depicted in Fig. 3, the proposed model succeeded in predicting areas
with low frequencies of good fishing grounds. Thus, it is confirmed that the PU
learning-based approach, utilizing unlabeled data as negative examples, enables
narrowing down the prediction area without relying on prior knowledge such as
location and depth.

Conversely, when examining the failure cases, Figs. 7.1(b), 7.2(b), and 7.3(b)
did not successfully predict fishing grounds, as the past positive examples were
not identified as high-likelihood spots. The primary cause for this failure is
believed to be the deviation in sea patterns from the usual ones. While the
prediction results of the proposed PU learning method missed the past fishing
grounds, it still identified areas close to them as positive. Therefore, it can be
concluded that the proposed PU learning method is capable of predicting sea
areas more effectively than conventional methods, even in failure cases.
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Fig. 7. Success and failure cases of prediction maps (A01, March 28, 2015, 06:00 and
A01, October 30, 2014, 10:00, respectively). White stars on heatmap denote actual
observed good fishing grounds at this time. Grids shaded from red to blue depict
predicted target grids, where red signifies high likelihood of being good fishing grounds
and blue suggests low likelihood. Grids without color are located outside target area.
(Color figure online)

5 Conclusion

In this paper, we introduced a PU learning-based method designed to precisely
narrow down the prediction area for good fishing grounds without relying on
prior knowledge such as location and depth. Leveraging the two-step techniques
framework of PU learning, we extracted negative examples from unlabeled data
and integrated them into the learning process. The experimental results demon-
strated a notable 13.6% enhancement in performance compared to conventional
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methods, affirming the efficacy of our proposed approach in accurately delimiting
the prediction area without the need for prior knowledge.
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Abstract. Stereo estimation has made many advancements in recent
years with the introduction of deep-learning. However the traditional
supervised approach to deep-learning requires the creation of accurate
and plentiful ground-truth data, which is expensive to create and not
available in many situations. This is especially true for remote sensing
applications, where there is an excess of available data without proper
ground truth. To tackle this problem, we propose a self-supervised CNN
with self-improving adaptive abilities. In the first iteration, the created
disparity map is inaccurate and noisy. Leveraging the left-right consis-
tency check, we get a sparse but more accurate disparity map which
is used as an initial pseudo ground-truth. This pseudo ground-truth is
then adapted and updated after every epoch in the training step of the
network. We use the sum of inconsistent points in order to track the
network convergence. The code for our method will be made available
after acceptance at https://github.com/thedodo/SAda-Net

Keywords: stereo vision · deep learning · satellite images · aerial
images · disparity estimation · remote sensing

1 Introduction

Stereo Vision has been a major topic of computer vision for many years. The
goal of stereo vision is to extract 3D information of a scene using two neigh-
boring images showing the same scene taken from different camera poses. 3D
scene information is useful for many important applications, such as robotics,
autonomous driving, 3D scene reconstructions or virtual and augmented reality.
3D reconstruction of urban aerial images is particular important for a multi-
tude of use-cases, such as urban planning, environmental monitoring or disaster
management and prevention.
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Fig. 1. Overview of our method. The input consists of two stereo rectified satellite
image tiles. Our method does not need any additional input in order to be trained. We
use the satellite stereo pipeline software (s2p) in order to project our depth estimation
into world coordinates and create a point cloud as well as a digital surface model (dsm).

The stereo estimation algorithm consists of four main steps, namely: feature
extraction, matching cost calculation, disparity estimation and disparity refine-
ment. While traditional methods, such as SGM [1] or MGM [2] use handcrafted
functions and features for the stereo estimation algorithm, recent work has seen
major improvements by exchanging one or all of the steps using deep learning.
Deep-learning approaches, especially the use of convolutional neural networks,
in short CNNs have been successfully applied to many areas of computer vision,
often improving upon traditional methods in speed and performance. One of the
biggest drawbacks of deep learning methods however, is the reliance on accu-
rate ground-truth data. Creating such ground truth data is time consuming
and expensive and therefore reliable ground-truth data sources are not available
for many domains. Furthermore, the generality of networks trained on a spe-
cific domain is questionable. Previous works, such as the work from L. Hu et
al. [3] have shown that the generality of models is especially difficult for satel-
lite images when trained with data from different continents. The creation of
such ground truth for specific scenes is costly and often many hours of manual
labour are needed for it. Especially creating detailed ground-truth data for the
3D-reconstruction task of urban scenes is often a futile task, as the scene will
likely have changed by the time the data set is completed, as can be seen in
Fig. 2. In this example, taken from the DFC2019 [11] dataset, a building can be
seen in the image that is not present in the ground truth disparity data.

We tackle this problem by creating a training routine that is completely
independent from any such created ground truth and only uses the rectified
panchromatic images as input in order to guide the training process. Other such
self-supervised stereo methods use the photo-consistency loss for training by
warping one image using the estimated disparity map to warp the other image
and then calculating the similarity between the warped image and itself. Using
this loss on its own however will lead to some artefacts, especially for homo-
geneous areas [4]. Therefore, many works suggest to use a combined loss, for
instance combining the photo-consistency loss with some sort of regularization
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Fig. 2. This image shows one example of the 2019 IEEE Data Fusion Contest
(DFC2019) [11] data set where the scene has changed between capturing the ground
truth data and the image data. F.l.t.r.: rectified reference image, rectified second image
and ground truth disparity map. The large building visible in the panchromatic images
is missing in the disparity map.

term, like disparity smoothness or correspondence consistency between the pre-
diction for the left and right image frame [4] [5]. Instead of the photo-consistency
loss, we use a ‘pseudo-ground truth’ created by our initialization step. We use
the left-right consistency check [6] in order to remove inconsistent points from
the disparity map and consider the remaining disparity values as already cor-
rect. This pseudo ground-truth is then consistently updated after each training
step. The evolution of such a ground truth over the epochs can be seen in Fig. 6.
Furthermore we show that the amount of inconsistent points correlates strongly
with the amount of incorrect points and can therefore be used to track the train-
ing process of the network. We show that while some consistent points in the
ground truth are wrong, it does not influence the overall accuracy of the training
process. An overview of the whole method is illustrated in Fig. 1.

In summary, our contributions are as follows:

– We create a novel training scheme based on the left-right consistency check
that does not rely on any ground-truth data, making our training truly self-
supervised.

– We create a CNN structure that is simple, lightweight and usable on most
commercial hardware and yields good results for many different use-cases.
With only 495K total trainable weights, it is lightweight when compared
to other deep learning stereo methods which often use millions of trainable
parameters.

– We show that our method produces good results on difficult real life scenes
taken from the WorldView-3 satellite.
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2 Related Work

Our work is based on previous works on stereo methods and self-supervised
machine learning.

Traditional stereo methods use handcrafted features and similarity func-
tions in order to match corresponding image points between two rectified image
frames of the same scene. They can be grouped into three major groups, differing
in their approach. Local approaches [7] [8] are fast but in general lack the
accuracy of other methods. Global methods [9] [10] on the other hand have
high accuracy, however their computational complexity make them unsuitable
for many real life tasks. Semi-global approaches are a good trade-off between
accuracy and computational complexity and are therefore the most popular used
methods.

Semi-global matching (SGM) [1] from H. Hirschmüller approximates a 2D
smoothness constraint by using multiple 1D line optimizations for each pixel in
order to refine the overall accuracy of the disparity estimation.

G. Facciolo et al. [2] improves on this principle, by creating and using dif-
ferent aggregation elements. Instead of using the 16 cardinal directions for cost
propagation, such as described by the Semi-global matching method, he cre-
ates and uses more complex structures. This helps with the block artefacts that
can be produced by the update scheme of Semi-global matching. Even with the
advances of machine-learning based methods, More global matching (MGM) is
still a viable method that produces good results for real life examples and is
therefore still a popular method in the remote-sensing community.

Deep Learning Stereo Estimation has been an successful endeavour in the
last decade. One of the first deep learning based stereo methods is by J. Zbontar
and Y. LeCun called MC-CNN [16]. In this work they popularized the shared-
weight siamese network structure for stereo estimation. Variations of this struc-
ture has since been adapted by many state-of the art learning based stereo
methods [17–21,24]. In their work, J. Zbontar and Y. LeCun furthermore define
the training task as a binary classification task, where matching image patches
are defined as the positive classes and non-matching patches are defined as the
negative classes. The training goal is then to maximize the similarity of positive
class samples while minimizing the similarity of negative samples.

GC-Net [21] uses 3D convolutions in order to regularize the cost-volume and
uses soft-argmin for subpixel accuracy. Ga-Net [19] improves upon the results
of GC-Net by getting rid of many of the time- and memory-intensive 3D con-
volutions. Instead they introduce a cost-aggregation block that uses less 3D
convolutions and consists of a semi-global and local aggregation part in order to
refine the cost-volume.

In their work J.R. Chang et al. [20] use a pyramid stereo matching network.
They first use a pyramid pooling structure in order to improve context informa-
tion for trained image features. Afterwards they create a cost-volume using this
trained features. In the last step, the cost-volume is fed into stacked hourglass
module using 3D-convolutions and a regression task is used for the final depth
prediction.
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J. Li et al. uses convolutional GRUs in a multi-level fashion in order to
improve information propagation across the image. Their method, called RAFT-
stereo [24] uses iterative refinement, traditionally used for optical flow estimation
for the stereo task. They extract correlation features from the images at different
resolutions and use the recurrency of the GRUs in order to iteratively improve
the disparity estimation.

Following MC-CNN [16], our method uses a variation of the shared-weight
siamese network structure. We use the same definition of the training classes as
MC-CNN. We reformulate the min-max problem as a hinge-loss function. This
is the same formulation that has been used in FC-DCNN [17] and FCDSN-DC
[18].

Self-supervised Machine Learning refers to the task of learning a model
without having corresponding human-annotated labels. In recent years, this
method of training has seen success on a wide area of computer vision tasks
including depth estimation. MonoDepth by C. Godard et al. [4] is among the
most popular self-supervised depth estimation networks. While in their case,
inference can be done on a single image frame (Monocular Depth Estimation),
the method is trained on two image frames (Binocular or Stereo Depth Esti-
mation). C. Godard et al. improves upon this method with their second version
called MonoDepthv2 [5]. In particular they use an improved photo-consistency
loss and introduce a mask that finds image points without any ego-motion. For
the final prediction they use multi-scale images. With these additions they pro-
duce considerably better results.

Ma F. et al. create a self-supervised Sparse-to-Dense deep learning approach
for monocular depth prediction in their work [29]. They create a deep regression
network that takes sparse 3D LiDAR (Light Detection and Ranging) points
for supervision and use stereo color images and the photometric warping loss
together with a smoothing loss in order to predict a dense depth map.

P. Knöbelreiter et al. in their work [30] use their pre-trained CNN-CRF [33]
model in order to generate ground truth data for the Vaihingen dataset for 3D
reconstruction [32]. They first create the disparity maps using their pre-trained
model, then remove inconsistent points using the left-right consistency check.
The so created disparity maps are then used in order to fine-tune their already
trained network. This leads to an improvement of the reconstructed scene.

In this work, instead of a warping or photo-consistency loss we introduce
an adaptive pseudo ground-truth loss. We directly predict occluded points (i.e.
points without ego-motion) by using the left-right consistency check [6] and do
not rely on any additional input data.

3 Remote-Sensing Stereo Matching

In this work we use the area of interest (AOI) from the 2019 IEEE Data Fusion
Contest (DFC2019) [11]. Furthermore we use the satellite stereo pipeline s2p [13]
for the tiling, rectification and projection step.
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Fig. 3. First row: AOI from Jacksonville, Florida USA using the RGB bands of the
multispectral image instead of the panchromatic image for the sake of better visual-
ization. This image was captured using the WorldView-3 [26] satellite in january 2015.
Second row f.l.t.r: one reference tile of the area of interest, the predicted disparity map
and the projected digital surface model that resulted from it.

This dataset also provides a digital surface model (dsm) for the AOI, which
was created using a LiDAR scan. We use this provided dsm for metric evaluation
in our work. For the evaluations, the metrics as described by M.Bosch in their
work [25] is used. An RGB image of the area of interest used in this evaluation,
as well as an example of an extracted rectified reference tile, the disparity map
predicted by our method and the resulting projected dsm can be seen in Fig. 3.

For this area, a ground truth dataset for the stereo matching task has been
created. Rectified image pairs together with corresponding disparities have been
released to the public. However, we only use the ground truth for the calculation
of the end-point error, not for training itself. For the training, we use satellite
images from the SpaceNet challenge dataset [27] of the same area of interest.
To this end we use the panchromatic, not the multispectral images provided by
the WorldView-3 satellite [26] as this band has a ground resolution of 0.31m
per pixel while the eight-band multispectral imagery has a ground resolution of
1.24m per pixel.
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4 Training Loop and Network

Figure 4 is a visual representation of how the training loop of our method works.
First, two stereo rectified satellite images are put into our CNN which creates the
disparity estimation for each frame. In the next step, the left-right consistency
check [6] is used in order to get rid of inconsistent points which creates the sparse
disparity map. This sparse disparity map is then used for the training patch
creation for the current iteration. Using this patch, the hinge-loss is calculated
and then back-propagated through the network. Figure 5 shows more detailed
illustrations of our network (orange dashed box) and how the patches used for
training are created (green dashed box).

Fig. 4. Schematic of our training loop.

Fig. 5. Detailed illustration of the CNN and patch creation part of our training loop.

Our network consists of two main parts. The first part learns rich and deep
image features of the satellite images, the second trains similarity functions
between extracted features, improving upon handcrafted similarity functions.

The output of the feature extraction network part is a 60-dimensional image,
e.g. H×W ×60. For the sake of interpretability, we continue to show the panchro-
matic image in Fig. 5. The trained deep feature images of the reference and the
second image are concatenated and used as input for the similarity function part,
the output is a 1 dimensional similarity measurement e.g. H × W × 1.

The green dashed box shows how the sparse disparity map of the current
iteration is used for training patch creation. First, a patch around a random
point with a consistent disparity value (in the current sparse ground truth) is
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chosen. The corresponding patch (in the same location) from the panchromatic
reference image is extracted. Then the disparity value is used in order to get
the position of the matching patch in the second image. A random small offset
along the horizontal axis is then added for the non matching crop of the second
image. After each training epoch, the sparse disparity maps are updated again
and used as pseudo ground truth for the next epoch.

4.1 Implementation Details

We implement our method using Python3, pytorch 1.8.0 [15] and Cuda 12.4. We
use gdal 2.4.2 for the manipulation of geo-tiffs and OpenCV [22] for other image
manipulation. A single NVIDIA GeForce RTX 3090 consumer grade GPU is used
for training. The network is trained using the Adam optimizer [14] with a learning
rate of 6.0 × 10−5. We use randomly cropped patches from the reference and
second image with a size of 11× 11 and a total batch-size of 500 for training. They
are trained using a hinge-loss which maximizes the similarity between matching
image patches and minimizes the similarity between close non-matching patches.
Let s+ be the similarity between two matching image patches extracted from
the reference and the second image and s− be the similarity between two non-
matching image patches, then the loss is defined as a hinge-loss, as seen in Eq. 1.

loss = max(0, 0.2 + s− − s+). (1)

Following previous works called FCDSN-DC [18] abd FC-DCNN [17] this
loss is implemented using ReLU [31], which leads to a slight reformulation. The
adapted loss can be seen in Eq. 2.

loss = ReLU(s+ − s− − 0.2). (2)

4.2 Pseudo Ground-Truth

Our self-supervised training is based on an adaptive sparse-to-dense update
scheme. For the initial step, the disparity map is calculated using the panchro-
matic image features from the satellite image with the cosine similarity function.
Then, the left-right consistency check [6] is used in order to remove inconsistent
points. The left-right consistency check is defined in Eq. 3.

|DL(x, y) − DR(x − d, y)| > 1.1. (3)

This evolution of the predicted disparity map can be seen in Fig. 6. It shows
that even if you start with a very sparse disparity map as initial ground truth,
our update scheme produces dense and accurate maps after only 300 training
epochs. Furthermore, it shows that in early epochs of the training process, only
easy to match image points, such as corners or edges of foreground objects (i.e.
roads and buildings) are consistent. Using this strongly matching pixels as a
starting point, the network slowly learns more ambiguous image features. In
theory, if no strong matching image points are found in the initial disparity
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Fig. 6. Evolution of the disparity map used as ground truth for self-supervision. F.l.t.r.:
Epoch 0, Epoch 40, Epoch 60 and Epoch 300. The evolution of the number of incon-
sistent points can be seen in the second row plot. The blue lines indicate the shown
disparity maps. (Color figure online)

map, the network could get stuck early during training, however this has never
happened in practise during our experiments. The second row of Fig. 6 shows the
total number of inconsistent points used for the tracking. In our experiments, if
the number of inconsistent points increases for 50 consecutive epochs, we stop
the training process.

We argue, that the total sum of such removed points correlates with the
amount of incorrect points and this can therefore be used for tracking network
convergence and early-stopping. In order to show this, we conduct an experiment
on 20 randomly chosen image pairs for the training split and 20 randomly chosen
image pairs for the test split from the 2019 IEEE Data Fusion Contest 2019
(DFC2019) [11] challenge. We use the end-point error, as defined in Eq. 4 in
order to track the accuracy of the disparity map. The threshold τ gives the
number of how close the prediction has to be to the ground truth in order to
be counted as correct. For example when using the 4-point error (τ = 4), every
predicted point which is within the range of ±4 to the ground truth is counted
as being a correctly predicted image point.

∑
|Dgt − Dpred| >= τ. (4)

4.3 Sub-pixel Enhancement

We follow the work of V.C. Miclea et al. [28] for our sub-pixel enhancement
scheme. While many methods use machine learning to learn sub-pixel residuals
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for the disparity estimation, the feasibility and accuracy of those methods in a
self-supervised training framework is an open research question to the best of
our knowledge. The algorithm we use in our method is defined as follows:

dsubpx =

{
dInt − 0.5 + arctan( ld

rd ), if ld ≤ rd

dInt − 0.5 + arctan( rdld ), otherwise

ld = cd−1 − cd. (5)

rd = cd+1 − cd.

Here, dInt is the chosen integer disparity value for the image point we want
to get the sub-pixel value for. Depending on the implementation, this is either
the position with the highest or lowest value in the cost volume. This cost (or
similarity) is defined as cd. Following cd−1 is the cost of the next pixel to the
left of the highest matching pixel and cd+1 is the next pixel to the right of the
most similar image point in the second image. In our implementation, the sub-
pixel enhancement is used on the consistent points not removed by the left-right
consistency check. It is not used in order to find more inconsistent points in the
disparity map.

5 Experiments

In this section, we compare the scores produced by our method with the scores
of other popular deep learning based methods and the baseline method used by
the s2p [13] software MGM [2]. We use the publicly available trained weights for
the other deep learning methods. We do not retrain or fine-tune the well-known
state-of-the-art methods, because we want to show their accuracy if there is no
possibility of fine-tuning or training from scratch because no ground truth data
exists for the specific scene. Even though ground truth depth data is available
for this particular AOI, it is missing for most remote-sensing data.

Table 1. Comparison on Jacksonville data

Method MGM [2] SAdaNet (ours) PSMNet [20] RaftStereo [24]

recall 0.894 0.906 0.800 0.828
precision 0.843 0.836 0.891 0.829
jaccardIndex 0.767 0.769 0.731 0.707
f-score 0.868 0.870 0.8445 0.828

We extend the s2p [13] pipeline, where the default matching algorithm is
switched with our method or other deep learning based matching methods
respectively for the experiment shown in Table 1.
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As Table 1 shows our self-supervised method outperforms all other evaluated
methods in the evaluated area of interest with the exception of precision, where
PSMNet is slightly better. However PSMNet produces a less complete digital
surface model, which can be seen by the lower completeness and f-score. There-
fore we argue that our method still compares favourably. A result of our method,
showing parts of the digital surface model of Jacksonville can be seen in Fig. 7.

Fig. 7. Part of the digital surface model of the evaluated area created by our method.

5.1 Ablation Study

In this section we perform some ablation studies in order to show the validity and
impact of our method. We perform every experiment on the same real life scenes
taken from the WorldView-3 satellite as before, namely an area in Jacksonville,
Florida USA. First, we show our method only using the feature extractor part
of the network with cosine similarity and no sub-pixel enhancement. Then, we
use the feature extractor as well as the trained similarity part and no sub-pixel
enhancement. The last step then shows the accuracy of feature extractor, trained
similarity and sub-pixel enhancement together.

Table 2. Ablation study on Jacksonville data

Method cosine similarity trained similarity trained similarity +
sub-pixel enhancement

recall 0.896 0.902 0.906
precision 0.837 0.834 0.836
jaccardIndex 0.763 0.765 0.769
f-score 0.865 0.867 0.870

Table 2 shows that the scores improve with each step, with the exception
of the precision. This is expected as only using the trained feature extraction
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part of our method also leads to the sparsest reconstruction out of all three
experiments conducted. As the whole area of interest is rather large, it is more
difficult to show small differences between the methods. Therefore, to better
illustrate the difference between only using the feature extractor and using the
feature extractor plus trained similarity function, we show the disparity map of
a small section from this ablation study created by these two methods in Fig. 8.
Here one can see, that only training the feature extractor leads to a less complete
reconstruction (inconsistent points are illustrated in black) when compared to
training both the feature extractor as well as the similarity function.

Fig. 8. Left: Disparity map created using only the feature extractor network. Right:
Disparity map created using both the trained feature extractor and the trained simi-
larity function. Missing predictions are marked in black.

5.2 Point Error Analysis

To further motivate the impact of our modules we conduct another experiment
using the end-point metric and completion score in percentage from the available
ground truth disparity from the DFC2019 dataset [11]. Instead of projecting our
prediction into 3D space and comparing it to the ground-truth digital surface
model, where each point which is within 1m of the ground truth is counted as
correct, we use the 4-point error and the 2-point error as to compare the 2D
disparity maps for accuracy. For this τ in Eq. 4 is set to 4 and 2 respectively. We
furthermore omit the sub-pixel enhancement for the evaluation, as we do not use
it to detect additional inconsistent points, instead using it to refine consistent
points in the disparity map. For this evaluation we select 20 random images from
the dataset and remove samples with structures missing in the ground truth,
such as Fig. 2 or interference created by passing planes. Due to the difficulty of
creating ground truth disparities for aerial imagery, the ground truth disparity of
flat surfaces in the disparity map observed in the data set can vary by up to four
pixels. Therefore we argue that the 4-point error is the best measurement for this
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specific dataset. However as the sub-pixel enhancement impacts lower threshold
end-point errors more, we also report on the 2-point error in this experiment.

The first column of Table 3 shows the accuracy of our trained feature extrac-
tor with the cosine similarity function. The second column shows the improve-
ment of the accuracy when the similarity function is trained as well. The last
column shows the improvement in accuracy when the sub-pixel enhancement as
defined in Eq. 5 is used on the consistent points of the previous experiment.

Table 3 shows the improvement in accuracy for each added step of our method
for the train split as well as the test split. One can see that the accuracy of the
method is stable for untrained samples, only sacrificing slightly on accuracy and
completeness. Furthermore it shows that the sub-pixel enhancement improves
the accuracy of higher threshold end-point errors, such as the 4-point error, only
slightly. However it has an impact on the accuracy of lower threshold end-point
errors, such as the 2-point error. In order to motivate the correlation between
the number of inconsistent points with the number of wrongly predicted points,

Table 3. Ablation study on DFC2019 data

Method cosine similarity trained similarity trained similarity +
sub-pixel enhancement

Train
4-PE 12.064 8.979 8.514
2-PE 27.376 24.124 18.079
completion 85.755 90.245 –
Test
4-PE 15.692 13.399 13.396
2-PE 32.753 30.191 24.557
completion 82.748 84.603 –

Fig. 9. Evolution of the number of inconsistent points (blue) and the end-point error
of the training split (first row) and test split (second row). (Color figure online)
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Fig. 9 shows the evolution of both for the train and test split of this experiment.
The blue line shows the total amount of inconsistent points which are removed
using the left-right consistency check of the predicted output of the network after
each training step. The red line shows the total amount of wrongly predicted
image points after each training step. Figure 9 visualizes the correlation between
the two metrics and that they converge to the same local minimum.

5.3 Additional Datasets

In order to show the generality and robustness of our method, we perform addi-
tional experiments on datasets from different domains. To this end, we use the
same hyperparameters, stopping criteria and training setup as for the previous
experiments. We show qualitative and quantitative results for this experiments.
As we want to cover a broad range of different domains, we train and evaluate
our method on a dataset with indoor scenes, namely Middlebury [34] as well as
a dataset for autonomous driving called KITTI2015 [35].

Fig. 10. Qualitative results of our method. From left to right, top to bottom: left
image of an indoor scene from the Middlebury dataset, the resulting disparity map
after training, left image of a driving scene from the KITTI2015 dataset, the resulting
disparity map after training

Table 4. Results of our method on datasets from different domains

Dataset 4-PE 3-PE 2-PE 1-PE

Middlebury 18.054 19.820 22.526 29.196
KITTI2015 5.613 8.260 16.337 41.51

Table 4 shows different end-point errors of our method for Middlebury and
KITTI2015. Figure 10 shows the left image and the predicted disparity map of
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our method for this image for one example of the Middlebury dataset and one
example of the KITTI2015 dataset after training.

6 Conclusion

In this work, we have presented a fully self-supervised adaptive stereo method
based on deep learning for remote-sensing application we call Self-Supervised
adaptive convolutional neural network or in short SAda-Net. We introduce a
novel self-supervised training method which is based on adaptively updating the
ground truth that is created by our network in each training step. To this end,
we remove noisy and incorrect points from the map using the left-right con-
sistency check. We argued for the feasibility of tracking inconsistent points in
order to track the training process and network convergence if no other informa-
tion is present. We then evaluated our method on a challenging real-life satellite
imagery from the WorldView-3 satellite. We have shown that our method is able
to compete with other state-of the art methods. While fine-tuning the trained
weights of the evaluated methods on the new scenes can improve the accuracy
of the specific method, we argue that accurate ground truth is often missing and
too expensive to create. We therefore argue that our method, that does not rely
on costly ground truth data but rather can use any satellite imagery for training
is a step towards truly autonomous stereo vision for remote sensing.
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Abstract. The process of labeling data for intricate and specialized
downstream tasks, including 2D human pose estimation, necessitates
extensive expertise and can be financially burdensome. Consequently,
pseudo-labels are increasingly becoming favored alternatives. In the con-
text of 2D human pose estimation, frequent inter or intra-class imbal-
ances often exhibit diverse locating challenges for poses due to variations
in scale, motion, and occlusion. Such imbalances can potentially cause
data bias and initiate self-training bias, ultimately resulting in a model
collapse and increased model errors. Despite previous research efforts
that have aimed to rectify model collapses through augmentation tech-
niques and enhance model robustness via dual network training, two
substantial issues remain unaddressed: (1) the learned representations
often suffer from imbalanced distribution, and (2) this imbalance results
in an increased amount of incorrect pseudo-labeling. To address these
critical limitations, this paper introduces a novel reverse re-balancing
module. This module optimizes representations to solve data bias caused
by upstream imbalances. To underscore the module’s efficacy, we have
also proposed a data augmentation method tailored to it, identified
as adaptive joint CutPaste. Furthermore, to mitigate the second high-
lighted problem, we propose deploying co-guessing techniques to amal-
gamate the pseudo labels. The effectiveness of our newly developed app-
roach, Debiasing-Teacher, is scrutinized using two benchmark datasets
designed explicitly for pose estimation—MSCOCO and MPII. Com-
pared to preceding methods, our approach shows significant improve-
ments, particularly in limited annotation scenarios. The source codes for
Debiasing-Teacher can be accessed at https://github.com/wangnaihao/
Debias-Teacher.
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1 Introduction

2D human pose estimation serves a crucial role in understanding human move-
ments. This concept focuses on accurately identifying the position coordinates
of body joints within an image, providing initial comprehension of 2D human
poses. Nevertheless, identifying different poses substantial challenges due to
scale, movement, and occlusion variations. To ensure precise pose estimation in
particular and convoluted downstream tasks, high-quality annotation data are
essential for model training. Yet, acquiring key point data through annotation
can be laborious and expensive, requiring specialized knowledge. Consequently,
alternative solutions like pseudo-labeling approaches are prevalent in practical
applications.

In both semi-supervised learning and noisy label learning, pseudo-labeling
techniques can be integrated during the training process for iterative optimiza-
tion. However, if data distribution is skewed, it introduces bias in the generation
of pseudo-labels and exacerbates bias during model training. As early as 2021,
Xie et al. [17] illustrated a pressing issue of model collapse when directly imple-
menting semi-supervised techniques based on consistency to the 2D human pose
estimation. This problem predominantly originates from the data imbalance in
human postures, causing models to fail to recognize keypoints and predict all
pixels in an image as the background. Xie et al. proposed the strong and weak
data augmentation for keypoints to counteract the model collapse and regulate
their consistency. Although this data augmentation improved the model collapse
to a certain degree, the problem of inaccurate pseudo-labels persisted. Inspired
by noisy label learning, Huang et al. [5] established two teacher networks simul-
taneously to increase pseudo-labeling’s robustness. Nonetheless, there has been
limited discourse on the bias of pseudo-labels and the model, and effective solu-
tions have yet to be proposed.

Fig. 1. Loss per image of Xie’s Dual [17] on COCO’s VAL dataset, categorized by
OSTU’s [11] thresholding into minority and majority subclasses.

To better illustrate, we plot the loss distribution of Xie’s Dual [17] model on
the COCO validation dataset, which was semi-supervised on 1K annotated data.
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Fig. 2. The overall architecture of Debiasing-Teacher.

We use the OSTU [11] algorithm to classify the loss distribution data into two
subclasses as follows: red represents the minority subclass and blue represents the
majority subclass. It is worth noting that about one-eighth of the samples have
large errors in keypoint locations. A more focused observation shows that these
samples often focus on rarer 2D human poses or poses perceived from less com-
mon angles. This indicates that the representations obtained by learning human
pose images are distributed unbalanced. The model exhibits a preferential bias
towards frequently encountered scenarios. Pseudo-label estimates from skewed
models further reinforce this bias during training, leading to confirmation bias.

Inspired by the concepts of adversarial learning, we propose a reverse rebal-
ancing module to address the issue of uneven representation distribution, thereby
mitigating model bias. Accompanying this module, we introduce an adaptive
masking data augmentation technique aimed at reducing the variation in learn-
ing difficulty among samples. To alleviate the impact of incorrect pseudo-labels
on model training, we further propose a collaborative guessing module based
on role-swapping learning within a teacher-student network framework, which
significantly improves the accuracy of pseudo-labels. We conducted experiments
using different numbers of labeled samples on two 2D human pose estimation
benchmark datasets to validate the effectiveness of our debiased teacher method.
The results demonstrate that our approach surpasses the current state-of-the-art
semi-supervised methods for 2D human pose estimation [5,19]. Our contributions
can be summarized as follows:

– Proposal of a reverse re-balancing module to optimize the biased feature
distribution.

– Development of an adaptive joint CutPaste data augmentation method based
on keypoints’ confidence scores.

– Introduction of teacher-student network role-swapping training and co-
guessing mechanisms to enhance the robustness of the model and the quality
of pseudo labels.
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2 Related Work

2.1 2D Human Pose Estimation

Heatmap-based methods have recently garnered increased attention for their
application to human pose estimation. The advantages of these methods relate
to their capacity for preserving spatial positional information, aligning with the
design of Convolutional Neural Networks (CNN), and ultimately boosting pre-
diction accuracy. Research endeavors have also examined the multiscale nature
inherent to the human body, leading to the introduction of diverse network
architectures such as Simple Baseline [16], HRNet [18] and DNANet [22]. These
architectures serve to augment contextual semantic perception. Furthermore,
investigations into the correlation between heatmaps and coordinates have led
to reductions in quantization errors common to heatmap-based strategies, thus
enhancing keypoint localization precision. However, these methods stand to lose
their effectiveness in scenarios with a deficiency of labeled data. This research
narrows its focus to 2D human pose estimation in contexts with limited annota-
tion. A top-down heatmap regression approach forms the basis of its methodol-
ogy.

2.2 Semi-supervised 2D Pose Estimation Based on Pseudo-Labeling

Semi-supervised methods, such as MixMatch [2] and FixMatch [12] generally
adhere to the consistency principle, which suggests that even if a sample is per-
turbed, the network should still produce outputs similar to the original sample.
Suitable data augmentation methods can provide such perturbations, optimiz-
ing the decision boundary and reducing the tendency for it to pass through
high-density regions of the data distribution. Xie et al. [17] first introduced con-
sistency learning to the field of 2D human pose estimation. They discovered
that due to data imbalance, they were unable to effectively learn the diversity
of different poses, and due to collapse, all unlabeled images were mistakenly rec-
ognized as background. To address this, they proposed a technique called joint
CutOut, which enhances keypoint masking and enables the weakly augmented
teacher network to supervise the strongly augmented student network. While
this method effectively prevents mode collapse, there still exist discrepancies
between the learned decision boundary and the true decision boundary, result-
ing in unavoidable noisy pseudo labels. Huang et al. [5] employed dual networks
to improve the quality of pseudo labels. These articles posit that model bias is
a key factor that affects the quality of pseudo labels and the accuracy of the
model.

2.3 Learning on Imbalanced Data

It is widely acknowledged that models trained on imbalanced data tend to exhibit
bias towards the majority classes, which have abundant examples, while neglect-
ing the minority classes, which have limited samples. Several strategies have been



180 N. Wang et al.

proposed to mitigate this bias, such as re-sampling, reweighting, and two-stage
training. These techniques rely on using labels to rebalance the biased model. In
contrast, the study of semi-supervised learning (SSL) on imbalanced data has
been relatively insufficient. Imbalanced data poses additional challenges for SSL,
as the lack of label information prevents the re-balancing of the unlabeled set.
Although a handful of recent studies [3] [14], have addressed this issue, further
exploration is still needed on how to better avoid and eliminate bias, especially
with the existence of pseudo-labels.

3 Preliminary

The objective of 2D human pose estimation is to detect the positions of K body
joints in the image I. Most top-down approaches assume a Gaussian distribution
for the localization error and convert the problem into estimating K Gaussian
heatmaps H = {h1, .., hK}. Each heatmap represents the probability of a joint
being located at a specific position in the image. For the ground truth position of
the k-th joint at (uk, vk), the probability value at a point (u, v) on the heatmap
is calculated as:

hk(u, v) = e− ((u−uk)
2+(v−vk)

2)
2σ2 . (1)

Here, σ is the variance parameter and e is the exponential operator. During
inference, the position of the k-th joint is determined by selecting the coordinates
corresponding to the maximum value on the k-th heatmap.

In semi-supervised 2D human pose estimation, the labeled and unlabeled
training data are defined as follows: L = {(I l,H l)}N

l=1 for labeled data and
U = {(Iu)}M

u=i for unlabeled data. Here, N represents the number of labeled sam-
ples and M represents the number of unlabeled samples. The parameters of the
teacher and student networks are denoted as θ and δ respectively. f is the neural
network function. The augmentation methods applied to the teacher and stu-
dent networks are represented by η and η′ respectively. The Gaussian heatmaps
obtained after applying the augmentation transformation to the teacher network
are denoted as Hη. The supervised loss on labeled data can be defined as:

LL = Ei∈L‖f(Iη, θ) − Hη‖2. (2)

In unannotated data, by leveraging the assumption of consistency, the pseudo
labels generated by a teacher network using weakly augmented samples are used
to supervise the learning of strongly augmented samples by a student network.
Therefore, the unsupervised loss is defined as:

LU = Ei∈U‖f(Iη, θ) − f(Iη′ , δ)‖2. (3)

In summary, the overall loss function for semi-supervised pose estimation
is the weighted sum of these two losses, where α represents the weight of the
unsupervised loss.

Ltotal = LL + α · LU . (4)
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4 Debiasing-Teacher

Figure 2 illustrates the comprehensive structure of the Debiasing-Teacher
method. It showcases three crucial enhancements over the approach suggested by
Xie et al. [17]: the introduction of a module that equalizes representation distri-
bution by optimizing worst-case regression loss; the employment of an adaptive
strong augmentation scheme that relies on confidence scores, accompanied by
random feature mixup augmentation; and the betterment of pseudo-label qual-
ity through the application of the dual network role swapping and co-guessing
technique. Detailed expositions of these improvements will be provided in the
following subsections.

4.1 Reverse Re-Balancing

The human body exhibits a power-law distribution of poses, resulting in signif-
icant variations in the difficulty of recognizing keypoints across different poses.
This leads to a severe intra-class imbalance, causing data bias. This devia-
tion becomes more pronounced as the model is trained in the context of semi-
supervised 2D human pose estimation tasks with pseudo-labeling errors, leading
to a decline in its ability to generalize and affecting its robustness in real-world
scenarios.

Fig. 3. Mean average precision curves for minority and majority subclasses during
training: a comparison between our approach and Xie et al.’s Dual [17], using 1K
COCO annotations and ResNet18.

As Fig. 1 depicted, we analyzed Xie’s model on COCO’s validation set, exam-
ining the loss per image and dividing the data into two subclasses - minority and
majority. Throughout the training process, we tracked the changes in the mAP
for both subclasses, as illustrated in Fig. 3. As anticipated, the mAP for the
minority class not only failed to improve but displayed a downward trend. Our
findings indicate that minorities lack attention during training and are affected
by pseudo-label errors, leading to incorrect predictions of joint positions.

To mitigate this bias, from a feature’s aspect, we propose a reverse re-
balancing module. This module optimizes the representation distribution and
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reduces the generation of erroneous pseudo labels from the upstream. Unlike
classification tasks, pose estimation is a regression localization task for K key-
points, where there is no classification head or hard decision boundary. Therefore,
the core idea of the reverse re-balancing module is not to find the worst classifica-
tion boundary but to define a new reverse regression loss and optimize the worst
projection header that maps features to heatmaps. In our approach, we aimed
to model the worst-case scenario for the prediction of unlabeled samples while
striving to maintain accurate predictions for labeled samples. For the unlabeled
samples, we compared the pseudo-labels predicted by the model with those pre-
dicted by the projection headers. The projection header that demonstrated the
largest discrepancy between the model’s pseudo-labels and its own pseudo-labels
was identified as the “worst header.” Let g represent the learned header. By opti-
mizing the following equation, we can derive the worst-case header, gworst:

gworst = argmax
g

(LU (θ, g, Ĥη) − LL(θ, g,Hη)). (5)

In this context, θ represents the parameters of the Teacher’s feature encoding
network, Hη denotes the weakly augmented Gaussian heatmaps of annotated
samples, and Ĥη indicates the weakly augmented pseudo heatmaps of unlabeled
samples. The worst header is obtained by minimizing the regression loss on
annotated data while maximizing it on unlabeled data.

This worst header is crucial as it defines the worst-case loss, denoted as
Lworst. To mitigate these adverse scenarios, we implemented a reverse rebal-
ancing mechanism to steer the model’s predictions away from the worst-case
situations. In the reverse optimization process, we optimize the network param-
eters θ by minimizing the defined Lworst loss:

Lworst = LU (θ, gworst, Ĥη) − LL(θ, gworst,Hη)). (6)

Figure 4 illustrates the reverse re-balancing module, which was initially
inspired by the principles of adversarial training. Both the worst-case predictor
and the target predictor utilize a shared feature extractor, ensuring feature con-
sistency across different prediction tasks. This module promotes the generation
of robust and compact feature representations for unlabeled samples, enabling
them to achieve minimal error rates even when paired with the least effective
projection head. Within the latent space, the module facilitates the clustering
of similar samples while maintaining clear distinctions between dissimilar ones.
This approach effectively mitigates disparities in feature learning that commonly
arise due to variations in pose and other confounding factors.

Since pseudo-labels are dynamically changing, the worst-case projection
header also evolves during the training process, and both are trained simultane-
ously. The dynamic nature of the target predictor allows it to continue training
even after the worst-case header has converged, thereby enhancing the model’s
accuracy and fairness.
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Fig. 4. Reverse re-balancing module. Step1: optimization of the worst header. Step2:
reverse optimization of network encoding parameters via the worst header.

4.2 Adaptive Augmentation

Joint CutPaste. In 2D human pose estimation tasks, the uneven distribution
of features is often caused by the imbalance in sample difficulty. To address this
issue, we present an adaptive data augmentation method that utilizes confidence
scores. This approach effectively categorizes training samples as either easy or
hard, and applies specific augmentation strategies accordingly. By doing so, it
achieves a balanced learning difficulty across different image samples.

Let’s assume that there are K keypoints in the i-th image, and the highest
probability value in the predicted heatmaps corresponding to the k-th keypoint
is denoted as pk. The confidence score for the i-th image is defined as follows:

Ci =
1
K

K∑

k=1

pk. (7)

In each batch, we employ the Gaussian Mixture Model (GMM) to fit the
standardized confidence scores, obtaining the final difficulty coefficient:

degree = GMM

⎛

⎝
Ci − min

B
(Ci)

max
B

(Ci) − min
B

(Ci)

⎞

⎠ . (8)

In our experiment, B represents the current batch of samples, and GMM()
corresponds to the process of fitting a Gaussian mixture distribution. Samples
with a degree greater than 0.5 are classified as easy, while those with a degree
less than or equal to 0.5 are classified as hard. Our study reveals that increasing
the number of easy samples, also known as naive samples, does not significantly
improve the model’s accuracy. Conversely, hard samples display low confidence
in regression heatmaps. Supervising the student network’s learning using these
low-quality pseudo-labeling heatmaps can result in the acquisition of incorrect
information and the emergence of biases during subsequent training. Therefore,
we randomly remove P keypoints from the easy samples to increase the learning
difficulty. Simultaneously, we eliminate Q keypoints from the hard samples and
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replace them with some high-confidence easy keypoints. The values of P and
Q are determined through experiments, which are described in detail in the
Appendix.

Fig. 5. Pipeline of joint CutPaste.

Random Feature Mixup. Mixup is a widely used technique in semi-
supervised learning to enhance model performance by promoting a linear under-
standing of training samples. This technique improves robustness and general-
ization. When working with 2D images of human body poses, simply augmenting
data at the data level may lead to similar combinations of features, which can
worsen the imbalance in data distribution. For instance, mixing two similar sam-
ples in the feature space may still result in a similar sample. To address this issue,
we adopt a random feature mixup augmentation. In this approach, we randomly
select a feature layer from the forward feedback network and mix two random
samples at that specific layer. The specific method of random mixup was inspired
by [13]. And the implementation details can be found in the appendix.

Swap Role Training and Co-Guessing. The proposed training framework
retains the original parameters of the teacher network, which do not undergo
gradient updates. To modify the teacher network, we utilize a training approach
termed role swapping. This method involves interchanging the parameters of
the teacher network and the student network. Post this interchange, the student
network inherits the parameter values from the teacher network, enabling its
continued learning. Simultaneously, the teacher network is augmented with the
parameter values originating from the student network. Based on these networks’
predictions, we introduce a simple yet efficient method named co-guessing to
produce pseudo labels. This process involves fusing the predicted heatmaps from
both the teacher and student networks at a specific ratio, thereby creating the
blended heatmap serving as pseudo labels. This strategy enables both networks
to contribute towards pseudo-label prediction, consequently mitigating the effect
of any erroneous memories in the student network during subsequent training.
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5 Experiment

5.1 Dataset

COCO [8]. The COCO dataset consists of 200K images, which are divided into
four subsets: TRAIN, VAL, TEST-DEV, and TEST-CHALLENGE. Addition-
ally, it includes 123K unlabeled data called WILD. We randomly select 1K, 5K,
and 10K labeled data from the TRAIN subset. In some experiments, we use the
remaining images from the TRAIN subset as unlabeled data. In other experi-
ments, we use the entire training set as labeled data and WILD as unlabeled
samples. The results are reported in terms of mAP (Average AP over 10 OKS
thresholds) evaluation metric.

MPII. [1] and AI-Challenger [15] are two widely used datasets in the field.
MPII consists of approximately 25K images and 40K annotated human instances.
AI Challenger, on the other hand, contains 210K data samples with 370K images
that include annotations for 14 keypoints. In our approach, we utilize the MPII
dataset as the labeled data and the AI Challenger dataset as the unlabeled data.
To evaluate our method, we adopt the PCKh@0.5 metric.

Table 1. mAP of different methods on COCO [8] with 1K, 5K and 10K labels are
used.

Method 1K 5K 10K All

Supervised [16] 31.5 46.4 51.1 67.1
PesudoPose [17] 37.2 50.9 56.0 –
DataDistill [10] 37.6 51.6 56.6 –
Cons [17] 42.1 52.3 57.3 –
Dual [17] 44.6 55.6 59.6 –
SSPCM [5] 46.9 57.5 60.7 –
Denoising [19] 47.58 58.04 61.3 –
Ours 50.8 60.1 61.8 –

5.2 Data Augmentation

For weak augmentation, we adopt the same method as previous studies [5], which
randomly rotates an angle between -30 and 30◦C and randomly scales a factor
between 0.75 and 1.25. For strong augmentation, the range of random rotation
angles is increased to -60 to 60◦C, and on top of random rotation and scaling,
the joint CutPaste augmentation proposed in Sect. 4.2.1 is added.
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Table 2. Results of using different network structures for the teacher network and the
student network on COCO [8].

Method Teacher Student 1K 5K 10K

Supervised [16] - ResNet18 31.5 46.4 51.1
Supervised [16] - ResNet50 34.4 50.3 56.3
Dual [17] ResNet18 ResNet18 44.6 55.6 59.6
Dual [17] ResNet50 ResNet50 48.7 61.2 65.0
Dual [17] ResNet50 ResNet18 47.2 57.2 60.4
SSPCM [5] ResNet18 ResNet18 46.9 57.5 60.7
SSPCM [5] ResNet50 ResNet50 49.4 61.6 65.4
SSPCM [5] ResNet50 ResNet18 48.3 58.9 61.9
Denoising [19] ResNet18 ResNet18 47.58 58.04 61.3
Denoising [19] ResNet50 ResNet50 50.1 62.14 65.36
Ours ResNet18 ResNet18 50.4 59.8 61.5
Ours ResNet50ResNet50 54.5 64.0 67.2
Ours ResNet50 ResNet18 51.1 62.3 65.0

5.3 Comparison with SOTA Methods

We employed ResNet18 as the backbone and performed initial comparative
experiments on the COCO dataset. The experiments used 1K, 5K, and 10K
annotated training data, while the remaining data in TRAIN was considered
unannotated. Table 1 displays the performance of our approach in comparison
to the state-of-the-art methods. As anticipated, the results achieved solely using
labeled data were the worst. In contrast, our proposed method outperformed the
latest semi-supervised 2D human pose estimation method, achieving improve-
ments of 3.9% mAP, 2.6% mAP, and 1.1% mAP with 1K, 5K, and 10K labeled
data, respectively.

To evaluate how the backbone network’s architecture affects model perfor-
mance, a second series of experiments was conducted. In these tests, either the
teacher or student ResNet18 network was replaced with a deeper ResNet50 net-
work. The results of these experiments are summarized in Table 2. As with the
previous set of experiments, this series adopted the same settings, but placed
emphasis on contrasting the influence of network architecture in four distinct
methodologies: supervised learning, Dual Method by Xie et al., SSCPM, and
our methodology. The findings suggest that using a deeper network bolsters the
localization accuracy across all procedures, particularly when both the teacher
and student networks employ the deeper model. In our methodology, replacing
ResNet18 with ResNet50 led to an increase of 4.1% mAP, 4.2% mAP, and 5.7%
mAP at scales of 1K, 5K, and 10K, respectively.
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We conducted large-scale experiments in semi-supervised pose estimation.
These experiments used the entire TRAIN set from COCO as labeled data and
the WILD set was utilized as unlabeled data. Four diverse backbone network
architectures were included in these experiments. A comparative analysis was
conducted using the VAL data, comprising of 6352 images. The aggregate results
are shown in Table 3. Regardless of the backbone network architecture used, our
proposed method consistently outperformed the other three methods. This indi-
cates that the superiority of our method mainly stems from the methodological
aspect and is independent of the chosen backbone network.

To underscore the efficacy of our method, we conducted an extensive com-
parison comprising all respective methods, using the mAP and mAR metrics
on the complete TESTING-DEV dataset from COCO, as detailed in Table 4.
The HRNetW48 backbone network was utilized in the model training phases by
Dual, SSPCM, and our method. Our novel method, in conjunction with DARK,
surpassed the runner-up SSPCM+DARK by 0.4% and 0.3% in the mAP and
mAR categories respectively, hence achieving a mAP of 77.9% and a mAR of
82.7%.

Table 5 displays the results of experiments conducted on MPII and AI-
Challenger. The MPII training set served as the labeled data, while the AI-
Challenger was utilized as the unlabeled data. The evaluation was carried out on
the MPII test set, employing the PCKh@0.5 metric for assessment. Our method
was compared with recent approaches and it was found that our technique had
the superior accuracy in identifying the keypoints of various poses, boasting
a total precision of 93.6%. Remarkably, we made a significant advancement in
the challenging ankle joint, improving the precision from 87.1% to 87.6%. This
underscores that our proposed method effectively minimizes bias and boosts
model generalization.

5.4 Ablation Study

The efficacy of the proposed method was assessed using a series of ablation
studies carried out on the annotated COCO 1K, 5K, and 10K data, with tests
executed on the VAL set. ResNet18 was employed for the experiments. As a
baseline, the study used our technique, deducting one of the four modules in
every cycle: reverse re-balancing, joint CutPaste, random feature Mixup, and
co-guessing. The intention behind this was to monitor any drop in the model’s
mean accuracy. The findings are displayed in Table 6. The results reveal that each
module played a part in the efficiency of the method, with reverse re-balancing
and random feature Mixup having a more pronounced influence.

5.5 Discussion on the Debiasing Effects

Our approach achieves a better balance between majority and minority, while
effectively reducing bias through the use of a re-balancing module and random
feature Mixup augmentation. The results were compared with the method pro-
posed by Xie et al. and our approach in terms of mAP changes of minority
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and majority groups during the training process, as shown in Fig. 3a. It can
be observed that our method shows small changes in mAP for majority sub-
classes, while significantly improving mAP for minority subclasses. Figure 3b
also demonstrates the superiority of our method.

5.6 Discussion on Potential for Overfitting

This study employs a teacher-student framework to leverage unlabeled data
and uses consistency regularization to prevent the model from overfitting to the
labeled data. Given the use of pseudo-labeling, the model could potentially over-
fit to erroneous information in the pseudo-labels within the supervised branch.
To address the errors in pseudo labels, we utilize a co-guessing approach. While
our method mitigates some risks, it does not eliminate bias or the risk of over-
fitting.

Table 3. Results on the COCO [8] VAL set when using all images from the TRAIN
set as the labeled set and all images from the WILD set as the unlabeled set.

Method Network AP AP.5 AR AR.5

Supervised [16] ResNet50 70.9 91.4 74.2 92.3
Dual [17] ResNet50 73.9 92.5 77.0 93.5
SSPCM [5] ResNet50 74.2 92.7 77.2 93.8
Denoising [19] ResNet50 74.1 – – –
Ours ResNet50 74.6 93.5 77.5 94.1
Supervised [16] ResNet101 72.5 92.5 75.6 93.1
Dual [17] ResNet101 75.3 93.6 78.2 94.1
SSPCM [5] ResNet101 75.5 93.8 78.4 94.2
Denoising [19] ResNet101 75.7 – – –
Ours ResNet101 75.7 94.0 78.6 94.4
Supervised [16] ResNet152 73.2 92.5 76.3 93.2
Dual [17] ResNet152 75.5 93.6 78.5 94.3
SSPCM [5] ResNet152 75.7 93.7 78.6 94.5
Denoising [19] ResNet152 76.0 – – –
Ours ResNet152 76.4 93.9 79.3 94.6
Supervised [16] HRNetW48 77.2 93.5 79.9 94.1
Dual [17] HRNetW48 79.2 94.6 81.7 95.1
SSPCM [5] HRNetW48 79.4 94.8 81.9 95.2
Denoising [19] HRNetW48 79.4 – – –
Ours HRNetW4879.6 94.9 82.1 95.3
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5.7 Discussion on Limitations

Fig. 6. Failure cases on incomplete poses.

Table 4. Comparison to the SOTA methods on the COCO [8] TEST-DEV dataset.
We use COCO TRAIN set as the labeled set and COCO WILD set as the unlabeled
set.

Method NetWork Input Size AP AR

SB [16] ResNet50 256 × 192 70.2 75.8
HRNet [18] HRNetW48 384 × 288 75.5 80.5
MSPN [7] ResNet50 384 × 288 76.1 81.6
DARK [20] HRNetW48 384 × 288 76.2 81.1
UDP [4] HRNetW48 384 × 288 76.5 81.6
Dual [17] (+DARK) HRNetW48 384 × 288 77.2 82.2
SSPCM [5] (+DARK) HRNetW48 384 × 288 77.5 82.4
Ours (+DARK) HRNetW48384 × 28877.9 82.7

Semi-supervised methods are universally acknowledged to grapple with intrinsic
challenges stemming from limited annotations and highly imbalanced data dis-
tributions. Our approach, while striving to mitigate these issues to a considerable
extent, does not entirely eliminate them. Specifically, when the input pose is in
a dim environment or when the joints overlap, as shown in the fault situation in
Fig. 6, the pseudo-annotations generated by the model may be inaccuracy. This
leads to the degradation of the performance of the worst-case projection header,
thereby compromising the efficacy of the reverse rebalancing representation. As a
result, the inaccuracies in pseudo-annotations can detrimentally affect the accu-
racy of the worst-case projection header. To address this in our study, we employ
a relatively high learning rate with the intent of minimizing the impact of erro-
neous pseudo-labels on the worst-case projection header. This strategy serves to
preserve the operational effectiveness of the reverse rebalancing module. Addi-
tionally, we integrate a co-guessing mechanism to mitigate the frequency and
severity of errors in the pseudo-annotations. This mechanism facilitates a more
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Table 5. Comparisons on the MPII [1] dataset. The training set of the MPII dataset
is labeled data, and the AI Challenger [15] dataset is unlabeled data. The size of the
input image is 256×256.

Method Hea Sho Elb Wri Hip Kne Ank Total

Newell et al.(Stacked Hourglass). [9] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Xiao et al.(SB) [16] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
Ke et al. [6] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
Sun et al.(HRNet) [18] 98.6 96.9 92.8 89 91.5 89 85.7 92.3
Zhang et al. [21] 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5
Xie et al.(Dual) [17] 98.7 97.3 93.7 90.2 92.0 90.3 86.5 93.0
Huang et al.(SSPCM) [5] 98.7 97.5 94.0 90.6 92.5 91.1 87.1 93.3
Ours 98.7 97.6 94.2 90.9 92.7 91.5 87.6 93.6

collaborative and refined process of annotation correction, thereby enhancing
the overall robustness of our semi-supervised framework. Specifically, when the
input pose is in a dim environment or when the joints overlap, as shown in the
fault situation in Fig. 6, the pseudo-annotations generated by the model may be
inaccuracy.

Table 6. Ablation Study on COCO 1K. The Backbone network is ResNet18.

Method 1K 5K 10K

w/o Re-balance 49.5 59.1 60.3
w/o Joint CutPaste 49.8 59.3 60.8
w/o Random feature Mixup 48.7 57.6 60.1
w/o Co-Guessing 50.4 59.8 61.5
Ours 50.8 60.1 61.9

6 Conclusion

In our study, we introduce an innovative solution, Debiasing-Teacher, explic-
itly engineered to tackle bias-related issues. This solution employs a process
known as reverse re-balancing, utilizes effective data augmentation methods like
adaptive joint CutPaste, and incorporates a technique known as random feature
Mixup. Further, to augment pseudo-label production, we propose the concept of
co-guessing. By performing comprehensive experiments, our approach exceeds
current methods and achieves state-of-the-art performance.
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Abstract. A vision transformer learns high-quality patch embeddings
during the self-supervised training, which plays a crucial role in many
unsupervised downstream tasks like object localization, object detection,
and sparse semantic segmentation. Such downstream tasks explore the
various properties of the patch affinity graph to achieve state-of-the-
art performance in an unsupervised setting. However, the true poten-
tial of the patch affinity graph is yet to be harnessed for the dense
semantic segmentation task. The existing works show that modular-
ity is an essential property of a graph, which reflects the strength of
the existing graph partitions. We argue that joint optimization of fea-
ture clustering in patch embedding space and graph modularity in node
attribute space leads to a smooth training convergence and achieves bet-
ter results. In this paper, we propose a novel end-to-end unsupervised
learning method called GraPix, which utilizes the hidden property of
patch embeddings extracted from a self-supervised vision transformer for
the dense semantic segmentation task. The GraPix constructs an affin-
ity graph based on patch similarities in their embedding space. Next, it
learns highly discriminative centroid embeddings for dense semantic seg-
mentation with our novel joint feature clustering and graph modularity
optimization objective. The experiment results show that GraPix out-
performs the state-of-the-art method on the SUIM dataset and achieves
the second-best performance on the Cityscapes dataset. Also, we perform
a detailed ablation to justify the choice of model components and hyper-
parameters. The code is available at https://github.com/SonalKumar95/
GraPix.

Keywords: Self-supervised learning · Vision transformer · Dense
semantic segmentation · Graph Modularity optimization · Pixel
clustering

1 Introduction

An image segmentation task assigns a label to each pixel of an image so that
pixels with a similar label share some common semantic properties. Semantic
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segmentation is the more generalized form of image segmentation in which the
labels are consistent throughout images of the whole dataset. It is one of the
core computer vision tasks with direct application in various fields like remote
sensing, surveillance, underwater exploration [1], autonomous driving [2], medi-
cal imaging [3,4], etc. The applicability of the computer vision approach in such
applications depends on the accuracy of the semantic segmentation task for
domain-specific datasets. Existing state-of-the-art (SOTA) models [5–7] achieve
very high-level performance in the presence of supervision or manual annotation.
However, the manual pixel-wise annotation of each image from a large dataset is
not only time-consuming and cost-ineffective, but it also requires domain exper-
tise [8–10].

In recent years, self-supervised learning has been proposed to alleviate
the dependency of the deep learning model’s training on manually annotated
datasets [11–14]. Yet performing semantic segmentation without manual anno-
tation is much more complex than other unsupervised tasks like image classifi-
cation, object detection, and object localization. Various unsupervised semantic
segmentation (USS) methods [8–10,15–20] have been proposed to achieve bet-
ter accuracy on top of the existing approaches. An end-to-end learning method
[8–10,21] jointly learns pixel embedding and clustering objectives. The two-step
learning method [18] utilizes the pre-trained model or visual priors to learn
highly discriminative pixel embeddings with a novel loss function in the first
step. Later, it utilizes pixel clustering methods to generate segmentation masks.
Based on the segmentation mask, there are two major categories of semantic
segmentation task, i.e., sparse [15,18] and dense [8–10,18]. A sparse seman-
tic segmentation (SSS) task only labels pixels belonging to the object within a
scene. Unlike that, the dense semantic segmentation (DSS) task labels each pixel
within a scene, ranging from stuff to things. However, in comparison to sparse
semantic segmentation, achieving good performance for dense semantic segmen-
tation without manual annotations is challenging. Only a few existing methods
[8–10] are capable of performing unsupervised DSS tasks efficiently.

The introduction of self-supervised learning in the vision transformer (ViT)
provides a new direction for applying representation learning to perform complex
unsupervised downstream tasks like semantic segmentation, object localization
[22–24], and object detection [25]. In contrast with CNN architecture, a ViT
learns high-quality patch embeddings with the self-attention mechanism [26].
Some of the existing approaches [27–30] utilize these patch embeddings as an
alternative to the corresponding input images to perform unsupervised down-
stream tasks. Initially, the Lost framework [22] introduced the potential of patch
embedding extracted from a self-supervised ViT for the single object localization
task. It extracts the patch embedding for an image and computes a patch affinity
graph based on the pair-wise similarity of the patch embeddings. Later, it applies
the graph-based method to localize the object within an object-centric image.
Following this, various SOTA approaches for object localization [23,24] with a
novel graph-based method are proposed to achieve superior results. Motivated
by this, some of the unsupervised semantic segmentation (USS) tasks are also
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proposed to utilize patch affinity graphs and outperform the existing methods for
the sparse semantic segmentation (SSS) task [10]. However, unlike sparse seman-
tic segmentation (SSS), the true potential of patch embeddings is not harnessed
for the dense semantic segmentation task (DSS) in an unsupervised setting.

In contrast with the existing approach [8–10,15–18,20], this paper explores
the potential of patch embedding extracted from a self-supervised ViT for end-to-
end unsupervised learning for DSS tasks. We propose a novel end-to-end unsu-
pervised learning method, GraPix, which utilizes the patch embeddings from
self-supervised ViT with a novel loss function, LUnSeg, for unsupervised DSS
task. The LUnSeg loss is a combination of feature clustering and graph modu-
larity objectives. Modularity is an important property of a graph [31,32], which
reflects the strength of the existing partition in a graph. A graph with a high
modularity value has dense intra-partition connections and sparse inter-partition
connections. For example, the paper [32] proposed the Louvain clustering algo-
rithm to harness the modularity property of a graph for community detection in
a large network. Later, a spectral approximation for modularity computation is
proposed in paper [33] for graph clustering with Graph Neural Network (GNN).
The major contributions of our proposed methods are as follows:

1. A novel end-to-end unsupervised learning method for dense semantic seg-
mentation task, named GraPix, has been proposed, which trains a projection
head and cluster embedding over a frozen self-supervised ViT backbone.

2. A novel loss function, LUnSeg loss, has been introduced to utilize feature
clustering objective in patch embedding space and graph modularity objective
in node attribute space.

2 Related Work

The semantic segmentation task without the manual annotation can be seen
as a pixel clustering problem. Various SOTA methods for sparse [15,18,34] and
dense [8–10,20] semantic segmentation are proposed with this idea. The IIC [8]
framework is proposed as a preliminary effort for the unsupervised DSS task.
It utilizes a CNN backbone and maximizes the mutual information between
neighbor patches to learn quality pixel embeddings. Several other end-to-end
methods with CNN backbone are proposed with the idea of maximizing agree-
ment on pixel level [21] or segment level [9] with a novel objective function.
Alternatively, some of the bottom-up approaches [2,15,16] are also proposed to
utilize the visual priors or patch embeddings to decompose the scene into visual
groups and utilize mutual information or contrastive objective functions to learn
meaningful pixel embeddings.

Also, a few works [10,18,35] utilize feature representations or patch embed-
dings extracted from self-supervised ViT to perform the unsupervised semantic
segmentation task. The MaskDistill method [18] leverages the idea of the LOST
framework [22] to generate a single object mask for an image dataset and use
it as a pseudo-ground truth to train a segmentation model from scratch. Due
to the limitation of the LOST framework of localizing only a single object in



196 S. Kumar et al.

a scene, the application of MaskDistill is limited to the unsupervised SSS task.
The paper [20] proposes a data-driven bottom-up approach, DatUS, to lever-
age the Louvain clustering algorithm and patch embeddings for generating the
pseudo-segmentation masks of scene-centric images. Also, The STEGO method
[10] utilizes the features correspondence property of feature representation of
images extracted from self-supervised ViT to train a segmentation head for the
unsupervised DSS task. Unlike that, the DeepCut framework [35] utilizes the
patch embedding of an input image extracted from self-supervised ViT to con-
struct a patch affinity graph. Later, it utilizes spectral approximation of graph
clustering algorithms like correlation and NCut clustering to train a Graph Neu-
ral Network (GNN) [36]. The GNN model of the DeepCut method needs to be
trained separately for each scene to avoid over-fitting. Hence, the application of
DeepCut is limited to single object segmentation (foreground and background
separation), semantic part segmentation (image segmentation), and object local-
ization. Like MaskDistill, STEGO, and DeepCut methods, our proposed method,
GraPix, also utilizes the patch embedding extracted from a vision transformer.
To overcome their limitation, we propose an Unsupervised Segmentation Loss
to optimize the feature clustering and modularity objective jointly. It allows
us to learn a high-quality centroid embedding for unsupervised dense semantic
segmentation with the proposed architecture in Fig. 1.

3 Proposed Method

This paper proposes a novel end-to-end unsupervised learning approach for the
DSS task, termed GraPix. In contrast with the existing approach, GraPix learns
highly discriminative centroid embeddings for the unsupervised DSS task with
a joint feature clustering and graph modularity optimization objective. Figure 1
presents a high-level overview of the GraPix architecture. The major compo-
nents of the proposed architecture are a Self-supervised Representation Learning
(SRL) Setup, Trainable Cluster Centroids (CQ), and Unsupervised Segmentation
Loss (LUnSeg).

Also, we introduce additional unsupervised training steps, i.e., Self-label and
KNN training [37], to boost the performance of the proposed method.

3.1 Self-supervised Representation Learning (SRL) Setup

The SRL setup has an image augmentation strategy T , a pre-trained ViT
encoder EQ, and a trainable projection head PQ. The image augmentation strat-
egy generates five crops of each training image, followed by the photometric and
geometric transformation. The five-cropping of the dataset is performed before
training. It expands the volume of the training dataset by the multiple of five,
i.e., generates 5N views from N training images. The self-supervised ViT encoder
EQ acts as a feature extractor and is frozen during the training steps. The EQ
decomposes each view ∈ RH×W from ith batch in a ((H/P ) ∗ (W/P )) number
of patches before processing, where the dimension of each patch is P × P . It
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Fig. 1. A high-level overview of the GraPix architecture.

extracts one CLS token and ((H/P ) ∗ (W/P )) number of patch embedding for
each view. Next, the trainable projection head PQ (a linear/non-linear MLP)
maps each patch embeddings of ith batch to the compatible dimension (Dim)
to apply the proposed Unsupervised Segmentation Loss. Hence, The PQ maps
(B ∗ (H/P ) ∗ (W/P )) number of patch embedding from ith batch to projected
patch embedding matrix Zi ∈ R(B∗(H/P )∗(W/P )×Dim). Here, B indicates the
batch size, i.e., the number of images in ith batch.

The projected patch embedding matrix, Zi, is further processed to construct
the patch affinity graph, i.e., Gi. The nodes of the patch affinity graph represent
patches of the ith batch. A pair of nodes in G share an edge if the corresponding
patch embeddings have a positive pair-wise similarity value.

3.2 Trainable Cluster Centroids (CQ)

The Trainable Cluster Centroids, CQ ∈ RK×Dim, is a randomly initialized
embedding layer. It consists of a K number of embeddings, each representing
a centroid feature vector of a category/class from the segmentation dataset. The
dimension of a centroid feature vector is the same as a patch embedding form
Zi, i.e., Dim.

IPi = Zi@CQT (1)

SCAi = softmax(IPi) (2)

HCAi = argmax(SCAi) (3)

We perform dot product between Zi and CQ to compute the Inner Product,
IPi ∈ R(B∗(H/P )∗(W/P )×K) for each patch of ith batch using Eq. 1. A softmax
operation is performed over the IPi to compute the Soft Cluster Assignment
of each patch of ith batch, i.e., SCAi using Eq. 2. Further, we compute patch-
wise Hard Cluster Assignment, i.e., HCAi by assigning cluster id with maximum
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probability in SCAi to each patch of ith batch using Eq. 3. The IPi, SCAi, and
HCAi are utilized by LUnSeg loss in the next section.
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Fig. 2. The individual contribution of clustering, modularity, and orthogonal loss for
unsupervised training of GraPix architecture. The squire, circle, and triangle represent
the patch embeddings of three different visual groups. The diamonds with blue, green,
and red colors represent centroid embeddings of three different clusters. The solid lines
represent intra-class connections, and the dotted lines represent inter-class connections.
The lines with NEW and REMOVED tags present newly added and discarded connec-
tions, respectively. (Color figure online)

3.3 Unsupervised Segmentation Loss (LUnSeg)

As shown in Eq. 4, the LUnSeg Loss is a combination of modularity Lmod, clus-
tering Lclust, and orthogonal Lortho loss. Figure 2 shows the individual contribu-
tion of Lclust, Lmod, and Lortho for unsupervised training the proposed GraPix
architecture. The LUnSeg aims to optimize the feature clustering and graph
modularity objectives jointly with the GraPix architecture.

LUnSeg = Lmod + Lclust + Lortho (4)
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The Lmod loss computes the modularity of patch affinity graph Gi of ith batch
using Eq. 5. The graph modularity [31,32] represents the strength of the par-
titions in the Gi. Maximizing Lmod loss increases intra-partition and decreases
inter-partition connections within the patch affinity graph Gi.

Lmod = (−1) ∗ (1/2 ∗ μ) ∗ trace((SCAT
i @Qi)@SCAi) (5)

The Eq. 5 presents a spectral approximation for graph modularity [33] compu-
tation. Here, SCAi, and HCAi are hard and soft cluster assignments of patches
from ith batch, Adji is the corresponding adjacency matrix of patch affinity
graph Gi (refer Eq. 8), S+

i is positive pair-wise similarity matrix of patches from
ith batch (refer Eq. 9), I denotes identity matrix, P denotes the set of patches
from ith batch, Di is node degree matrix, λ is hyper-parameter (resolution coef-
ficient) to control the size of output partition of the graph, μ is the total degree
of patch affinity graph G, and trace( ) denotes the trace of a matrix’ Also, in the
given equations, < · > denotes dot product, ∗ denotes scalar multiplication, @
denotes matrix multiplication, and superscript T denotes the transpose of the
corresponding matrix.

Qi = S+
i − (λ ∗ (Di@DT

i ) ∗ (1/2 ∗ μi) (6)

Si = (Zi@ZT
i )− < (Zi@ZT

i ) · I|P |×|P | > (7)

Adji =

{
adj(r, s) = 0, Si ≤ 0
adj(r, s) = 1, Si > 0

(8)

S+
i =< Si · Adji > (9)

Di =
∑
r=1

Adji(r, s) (10)

μi = (1/2) ∗
∑
r=1

∑
s=1

Adji(r, s) (11)

We observe that only maximizing the modularity of Gi leads to an unstable
training sequence and does not converge to high-quality discriminative centroid
embeddings Ci. Hence, we introduce clustering loss Lclust to stabilize the modu-
larity optimization. The Lclust computes the negative average distance between
the points and their nearest centroid in patch embedding space using 12. Max-
imizing the Lclust loss brings patches sharing the same partition close in patch
embedding space.

Lclust = (−1)∗ < OneHotEncode(HCAi) · IPi > (12)

Additionally, we introduce the orthogonal loss [37], Lortho, in the Unsupervised
Segmentation Loss. The orthogonal loss enforces the orthogonality constraints
such that the patch embeddings from different categories become orthogonal
in feature space. It improves the intra-class clustering and increases inter-class
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separation in patch embedding space using Eq. 13. The Lortho loss computes
cross entropy between the graph partition similarity matrix, i.e., (SCAT

i @SCAi)
and the identity matrix I ∈ RK×K , where K is the total number of partition or
total categories in the dataset.

Lortho = Cross-entropy((SCAT
i @SCAi), IK×K) (13)

Algorithm 1 summarises the training procedure of the proposed method, i.e.,
GraPix.

Algorithm 1 GraPix
1: Input D: dataset, EQ: pre-trained ViT encoder, PQ: projection layer, C: centroid

embeddings, totalItter: number of iteration, T: an augmentation strategy
2: Freeze EQ

3: Initialize PQ and C with random weights.
4: for e = 0 to totalItter do
5: Sample mini-batch of size N from D
6: Sample augmented views of each image in mini-batch (V) with T
7: Extract Patch embedding, i.e., Z ←− PQ(EQ(V ))
8: Compute inner products (IP) using Eq. 1
9: Compute patch-wise soft cluster assignment (SCA) using Eq. 2

10: Compute patch-wise hard cluster assignment (HCA) using Eq. 3
11: Compute Lmod, Lclust, and Lortho using Eqs. 5, 12, and 13, respectively.
12: Compute total loss, i.e., LUnSeg = Lmod + Lclust + Lortho

13: Backprop LUnSeg

14: end for
15: Output PQ, C

3.4 Additional Unsupervised Training Steps

In the previous section, the GraPix method learns discriminative centroid embed-
dings. The learned centroid embedding can be further utilized to generate class-
level quality supervision from the dataset to improve the performance of the
proposed GraPix architecture. We introduce two additional unsupervised train-
ing steps: Self-label and KNN training. They are performed with the pre-trained
GraPix architecture and corresponding loss function given in Eq. 14, 15. The
Self-label and KNN training are motivated by the SCAN framework [37] for the
unsupervised image clustering task.

Self-label Training: It utilizes the confident patch samples of each batch for
unsupervised fine-tuning of the pre-trained GraPix architecture with a masked
cross-entropy loss, LSL. A patch from a ith batch is confident if the corresponding
softmax probability for the assigned cluster exceeds some pre-defined threshold,
δ. The masked cross-entropy loss, LSL, is defined in Eq. 14. It computes the cross
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entropy loss between the hard cluster assignment of confident patches (HCAi)
and its augmented view (HCAAug

i ).

LSL = Cross-entropy(HCAAug
i ,HCAi) (14)

KNN Training: The KNN training maximizes the similarity between the soft
cluster assignment SCA of each patch and its k-nearest neighbors (Np) from ith
batch. As defined in Eq. 15, The KNN Loss, LKNN , has two parts. The right
part of the equation computes entropy loss, which ensures uniform prediction
across categories in the dataset. The left part computes the average dot product
between SCA of each patch with its k-nearest neighbors.

LKNN = (−1/|P |)
∑
p∈P

∑
n∈Np

log
(

< SCAi(p)·SCAi(n) >
)
+α∗

∑
k∈K

qki logqki (15)

Here, qki = (1/|P |)
∑
p∈P

SCAk
i (p) (16)

Here, P denotes a set of patches from ith batch, Np denotes k-nearest neighbors
of pth patch, SCAi(p) denotes the soft cluster assignment of pth patch, α is an
entropy term (a scalar value), SCAk

i (p) id probability of pth patch to be assigned
cluster ID k .

4 Experiments

This section presents the results of our empirical validation conducted to assess
the efficacy of GraPix. We also conducted an ablation study to justify the design
choice for the GraPix architecture and method. Our experiments were imple-
mented using the PyTorch framework on an NVIDIA DGX Station A100 GPU
with 80G memory.

4.1 Experimental Settings

We evaluate the performance of GraPix on two benchmark datasets: SUIM [1]
and Cityscapes [38]. SUIM and Cityscapes are well-known scene-centric datasets
for dense semantic segmentation tasks. SUIM is a collection of 1635 color images
(1535 training and 110 testing images) collected from the underwater envi-
ronment. The color images are distributed across eight visual groups, which
are further grouped into six-course categories [1]: human divers, Robots (AU-
Vs/ROVs/Instruments), Reefs/Invertebrates, Fish/Vertebrates, Wrecks/Ruins,
Aquatic-plants/Sea-grass/Sea-floor/Rock/Background. Cityscapes is a collec-
tion of 24,500 street color images (approximately 21,000 training and 3500 testing
images) from 50 different cities. It recognizes objects from thirty visual groups,
which are further categorized into twenty-seven-course categories [9].
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We employ a frozen ViT-B/8 vanilla encoder [26], which is trained with the
ImageNet-1k dataset using the DINO framework [29]. A linear/non-linear pro-
jection head is trained over the ViT backbone to undertake the representation
learning task, and an embedding layer is deployed to learn the centroids for a pre-
defined number of classes/clusters (K). The Projection Head PQ yielded a final
output of 70-dimensional vectors, which is similar to the size of centroid embed-
ding vector cq ∈ CQ. We adopted specific hyper-parameters for both datasets,
including a resolution coefficient λ of 1.0/0.05, ADAM optimizer with a learning
rate of 5e − 4/1e − 4 for MLP PQ and 5e − 3/1e − 3 for embedding layer CQ.
We train the STEGO [10] model from scratch with the ViT-b/8 backbone to
compute the results on the SUIM dataset.

Table 1. Results over SUIM and Cityscapes datasets for unsupervised dense semantic
segmentation task. The highest value in each column is in bold format, and the second-
highest value is underlined.

Dataset Method MiOU PAcc. MF1

SUIM STEGO [10] 23.88 53.08 32.82
DatUS [20] 28.48 64.67 39.52
GraPix 28.98 64.06 41.00
GraPix+SL 30.02 64.43 42.67
GraPix+KNN 29.97 65.48 42.18
GraPix+KNN+SL 30.78 65.40 43.51

Cityscapes IIC [10] 6.4 47.9 –
MDC [10] 7.1 40.7 –
PiCIE [10] 12.3 65.5 –
STEGO [10] 21.0 73.2 27.70
GraPix 14.33 64.89 19.52
GraPix+SL 14.43 51.91 19.54
GraPix+KNN 14.54 51.54 19.69
GraPix+KNN+SL 14.48 51.14 19.63

Like prior work [9,10], we resize each validation image to 320 pixels along
both dimensions, i.e., height and width, followed by 320×320 center crop. In an
unsupervised setting, we utilize Hungarian matching [39] to map the K number
of predicted clusters to the C number of ground truth classes. Unless stated, we
consider K = C for the evaluation process.

4.2 Comparison with State-of-the-Art Methods

Quantitative results: Table 1 presents the comparative analysis of our pro-
posed method, GraPix, and state-of-the-art methods for the unsupervised dense
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Fig. 3. A visual comparison of mask generated from STEGO, GraPix, and ground
truth mask for a few sample images from the validation set.

semantic segmentation task, i.e., STEGO (ViT-B/8). The SL and KNN denote
the self-label and KNN training steps, respectively. Notably, Table 1 shows that
GraPix outperforms the STEGO on the SUIM and achieves the second-best per-
formance on the Cityscapes dataset. The additional unsupervised training steps
further improve the performance of GraPix on both datasets. The GraPix with
both additional unsupervised training steps, i.e., GraPix+KNN+SL, achieves an
improvement of +6.9, +12.32, and +10.69 on MiOU, Pixel Accuracy, and Mean
F1 Score metrics, respectively, on SUIM dataset.

Qualitative Results: Fig. 3 presents a visual comparison between the segmen-
tation masks generated using STEGO and GraPix with Ground truth masks
for sample images taken from the validation set. It is evident that our proposed
method learns to generate highly informative segmentation for images from dif-
ferent domains without using any manual annotations. Also, it can be observed
in Fig. 3 that the unsupervised methods for semantic segmentation are prone
to over-segmentation of scenes, i.e., identifying more objects compared to the
ground truth masks. One of the reasons for over-segmentation could be that
the self-supervised training generates supervision from the unlabeled dataset.
Hence, for more complex datasets like cityscapes, where several objects with
varying shapes and sizes are present, over-segment may lead to performance
degradation.

4.3 Ablation Study

Next, we perform a detailed study to understand the effect of augmentation
strategy, projection head, and hyper-parameters on the performance of GraPix,
as well as additional unsupervised training steps.
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Table 2. Ablation on projection layer (Proj.), crop type (Crop), and resolution coef-
ficient (λ) for GraPix training with batch size (BS) equal to eight.

Proj. Crop λ SUIM Cityscapes
MiOU PAcc. MF1 MiOU PAcc. MF1

LIN None 0.0528.98 64.06 41.00 14.31 64.89 18.98
LIN None 1.0 27.10 61.90 38.42 13.61 44.86 18.79
LIN Five 0.05 24.97 57.81 34.56 13.88 41.73 19.52
LIN Five 1.0 22.57 52.90 34.54 12.53 52.36 17.54
Non-LIN None 0.05 25.74 61.61 35.84 12.92 44.32 17.79
Non-LIN None 1.0 24.06 51.02 35.18 12.34 37.23 17.87
Non-LIN Five 0.05 25.17 51.99 36.41 14.26 54.89 19.16
Non-LIN Five 1.0 25.00 56.64 35.99 14.33 51.70 19.45

4.4 GraPix Training

Based on the findings presented in Table 2, a linear projection head (LIN) demon-
strates effectiveness on small to moderately-sized datasets such as SUIM, while
non-linear projection heads are more appropriate for larger and more complex
datasets like Cityscapes. Also, the images from the Cityscapes data consist of
many small to large size objects in a single scene. To reduce the complexity
of such a complex scene, we apply a five-cropping strategy, which decomposes
an image into five sub-images of similar dimensions [10]. Table 2 shows that the
training with a five-cropped dataset dominates the performance in all metrics for
complex datasets. Also, the resolution coefficient λ is used to control the size of
the graph partitions. The results suggest that the smaller value of the resolution
coefficient λ is more suitable for the dense semantic segmentation task.

Table 3 illustrates the influence of batch size on GraPix performance. The
number of nodes in the patch affinity graph of the GraPix method is directly
proportional to the batch size. The results from Table 3 suggest that the size
of the intermediate patch affinity graph may have some influence on the overall
training. For both datasets, a batch size of eight is found to be suitable.

Table 3. Ablation on different batch sizes (BS) with dataset-wise best-performing
version of GraPix from Table 2.

BS SUIM Cityscapes
MiOU PAcc. MF1 MiOU PAcc. MF1

4 21.66 48.99 32.70 14.18 55.88 19.36
8 28.98 64.06 41.00 14.31 64.89 18.98
16 25.26 52.24 36.39 12.67 48.17 17.61
32 22.14 54.65 32.34 13.93 43.26 19.25
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4.5 Additional Unsupervised Training Steps

To study the effectiveness of additional unsupervised training steps, we per-
formed individual and combined training of self-label and KNN training after
the completion of GraPix with its best-performing version from Table 2.

Table 4. Ablation on different crop types for Additional Training Steps (ATS), i.e.,
Self-Label and KNN training step with batch size equal to eight.

ATS Crop SUIM Cityscapes
MiOU PAcc. MF1 MiOU PAcc. MF1

Self-labelNone 29.92 64.06 42.48 14.43 51.91 19.54
Five 30.02 64.43 42.67 14.44 51.80 19.56

KNN None29.97 65.48 42.18 14.35 50.61 19.52
Five 29.75 64.78 42.06 14.42 50.78 19.60

Table 5. Ablation on top-k neighbors for KNN training with batch size equal to eight.

Top-K SUIM Cityscapes
MiOU PAcc. MF1 MiOU PAcc. MF1

10 29.00 64.14 41.01 14.36 51.26 19.43
15 29.43 64.22 41.70 14.36 51.26 19.43
20 29.97 65.48 42.18 14.42 50.78 19.60
25 29.09 64.55 42.05 14.54 51.54 19.69

It can be observed from Table 4 that the Self-label training favors the five-
cropping for both datasets. Unlike that, the KNN training favors the five-
cropping with only the complex dataset, i.e., Cityscapes. Also, as shown in
Table 5, the choice of k number of neighbors does not have a noticeable impact
on the performance of KNN training for both datasets. In Table 6, we present
the performance of different combinations of self-label and KNN training over
GraPix training. The additional training steps are performed with and with-
out a five-cropped dataset. It is evident from the table that performing KNN
training followed by Self-label training has the best performance as compared
to all combinations. Since the additional training steps are performed over the
unsupervised pre-trained model. Their performance depends upon the strength
of supervision obtained from the unsupervised feature representations of the
training dataset. Hence, the improvement gain may or may not be significant
depending upon the complexity and the nature of the dataset used for additional
training.
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Table 6. Ablation of the training sequence for additional unsupervised training steps,
i.e., Self-label and KNN training with different crop types of training data.

Method SUIM Cityscapes
MiOU PAcc. MF1 MiOU PAcc. MF1

GraPix+SL (None)+KNN(None) 30.38 64.43 43.03 14.47 51.13 19.68
GraPix+SL (None)+KNN(Five) 30.31 64.18 42.98 14.46 51.29 19.66
GraPix+SL (Five)+KNN(Five) 30.54 64.33 43.38 14.47 51.49 19.65
GraPix+KNN (None)+SL(None) 29.43 64.15 41.73 14.44 50.89 19.61
GraPix+KNN (None)+SL(Five) 30.78 65.40 43.51 14.43 51.07 19.61
GraPix+KNN (Five)+SL(Five) 30.33 64.86 39.21 14.48 51.14 19.63

5 Conclusion

This paper proposes a novel end-to-end unsupervised learning method, GraPix,
for the dense semantic segmentation of scene-centric images from unlabeled
datasets. The GraPix learns highly discriminative centroid embedding with joint
optimization of feature clustering in patch embedding space and graph modu-
larity in node attribute space. Also, we introduce additional unsupervised train-
ing steps to boost the performance of the proposed architecture after GraPix
training. We perform experiments on multiple datasets from different domains
to justify the generality of the proposed method. The GraPix outperforms the
state-of-the-art method on the SUIM dataset and achieves the second-best per-
formance on the Cityscapes dataset. Finally, we perform a detailed ablation to
understand the influence of different design choices for proposed architecture
and hyper-parameters on overall performance.

Also, It’s crucial to emphasize that the performance of our proposed method
can be improved with the advanced methodology in the future. In the unsu-
pervised domain, it is difficult to match the self-supervised model outcome for
the computer vision task with the human-level annotation. Further research is
required to bridge the gap between supervised and unsupervised methods.
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Abstract. Salient Object Detection (SOD) has traditionally relied on
feature refinement modules that utilize the features of an ImageNet
pre-trained backbone. However, this approach limits the possibility of
pre-training the entire network because of the distinct nature of SOD
and image classification. Additionally, the architecture of these back-
bones originally built for Image classification is sub-optimal for a dense
prediction task like SOD. To address these issues, we propose a novel
encoder-decoder-style neural network called SODAWideNet++ that
is designed explicitly for SOD. Inspired by the vision transformers’ abil-
ity to attain a global receptive field from the initial stages, we intro-
duce the Attention Guided Long Range Feature Extraction (AGLRFE)
module, which combines large dilated convolutions and self-attention.
Specifically, we use attention features to guide long-range information
extracted by multiple dilated convolutions, thus taking advantage of the
inductive biases of a convolution operation and the input dependency
brought by self-attention. In contrast to the current paradigm of Ima-
geNet pre-training, we modify 118K annotated images from the COCO
semantic segmentation dataset by binarizing the annotations to pre-train
the proposed model end-to-end. Further, we supervise the background
predictions along with the foreground to push our model to generate
accurate saliency predictions. SODAWideNet++ performs competitively
on five different datasets while only containing 35% of the trainable
parameters compared to the state-of-the-art models. The code and pre-
computed saliency maps are provided at https://github.com/VimsLab/
SODAWideNetPlusPlus.
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1 Introduction

Salient Object Detection (SOD) requires identifying the objects that catch a
viewer’s immediate attention from visual data. Saliency is vital for many areas
of Computer Vision, including Semantic Segmentation [25], Person Identifica-
tion [12], etc. The first methods for SOD [1,10] relied on hand-crafted priors like
color, contrast, etc. With the advent of Deep Learning, the emphasis has shifted
towards developing Deep Learning based solutions for SOD.

The fundamental idea of Deep Learning models for SOD involves build-
ing novel feature refinement modules that rely on semantic features extracted
using ImageNet pre-trained backbones. However, these backbones are primar-
ily designed for image classification and do not fully meet the intricate needs
of SOD. SOD often involves analyzing images with multiple objects, unlike the
single-object focus typical in image classification datasets. This discrepancy can
result in less optimal saliency predictions. Additionally, the standard approach
of only integrating the backbone with the refinement modules during the fine-
tuning phase misses a critical chance to pre-train these components together,
which could enhance overall model performance. To better address these chal-
lenges, our models are designed specifically for SOD from the ground up, allowing
for the entire network to be pre-trained simultaneously. A crucial part of our app-
roach involves adapting the COCO semantic segmentation dataset [16] for SOD
by converting the segmentation labels to saliency labels. Although significantly
smaller than other pre-training datasets like ImageNet, our results illustrate the
advantages of pre-training the entire model.

Moving toward the architectural innovations that underpin our model, it
is crucial to recognize the dramatic shift from traditional Convolutional Neu-
ral Networks [9,24] to Vision Transformers (ViTs) [4], which have significantly
advanced the benchmarks across various computer vision tasks. Unlike CNNs,
which are constrained by their local receptive fields and often fail to adapt to the
unique characteristics of different inputs, ViTs excel by capturing global relation-
ships and input-specific details through self-attention. As a consequence of the
local receptive field, CNNs typically employ a hierarchical approach to extracting
global features that rely on extreme downsampling of the input. While broaden-
ing the receptive field, this process results in a substantial loss of detail, a critical
drawback for tasks requiring high-resolution outputs. Additionally, the convolu-
tion operation in CNNs is designed to detect common patterns across different
instances, which does not suffice for capturing attributes unique to individual
instances. Several studies [2,36] have attempted to overcome these limitations
but often incur high computational costs. To furnish a CNN with the ability to
utilize instance-specific information, we employ self-attention and use it to guide
the features extracted by convolutional operations.

Pre-trained on the modified COCO dataset, we propose SODAW-
ideNet++, a modified SODAWideNet [5] architecture that seamlessly integrates
Attention into convolutional components to extract local and global features.
To extract global features, we combine dilated convolutions from the Multi-
Receptive Field Feature Aggregation Module (MRFFAM) and Attention from
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Multi-scale Attention (MSA) modules and propose Attention guided Long Range
Feature Extraction (AGLRFE). Furthermore, we modified the Local Processing
Module (LPM) by adding Attention and thus proposed an Attention-enhanced
Local Processing Module (ALPM) to extract local features. Finally, we reuse
the Cross Feature Module (CFM) to combine features from both the proposed
components. We summarize our contributions below -

1. We propose SODAWideNet++, a convolutional model utilizing self-attention
to extract global features from the beginning of the network.

2. We modify the famous COCO semantic segmentation dataset to generate
binary labels and use it to pre-train the proposed model.

3. We propose AGLRFE to extract features from large receptive fields using
dilated convolutions and Self-Attention.

4. Unlike prior works, we supervise foreground and background predictions for
increased accuracy.

2 Related Works

2.1 Salient Object Detection with ImageNet Pre-Training

PiCAN [17] developed a contextual attention module to attend to essential
context locations for every pixel from Resnet-50 features. BASN [21] uses an
encoder-decoder-style network initialized by a Resnet-34 model and a boundary
refinement network on top to produce accurate saliency predictions with crisp
boundaries. (F3-N) [27] uses a Resnet-50 network to extract semantic features
refined by a cascaded feedback decoder (CFD) and cross-feature module to pro-
duce saliency outputs. VST [18] is the first work to propose a vision transformer-
based SOD model. PSG uses a loss function that creates auxiliary saliency maps
based on the morphological closing operation to generate accurate saliency maps
incrementally. ET [35] uses an energy-based prior for salient object detection.
RCSB [11] refines features extracted from a Resnet-50 [9] backbone using Stage-
wise Feature Extraction (SFE) and a few novel loss functions for SOD. CSF-R2
[8] proposes a flexible convolutional module named gOctConv to utilize multi-
scale features for SOD. EDNet [29] presents a novel downsampling technique to
learn a global view of the whole image to generate high-level features for SOD.
PGN uses a combination of Resnet and Swin [19] models to generate saliency
maps. ICON [37] introduces a diverse feature aggregation (DFA) component to
aggregate features with various receptive fields and increase the feature diversity.
TR [13] uses an EfficientNet backbone and attention-guided tracing modules to
detect salient objects. LDF [28] proposes a label decoupling framework to detect
salient objects. The authors disintegrate the original saliency map into body and
detail maps to concentrate on the central object and object edges separately. PA-
KRN [31] uses a knowledge review network to first identify the salient object and
then segment it. RMF [3] proposes a novel Recurrent Multi-scale transformer
that utilizes a transformer and multi-scale refinement architectures for SOD.
SR [34] proposes a novel framework that enhances global context modeling and
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detail preservation to generate accurate saliency predictions. VSC [20] proposes
a foundational model for SOD that uses programmable prompts to generate
saliency predictions.

3 Proposed Method
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Fig. 1. The proposed architecture SODAWideNet++ contains two branches, one to
extract global features using AGLRFE (flr) and the other to extract local features using
ALPM (fsr). These global and local features pass through CFM, producing the output
of an encoding stage. The decoding stages also consist of two parallel paths, MRFFAM,
to decode features through multiple receptive fields and an Identity operation.

The proposed model is an improved version of the design principles introduced in
[5]. This section will first explain the SODAWideNet [5] model, which serves as
the basis for SODAWideNet++. Then, we will introduce the core components of
SODAWideNet++, namely the Attention Guided Long Range Feature Extrac-
tion (AGLRFE) and the Attention Local Pooling Module (ALPM). Finally, we
will discuss the specific loss function used in our model and other essential ele-
ments of our design strategy.

3.1 SODAWideNet

SODAWideNet, as described in [5], employs an encoder-decoder architecture
to generate saliency predictions. The encoder is composed of three parallel
pathways: the Multi-Receptive Field Feature Aggregation Module (MRFFAM),
the Multi-Scale Attention (MSA), and the Local Processing Module (LPM).
These pathways are engineered to capture both global and local features con-
currently. The MRFFAM extracts and consolidates semantic information from
multiple receptive fields using large dilated convolutions, thereby strengthening
the model’s capability to identify objects of varying sizes. Similarly, MSA uti-
lizes self-attention to extract global features in a hierarchical manner, keeping
in mind the computational complexity of the attention operation. The LPM
extracts local features using smaller 3×3 convolutions and multiple maxpooling
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operations. The Cross-Feature Module (CFM) merges MRFFA, MSA, and LP
module features. This module contains a series of convolutions that selectively
combine features due to the distinct nature of features obtained from the three
components. Each convolution consists of a 3×3 convolution operation followed
by a Group Normalization layer and GELU activation function. In the decoding
phase, the architecture features two parallel paths, MRFFAM and Identity, which
work together to decode the encoded features and generate the final saliency out-
puts. The overall architecture consists of two such encoder and decoder blocks.
We reuse these decoder blocks in the proposed SODAWideNet++ model.

C
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ATTENTION
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UPSAMPLE
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Fig. 2. Attention-guided Long-Range Feature Extraction module
(AGLRFE) consists of two branches: a collection of dilated convolutions with
different dilation rates to extract long-range convolution features and a self-attention
block. We reduce the spatial resolution of the input before the Self-Attention block
using Average Pooling and refine them using a series of convolution operations.
Attention features are then upsampled to the exact resolution as the convolution
features from the dilated convolutions. Then, using a series of convolution layers, we
bring its channel size to one and pass it through a Sigmoid layer. These features refine
our long-range convolution features, thus inducing input-reliance.

3.2 SODAWideNet++

SODAWideNet++ builds upon the foundational architecture of SODAWideNet,
maintaining distinct branches for extracting local and global features. While
SODAWideNet has demonstrated commendable performance when trained from
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scratch, it still lags behind state-of-the-art models in terms of overall efficacy. In
SODAWideNet++, we refine the approach of capturing long-range features by
merging the functionalities of dilated convolutions and attention into a single,
streamlined module named Attention-Guided Long Range Feature Extraction
(AGLRFE). This module is engineered to generate long-range, input-dependent
convolutional features, thereby enhancing the robustness of the feature represen-
tation. Additionally, we incorporate attention into the Local Processing Module
(LPM) to increase input dependency, rebranding it as the Attention-enhanced
LPM (ALPM). The Cross-Feature Module (CFM) remains unchanged and is
tasked with the integration and refinement of both local and global features.
The decoder structures in SODAWideNet++ and SODAWideNet are identical,
preserving the architectural consistency across both models.

3.3 Attention Guided Long Range Feature Extraction (AGLRFE)

Vision transformers have achieved significant success due to the effectiveness of
Self-Attention in extracting important semantic features across large receptive
fields. On the other hand, conventional CNNs achieve a global receptive field
by downsampling the input hierarchically, which can lead to the loss of critical
features and increase the model’s parameters.

To overcome these limitations, MRFFAM employs multiple dilated convolu-
tions with large dilation rates to expand the receptive field of our network. The
input is divided into chunks, and each chunk is input to a dilated convolution
with a specific dilation rate. The output of the MRFFAM block is to concate-
nate the outputs of dilated convolutions along with the input in the channel
dimension. This resultant feature map is either sent through a downsampling
layer or a series of convolutions, depending on whether it is in the encoder or
the decoder.

However, the intrinsically input-dependent nature of Self-Attention is absent
in a convolution operation, thus restricting the effectiveness of a CNN. Thus, to
leverage the strengths of convolutions and Self-Attention, we propose a hybrid
module, modifying the MRFFAM block to contain an Attention operation.
Specifically, we use dilated convolutions to capture long-range convolutional fea-
tures and Self-Attention to derive input-specific features and use them to guide
the convolution features. Below, we illustrate particular components of AGLRFE
followed by a sequence of operations.

Bi(x) = convBi(convBi(x))
Gi(x) = convi(convi(x))

convBi implies a 3×3 convolution with dilation i followed by Batch Normal-
ization and GELU activation function, whereas convi implies a 3×3 convolution
with dilation i followed by Group Normalization and GELU activation function.

As seen in Fig. 2, the input to an AGLRFE block X is transformed using a
series of 3 × 3 convolution layers.
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feat = B1(X)

Next, there are two parallel paths: one path computes attention features,
and the other computes convolutional features of different receptive fields. To
compute the attention features, feat is downsampled using an Average Pooling
layer (AvgPool), which is then transformed by a series of convolution layers.

fattention = Attn(B1(AvgPool(feat)))

Attn = softmax

(
K × Q√

dk

)
V

where K,Q and V are computed using conv1(feat). Once computed, the atten-
tion features guide the outputs of various dilated convolutions in the following
manner -

fconv = {fi + (fi × σ(B1(↑ fattention)))} where i ∈ {6, 10, 14, 18, 22}
where fi = Gi(feat) indicate the dilated convolution features, ↑ indicates bilin-
ear upsampling, and σ indicates a sigmoid operation. To influence the convolu-
tional features, the attention features are upsampled to the same spatial resolu-
tion, then reducing their channels to 1 and, finally, passing through a sigmoid
layer. These logits are multiplied with the convolutional features, thus filter-
ing crucial per-channel information and inducing an input-dependent nature.
Finally, all the refined features are concatenated {} in the channel dimension.
Thus, the output of an AGLRFE is obtained by concatenating the newly gen-
erated convolution features and feat and passing these features through a max
pooling MaxPool layer followed by a series of convolution layers.

flr = B1(MaxPool({fconv, feat}))

3.4 Attention-Enhanced Local Processing Module (ALPM)

The Local Processing Module (LPM) in [5] employs 3×3 convolutions to extract
local features crucial for precise saliency predictions. This module uses a series of
max-pooling layers to identify discriminative features from small neighborhoods,
enhancing the model’s ability to focus on relevant details. To augment this struc-
ture with an added layer of input-specific adaptability, we have refined the LPM
by incorporating a Self-Attention mechanism. This Self-Attention is strategically
applied to the feature map with the smallest spatial resolution within the LPM,
enabling the module to obtain input characteristics from the most informative
feature map.

fx = MAXPOOL(X)
feat = B1(MAXPOOL(fx))

fy = B1({↑ (feat + Attn(feat)), fx})
fsr = B1(fx) + fy
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Above, we illustrate the series of operations in LPM along with the modification
highlighted in bold.

3.5 Loss Function

Following [5], SODAWideNet++ produces saliency and contour outputs. Specif-
ically, AGLRFE, ALPM, CFM, MRFFAM, and CFMD outputs are used to
generate saliency maps. Additionally, the outputs of MRFFAM and CFMD also
produce contour maps. Thus, we create a custom loss to supervise these outputs
with their ground truth, as shown in Eqs. 1 and 2.

Lsalient =
2∑

i=1

(Lsal
AGLRFE(i)

+ Lsal
ALPM(i)

+ Lsal
CFM(i)

+Lsal
MRFFAM(i)

+ Lsal
CFMD(i)

)

(1)

Lcontour = Lcon
MRFFAM(1)

+ Lcon
MRFFAM(2)

+Lcon
CFMD(1)

+ Lcon
CFMD(2)

Lcon = 0.001 · LBCE + Ldice

(2)

Lsalient and Lcontour imply the total Saliency loss and the total Contour
loss, respectively. LBCE and Ldice are the Binary Cross Entropy and Dice loss,
respectively. Unlike other methods, we supervise foreground and background
saliency maps. Hence, Lsal is divided into two parts. The foreground loss denoted
by Lfg is the same as the loss function in SODAWideNet, whereas Lbg is the
newly added background supervision. For COCO pre-training, we set β to one,
and for DUTS, we set it to 0.5.

Lsal = Lfg + β · Lbg

Lfg = αfg · Lbce + αfg · Liou + αfg · L1

Lbg = αbg · Lbce + αbg · Liou + αbg · L1

(3)

where Lbce, Liou, and L1 are per-pixel Binary Cross Entropy, Intersection-over-
Union, and L1 losses, respectively. αfg

ij and αbg
ij are per-pixel weights determined

for each pixel during foreground and background supervision. Per-pixel weights
ensure that wrong predictions for specific pixels are penalized heavily. Below,
we illustrate the procedure to compute these values. Both αfg and αbg have the
exact spatial resolution as the output. Hence, we compute pixel-wise loss in Eq. 3
and multiply them with α.

αfg
ij = max(GTij)31×31

αbg
ij = BackgroundGTij

BackgroundGT = 1 − GT

αfg
ij for a pixel at spatial location (i, j) is calculated by finding the largest value

in a 31 × 31 window centered on that pixel location. Whereas αbg
ij equals the
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pixel’s intensity value in the background map. Figure 3 indicates the values of
αfg
ij and αbg

ij superimposed on the input. Finally, from Eqs. 1, and 2, the total
loss to train our model is given as

Ltotal = Lsalient + Lcontour (4)

Fig. 3. In the above figure, we visually illustrate the pixels that receive a higher weight
for loss computation as shown in Eq. 3. The third image illustrates in white the pixels
that receive a higher weight for the background loss, and the fourth image illustrates
the pixels receiving a higher weight for the foreground loss. The last two images depict
the important pixels (in blue) superimposed (SI) on the input image. (Color figure
online)

4 Experiments and Results

4.1 Datasets

We pre-train our model on the modified COCO dataset of 118K annotated
images and ground truth pairs. We further augment it using horizontal and
vertical flipping, taking the pre-training data size to 354K images. Then, we
fine-tune our model on the DUTS [26] dataset, containing 10,553 images for
training. We augment the data using horizontal and vertical flipping to obtain
a training dataset of 31,659 images. We use five datasets to evaluate the pro-
posed model. They are DUTS-Test [26] consisting of 5019 images, DUT-OMRON
[32] which consists of 5168 images, HKU-IS [14] which consists of 4447 images,
ECSSD [23] which consists of 1000 images and PASCAL-S [15] dataset consisting
of 850 images.

4.2 Implementation Details

For COCO pre-training, we train our model for 21 epochs. The LR is set at
0.001 and multiplied by 0.5 after 15 epochs. For SOD fine-tuning, we train our
model for a further 11 epochs with the same LR as the COCO stage. LR is
multiplied by 0.1 after five epochs. We follow the procedure used in U-Net [22] to
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Table 1. Comparison of our method with 17 other methods in terms of max F-measure
Fmax, MAE, Sm, Em, and Fw on DUTS-TE, DUT-OMRON, and HKU-IS datasets.

Method Params. (M) DUTS-TE [26] DUT-OMRON [32] HKU-IS [14]

Fmax MAE Sm Em Fw Fmax MAE Sm Em Fw Fmax MAE Sm Em Fw

PiCANCVPR’18 [17] 47.22 0.860 0.051 0.869 0.862 0.755 0.803 0.065 0.832 0.841 0.695 0.918 0.043 0.904 0.936 0.840
BASNCVPR’19 [21] 87.06 0.860 0.048 0.866 0.884 0.803 0.805 0.056 0.836 0.861 0.751 0.928 0.032 0.909 0.946 0.889
F3-NAAAI’20 [27] 26.5 0.891 0.035 0.888 0.902 0.835 0.813 0.053 0.838 0.870 0.747 0.937 0.028 0.917 0.953 0.900
LDFCVPR’20 [28] 25.15 0.898 0.034 0.892 0.910 0.845 0.820 0.051 0.838 0.873 0.752 0.939 0.027 0.919 0.954 0.904
PA-KRNAAAI’21 [31] 68.68 0.907 0.033 0.900 0.916 0.861 0.834 0.050 0.853 0.885 0.779 0.943 0.027 0.923 0.955 0.909
VSTICCV’21 [18] 44.48 0.890 0.037 0.896 0.892 0.828 0.825 0.058 0.850 0.861 0.755 0.942 0.029 0.928 0.953 0.897
PSGTIP’21 [33] 25.55 0.886 0.036 0.883 0.908 0.835 0.811 0.052 0.831 0.870 0.747 0.938 0.027 0.919 0.906 0.958
ETNeurIPS’21 [35] 118.96 0.910 0.029 0.909 0.918 0.871 0.839 0.050 0.858 0.886 0.788 0.947 0.023 0.930 0.961 0.920
RCSBWACV’22 [11] 27.90 0.889 0.035 0.878 0.903 0.840 0.810 0.045 0.820 0.856 0.723 0.938 0.027 0.918 0.954 0.909
CSF-R2TPAMI’22 [8] 36.53 0.890 0.037 0.890 0.897 0.823 0.815 0.055 0.838 0.861 0.734 0.935 0.030 0.921 0.952 0.891
EDNTIP’22 [29] 42.85 0.895 0.035 0.892 0.908 0.845 0.828 0.048 0.846 0.876 0.770 0.941 0.026 0.924 0.956 0.908
PGNCVPR’22 [30] 72.70 0.917 0.027 0.911 0.922 0.874 0.835 0.045 0.855 0.887 0.775 0.948 0.024 0.929 0.961 0.916
ICON-RTPAMI’22 [37] 33.09 0.892 0.037 0.889 0.902 0.837 0.825 0.057 0.844 0.870 0.761 0.939 0.029 0.920 0.952 0.902
TR5AAAI’22 [13] 31.30 0.916 0.026 0.909 0.927 0.883 0.834 0.042 0.847 0.880 0.787 0.947 0.022 0.930 0.961 0.922
SRTMM’23 [34] 220 0.925 0.024 0.921 0.924 0.886 0.838 0.043 0.859 0.884 0.782 0.951 0.023 0.934 0.962 0.918
RMFACMMM’23 [3] 87.52 0.931 0.023 0.925 0.933 0.900 0.861 0.040 0.877 0.904 0.819 0.957 0.019 0.940 0.968 0.934
VSCCVPR’24 [20] 74.72 0.931 0.024 0.926 0.931 0.897 0.861 0.042 0.876 0.899 0.813 0.957 0.021 0.940 0.965 0.930
Ours 26.58 0.917 0.029 0.910 0.916 0.870 0.848 0.045 0.868 0.896 0.796 0.950 0.024 0.932 0.961 0.917
Ours-M 6.66 0.901 0.035 0.898 0.907 0.846 0.844 0.048 0.861 0.888 0.784 0.949 0.025 0.932 0.960 0.915
Ours-S 1.67 0.887 0.039 0.886 0.898 0.824 0.834 0.051 0.854 0.882 0.772 0.941 0.028 0.925 0.955 0.904

Fig. 4. In the above figure, we visually compare our results against other models.

initialize the weights of our model. Images are resized to 384×384 for training and
testing. The predictions for the background saliency supervision are generated
by multiplying the pre-sigmoid predictions with −1, thus turning the negative
values into positive and positive values into negative. The evaluation metrics
for comparing our works with prior works are the Mean Absolute Error(MAE),
maximum F-measure, the S-measure [6], the E-measure [7], and the weighted F-
measure. The lower the MAE and the higher the Fmax, Sm, Em, and Fw scores,
the better the model.
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Table 2. Comparison of our method with 17 other methods in terms of max F-measure
Fmax, MAE, Sm, Em, and Fw measures on ECSSD and PASCAL-S datasets.

Method Params. (M) ECSSD [23] PASCAL-S [15]

Fmax MAE Sm Em Fw Fmax MAE Sm Em Fw

PiCANCVPR’18 [17] 47.22 0.935 0.046 0.917 0.913 0.867 0.868 0.078 0.852 0.837 0.779
BASNCVPR’19 [21] 87.06 0.942 0.037 0.916 0.921 0.904 0.860 0.079 0.834 0.850 0.797
F3-NAAAI’20 [27] 26.5 0.945 0.033 0.924 0.927 0.912 0.882 0.064 0.857 0.863 0.823
LDFCVPR’20 [28] 25.15 0.950 0.034 0.924 0.925 0.915 0.887 0.062 0.859 0.869 0.829
PA-KRNAAAI’21 [31] 68.68 0.953 0.032 0.928 0.924 0.918 - - - - -
VSTICCV’21 [18] 44.48 0.951 0.033 0.932 0.918 0.910 0.890 0.062 0.871 0.846 0.827
PSGTIP’21 [33] 25.55 0.949 0.031 0.925 0.928 0.917 0.886 0.063 0.858 0.863 0.830
ETNeurIPS’21 [35] 118.96 0.959 0.023 0.942 0.933 0.937 0.900 0.055 0.876 0.869 0.863
RCSBWACV’22 [11] 27.90 0.944 0.033 0.921 0.923 0.916 0.886 0.061 0.857 0.858 0.834
CSF-R2TPAMI’22 [8] 36.53 0.950 0.033 0.930 0.928 0.910 0.886 0.069 0.862 0.855 0.818
EDNTIP’22 [29] 42.85 0.951 0.032 0.927 0.929 0.918 0.891 0.065 0.860 0.867 0.832
PGNCVPR’22 [30] 72.70 0.960 0.027 0.918 0.932 0.929 0.904 0.056 0.874 0.878 0.849
ICON-RTPAMI’22 [37] 33.09 0.950 0.032 0.929 0.929 0.918 0.888 0.066 0.860 0.861 0.828
TR5AAAI’22 [13] 31.30 0.956 0.027 0.933 0.926 0.931 0.907 0.051 0.878 0.875 0.859
SRTMM’23 [34] 220 0.962 0.025 0.941 0.935 0.932 - - - - -
RMFACMMM’23 [3] 87.52 0.964 0.020 0.947 0.938 0.946 - - - - -
VSCCVPR’24 [20] 74.72 0.965 0.021 0.949 0.934 0.942 0.912 0.051 0.885 0.870 0.863
Ours 26.58 0.957 0.029 0.935 0.927 0.922 0.901 0.062 0.875 0.868 0.844
Ours-M 6.66 0.952 0.033 0.930 0.26 0.915 0.895 0.065 0.866 0.865 0.834
Ours-S 1.67 0.946 0.037 0.923 0.924 0.906 0.884 0.070 0.857 0.860 0.818

4.3 Quantitative and Qualitative Results

Tables 1 and 2 detail the quantitative performance of SODAWideNet++ com-
pared to 17 other state-of-the-art models. Notably, on the DUTS-TE, DUT-
OMRON, and HKU-IS datasets, our model achieves competitive scores in Fmax,
Sm, and Em measures which signify highly confident and accurate predictions.
Especially while SODAWideNet++ (Ours) uses significantly fewer parameters
(33%, 35%, and 13% of trainable parameters compared to the state-of-the-art
RMF [3], VSC [20], and SR [34], respectively). Additionally, the smaller models
SODAWideNet++-M (Ours-M) perform considerably well and surpass the older
state-of-the-art models such as VST and RCSB. Similarly, the smallest model,
SODAWideNet++-S (Ours-S), also illustrates great performance and can be
useful in parameter-constrained situations.

The visual results, as depicted in Fig. 4, further substantiate the robustness
of SODAWideNet++ across diverse scenarios, including images with large fore-
ground objects, scenes containing multiple objects (notably in the second and
fourth rows), and environments characterized by complex backgrounds (third
and fourth rows). These results highlight the model’s ability to detect salient
objects in challenging visual conditions.

5 Ablation Experiments

Through ablation experiments, we delve into the effects of the proposed design
choices on the proposed model. All reported numbers are on the DUTS test split.
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5.1 SODAWideNet vs. SODAWideNet++

We performed a comparative analysis of SODAWideNet and SODAWideNet++
performance, evaluating both models from scratch and after pre-training on
the modified COCO dataset, ensuring comparisons were made against mod-
els of similar size for consistency. SODAWideNet++ integrates the Multi-
Receptive Field Feature Aggregation Module (MRFFAM) and Multi-scale Atten-
tion (MSA) into a single module, the Attention Guided Long Range Feature
Extraction (AGLRFE). This integration reduced redundancy when extract-
ing long-range features. Additionally, incorporating background supervision in
SODAWideNet++ enhances its ability to distinguish between foreground and
background areas, leading to more precise saliency results. Table 3 illustrates
the quantitative performance.

Table 3. SODAWideNet vs. SODAWideNet++.

Pre-training mechanism Model Size (in M)Fmax MAE

Scratch SODAWideNet 9.03 0.883 0.043
Mod. COCO SODAWideNet 9.03 0.899 0.035
Scratch SODAWideNet++ 6.66 0.881 0.043
Mod. COCO SODAWideNet++ 6.66 0.901 0.035

5.2 ImageNet vs. COCO Pre-training

Table 4 compares our proposed models’ performance when pre-trained on either
the ImageNet or the modified COCO dataset. The results show an improve-
ment with COCO pre-training, where the model experiences a 1.2% increase
in performance compared to ImageNet. This significant enhancement can be
attributed to the fact that ImageNet pre-training tends to separate the develop-
ment of the backbone and the feature refinement modules during the pre-training
phase, leading to a disconnect in feature interpretation between the encoding and
decoding stages when fine-tuning for SOD. Also, training the model from scratch
achieves decent performance, highlighting the effectiveness of incorporating self-
attention into a convolutional neural network.

Table 4. ImageNet vs. COCO vs. Training from scratch.

Pre-training mechanism Model Fmax MAE

Scratch SODAWideNet++ 0.890 0.039
ImageNet SODAWideNet++ 0.905 0.036
Mod. COCO SODAWideNet++ 0.917 0.029
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5.3 Pre-training Another Model Using the Modified COCO Dataset

We pre-train the PGN [30] model using the modified COCO dataset without
their ImageNet pre-trained weights. Tables 5 and 6 contain a quantitative eval-
uation of the COCO pre-trained PGN, ImageNet pre-trained PGN, and PGN
trained from scratch on the DUTS dataset. We have included our model for com-
parison. Pre-training using the COCO dataset significantly outperforms training
from scratch and delivers competitive results against the ImageNet pre-trained
PGN model without optimal hyperparameters.

Table 5. Comparison of pre-training (COCO vs. ImageNet) of PGN method.

Method Params. (M) DUTS-TE DUT-OMRON HKU-IS

Fmax MAE Sm Em Em Fmax MAE Sm Em Em Fmax MAE Sm Em Em

PGN-S 72.70 0.823 0.060 0.833 0.851 0.731 0.779 0.068 0.809 0.837 0.690 0.909 0.042 0.891 0.934 0.852
PGNCVPR’22 [30] 72.70 0.917 0.027 0.911 0.922 0.874 0.835 0.045 0.855 0.887 0.775 0.948 0.024 0.929 0.961 0.916
PGN-COCOCVPR’22 [30] 72.70 0.882 0.040 0.879 0.896 0.820 0.803 0.057 0.828 0.859 0.732 0.931 0.031 0.912 0.948 0.732
Ours 26.58 0.917 0.029 0.910 0.916 0.916 0.848 0.045 0.868 0.896 0.916 0.950 0.024 0.932 0.960 0.916

Table 6. Comparison of pre-training (COCO vs. ImageNet) of PGN method.

Method Params. (M) ECSSD PASCAL-S

Fmax MAE Sm Em Fw Fmax MAE Sm Em Fw

PGN-S 72.70 0.916 0.054 0.891 0.907 0.855 0.839 0.094 0.812 0.824 0.750
PGNCVPR’22 [30] 72.70 0.960 0.027 0.938 0.932 0.929 0.904 0.056 0.874 0.878 0.849
PGN-COCOCVPR’22 [30] 72.70 0.940 0.039 0.913 0.915 0.896 0.878 0.069 0.852 0.864 0.818
SODAWideNet++ 26.58 0.957 0.029 0.935 0.927 0.9220.901 0.062 0.875 0.870 0.845

5.4 Ablation Experiments Corresponding to ALGRFE, ALPM,
CFM, and MRFFAM

Table 7 provides a quantitative comparison of the impact of each component
of the proposed architecture. All these models are pre-trained on the modified
COCO dataset and fine-tuned on the DUTS dataset. The absence of AGLRFE
(row one) reduces the model’s ability to capture long-range dependencies, leading
to the lowest performance across all configurations. The removal of ALPM (row
two) reduces the model’s ability to capture local features. Similarly, removing
CFM (row three) causes a similar decline in performance due to the lack of a
complex way to integrate local and global features. Also, removing MRFFAM
(row four) on the decoder side results in degraded performance, reinforcing the
importance of using various receptive fields to decode features. The inclusion of
all the four components produces the best model.
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Table 7. Influence of individual components in SODAWideNet++.

AGLRFE ALPM CFM MRFFAMFmax MAE

× � � � 0.906 0.035
� × � � 0.907 0.033
� � × � 0.908 0.032
� � � × 0.906 0.032
� � � � 0.917 0.029

5.5 Difference from the Previous Loss Pipelines

Previous works [3,20,34] concentrated on supervising the foreground (saliency)
maps (fg), while our approach involved supervising both the foreground and
background (bg) maps. Our findings, as presented in Table 8, clearly demon-
strate that incorporating background supervision (fg + bg) leads to a noticeable
performance improvement compared to using foreground-only supervision, rein-
forcing the effectiveness of our approach.

Table 8. Influence of background (bg) supervision on SODAWideNet++.

Loss Fmax MAE

fg + bg 0.917 0.029
fg 0.912 0.031

6 Conclusion

In conclusion, our SODAWideNet++ framework integrates the strengths of
vision transformers and convolutional networks through the novel AGLRFE
module. By using dilated convolutions paired with self-attention mechanisms,
our model combines the inductive biases of convolutions and the dynamic, input-
specific capabilities of attention mechanisms. This combination identifies salient
objects across varied scenes and conditions. We used binarized annotations from
the COCO dataset to train the model instead of traditional ImageNet pre-
training. This tailored approach aligns directly with the nuances of SOD tasks,
resulting in a model with competitive performance across multiple datasets.
Our results demonstrate the effectiveness of our proposed pre-training approach
and model design choices, where we achieve competitive performance against
state-of-the-art models such as RMF [3] while only containing 35% of trainable
parameters.
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Abstract. Medical image segmentation plays a pivotal role in modern
healthcare applications, significantly assisting healthcare professionals in
making accurate diagnosis. However, limited annotated data hinders the
development of robust medical image segmentation models due to strict
patient privacy regulations. Semi-supervised learning offers a solution by
leveraging both labeled and unlabeled data, enabling models to learn
from larger datasets while capitalizing on limited labeled data. Despite
its benefits, semi-supervised learning continues to face concerns related
to data privacy. Federated learning (FL) addresses these concerns by
enabling multiple parties to collaboratively train a model without shar-
ing their local data. As the need for data-efficient and privacy-preserving
machine learning techniques grows, semi-supervised federated learning
emerges as a potential paradigm to tackle this issue. Our work under-
scores the importance of semi-supervised federated learning approaches
that can effectively leverage both labeled and unlabeled data distributed
across multiple sites. However, non-Independent and Identically Dis-
tributed (non-IID) data and class data imbalance remain significant
challenges in semi-supervised federated learning, hindering overall per-
formance. To address these issues, we propose the Federated Learning-
Pseudo labeled Segmentation with Class balance (FL-PSeC) framework,
which focuses on tackling class imbalance across clients’ local data by
assigning higher weightage to underrepresented classes when generating
annotations from unlabeled data. This strategy not only improves the
IID nature of the data but also leads to enhanced global model per-
formance. Our experiments on HAM10000, BUS, BUSIS, and UDIAT
datasets demonstrate the efficacy of FL-PSeC in adapting to a class
imbalance in FL, outperforming existing methods.
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1 Introduction

Medical image segmentation [23] is a pivotal task within image content analysis,
aiding computer-aided diagnosis by identifying the type of lesion and pinpointing
precise areas of interest [16]. Image segmentation, being a significant area of
medical imaging, has evolved into a highly active and evolving challenge in the
field of medical research. It involves dividing an image into distinct areas on
the basis of the relationship between target and non-target regions, facilitating
identifying specific objects within the image [7]. Over the years, deep learning
has significantly emerged dominant in this domain and has been applied in a
wide range of medical image analysis tasks such as skin lesion segmentation [5],
lung nodule simulation [11] etc.

Accuracy and robustness of image segmentation become more crucial in the
case of medical images, which play a vital role in medical diagnosis and treatment
planning [17]. Deep Learning models generally require a substantial amount of
training data for better generalization and performance [9]. However, in fully-
supervised semantic segmentation models, the optimal scenario involves acquir-
ing pixel-level annotated images from a wide range of diverse sources. However,
in real-world scenarios, acquiring pixel-level annotation for all the images from
various sources is often unattainable in medical image segmentation. The criti-
cal reasons for this are: firstly, the annotation cost and, secondly, the stringent
protocols for sensitive data sharing.

Numerous ML algorithms require substantial amounts of data, yet data are
distributed across various organizations while safeguarded by privacy regulations
[14]. Medical institutions house vast amounts of sensitive patient information.
FL is essential for medical image analysis, allowing collaborative model training
across institutions while preserving data privacy. This approach ensures accu-
rate segmentation models without the need for centralized data sharing [22], as
depicted in Fig. 1.

In the age of AI, collaborative learning through data sharing among institu-
tions offers efficient model building. However, centralized data storage, process-
ing, and analysis pose challenges. FL offers an alternative: models are brought
to data sources for in-house training, enabling collaborative learning without
centralizing datasets. Participants train models locally and share parameters for
aggregation on a centralized server, ensuring data privacy while managing data
differently [22].

There are three different types of ML frameworks based on the amount of
annotations in the training data, as shown in Fig. 2.

Supervised ML: Supervised ML plays a pivotal role in medical imaging by
utilizing labeled data to train algorithms for specific tasks such as medical image
classification, where the model learns to categorize images into different classes
as depicted in Fig. 2a. In this approach, to indicate the presence or absence of
particular features or conditions, medical images are annotated or labeled by
experts. These labeled images are then used to train the algorithm to recognize
patterns and make predictions on new, unseen images [19].
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Fig. 1. Federated learning framework

Unsupervised ML: Unsupervised ML, depicted in Fig. 2b, in medical imaging
is valuable for discovering patterns, similarities, and structures within unlabeled
data. This approach is not dependent on predefined labels but aims to uncover
inherent relationships and groupings within the images [2]. Clustering, a key
application of unsupervised learning, is particularly used to identify groups of
images comprising similar characteristics. In medical imaging, this often implies
discovering different subtypes of diseases or conditions on the basis of shared fea-
tures among images. Additionally, unsupervised learning can be used for anomaly
detection, where the algorithm learns the normal patterns within the data and
accordingly identifies any deviations as potential abnormalities.

Semi-supervised ML: Semi-supervised ML balances the use of labeled and
unlabeled data, offering advantages in scenarios where obtaining large amounts
of labeled data is challenging, such as medical image data [4,13]. This approach
combines the benefits of supervised learning with the ability to leverage the
abundance of unlabeled data. The model is trained using a small set of labeled
images and a larger set of unlabeled images, as shown in Fig. 2c. By learning
from both data types, the model improves its ability to generalize and thus,
make accurate predictions on new, unseen images [19,35].

Annotating medical images with pixel-level precision requires significant
expertise, making it a challenging and resource-intensive task. This poses a
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Fig. 2. Overview of different types of machine learning frameworks based on the avail-
ability of annotated data.

substantial hurdle for many medical institutions, resulting in a limited avail-
ability of images with detailed annotations. Consequently, most datasets in the
medical field are comprised of images that are either not labeled or have incom-
plete annotations. This lack of detailed annotations hampers the development
of accurate and reliable segmentation models, crucial for disease diagnosis and
treatment planning tasks [15,32]. The need for semi-supervised FL arises from
the dual challenges of limited annotated data and stringent privacy regulations
in medical image analysis. In a typical FL setup, pixel-level annotations, which
are necessary for image segmentation model training, might not be accessible to
all the local clients. This poses a challenge in effectively utilizing weakly-labeled
and unlabeled data for model learning. To address this, certain federated semi-
supervised learning methods require clients to exchange additional information
while learning from weakly labeled and unlabeled training data [26].

Addressing these challenges, a critical need arises for a clinical approach to
maximizing available supervision. Institutions collaborate to enhance segmen-
tation models using their expertise and annotations without directly sharing
patient data. This ensures privacy while advancing accurate medical image seg-
mentation. Current studies often overlook the variations in the availability of
supervision, which is common in clinical settings where different clients possess
varying levels of labeled data [26].

We propose a novel framework called Federated Learning-Pseudo labeled Seg-
mentation with Class balance (FL-PSeC) that tackles the issue of class imbalance
within local datasets of participating devices by prioritizing underrepresented
classes during pseudo-label generation. This approach addresses the varying class
distributions across devices, promoting uniformity and reducing bias in locally
trained models. By assigning increased weights to minority classes, FL-PSeC
aims to minimize class imbalance, which is crucial for preventing biased mod-
els favoring majority classes. Additionally, it improves the similarity of local
data distributions, enhancing the Independent and Identically Distributed (IID)
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nature of the data. This step ensures the global model can be generalized effec-
tively across diverse datasets. With reduced class imbalance and improved IID-
ness, FL-PSeC fosters stable model convergence during training to enhance over-
all model accuracy. The technique facilitates a global model with better perfor-
mance across all classes and devices. The summary of our main contributions is
given below:

– Our proposed framework, FL-PSeC, addresses concerns related to data pri-
vacy by allowing multiple parties to collaboratively train a model without
sharing their local data along with tackling the challenge of limited anno-
tated data in medical image segmentation

– FL-PSeC introduces a novel strategy to handle class imbalance across clients’
local data by assigning higher weightage to underrepresented classes during
pseudo-label generation. This approach enhances the IID nature of the data
and leads to improved global model performance.

– Our experiments on HAM10000, BUS, BUSIS, and UDIAT datasets demon-
strate the efficacy of FL-PSeC in adapting to class imbalance in federated
learning and outperforming existing methods, which validates the practical-
ity of your proposed approach.

2 Related Work

In this section, we discuss the state-of-the-art approaches related to federated
semi-supervised learning and medical image segmentation. Table 1 compares key
characteristics and attributes between existing State-of-the-art methods and our
method in the federated semi-supervised learning. Wicaksana et al. [26] pro-
posed a label-agnostic unified FL framework to carry out medical image seg-
mentation. It integrates mixed image labels, including pixel-level, bounding box,
and image-level class labels, from local clients to update the federated model.
Yang et al. [28] proposed a solution to the challenge of domain shift in COVID
region segmentation using federated and semi-supervised learning. Leveraging a
multi-national database of 1704 chest CT scans from three countries, the study
addresses the variability in data and annotations by introducing a novel feder-
ated semi-supervised learning technique. Further, Das et al. [6] introduces the
MedPFL framework to analyze and mitigate privacy risks in federated learn-
ing (FL) applied to medical image analysis. It highlights the significant privacy
risks in FL for processing medical images, demonstrating vulnerabilities to pri-
vacy attacks.

Limitations of Existing Works: Many previous studies have applied semi-
supervised learning techniques to enhance model performance but have not ade-
quately addressed the non-Independent and Identically Distributed (non-IID)
data and class imbalance challenges inherent in federated learning. Furthermore,
existing works often neglect data privacy concerns in the medical domain, focus-
ing primarily on medical image segmentation, as demonstrated in Table 1. To



232 I. Priya and C. K. Mohan

address these limitations, our work aims to improve medical image segmentation
in federated learning by addressing class imbalance issues through personalized
weighting of pseudo labels in a semi-supervised learning approach on a per-client
basis. This approach enables the problem to be solved locally, ultimately leading
to improved global performance while preserving data privacy.

Table 1. Comparison of key characteristics and attributes between existing State-of-
the-art methods and our method in the federated semi-supervised learning.

S.No. Author,
Year

Federated
learning

Semi-
supervised
ML

Medical
data

Privacy-
preserving
techniques

Data
distribution
heterogeneity

Handling
Class imbalance
issue

1 Gharibi et al. [8],
2021

� × × � × ×

2 Korkmaz et al. [12],
2022

� × � � × ×

3 Zhang et al. [33],
2022

� × � � � ×

4 Hidayat et al. [10],
2023

� × × � � ×

5 Das et al. [6],
2023

� × � × × ×

6 Yang et al. [29],
2023

× � × × × ×

7 Chen et al. [4],
2024

× � � × × ×

8 Schmarje et al. [21],
2021

× � � × × ×

9 Sahu et al. [20],
2023

× � � × × ×

10 Wang et al. [25],
2024

× � � × × ×

11 FL-PSeC (Ours),
2024

� � � � � �

3 Background

This section defines the concepts related to this work to understand the rest of
the paper.

– Privacy-Preserving Techniques: In the context of FL, privacy-preserving
techniques such as federated averaging with local differential privacy [10] and
privacy-preserving aggregation [8,12] are crucial for ensuring the confiden-
tiality and security of sensitive data stored on various devices or servers.

– Data Distribution Heterogeneity: It refers to the variation in the underly-
ing data distributions across different sources or domains in ML tasks. Over-
coming this challenge is crucial for models to generalize effectively across
diverse datasets, ensuring reliable real-world performance [31,33].

– Handling Class Imbalance Issue: Class imbalance arises where the num-
ber of instances belonging to one class is significantly lower than those of
the other classes in a dataset. This can lead to biased model performance, as
algorithms tend to favor the majority class.
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4 Proposed Methodology

In the realm of FL, the challenges of class imbalance and non-IID data distri-
butions persist as formidable obstacles. These issues need to be addressed using
methodologies that mitigate data biases as well as enhance the generalization
capabilities of the global model across diverse local datasets.

Our FL-PSeC method provides a comprehensive approach to tackle the chal-
lenge of unlabeled imbalanced data in FL by strategically integrating class bal-
ancing techniques and data distribution alignment strategies as shown in Fig. 3.
We now present a detailed overview of the proposed methodology.

Medical Data

Data Privacy Limited Data
Limited Data
Annotations

Privacy Preserving
Machine Learning

Data
Augmentation

Techniques

Needs human expertise
to annotate the

segmentation data

Semi-supervised
Learning Technique
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non-IID Class
Imbalance
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Fig. 3. Challenges in the medical image segmentation and the proposed FL-PSeC
framework.

In our FL setup, we consider a total of n clients, each client Ck (k ∈ [1, n])
holds private local data Dk with a size of |Dk| = lk. This data is partially anno-
tated, allowing us to split it into two parts: annotated data DA

k and unannotated
data DU

k , where |DA
k | � |DU

k |. We assume that the data distribution among
clients is non-IID, meaning the data can vary significantly between clients. To
ensure a valid FL protocol, we enforce a minimum threshold λ for the number of
samples per client by randomly splitting the annotated training dataset among
clients such that lk ≥ λ. We follow a similar process for the unannotated data,
ensuring class imbalance and non-IIDness. The goal of the central server is to
learn a global weight parameter wG by iteratively aggregating model updates
from clients within n-dimensional parameter space and evaluating the results on
the remaining test data. For each client Ck, we define three vectors:

– Γ ∈ R
c represents the class-wise contribution in the local client training data.
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– Ω ∈ R
c represents the size of the pseudo labels generated by our semi-

supervised learning algorithm for each client.
– W ∈ R

c represents the FL-PSeC class balance weighting vector.

Here, c represents the number of classes in the dataset. Further details on our
FL-PSeC model will be provided in subsequent sections.

4.1 FL-PSeC Psuedo Label Generation

Inspired by Fedmix [26], our approach aims to optimize the utilization of all
available data and enhance the reliability of local model updates through pseudo
label generation. To achieve this, we leverage various levels of labels to extract
valuable information even in the absence of pixel-level annotations. By incorpo-
rating multiple labelling types, such as bounding box annotations or image-level
class labels, we amplify and refine useful signals obtained from pseudo super-
vision. This multi-label strategy enables effective model training in scenarios
where fine-grained annotations are scarce, ensuring that critical information is
captured and incorporated into the learning process. As a result, the model’s
overall global performance is improved by optimizing the available data and

Algorithm 1 Proposed FL-PSeC method
Input: Gt - Global model; l - loss function; η - learning rate;
Output: ΔCi

t - Local model updates of the Client(s)
1: n ← total number of clients
2: procedure Client_exec(n, Gt)
3: for k = 1 to n do � Loop through number of total clients
4: Replace local model with global model: Ck

t ← Gt

5: Γ k = [γk
1 , . . . , γk

c ], s.t. γk
i =

|clki |
∑c

i=1 |clki | , for i ∈ [1, c]

6: Ωk = [ωk
1 , . . . , ωk

c ], s.t. ωk
i = |ĉlki |, for i ∈ [1, c]

7: Wk = [wk
1 , . . . , wk

c ], s.t. wk
i = 1 − γk

i , for i ∈ [1, c]
8: Ωk = Ωk ∗ Wk

9: DA
k ← Ωk

10: for b = 1 to batches in DA
k do � Loop through batches in client’s local

annotated dataset
11: Ct+1 = Ct+1 − ηΔl(Ct, b) � train local model for E local epochs
12: Calculate local client’s update: ΔCt+1 = Ct+1 − Ct

13: Scale up updates: ΔCi
t+1 = αiΔCi

t+1

14: return local updates ΔCi
t+1 to central server

15: procedure main( )
16: for t = 1 to T do
17: Share Gt to all the clients � Server execution
18: Receive updates from clients: ΔCi

t+1

19: Perform model averaging according to wG
t+1 = wG

t +
∑

n∈N αnΔCn
t+1

20: Update the global model (Gt): Gt+1

21: Perform global model testing on Dtest data
22: Client_exec(n, Gt) � Function call for client execution
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mitigating the reliance on pixel-level annotations. This method ultimately con-
tributes to the enhanced quality of learned representations, as demonstrated by
[26].

Based on the cross-pseudo supervision approach described in [3], FedMix
trains two differently initialized models, F1(.) and F2(.), co-supervising each
other with pseudo labels when pixel-level labels are not available. The training
image X is input to both models to generate pseudo labels Y1 and Y2 respectively.
These pseudo labels are then refined and denoted as Ŷ1 and Ŷ2 which are used
for training each local client. The refinement strategies [26] for different types of
labels are as follows:

– Pixel-Level Labels: Since pixel-level labels are directly available, no pseudo
labels are generated. Therefore, Ŷ1 = Ŷ2 = Ygt represents the ground truth
labels.

– Bounding Box Labels: For each pair of predictions, Y1 = F1(X) and Y2

= F2(X) refinement is performed based on the corresponding bounding box
label. Specifically, Ŷ1 = Y1 * Ybbox and Ŷ2 = Y2 * Ybbox

– Image-Level Class Labels: Each pair of predictions is refined using the
image-level label Yimg. This results in Ŷ1 = Y1 * Yimg and Ŷ2 = Y2 * Yimg. This
refinement helps filter out images that correspond solely to the background
class, treating them as outliers and excluding them from the training process.

– No Labels (Unsupervised): In the absence of any supervision, the predic-
tions are used directly, setting Y1 = Ŷ1 and Y2 = Ŷ2

The pseudo labels are then taken into a Ω vector such that for each client
Ck we calculate

Ωk = [ωk
1 , . . . , ωk

c ], s.t. ωk
i = |ĉlki |, for i ∈ [1, c],

where |ĉlki | is the number of pseudo labels generated by semi-supervised learning
method for ith class of the kth client.

4.2 Personalized Class Balancing in FL-PSeC

First, we calculate the class-wise contribution in the local client (Ck) training
data by determining the values of the Γ vector:

Γ k = [γk
1 , . . . , γk

c ], s.t. γk
i =

|clki |
∑c

i=1 |clki | , for i ∈ [1, c],

where |clki | represents the number of samples of ith class in the kth client. Next,
we compute the FL-PSeC class balance weighting vector Wk for client Ck as
follows:

Wk = [wk
1 , . . . , wk

c ], s.t. wk
i = 1 − γk

i , for i ∈ [1, c].

Finally, we update the semi-supervised generated pseudo labels vector Ωk cor-
responding to client Ck using the calculated weighting vector:

Ωk = Ωk ∗ Wk.
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The updated Ωk pseudo labels are then added to the annotated data DA
k of the

local client Ck for further local model training in the next communication round.
An essential aspect of our approach is the dynamic nature of the pseudo label
generation process within the semi-supervised learning algorithm. During each
communication round, the vector Ω is updated with newly generated pseudo
labels. Our FL-PSeC method adaptively updates the weighting vector W based
on these changes, promoting better class balance and enhancing the overall effec-
tiveness of the pseudo labeling process. This iterative refinement contributes to
the improved performance of the federated learning system.

5 Experimental Results

Dataset: We have performed the experiments on two segmentation tasks. One
for skin lesion segmentation and other one for breast tumor segmentation. The
dataset used to perform the skin lesion segmentation experiments is HAM10000
[24] comprising a total of 10015 dermatoscopic images of skin lesions images
collected from a total of 7479 patients from four different sources, distributed
among four different clients, namely Rosendahl and Vidir (Old, Modern and
Molemax).

Three publicly available datasets - BUSIS [27] comprising 562 cancer images,
BUS [1] which consists 133 healthy and 647 cancerous images, and UDIAT [30]
comprises 163 cancerous images - are utilized for the breast tumor segmentation
task. Each dataset is regarded as a different client resulting in a three client FL
setting.

Evaluation Metrics and Implementation Details: To assess the image
segmentation task, we have used Dice coefficient (DC) [26]. The chosen baseline
segmentation model combines UNet architecture and group normalization (group
norm). Four types of class labels are included in our experiments: pixel-level,
bounding box, image level, and unlabeled. The model training process utilizes
the Adam optimizer for 300 epochs. The training is conducted with a batch
size of 16 and a learning rate 0.001. We have followed the experimental settings
as done in [26]. The model is trained for four different clients for skin lesion
segmentation task and three different clients for breast tumor segmentation. In
every training iteration, each client involved utilizes its locally accessible data
to conduct local model updates for a single training epoch.

Table 2 presents the comparative results on the HAM10000 dataset follow-
ing the specified setup from [26]. Notably, in the [L, L, L, L] supervision cate-
gory, the FedAdaptAgg method exhibits superior performance. As our approach
falls under the semi-supervised FL framework, we have included the remaining
methods LL, FedAvg, and FedAdaptAgg in this configuration, as depicted in
Table 2. Additionally, in the [U, U, L, U]supervision category, our proposed
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FL-PSeC method outperforms existing methods such as FedRGD and FedST.
The iterative augmentation of class-balanced data evidently fosters IIDness in
the dataset, consequently enhancing overall global performance. Furthermore,
in the [B, B, L, B] supervision scenario, we note a similar trend. However, the
[B, B, L, B] setup presents a mixed supervision context in terms of labels com-
pared to the other two, showcasing our method’s efficiency in achieving better
performance in terms of DC%.

Table 3 displays the comparative results on the BUS, BUSIS, and UDIAT
datasets following the specified configuration. Notably, in the [L, L, L] super-
vision category, both the LL and FedAdaptAgg methods demonstrate superior
performance across various client types. Similar to above experiment, we have
included the remaining methods LL, FedAvg, and FedAdaptAgg in this analysis,
as our approach operates within the semi-supervised FL framework (Table 3).
Furthermore, in the [U, U, L] supervision category, our proposed FL-PSeC
method surpasses existing approaches such as FedRGD and FedST following
a similar trend of HAM10000 dataset. However, the [B, B, L] setup presents a
mixed supervision context compared to the others, highlighting our method’s
efficiency in achieving superior global performance in terms of DC%.

Table 2. Quantitative results for skin lesion segmentation on HAM10000 dataset across
various learning frameworks and supervision settings. The first column indicates client
types considered in the experiments: U for clients with unlabeled data, B for clients
with bounding box labels, and L for clients with pixel-level labels. Ci represents client’s
index.

Supervision
[C1, C2, C3, C4]

Method DC%

C1 C2 C3 C4 Avg.

[L,L,L,L] LL [26] 88.7 ± 0.4 92.9 ± 0.4 93.0 ± 0.3 92.6 ± 0.3 91.8 ± 0.3
FedAvg [18] 88.4 ± 0.6 92.6 ± 0.5 95.7 ± 0.8 95.0 ± 0.1 92.9 ± 0.4
FedAdaptAgg [26] 89.9 ± 0.5 94.1 ± 0.6 95.2 ± 0.8 95.0 ± 0.1 93.6 ± 0.2

[U,U,L,U] LL 74.9 ± 1.0 73.0 ± 1.2 93.0 ± 1.2 91.1 ± 1.7 83.0 ± 0.7
FedRGD [34] 71.7 ± 2.6 70.1 ± 2.8 92.1 ± 3.0 89.8 ± 0.5 80.9 ± 2.2
FedST [28] 77.2 ± 0.6 75.2 ± 1.1 94.7 ± 0.6 91.3 ± 0.6 84.6 ± 0.3
FedMix [26] 77.9 ± 0.6 75.8 ± 0.5 95.4 ± 0.2 92.0 ± 0.5 85.3 ± 0.4
FL-PSeC (Ours) 78.1 ± 0.4 75.6 ± 0.2 95.6 ± 0.7 92.3 ± 1.2 85.4 ± 2.5

[B,B,L,B] FedMix 85.7 ± 0.2 89.4 ± 0.7 96.2 ± 0.3 93.5 ± 0.3 91.2 ± 0.1
FL-PSeC (Ours) 85.9 ± 1.1 89.7 ± 0.3 95.7 ± 0.8 93.7 ± 0.4 91.3 ± 0.7
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Table 3. Quantitative results for breast tumor segmentation task across various learn-
ing frameworks and supervision settings. The first column indicates client types consid-
ered in the experiments: U for clients with unlabeled data, B for clients with bounding
box labels, and L for clients with pixel-level labels. Ci represents client’s index.

Supervision
[C1, C2, C3]

Method DC%

C1 C2 C3 Avg.

[L,L,L] LL [26] 78.3 ± 2.8 91.6 ± 0.7 83.4 ± 2.3 84.4 ± 1.7
FedAvg [18] 77.3 ± 2.3 91.3 ± 0.7 85.6 ± 1.3 84.7 ± 0.7
FedAdaptAgg [26] 77.9 ± 1.7 90.9 ± 1.0 86.6 ± 1.1 85.1 ± 0.4

[U,U,L] LL 65.9 ± 3.1 85.4 ± 1.1 83.4 ± 2.3 78.2 ± 1.4
FedRGD [34] 60.6 ± 4.4 80.7 ± 3.2 83.5 ± 4.4 74.9 ± 4.0
FedST [28] 67.3 ± 1.7 85.0 ± 1.6 83.2 ± 3.5 78.5 ± 1.9
FedMix [26] 68.3 ± 1.8 87.8 ± 0.6 85.6 ± 1.9 80.6 ± 0.7
FL-PSeC (Ours) 68.1 ± 0.2 88.1 ± 0.4 85.9 ± 1.2 80.7 ± 0.6

[B,B,L] FedMix 70.0 ± 0.6 89.9 ± 0.4 89.6 ± 0.1 83.2 ± 0.3
FL-PSeC (Ours) 70.3 ± 0.7 89.7 ± 1.1 89.9 ± 0.1 83.3 ± 1.9

6 Conclusion

In this paper, we emphasize the importance of semi-supervised learning in
advancing accurate medical image segmentation models within the constraints
of limited annotated data due to stringent patient privacy regulations. Our pro-
posed framework, FL-PSeC, offers a novel solution to tackle challenges such as
non-IID data and class data imbalance in the semi-supervised federated learn-
ing setting. By assigning higher weightage to underrepresented classes during
pseudo-label generation, FL-PSeC effectively addresses these issues, resulting in
an improved IID nature of the data and significantly enhancing model perfor-
mance. FL-PSeC demonstrates the capability to adapt to varying levels of label
availability across different client sites, ensuring efficient utilization of the avail-
able data for creating more accurate and generalizable segmentation models. The
conducted experiments substantiate the effectiveness of FL-PSeC in outperform-
ing state-of-the-art methods by a considerable margin, revealing its potential to
revolutionize the field of medical image segmentation. Overall, FL-PSeC presents
a promising direction for advancing semi-supervised federated learning in medi-
cal image segmentation, paving the way for more efficient and privacy-preserving
healthcare AI systems. In the future, we plan to explore the possibility of extend-
ing our approach to multi-modal medical imaging, investigating its applicability
to other healthcare tasks, and incorporating advanced techniques for handling
data heterogeneity and privacy-preservation in federated learning.
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Abstract. Many real-life systems are framed as networks which are used
to model interactions between complex entities. However, in many sce-
narios these interactions may not be pairwise, rather should described
as higher-order interactions. For such a scenario Hypergraphs are pre-
ferred rather than simple Laplacian. Therefore, to decide whether Lapla-
cian, Hypergraph or both could be used for the given system could lead
to a problem which needs to be addressed properly. In this paper, we
present a semi-supervised framework which considers weighted combina-
tion of Hypergraph and Laplacian information for pattern classification.
Numerical experiments on seven binary, five multi-class and four multil-
abel datasets along with MNIST-fashion dataset validate the efficacy of
proposed algorithm.

Keywords: Support Vector Machines · Hypergraphs · Laplacian ·
Semi-supervised

1 Introduction

Support vector machine (SVM) proposed by Vapnik [1], a parallel plane clas-
sifier, is a supervised learning algorithm which among all possible supporting
hyper-planes identifies a maximum margin classifier for the pattern classification
problem. Depending upon the structure of data, either hard margin or soft mar-
gin SVMs are obtained via solving a Quadratic Programming Problem (QPP)
in the dual space. There exist many non-parallel classifier like generalized eigen
value proximal support vector machine (GEPSVM) [2] and Twin Support Vector
Machines (TWSVM) [3]. GEPSVM tends to solve pair of eigenvalue-eigenvector
problem and Twin support vector machines [3] which is similar to SVM but
solves pair of QPPs each smaller in size as compared to QPP solved via SVM,
which makes it four times faster than SVM. Although SVM based classifiers
offers several benefits, the primary drawback is the requirement for a substan-
tial volume of labelled training data. However, in practice, it is challenging to
obtain adequately labelled data; which is true for any real life application.

Semi-supervised learning (SSL) combines both supervised as well as unsuper-
vised learning to solve many real-life problems. SSL has its applications in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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field of computer vision, medical field, and text classification, where it is challeng-
ing to have labelled data. Underlying distribution of unlabelled data captures
structural information which in turn enhance performance of a learning algo-
rithm [4]. Numerous techniques exist for SSL, such as graph-based approaches,
co-training, self-training, and Gaussian mixture models. In many SSL methods,
the most prevalent assumptions about data distributions are the Cluster and
Manifold assumption. In the cluster assumption, we can divide the data into
several discrete clusters; the data points within a cluster are more likely to have
the same output labels. Algorithms such as Transductive SVM [5] or S3VM [6]
uses the cluster assumption to find the optimal hyperplane in the SSL setting.
Data points located on a manifold structure has significantly lower dimension
compare to the input space [7].

Laplacian Support Vector Machine (LapSVM) [8] algorithm tries to learn
the underlying manifold structure from the unlabel data and combines it with
traditional SVM. A regularization term was considered to keep the decision
function and manifold structure smooth, which avoids overfitting. On the lines
of LapSVM [8], several other variations such as Laplacian p-norm proximal
SVM (LapPPSVM) [9], Laplacian twin support vector machine (LapTSVM)
[10], Laplacian least square twin support vector machine (Lap-LSTSVM) [11],
and LapLSTSVM [12], exists. All the aforementioned models considers pair-wise
relation of the data while constructing a graph Laplacian which may in gen-
eral not true for real-world applications. The relation between objects may be
binary and complex in reality, which is the biggest drawback of LapSVM mod-
els. Hypergraph based SVM(HGSVM) is a graph-regularized manifold learning
algorithm for semi-supervised setting discussed in [13].

Motivated from the above studies and in order to capture the underlying
structure of the data, we propose a new method, termed as, Improved Hyper-
graph Laplacian Support Vector Machine (IHLSVM) in which we construct both
graph Laplacian, Hyper-graph and consider weighted combination of both them
to find a new regularization term which further enhance the performance of
semi-supervised SVM. Thus, we first construct a hyper-graph [14] that looks up
to higher and complex relations using the hypergraph similarity matrix of the
original data and Laplacian that considers the pair-wise relation between the
data and finally the propose model that considers the weighted combination of
both. Unlike LapSVM, HGSVM constructs only hypergraph and thus ignores
the scenario wherein data may have pair-wise relation which otherwise is cap-
tured in graph Laplacian and thus can lead to overfitting. On the other hand,
IHLSVM considers weighted combination of Laplacian as well as Hypergraph
and based on underlying data distribution the weight parameter is tuned.

2 Preliminaries

2.1 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm with many
applications in image classification, regression, etc. SVM attempt to minimize
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empirical error while maximizing the distance between two bounding hyper-
planes. Given a set of training data X = {(x1, y1)...(xl, yl)} where xi ∈ Rn,
yi ∈ {−1,+1}, i = 1, 2, ..l. The SVM solves following quadratic programming
problem

min
w,b,ξ

1
2
wT w + C

l∑

i=1

ξi (1)

s.t. yi(wT xi + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, 2, ..., l

where the slack variable (error term) ξ = (ξ1, ξ2, ..., ξl)T corresponds to mis-
classification error in training data. The separating hyperplane is given by

wT x + b = 0 (2)

where w ∈ Rn and b ∈ R .

2.2 Manifold Learning

The X = {(xi, yi)|xi ∈ Rn} be the set of l-labelled data where n is number of
dimension for the training data and yi ∈ {+1,−1} and the set U = {xi, i = l +
1, l+2..,m} is set of unlabel data. Hence, the dataset S = X∪U , where the first l
data points are labelled, and the rest of the u data points are unlabel. K ∈ Rm×m

is the kernel matrix for m points corresponding to k(xi, xj) k : X × X → R. L
is the graph Laplacian associated with given data S and is given by

L = D − W (3)

where W is the adjacency matrix and D is the diagonal matrix with the degree
of each node (dii =

∑m
j=1 wij , wij is the entry from matrix W ). The target

function that the learning algorithm must estimate is denoted as f , such that
f : X → R where f is the vector of the n values on training data.

Manifold learning [15] is a non-linear dimensionality reduction technique in
which we assume the high dimensional data generally lie on a lower dimension
manifold. The semi-supervised manifold regularization framework can be defined
as

f∗ = argmin
f∈Hk

l∑

i=1

V (xi, yi, f) + δA||f ||2A + δI ||f ||2I (4)

where V (xi, yi, f) is the loss function, ||f ||2A is the ambient norm. i.e., the norm
of the function f in the Reproducing Kernel Hilbert Space(RKHS) enforces a
smoothness condition on the possible outcome. ||f ||2I is the intrinsic norm of the
function f in the low dimensional manifold, which enforces a smoothness along
the samples and is learned from the combination of labelled and unlabel data.
The tradeoff parameter δA and δI are hyper-parameters that control the weight
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of ambient and intrinsic norm. According to the Representer theorem [8] the
function f∗ will expand in m terms as:

f∗ =
m∑

i=1

α∗
i k(xi, x) (5)

2.3 Laplacian Support Vector Machine

LapSVM [8] is based on the principle of manifold learning and using representer
theorem solve the following optimization similar to (4).

min
α∈Rm,ξ∈Rl

l∑

i=1

ξi + γAαT Kα + γIα
T KLKα

s.t. yi(
n∑

j=1

αik(xi, xj) + b) ≥ 1 − ξi, i = 1, 2..., l

ξi ≥ 0, i = 1, 2..., l

where L is the regularised Graph Laplacian of the dataset derived in (3).

2.4 Hypergraph Support Vector Machine

LapSVM algorithm assumes a pairwise association between the samples which
in general doesn’t seem to hold in practice. Graph Laplacian is unable to cap-
ture multivariate and higher-order relationships between the samples. Authors
in [13] express high order relationship with Hypergraph which captures associ-
ation between two or more than two vertices. To construct a Hypergraph Sup-
port Vector Machine (HGSVM) [16] problem, the main task, like any other
graph-regularized manifold learning problem, is to find a matrix represen-
tation of the graph. Authors in [16] have constructed Laplacian regularized
Hypergraph matrix H [16] (similar to L matrix in LapSVM). Given a graph
G = (V,E), V = {v1, v2, ..., vn} and E = {e1, e2, ..., en} are the vertex and
hyper-edges set. We can define a vertex-edge matrix F such that

F = f(v, e) =
{

1, v ∈ e
0, v /∈ e

(6)

The degree of hyperedge δ(e) is defined as the number of vertices a hyperedge
contains.

δ(e) =
∑

v∈e

f(v, e)

d(v) =
∑

v∈e,e∈E

w(e) =
∑

e∈E

w(e)f(v, e)
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The following formula defines the hyperedge weight w(e):

w(e) =
1

δ(e)(δ(e) − 1)

∑

{vi,vj}∈e

exp

(
−||xi − xj ||2

μ

)

Similar to a simple graph, the Hypergraph’s Laplacian matrix can be defined
as [17]:

H = Dv − FWD−1
e FT (7)

where Dv,De,W are the diagonal matrices composed of d(v), δ(e) and w(e)
respectively.
According to Zhou’s [18], the Laplacian regularized Hypergraph matrix can also
be defined as

H = I − D
− 1

2
v FWD−1

e FT D
− 1

2
v (8)

Thus, the formulation of HGSVM is quadratic programming problem given by

min
α∈Rn,ξ∈Rl

l∑

i=1

ξi + γAαT Kα + γIα
T KHKα

s.t. yi(
n∑

j=1

αik(xi, xj) + b) ≥ 1 − ξi, i = 1, 2..., l

ξi ≥ 0, i = 1, 2..., l

where H is the Laplacian regularized Hyper-Graph of the dataset as defined in
(8). The solution of the aforementioned optimization is obtained by solving one
quadratic programming problem followed by solving system of linear equations
which is not scalable.

3 Proposed Method

3.1 Improved Hypergraph Laplacian SVM (IHLSVM)

In this section, we first propose to solve HGSVM i.e. the aforementioned
quadratic programming problem in primal space by replacing hinge loss with
square-hinged loss function, which in turn lead to solving following unconstrained
optimization problem in the primal space.

min
α∈Rm,b∈R

1
2
(

l∑

i=1

max(1 − yi(kT
i α + b), 0)2 + δAαT Kα+

δI(αT K + 1T b)H(Kα + 1b))

(9)

Since the above optimization is a convex problem, Newton’s method is used to
find the optimal solution whose complexity is O(n3).

The graph Laplacian L carries the pairwise relationship between the train-
ing instances, while the multivariate and complex relations are carried by the
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Hyper-graph Laplacian matrix H. However it is difficult to identify which repre-
sentation would be optimal for the given dataset. Therefore, in this section, we
define improved Hypergraph Laplacian matrix which is weighted linear combina-
tion of Laplacian as well as Hypergraph Laplacian and solve it as unconstrained
optimization problem which can be further solved in primal space using Precon-
ditioned Conjugate Gradient method [19] whose order of complexity is O(kn2),
where k is number of iterations and n is the number of training samples.

IHL = λL + (1 − λ)H (10)

In the IHL matrix, L is from (3) and H matrix is from (8). λ is the hyper-
parameter which work as a balancing factor between both of them.

Thus considering squared-hinged loss function

V (xi, yi, f) = max(1 − yi(kT
i α + b), 0)2,

regularizer term as ||f ||2A = αT Kα, |f ||2I = αT K(IHL)Kα. IHLSVM problem
would solve the following unconstrained optimization problem

min
α∈Rm,b∈R

1
2
(

l∑

i=1

max(1 − yi(kT
i α + b), 0)2 + δAαT Kα+

δI(αT K + 1T b)(IHL)(Kα + 1b))

(11)

We can solve (11) using Preconditioned Conjugate Gradient (PCG) method
[19] . The detailed algorithm is mentioned below.

Algorithm 1 Algorithm for IHLSVM

Dataset; S = X ∪U = {xt, yt}l
t=1 ∪{xt}l+u

t=l+1, X denotes a set of l labeled data,
U denotes set of u unlabeled examples and parameters set σ, γ1, γ2, λ; classsifier
f(x) = sign(

∑l+u
i=1 α∗

i K(x, xi)
Initialisation: Calculate Graph Laplacian L;
Calculate the Laplacian Regularised Hypergraph H = I −D

− 1
2

v FWD−1
e FTD

− 1
2

v ;
Calculate Improved Hypergraph Laplacian matrix IHL = λL + (1 − λ)H;
Find kernel function K(xi, xj) ;
Calculate α∗ by solving primal problem (11) by using PCG Method;

3.2 Multi-category and Multi-label Classification

In semi-supervised learning, multi-class or multi-label classification is a challeng-
ing task due to the unknown geometrical structure of the data. There are many
problems like speech recognition [20], face recognition [21], and many staged dis-
eases which are multi-class problems. There are many methods to solve multi-
class like OVO(One-vs-One) [22], OVR(One-vs-Rest) [23] or DAG for multi-
class classification [24], and Binary Relevance for multi-label classification. In
this paper, we have adopted the OVR classification strategy for multiclass and
binary relevance [25] for multi-label classification.
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4 Experiments and Results

We ran a large set of experiments to analyse the Improved Hypergraph Laplacian
Support Vector Machine (IHLSVM) proposed solution strategies and compared
them with other algorithms like LapSVM and HGSVM. In this section, we dis-
cuss data sets, our experimental protocol and the details of parameter selection
strategy. We perform numerical experiments on UCI datasets. All the experi-
ments are performed in MATLAB R2023a on a PC with AMD Ryzen 7 5800U
with Radeon Graphics 1.90 GHz and 8GB RAM.

4.1 UCI Datasets

We ran tests on 12 UCI [26] benchmark datasets to look into the classifica-
tion performance of our proposed approach with the square-hinge loss version
of LapSVM and HGSVM. Table 1 presents specifics of the 12 UCI benchmark
datasets and multilabel datasets1. Every dataset is standardised with mean zero
and standard deviation 1.

Table 1. UCI datasets

Dataset Size FeaturesClasses

Australian 690 14 2
Breast Cancer 277 9 2
CMC 1473 9 2
German 1000 24 2
Hearts 270 13 2
Ionosphere 351 34 2
WDBC 569 30 2
Ecoli 3186 3 3
Dna 3186 180 3
Glass 214 9 7
Iris 150 4 3
Wine 178 13 3

1 https://www.uco.es/kdis/mllresources.
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Results for Binary Classification. We have compared IHLSVM with square-
hinge loss version of LapSVM and HGSVM, on seven UCI binary datasets. We
have use 10-fold cross-validation to report the accuracy of models, where two reg-
ularisation parameter have range {10−6, 10−5, ..., 1, 10, 100} and kernel param-
eters for RBF have the range [0, 1]. Table 2 report the mean accuracy with
standard deviation. We can observe that the classification performance of our

Table 2. Classification Accuracy Results for Binary Datasets

Dataset UnlabelledLapSVM HGSVM IHLSVM

0% 80.29 ±6.70%80.00 ±6.62% 80.87 ±6.10%
10% 81.01 ±5.48%80.87 ±5.33% 81.16 ±5.63%

Australian 30% 80.87 ±5.19%81.01 ±5.18% 81.45 ±4.20%
50% 81.30 ±4.50%81.30 ±4.50% 81.45 ±4.62%

0% 71.90 ±4.70%72.10 ±4.43% 72.50 ±4.43%
10% 71.30 ±4.42%71.30 ±4.57% 71.80 ±4.44%

German 30% 72.00 ±3.50%72.00 ±3.83% 72.20 ±2.97%
50% 70.80 ±5.35%71.00 ±4.99% 71.10 ±4.89%

0% 94.32 ±3.24%94.31 ±3.28% 94.60 ±3.36%
10% 94.02 ±3.68%94.02 ±3.68% 93.74 ±3.75%

Ionosphere 30% 92.04 ±3.69%92.04 ±3.69% 92.33 ±3.75%
50% 92.03 ±4.19%92.03 ±4.60% 92.32 ±4.45%

0% 70.74 ±5.80%70.74 ±5.80% 71.10 ±5.71%
10% 71.14 ±6.20%71.14 ±6.20% 71.85 ±6.19%

Breast Cancer 30% 69.70 ±9.04%63.92 ±7.91% 70.04 ±7.73%
50% 71.85 ±3.64%67.87 ±7.72% 72.21 ±4.13%

0% 66.05 ±4.04%65.57 ±4.38% 66.12 ±3.84%
10% 66.46 ±3.42%66.19 ±3.48% 66.52 ±3.90%

CMC 30% 65.92 ±3.72%65.37 ±2.75% 66.05 ±3.21%
50% 65.17 ±4.15%65.24 ±3.84% 65.44 ±4.81%

0% 76.30 ±8.04%75.19 ±6.99% 77.41 ±7.29%
10% 76.67 ±8.56%75.93 ±8.42% 78.89 ±8.38%

Hearts-statlog 30% 79.26 ±5.58%78.52 ±9.53% 80.37 ±6.54%
50% 80.00 ±6.10%80.37 ±5.80% 81.48 ±7.20%

0% 96.14 ±3.77%95.09 ±3.39% 96.32 ±4.09%
10% 96.66 ±3.14%95.08 ±3.18% 96.84 ±2.96%

WDBC 30% 96.66 ±2.40%96.49 ±1.85% 96.84 ±1.61%
50% 96.32 ±2.67%96.49 ±2.48% 97.02 ±2.20%
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Table 3. Classification Accuracy Results for Multi-class Datasets

DatasetUnlabelledLapSVM HGSVM IHLSVM

0% 85.71 ±3.76% 85.71 ±3.77%86.01 ±3.92%
10% 85.11 ±3.84% 84.52 ±3.77%85.71 ±3.77%

Ecoli 20% 85.71 ±3.90% 85.40 ±4.68%86.30 ±4.30%
30% 81.23 ±5.88% 81.23 ±6.51%83.32 ±3.76%

0% 92.00 ±5.06% 93.33 ±5.27%94.67 ±5.06%
10% 92.67 ±5.48% 91.33 ±9.60%95.33 ±3.80%

Iris 20% 92.67 ±10.90%90.00 ±8.16%94.67 ±5.06%
30% 92.67 ±7.96% 94.00 ±4.35%94.67 ±4.47%

0% 98.30 ±1.55% 98.32 ±1.54%98.87 ±1.54%
10% 97.73 ±2.39% 97.75 ±1.26%98.30 ±1.55%

Wine 20% 98.86 ±1.56% 98.87 ±1.54%99.43 ±1.28%
30% 93.81 ±2.37% 93.25 ±1.56%93.83 ±1.21%

0% 66.36 ±7.80% 66.38 ±6.97%67.30 ±8.66%
10% 64.99 ±5.92% 64.03 ±3.74%65.46 ±5.80%

Glass 20% 58.89 ±8.55% 57.96 ±8.75%60.29 ±8.81%
30% 53.28 ±6.90% 52.34 ±6.26%53.73 ±6.28%

0% 50.25 ±1.95% 50.22 ±1.96%50.38 ±1.93%
10% 50.22 ±1.90% 50.16 ±1.72%50.25 ±1.74%

dna 20% 50.66 ±1.97% 50.56 ±1.78%50.75 ±1.87%
30% 51.07 ±1.84% 51.13 ±1.75%51.22 ±1.66%

Table 4. Comparison of Results for MNIST Fashion

UnlabelledLapSVM HGSVM IHLSVM

0 % 76.57± 0.79 76.48± 1.41 76.89± 0.84

10 % 76.45± 0.84 75.88± 0.81 76.41± 0.72
20 % 75.07± 0.98 75.38± 1.18 75.43± 1.10

30 % 74.55± 1.56 74.75± 0.52 74.70± 1.41
40 % 73.91± 0.96 73.21± 1.82 74.16± 0.98

50 % 72.62± 1.28 71.82± 1.23 72.88± 1.25

proposed IHLSVM is better than that of the other two methods on all binary
datasets. In addition, we investigate the classification performances of IHLSVM
under 0%, 10%, 30%, 50% unlabelled data used while training.
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Fig. 1. Results for MNIST Fashion

Table 5. Description of Multi-label Datasets

Dataset InstancesFeatures LabelsCard Domain

Birds 645 260 19 1.014 Audio
CAL500 502 68 174 26.044Music
Flags 194 19 7 3.392 Image
Enron 1702 1001 53 3.378 text

Table 6. Comparison of Results on Multi-label Datasets

Dataset Metric LapSVM HGSVM IHLSVM LapSVM HGSVM IHLSVM

Unlabelled 0% 10%

HL(↓) 0.0458 0.0468 0.0452 0.0458 0.0474 0.0455

F1(↑) 0.6158 0.6095 0.62 0.6097 0.5927 0.6131

Birds RL(↓) 0.1429 0.1524 0.1429 0.1167 0.1362 0.1262

AP(↑) 0.7675 0.7669 0.7632 0.7908 0.8069 0.7901

AUC(↑) 0.6726 0.6731 0.6743 0.6494 0.6382 0.6481

HL(↓) 0.3084 0.3077 0.3062 0.3056 0.3027 0.3019

F1(↑) 0.664 0.6641 0.6671 0.6768 0.6794 0.6821

Flags RL(↓) 0.0571 0.0571 0.0571 0.1143 0.1143 0.1143

AP(↑) 0.7014 0.6979 0.6983 0.6881 0.6849 0.6803

AUC(↑) 0.5773 0.5789 0.5787 0.5928 0.5952 0.5987

HL(↓) 0.1386 0.1388 0.1387 0.1381 0.138 0.138

F1(↑) 0.3086 0.3101 0.3096 0.3054 0.3072 0.3071

Cal500 RL(↓) 0.0959 0.1055 0.1055 0.1243 0.1339 0.1255

AP(↑) 0.9901 0.9886 0.9892 0.991 0.9898 0.9902

AUC(↑) 0.4712 0.4715 0.4714 0.4718 0.4726 0.4725

HL(↓) 0.0583 0.0585 0.0583 0.0586 0.058 0.0574

F1(↑) 0.4266 0.4282 0.4272 0.3592 0.4405 0.441

Enron RL(↓) 0.2412 0.2538 0.2412 0.1764 0.1724 0.1724

AP(↑) 0.9304 0.9295 0.9295 0.9311 0.9291 0.9289

AUC(↑) 0.486 0.4854 0.4858 0.4868 0.4871 0.4889
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Table 7. Comparison of results on Multilabel datasets

Dataset Metric LapSVM HGSVM IHLSVM LapSVM HGSVM IHLSVM

Unlabelled 30% 50%

HL(↓) 0.0477 0.048 0.047 0.0531 0.0537 0.053

F1(↑) 0.5519 0.5581 0.5635 0.498 0.4945 0.4959

Birds RL(↓) 0.0581 0.0771 0.0386 0.0776 0.0781 0.0581

AP(↑) 0.8153 0.8353 0.8137 0.8432 0.8698 0.8486

AUC(↑) 0.624 0.6201 0.6265 0.5873 0.5801 0.5854

HL(↓) 0.3175 0.3168 0.3146 0.318 0.3225 0.3158

F1(↑) 0.6672 0.6689 0.6705 0.6713 0.6671 0.6748

Flags RL(↓) 0.0571 0.0571 0.0571 0.0286 0.0286 0.0286

AP(↑) 0.7097 0.7084 0.7055 0.7189 0.727 0.7175

AUC(↑) 0.5774 0.578 0.5792 0.5745 0.5701 0.5759

HL(↓) 0.139 0.1395 0.1395 0.14 0.1394 0.1401

F1(↑) 0.3101 0.3097 0.311 0.3064 0.308 0.3091

Cal500 RL(↓) 0.0754 0.0827 0.079 0.0685 0.0553 0.0649

AP(↑) 0.9916 0.9912 0.9909 0.9919 0.9923 0.9915

AUC(↑) 0.4737 0.4731 0.4733 0.4752 0.4764 0.4755

HL(↓) 0.0583 0.0587 0.0583 0.0611 0.0584 0.0586

F1(↑) 0.3252 0.4251 0.3258 0.1326 0.3815 0.2721

Enron RL(↓) 0.216 0.2161 0.2119 0.1341 0.1425 0.1425

AP(↑) 0.942 0.9424 0.9418 0.9478 0.9459 0.9438

AUC(↑) 0.4863 0.4848 0.4862 0.4694 0.4745 0.476

Results for Multi-class Classification. We investigate the classification per-
formance of our proposed method on five UCI multi-class datasets and have eval-
uate its performance on Fashion MNIST data. We have used OVR [23] strategy
and compare it with square-hinge loss version of LapSVM and HGSVM. We are
using 10-fold cross-validation to report the classification accuracy. Each exper-
iment is also repeated ten times. Table 3 reports the mean accuracy and its
standard deviation. We can observe that the classification performance of our
proposed IHLSVM is better than that of the other two methods on all multi-class
datasets. In addition, we investigate the classification performances of IHLSVM
under 0%, 10%, 20%, 30% unlabelled data used while training.

Fashion-MNIST2 is a dataset of Zalando’s article images-consisting of a train-
ing set of 60,000 examples and a test set of 10,000 examples. Each example is a
28× 28 grayscale image, associated with a label from 10 classes. Zalando intends
Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST
dataset for benchmarking machine learning algorithms. It shares the same image
size and structure of training and testing splits. We investigate the classification
performances of IHLSVM under 0%, 10%, 20%, 30%40%, 50% unlabelled data
in the training dataset. Mean and standard deviation are reported in Table 4
and Fig. 1 illustrates the performance for various percentage of unlabelled data.
Figure 2 reports ablation study to discuss performance of proposed algorithm
(IHLSVM) for different values of hyperparamters i.e. kernel parameter (σ), δA,
δI , λ.

2 https://tech.zalando.comt.

https://tech.zalando.comt
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Fig. 2. Sensitivity Analysis
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Results for Multi-label Classification. We investigate the classification
performance of our proposed method along with square hinge loss version of
LapSVM and HGSVM on four multi-label datasets i.e. Birds, Cal500, Flags and
Enron discussed in Table 5. We have used the five evaluation criteria, Hamming
Loss, Average Precision, Ranking Loss, AUC and F1 Score, to compare the
performance of multi-label classification algorithms and results are discussed in
Table 6- Table 7 for performances of IHLSVM under 0%, 10%, 30, 50% unlabelled
data used while training.

5 Conclusions

This paper proposes a novel semi-supervised method called improved hypergraph
regularized semi-supervised support vector machine (IHLSVM), which explores
the multivariate manifold structure embedded in data to establish a classifier. It
considers weighted combination of graph Laplacian and Hypergraph to handle a
scenario where it is difficult to identify individually which representation works
well for the given data. To speed up the training procedure of the proposed
algorithm, Square Hinge loss function is deployed and Preconditioned Conju-
gate Gradient method is used for solving the optimization problem. Results
on binary, multi-category and multi-label datasets proves the efficacy of pro-
posed algorithm. We have also shown its application on MNIST Fashion dataset.
Ablation study supports the robustness of the proposed algorithm. Future line of
work could be explore the possibility of establishing the relationship for multi-
label datasets where along with feature, label space also exhibit higher order
relationship.
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Abstract. Weakly supervised object detection methods have achieved
great success in natural scenes. However, they confront challenges such
as small and weak appearances when detecting surface defects in indus-
trial scenes. To address this problem, we propose a global-local Con-
text Mutual Evolution Network (CMENet) for weakly supervised surface
defect detection. CMENet is a dual-branch network consisting of a CNN
branch and a Transformer branch, in which a context mutual evolution
(CME) module is introduced in multiple blocks to enhance the feature
representation ability of the network through the global and local infor-
mation interaction. The CME module helps the network focus on defec-
tive areas and suppress background interference via a Feature Cluster
Attention (FCA) module. The FCA adaptively selects some meaningful
tokens as keys and values by a learnable clustering module to calculate
attention. Extensive experiments on the DAGM 2007, KolektorSDD2,
and Magnetic Tile defect datasets demonstrate that our method achieves
promising performance compared with other state-of-the-art methods.

Keywords: Surface defect detection · weakly supervised detection ·
Context mutual evolution · feature cluster attention

1 Introduction

Surface defect detection is pivotal in industrial manufacturing and production
processes. The majority of defect detection methods [29,32] based on deep learn-
ing rely heavily on abundant pixel-level annotations for model training. How-
ever, obtaining sufficient pixel-level labels consumes a significant amount of time
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and resources. In recent years, weakly supervised detection methods [9,12,27]
have developed rapidly, which only use image-level classification labels to train
a model and obtain segmentation results by the Class Activation Maps (CAMs)
[39] method. However, existing weakly supervised detection methods mainly tar-
get natural scene images, exhibiting constraints in complex defect imagery. It
is difficult for these methods to activate complete defect areas. Defects such as
scratches in industrial products often resemble background texture, making it
difficult for models to locate the area of the defect. Furthermore, the scale of
defective areas in industrial products is significantly lower than that of objective
in natural scenes. Figure 1 illustration demonstrates common challenges in sur-
face defect detection, including scale variations, low contrast, and background
interference.

To address the above problems, we propose a global-local Context Mutual
Evolution Network(CMENet) for weakly supervised surface defect detection.
CMENet adopts a dual-branch architecture consisting of the transformer branch
and CNN branch, which are used to learn global features and local features,
respectively. Global information is beneficial for activating complete defect
objects, while local information is necessary for activating some defect details. To
take full use of global and local features, the Context Mutual Evolution (CME)
module is designed to suppress background noise and retain defect details. The
CME module enhances the feature representation through the attention map
that is generated by aggregating global and local features. In addition, the Fea-
ture Cluster Attention (FCA) module is introduced in the CME to strengthen
the representation of global and local features. The FCA adaptively selects some
meaningful tokens as keys and values by a learnable clustering module to calcu-
late attention.

（a） （b） （c） （d）

Fig. 1. Surface defect detection presents numerous challenges, including scale varia-
tions, low contrast, and background noise. (a) and (b) represent scale-varying defects.
(c) and (d) represent low-contrast defects. (b) and (d) represent background noise.
Defects and background noise are marked with red and yellow rectangles respectively,
highlighting their location in the image. (Color figure online)

The main contributions of this paper are as follows:

1. We propose a global-local Context Mutual Evolution Network (CMENet) for
weakly supervised surface defect detection, which learns both global and local
features to activate complete defect objects and details.
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2. A Context Mutual Evolution (CME) module is proposed to encourage co-
evolution of global and local features. In the CME module, the FCA module
is proposed to strengthen the representation further by adaptively selecting
meaningful tokens for attention calculation.

3. The experiments demonstrate that the proposed weakly supervised defect
detection method achieves state-of-the-art performance on three publicly
available surface defect datasets (DAGM 2007, KolektorSDD2, and Magnetic
tile).

2 Related Works

2.1 Surface Defect Detection

In recent years, the application of deep learning methods has surged in sur-
face defect detection due to advancements in deep learning technology. These
methods aim to accurately locate defects, such as object detection [24,37,38]
and semantic segmentation [2,10,36]. For example, Cui et al. [6] introduced
SDDNet, which propagated intricate details from lower to higher-level feature
maps, augmenting small defect forecasting. Li et al. [18] utilized the encoder
structure of U-Net to capture multi-scale features, promoting the development
of end-to-end defect detection technology for smartphone light guide plates. Lu
et al. [20] introduced a Transformer encoder-decoder architecture for end-to-end
surface defect detection. Jiang et al. [17] introduced a feature fusion network
guided by joint attention to address challenges such as substantial variations in
defect scale, intricate backgrounds, and low contrast. However, it’s important
to note that each of these approaches necessitates costly annotations, whether
bounding boxes or pixels.

2.2 Weakly Supervised Semantic Segmentation

The popularity of weakly supervised semantic segmentation is rising in academic
and industrial settings. These approaches [21,22] enable pixel-level segmentation
solely based on image-level labels. Current weakly supervised methods are usu-
ally based on CNN models, which are mainly inspired by the CAMs algorithm
proposed by Zhou et al. [40]. Some research focuses on improving the genera-
tion process of CAMs to improve the accuracy of localization and segmentation
tasks [16,28]. However, affected by the fixed receptive field in CNN, CAMs often
only focus on the most discriminative object areas. Much research has been
devoted to improving this. Qin et al. [27] introduced a new scheme for activa-
tion modulation and recalibration. This approach employed the spotlight branch
and the compensation branch to generate weighted CAMs, thereby activating
more complete CAMs. Chen et al. [4] introduced a method for locating seeds
with structural awareness, enhancing seed region robustness, and developing a
prototype model for background awareness to extract hierarchical features. How-
ever, they still cannot solve the problem of CNN having difficulty in capturing
long-range features between pixels.
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The Transformer [30] captures long-distance dependencies of sequences
through a self-attention mechanism, which performs well in language sequences
processing. However, as deep learning technology developed, researchers began
to realize that the potential of the Transformer architecture was not limited to
the language domain. Therefore, Vision Transformer (ViT) [8] was proposed,
aiming to extend the powerful capabilities of Transformer to computer vision
tasks. Recently, some researchers have migrated the Vit architecture to the field
of weakly supervised semantic segmentation. Gao et al. [11] proposed TS-CAM,
which fully utilizes the self-attention mechanism of Vision Transformer to extract
long-distance dependencies and redistribute the semantic associations of patch
labels so that each patch label can identify object categories based on relevant
information. Xu et al. [34] proposed the MCTformer, which introduces a multi-
class label Transformer to learn the interaction between class labels and patch
labels by using multi-class labels. Zhu et al. [41] proposed WeakTr, which aims to
generate class activation maps (CAMs) by adaptively estimating the importance
of attention heads. However, these methods have shown excellent performance
on natural images, and their performance is limited in industrial defect scenes.

2.3 Weakly Supervised Surface Defect Detection

Given the challenge of acquiring pixel-level annotations and the high cost asso-
ciated with labeling surface defects in detection tasks, researchers have explored
weakly supervised learning approaches to address this issue. Wu et al. [33] intro-
duced a Siamese network to harmonize image-level and pixel-level supervision,
and proposed three loss functions to enhance model accuracy in defect detection.
He et al. [13] proposed an encoder to extract features and integrate two decoders
to handle interconnected tasks. The primary task aimed to repair defects on tex-
tured surfaces, with the secondary task being the identification of the region of
interest. Qi et al. [25] proposed two parallel learning modules and a differentiable
level set module to achieve accurate defect detection through the interconnection
of progressive learning strategies promoted by innovative loss functions. These
methods are all based on CNNs, and the detection accuracy is not high due to
the lack of global information.

3 Method

3.1 Overview Architecture

As shown in Fig. 2, the CMENet is a dual-branch architecture, consisting of a
CNN branch and a Transformer branch. For the CNN branch, we adopt ResNet-
50 as the backbone, which is divided into four blocks. The output features of
CNN are denoted as {Fi}4i=1, with resolutions of 1/2i+1 corresponding to the
input image. For the Transformer branch, DeiT-S is adopted as the backbone and
is divided into four blocks. The output features of the transformer are denoted as
{Ti}4i=1. For output features Fi and Ti of the same block, they are first fed into
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the CME block to enhance feature representation. This allows the network to
effectively learn more discriminative global and local features, suppressing back-
ground noise and highlighting defect details. During the training, both branches
use the cross-entropy function as the classification loss function, denoted as Lc

cls

and Lt
cls, respectively.

For the transformer branch, attention maps from all transformer blocks are
aggregated together to generate the final attention map. The attention map
contains class-to-patch attention map Ac2p and patch-to-patch attention map
Ap2p. In our paper, Ap2p is combined with Ac2p to generate Class Activation
Maps (CAMs) of transformer features MT. The CAMs from the CNN branch
are denoted as MC. Finally, the MC and MT are fused to generate the final object
localization map.
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Fig. 2. The pipeline of proposed CMENet. CMENet includes a CNN branch, a Trans-
former branch, and Context Mutual Evolution (CME) modules. The CME module
aims to simultaneously enhance the representation ability of global and local context
features through information interaction.

3.2 Context Mutual Evolution Module

CNNs are superior at capturing local features, while transformers are excellent
at learning global features. Defects tend to show complex or weak appearance.
Therefore, it is difficult for an individual convolutional network or transformer
network to capture enough defect information. To this end, the Context Mutual
Evolution (CME) module is designed, as shown in Fig. 3, which enhances the
representation of both local and global features by mutual learning.

Specifically, the global features (denoted as Ti) from the transformer branch
are first reshaped from R

N×C to R
H×W×C , where N = H×W . The local features

(denoted as Fi) of the CNN branch and the reshaped global features are both
fed into the convolution layer to adjust to the same channel number. Then,
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Fig. 3. The illustration of the Context Mutual Evolution (CME) module.

a Feature Cluster Attention (FCA) module is introduced to enhance feature
representation. This process is expressed as follows:

F ′
i = FCA(Conv(Fi)) (1)

T ′
i = FCA(Conv(reshape(Ti))) (2)

In FCA, a cluster module is introduced to learn more expressive and mean-
ingful visual features, while greatly reducing computation. To be specific, with
input features FN,C , we use depth-wise convolution (DWConv) and point-wise
convolution (PWConv) to generate clustering features FM,C . Mathematically,
we have

FN,C
DWConv+GELU−−−−−−−−−−−→

k=7,s=1
� PWConv+GELU−−−−−−−−−−−→

k=1,s=1
UN,C , (3)

UN,C
PWConv−−−−−−→
k=1,s=1

� Softmax−−−−−→ FN,M , (4)

FM,C = LN(FT
N,M · FN,C), (5)

The original features and the clustering features are mapped into QN,C ,
KM,C , and VM,C , respectively. Then the self-attention is computed as follows:

AN,M = Softmax(
QN,C · KT

M,C√
C

), (6)

YN,C = AN,M · VM,C , (7)

where M = 100 in the experiment. Compared with the traditional self-attention
module, FCA has lower computation complexity.

Concatenating the enhanced features F ′
i and S′

i along the channel dimension,
they are then fed into a convolutional layer and a sigmoid function to generate
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the attention mapA ∈ R
H×W×2C . A is split into A1 and A2 ∈ R

H×W×C along
the channel dimension. A1 and A2 are used to weight CNN features F ′

i and
transformer features T ′

i , respectively. The weighted F ′
i is fed into the convolution

layers to generate the final output feature. The weighted T ′
i is reshaped and fed

into the Multi-Layer Perception (MLP) layers and generates the final output
feature after the reshape operation. Mathematically, we have

A = Sigmoid((Conv([F ′
i , T

′
i ]))) (8)

F o
i = Convs(F ′

i ⊗ A1) + F ′
i (9)

T ′
i = Reshape(T ′

i ) (10)

T o
i = MLPs(T ′

i ⊗ A2) + T ′
i (11)

where ⊗ represents element-wise multiplication operation

4 Experiments

4.1 Datasets

To validate the effectiveness of our defect detection method, the experiments are
conducted on three publicly available defect datasets: the dataset DAGM 2007
dataset [15], the KolektorSDD2 dataset [3], and the Magnetic Tile dataset [14].
The detailed information of three datasets is shown in Table 1. The datasets
consist of original images with pixel-level annotations. During the training, only
image-level labels are used, while pixel-level labels are only used exclusively to
evaluate test performance metrics.

4.2 Implementation Details

The network is implemented in PyTorch and runs on RTX 3090 GPU. The
parameters of the CNN and Transformer branch are initialized by the pre-trained
weights of ResNet50 and DeiT-S on ImageNet [7]. The network is trained on
three datasets using the AdamW optimizer, respectively, with an initial learning
rate of 0.0005, a batch size of 8, and a total epoch of 45. During the training
process, the input image is first resized to 512×512. Then we randomly scale the
image with scaling factors such as 0.5, 1, 1.5, and 2 as the input of the network
to increase the diversity of the training samples During the test, the CAM is
binarized into final segmentation results through a threshold value.

4.3 Evaluation Metrics

In the experiment, four common quantitative evaluation metrics are adopted:
mean Intersection over Union (mIoU), Precision, Recall, and F1-measure. Higher
mIoU, Precision, Recall, and F1 values mean better model performance.
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Table 1. Detailed information of the public dataset. Pos and Neg denote positive
(defective) and negative samples, respectively. Resolution indicates the size of the train-
ing image

Dataset Resolution Train Set Test Set

Pos Neg Pos Neg

DAGM 2007(1-6) 512×512 75 500 75 500

DAGM 2007(7-10) 512×512 150 1000 150 1000

KSDD2 630×230 246 2085 110 894

Magnetic tile - 196 476 196 476

IoU is the ratio between the intersection and union of predicted and actual
values for a specific category. mIoU is the mean of IoU of different categories,
which is formulated as:

mIoU =
c∑

k=1

TP
FP + FN + TP

(12)

where c = 2 in the experiment.

Precision indicates the ratio of correctly predicted positive samples to all pre-
dicted positive samples, which is defined as follows:

Precision =
TP

TP + FP
(13)

Recall indicates the ratio of correctly identified positive samples to all positive
samples. It is formally represented as:

Recall =
TP

TP + FN
(14)

F1-measure represents a weighted mean of precision and recall values. It is
formulated as:

F1-measure =
2 ∗ Precision ∗ Recall
Precision + Recall

(15)

4.4 Experimental Results

To showcase the proposed method’s effectiveness, we compare it with other
state-of-the-art weakly supervised models for semantic segmentation, contain-
ing IRNet [1], AMR [26], MCTF [34], BAS [31], WeakT [41], SIPE [5] and Wave
[35].
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Results on DAGM 2007. The first three rows of Fig. 4 show varied detec-
tion outcomes from distinct methods on the DAGM 2007 dataset. Among these
methods, SIPE, IRNet, and AMR demonstrate the ability to identify defects,
but with low accuracy. In contrast, the network proposed by us achieves opti-
mal results in challenging defect datasets. Furthermore, as shown in Table 2, our
method surpasses other comparison methods and ranks the highest in terms of
performance. For instance, compared to the MCTF method, our model shows
improvements of 2.2%, 5.9%, 1.4%, and 1.4% in mIoU, precision, recall, and F1,
respectively.

Table 2. Quantitative comparisons on DAGM 2007, KSDD2, and Magnetic tile in
terms of mIoU, precision, recall, and F1. The optimal outcomes for each dataset are
emphasized in bold font.

Dataset Metrics IRNet AMR MCTF BAS WeakT SIPE Wave Ours

DAGM 2007 mIoU .676 .689 .759 .681 .683 .657 .677 .781

Pr .443 .478 .643 .441 .485 .425 .450 .702

Re .663 .673 .738 .704 .619 .646 .654 .752

F1 .521 .558 .687 .543 .544 .503 .533 .701

KSDD2 mIoU .692 .689 .721 .694 .649 .604 .708 .762

Pr .561 .572 .657 .554 .535 .501 .597 .727

Re .601 .581 .626 .621 .465 .422 .629 .676

F1 .581 .577 .646 .585 .477 .456 .613 .691

Magnetic tile mIoU .576 .596 .612 .582 .623 .551 .572 .675

Pr .341 .363 .514 .354 .502 .324 .354 .565

Re .552 .572 .605 .563 .561 .531 .531 .649

F1 .403 .416 .567 .409 .519 .514 .524 .604

Results on KSDD2. The fourth–sixth rows of Fig 4 show some detection
results from various methods on the KSDD2 dataset. The BAS, IRNet, and AMR
are interfered with by background, leading to misclassification of background as
defects. In contrast, our approach excels at resolving these challenging flaws, pro-
ducing optimal prediction results. Table 2 further demonstrates this superiority,
where our method consistently outperforms other methods. For instance, com-
pared to the MCTF method, our model exhibits enhancements of 4.1%, 7.0%,
5.0%, and 4.5% in mIoU, Precision, Recall, and F1, respectively.

Results on Magnetic Tile. The seventh–ninth rows of Fig. 4 show some
detection results of different methods on the Magnetic Tile dataset. The SIPE,
IRNet, BAS, and AMR methods encounter challenges in accurately locating
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OursWaveCAMAMRIRNetBASMCTFWeakTrSIPEGTImage

Fig. 4. Qualitative comparison of segmentation results with different methods on
DAGM 2007(1st–3rd rows), KSDD2(4th–6th rows), and Magnetic tile(7th–9th rows).

defects. These challenges include incomplete detection of defective areas, over-
looking subtle defects, misidentifying defective areas, and especially misclassify-
ing background areas as defects. Furthermore, as shown in Table 2, our approach
consistently achieves detection results close to the ground truth (GT) and sur-
passes comparative methods in performance metrics. For instance, compared to
the MCTF method, our model demonstrates improvements of 6.3%, 5.1%, 4.4%,
and 3.7% in mIoU, precision, recall, and F1, respectively.

4.5 Ablation Analysis

To showcase the efficacy of each constituent within the proposed network, we
conduct a series of ablation experiments about the proposed network with dif-
ferent settings on the above three defective datasets.

Ablation Study for Architecture. To validate the effectiveness of our dual-
branch network model, we conduct a series of ablation experiments using archi-
tectures with different configurations, including a single CNN branch, a single
transformer branch, without CME, and with FCU module of the Conformer [23]
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Table 3. Architecture ablation analysis on DAGM 2007, KSDD2 and Magnetic tile.

Architecture DAGM 2007 KSDD2 Magnetic tile

mIoU Pr Re F1 mIoU Pr Re F1 mIoU Pr Re F1

CNN Branch .653 .537 .468 .486 .675 .532 .601 .562 .554 .321 .530 .393

Vit Branch .688 .542 .608 .578 .682 .549 .612 .571 .583 .521 .442 .476

w/o CME .694 .524 .678 .576 .698 .576 .621 .603 .585 .412 .503 .457

w FCU .713 .642 .618 .632 .707 .542 .618 .576 .598 .541 .374 .442

Ours .781 .702 .752 .701 .762 .727 .676 .691 .675 .565 .649 .604

Table 4. Module ablation analysis on DAGM 2007, KSDD2 and Magnetic tile.

Module DAGM 2007 KSDD2 Magnetic tile

mIoU Pr Re F1 mIoU Pr Re F1 mIoU Pr Re F1

w/o FCA .725 .651 .620 .645 .719 .553 .625 .584 .623 .437 .561 .515

w SA .768 .697 .675 .692 .751 .606 .672 .628 .663 .482 .588 .586

w CA .765 .687 .672 .682 .748 .612 .675 .636 .661 .486 .592 .591

Ours .781 .702 .752 .701 .762 .727 .676 .691 .675 .565 .649 .604

Image GT CNN 
Branch

Transformer 
Branch

w FCU Oursw/o
CME

Fig. 5. Visual comparison of segmentation results generated by different network archi-
tectures

network. The detailed experimental results are shown in Table 3, and the visual
results of the experiment are shown in Fig. 5.

Ablation Study for CME. We employ the model without the FCA module
to validate our proposed network module’s efficacy. In addition, we analyze and
compare the FCA module in CME with the Self-attention and Cross-attention
modules, called the variants of Self-attention (w SA) [30] and Cross-attention (w
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Table 5. The impact of feature fusion at different blocks of the CME module on DAGM
2007, KSDD2 and Magnetic tile.

Blocks DAGM 2007 KSDD2 Magnetic tile

1 2 3 4 mIoU Pr Re F1 mIoU Pr Re F1 mIoU Pr Re F1

� .681 .482 .617 .542 .645 .415 .536 .501 .576 .482 .507 .508

� � .708 .543 .621 .562 .701 .548 .617 .578 .589 .503 .543 .554

� � � .776 .651 .690 .645 .756 .643 .636 .687 .662 .542 .625 .558

� � � � .781 .702 .752 .701 .762 .727 .676 .691 .675 .565 .649 .604

Image GT (a) (b) (c) (d)

Fig. 6. The CAMs visualization of CME modules used in different blocks. (a)∼(d)
represents CAMs generated by the model using the CME module in blocks (1)∼(4).

CA) [19], respectively. We evaluate these variants in terms of mIoU, precision,
recall, and F1. The detailed experimental results are shown in Table 4.

Ablation Studies for Different Blocks of CME. To verify the effect of the
CME module on the feature fusion of CNN and Transformer branches in differ-
ent blocks. We use CME modules in different blocks. The detection performance
of GLCMENet varies when utilizing CME modules across different blocks, as
shown in Table 5. Introducing the CME module in the third block improves the
detection performance of the GLCMENet model the most. The detailed experi-
mental results are shown in Table 5, and the visual results of the experiment are
shown in Fig. 6.

In our experimental investigations, the local features of the CNN branch and
the global features of the Transformer branch evolve with each other using the
CME module, and then the CAMs generated by the two branches are fused,
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achieving the best performance. Particularly noteworthy is the mIoU metric,
which shows an incremental enhancement of 6.15% compared to the model with-
out the CME module.

5 Conclusion

In this article, we propose a global-local Context Mutual Evolution Network
(CMENet) for weakly supervised surface defect detection. The CMENet intro-
duces a CME module to guide the interaction of global and local features and
achieve mutual enhancement. The CME can help the network focus on more
defect details and suppress background noise. Experimental results show that
CMENet achieves the best performance in three publicly available defective
datasets compared with other methods.
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29. Tabernik, D., Šela, S., Skvarč, J., Skočaj, D.: Segmentation-based deep-learning
approach for surface-defect detection. J. Intell. Manuf. 31(3), 759–776 (2020)

30. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, �Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017

31. Pingyu Wu, Wei Zhai, and Yang Cao. Background activation suppression for
weakly supervised object localization. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 14228–14237, 2022

32. Xiaojun, W., Qiu, L.T., Xiaodong, G., Long, Z.: Deep learning-based generic auto-
matic surface defect inspection (asdi) with pixelwise segmentation. IEEE Trans.
Instrum. Meas. 70, 1–10 (2020)

33. Xiaojun, W., Wang, T., Li, Y., Li, P., Liu, Y.: A cam-based weakly supervised
method for surface defect inspection. IEEE Trans. Instrum. Meas. 71, 1–10 (2022)

34. Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid Boussaid, and Dan Xu.
Multi-class token transformer for weakly supervised semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 4310–4319, 2022

35. Rongtao, X., Wang, C., Shibiao, X., Meng, W., Zhang, X.: Wave-like class activa-
tion map with representation fusion for weakly-supervised semantic segmentation.
IEEE Trans. Multimedia 26, 581–592 (2024)

36. Yang, L., Fan, J., Huo, B., Li, E., Liu, Y.: A nondestructive automatic defect
detection method with pixelwise segmentation. Knowl.-Based Syst. 242, 108338
(2022)

37. Yeung, C.-C., Lam, K.-M.: Efficient fused-attention model for steel surface defect
detection. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)

38. Dehua Zhang, Xinyuan Hao, Dechen Wang, Chunbin Qin, Bo Zhao, Linlin Liang,
and Wei Liu. An efficient lightweight convolutional neural network for industrial
surface defect detection. Artificial Intelligence Review, pages 1–27, 2023

39. Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016

40. Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2921–2929, 2016

41. Lianghui Zhu, Yingyue Li, Jieming Fang, Yan Liu, Hao Xin, Wenyu Liu, and
Xinggang Wang. Weaktr: Exploring plain vision transformer for weakly-supervised
semantic segmentation. arXiv preprint arXiv:2304.01184, 2023

http://arxiv.org/abs/2304.01184


Binary-Tree Based Mean-Averaging
Estimation for Multi-label Classification

Reshma Rastogi(B) and Sayanta Chowdhury

Machine Learning and Statistical Inference (MLSI) Lab, Department of Computer
Science, South Asian University, Delhi, India

reshma.khemchandani@sau.ac.in, sayanta@students.sau.ac.in

Abstract. Multi-label classification(MLC) is a machine learning prob-
lem where each instance may belong to more than one class at the same
time. Due to overlapping classes and label-label correlation, solving MLC
is very challenging. Further, class imbalance and computational time-
complexity are also considered to be major issues. In this paper,
we have proposed a novel multi-label classifier that addressed the
aforementioned issues; termed as Binary-Tree based Mean-Averaging
estimation for Multi-label classification (BT-MA (Code is available at:
https://github.com/ml-lab-sau/BT-MA).). This proposed classifier takes
distinct label-sets meta-feature into account for recovering data imbal-
ance and employs the Divide-and-conquer strategy for resolving time-
complexity issue. The experimental results on several benchmark data sets
show that our proposed approachBT-MA is as competitive as other Multi-
label classification approaches.

Keywords: Multi-label classification · Multi-label learning ·
Label-Subset · Divide-and-conquer algorithm · Meta-feature

1 Introduction

Multi-label classification has emerged as a prominent subject of study within the
fields of data mining and machine learning over the past two decades. Multi-label
Classification (MLC) is a methodology where each instance is associated with
one or multiple class labels at a time. The Multi-label classification approach
has found applications in various healthcare sectors, including protein function
classification and bio-informatics [2,7,8]. Recently, due to the advancement of
generative AI field, researchers in the MLC area also concentrated on multi-label
text categorization. [1,2] Presently, a dedicated research team from MBZUAI
is actively engaged in the development of a Lib-Multi label library, which is
especially for multi-label text categorization [3]. MLC techniques have also been
applied to a wide range of issues, including image classification [4], video annota-
tion [9], tag suggestion [5,6], sentiment assessment, information retrieval [10,11],
and automated labeling for multimedia content [9].

As observed, multi-label classification has various existing baseline approaches
and classifiers. However, the ambiguous nature of multi-label data leads us to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15310, pp. 271–285, 2025.
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numerous complexities. Dealing with this kind of data requires careful transfor-
mation of the complex decision surfaces into more simpler so that the ambiguous
problem will explainable to the classical ML approach.

Figure: 1 provides an illustration of overlapping class boundaries within the
multi-label data.

Fig. 1. Multi-label Class Boundaries

The motivation behind designing our proposed BT-MA algorithm is to intro-
duce a time efficient multi-label model with simpler transformation method
which can learn the complex decision surface in more easier steps and will also
give faster prediction even with large scale scenario.

The multi-label data can be characterized through the exploration of various
meta-features. Among these, Label Cardinality, Label Density and Distinct label-
sets are notable examples [12].

Label Cardinality: It is the average number of labels present in per sample [17,
18]. So, Card(D) = 1

|D|
∑|D|

i=1 |li|.
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Label Density: It is represents the average number of labels of the examples
exists in D divided by |L| [18,20]. So, Dens(D) = 1

|D|
∑|D|

i=1
|li|
|L| .

Distinct Label-sets: It is the number of different label combinations presents
in datasets. The combinations can be represented as a binary vector where ith
position represents as 1 or 0 whether the label present or not [19].

The main contribution in these papers is as follows:

1. We try to incorporate label-based problem transformation techniques through
the help of Distinct Label-sets meta-feature, which helps us to transform our
multi-label problem into many small and explainable multi-class problems

2. We have used the Mean Average classifier to make it a time-efficient Model
for Multi-label classification

2 Related Works

Many standard methodologies for multi-label classification have been introduced.
Typically, those are categorized into three fundamental types: i. Transformation-
based, ii. Algorithm Adaptation, and iii. Ensemble Technique.

2.1 Transformation-Based Classifiers

In this approach, the objective is to convert multi-label data into binary or multi-
class data to make it compatible with traditional machine learning techniques
such as Naive Bayesian classifier, Logistic Regression, Support Vector Machines,
etc. This method transforms our complex label overlapping issues into a binary,
or multi-class problem. Some widely known algorithms of this approach are:
Binary Relevance [13]: This converts the multi-label problems into L numbers of
binary classification problems through one vs. all strategy. It’s final predication
output is the union of their prediction. One of it’s limitation is it doesn’t consider
the label similarity. It’s basically a brute-force concept to solve MLC problems.
Label Power-set: [20]: In this algorithm it converts the multi class problem into
single multi-class problem by considering each different label combination as a
unique class.
Random k-Label sets [14]: This algorithm randomly breaks a large set of labels
into n number of small subset of size k which is called k-label-sets.
Calibrated Label Ranking (CLR) [22]: This model tackles multi-label classifica-
tion problem by introducing an artificial label to separate relevant labels from
irrelevant ones for each data point. This innovation allows existing pairwise learn-
ing techniques, effective for single-label problems, to be applied in the more
complex multi-label setting. CLR’s strength lies in leveraging these techniques
within a multi-label ranking framework.
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2.2 Algorithm Adaptation-Based Classifiers

In this approach, the objective is to select a particular learning algorithm and
extend its capabilities to handle multi-label data. This extended capability of
the learning algorithm might be simple or complicated. However, it primarily
depends on the initial formulation of the model and structure of the multi-labels.
Many adaptive classifiers utilize well-known machine learning techniques such as
Decision trees, Neural networks, and SVM. Some widely recognized algorithms
of this approach are:
BP-MLL [2]: It is extension of Back Propagation Neural Network to deal with
Multi Label Data. It was defined a novel global error function capturing the
characteristics of Multi Label Learning which helps model ranking the most
relevant label.
ML-KNN [15]: It is a extension of popular kNN algorithm to deal with Multi-
label Data. In this approach based on the statistical information derived from
the neighboring examples, the MAP principle utilized to determine the label set
of an unseen example.
Rank-SVM [16]: It is a maximum margin approach for multi-label learning. It
implemented with the help of kernel trick to incorporate non-linearity.
MLTSVM [23]: Chen et al. (2016) introduce the Twin Multi-Label Support
Vector Machine (MLTSVM) algorithm, which designed to address the challenge
of multi-label classification. MLTSVM leverages the concept of Twin Support
Vector Machines (TSVM) [24]. In the binary classification case, TSVM aims to
identify two non-parallel hyperplanes, one maximizing the margin for each class
while simultaneously minimizing the margin between the classes. Building upon
this principle, MLTSVM extends the concept to the multi-label setting.

2.3 Ensemble Technique

In this approach, the objective is to design a particular learning algorithm to
handle the special issues of multi-label data, for example: missing label issue,
high-dimensionality issue etc. These algorithms may have combination of prob-
lem transformation and algorithm adaption approach. Some of the prominent
algorithms of this type include:
LCIFS [25]: Fan et al. proposed a novel method named Learning Correlation
Information for Multi-Label Feature Selection (LCIFS), to address high dimen-
sionality issue of Multi-label Data. LCIFS tackles this challenge by concurrently
uncovering label correlations and controlling feature redundancy within the data.
This joint approach represents a significant advancement in multi-label feature
selection, aiming to improve the overall effectiveness of the process.
LRMML [26]: Kumar et al. introduce a matrix factorization method for multi-
label learning. It leverages a low-rank label assumption to decompose weak-label
information. This captures local and global label correlations, while an auxiliary
label matrix aids in recovering missing labels.
MLBOTE [27]: Building on the concept of borderline oversampling, Teng et
al. propose the Multi-Label Borderline Oversampling Technique (MLBOTE)
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specifically for addressing class imbalance in multi-label learning tasks.
MLBOTE differentiates between various types of informative data points near
class borders. It identifies three categories of seed samples: interior, self-
borderline, and cross-borderline. Subsequently, the technique employs distinct
oversampling mechanisms tailored to effectively handle each category, enhanc-
ing the overall effectiveness of the approach.

3 Proposed Model

Let D = {(xk, yk)}Pk=1 denotes the multi-label data-set with P samples where
xk is the kth data instance and yk = {0, 1}l is the associated label-vector with
l labels. 1 and 0 indicate the presence or absence of a label respectively for the
data instances. Further, the number of 1’s in label vector defines the no. of label
subset present in a label vector. Using the notation defined, we will discuss the
proposed method in following paragraphs.

3.1 Core Methodology

The proposed approach follows a divide-and-conquer strategy based on no. of
Distinct Label Subset to solve the multi-label classification problem. The method
progressively builds a set of hyperplane for classification and estimating Mean
Average of Feature for label assignment process based on label-subset present in
each label-vectors.

It successively groups the instances with similar label-subset and then iden-
tifies the appropriate label-vector for a data instance by using Mean-Average
estimation of Feature. Here, Mean-Average estimation refer as, it captures the
mean of the Feature value of the training samples along associated labels which
it belong to. Later the stored value will used for calculating minimum distance
of the testing samples features for making the final label prediction.

The solution approach to build the classifier hyperplane can be viewed as a
Binary tree based approach where we successively split the instances and build
hyperplane based on label subset. Following paragraph discuss it in detail.

Let Pi represents the number of samples a label subset group ≥ i where
i ∈ {1,m}. m is chosen empirically such that m ≤ l and l is the total number of
classes. For applying the divide-and-conquer approach, we split the Pi samples
into two parts: Li, the set of samples with label subset > i and Ri, the set of
samples with label subset equal(=) to i.

For Ri samples with label subset i, we consider the problem as a multi-class
problem where each potential label vector with no. of subset i is consider a
pseudo class. To solve the multi-class problem, we employ the Mean Averaging
Estimation to identify a classifier hyperplane for each pseudo-label representing
a label vector (with i subset). Note the Ri samples drives us towards build-
ing classifier hyperplane for ith subset. At this point, we also build a classifier
hyperplane to separate the left and right node-clusters. This decision boundary
is useful when we choose tree path for previously unseen data instances.
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Fig. 2. Flow diagram for the training phase

Since Li represent the samples with label subset > i, we can view these
instances as Pi+1 i.e. the training sample with label subset ≥ (i + 1) and apply
the approach discussed earlier. It is easy to see that proposed method follows
a recursive approach to build appropriate classifier hyperplane successively at
each iteration.

Most of the data instances in a multi-label datasets with l possible classes,
only have a small fraction of total labels L assigned. Frequently, even the maxi-
mum label subset in a multi-label dateset is Lm << l. We use this observation,
to control the tree-depth for recursion by choosing i ≤ Lm/2. So, basically we
are stopping recursion on half-depth of the tree.

Figure 2 summaries the above discussed divide-and-conquer approach for
multi-label learning. The algorithm for building the label-vector specific classifier
hyperplane using divide-and-conquer approach is presented in Algorithm 1.
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Fig. 3. An illustration of training steps when Lm = 4

To further illustrate the proposed method, Fig. 3 shows and example with
Lm = 4. It also illustrates the split and processing of intermediate and leaf
nodes.

In testing phase the datasets passes through the set of trained hyperplane.
Then it will enter in the best recommended type of label set combination which is
also consider as leaf nodes in our algorithm. For making the final label prediction
our model will check the euclidean distance between testing sample feature and
the trained label-set’s feature. Then specific label-set combination with minimum
distance will assign it’s label to the testing sample. This label will consider as
best recommended label for the testing sample according to our algorithm. To
further illustrate the testing steps, Fig. 4 shows an example with four testing
samples.
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Algorithm 1. Training steps for Binary Tree based Mean-averaging
Model
Input: The training data D
Output: Classifier Hyperplane and Mean Average estimation for differ-
ent label-vector sets
Initialization: Iterator i = 1,
svmModel(i) = [ ], R(i,j) = [ ],
Max Number of Label Subset, Lm = Max(L)
1: Make cluster of all the training instances based on it’s label sub-

set;
2: repeat
3: Split the samples into Left (Li) and Right Node (Ri) cluster;
4: Left cluster contains instances with label subset > i;
5: Right cluster contains instances with the label subset = i;
6: Build a classifier hyperplane between Left(Li) and Right(Ri)

Node-clusters using SVM Model;
7: Store the model into svmModel(i);
8: Take a Mean Average of features for the right cluster to pick the

label vector from one of many same label subset;
9: Store the Mean Average to the container R(i,j);

10: i = i + 1;
11: until i ≤ (Lm/2)
12: RETURN svmModel(i), R(i,j);

4 Experimental Results

In our experiment, we have performed 5-fold cross-validation on six well-known
multi label datasets. Also, we have compared our proposed model with three
baseline models BR-SVM, ML-KNN and LSML for the performance evaluation
measure. MATLAB R2021a has been used for experiments on a Windows 11 OS
with Intel Core i7-8700 CPU @3.20GHz processor and 16 GB RAM.

4.1 Data-Sets Description

The effectiveness of our algorithm we have validate on the six benchmark multi-
label data-sets. Those are: Yahoo-Arts1, Bookmarks2, Yahoo-Science3, Bibtex4,
GnegativeGO5 and PlantGO6. Details tabular description of data-sets are given
Table 1.
1 Yahoo-Arts Dataset.
2 Bookmarks Dataset.
3 Yahoo-Science Dataset.
4 Bibtex Dataset.
5 GnegativeGO Dataset.
6 PlantGO Dataset.

https://cometa.ujaen.es/datasets/yahoo_arts
https://cometa.ujaen.es/datasets/bookmarks
http://semantichub.ijs.si/MLCdatasets/dataset/
http://semantichub.ijs.si/MLCdatasets/dataset/
http://semantichub.ijs.si/MLCdatasets/dataset/
http://semantichub.ijs.si/MLCdatasets/dataset/
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Fig. 4. An illustration of the testing phase considering four example sample set

4.2 Compared Algorithms

BR-SVM7: Boutell, Matthew R., et al. [4] proposed a simple way to deal with
a multi-label classification tasks by converting the multi-label problem into mul-
tiple binary classifications problems where each using a linear Support Vector
Machine as a base classifier. This approach trains each class individually, ignor-
ing any label dependencies.

ML-KNN8: Zhang, M.L., et al. [15] proposed an algorithm adaptation app-
roach of the original kNN algorithm designed for multi-label learning. This algo-
rithm works based on the traditional KNN algorithm. It also introduces max-

7 BR-SVM model’s code from MLC Toolbox.
8 ML-KNN model’s code from PALM Lab.

https://github.com/KKimura360/MLC_toolbox/tree/master/function/MLCbase/BR
https://palm.seu.edu.cn/zhangml/files/ML-kNN.rar
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Table 1. Summary of Multi-label data-sets

Dataset Domain Instances Feature labels

Arts text 4498 23146 26
Bookmarks text 52776 2150 208
Science text 3865 37187 40
Bibtex text 4495 1836 159
GnegativeGObiology 933 1717 8
PlantGO biology 656 3091 12

imum posterior probability (MAP) for dealing with multi-label classification
problems.

LSML9: Huang, Jun, et al. [21] proposed a new approach for multi-label clas-
sification with missing labels for learning the Label-Specific features. It creates
a supplementary label matrix by capturing high-order label correlations from
the incomplete label matrix. Then, it learns label-specific data representation
for each class label and develops a model by integrating the learned high-order
label correlations.

4.3 Evaluation Metrics

We have evaluated the performance of the compared algorithms based on
six standard metrics, reported in Table 2 to 7. Given a test data set Td =
{xk, Yk}Nd

k=1, where Yk ∈ Y is the set of ground truth labels, and h(xk) is the
set of predicted labels for the kth instance. Let f(xk, y) indicates the confidence
score of a point xk belonging to the label y.

1. Execution Time: It reports the total amount of time taken by the algorithm.
It reports the unit of time in seconds.

Table 2. Performance analysis of GnegativeGO Data-set

Evaluation Metrics

Algorithms
↓ CPU

Time(Sec)
↑ ExactM ↓ HamL ↑ MacroF1 ↑ MicroF1 ↑ AvePre

BT-MA 0.203 0.927 0.014 0.837 0.947 0.960
BR-SVM 1.044 0.897 0.017 0.818 0.932 0.942
ML-kNN 5.935 0.894 0.019 0.782 0.928 0.945
LSML 3.1321 0.915 0.013 0.956 0.949 0.978

9 LSML model’s code from Huang Jun’s Site.

https://github.com/jiunhwang/Date_and_Code/blob/master/code_and_data/LSML-Code-Public.rar
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2. Hamming Loss(HamL): It determines the number of times an instance-
label pair has been misclassified, i.e., a label associated with an instance is
not predicted or a label not associated with an instance is predicted.

HLoss =
1

Nd

Nd∑

k=1

1
l
|h(xk)ΔYk|

Where the symmetric difference between two sets is indicted by Δ, Nd indi-
cates the number of instances and l indicates the number of labels.

3. Macro F1 (MacroF1): Macro-F1 is the harmonic mean between precision
and recall, where the average is calculated per label and then averaged across
all labels. If pj and rj are the precision and recall for all λj ∈ h(xi) from
λj ∈ yi, the macro-F1 is

MacroF1 =
1
Q

Q∑

j=1

2 × pj × rj
pj + rj

4. Micro F1 (MicroF1): It is a more advanced version of the F1 Measure that
treats each label vector entry as a single example.

MicroF1 =
2
∑l

q=1

∑Nd

k=1 ykqh(xkq)
∑l

q=1

∑Nd

k=1 ykq +
∑l

q=1

∑Nd

k=1 h(xkq)

5. Average Precision(AvgPre): This evaluates the average fraction of posi-
tive labels that are higher than the particular labels.

AvgP =
1

Nd

Nd∑

k=1

1
|Yk|

∑

y∈Yk

|{y′|rankf(xk,y′) ≤ rankf(xk,y), y
′ ∈ Yk}|

rankf(xk,y)

Table 3. Performance analysis of Science Data-set

Evaluation Matrics

Algorithms
↓ CPU

Time(Sec)
↑ ExactM ↓ HamL ↑ MacroF1 ↑ MicroF1 ↑ AvePre

BT-MA 1.385 0.339 0.039 0.203 0.378 0.432
BR-SVM 14.832 0.132 0.032 0.076 0.234 0.227
ML-kNN 13.075 0.097 0.034 0.092 0.179 0.184
LSML 0.944 0.000 0.992 0.263 0.341 0.606
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Table 4. Performance analysis of Yahoo-Arts Data-set

Evaluation Metrics

Algorithms
↓CPU

Time(Sec)
↑ ExactM ↓ HamL ↑ MacroF1 ↑ MicroF1 ↑ AvePre

BT-MA 0.825 0.326 0.067 0.261 0.396 0.497
BR-SVM 6.816 0.17 0.054 0.117 0.285 0.363
ML-kNN 7.582 0.041 0.061 0.052 0.086 0.237
LSML 0.406 0.000 0.986 0.285 0.345 0.628

Table 5. Performance analysis of Bookmarks Dataset

Evaluation Matrics

Algorithms
↓ CPU

Time(Sec)
↑ ExactM ↓ HamL ↑ MacroF1 ↑ MicroF1 ↑ AvePre

BT-MA 7.136 0.173 0.030 0.064 0.101 0.218
BR-SVM 438.837 0.153 0.009 0.038 0.179 0.189
ML-kNN 90.775 0.157 0.009 0.041 0.186 0.194
LSML 17.1432 0.000 0.999 0.193 0.214 0.501

Table 6. Performance analysis of PlantGO Dataset

Evaluation Matrics

Algorithms
↓ CPU

Time(Sec)
↑ ExactM ↓ HamL ↑ MacroF1 ↑ MicroF1 ↑ AvePre

BT-MA 0.219 0.691 0.047 0.678 0.730 0.774
BR-SVM 2.087 0.569 0.046 0.469 0.698 0.7
ML-kNN 3.929 0.537 0.053 0.501 0.668 0.681
LSML 11.145 0.688 0.037 0.776 0.794 0.902
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Table 7. Performance analysis of Bibtex Data-set

Evaluation Matrics

Algorithms
↓ CPU

Time(Sec)
↑ ExactM ↓ HamL ↑ MacroF1 ↑ MicroF1 ↑ AvePre

BT-MA 6.909 0.137 0.029 0.167 0.224 0.275
BR-SVM 188.388 0.103 0.013 0.053 0.246 0.222
ML-kNN 66.787 0.037 0.014 0.051 0.186 0.148
LSML 11.198 0.162 0.015 0.473 0.507 0.612

5 Conclusion and Discussion

In this paper, we have proposed a Binary tree based Multi-label classifier which
works on divide and conquer strategy with mean averaging estimation. The
criteria of split the data is based on distinct label subset afterwards it calculate
mean average estimation. We have used support vector machine as a classifier at
each node. Results on seven multi-label datasets have been reported, which also
shows that of our algorithm also gives a competitive performance with respect
to the compared algorithm.

The reason of our algorithm’s competitive performance:

1. Time Optimization: We have adopt divide and conquer approach due to which
in training it requires less amount of time.

2. Intermediate Node Optimization: We have used SVM as a base classifier in
intermediate nodes which is very robust classifier. Due to which the model
gets better guidance to learn even complex samples in intermediate nodes.

3. Problem Transformation approach: Using the distinct label-set calculation
we have converted most of our training samples into binary classification and
multi-class classification problems which another reason for better learning
capability. Due to our simple transformation technique the training and test-
ing samples are more explainable to our model.

4. Leaf Node Optimization: In leaf nodes, we captures the mean value of features
in time of training Phase. In testing phase, we have just look for minimum
euclidean distance between the testing sample and mean value of features.
Then we have assigned better recommended labels to those samples based on
minimum distance.

Since we have adopted the problem transformation approach using distinct
label-set approach; for this reason in some label-set combination there may have
very less samples. Due to which the intermediate and leaf nodes may suffer.
Future Line of Works

– Our model can easily categories the simpler and more complex multi-label
problems. Using this feature it is possible to give special treatment to the
complex multi-label problems for getting more competitive performance.
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– Also, it can be extended to a label dependency based model using distinct
label-subset.
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Abstract. The prediction of equipment failures in the manufacturing
industry, through the estimation of Remaining Useful Life (RUL), is
crucial for minimizing downtime and optimizing maintenance planning.
However, developing effective RUL prediction models faces challenges,
particularly in capturing long-term dependencies in time series data. Tra-
ditional Transformer approaches, using multi-head self-attention mech-
anisms, suffer from high computational complexity and insensitivity
to local regions. To address these issues, we propose a novel app-
roach called Fusion-Attention Transformer (FAT) for RUL prediction.
Our model integrates two key components: multi-head Logsparse Self-
Attention (LSA) and multi-head Auto-correlation Self-Attention (ASA).
LSA employs a logarithmic function and a local sparse strategy, reduces
computation, and enhances local information. ASA mainly analyzes the
seasonality, which reveals periodic fluctuations in the time series. The
combined features of LSA and ASA are then fed into a feed-forward
neural network for RUL prediction. Extensive experiments on public
datasets, reveal that Feature Attention Transformer (FAT) surpasses
various state-of-the-art (SOTA) methods. The findings emphasize the
enhanced performance achieved by combining different self-attention
mechanisms compared to utilizing them individually.

Keywords: Transformers · Remaining Useful Life (RUL) · Attention
mechanism · Deep learning

1 Introduction

Prognostics and Health Management (PHM) technology is defined as the moni-
toring of the deterioration of an asset through detection, diagnosis, and prognos-
tics [1]. Typically, this is aimed at predicting the Remaining Useful Life (RUL)
using historical data representing the equipment and the corresponding opera-
tions conditions. The approaches of RUL are divided into four categories: physics
model-based, statistical model-based, AI-driven, and hybrid approaches [2].
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In recent years, the widespread application of Machine Learning (ML)
and Deep Learning (DL) techniques, such as convolutional neural networks
(CNNs) [5] and long-short-term memory neural networks (LSTMs) [8], has been
pivotal in addressing equipment defect prediction [3]. Notably, studies by Li et
al. [6] demonstrated the superiority of CNNs and LSTMs over traditional ML
methods for predicting defects. J. Zhang et al. [7] proposed a hybrid architecture
combining bidirectional gated recurrent and CNN to address spatial-temporal
features in predicting Remaining Useful Life (RUL). Wu et al. [9] utilized vanilla
LSTM models for RUL prediction, while Huang et al. [10] introduced bidirec-
tional long short-term memory (BiLSTM) networks capturing features from mul-
tiple raw sensors and operational conditions. However, limitations exist for both
CNN and LSTM methods: (i) CNN-based models using convolution kernel size
for processing temporal data struggle to capture long-term dependent informa-
tion [22]; (ii) LSTM-based models face challenges in building relationships with
non-adjacent data points, significantly limiting parallel computing speed dur-
ing training [15]; and (iii) Both models may encounter issues of vanishing or
exploding gradients when processing long-time sequences [11].

Transformer-based architecture models, originating from vanilla Trans-
former [12], have emerged recently as a powerful solution to handle the above
limitations. Using the multi-head self-attention mechanism embedded into the
encoder block allows the model to learn the hidden relationship between non-
adjacent observations, while still enabling it to fully exploit parallel computa-
tion. Additionally, the model employs residual connections to handle challenges
such as gradient explosion and vanishing. Ma et al. [14] introduced a Transformer
encoder that integrates guiding features to segment modalities for improved sam-
pling. Mo et al. [13] proposed a gated convolutional unit with the Transformer
encoder as a backbone to predict RUL. Chen et al. [15] presented a denois-
ing auto-encoder as a pre-processing step before feeding it into the Transformer
encoder for RUL prediction. However, conventional transformers still have some
challenges. Firstly, the self-attention mechanism requires calculating attention
scores over all data points, which increases the computational complexity [23].
Secondly, employing a global point-wise dot-product self-attention mechanism
causes the model to be insensitive to local context information [4].

To overcome these challenges, we introduce a novel Fusion-Attention Trans-
former (FAT) architecture designed for Remaining Useful Life (RUL) predictions
of engine systems under complex operational conditions. Our contributions to
this paper are summarized as follows:

– We proposed a novel fusion attention-based prognostic model containing three
major components. One LSA network is utilized to automatically extract local
information features hidden in multiple sensors’ signals. Another ASA net-
work is adopted to explore long-term dependencies hidden in the operational
condition signals. These combined features are fed into a stack of more dense
layers and a single linear regression layer to obtain a final RUL.

– We evaluated the effectiveness of the proposed FAT via an aircraft turbofan
engine dataset with four datasets (FD001 - FD004). The proposed method



288 T. H. Vu et al.

showcases superior performance over existing Sequence-to-Sequence models
and different Transformer-based architectures in multiple operational condi-
tions and fault modes. Furthermore, the integrated model surpasses the indi-
vidual self-attention components (LSA and ASA) in achieving better results.

The rest of the paper is organized as follows. Section 2 introduces a Multi-
head self-attention mechanism and Transformer encoder. Section 3 shows the
problem statement and our proposed method. Section 4 discusses experiments
and results. Section 5 concludes the paper.

2 Related Work

A brief description of the main component of the vanilla Transformer [12] archi-
tecture, including the multi-head attention mechanism and encoder blocks, is
presented here.

2.1 Multi-head Self-attention Mechanism

In the single-head attention module, it is assumed that the input vectors X ∈
R

L×dmodel are linearly transformed into three main components: queries matrices
Q ∈ R

L×dQ , keys matrices K ∈ R
L×dK , and values matrices V ∈ R

L×dV where L
is the sequence length, dmodel, dQ, dK , dV are the dimensions of inputs, queries,
keys, and values matrices, respectively, as presented in Eq. 1:

Q = XWQ,K = XWK , V = XWV (1)

where WQ ∈ R
dmodel×dQ , WK ∈ R

dmodel×dK , WV ∈ R
dmodel×dV are trainable

weight matrices. Then, three matrices are used to apply scaled dot-product atten-
tion to measure the correlation between data points in the sequence input, as
shown in Eq. 2:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

where T denotes the transpose operator, the scale factor
√

dk is identical to
counteract excessively large dot products.

It is also worth noting that a single attention head faces challenges in learning
different representations of sub-spaces. Using multi-head attention (h heads)
allows the model to learn diverse representations of information (Eq. 3).

MSA(Q,K, V ) = Concat(head1, . . . , headh)WO

where headi = Attention(Qi,Ki, Vi)
(3)

where the i-th denotes the attention head, and WO are learnable weight matrices.
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2.2 Transformer Encoder

Encoder blocks are a key component of the Transformer architecture. The
encoder in the Transformer architecture typically includes a stack of multiple
encoder layers, each of which contains two main sub-blocks: MSA block and
feed-forward block. The input vector, integrated with position encoding infor-
mation, is directed into the MSA block. Subsequently, the output of the MSA
block is combined with a residual connection and serves as the input to the layer
normalization [16], shown as follows:

OMSA = LayerNorm(X + MSA(X)) (4)

where OMSA is the output of the MSA block and a residual connection. The
output OFFN of the feed-forward block can be calculated after OMSA passes
through a fully connected feed-forward network. This network includes two lin-
ear transformations with an intervening rectified linear unit (ReLU) activation
between them, represented as follows:

OFFN (OMSA) = max(0, OMSAW1 + b1)W2 + b2 (5)

where W1, b1, W2, and b2 denote the learnable parameters between the linear
mappings and biases, respectively. It should be emphasized that the RUL pre-
diction studied in this paper is distinct from the challenges of Natural Language
Processing (NLP) and Computer Vision (CV). This study mainly focuses on the
Encoder block in the Transformer architecture.

3 Methodology

3.1 Problem Statement

In this study, we define the RUL prediction problem. The input features are
denoted by X = {x1, x2, . . . , xn}, where xi ∈ R

d represents the d-dimensional
sensor data collected at i-th time step. Correspondingly, the actual values for the
system are denoted by Y = {y1, y2, . . . , yn} where yi represents the RUL at the i-
th time step. This paper aims to establish the best mapping relationship between
collected sensor data (input data) and the RUL ground truth, as demonstrated
in Eq. 6.

Yi = f(Xi) (6)

where f is the mapping function acquired through the training process. To tackle
this task, we introduce a novel fusion-attention transformer described in detail
in the subsequent sections.

3.2 Overall Architecture of the Proposed Model

The overall architecture of the proposed FAT is demonstrated in Fig. 1. In this
section, we intuitively discuss this framework and its model structure.
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Regarding the training process, the constant values that do not significantly
contribute to the performance of the model are removed. On this basis, we con-
struct the processed time window data and corresponding RUL as input for
the model. The fusion-attention block contains two important components: the
multi-head Logsparse Self-Attention (LSA) mechanism and the multi-head Auto-
correlation Self-Attention (ASA) mechanism. Inside the LSA block is a combi-
nation of logarithm and local window strategies, allowing the model to exploit
local information [4]. Furthermore, using this mechanism also helps the model to
reduce the computational burden, breaking the information bottleneck. The ASA
block employs a series-decomposition strategy and auto-correlation mechanism,
allowing the model to analyze the time series into seasonal components [21].
Consequently, this approach can minimize the impact of local noise and mine
more global information. The information extracted by two components is then
integrated, and feed-forward layers are employed to map the fusion features to
RUL ground truth.
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Fig. 1. The framework of the proposed FAT.



FAT: Fusion-Attention Transformer for Remaining Useful Life Prediction 291

3.3 Multi-head LogSparse Self-attention Mechanism

The LSA is designed to deal with long sequences. It introduces a logarithm-
based sparse strategy to determine which elements in the attention matrices are
relevant for computation, thereby enhancing computational efficiency.

Fig. 2. (a) Self Attention Mechanism (b) Log Sparse Attention Mechanism.

Considering the MSA mechanism in a conventional Transformer, from the kth

layer to the (k+1)th layer, it can be assumed that each index cell at the (k+1)th

layer will undergo self-attention calculation with all the cells in the kth layer. We
consider the index set in a time window length L as Ik

l = {1, 2, . . . , l, . . . , L}, as
illustrated in Fig. 2(a). Since this approach connects all cells, its computational
complexity is quadratic in the time window length L. To overcome this challenge,
we implemented a logarithmic strategy, which selects indexes in window length
L based on logarithmic criteria [17]. This strategy obtains a new set of index
I ′k

l = {l−2�log2 L�, l−2�log2 L�−1, . . . , l−20, l, l+20, . . . , l+2�log2 L�−1, l+2�log2 L�},
where �.� floor function rounds a real number down to the nearest integer. It
can be shown in Fig. 2(b).

With every cell in each layer, applying logarithmic function results in
O(log L) complexity in the time window length L. Moreover, the author stacks
up O(log L) layers, and after the model can access all the cells’ information. A
detailed proof can be found at [4]. Using stacked �log2 L�+1 layers can obtain a
comprehensive memory of O(L(log2 L)2) and effectively addresses the bottleneck
issue of the conventional self-attention mechanism. Furthermore, for two cells j
and l that are far apart (j < l), the number of paths between these two cells can
increase exponentially, followed by O(log2(l − j)), which means the amount of
information flow will become richer.

Given a time window length of L, for any 1 ≤ l ≤ L, there is at least one
path from the cell index j, where j ∈ [1, L], to cell l if the module is stacked to
the �(log2 L)�. For any 1 ≤ j ≤ l, it can be demonstrated in [4] that the l-th cell
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collects information from all preceding cells, including itself. In the situation,
l ≤ j ≤ L where information is received by the cells behind l-th cell, including
itself to avoid the loss of information, in details are proven by Zhang et al. [17].

In the domain of RUL forecasting, the later observations significantly influ-
ence the prediction of failure points. Therefore, incorporating local attention,
which allows each cell to densely attend to adjacent cells, enables the extraction
of more information from recent observations. Employing local attention, in con-
junction with log sparse attention, cannot change its complexity [4]; instead, it
facilitates the extraction of additional information from the latest observations,
enhancing the accuracy of equipment failure point predictions.

3.4 Auto-correlation Self-attention Mechanism

Conventional attention mechanisms, particularly point-wise self-attention, often
counter bottleneck information and cannot directly find reliable dependencies in
intricate temporal patterns. To address this limitation, Wu et al. [21] proposed
an Auto-Correlation mechanism with series-wise connections with O(L log(L))
complexity, which captures period-based dependencies and aggregate informa-
tion at the series level. In contrast to the vanilla Time Series Transformer, where
attention weights are computed in the time domain and aggregated subsequently
point-wise, the auto-correlation mechanism with the primary component, the
Auto Correlation block, adopts a distinctive approach.

The auto-correlation self-attention mechanism in the Auto Correlation block
exploits the period-based dependencies and accumulates the information at the
series level. The mechanism is implemented as follows. The embedding input
X ∈ R

L×dmodel are transformed into query matrix Q ∈ R
L×dQ , key matrix

K ∈ R
L×dK , and value matrix V ∈ R

L×dV followed by the Eq. 1. Then, the
query matrix and the key matrix are calculated for the autocorrelation, which
can be shown as follows:

RQ,K(τ) = lim
L→∞

1
L

L∑

t=1

QtKt−τ (7)

where RQ,K(τ) denotes the time-delay similarities between the Qt and the time
delay τ of Kt. It is noted that RQ,K(τ) are calculated by Fast Fourier Transform
(FFT) to ensure efficient computation.

Once the auto-correlation scores are obtained, the subsequent step involves
selecting the top k highest auto-correlation subseries, determined by the equa-
tion:

τ1, τ2, . . . , τk = arg TopK
τ∈{1,...,L}

(RQ,K(τ)) (8)

Then, these subseries are normalized by using a softmax function, which can be
formalized as:

SQ,K(τ1), . . . , SQ,K(τk) = Softmax(RQ,K(τ1), . . . , RQ,K(τk)) (9)
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The overall equation of Auto-Correlation is calculated by rolling and the weight
aggregation of V value matrix as follows:

Auto-Correlation(Q,K, V ) =
k∑

i=1

Roll(V, τi)SQ,K(τi) (10)

where Roll(X, τ) represents the shifting operation applied to the series X with
the time delay τ .

3.5 Our Proposed FAT

FAT is constructed by effectively integrating two dual different attention compo-
nents: the LSA block and the ASA block. In the LSA block, we employ logsparse
attention combined with local attention, efficiently extracting local information.
Considering the auto-correlation mechanism in the ASA block, it is designed
based on the periodicity of the time series and discovers aggregation of depen-
dencies at the sub-series level. Furthermore, the series decomposition block sep-
arates the time series into its trend-cyclical and seasonal components. In the
ASA Encoder blocks, the encoder focuses on extracting the seasonal subseries
patterns. Then, the combined features reflect the local and global information in
the time series. The specific steps of the proposed FAT are outlined as follows:

Step I: The original input features X ∈ R
L×k undergo processing steps,

accommodating the variable number of sensors k that can alter feature dimen-
sions. A linear function is employed to ensure consistent input, converting
the data to a fixed dimension dmodel. We obtain the embedded i-th input
Xi ∈ R

L×dmodel . The positional information vectors are injected into the embed-
ded input data, establishing the sequence length’s temporal order. When added
to the existing representation, these positional information vectors create con-
text vectors. Then, a one-dimensional convolutional layer is designed to create
a scale-changing input X ′ ∈ R

L×dmodel/2 and extract high-level patterns before
passing into different attention blocks.

Step II: The objective is to integrate two distinct self-attention blocks, specif-
ically the LogSparse and Auto-Correlation encoder blocks. In the LogSparse
encoder block, we adopt a logarithmic approach to mitigate computational
complexity. The embedded data undergoes feature extraction in the LogSparse
Encoder. Utilizing the LogSparse strategy with sparse input vectors facilitates
the construction of query, key, and value matrices as in Eq. 2.

The Log Sparse comprises a Log Sparse self-attention layer, residual con-
nection, layer normalization, and a feed-forward neural network (FFN). Local
attention is combined with Log Spare attention to capture more information
from subsequent time steps. Utilizing both types of attention will create more
pathways [4] for the network to learn. Specifically, the Log-local Sparse self-
attention layer captures temporal relationships among non-adjacent data within
a time window sequence.

Step III: Considering the Auto-Correlation encoder block, the Auto-
Correlation Encoder is stacked by encoder layers. Each encoder layer contains
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two main components: Auto-Correlation block and Series Decomposition block.
In the Series Decomposition block, complex time series data is decomposed into
trend-cyclical components and seasonal components by adapting the moving
average. With the scaled input X ′, the Series Decomposition block is formalized
as:

Xt = AvgPool(Padding(X ′))
Xs = X ′ − Xt

(11)

where Xt and Xs represent the trend components and seasonal components after
the decomposition block of the l -th layer, respectively. The Padding(·) function
maintains the consistent sequence length after feeding into AvgPool(·).

In the ASA block, it is supposed that the encoder block includes N encoder
layers. The l -th encoder layer can be summarized as (X ′)l

en = Encoder((X ′)l−1
en ),

where l ∈ {1, 2, . . . , N}. The overall equations in ASA blocks are shown as
follows:

Sl,1
en , = SeriesDecomp(Auto-Correlation((X ′)l−1

en ) + (X ′)l−1
en )

Sl,2
en , = SeriesDecomp(Feed-Forward(Sl,1

en ) + Sl,1
en )

(12)

where (X ′)l
en = Sl,2

en represents the output of the l -th encoder layer and X0
en is X ′.

Sl,1
en and Sl,2

en are seasonal components after the first Series Decomposition block
and second Series Decomposition block in the l -th encoder layer, respectively.
“ ” is the removed trend component.

Step IV: The output the LSA (Olog ∈ R
L×dmodel/2) and the ASA block

(Oauto ∈ R
L×dmodel/2) are concatenated to obtain the final output of the FAT

model as follows:
OFAT = Concat(Olog, Oauto)WO (13)

where Concat(·) is a concatenation operator to combine the output of each block.
WO are learnable weight matrices of the combined output OFAT ∈ R

L×dmodel .
The combined output is passed into a simple feed-forward layer to obtain RUL
prediction. In addition, the relationship between time window length and RUL
ground truth at a certain time can suffer from prediction error. It is necessary to
design the RUL sequence. We suppose that the predictions of proposed model
obtain {ŷm, ŷm+1, . . . , ŷm+L−1}, and the corresponding actual RUL values are
{ym, ym+1, . . . , ym+L−1}. The mean squared error (MSE) loss function of FAT
on a window length L is defined as:

Loss =
1
L

m+L−1∑

j=m

(yj − ŷj)2 (14)
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Table 1. Description of C-MAPSS turbofan engine datasets.

Dataset C-MAPSS turbofan engine

FD001 FD002 FD003 FD004

Training engines 100 260 100 249

Test engines 100 256 100 248

Operating Conditions 1 6 1 6

Fault modes 1 1 2 2

4 Experiments and Results

4.1 Experimental Setup

CMAPSS. The proposed method is evaluated using the Commercial Modu-
lar Aero-Propulsion System Simulation (C-MAPSS) dataset provided by NASA.
This dataset includes simulated degradation data from various engines. As shown
in Table 1, the C-MAPSS dataset consists of four datasets: FD001, FD002,
FD003, and FD004, which were recorded under various operational conditions
and fault modes. Among these datasets, the operating conditions and fault modes
of FD001 are the simplest, whereas FD004 presents the most complex and chal-
lenging scenarios, encompassing a variety of operational conditions and failure
modes. Each sub-dataset consists of 26 variables during the operation of the
engines, such as temperature, pressure, fan speed, etc. The detailed dataset
description can be found in [18]. The training dataset covers the whole lifespan
(run-to-failure) of each engine. During the operation, these aero-engines start to
degrade until they reach a failure point (unhealthy status). On the contrary, the
data collected from sensors in the test set was randomly selected at some time
before engine failure. In this paper, the proposed work is trained on the datasets
under various operational conditions and failure modes for RUL prediction, and
the output of the FAT model is to predict the RUL value for the engines in
the test set. Actual RUL values for these testing observations are provided to
validate approaches.

Data Preprocessing. In the C-MAPSS dataset, there are certain measurement
data that have constant values. This makes them uninformative in predicting
RUL values. For instance, in the FD001 dataset, sensor indices 1, 5, 6, 10, 16,
18, and 19 contain constant values. These constant values are eliminated to
prevent adverse effects on the model’s learning process. This data processing
method is implemented across all four datasets as described in [19].

The collected data from sensors is then normalized using the maximum-
minimum normalization method. Equation (15):

Xnorm =
X − Xmin

Xmax − Xmin
(15)
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Table 2. Parameters setting of FAT architecture.

Layers Hyper-Parameters Configuration

1D Convolution Kernel size 3

Padding size 1

Encoder layer Num of encoder 2

LSA layer Num of heads 2

ASA layer Num of heads 2

FFN layer Hidden units 256

where Xnorm is the normalized value of the data X, Xmax and Xmin denote the
maximum and minimum values of the selected data X, respectively.

Time Window Processing. We used a fixed-sliding time window on the time
series data with a stride of 1. However, randomly selecting a subset of obser-
vations for each engine in the test set limits the size of sequence length Lseq.
Hence, we use padding to handle this issue. It is assumed that the minimum size
of the testing sample on all engines is denoted Lmin. In case where Lmin < Lseq,
padding Lseq −Lmin duplicated x1 in front of x1:L. This results in the formation
of x̂1:L as x̂1:L = [x1, . . . , x1, x1:L]. It is noteworthy that the last element of each
sequence sample still remains, corresponding to the actual RUL of the sequence.

Evaluation Metrics and Hyper-Parameters Settings. We used common
metrics for evaluating and reporting the performance of RUL models, namely
root mean squared error (RMSE) and s-scoring function (S-Score). RMSE mea-
sures the average difference between the predicted values and ground truth. The
formula is as follows:

RMSE =

√√√√ 1
N

N∑

i=1

(yi − ŷi)2 (16)

where yi and ŷi represent the actual value and the predicted value for the i-th
sample in test set, respectively. N denotes the total number of testing samples.

For the RUL task, the scoring function (S-Score) will impose a heavier penalty
on predicted values occurring after the actual time of failure and a milder penalty
on those predicted before it, which prevents situations where the predicted value
significantly exceeds the true value [18]. The S-Score is expressed by:

S-Score =
N∑

i=1

si, si =

{
e

yi−ŷi
13 − 1, if ŷi < yi

e
yi−ŷi

10 − 1, if ŷi ≥ yi

(17)

Following the work presented at [17], parameters settings were as follows:
Time window length was set to 30, batch size = 128, number of epochs was set
to 60 with learning rate = 0.001 and dropout rate to 0.1. Adam optimizer was



FAT: Fusion-Attention Transformer for Remaining Useful Life Prediction 297

Fig. 3. (a) Mann-Whitney tests between FAT and other approaches, measured by
RMSE (b) Mann-Whitney tests between FAT and other approaches, measured by S-
Score.

also used, and the MSE was used as the loss function. Similarly, following the
same work, the parameters settings for the FAT model architecture are listed in
Table 2.

4.2 Experimental Results and Discussion

We conducted experiments to compare the performance of FAT with several
SOTA methods. We selected benchmark algorithms from different categories,
such as Sequence-to-Sequence models and Transformer-based architectures. We
opted for two SOTA architectures of the Sequence-to-Sequence model, including
LSTM and GRU, in which we re-implemented the network architecture following
the settings in [20]. We also compared with two latest Transformer-based archi-
tectures, namely MPSN and IMDSSN [17]. To demonstrate the effectiveness of
the proposed fusion architecture, we compared the performance of FAT with
those using either the LSA component or the ASA component. The experiments
were run on 10 trials to reduce the randomness. All the experiments were imple-
mented on a server with Quadro RTX 6000 and Intel� Xeon(R) Gold 5218R
CPU.

We used the Mann-Whitney U test (significance level was set to 0.05) to
compare the performance of FAT to each benchmark algorithm on all datasets.
The test results are shown in Fig. 3(a) and 3(b). Our method consistently out-
performed all other methods. Regarding RMSE, FAT surpassed LSTM, GRU,
MPSN, and IMDSSN across all datasets. Specifically, FAT outperformed LSA
on FD001, FD002, and FD004 but not on FD003. Compared to ASA, FAT
performed better on FD001 and achieved similar performance on the other
remaining datasets (FD002, FD003, and FD004). In S-Score, FAT consistently
outperformed MPSN across all datasets. Specifically, on three datasets, FD001,
FD002, and FD004, FAT surpassed other methods, including LSTM, GRU, LSA,
IMDSSN, and ASA, while exhibiting comparable performance on FD003.
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Table 3. The comparison with state-of-the-art methods in RMSE. Std: Standard devi-
ation.

FD001 FD002 FD003 FD004 Average

Mean Std Mean Std Mean Std Mean Std Mean Rank

LSTM 15.21 (6) 0.57 27.72 (5) 0.68 14.88 (6) 0.39 29.40 (7) 0.60 21.80 6.00

GRU 15.35 (7) 0.33 27.90 (6) 0.99 14.08 (3) 0.79 28.95 (6) 0.62 21.57 5.50

MPSN [17] 13.91 (5) 0.84 17.05 (3.5) 0.83 15.53 (7) 0.84 21.36 (4) 0.57 16.96 4.88

LSA 12.88 (3) 0.65 18.79 (4) 0.56 12.61 (1) 0.42 21.58 (5) 0.58 16.47 3.25

IMDSSN [17] 13.09 (4) 0.51 17.05 (3.5) 0.76 14.24 (5) 1.01 21.07 (3) 0.52 16.36 3.88

ASA 12.68 (2) 0.46 16.29 (2) 0.98 14.11 (4) 0.72 19.61 (2) 1.24 15.67 2.50

FAT (our) 12.21 (1) 0.49 15.57 (1) 0.84 13.07 (2) 0.54 18.32 (1) 1.52 14.80 1.25

Table 3 shows the mean and standard deviation of RMSE for FAT and bench-
mark algorithms across experimental datasets. FAT exhibits superior perfor-
mance on three datasets (FD001, FD002, and FD004). Although FAT ranks sec-
ond on FD003, the difference in RMSE between FAT and the top-ranking method
(LSA) is not significant (13.07 vs. 12.61). FAT outperforms the Transformer-
based approach IMDSSN by 6.72% on FD001, 8.68% on FD002, 8.22% on FD003,
and 13.05% on FD004. In contrast, traditional Sequence-to-Sequence models
(LSTM, GRU) perform the poorest in our experiment, highlighting the superior-
ity of Transformer-based architectures. The average mean of FAT is significantly
better than that of ASA and LSA (14.80 vs. 15.67 and 16.47). With an average
ranking of 1.25, FAT outperforms ASA (2.50) and LSA (3.25), emphasizing the
efficiency of the fusion-attention model over independent attention components.

Table 4. The comparison with state-of-the-art methods in S-Score. Std: Standard
deviation.

FD001 FD002 FD003 FD004 Average

Mean Std Mean Std Mean Std Mean Std Mean Rank

LSTM 391.47 (7) 67.05 12953.16 (6) 4050.13 416.76 (2) 97.44 7104.36 (6) 695.48 5216.44 5.25

GRU 369.75 (6) 29.38 17723.32 (7) 8963.73 418.58 (3) 120.99 7441.10 (7) 1431.60 6488.19 5.75

MPSN [17] 368.35 (5) 100.99 1773.56 (4) 530.93 1382.33 (7) 432.78 4589.26 (5) 1133.50 2028.38 5.25

LSA 317.67 (3) 56.19 2552.07 (5) 380.90 364.13 (1) 50.67 4355.57 (4) 814.75 1897.36 3.25

IMDSSN [17] 319.32 (4) 33.29 1744.69 (3) 529.90 643.48 (5) 332.22 4214.04 (3) 856.46 1730.38 3.75

ASA 296.74 (2) 53.87 1713.40 (2) 507.68 764.13 (6) 348.84 4101.11 (2) 1660.35 1718.85 3.00

FAT (our) 247.86 (1) 25.79 1375.08 (1) 506.76 540.85 (4) 302.37 2329.69 (1) 869.84 1123.37 1.75

In the S-Score results (refer to Table 4), FAT achieved the top position on
three datasets: FD001, FD002, and FD004, whereas LSA achieved top perfor-
mance on FD003 (with a margin of approximately 177 points over FAT for
S-Score). FAT significantly outperforms LSA on FD001 (by around 70 points),
FD002 (by approximately 1177 points), and FD004 (by about 2026 points). Com-
pared to IMDSSN, FAT demonstrates an average mean improvement of 35.08%,
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with an average rank of 1.75 compared to IMDSSN’s 3.75. In contrast to ASA,
FAT shows a mean average improvement of 34.64%. The lower S-Score results
of FAT indicate that our method yields more early prediction values and fewer
late prediction values compared to other methods, providing increased practical
applicability.

Fig. 4. (a) RUL predictions of MPSN on FD001 (b) RUL predictions of IMDSSN on
FD001 (c) RUL predictions of FAT on FD001.

Due to space limitations, we only presented a part of the observations, which
compares the proposed FAT method with MPSN and IMDSSN on the FD001. In
Fig. 4, the single-point predictions of MPSN, IMDSSN, and the proposed FAT are
depicted. We zoomed in on a segment of the prediction charts, revealing that FAT
excels in RUL prediction performance. Notably, the predicted values of MPSN
surpass the true RUL values, indicating late predictions with potentially adverse
consequences (refer to Fig. 4(a)). Conversely, Fig. 4(b) illustrates that IMDSSN
predicts values smaller than the true RUL values, signaling its ability to provide
early predictions compared to MPSN. FAT further enhances prediction accuracy
by generating early prediction values closely aligned with the actual RUL values
(see Fig. 4(c)).

Discussion. The proposed FAT method aims to overcome the limitations of
traditional transformer architecture, including its quadratic computational com-
plexity, insensitivity to local regions, and periodic time series sequences. This is
achieved by integrating LSA blocks and ASA blocks. The LSA blocks reduce
computational complexity by focusing on a logarithmically sparse subset of the
sequence. The complexity of LSA is given by O(L(log L)2), compared to the tra-
ditional self-attention of O(L2). On the other hand, the ASA utilizes an auto-
correlation mechanism to discover the similarity of sub-series based on the series
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periodicity, with a complexity of O(L log L). Therefore, the overall complex-
ity of the FAT method is O(L(log L)2) since O(L(log L)2) grows faster than
O(L log L). Although, in practice, the proposed model runs more slowly than
component models, it addresses the limitations of the traditional Transformer
architecture on time series sequences, such as seasonality or insensitivity to local
regions. This has been demonstrated through our experiment to promote RUL
prediction performance.

5 Conclusion

The accurate prediction of Remaining Useful Life (RUL) is crucial for ensuring
system reliability and safety. The proposed method provides a promising solution
to enhance RUL forecasting performance in complex systems. FAT overcomes
limitations of conventional Transformers, addressing issues like insensitivity to
local regions and computational complexity, resulting in significant performance
improvement. Using public datasets, FAT proved to be capable of handling chal-
lenges like long-term dependencies and overall degradation trends. It is impor-
tant to note that the RUL prediction problem addressed in this study is a super-
vised learning task that requires data with the same distributions for both the
training and testing phases. However, the practical systems may not satisfy these
requirements, which is a limitation of this work. In future work, we aim to pro-
pose a transfer learning-based method to solve real-world problems under the
condition of insufficient labeled data.

Acknowledgements. This work received funding from Innovate UK and ADC
Energy Limited through the Knowledge Transfer Partnership (KTP) project (No.
13518).

References

1. El-Thalji, I., Jantunen, E.: A summary of fault modelling and predictive health
monitoring of rolling element bearings. Mech. Syst. Signal Process. 60, 252–272
(2015)

2. Wang, Y., Zhao, Y., Addepalli, S.: Remaining useful life prediction using deep
learning approaches: a review. Procedia Manufact. 49, 81–88 (2020)

3. Serradilla, O., Zugasti, E., Rodriguez, J., Zurutuza, U.: Deep learning models
for predictive maintenance: a survey, comparison, challenges and prospects. Appl.
Intell. 1–31 (2022). https://doi.org/10.1007/s10489-021-03004-y

4. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of trans-
former on time series forecasting. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

5. Sateesh Babu, G., Zhao, P., Li, X.-L.: Deep convolutional neural network based
regression approach for estimation of remaining useful life. In: Navathe, S.B., Wu,
W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS,
vol. 9642, pp. 214–228. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32025-0 14

https://doi.org/10.1007/s10489-021-03004-y
https://doi.org/10.1007/978-3-319-32025-0_14
https://doi.org/10.1007/978-3-319-32025-0_14


FAT: Fusion-Attention Transformer for Remaining Useful Life Prediction 301

6. Li, X., Ding, Q., Sun, J.Q.: Remaining useful life estimation in prognostics using
deep convolution neural networks. Reliab. Eng. Syst. Saf. 172, 1–11 (2018)

7. Zhang, J., et al.: A parallel hybrid neural network with integration of spatial and
temporal features for remaining useful life prediction in prognostics. IEEE Trans.
Instrum. Meas. 72, 1–12 (2022)

8. Huang, C.G., Huang, H.Z., Li, Y.F.: A bidirectional LSTM prognostics method
under multiple operational conditions. IEEE Trans. Industr. Electron. 66(11),
8792–8802 (2019)

9. Wu, Y., Yuan, M., Dong, S., Lin, L., Liu, Y.: Remaining useful life estimation of
engineered systems using vanilla LSTM neural networks. Neurocomputing 275,
167–179 (2018)

10. Huang, C.G., Huang, H.Z., Li, Y.F.: A bidirectional LSTM prognostics method
under multiple operational conditions. IEEE Trans. Industr. Electron. 66(11),
8792–8802 (2019)

11. Xia, J., Feng, Y., Teng, D., Chen, J., Song, Z.: Distance self-attention network
method for remaining useful life estimation of Aeroengine with parallel computing.
Reliab. Eng. Syst. Saf. 225, 108636 (2022)

12. Vaswani, A.: Attention is all you need. In: Advances in Neural Information Pro-
cessing Systems, vol. 30 (2017)

13. Mo, Yu., Wu, Q., Li, X., Huang, B.: Remaining useful life estimation via trans-
former encoder enhanced by a gated convolutional unit. J. Intell. Manuf. 32(7),
1997–2006 (2021). https://doi.org/10.1007/s10845-021-01750-x

14. Ma, Q., Zhang, M., Xu, Y., Song, J., Zhang, T.: Remaining useful life estima-
tion for turbofan engine with transformer-based deep architecture. In: 2021 26th
International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE
(2021)

15. Chen, D., Hong, W., Zhou, X.: Transformer network for remaining useful life pre-
diction of lithium-ion batteries. IEEE Access 10, 19621–19628 (2022)

16. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

17. Zhang, J., Li, X., Tian, J., Luo, H., Yin, S.: An integrated multi-head dual sparse
self-attention network for remaining useful life prediction. Reliab. Eng. Syst. Saf.
233, 109096 (2023)

18. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling
for aircraft engine run-to-failure simulation. In: 2008 International Conference on
Prognostics and Health Management, pp. 1–9. IEEE (2008)

19. Zhang, J., Jiang, Y., Wu, S., Li, X., Luo, H., Yin, S.: Prediction of remaining
useful life based on bidirectional gated recurrent unit with temporal self-attention
mechanism. Reliab. Eng. Syst. Saf. 221, 108297 (2022)

20. Zheng, S., Ristovski, K., Farahat, A., Gupta, C.: Long short-term memory network
for remaining useful life estimation. In: 2017 IEEE International Conference on
Prognostics and Health Management (ICPHM), pp. 88–95. IEEE (2017)

21. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with
auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst.
34, 22419–22430 (2021)

22. Zhang, Z., Song, W., Li, Q.: Dual-aspect self-attention based on transformer for
remaining useful life prediction. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)

23. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series
forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
37, no. 9, pp. 11121–11128 (2023)

https://doi.org/10.1007/s10845-021-01750-x
http://arxiv.org/abs/1607.06450


Conditional Probability-Based Feature
Embedding for Genomic Sequence Data

Parashjyoti Borah1 and Aparajita Dutta2(B)

1 Indian Institute of Information Technology Guwahati, Guwahati 781015, Assam, India
parashjyoti@hotmail.com

2 National Institute of Technology Silchar, Silchar 788010, Assam, India
aparajita.dutta@cse.nits.ac.in

Abstract. Embedding techniques for categorical attributes play a pivotal role in
the performance of machine learning inference, especially for downstream anal-
ysis of genomic sequence data. Categorical data do not convey quantitative infor-
mation to directly influence the model parameters in mapping input to the desired
output. Two commonly used state-of-the-art embedding techniques are one-hot
embedding and binary embedding, which embed the values of the categorical
attributes in vectors of 0s and 1s. One-hot treats values of a particular attribute
uniformly, or in other words, it considers uniform probability distribution for the
random variable of the categorical attribute. On the other hand, binary embedding
assigns some ordinal characteristics to the data without considering the probabil-
ity distribution. Both of these techniques do not embed the underlying semantics
of the genomic features. In this study, we propose two conditional probability–
based feature embedding techniques for categorical data that utilize the probability
distribution of the data. Furthermore, the proposed embedded vector lengths are
based on the number of classes in the training data rather than the unique values
an attribute can take.

Keywords: Feature Embedding · Gene Sequence · Conditional Probability

1 Introduction

In recent years, the advent of high-throughput sequencing technologies has revolution-
ized the field of genomics, enabling researchers to gather vast amounts of genomic
sequence data with unprecedented speed and accuracy. This wealth of data has opened
new avenues for understanding the intricate relationships between genetic information
and biological processes, aswell as for developing predictivemodels for various genomic
applications.

Traditionally, positional matrices have been widely used to represent genomic
sequences, where each position in the sequence is represented by a vector contain-
ing information about the presence or absence of certain sequence motifs or features [1,
2]. However, these traditional approaches heavily rely on handcrafted features, which
are inherently limited by human knowledge of the problem domain.
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To overcome the limitations of handcrafted features, researchers have explored alter-
native approaches such as one-hot encoding and binary feature embeddings. While
these methods provide a more flexible representation of genomic sequences, they often
lack semantic information about the input data, leading to suboptimal performance in
downstream machine learning tasks [3].

Furthermore, distributed feature embeddings such as word2vec have shown promis-
ing results in capturing semantic relationships in natural language processing tasks.
However, these embeddings are not directly applicable to genomic sequence data and
cannot be easily mapped back to the input space, hindering interpretability and feature
interpretation [4]. In biological downstream tasks, this mapping is particularly important
because mankind has limited existing knowledge regarding the biological processes.

In this manuscript, we propose two novel approaches for generating embeddings
for genomic sequence data for the downstream task of identifying splice sites. Our
approach aims to circumvent the above mentioned limitations by providing an efficient
embedding that is lightweight, faster to compute, and can be seamlessly mapped back to
the input space for improved feature interpretation.Although the proposedwork analyses
the performance of the novel embeddings on a single downstream task of splice site
identification, we can apply similar embeddings for identification of several other cell
variables like polyadenylation sites, promoter, and enhancer regions. By leveraging the
intrinsic structure and patterns present in genomic sequences, our method promises to
enhance the interpretability and performance of machine learning models for various
genomic applications. Moreover, these methods hold promise for potential application
beyond gene sequence data, extending their utility to various other domains.

2 Related Work

Numerous techniques in data analysis and data mining rely on embedding data in a
Euclidean space. However, when dealing with symbolic datasets, such as biological
sequence data from high-throughput sequencing assays, traditional embedding methods
like binary and k-mer count vectors might prove too high-dimensional or coarse to
effectively glean insights from the data. Furthermore, approaches like Multidimensional
Scaling (MDS) [5] and Node2Vec [6] may not scale well to large datasets since they
require a full recomputation of the embedding for unclassified test data.

In the realm of genomic sequence representation, many strategies hinge on fea-
tures derived from biochemical properties of nucleotides or amino acids, encompassing
aspects like thermodynamic stability, structural flexibility, hydrophobicity, charge, and
polarity [7–9]. Commonmethods, such as k-mer count vectors and binary vectors, while
simple, often result in excessively high-dimensional representations.

The majority of molecular sequence classification methods rely on manually crafted
features, like position-specific scoring matrices (PSSM) [10]. Despite their prevalence,
these features, including Position Weight Matrix (PWM) and others like average molec-
ular weight and iso-electric point value, have limitations that can compromise model
accuracy [11]. To address these drawbacks, techniques like positional-average molec-
ular weight have been introduced to discern the significance of amino acid positions
within protein sequences [12].
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Additionally, Natural Language Processing (NLP)-basedmethods, such asword2vec
[13] and doc2vec [14], have gained traction in constructing numeric embeddings for
molecular sequences. These approaches, including dna2vec [15] and kmer2vec [16],
treat sequences as documents and leverage fixed-length fragments (k-mers) as words.
Furthermore, techniques like Gene2vec [17] and SPVec [18] offer alternative represen-
tations for genes and protein sequences, respectively. Despite their promising results,
there remains scope for enhancing efficiency and facilitating the interpretation of learned
features by mapping embeddings back to the input space.

3 Background

Wechose the task of splice site prediction to analyze the embeddings. Inmany eukaryotic
organisms, protein-coding genes are fragmented by sequences known as introns. These
introns are excised from the exonic sequences through a process called splicing, which
takes place concurrently with transcription [19]. This process yields mature substrates
that can be translated into proteins. Splicing entails the precise removal of introns at
sites known as splice sites or junctions, situated between exons and introns, followed
by the joining of exons. Therefore, the identification of splice junctions is crucial for
understanding gene structure and functionality.

We compare the proposed embedding technique to the twomost widely used embed-
ding techniques that canbemappedback to the input feature space, namelybinary embed-
ding and one-hot embedding. Furthermore, we compare our proposed embeddings with
the two baseline embeddings for the mentioned classification task using three classifiers,
namely support vector machine (SVM) [20], least squares support vector machine (LS-
SVM) [21], and one-dimensional convolutional neural network (1D-CNN) [22]. SVM
is a highly effective traditional machine learning method known for its versatility in
various applications. LS-SVM extends SVM by maximizing the margin between class
hyperplanes, but it emphasizes improving the separation between hyperplanes close to
the classes rather than just the boundary hyperplanes. In contrast, 1D-CNNs are preferred
deep learning techniques for analyzing gene sequence data. 1D-CNNs utilize convolu-
tion operations to effectively extract features from the local sequential patterns present
in genomic sequences, making themwell-suited for genomic data analysis. The baseline
methods and classifiers with the notations that will appear in the subsequent discussions
are described next.

All the vectors and the matrices are written in boldface. The feature matrix X =
(x1, x2, · · · , xN )T is the collection of the input feature vectors xi = (xi1, xi2, · · · , xiD)T ,
where N is the cardinality of X,D is the dimensionality of the data and (·)T is the matrix
transpose. y = (y1, y2, · · · , yN )T is the vector of class labels where yi ∈ {y1, · · · , yC}
and C is the number of classes in the dataset. For any categorical feature j, Kj is the
categorical value where k = 1, 2, · · · ,Kj (i.e. feature j can take a value from the Kj

possible values).

3.1 Binary Embedding

Binary embedding assigns an integer (usually starting with 1) to each of the categorical
values of the attribute and embeds it with its corresponding binary equivalent. The
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number of digits required to encode any categorical attribute j is �log2K�. In other
words, we represent the binary encoded vector of vjk as bjk = Binary

(
vjk

)
where bjk ∈

{0, 1}�log2K� and its elements are the digits of the binary equivalent of k.

3.2 One-Hot Embedding

One-hot embedding also uses a Boolean encoding technique for any categorical attribute
j using Kj digits. The encoded vector ojk has 1 at the kth element and all the other
elements are 0s. We represent the one-hot embedded vector as ojk = Onehot

(
vj,k

)

where ojk ∈ {0, 1}Kj×1 and its kth element is 1 and all others 0.

3.3 Support Vector Machine (SVM)

Originally SVM [20] is a binary classification method that is based on the idea of
maximizing the distance between the boundary hyperplanes of the two classes, which
are expressed as ϕ(x)Tω + b = ±1 with +1 and −1 representing the positive and the
negative class respectively. The classifier is built as ϕ(x)Tω + b = 0 at unit relative
distance from the boundary hyperplanes. Here, ω, b are the model parameters and ϕ(·)
is a feature mapping function. For points falling on the wrong side of the boundary
planes SVM employs the Hinge loss function. The optimization problem of SVM is
given below:

min
ω,ξi

1
2‖ω‖2 + λ

N∑

i=1
ξi

s.t.yi
(
ϕ(x)Tω + b

) ≥ 1 − ξi, for i = 1, 2, · · · ,N
ξi ≥ 0.

(1)

where ξi is the slack variable and λ is the penalty parameter for the trade-off between
structural risk and empirical risk. Traditionally, the above optimization problem is trans-
formed into its corresponding dual formulation and the solution is obtained in the dual
space.

3.4 Least Squares Support Vector Machine (LS-SVM)

LS-SVM [21] is the least squares version of the original SVM that employs least squares
loss function instead of the Hinge loss function in SVM. Additionally, unlike SVM, LS-
SVM constrains the class hyperplanes by keeping them proximal to the points of their
respective classes with an equality constraint.

min
ω,ξi

1
2‖ω‖2 + λ

N∑

i=1
ξ2i

s.t.yi
(
ϕ(x)Tω + b

) = 1 − ξi, for i = 1, 2, · · · ,N .

(2)

The squared loss function ofLS-SVMand its proximity constraintmake it highly sen-
sitive to noise and outliers. Solution for LS-SVM is obtained in the dual space requiring
to solve a system of linear equations.
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3.5 One-Dimensional Convolutional Neural Network (1D-CNN)

A 1D-CNN [22] architecture comprises an input layer, one or more 1D convolutional
layers (eachpotentially followedby apooling layer), dense layers, and anoutput layer. 1D
CNNsare characterized by the convolution operation conducted along a single dimension
within the convolutional layers. Each 1D convolutional layer is composed of multiple
filters (or kernels) that slide over the input data, generating feature maps. Typically,
these filters are vectors of dimension (F × 1), where F is the kernel size. Strides are
occasionally utilized to enhance the capture of local andglobal patterns bydownsampling
the input, reducing data dimensionality, and extracting features across various scales. In
1D CNNs, the stride parameter dictates the step size of the filter’s movement along the
input sequence. For an input sequence (input vector) x, a filter ω = (ω1, ω2, · · · , ωF )T

and stride ε, the convolution operation to produce the output vector c = (c1, c2, · · · , cz)T

can be defined as:

ci =
F∑

j=1

ωjx(i−1)ε+j (3)

where, i = 1, 2, · · · , z for z = N−F
ε

+ 1. After convolution, an activation function is
applied to introduce non-linearity. Pooling layers are used to reduce the dimensionality of
the feature maps, retaining essential features while reducing computational complexity.
Subsequent to one or more convolutional and pooling layers, fully connected (dense)
layers are used to map the extracted features to the output classes or predictions. These
layers are typically used at the end of the network.

4 Proposed Embedding Approaches

In this section, we propose two approaches for embedding categorical data. Unlike
the two popular embedding techniques discussed in the above section, the proposed
approaches utilize probability information to retain influential characteristics of the
attribute values in generalization.

4.1 Embedding Based on Conditional Probability (A Linear Function)

Consider that the attribute j is categorical, which is the random variable Rj that takes
values from the set {vjk |k = 1, 2, · · · ,Kj} and the conditional probability P

(
vjk |yn

)
is

its probability distribution. Throughout this paper, whenever y is subscripted with n or
C, it refers to a particular class among the C classes and not the target of a sample. Now,
the conditional probability of vjk given that a training instance belongs to the class yn,
is expressed as,

P
(
vjk |yn

) =
∣∣∣S(n)

vjk

∣∣∣
∣
∣Syn

∣
∣ (4)
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where S(n)
vjk = {xi|yi = yn, xij = vjk} and Syn = {xi|yi = yn} and |·| is the cardinality of

a set. The embedding vector for vjk is

pjk = (
P
(
vjk |y1

)
, · · · ,P

(
vjk |yC

))T (5)

The encoding is based on linear conditional probability function and hence
normalization of the attribute may not be required.

4.2 Embedding Based on Exponential Function of Conditional Probability

The proposed embedding technique discussed in the above subsection utilizes the con-
ditional probability function linearly. In other words, the significance of a particular
categorical value vjk for a particular attribute j varies linearly with P

(
vjk |yn

)
. However,

sometimes the information carried by vjk are not a linear function of P
(
vjk |yn

)
. Here we

propose a nonlinear function of conditional probability that exhibits similar properties
as the sigmoid function. The probability function is defined below:

P̂
(
vjk |yn

) = 1

1 + e
a

⎛

⎝1−b

∣∣
∣∣S

(n)
vjk

∣∣
∣∣

|Syn |
⎞

⎠

(6)

The parameters a and b controls the range, shape and orientation of the function.
Although these parameters can be tuned, we suggest a = 5 and b = Kj. There is a strong
relation between these parameters with the function shape and orientation. The function
for a = 5 and different values of b is shown in Fig. 1. It is observable from Fig. 1 (a) and
(b) that the proposed function retains its shape and orientation irrespective of the size
of the class yn. It empirically proves that the proposed function is consistent with class
size. Further, by setting a = 5 the range is distributed evenly between 0 and 1 among

different
∣
∣∣S(n)

vjk

∣
∣∣with varying b values. By setting b = Kj, we can derive the interpretation

that, with a higher value of Kj a smaller

∣∣
∣S(n)

vjk

∣∣
∣

|Syn | ration is representative of the inference.

Finally, the embedded vector, whose length is equal to the number of classes in the
training data, is expressed as,

p̂jk = (
P̂
(
vjk |y1

)
, · · · , P̂

(
vjk |yC

))T
(7)

4.3 Discussion

The size of the embedded vector for binary embedding of attribute j is determined by
�log2Kj�, while for one-hot embedding, it isKj. Based on the value ofKj and the number
of categorical attributes, dimensionality of the embedded dataset may increase signifi-
cantly. In contrast, the proposed embedding approaches utilize a vector length C, where
C represents the number of classes. In most of the real-world data, it is observed that
Kj � C and subsequently �log2Kj� > C. As a result, one advantage of the proposed
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(a)

(b)

Fig. 1. Graphical representation of P̂
(
vjk |yn

)
with a = 5 and for different values of b. (a) For

class size is 100, (b) For class size 5000.

approaches lies in potentially reducing the dimensionality of the embedded data com-
pared to binary and one-hot embeddings. Subsequently, space and computational cost
could be significantly reduced with the proposed embedding techniques. This advantage
is supported by empirical evidence detailed in the subsequent section of this study.

Furthermore, one-hot embedding uniformly treats each value of a categorical
attribute, implying a uniformprobability distribution across the values. In contrast, binary
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embedding assigns an ordinal characteristic to the data by assigning binary equivalents
of decimal values without regard to the underlying probability distribution of the cate-
gorical variable. However, the proposed approaches in our study take into account the
probability distribution of categorical values. This consideration is crucial as it helps pre-
serve valuable information about the influential characteristics inherent in the attribute
values during the generalization process. By incorporating these probability distribu-
tions, our embeddings aim to capture and retain meaningful patterns and relationships
within the data, enhancing the overall effectiveness and interpretability of the models
trained on such encoded representations.

5 Empirical Study

Tovalidate the applicability of the proposed approaches, numerical studies are conducted
on gene sequence data containing all categorical attributes. In this section,we present first
the description of the dataset for this study, then the hardware and software environment
under which the study is carried out, along with other experimental settings, and finally,
a discussion of the experimental results.

5.1 Dataset

We extracted the introns across all transcripts of the protein coding genes annotated in
the latest version of GENCODE [23] annotations (based on human genome assembly
versionGRCh38). Theupstreamanddownstreamflanking regions of 40nucleotideswere
extracted at each splice junction, which lies at the two ends of the introns. A flanking
region of 40 nucleotides was considered because most of the known splicing features
mentioned in the literature liewithin this region [24]. This comprises the positive samples
of our dataset. Each sample contains 164 nucleotide bases. A nucleotide comprises of the
bases A, T, G, C, or N. Therefore, we have considered each nucleotide, in the sequences
of the dataset, as a categorical feature. Hence, each sample has a total of 164 features.

The splice junctions mostly contain the consensus pattern GT and AG at the donor
[‘5’ end of the intron] and acceptor [‘3’ end of the intron] splice sites, respectively. The
negative samples were generated randomly from the genome sequences such that the
center of the negative samples contains the most common consensus pattern GT and AG
at the splice junctions. However, the junctions were chosen such that they did not belong
to the set of true splice junctions. The length was considered same as that of the positive
samples.We obtained a total of 293,889 positive samples from the annotations. However,
due to resource constraints, we have considered a random sample size of 10,000 samples
for all the results and analysis shown below.

5.2 Experimental Setup and Hyperparameter Tuning

Binary embedding and one-hot embedding are commonly preferred embedding tech-
niques for categorical attributes. SVM is one of the most efficient traditional machine
learning classification methods and has proven to be efficient in a wide range of appli-
cations. LS-SVM is another efficient classification algorithm that is based on SVM’s
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principle of maximizing the margin between two class hyperplanes. However, unlike
the boundary hyperplanes of SVM, LS-SVM maximizes the separation between two
hyperplanes that are proximal to the classes. On the other hand, compared to traditional
machine learning methods, 1D-CNNs are one of the most widely used deep learning
techniques for gene sequence data analysis. Genomic sequence data exhibit sequential
features comprising consecutive nucleotides, and 1D-CNNs are particularly well-suited
to extract features like local sequential patterns using convolution operations. In this
study, we compare the performance of SVM, LS-SVM, and 1D-CNN on the genomic
sequence dataset with the proposed embedding techniques against binary and one-hot
embedding.

The experiments for this studywere conducted using aworkstation PC equippedwith
128 GB of DDR4 RAM and an Intel Xeon W-2295 18-core processor. The SVM and
LS-SVM models were executed using MATLAB 2022 computational software, while
the 1D-CNN models were run on Python 3.10.4. To implement the 1D-CNN model, the
standard TensorFlow library package is used.

The robust Gaussian kernel is used for nonlinear feature mapping, which is

expressed as f
(
xi, xj

) = e
−‖xi−xj‖2

2σ2 . The kernel parameter σ is tuned from the set{
2−2, 2−1, 20, 21, 22, 24, 26, 28, 210, 212

}
and the hyperparameter λ is tuned from the

set
{
2−1, 20, 21, 22, 23, 24, 25, 26, 28, 210

}
. On the other hand, the 1D-CNN architec-

ture consists of the following layers in sequence: an input layer, two 1D convolution
layers each followed by a max-pooling layer with a pool size of 2, a global max-pooling
layer, a dropout layer, a dense layer with 64 neurons, and an output layer. The hyper-
parameters tuned for the 1D-CNN include batch sizes of {16, 32, 64}, filter sizes of
{16, 32, 64} for the first 1D convolution layer and {32, 64, 128} for the second, dropout
rates of {0.1, 0.3, 0.5}, and learning rates of {0.001, 0.01, 0.1}. The ReLU activation
function is used for the 1D convolution and dense layers, while the softmax activation
function is used for the output layer. The model is trained for up to 100 epochs with early
stopping criteria in place. For the convolution operation, we use a stride ε = k, where
k is the embedded vector length for the respective embedding. This ensures the convo-
lution operation slides over the embedded genomic sequence with a vector of length k.
Consequently, the kernel size is considered as 3k×1 since three consecutive nucleotides
carry a biological significance by forming a codon which subsequently codes an amino
acid [25]. The model is optimized using the Adam optimizer with binary cross-entropy
loss. Accuracy is used as the validation metric.

The hold-out validation strategy is applied for parameter tuningwith 75:25 split of the
training dataset for train:validation set. The evaluation metrics to evaluate performance
of the models on the datasets are accuracy, precision, recall, and F1-score.

5.3 Experimental Results

For the dataset discussed above, data dimensionality after generating the embedding
using different embedding techniques is provided in Table 1. The proposed approaches
achieve significantly reduced dimensionality as compared to binary and one-hot embed-
ding. Subsequently, space and computational cost could be significantly reduced with
the proposed embedding techniques.
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Table 1. Dimensionality of embedded data

Embedding No. of features

One-Hot (ojk ) 820

Binary (bjk ) 492

Linear Conditional Probability-based (pjk ) 328

Nonlinear Conditional Probability-based (p̂jk ) 328

Generalization performances of SVM, LS-SVM and 1D-CNN on feature embed-
ded test data using different embedding techniques are presented in Table 2, Table 3,
and Table 4 respectively. It can be observed from Tables 2, 3 and 4 that the pro-
posed approaches could achieve better or comparable generalization performance for
the dataset in this study.

Table 2. Generalization results of SVM on the dataset with different embedding techniques.

Embedding Accuracy Precision Recall F1-score

Binary (bjk ) 94.3068 0.95851 0.92623 0.942093

One-Hot (ojk ) 94.6989 0.962056 0.930684 0.94611

Linear Conditional
Probability-based (pjk )

94.9751 0.961764 0.936743 0.949088

Nonlinear Conditional
Probability-based (p̂jk )

94.9305 0.960716 0.936921 0.948669

Table 3. Generalization results of LS-SVM on the dataset with different embedding techniques.

Embedding Accuracy Precision Recall F1-score

Binary (bjk ) 94.9127 0.958189 0.939237 0.948619

One-Hot (ojk ) 95.2869 0.966245 0.938525 0.952183

Linear Conditional
Probability-based (pjk )

95.2869 0.964031 0.940841 0.952295

Nonlinear Conditional
Probability-based (p̂jk )

95.3225 0.965757 0.939772 0.952587

Accuracy is a neural metric when the dataset has balanced class sizes and the dataset
in our study has equal class sizes for the positive and the negative class. The proposed
embedding achieved the best performance in terms of accuracy. On the other hand,
precision, recall and F1-score are more representative of the positive class. Biomedical
data aremore concerned about correctly classifying the positive class and from the results
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Table 4. Generalization results of 1D-CNN on the dataset with different embedding techniques.

Embedding Accuracy Precision Recall F1-score

Binary (bjk ) 88.5602 0.897064 0.871169 0.883927

One-Hot (ojk ) 89.2017 0.90367 0.877584 0.890436

Linear Conditional
Probability-based (pjk )

94.1732 0.960438 0.921418 0.940524

Nonlinear Conditional
Probability-based (p̂jk )

93.309 0.959886 0.903956 0.931082

the proposed embedding approaches could outperform binary and one-hot embedding
in terms of recall and F1-score.

The best accuracy scores are highlighted in boldface in Tables 2, 3, and 4, showcasing
the effectiveness and consistency of the proposed approaches as seen in their generaliza-
tion performances. Interestingly, Table 4 reveals that the 1D-CNN struggles with binary
and one-hot embeddings but performs comparably well with the proposed embedding.
This issue arises from the inherent limitations of binary and one-hot embeddings in gene
sequence data. These embeddings create sparse, high-dimensional representations that
are difficult for a 1D-CNN model to learn from effectively, especially with a relatively
small dataset of only 10,000 samples. They fail to capture the intricate patterns and
relationships within the sequence data, leading to suboptimal feature extraction by the
convolutional layers. In contrast, the proposed embedding offers a more compact and
informative representation of the gene sequences by utilizing the probability distribu-
tion of the data to capture essential features and relationships more effectively. This
enhances learning and generalization by the 1D-CNN, resulting in improved perfor-
mance. The effectiveness of the proposed embedding across both traditional machine
learning methods (SVM, LS-SVM) and the deep learning approach (1D-CNN) under-
scores its robustness and capability to comprehensively capture the underlying structure
of the data. We conclude that generalization performance-wise the proposed approaches
are promising and applicable in genomic sequence-based classification tasks.

6 Conclusion

In this work, we have proposed two novel embedding techniques based on condi-
tional probability for categorical features. We have analyzed the performance of the
proposed embeddings on the task of splice site prediction considering the nucleotides
in the genomic sequence as categorical features. Furthermore, we have compared the
proposed embeddings with two widely used embedding techniques. We see that the
proposed embeddings are lightweight as they comprise less number of features. Hence,
they are faster in execution and reduced space complexity. Despite comprising a lesser
number of features, they perform comparable to the baseline embeddings. We validated
this using three different classifiers, namely SVM, LS-SVM and 1D-CNN. In the future
scope of this work, the evaluation of these embeddings can be extended across various
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classification tasks beyond genomic sequences. Additionally, their performance can be
compared with datasets from different domains. Furthermore, their effectiveness with
other machine learning techniques including advanced deep learning models and clas-
sifiers can be explored to gain further insights into their versatility and applicability.
Also, incorporating newer embedding techniques into the comparison will broaden the
applicability of the proposed approaches.
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Abstract. Visual object tracking is a popular research area in computer
vision due to its diverse applications. Despite the impressive progress
made by numerous state-of-the-art trackers on large-scale datasets, visual
object tracking at nighttime remains challenging because of low light
(brightness) conditions, lack of contrast, very low variability among fea-
ture distributions, etc. In addition, the lack of paired (labeled) data for
nighttime tracking makes it infeasible for supervised learning based mod-
eling. Unsupervised domain adaptation based tracking can resolve this
issue. In this work, we proposed static image style transfer-based Recon-
struction Assisted Domain Adaptation (RADA) with adversarial learning
for nighttime object tracking. The main contribution of the work is two-
fold. First, a reconstruction-assisted adaptation is proposed for domain
invariant feature extraction and to achieve input and feature level adap-
tation. Secondly, static style transfer is used to generate synthetic paired
images (video frames) for supervised nighttime modeling for visual object
tracking. Style adversarial alignment at multiple levels helped to adapt
between the styled source domain and the target domain, which do not
require pseudo labels. RADA attained feature and input level adaptation
without external model requirements for low-light image enhancement.
Static style transfer avoids negative domain transfer and enables domain
transfer learning on true labels. The effectiveness of RADA is validated
on six benchmark datasets. RADA achieved state-of-the-art results on
two benchmark nighttime adaptation datasets with improvements in the
range of 3.7% - 11.4%. RADA also attained state-of-the-art results on
three other nighttime datasets without target adaptation. The tracking
results and model weights are available at https://github.com/chouhan-
avinash/RADA/.

Keywords: Reconstruction based adaptation · Adversarial learning ·
Input and feature level adaptation

1 Introduction

Object tracking is an important computer vision problem that involves object
localization by means of a bounding box and its continuous following for a
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few frames. There have been several recent visual object tracking approaches
that show promising results. These include Correlation Filter based approaches
[1,2] and Siamese Network based approaches [3–5], and Transformer [6–9] based
approaches. Object tracking in nighttime conditions is important, and several
approaches [10–17] used low light enhancement based nighttime detection and
tracking. It has been observed in the literature that visual object tracking at
night time is a quite challenging task due to the scarcity of paired (labeled)
images to train the supervised models. Domain adaptation is a technique that
extends transfer learning by minimizing the differences between the domain-
specific features across different domains. These approaches have gained popu-
larity in semantic segmentation [18,19], object detection [11,20] and, recently, in
object tracking [15,21,22]. Several strategies involving domain adaptation have
been developed, including addressing domain shifts at both image and instance
levels [20] and merging low-light enhancement and object detection models [11].
Some works [21,22] used adversarial learning for domain adaptation in visual
object tracking to minimize the domain discrepancy between day and night fea-
tures and showed promising results in addressing the domain shift problem in
object tracking. In this work, we proposed static style transfer based Recon-
struction Assisted Domain Adaptation (RADA) for nighttime object tracking.
Static style transfer is used to generate synthetic paired images (video frames)
for supervised nighttime modeling for visual tracking. The workflow of RADA
is shown in Fig 1. Results show that the proposed approach outperforms the
recent SOTA schemes.

The organization of this work is as follows. A review of recent related work is
presented in Sect. 2, which is followed by proposed scheme details in Sect. 3. The
implementation details are presented in Sect. 4 followed by results evaluation in
Sect. 5 and ablation analysis in Sect. 6. The work is concluded in Sect. 7.

Fig. 1. Workflow of RADA framework. Here, BC is the Backbone Component, RC is
the Reconstruction Component, SD is the Style Discriminator, and DD is the Domain
Discriminator.
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2 Literature Survey

2.1 Visual Object Tracking

The correlation filter based object trackers use a template of the target object
to find the most similar regions in the subsequent frames. They often require
special handcrafted feature extraction techniques for processing. Galoogahi et
al. [1] used background based negative samples extracted through handcrafted
features in correlation filters for efficient object tracking. Li et al. [2] proposed
varying spatiotemporal regularization, which utilized global and local response
variations details in the object tracker. The Siamese network-based approaches
focus on finding a generic similarity function. They generally use a pair of iden-
tical common weighted neural networks to find the correlation between the
target object and the search region and take the benefit of not requiring any
unique feature engineering due to the end-to-end learning possible. Chen et al.
[3] proposed a siamese network with a unified approach for object classifica-
tion and bounding box regression. Xu et al. [4] utilized a fully convolutional
object tracker with target state estimation and generated classification score
for local view instead of predefined anchors. Guo et al. [5] proposed anchor
and region proposal free siamese network, which requires fewer hyperparame-
ters. More recently, transformer-based object tracking has been proposed. Lin
et al. [6] proposed the use of a full attention-based siamese network with motion
tokens to extract motion context. Cui et al. [7,9] proposed tracking framework
with repetitive mix attention modules for joint features extraction and relation
mapping between target and template frame. They also proposed transformer
based hierarchical and non-hierarchical trackers with several pretraining strate-
gies. Ye et al. [8] proposed transformer based a single stream stage tracking
framework combining feature extraction and target-template relation modeling
and utilizing an early candidate elimination approach for efficient inference.

2.2 Nighttime Object Tracking

Despite the excellent performance achieved in object tracking, these trackers
still show a comparatively poor result when adverse conditions (e.g. nighttime)
are involved. Li et al. [10] proposed a low light enhancement module with a
correlation filter for nighttime tracking, but they are restricted to handcrafted
features and could not benefit from end-to-end learning. Sasagawa et al. [11]
utilized multiple pretrained models for knowledge distillation from the low light
enhancement model to the object detection model. Ye et al. [14] proposed retinex
based iterative low light enhancement with joint illuminations and noise estima-
tion for object tracking. They further mitigate the weak collaboration in visual
tracking and proposed a transformer [15] with learned curve projection-based
image light enhancement for illumination and denoising of low light images. Li
et al. [16] used illumination adaptive tracking with low light enhancement and
target aware masking. Fu et al. [17] proposed transformer based image enhancer
with crafted range and antinoise mask and dynamic parameter adaptation. Zhu



318 A. Chouhan et al.

et al. [12] proposed night image enhancement followed by a tracking approach
that utilized darkness clue to produce a visual prompt. Ma et al. [13] proposed
a bilevel adaptation for low-light image enhancement, adaptable to unknown
scenes.

Chen et al. [20] proposed image and instance level alignment for domain adap-
tive object detection. Wu et al. [18] used an adversarial learning-based nighttime
image relighting module and segmentation module. Ye et al. [21] explored using
adversarial learning for domain adaptation in visual object tracking to minimize
the domain discrepancy between day and night features. Their approach has
shown promising results in addressing the domain shift problem in object track-
ing. Zhang [22] proposed progressive style translation using domain invariant
content details and separate domain style details. Yao et al. [23] used a segment-
anything model-assisted approach with zero-shot learning-based training sam-
ple generation for the target night domain. Wu et al. [19] used an adversarial
learning-based single-stage domain adaptation approach for semantic segmenta-
tion of nighttime images. Lu [24] used a multi-level denoising transformer, which
used a self-attentive encoder and decoder with a cross-attention module. Fu et al.
[25] proposed a contrastive learning-based domain adaptive network for object
tracking with scale information. Lv et al. [26] used Gabor filter-based preprocess-
ing steps before utilizing the adversarial learning-based domain adaptive training
network. Sun et al. [27] utilized filtering of high-frequency noise for nighttime
image enhancement with a dynamic template-based object-tracking network.
Kennerley et al. [28] proposed a student-teacher-based network that combined
high and low-confidence pseudo labels as two-phase consistency with nighttime
augmentations. Chen et al. [29] proposed a mean teacher-based network, which
utilized assignment-based object identification and low light enhancement for
unlabelled target domain inputs. Zheng et al. [30] proposed multi-source domain
adaptation for satellite videos, which utilized student-based learning with weak
re-identification.

Despite the advancements in object tracking using deep learning approaches,
there are a few areas where improvements may be possible. Some of such obser-
vations are as follows:

1. Image level adaptation is difficult but important for day-to-night domain
adaptation.

2. Learned style translation requires additional computational overhead and
may deteriorate results in some unpaired cases.

3. Existing trackers often perform poorly in adverse conditions, such as low-light
environments that can affect the visual aspect of the tracked object.

3 Proposed Scheme

In this work, we proposed Reconstruction Assisted Domain Adaption (RADA)
for nighttime object tracking. Our main contributions are
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Fig. 2. Illustration of the proposed RADA framework. Here, Is, It, and Iw are search
and template image pairs of source, target, and styled source domains. Fs, Ft, and Fw

are extracted source, target, and styled source features using the Backbone Component
(BC).

1. Reconstruction assisted adaptation is proposed for domain invariant feature
extraction and to attain input and feature level adaptation.

2. Style adversarial alignment at multiple level is proposed to adapt between
the styled source domain and the target domain, which do not require pseudo
labels.

RADA achieved state-of-the-art results on two benchmark dataset for domain
adaptive nighttime tracking. The various components of RADA are presented
in Fig. 2. It consists of a Backbone Component (BC), a Tracking Head (TH), a
Reconstruction Component (RC), and Discriminators (DD1, DD2, SD1, SD2).
Adding these modules aims to improve the robustness of the tracker in adverse
conditions, enhance domain adaptation, and utilize the benefits of style transfer
for object tracking.

Template and search images are obtained from the input video sequences.
BC utilized these inputs and extracts features that TH used for regression and
classification when labeled inputs (source image and styled source image) are
passed. The feature maps are also passed (in all cases) into the proposed RC,
which learns to reconstruct the input images. Discriminators used extracted
features and reconstructed outputs for alignment.

3.1 Backbone Component

The backbone component (BC) is used to extract features from the input. We
used mixed attentive transformer [7] based common BC for source, target, and
styled source inputs. Inputs having search image of size 3× 384× 384 template
image of size 3×192×192 are passed to BC for feature extraction. The extracted
features have sizes of 1024× 24× 24 and 1024× 12× 12 for search and template
inputs.
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3.2 Style Transfer Component

We used Wallis Style Transfer [31,32] for static style transfer of the target domain
night image to the source domain day image. It works by blending the style image
over the content image as shown in 3. For source image Is, target image It, target
styled source image is produced using following equation :

Iw = w[σ(It)(
Is − μ(Is)

σ(Is)
) + μ(It)] + (1− w)Is (1)

Here, w is the weight parameter, μ is the mean, and σ is the variance. The
style source image Iw with the same annotation is used for model training and
extracting domain invariant features. We used w = 1 in experimentation for a
complete nighttime style transfer.

Fig. 3. Visualization of style transfer. Here daytime image is transformed into night-
styled image with day content.

3.3 Reconstruction Component

Reconstruction Component (RC) uses multitask learning which helps to learn a
common representation of the domains and to attain input-level domain adap-
tation through reconstruction. Reconstruction Component consists of trans-
posed convolution-based upsampling with a resolution module. It takes features
extracted by BC and reconstructs the original passed inputs. RC takes input
shapes of 1024× 32× 32 and 1024× 16× 16 for search and template input and
produces a reconstructed output of shape 3× 384× 384 and 3× 192× 192.

3.4 Tracker Head

Tracker Head (TH) consists of classification and regression branches for object
presence identification and bounding box detection. TH takes feature extracted
by BC with the shape of 1024 × 32 × 32 and 1024 × 16 × 16 for search and
template inputs. The outputs of TH are used for the calculation of tracking and
classification losses.
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3.5 Domain Discriminators

Domain Discriminators (DD) distinguished source and target at the feature
and reconstructed output levels. DD enables feature and input level adaptation
between the source and target domain and helps in domain invariant feature
representation. DD consists of two discriminators (DD1, DD2) for feature and
reconstructed outputs. DD1 takes domain features extracted by BC of shape
1024 × 32 × 32 and 1024 × 16 × 16 for search and template image and pro-
duce domain classification output. DD2 used output generated by RC of shape
3 × 192 × 192 and 3 × 384 × 384 for template and search inputs to generate
classification output.

3.6 Style Discriminators

Style Discriminators (SD) differentiate between styled source and target at the
feature and reconstructed input levels. SD attains feature and input level adap-
tation and minimizes the difference between target-styled source domain inputs
with target domain inputs. SD contains two style discriminators (SD1, SD2).
SD1 took BC extracted features for template and search inputs having the shape
of 1024× 32× 32 and 1024× 16× 16. SD2 utilized RC outputs of template and
search inputs with shapes of 3× 192× 192 and 3× 384× 384 for style nonstyle
classification.

3.7 Loss Function

The total loss (L) for the network in one iteration can be calculated as follows:

L = Lstra + αLsrec + β(Lwtra + αLwrec) + αLtrec + λLadv (2)

Here Lstra and Lwtra are tracking loss for source and styled source inputs, which
includes classification and regression loss. Lsrec, Lwrec, Ltrec are reconstruction
losses on the source, styled source and target inputs. Ladv is adverserial loss and
loss weight parameters are represented by α, β, and λ.

4 Implementation Details

4.1 Dataset

This work uses the GOT [33] dataset as a source domain dataset. For the tar-
get domain, NAT2021 benchmark [21] train set (NAT2021-train) is used without
the labels. Performance evaluation is done on NAT2021-test and NAT2021-L-test
datasets. NAT2021-train dataset contains 1400 videos with 276081 frames with-
out annotations. NAT2021-test and NAT2021-L-test datasets have 180, 23 videos
and 140815, 53564 frames, respectively. NAT2021-L-test involves much longer
videos and is used for the long-term tracking evaluation of the trackers. Long-
term tracking is a typical scene in visual object tracking and involves many more
challenging attributes. RADA performance comparisons are also made on three
other nighttime datasets(UAVDark70 [10], UAVDark135 [16], DarkTrack2021
[15]) without target adaptation to validate its efficacy.
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4.2 Hyperparameters and Evaluation Metrics

The model is implemented in the PyTorch framework and experiments are run on
the system with a V100 (32 GB) graphics card. Models are trained using the SGD
with momentum optimizer, with the initial learning rate set to γ = 0.0015 and
the momentum set to μ = 0.9. The learning rate is scheduled logarithmically over
the number of trained epochs, starting from 0.0015 to 0.00015. The discriminator
is trained using the Adam optimizer with the initial decay rates set to β1 = 0.9
and β2 = 0.99. The base learning rate is set at 0.005. The entire training is
done for a total of 30 epochs. For evaluation, we use the One Pass Evaluation
style. We use the same metrics as the baseline tracker for comparison: success
rate, precision, and normalized precision. RADA has a computation cost similar
to the base backbone model [7] (MACS: 183.89M, FLOPS: 127.81 G, FPS: 27
on RTX 8000). During test time, RADA does not utilize additional modules
(reconstruction component, style transfer, and style and domain discriminators).

Table 1. Numerical comparative results for the test set of NAT2021 dataset. The best
results are shown in red color, and the second-best results are marked in blue color.

Source Dataset Success Rate N. Precision Precision

RADA (ours) GOT [33] 0.567 0.691 0.737
PDST [22] GOT [33], LaSOT [34] 0.547 0.665 0.76
MT-CAR [29] GOT [33], VID [35] 0.507 0.592 0.72
MT-BAN [29] GOT [33], VID [35] 0.494 0.562 0.699
UDAT-CAR [21] GOT [33], VID [35] 0.483 0.564 0.687
UDAT-BAN [21] GOT [33], VID [35] 0.469 0.546 0.694
SiamCAR [5] GOT [33], VID [35] 0.453 0.542 0.663
SiamBAN [3] GOT [33], VID [35] 0.437 0.509 0.647

Table 2. Numerical comparative results for the test set of NAT2021-L dataset. The
best results are shown in red color, and the second-best results are marked in blue
color.

Source Dataset Success Rate N. Precision Precision

RADA (ours) GOT [33] 0.565 0.667 0.722
PDST [22] GOT [33], LaSOT [34] 0.507 0.599 0.649
MT-BAN [29] GOT [33], VID [35] 0.399 0.455 0.556
MT-CAR [29] GOT [33], VID [35] 0.39 0.442 0.543
SFDT [26] GOT [33], VID [35] 0.401 0.524
UDAT-CAR [21] GOT [33], VID [35] 0.376 0.413 0.506
UDAT-BAN [21] GOT [33], VID [35] 0.352 0.406 0.496
SiamCAR [5] GOT [33], VID [35] 0.330 0.375 0.477
SiamBAN [3] GOT [33], VID [35] 0.316 0.366 0.464
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Table 3. Numerical comparative results for the other datasets. The best results are
shown in red color, and the second-best results are marked in blue color. Here, SR is
success rate, NP is normalized precision, P is precision and AO is average of overlap
rates. * represents online server evaluation.

Methods UAVDark135 UAVDark70 DarkTrack2021 Source*
SR NP P SR NP P SR NP P AO SR.5 SR.75

RADA (ours) 0.615 0.744 0.756 0.615 0.756 0.765 0.567 0.681 0.695 0.762 0.851 0.762
PDST [22] 0.607 0.729 0.737 0.597 0.738 0.761 - - - - - -
MT-CAR [29] - - - 0.501 0.595 0.682 - - - - - -
DCPT [12] 0.577 0.710 0.717 - - - 0.540 0.667 0.646 - - -
Dimp50 SCT [15] 0.562 0.710 0.717 - - - 0.521 0.677 0.633 - - -
UDAT-CAR [21] 0.490 0.617 0.612 0.512 0.592 0.695 0.470 0.570 0.600 0.503 0.576 0.338
HighlightNet [17] 0.424 - 0.539 0.434 0.526 0.616 - - - - - -
SAM-DA [23] - - - - - - 0.454 0.529 0.592 - - -
MixViT-L [9] - - - - - - - - - 0.757 0.853 0.751

Table 4. Ablation study for network components on NAT2021 test set.

Success Rate N. Precision Precision

BC+SC+RC1+RC2+DD+SD 0.561 0.682 0.721
BC+SC+RC1+RC2+DD 0.552 0.669 0.715

BC+SC+RC1+RC2 0.548 0.667 0.710
BC+SC+RC1 0.546 0.661 0.708

BC+SC 0.545 0.658 0.706
BC 0.532 0.625 0.681

5 Performance Comparison

5.1 Numerical Comparison

NAT2021-Test. A performance comparison of our model with other recent
work is presented in Table 1. RADA got the highest success rate and normalized
precision values of 0.567 and 0.691. For precision, RADA achieved the second-
best result of 0.737, preceded by PDST [22] results of 0.76. The success, nor-
malized precision, and precision plot comparisons of the different trackers on the
NAT2021 test dataset are shown in Fig. 6, Fig. 7, and Fig. 8. RADA raises the
previous results of success rate and normalized precision by 3.7% and 3.9%.

NAT2021-L-Test. Table 2 depicted the comparative results on a large sequence
video dataset.RADA significantly outperforms the baseline. In success rate,
RADA (0.565) raises the previous result [22] (0.507) by 11.4%. In precision,
RADA (0.722) raises the previous result [22] (0.649) by 11.2%. In normalized
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Fig. 4. Visual comparison of results of RADA and baselines on the test set of NAT2021
dataset. Here, GT is ground truth, RD is RADA, UC is UDAT-CAR, UB is UDAT-
BAN, SC is SiamCAR, and SB is SiamBAN.

Fig. 5. Visual comparison of results of RADA and baselines on the test set of NAT2021-
L dataset. Here, GT is ground truth, RD is RADA, UC is UDAT-CAR, UB is UDAT-
BAN, SC is SiamCAR, and SB is SiamBAN.
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Table 5. Ablation study for network components on NAT2021-L test set.

Success Rate N. Precision Precision

BC+SC+RC1+RC2+DD+SD 0.532 0.625 0.681
BC+SC+RC1+RC2+DD 0.524 0.613 0.681
BC+SC+RC1+RC2 0.508 0.599 0.653
BC+SC+RC1 0.502 0.587 0.642
BC+SC 0.505 0.599 0.633
BC 0.491 0.564 0.621

Table 6. Ablation study for loss hyperparameter on NAT2021 test set.

α β Success Rate N. Precision Precision

0 0 0.532 0.625 0.681
0 0.25 0.545 0.658 0.706
0 0.5 0.541 0.652 0.691
0 0.75 0.539 0.649 0.689
0 1 0.537 0.641 0.681
0.25 0.25 0.548 0.667 0.710
0.25 0.5 0.546 0.661 0.706

Table 7. Ablation study for loss hyperparameter on NAT2021-L test set.

α β Success Rate N. Precision Precision

0 0 0.491 0.564 0.621
0 0.25 0.505 0.599 0.633
0 0.5 0.501 0.587 0.638
0 0.75 0.5 0.579 0.634
0 1 0.49 0.569 0.627
0.25 0.25 0.508 0.599 0.653
0.25 0.5 0.506 0.587 0.651

precision, RADA (0.667) improves the previous result [22] (0.599) by 11.4%.
The success, normalized precision, and precision plot comparisons of the dif-
ferent trackers on the NAT2021L test dataset are shown in Fig. 6, Fig. 7, and
Fig. 8.

Other Datasets. RADA performance is also evaluated on three nighttime
(UAVDark70 [10], UAVDark135 [16], DarkTrack2021 [15]) and one source (GOT
[33]) datasets and qualitative results are presented in Table 3. For other night-
time datasets, RADA attained better results compared to other recent methods
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Fig. 6. Success plots of several trackers on the test sets of NAT2021 and NAT2021-L
datasets.

Fig. 7. Normalized precision plots of several trackers on the test sets of NAT2021 and
NAT2021-L datasets.

Fig. 8. Precision plots of several trackers on the test sets of NAT2021 and NAT2021L
datasets.

[12,15,17,22,23,29]. RADA also achieved better results on the source dataset
compared to baseline methods [9,21].

5.2 Qualitative Comparison

We illustrate some instances from both datasets where our tracker is able to
correctly identify the target object and locate it while the other tracker starts
making arbitrary bounding boxes or tracking a different object altogether. For
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Fig. 9. Visual comparison of ablation study on test sets of NAT2021 and NAT2021-L
datasets.

visual comparisons, baseline results of UDAT-CAR [21], UDAT-BAN [21], Siam-
CAR [5], and SiamBAN [3] are used. Figure 4 visualized results for NAT2021-test
datasets. Visual comparison for NAT2021-L-test dataset is shown in Fig. 5.

6 Ablation Study

To demonstrate the effectiveness of the various components of RADA and to
find optimal parameter values, extensive ablation comparisons are made on the
NAT2021-test and NAT2021L-test datasets. All ablation study experiments are
run for 10 epochs. The best result configuration is retrained for 30 epochs to
produce the final results presented in Table 1 and Table 2.

6.1 Ablation for Network Components

Table 4 and Table 5 presented network ablation studies for RADA. The initial
results of BC are taken as a baseline for comparison. The addition of the Style
transfer Component (SC) improved the qualitative results for both datasets.
Including a reconstruction component for the source domain and styled source
inputs (RC1) further improved the results. We extended the reconstruction com-
ponent for (RC2) for target input, which further enhanced the results. The
addition of adversarial components (style and domain discriminators) signif-
icantly improved the previous results produced by BC+SC+RC1+RC2. The
visual results of this ablation study are shown in Fig. 9.
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6.2 Ablation for Loss Parameters

Table 6 and Table 7 depicted the ablation results for loss weight parameters of α
and β. Initially, β = 0 results are produced with α = 0. Experiments are done
with increments of 0.25 in both values. From these experiments, we concluded
that the best results are achieved using values of 0.25 and 0.25 for α and β.

7 Conclusion

This work proposes reconstruction component-based domain adaptation, which
results in input-level and feature-level adaptation. The style transfer component
helped in learning target domain representation without generating noisy pseudo
levels. Our proposed framework does not require an external nighttime image
enhancement model and can produce good results without this step. Detailed
qualitative and quantitative evaluations are presented for the proposed model.
The results are validated on six benchmark datasets and compared with other
recent works.
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Abstract. Outlier detection has become essential in various fields such as defense
monitoring, fiscal anomaly identification, and business industries. Nevertheless,
outlier detection methods based on distance or density suffer from certain limita-
tions. The performance of traditional outlier detection algorithms is susceptible to
various factors such as data point density, shape, and other factors. To address these
challenges, we propose an outlier detection algorithm, which utilizes symmetry
ratio and distance ratio to determine the outlier degree of the data point. Moreover,
it automatically finds the threshold of outlier degree using the interquartile range
method. Experimental results on synthetic and UCI real datasets demonstrate the
excellent performance of our algorithm in detecting outliers.

Keywords: Outlier Detection · Outlier Degree · K-Nearest Neighbors ·
Interquartile Range

1 Introduction

An outlier refers to data points that exhibit significant deviations from other observations
or are generated through differentmechanisms [1, 2]. Outliers can arise from factors such
asmeasurement errors, data transmission errors, and other sources of variability. Outliers
can have an impact on the results of data analysis, potentially leading to erroneous
conclusions. Therefore, accurately identifying outliers during the data preprocessing
stage is crucial for improving the accuracy and reliability of data analysis.

Outlier detection is an important topic in the field of datamining research,which aims
to finddata objects that are different fromordinary data points [3, 4].Outlier detection can
be classified into supervised and unsupervised learning approaches based on whether it
requires supervision or not [5]. In the supervised scenario, the model predicts the labels
of unseen data by learning the difference between normal and abnormal data points,
which requires a large amount of accurately labeled data (both normal and abnormal
instances). In contrast, unsupervised learning does not depend on labeled information,
and numerous recent outlier detection algorithms have been specifically designed for
unsupervised learning scenarios [6]. In this paper, we present a novel outlier detection
algorithm that leverages the symmetry ratio and distance ratio of data points to quantify
their outlier degree. The interquartile range method (IQR) is employed to autonomously
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determine the threshold for the outlier degree, enabling the identification of data points
exceeding this threshold as outliers. In summary, the contributions of this paper are as
follows:

• We propose an unsupervised outlier detection algorithm.
• We introduce the concepts of symmetry ratio and distance ratio to represent the outlier

degree of data points.
• The IQR method is used to automatically determine the threshold for the outlier

degree.
• Our algorithm is not affected by the density and shape of the dataset.

The remainder of this paper is organized as follows. Section 2 introduces the pro-
posed outlier detection algorithm in detail. Section 3 provides the time complexity anal-
ysis. Section 4 provides experimental results and analysis on various synthetic and real
datasets. Finally, we conclude the paper in Sect. 5.

2 Method

This section provides a detailed description of outlier detection algorithm. We propose
the outlier detection algorithm, which consists of three main phases: calculate symmetry
ratio, calculate distance ratio, and automatic threshold acquisition.

2.1 Symmetry Ratio

Definition 1 (kNN). For a dataset Xn×d = {x1, x2, x3, . . . , xN } consisting of N data
points with d dimensions, the k-nearest neighbors (kNN) of xi, denoted as kNN (xi), are
defined as follows:

kNN (xi) = {xj|d(xi, xj) ≤ d(xi,NNk(xi))} (1)

where NNk(xi) is the kth nearest neighbor of xi.

Definition 2 (Symmetric point). Assuming xj ∈ kNN (xi), the symmetric point of xj
relative to xi, denoted as SYM(xj |xi), is defined as:

SYM (xj|xi) = 2 · xi − xj (2)

Definition 3 (Symmetry Ratio). The symmetry ratio of a data point xi is defined as:

Rs(xi) =

k∑

j=1
d(xj,NN1(xj))

k∑

j=1
d(xi, xj)

(3)

where xj ∈ kNN (xi), xj = SYM (xj|xi).
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(a)    (b)

Fig. 1. Two examples of symmetry ratio, where k = 3: (a) The data point x is located in the
interior, (b) The data point x is an outlier. (Color figure online)

As shown in Fig. 1(a), the data points x1,x2, and x3 are k-nearest neighbors of x.
We calculate the symmetric points for x1, x2, and x3 based on Eq. (2), represented by
SYM(x1|x), SYM(x2|x), and SYM(x3|x) respectively. These symmetric points are indi-
cated by red points. The points connected to the symmetric points by green lines are the
nearest neighbors of the symmetric points. Therefore, The symmetry ratio of data point
x is the ratio of the total length of the three green lines to the total length of the three
black lines.

Next, we discuss the data point x located on the edge in Fig. 1(b). As x is an outlier,
it results in x being the nearest neighbor for the three symmetric points. Consequently,
the total length of the three green lines is equal to the total length of the three black lines.
The symmetry ratio of x reaches its maximum value of 1. The analysis indicates that the
closer the symmetry ratio of a data point is to 1, the more likely it is to be an outlier.

2.2 Distance Ratio

Definition 4 (Distance Ratio). The distance ratio of a data point xi is defined as:

Rd (xi) =

k∑

j=1

k∑

m=1
d(xj, x

j
m)

k ·
k∑

j=1
d(xi, xj)

(4)

where xj ∈ kNN (xi), x
j
m ∈ kNN (xj).

Next, we further illustrate the distance ratio. In Fig. 2, the data point x1 is connected
to its three nearest neighbors using blue lines, while the neighbors of x1 are connected to
their three nearest neighbors using red dashed lines. According to Eq. (4), the distance
ratio is defined as the ratio between the total length of the red dashed lines and the total
length of the blue lines multiplied by the factor k. Since x1 is not an outlier, there is a
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relatively small difference in lengths between the blue and red lines. Therefore,Rd (x1)
approaches 1. Similarly, for the data point x2 and its nearest neighbors, colored lines
are used for connection. As x2 is an outlier, the length of the blue line is significantly
greater than that of the red lines. Thus, we obtain Rd (x2) less than 1. Based on the
aforementioned analysis, we can draw the following conclusion: when the distance ratio
of a data point is less than 1, it is more likely to be considered as an outlier.

Fig. 2. An example of calculating the distance ratio with k = 3. (Color figure online)

Definition 5 (Outlier Degree). The outlier degree of the data point xi is defined as:

O(xi) = (Rs(xi) − Rd (xi))NORM (5)

where NORM represents the normalization process. The greater the value of O(xi), the
higher the likelihood of xi being an outlier.

The outlier degree is determined by the symmetry ratio and distance ratio of data
points, which reflect the relative values of the neighboring relationships among the
data points. These ratios remain unaffected by the density and shape of the data point
distribution. Consequently, the outlier degree remains independent of the density and
shape of the data point distribution.

2.3 Outlier Degree Threshold

In this section, we utilize the interquartile range (IQR)method to determine the threshold
for filtering outliers. The IQR is calculated as the difference between the 75th percentile
(Q3) and the 25th percentile (Q1) of the data. Assuming the outlier degrees of the data
points in the dataset are sorted in ascending order, we can obtain an ordered sequence.
Initially, Q1 and Q3 are computed using Eqs. (6) and (7). Then, the interquartile range
is calculated using Eq. (8). Lastly, the low bound lb and up bound ub are determined by
Eqs. (10) and (11). ub can be regarded as the outlier degree threshold. When the outlier
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degree value of a data point is greater than the upper bound, the data point is considered
an outlier.

Q1 = Oi|i = round(N × 0.25) (6)

Q3 = Oi|i = round(N × 0.75) (7)

IQR = Q3 − Q1 (8)

lb = Q1 − r × IQR (9)

ub = Q3 + r × IQR (10)

where r is a parameter used to determine the range of outliers.
Tukey’s method for outlier detection sets r to 1.5 [7]. However, there is no statistical

basis for this specific value, and it can be adjusted based on the specific application [8].
We will discuss in detail the selection of the parameter r in Sect. 3.

Figure 3 provides an example of calculating the IQR. In this example, we used 16
samples, which are sorted in ascending order. Q1 and Q3 are calculated as 0.35 and
0.72 respectively, resulting in an IQR of 0.37. By substituting r = 1.5 into Eq. (10),
ub is determined as 1.275. Since the values 2.07 and 2.25 are greater than ub, they are
considered as outliers and are highlighted as red numbers in Fig. 3.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data 0.10 0.15 0.30 0.35 0.40 0.42 0.45 0.50 0.57 0.60 0.68 0.72 0.81 0.87 2.07 2.25

1 5) 352.061(| 0.iQ i round 3 2) 757.061(| 0.iQ i round= = = = = = = =

Fig. 3. An example of calculating IQR. (Color figure online)
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Here, we provide outlier detection algorithm in detail.

Algorithm 1 Outlier Detection Algorithm

Input: Data set 1 2{ , , , }NX x x x , k , r

Output: Outlier_points

Begin 

1. Calculate the distances between all data point pairs and ( )ikNN x  for each 

point; 

2.  For each data point ix

3.      For each point xj in kNN(xi) 

4.          Calculate the symmetric point of xj relative to xi according to Eq. (2);  

5.      End For  

6.      Calculate the symmetry ratio ( )s ixR  of xi according to Eq. (3); 

7.      Calculate the distance ratio ( )d ixR  of xi according to Eq. (4); 

8.      Calculate the outlier degree ( )ixO  of xi according to Eq. (5); 

9. End For

10. Normalize the outlier degree of all data points; 

11. Calculate the upper bound ub according to Eq. (6)-Eq. (10); 

12. For each data point ix

13. If ( )ix ubO

14.         _ _ { }iOutlier points Outlier points x ; 

15. End If

16. End For

End

3 Time Complexity

Below, we analyze the time complexity of the outlier detection algorithm.
Line 1: We can use a kd-tree to compute the k-nearest neighbors for each data point,

which requires a time complexity of O(n log n).
Lines 2–11: It takes approximately O(kn) time to calculate the outlier degree for

each data point.
Lines 12–16: It requires O(n) time to determine if each data point belongs to an

outlier.
In general, k is smaller than log n. Therefore, the proposed algorithm requires

approximately O(n log n) time.
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4 Experimental Results

4.1 Experimental Setup

We conducted a series of experiments to validate the performance of our algorithm.
As shown in Table 1, our algorithm was tested on a total of 20 datasets, including 4
two-dimensional synthetic datasets [9] and 16 real datasets obtained from UCI [10].

Table 1. Detail of datasets.

No Datasets Size Dimensionality Description

1 DS1 788 2 Include seven approximately circular
clusters

2 DS2 1268 2 Include four linear clusters

3 DS3 1427 2 Include one curved cluster, three small
spherical clusters, and global noise

4 DS4 644 2 Include three curved clusters and one
spherical cluster

5 Banknote 1372 4 Features extracted from genuine and forged
banknote images

6 Pendigits 10992 16 Pre-processed features derived from
handwritten digits

7 Rice 3810 7 Measurements of rice grain features for
grain quality assessment

8 WDBC 569 30 Features computed from digitized images of
breast masses for breast cancer classification

9 Wine 178 13 Chemical analysis results of wines

10 Wifilocation 2000 7 Wi-Fi signal strength measurements for
indoor positioning and localization

11 Ionosphere 351 34 Radar signal data collected from the
ionosphere

12 Spambase 4610 57 Email features for spam email classification

13 SyntheticControl 600 60 Synthetic control charts for time series
anomaly detection

14 German 1000 20 Credit information of individuals for credit
risk assessment

15 Vertebral 310 6 Measurements taken from patients’ X-ray
images of the spine for spinal diagnosis and
classification

(continued)
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Table 1. (continued)

No Datasets Size Dimensionality Description

16 Breast 286 9 Features extracted from mammogram
images for breast cancer diagnosis and
classification

17 Yeast 1484 8 Protein localization sites in yeast cells

18 Userknowledge 403 5 User ratings and preferences for different
knowledge-based systems

19 Phishing 1353 9 Features extracted from URLs to detect
phishing websites

20 CMC 1473 9 Socio-demographic information of married
women and their contraceptive method
choices

In addition, we utilized four clustering algorithms in our experiments: DPC [11],
SMKNN [12], SMMP [13], and CTCEHC [14]. Among these algorithms, DPC is
density-based, while the remaining three are graph-based methods. Furthermore, our
comparative analysis included four additional denoising algorithms: AutoEncoder [15],
IForest [16], LOF [17], and MGBTAI [18]. Each of these algorithms employs a distinct
approach for outlier detection:

1. AutoEncoder: This algorithm identifies outliers by analyzing the reconstruction errors
generated during the encoding-decoding process.

2. IForest: IForest utilizes a forest of trees and random feature selection to effectively
isolate outliers.

3. LOF: LOF determines outliers by considering data point densities and evaluating the
local neighborhood density of each data point.

4. MGBTAI: MGBTAI utilizes a multi-generational binary tree structure to identify
outliers in the data.

The aforementioned 4 comparative denoising algorithms and 4 clustering algorithms
were all executed with default parameters. In our proposed algorithm, the k value for
k-nearest neighbors was set to 10, and the r value was set to 0.5.

All experiments were conducted on a computer running the Windows 11 oper-
ating system, equipped with an AMD R7-6800H CPU and 16 GB of RAM. The
implementation of all algorithms was performed using MATLAB R2022a.

We utilized three metrics, namely Precision (PR), Recall (RE), and F1-Measure, to
evaluate the clustering performance [19].

PR = TP

TP + FP
(11)

RE = TP

TP + FN
(12)
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F = 2 · PR · RE
PR + RE

(13)

4.2 2D Synthetic Dataset Experiments

The four comparative denoising algorithms and our proposed algorithm were tested on
four synthetic datasets. The results on the 2D synthetic dataset are shown in Fig. 4.
Normal points are represented by blue dots, while outliers are represented by red dots.

FromFig. 4, it can be observed that AutoEncodermisclassifies some normal points as
noise in DS1 and DS3. AutoEncoder, IForest, and LOF, these three denoising algorithms
fail to identify the global noise present in DS3. In contrast, both MGBTAI and our
algorithm exhibit good performance on DS3, as they are capable of detecting the global
noise. However, MGBTAI misclassifies some normal points in DS1 and DS2 as noise.
Overall, our proposed algorithm accurately identifies the noise in all four datasets.

Fig. 4. The Denoising Results on the 2D Synthetic Dataset. (Color figure online)

4.3 Real Dataset Experiments

We conducted clustering experiments on six real datasets using four clustering algo-
rithms. These six datasets include Banknote, Pendigits, Rice, WDBC,Wine, andWifilo-
cation datasets. The experimental results are presented in Table 2 and Table 3, where
the optimal results are indicated in bold. In Table 2 and Table 3, “Origin” indicates
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clustering performed on the original dataset without any denoising. The remaining rows
(“AutoEncoder,” “IForest,” “LOF,” “MGBTAI,” and “Proposed”) represent clustering
on the denoised dataset obtained by applying denoising algorithms. Noise points were
assigned to the cluster of their nearest normal points after clustering.

FromTable 2 andTable 3, it is evident that the clustering performance on the denoised
datasets is significantly better than that on the original datasets. Additionally, the cluster-
ing performance is not only influenced by the denoising process but also by the choice of
clustering algorithm. For instance, when applying our proposed algorithm for denoising
on the Banknote dataset, CTCEHC achieves an F1 score of 0.99. However, when using
SMKNN as the clustering algorithm, the F1 score drops to only 0.66. After applying
our proposed algorithm for denoising, the four clustering algorithms achieve favorable
results on most of the datasets.

To further validate the effectiveness of our proposed algorithm,we conducted cluster-
ing experiments on 10 additional real datasets. These 10 additional datasets are listed as
the last 10 entries in Table 1. The results are presented in Fig. 5. In Fig. 5, “DPC_0” rep-
resents clustering performed on the original dataset using the DPC algorithm. “DPC_1”
represents the denoising of the dataset first, followed by clustering the denoised dataset
using the DPC algorithm. The same interpretation applies to other algorithms with
numerical suffixes. From Fig. 5, it is evident that the clustering performance on the
denoised datasets outperforms that on the original datasets.

Table 2. Clustering results on Banknote, Pendigits, and Rice datasets.

Dataset Banknote Pendigits Rice

Metric PR RE F1 PR RE F1 PR RE F1

DPC Origin 0.82 0.77 0.79 0.70 0.69 0.70 0.91 0.90 0.91

AutoEncoder 0.58 0.58 0.58 0.58 0.68 0.63 0.91 0.91 0.91

IForest 0.98 0.98 0.98 0.71 0.69 0.70 0.91 0.91 0.91

LOF 0.98 0.98 0.98 0.71 0.69 0.70 0.91 0.91 0.91

MGBTAI 0.98 0.98 0.98 0.71 0.69 0.70 0.85 0.76 0.80

Proposed 0.98 0.98 0.98 0.71 0.69 0.70 0.91 0.91 0.91

SMKNN Origin 0.78 0.52 0.63 0.67 0.42 0.52 0.73 0.63 0.68

AutoEncoder 0.75 0.59 0.66 0.58 0.32 0.41 0.75 0.66 0.70

IForest 0.74 0.55 0.63 0.71 0.59 0.64 0.75 0.66 0.70

LOF 0.74 0.55 0.63 0.54 0.40 0.46 0.75 0.50 0.60

MGBTAI 0.75 0.59 0.66 0.64 0.50 0.56 0.71 0.69 0.70

Proposed 0.75 0.59 0.66 0.71 0.69 0.70 0.75 0.65 0.70

(continued)
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Table 2. (continued)

Dataset Banknote Pendigits Rice

Metric PR RE F1 PR RE F1 PR RE F1

SMMP Origin 0.75 0.59 0.66 0.89 0.81 0.85 0.77 0.75 0.76

AutoEncoder 0.75 0.59 0.66 0.85 0.74 0.79 0.82 0.77 0.79

IForest 0.75 0.59 0.66 0.84 0.81 0.83 0.80 0.80 0.80

LOF 0.27 0.45 0.33 0.85 0.74 0.79 0.54 0.54 0.54

MGBTAI 0.75 0.59 0.66 0.87 0.84 0.86 0.81 0.81 0.81

Proposed 0.75 0.59 0.66 0.87 0.84 0.86 0.53 0.53 0.53

CTCEHC Origin 0.91 0.91 0.91 0.69 0.61 0.65 0.70 0.61 0.65

AutoEncoder 0.88 0.83 0.86 0.76 0.72 0.74 0.71 0.62 0.66

IForest 0.85 0.73 0.79 0.85 0.84 0.84 0.70 0.61 0.65

LOF 0.81 0.75 0.78 0.79 0.78 0.79 0.71 0.61 0.66

MGBTAI 0.85 0.74 0.79 0.85 0.81 0.83 0.90 0.90 0.90

Proposed 0.99 0.99 0.99 0.89 0.87 0.88 0.90 0.90 0.90

Table 3. Clustering results on WDBC, Wine, and Wifilocation datasets.

Dataset WDBC Wine Wifilocation

Metric PR RE F1 PR RE F1 PR RE F1

DPC Origin 0.31 0.47 0.37 0.90 0.90 0.90 0.62 0.69 0.65

AutoEncoder 0.31 0.47 0.37 0.88 0.88 0.88 0.85 0.84 0.84

IForest 0.34 0.46 0.39 0.90 0.90 0.90 0.86 0.85 0.85

LOF 0.33 0.46 0.39 0.83 0.82 0.82 0.86 0.85 0.86

MGBTAI 0.33 0.46 0.38 0.82 0.80 0.81 0.62 0.68 0.65

Proposed 0.42 0.48 0.45 0.90 0.91 0.90 0.86 0.85 0.86

SMKNN Origin 0.92 0.90 0.91 0.90 0.91 0.91 0.58 0.52 0.55

AutoEncoder 0.92 0.90 0.91 0.83 0.78 0.80 0.87 0.76 0.81

IForest 0.94 0.91 0.93 0.91 0.91 0.91 0.87 0.76 0.81

LOF 0.94 0.91 0.92 0.91 0.91 0.91 0.83 0.52 0.64

MGBTAI 0.90 0.88 0.89 0.81 0.74 0.77 0.87 0.76 0.81

Proposed 0.92 0.85 0.88 0.91 0.92 0.92 0.87 0.76 0.81

(continued)
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Table 3. (continued)

Dataset WDBC Wine Wifilocation

Metric PR RE F1 PR RE F1 PR RE F1

SMMP Origin 0.90 0.79 0.84 0.90 0.91 0.91 0.87 0.76 0.81

AutoEncoder 0.90 0.80 0.85 0.91 0.92 0.91 0.94 0.94 0.94

IForest 0.91 0.81 0.86 0.92 0.93 0.93 0.94 0.94 0.94

LOF 0.57 0.54 0.56 0.92 0.93 0.93 0.94 0.93 0.94

MGBTAI 0.91 0.81 0.86 0.89 0.89 0.89 0.87 0.76 0.81

Proposed 0.57 0.54 0.55 0.93 0.94 0.93 0.94 0.94 0.94

CTCEHC Origin 0.91 0.82 0.86 0.83 0.81 0.82 0.90 0.85 0.87

AutoEncoder 0.94 0.91 0.92 0.78 0.74 0.76 0.95 0.94 0.95

IForest 0.94 0.91 0.92 0.78 0.75 0.76 0.90 0.85 0.88

LOF 0.93 0.91 0.92 0.84 0.81 0.83 0.95 0.94 0.95

MGBTAI 0.95 0.93 0.94 0.91 0.92 0.92 0.95 0.94 0.94

Proposed 0.91 0.90 0.90 0.84 0.81 0.83 0.90 0.90 0.90

Fig. 5. Clustering results on 10 real datasets using our algorithm and the DPC algorithm.

4.4 Parameter Analysis

The parameters involved in our algorithm are k and r. The value of k in the k-nearest
neighbors is generally set to 10. Here, we focus on analyzing the impact of different
r values on the clustering performance. Figure 6 illustrates the F1 scores of the DPC
algorithm on six datasets as r varies from 0 to 3. From Fig. 6, it can be observed that as
r increases, the F1 scores remain relatively stable. The optimal performance is achieved
when r is set to 0.5 for all six datasets. Therefore, we choose r as 0.5 in our algorithm.
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Fig. 6. The effects of parameter r on clustering results.

5 Conclusions

In conclusion, this study presents a novel outlier detection algorithm that addresses the
limitations of traditional methods based on distance or density measures. By introducing
the concepts of symmetry ratio and distance ratio, our algorithm accurately quantifies
the outlier degree of data points. Moreover, the interquartile range method is utilized
to automatically determine the threshold for the outlier degree. Experimental results on
synthetic and UCI real datasets demonstrate the excellent performance of our algorithm
in detecting outliers. It is observed that our algorithm remains robust and unaffected
by factors such as data point density and shape. We plan to conduct research on outlier
detection algorithms that are tailored for diverse data types and subsequently apply these
algorithms to datasets within their respective domains.
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Abstract. Graph Autoencoders are a generalisation of Autoencoders
in which the elements are structured as graphs. Since now, both models
have been applied separately. This paper introduces AE+GAE, a new
model for graph regression that combines both. Graph Autoencoders
assume node attributes are related to their local structure. Neverthe-
less, in some applications, not all the node attributes have the property
of being dependent of their local structure. Our method learns which
attributes do have this property and which ones do not. This is done
by feeding all the attributes to both models and combining their latent
domain by a neural network. AE+GAE has been applied to predict the
Energy, pIC50 and the binding affinity of drugs, which are represented as
attributed graphs but could be used in other fields as well. The method
demonstrates improved performance compared to other previously pre-
sented models.

Keywords: Graph regression · Graph Autoencoders · Graph Neural
Networks

1 Introduction

Graph Neural Networks (GNNs) [28] currently demonstrate remarkable achieve-
ments across various applications involving the classification or regression of
objects represented as attributed graphs. Examples include Graph Convolutional
Networks (GCN) [9], Graph Transformers [32], Graphorners [31], and GIN [30].
These models operate under the assumption of a connection between node fea-
tures and their connected nodes. A prevalent assumption is that connected nodes
exhibit similar features, as observed in Graph Convolutional Networks, often
associated with low pass filtering. In contrast, GIN is perceived as employing
high pass filtering. Therefore, across all these models, there exists an implicit
assumption of a relationship between node attributes and the local structure
[29].
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Existing models for predicting drug potency rely on portraying drugs as
graphs and employing a Graph Neural Network (GNN) as the underlying archi-
tecture. However, there is a lack of evidence demonstrating a consistent rela-
tionship between all atom features (node attributes) and the local structure.
For instance, there is no observed connection between the atom type (Nitrogen,
Oxygen, etc.) and a propensity to be linked to specific other atom types through
particular bonds. In such scenarios, it appears illogical to apply any established
GNNs that presuppose this type of relationship.

In this paper, we propose a GNN called AE+GAE, which combines an
Autoencoder (AE) and a Graph AutoEncoder (GAE) [9,11] with the aim of
automatically selecting if the node features have a local relation or they are inde-
pendent of their local structure. This model have been applied to drug potency
prediction achieving lower mean square error (MSE) than classical architectures
such as Neural Networks, GNNs, AEs or GAEs.

In the next section, we present a summarised overview of the models for graph
regression applied to drug prediction, which have been involved in this work. In
Sect. 3, we explain our approach in detail. In Sect. 4, we show the experimental
validation. In Sect. 5, we conclude the paper.

2 Models for Graph Regression

This section summarises some models for graph regression, which we have used
to compare our new proposal. We discern between the ones that the input is a
vector (Sect. 2.1) and the ones that the input is an attributed graph (Sect. 2.2).

Note that frequently, graphs are used to represent chemical compounds [25].
In these cases, the graph edit distance [20–24,26] was applied to define a dis-
tance between chemical compounds and usually, some methods were applied for
learning the edit costs [1–3,16,18]. Finally, regression or classification algorithms
were applied, depending on the problem at hand [6,17].

2.1 Models Based on Vectors

In these models, the adjacency matrix is not considered and only the vector
of node properties are used. Thus, the input is a vector X that each element
has the properties of a node. Note that attributed graphs in the database have
different number of nodes, but these models need the length of this vector to be
constant, then vectors that represent the graphs are enlarged to have all of them
the same length n.

Neural Networks. A classical and well known neural network (NN) is applied
for regression. The input is X, there are several fully-connected layers with the
sigmoid function and the last one is a read-out with a linear function.
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Autoencoders. An AutoEncoder, AE, is a particular class of NN that is
employed in machine learning to capture the most basic representations of an
entity. To achieve this, it is trained to reconstruct the input data after having
generated an intermediate data called latent space [7,10]. An AE consists of two
components: an encoder that converts the input space into a latent space, Zsem ,
and a decoder that converts the lower-dimensional representation back to the
original input space. Both encoders and decoders include non-linear activation
functions. An unsupervised learning algorithm is used since the loss function is
based on minimising the difference between the input data X and the generated
data X̂.

When this process is finished, a fitting model is trained to deduce the global
properties, such as a simple regression or a NN, given the input Zsem . Figure 1
shows this architecture.

Fig. 1. Regression model based on an AE. Input: Node features X. Zsem is the latent
domain. The model reconstructs the node features X̂

2.2 Structured Models

These models not only consider the node properties but the existence of binary
relations between them. In this way, the input moves from a classical vector to
an attributed graph. Equally than the previous models, node properties are rep-
resented by a vector X and they are seen as the node features. Binary relations
between atoms are represented by a graph adjacency matrix A. Thus, we have
the element we want to obtain its global properties represented as the graph
G(X,A).

Specifically, X ∈ R
n×f is a matrix of size n × f , with n being the number

of nodes and f being the number of attributes or node features. The adjacency
matrix A ∈ R

n×n is of size n×n, where the Ai,j = 1 if there is an edge between
the ith and the jth node and 0 otherwise. In the models we have analysed, graph’s
edges are unattributed and undirected, meaning that if there is an edge from
node i to node j, there is also an edge from node j to node i, which is represented
by the equality Ai,j = Aj,i.

Graph Neural Networks. The key idea behind Graph Neural Networks,
GNNs, is to use the information from the neighbouring nodes to update the
node’s representation. This can be accomplished by defining a convolution oper-
ation on the graph, which is typically implemented as a weighted sum of the
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representations of the neighbouring nodes. A learnable weight matrix is often
used to determine the weights of this sum. Usually, after this first step of involv-
ing nodes and edges, there is a fully-connected NN that is used to infer the
global properties. As commented in the introduction, several GNN architectures
have been defined, such as Graph Convolutional Networks [9], Graph Transform-
ers [32], Graphorners [31] or GIN [30]. Figure 2 shows the main scheme of this
architecture.

Fig. 2. Regression model based on a GNN. Input: Node features X and adjacency
matrix A. Zstr is the latent domain.

Graph Autoencoders. Graph AutoEncoders, GAEs are a generalisation of AE
in which the input is an attributed graphs instead of a matrix [9]. Just like the
classical AE, GAEs are composed of two main parts: an encoder and a decoder.
The encoder embeds input graphs through a GNN as defined in [9] returning a
latent matrix Zstr ∈ R

n×b with the graph’s unique properties. The number of
features in the latent space is b. Equation 1 shows the encoder’s function:

Zstr = GNN(X, A) (1)

And Eq. 2 and Eq. 3 show the decoder:

A∗ = σ
(
ZstrZ′

str

)
(2)

Â = binary (A∗) (3)

where σ (·) is the sigmoid function and the symbol ′ means the transposed
matrix. The output of σ (·) is a matrix of real numbers between 0 and 1 that
represents the probability of an existing edge in the reconstructed adjacency
matrix. Note that in order to deduce the final reconstructed matrix, a binary
function is applied to σ (·) to discern between non-edge and edge, i.e., zero and
one values. Figure 3 shows the main scheme of this architecture.

3 Proposed Approach: AE+GAE

The foundation of the Graph Autoencoder (GAE) approach relies on the premise
that knowledge associated with nodes is interconnected with the knowledge asso-
ciated with edges, and vice versa [29]. This assumption posits a relationship
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Fig. 3. Regression model based on a GAE. Input: Node features X and adjacency
matrix A. Zstr is the latent domain. The model reconstructs the adjacency matrix Â

between local structural patterns and node attributes, as discussed in Sect. 1.
However, not all node features adhere to this assumption. We have devised a
tailored model capable of handling graphs where nodes possess attributes influ-
enced by structural patterns, as well as those unrelated to edges. The architecture
is outlined in Sect. 3.1, while Sect. 3.2 provides insights into the learning process.

3.1 Architecture

Specifically, our approach involves inputting the graph matrices X and A into
a Graph Autoencoder (GAE) [9]. Simultaneously, we input the node attributes
(X) into an Autoencoder (AE) [12]. Both modules project their respective data
into a latent domain, which is then utilized in any fitting mechanism, such as
a Neural Network (NN). The architecture is illustrated in Fig. 4. In our exper-
iments, we utilized the GAE as defined in [8] and summarized in Sect. 2.2, and
the AE as defined in [12].

It is crucial to emphasise that both the Autoencoder (AE) and the Graph
Autoencoder (GAE) play a role in feature extraction during the encoding stage,
which is essential for subsequent prediction tasks. However, our model offers the
additional capability to reconstruct the entire graph (X̂ and Â), enabling it to
function as a graph generative model. This feature proves valuable for validating
the efficacy of the encoding process.

Fig. 4. Regression model based on a AE+GAE. Input: Node features X and adjacency
matrix A. Zstr and Zsem are the latent domains. The model reconstructs the node
features X̂ and the adjacency matrix Â.
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A comparable approach was outlined in [5]; however, in that instance, the
determination of which attributes were fed into each of the models was prede-
fined. In our approach, all features are employed in both models (AE and GAE),
and the model autonomously learns their relative importance. In [5], the choice
of which node attributes to utilise in the AE and GAE involved a validation pro-
cess. This process might involve training the model on various subsets of selected
attributes (randomly choosing attributes for each architecture) and identifying
the combination that yields the lowest loss for both. Alternatively, for specific
tasks, one could base this decision on domain knowledge of the problem at hand.

Our architecture’s latent space is constructed by merging the latent space of
the Autoencoder (AE), denoted as Zsem , with that of the Graph Autoencoder
(GAE), denoted as Zstr . Graphs inherently possess the property of being node-
position invariant, meaning their structure remains invariant to the order of
the nodes. To achieve this invariance, various aggregation methods such as sum,
mean, minimum, or maximum can be applied to each feature across all nodes. We
opted for the mean calculation as it imparts the architecture with independence
from the number of nodes, a process commonly referred to as global average
pooling. Consequently, given the zstr vectors, the rstr vector is generated by
computing their mean. Notably, the length of the vector rstr remains unaffected
by the number of nodes n, indicating that the system can be trained with graphs
featuring different node counts.

Ultimately, the combined vector comprising both rsem and rstr is employed
to feed into a regression module, aiming to ascertain the global property of the
graph.

3.2 The Learning Process

The learning process is achieved in two steps. In the first step, given all graphs
Gg of the learning database, where g = 1, ..., k, the weights of the AE and the
GAE are learned. This process is done by an unsupervised learning algorithm
such that the aim is to achieve the output graphs to be as much similar as
possible to the input graphs in the learning database.

The minimisation criterion is expressed in Eq. 4:

L =
1
k

k∑

g=1

Lg
str + Lg

sem (4)

where,

Lg
str =

1
n2

n∑

i=1

n∑

j=1

wposA
g
i,j logA∗g

i,j + wneg(1 − Ag
i,j)log(1 − A∗g

i,j) (5)

describes the loss function of reconstructing the adjacency matrix (edges of the
graph) per each graph Gg, where wpos and wneg are weights included to compen-
sate an unbalancing problem. Usually, there are less nodes connected by edges
than nodes non-connected by edges. Thus, the sum of these weights is 1 and
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they are defined as follows: wneg counts for the number of edges divided by n2.
And wpos = 1 − wneg.

Besides,

Lg
sem =

1
n

n∑

i=1

norm(Xg
i − X̂g

i ) (6)

describes the loss function of reconstructing the node attributes per each graph
Gg.

In the second step, given the returned latent vectors rg
sem and rg

str of all
graphs Gg in the training set, the regression weights are learned, where g =
1, ..., k. This is a supervised algorithm and several architectures can be used,
such as NN applied to regression problems or a simple linear regression.

4 Experimental Validation

We applied AE+GAE to predict the pIC50, the binding affinity and the chemical
energy in three drug databases. These are three related metrics to having the
ability to stop or reduce unwanted biological processes.

On the one hand, half maximal inhibitory concentration, IC50, is a mea-
sure of the potency of a substance in inhibiting a specific biological function.
IC50 is a quantitative measure that indicates how much of a particular drug
is needed to inhibit a given biological process by 50%. The biological compo-
nent could be an enzyme, cell or microorganism. The pIC50 is computed as
pIC50 = −log(IC50). Then, higher values of pIC50 indicate exponentially more
potent inhibitors. pIC50 values are typically expressed as molar concentration.

On the other hand, the binding affinity is the interaction of drugs to some
proteins. In general, high-affinity drug binding results from greater attractive
forces between the drug and its receptor while low-affinity drug binding involves
less attractive force. A drug that can bind to a protein might alter the function
of the protein and inhibit a given biological process.

Finally, the chemical energy is the energy of chemical substances that is
released when the substances undergo a chemical reaction and transform into
other substances.

In the following section, we comment the used databases. Then we summarise
the architecture setting in Sect. 4.2. After that, in Sect. 4.3 we show the mean
square error (MSE) of the predicted pIC50 and the binding affinity obtained by
our method and five other ones, which have been summarised in Sect. 2.

4.1 Databases

This section summarises the three used databases: QM7, SARS-CoV-2 M-pro
database and IEDB-nonamers database. They are publicly available at1 and
they have in common that graphs represent chemical compounds and also that
there is a global property per graph.
1 https://github.com/ASCLEPIUS-URV?tab=repositories.

https://github.com/ASCLEPIUS-URV?tab=repositories
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QM7 Database. This database is a small subset of a quantum mechanics
database2 composed of 7165 molecules of up to 23 atoms per compound. While
the original dataset contains information about different features, e.g., Coulomb
Matrices, atomisation energies, and atomic charge, only a selected set of the
molecular features was used for training the model. The dataset was preprocessed
to generate graphs where edges resembled the connected atoms in a molecule,
while the atomic energy, the Cartesian coordinates of the atoms and the number
of bonds per atom were registered as features of the node. Only the first 200
compounds were used for learning purposes and the rest of them were used for
testing. The compound energy is the global property.

SARS-CoV-2 M-Pro Database. The learning dataset consisted of 223 M-pro
crystallised structures bound to an inhibitor for which its pIC50 is known. The
learning set is composed of 160 compounds, 53 of them come from the well know
Protein Data Bank (PDB) database3 and the other 107 structures come from
FRAGALYSIS4 database. The test set is composed of 63 compounds. Although
PDB and FRAGALYSIS databases have a lot of components, we have only the
pIC50 from a biotechnological lab of few of them. This database was used in
drug discovery in [4]. The pIC50 is the global property.

For a given drug-protein pair, a singular attributed graph is generated, encap-
sulating the entire drug along with the atoms and bonds of the protein in prox-
imity to any drug atom forming a bond. The graph nodes represent atoms from
both the drug and the protein, while graph edges depict bonds present in both
entities. Node attributes encompass the three-dimensional positions of atoms,
their atomic numbers, the number of bonds, and electric charges. Edges lack
attributes and are present if any type of bond exists between atoms. To accom-
modate a compound’s maximum size of “drug + binding site atoms” at 146, all
generated graphs are extended to include 146 nodes. The pIC50 is considered a
global property in this context.

IEDB-Nonamers Database. The database provided here comprises a curated
set of samples sourced from the Immune Epitope Database (IEDB) [27]. IEDB is
a valuable repository for investigating distinct diseases, empowering researchers
to pinpoint and scrutinize epitopes pertinent to their specific research objectives
[13]. Additionally, it serves as a crucial resource for training and developing web
servers focused on predicting binding interactions between peptides and major
histocompatibility complex molecules [15].

This recently established database specifically incorporates peptides of length
9, referred to as nonamers, and focuses on the HLA-A02:01 allele. The selection
of HLA-A02:01 was deliberate, given its prevalence and polymorphism among
HLA-A molecules in both human populations and within the Immune Epitope

2 http://quantum-machine.org/datasets/.
3 https://www.rcsb.org.
4 https://fragalysis.diamond.ac.uk/viewer/react/preview/target/Mpro.

http://quantum-machine.org/datasets/
https://www.rcsb.org
https://fragalysis.diamond.ac.uk/viewer/react/preview/target/Mpro
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Database (IEDB). The decision to focus on nonamers stems from their high
frequency as the peptide length most commonly binding to the HLA-A*02:01
allele within the IEDB database. In total, 4872 peptides were chosen for inclusion
in this database.

The database was utilised to generate 3D compounds through the application
of FoldX [19], a software tool that predicts the stability of protein structures and
mutations while providing their binding energies. Employing functions such as
RepairPDB, BuildModel, and AnalyseComplex within FoldX, the 3D compounds
were created, offering a more detailed understanding of the interactions between
peptides and the HLA-A02:01 allele. The template for constructing all 3D com-
pounds was the 5ENW structure of HLA-A02:01 [14]. These complexes involve
an HLA molecule and a peptide of interest. To adhere to the constraint of a max-
imum of 87 atoms, all generated graphs were extended accordingly. The learning
set comprises 200 compounds, while the training set comprises 500 compounds.
Further details about this database can be found in [5].

4.2 Architecture Setting

In this section, we outline the architectures of our model as well as those of the
compared models, with a comprehensive summary provided in Sect. 2.

NN (Sect. 2.1): The structure consists of a fully connected neural network
with four layers. The input layer encompasses a number of neurons equivalent to
the maximum nodes in the database graphs multiplied by the number of node
features. The subsequent layers contain half and a quarter of this neuron count
for the second and third layers, respectively. The final layer is comprised of a
single neuron. tangent sigmoid activation functions are applied to all layers, with
the exception of the last layer, where a linear function is employed.

AE (Sect. 2.1): The architecture comprises a fully connected neural network
with four layers. The input and output layers share a common number of neurons,
determined by the maximum nodes in the database graphs multiplied by the
number of features. For the intermediate layers, the number of neurons is set
at half of the maximum node count multiplied by the number of features. All
layers, except the final one, utilise tangent sigmoid activation functions, while
the last layer employs a linear function. The 3D positions of atoms serve as
features inputting the autoencoder (AE), while the remaining atom properties
are fed into the graph autoencoder (GAE).

GNN (Sect. 2.2): The structure is a combination of a Graph Neural Network
(GNN) linked to a fully connected neural network (NN) featuring two layers. The
GNN’s input length corresponds to the number of nodes, and its width is deter-
mined by the number of features. The initial layer of the NN contains neurons
equal to the product of the number of nodes and the number of features. The last
layer of the NN consists of a single neuron. Activation functions for the first and
second layers in the NN are the tangent sigmoid and the linear function, respec-
tively. The architecture of the GNN can be a Graph Convolutional architecture,
GCN [9], a Graph Transformer, GT [31] or a GIN [30].
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GAE (Sect. 2.2): It consists of an encoder, precisely mirroring the GCN
utilised in the GNN model, and a decoder illustrated in Eq. 2 and Eq. 3. Addi-
tionally, there is a neural network (NN) responsible for interpreting the latent
space, and it aligns with the one elucidated in the GNN model.

AE|GAE [5]: It comprises an Autoencoder (AE), identical to the one in
the AE model, and a Graph Autoencoder (GAE), mirroring the GAE model.
However, the dimensions of the input matrices in both models depend on the
attributes considered independent of the local structure (AE) and those depen-
dent on it (GAE). The GAE’s output is concatenated and supplied to a neural
network (NN) with two layers. The first layer’s neuron count is determined by
the number of nodes in the graphs multiplied by the number of features. Further-
more, the second layer consists of a single neuron. Activation functions for the
first and second layers are the tangent sigmoid and the linear function, respec-
tively.

AE+GAE (Sect. 3): It consists of the identical Autoencoder (AE) and
Graph Autoencoder (GAE) featured in the model from [5]. However, there is
a distinction in the input matrix size, which is now determined by the product
of the number of node attributes and the number of attribute nodes in both
cases. Additionally, the neural network (NN) architecture differs; as both AE
and GAE receive input from all attributes of the graph nodes, the number of
neurons in the first layer is double the product of the number of nodes and the
number of features.

4.3 Analysis of the Prediction

Table 1 shows the MSE and the standard deviation of the predicted Energy in the
QM7 database, the pIC50 in the SARS-CoV-2 M-pro database and the binding
affinity in the IEDB-nonamers database, given several different models and our
proposal, which is AE+GAE.

Table 1. MSE and the standard deviation obtained by several models applied to the
QM7, SARS-CoV-2 M-pro and EDB-nonamers databases.

Method QM7 SARS-CoV EDB-nonamers

NN 25934 (160) 2.0 (1.4) 69.9 (4.2)
AE 15559 (124) 0.72 (0.8) 31.6 (5.6)
GAE 7317 (85) 0.48 (0.7) 17.2 (4.1)
GCN [9] 2328638 (226) 1.46 (1.0) 38.6 (6.2)
GIN [30] 2129385 (217) 1.72 (0.9) 36.9 (6.9)
GT [31] 12718 (26) 1.03 (0.8) 28.7 (5.7)
AE|GAE [5] 9471 (97) 0.55 (0.7) 26.2 (5.1)
AE+GAE (our model) 5113 (71) 0.32 (0.5) 14.9 (3.8)
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Fig. 5. Predicted versus experimental Energy in QM7 database. Methods: First row:
NN and AE. Second row: GNN and GAE. Third row: [4] and AE+GAE

NN and GNN obtain very high MSE, compared to the other models. Con-
sidering NN, it is supposed that it is because the bonds between atoms is an
important information to keep into the model. Considering GCN and GIN, they
are not able to keep the information of the relation between nodes and bonds,
thus it seems they are not able to predict both global properties. Note we are
not using these models as authors initially suggested since they were presented
to perform node classification or regression given only one huge graph. In our
case, we have used them to perform graph regression given several graphs. GT
obtains good accuracy, although its MSE is higher than GAE.
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Fig. 6. Predicted versus experimental pIC50 in SARS-CoV-2 M-pro database. Meth-
ods: First row: NN and AE. Second row: GNN and GAE. Third row: [4] and AE+GAE

Apart from the NN, AE is the other non-structural model that also returns
high MSE. Clearly, this fact informs us the bonds between atoms, represented
as edges in the graphs, have to be considered in the model. The latent domain
in AE is not able to capture all the variability of the initial data. Note the NN
is composed of the decoder of the AE connected to a fully connected layer.

Finally, models that incorporate GAEs obtain the lowest MSE. These are [5],
GAE and AE+GAE. This means that, in these models, the latent domain is able
to capture the semantic and structural information of the data. If we compare
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Fig. 7. Predicted versus experimental binding affinity in IEDB-nonamers database.
Methods: First row: NN and AE. Second row: GNN and GAE. Third row: [4] and
AE+GAE

GAE to AE+GAE, we realise it is worth to incorporate the reconstruction of
the node features by AE since AE+GAE returns the lowest MSE. We assume,
in this case, the latent domain is able to better capture the variability of the
data. As commented in Sect. 2, the main difference between [5] and AE+GAE
is that in the first case, the node features are manually split to feed the AE and
the GAE. Contrarily, AE+GAE feeds with all the features the AE and the GAE
models. Results suggests that the AE+GAE option is the best since the model
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automatically learns which features depend on the local structure and which
ones do not.

Figures 5, 6 and 7 show the predicted versus experimental Energy, pIC50 and
binding affinity generated by the six methods given QM7 database, ARS-CoV-2
M-pro database and IEDB-nonamers database, respectively. The data in Table 1
has been extracted from this scatter plots. Clearly, it is visible the tendency
of following the diagonal line when the GAE is used, and more precisely the
AE+GAE, in the three databases.

5 Conclusions

We have presented a graph regression model, called AE+GAE, that has been
applied to predict the Energy, the pIC50 and the binding affinity. We have
selected the drug discovery application because we wanted graphs to have several
node attributes with several properties. Moreover, we wanted the node attributes
to be independent of the neighbour attributes. Our architecture integrates an
Autoencoder and a Graph Autoencoder, both subsequently linked to a Neural
Network. A crucial element of our approach lies in the trainable capability to
distinguish between the semantic and structural knowledge encoded in the node
attributes. This fundamental feature is application-independent, implying that
our proposal can be applied across various fields. Empirical experiments demon-
strate the model’s proficiency in predicting global graph features. Our findings
reveal that our model consistently yields lower mean square error compared to
other established models. As a future work, we want to model how important is
the graph structure versus the graph semantics of each node attribute. That is,
to try to define a saliency map of nodes and their attributes.
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Abstract. Graph embedding into vector spaces is a widely used practice
in graph-based pattern recognition to bypass the mathematical limita-
tions of the graph domain. Several methods for graph embedding have
been proposed in the last decades. Many of them are based on graph
kernels which produce implicit embeddings that are sometimes hard to
interpret. There are also explicit graph embeddings available that pro-
duce more interpretable results. However, these methods are often com-
putationally expensive. In the present paper, we propose an approach
that combines Graph Attention Networks (GAT) and Dissimilarity Based
Graph Embedding (DBGE) for the first time. The major goal of our novel
method is to produce DBGEs with much smaller computation time than
with the original method. To achieve this goal, we train a GAT to learn
embeddings from a dissimilarity matrix previously calculated on training
data. In an empirical evaluation on four graphs datasets, we observe a
considerable time reduction compared to the original embedding tech-
nique without any noticeable deterioration in classification performance.

Keywords: Graph Embedding · Graph Edit Distance · Graph Neural
Network

1 Introduction and Related Work

The ability to recognize pattern is innate in human beings as we are able, for
instance, to recognize the face of a familiar person in a crowd, identify language
patterns, or discern recurring behaviour, to name just three examples. In com-
puter science, pattern recognition is the area of research that aims to equip
machines with this capacity in order to perform tasks such as image classifica-
tion [1], fraud detection [2], or social network analysis [3].

Two main approaches are present in the field of pattern recognition, statisti-
cal pattern recognition, which draws inspiration from probability and statistics,
and structural pattern recognition, which focuses on the intrinsic structure of
data. There is a general consensus that the structural approach is particularly
useful when the relationships between entities are crucial for understanding the
phenomena under investigation. In structural pattern recognition, often graphs
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are employed for formally representing the patterns. In the present paper, we
define a graph g as a quadruple g = (V,E, μ, ν), where V represents a finite
set of nodes, E ⊆ V × V denotes the set of edges, μ : V → LV is the node
labelling function, and ν : E → LE is the edge labelling function (where LV

and LE represent node and edge label alphabets, respectively). In recent years,
graphs have been employed in diverse pattern recognition applications (e.g., in
recommender systems [4] or in object recognition in 3D scenes [5]).

Research in the field of structural pattern recognition can be subdivided
into three areas. A first area is characterized by the concept of graph matching,
with the overall aim to find correspondences between nodes and edges of two
graphs [6]. In this context, we find well-known algorithms such as Graph Edit
Distance (GED) [7], which allows to compute the dissimilarity between graphs by
determining the minimum cost sequence of edit operations required to transform
one graph into another. Other well-known approaches for graph matching are
based on spectral methods [8] or expectation maximization algorithms [9].

A second area of structural pattern recognition is characterized by the use
of Graph Neural Networks (GNNs) [10]. GNNs exploit the concept of message
passing by simulating the exchange of information between neighboring nodes.
This characteristic allows GNNs to overcome the limitation of static graph repre-
sentations. In the last years, various GNN architectures, such as Graph Convolu-
tional Networks (GCNs) [11] or Graph Isomorphism Networks (GINs) [12], have
proven to be very effective in performing various tasks, including, for instance,
the prediction of molecular properties [13] or community detection in social net-
works [3].

A third area in structural pattern recognition is based on research on graph
kernels. This approach extends the kernel concept, originally developed for vector
representations, in a natural way to graphs, paving the way for the application
of machine learning algorithms to graphs (e.g., for classification, clustering or
regression). The variety of kernels developed in recent years attests to the vital-
ity of this field, with proposals ranging from kernels based on walks [14] and
sub-graphs [15] over kernels based on diffusions [16] to kernels based on embed-
dings [17]. All of these approaches aim to project graphs into a high-dimensional
vector space. A possible differentiating feature for graph kernels is whether the
resulting graph embedding is explicit or implicit. Implicit means that only pairs
of dot products are available in the embedding space, while explicit means that
for each graph we receive a corresponding feature vector.

One explicit graph kernel that turns out to be flexible and powerful is
Dissimilarity-Based Graph Embedding (DBGE) [18]. However, the main lim-
itation of DBGE stems from the high computational cost, as it depends on
graph matching. To mitigate this problem, it has been proposed to use fast, yet
approximate, graph matching algorithms such as, for instance, Bipartite Graph
Edit Distance (BP-GED) [19]. In the present paper, we pursue a novel approach
to accelerate DBGE. Concretely, we propose a method that combines for the
first time a Graph Attention Network (GAT) [20] with DBGE. The basic idea
of this combination is that we first run a DBGE on each graph in the training
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set and then train a GAT on these embeddings to learn and approximate the
embedding for future input graphs. The motivation for this approach is that
we want to significantly reduce the computation time for the graph embedding
while maintaining the accuracy of the algorithms, that work on these learned
embeddings, as high as possible.

There are, of course, other approaches that use graph neural networks to
extract graph embeddings. One of the best known methods is graph2vec [21],
which extracts sub-graphs and learns their representation using skip-grams with
negative sampling. Other popular methods are based on Siamese networks [22],
which compare pairs of input graphs and learn their similarity. Attention-based
graph neural network models [23] have demonstrated good performance by creat-
ing embeddings that take into account the relationships between nodes. However,
most of these approaches are based on unsupervised methods. In contrast, our
method, which relies on DBGE, is supervised and thus easier to interpret than
other methods.

The remainder of this paper is organised as follows. First, in Section 2, we
present in detail both the computation of the DBGE and the neural network
model actually employed. Then, in Section 3 we present a thorough empirical
evaluation and details on all parameters used, ensuring reproducibility. Ablation
studies are also conducted to understand how different modifications to our
method lead to different embeddings. Finally, in Section 4, we conclude our
paper and discuss future research activities.

2 Learning Dissimilarity-Based Graph Embeddings

We propose a novel method that learns graph embeddings in vector spaces. Our
approach is based on a graph neural network, viz. a Graph Attention Network
(GAT) [20], that maps the graphs into a space structured as a dissimilarity
vector with respect to the graphs in a training set. In other words, our goal is to
simulate the Dissimilarity-Based Graph Embedding (DBGE) [18] using a graph
neural network.

Figure 1 shows the two main components of our novel framework. The first
component is responsible to compute DBGEs for both training purposes and
ground truth embeddings. The second component consists of a GAT that learns
and simulates the embeddings. In the following two subsections we describe these
two components, in greater detail.

2.1 Computation of Ground-Truth Embeddings

Our ground truth embedding is defined by the DBGE [18] which allows graphs
to be represented as numerical vectors. The basic idea of DBGE is as follows. Let
us assume a training set T = {g1, g2, ..., gN} with N graphs from an arbitrary
graph domain G, some graph prototypes P = {p1, p2, ..., pn} ⊆ T , as well as an
arbitrary dissimilarity measure d : G × G → R are given. Then, the DBGE is
computed by the mapping ϕ : G → R

n defined as
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Fig. 1. Computation of the DBGE used as ground truths (see left side of illustration)
and then approximating these embeddings using a Graph Attention Network (GAT)
(see right side of illustration).

ϕ(g) = (d(g, p1), d(g, p2), ..., d(g, pn)),

where d(g, pi) is the graph dissimilarity measured between any graph g ∈ G and
the i-th prototype graph pi ∈ P .

To apply the DBGE, it is necessary to have a dissimilarity measure for
graphs available. In the present paper we employ GED as basic dissimilarity
measure (note, however, that any other graph dissimilarity could be used as
well). Basically, GED evaluates the minimum number of edit operations required
to transform one graph into the other. Optimal algorithms for computing GED
have exponential time complexity, making them computationally challenging for
large graphs (or even making their use impossible). For this reason, we employ
an approximation for the computation of GED, viz. the Bipartite Graph Edit
Distance (BP-GED) [19]. BP-GED reduces the problem of GED computation
to a linear sum assignment problem, which is in turn solvable with cubic time
complexity.

In our approach for DBGE, the initial dataset D = {g1, ..., gN} is split into
two disjoint parts Dtrain and Dtest with n and m graphs, respectively. We use
Dtrain to build a ground-truth embedding and train our model. That is, for each
graph gtraini ∈ Dtrain with i ∈ [1, n], we calculate the dissimilarity value between
gtraini and all other graphs from Dtrain to obtain the following n×n dissimilarity
matrix

Dtrain =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

gtrain1 . . . gtrainj . . . gtrainn

gtrain1 d11 . . . . . . . . . d1n
...

...
. . .

...

gtraini

... dij
...

...
...

. . .
...

gtrainn dn1 . . . . . . . . . dnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where dij = BP-GED(gtraini , gtrainj ).
The graphs from Dtest are used to assess the embedding quality. Hence, also

for all graphs gtesti ∈ Dtest with i ∈ [1,m], we calculate the dissimilarity value



DBGE: An Efficient GAT-based Approach 365

between gtesti and all graphs gtrainj ∈ Dtrain to obtain the following m × n
dissimilarity matrix

Dtest =

⎛
⎜⎝

gtrain1 . . . gtrainj . . . gtrainn

gtest1 d
′
11 . . . . . . . . . d

′
1n

...
...

. . .
...

gtestm d
′
m1 . . . . . . . . . d

′
mn

⎞
⎟⎠ (2)

where d
′
ij = BP-GED(gtesti , gtrainj ). Note that in contrast to the original

approach [18], we do not perform prototype selection for the present study. This
means that we use all available training graphs as a reference point for DBGE.
From now on, we refer to this ground truth and reference embedding ϕ : G → R

n

as GED-Embedding (see left side of Figure 1).

2.2 Architecture of the Graph Attention Network (GAT)

Various GNN architectures have been proposed in the literature, each character-
ized by a unique approach to aggregate and update the node representations. For
instance, Graph Convolutional Networks (GCN) [11] apply convolutions to the
graph nodes, facilitating the efficient diffusion of information through the graph
structure. On the other hand, GraphSAGE [24] adopts a sampling and aggrega-
tion strategy to ensure network scalability to sizeable graphs. Graph Attention
Networks (GAT) [20] introduce attention mechanisms to differentially weight
information during aggregation, particularly relevant when some relations in the
graph are more significant than others.

This last feature of GATs is the reason to adopt it in our framework1 and we
now provide a detailed examination of the GAT architecture used in our work
(outlined in Figure 2).

1. The input to our GAT is a labeled graph g ∈ G that will be embedded.
2. Three levels of Graph Attention Layers (GATConv) [20] are implemented to

increase the dimensionality of the node embedding. This phase allows the
network to gain an understanding of the relationships between the nodes in
the graph and their labels.

3. Three generic pooling operations are employed [25], viz. global sum, global
maximum and global mean, used to represent the graph as the sum, maximum
and average of the labels of its nodes, respectively.

4. The graph representations pass through fully connected layers, producing a
vector called bottleneck.

5. Bottleneck is the latent representation of the graph by combining the different
generic pooling operations passed through the linear layers.

6. The bottleneck serves as the starting point for the subsequent expansion
phase. Four fully connected layers, applied in series, gradually increase the

1 Our model is implemented using PyTorch 2.2.0.
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dimension of the latent space until reaching the output unit count, which
corresponds in our scenario to the dimension of the DBGE (i.e., |Dtrain| = n).
A Dropout layer is introduced to regulate the learning process and miti-
gate the risk of over-fitting (i.e., contributing to greater generalization of the
model). We apply a Rectified Linear Unit (ReLU) as nonlinearity function to
each layer of the expansion phase, which allows modelling complex relation-
ships between nodes and further generalizing the model.

7. The main objective of the network is to predict the DBGE for each input
graph. To achieve this goal, a loss function L is used that combines two
terms, Mean Squared Error (MSE ) and Kullback-Leibler Divergence (KLD).
The first term, MSE, is used to minimize the mean square error between the
values predicted by the network and the actual values of the DBGE. The
second term, KLD, is useful for considering the overall distribution of the
graphs, favoring a less precise representation of the specific value. Formally,
in our framework the loss L is defined by

L = λ
1
N

N∑
i=1

(yi − ŷi)2 + (1 − λ)
N∑
i=1

pi log
pi
qi

, (3)

where
– N is the number of graphs that are embedded.
– yi is the GED-Embedding of graph gi.
– ŷi is the predicted embedding of graph gi.
– pi is the probability distribution of the predicted embedding.
– qi is the probability distribution of the GED-Embedding.
– λ is a free parameter (0 ≤ λ ≤ 1) which allows to weight how much the

two terms (MSE and KLD) affect the value of L, i.e. whether to focus
more on the values of the DBGE or more on the overall distribution.

Graph embeddings ψ : G → R
n that are produced using this process are

termed GAT-Embedding for the rest of the paper (see right side of Figure 1).

Fig. 2. The GNN architecture to learn the DBGE.
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3 Experimental Evaluation

3.1 Experimental Setup and Datasets

To assess the effectiveness of the proposed embedding framework, we focus on
evaluating three key metrics, viz. the classification accuracy obtained on the true
and learned embeddings, the mean square error between the two embeddings and
the computation time needed to embed the graphs using the reference method
(GED-Embedding) and our novel approach (GAT-Embedding).

In our evaluation, we use four publicly available datasets [26]:

– DHFR contains 467 graphs representing inhibitors of dihydrofolate reductas
from two classes.

– MUTAG comprises 188 graphs representing chemical compounds which are
divided into two classes that refer to their mutagenicity on Salmonella
typhimurium.

– PROTEINS contains 1,113 graphs representing proteins classified as enzymes
or non-enzymes.

– MUTAGENICITY contains 4,337 graphs representing mutagen or nonmuta-
gen molecules.

Each dataset is split into a training and test set with a ratio of 9:1. Next,
the GAT is trained on the training data to learn the GED-Embedding. Finally,
the GAT inference is performed on the graphs in the test set. For measuring
the classification accuracy, we classify both the GED-Embeddings and GAT-
Embeddings with three standard classifiers, namely SVM, K-Nearest Neighbors,
and Random Forest. These models are optimized on the embeddings of the train-
ing sets (for each dataset individually). Note that both the GED-Embeddings
and GAT-Embeddings are standardized using the mean and standard deviation
of the respective features obtained from embeddings on the training set.

3.2 Validation of Hyperparameters

The neural network to predict the embedding is trained for 500 epochs in total
using the Adam optimizer with a learning rate of 0.0001. A batch size of 8 is
used for the MUTAG and DHFR dataset, while for the PROTEINS and MUTA-
GENICITY datasets, batch sizes of 32 are used. Parameter λ, which trades
between MSE and KLD, is tested with values λ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}.

The parameters of the classification algorithms (SVM, K-Nearest Neighbors
and Random Forest) are optimized using GridCV with five-folds for each training
set. The following configurations are evaluated.

– SVM: C ∈ {0.1, 1, 10, 100} using an RBF kernel with γ ∈ {0.01, 0.1, 1, auto}
– K-Nearest Neighbors: k ∈ {3, 5, 7, 10}
– Random Forest: Number of estimators ∈ {50, 100}, max depth ∈

{10, 20, 30}, min samples split ∈ {2, 3, 5}
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3.3 Similarity between GED-Embedding and GAT-Embedding

By means of this first evaluation, we measure how well the proposed GAT-
Embedding approximates the true GED-Embedding. For this purpose, we mea-
sure the Root Mean Squared Percent Error (RMSPE) between the two embed-
dings on the test sets of all datasets (see results in Table 1).

Table 1. Root Mean Squared Percent Error (RMSPE) between GED-Embedding and
GAT-Embedding.

Dataset

Type Layers DHFR MUTAG PROTEINS MUTAGENICITY Mean

1 107% 3% 58% 71% 60%

GATConv 2 177% 7% 34% 41% 65%

3 89% 3% 23% 27% 36%

1 173% 8% 47% 65% 73%

GCNConv2 122% 4% 58% 61% 61%

3 116% 4% 34% 39% 48%

For a more complete study, we conduct an ablation study, modifying the
architecture of the underlying GNN to observe how the approximations change.
Specifically, we modify the initial part of the GNN, which has the goal of extract-
ing information from the nodes of the graph. We choose to consider two types
of layers for message passing, GATConv [20] and GCNConv [27]. For our eval-
uation we evaluate the number of layers in series at the beginning of the GNN
to amplify the effect of message passing.

As we increase the complexity of the model by adding layers, the RMSPE is
reduced in general (for both GATConv and GCNConv). Comparing GATConv
and GCNConv, we observe that GATConv often shows higher RMSPE values
than GCNConv. However, when reaching three GATConv layers in series, the
RMSPE decreases significantly, being about thirteen percentage points lower
than that obtained with three GCNConv layers in series. That is, we observe
that the overall best results are achieved with the architecture GATConv using
3 layers with an average RMSPE of 36% measured over all datasets. Therefore,
we choose to use this architecture for the remaining experiments.

The aim of the next evaluation is to gain insight how the GAT-Embeddings
vary with different values for λ that weights the two loss criteria, MSE and KLD
(see results in Table 2). It can be seen that high values for λ tend to achieve
lower values for the RMSPE in general. This means that the first term (MSE)
and not necessarily the second term (KLD) seems to be more important for our
optimization. We choose to fix λ = 0.85 for the remainder of our evaluation.

For a visual and qualitative assessment, we apply a Principal Component
Analysis (PCA) [28] to both GED-Embeddings and GAT-Embeddings (in order
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Table 2. The RMSPE values with the 3-GATConv architecture using different values
for parameter λ. The best values achieved for each dataset are shown in bold face.

Dataset

λ DHFR MUTAG PROTEINS MUTAGENICITY Mean

0.10 414% 8% 49% 60% 133%

0.25 341% 7% 43% 23% 104%

0.50 213% 2% 20% 20% 64%

0.75 130% 2% 18% 29% 45%

0.90 82% 3% 24% 28% 34%

Fig. 3. Projection of GED-Embeddings (blue dots) and GAT-Embeddings (red dots)
via PCA into a visualizable, shared latent space. The visual representation includes
visualisations of the distances between corresponding vector pairs (using a gray
line)(Color figure online).

to reduce the dimension of the embeddings and visualize them). Specifically,
PCA is learned from the GED-Embeddings of the test set, and then the trained
PCA model is used to project the GAT-Embeddings in the same latent space,
allowing a visual comparison of the results. Figure 3 shows the PCA evaluation
on the MUTAG and MUTAGENICITY datasets (similar plots are achieved on
the other datasets).

It is clearly visible that the predicted and the true embeddings are close to
each other, reinforcing the hypothesis that GAT-Embeddings can simulate the
GED-Embeddings with quite high precision.
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Fig. 4. The upper part of the figure shows the distance values predicted by the GAT-
Embedding along the first dimension of the dissimilarity embedding. The red point
represents a graph embedding from the training set, while the blue points represent
graph embeddings from the test set. The lower part of the figure shows the graphs
corresponding to the points.

By having a structured embedding space, in which each dimension corre-
sponds to the dissimilarity to a graph in the training set, we can also visualize
the distance of some input graphs to a specific graph in the learned embedding
space. This aspect gives our method a sort of interpretability.

Figure 4 shows an example visualization of graphs from the MUTAG dataset.
We show the first dimension of the GAT-Embedding, displaying the first graph
of the training set and the distances of three graphs of the test set. Note that
these distances correspond to the predicted distances using our GAT-Embedding.
The resulting distances to the training graph are obviously reasonable, since the
similarity of the associated graphs actually decreases with increasing distance to
the training graph.

3.4 Classification Task

To evaluate the applicability of the learned GAT-Embeddings, a graph classi-
fication task is conducted on the four datasets using the three aforementioned
classifiers. To ensure that the results are not influenced by random factors, five
iterations are performed for each classifier and dataset. Table 3 reports the mean
and standard deviation of the classification accuracy obtained by the three clas-
sifiers.

We observe that the original GED-Embeddings tend to achieve better results
than the learned GAT-Embeddings (regardless the classification algorithm and
dataset). At the same time, however, we can report that on the MUTAG and
MUTAGENICITY datasets (and partly also on PROTEINS) quite similar accu-
racies are achieved by both embeddings. Considering the difficulty of the under-
lying classification problems, the results obtained are in any case quite promising.
This is especially true when we compare the computation times actually needed
for carrying out the embeddings (evaluated in the next section).
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Table 3. Mean and standard deviation of the classification accuracy achieved by the
classification algorithms on the GED-Embeddings and GAT-Embeddings. The best
result per dataset and classifier is shown in bold face.

SVM

Dataset GED-Embeddings GAT-Embeddings

DHFR 0.78 (± 1.54) 0.69 (± 4.62)

MUTAG 0.85 (± 0.14) 0.83 (± 0.12)

PROTEINS 0.80 (± 0.04) 0.72 (± 0.02)

MUTAGENICITY 0.75 (± 0.06) 0.68 (± 0.08)

K-Nearest Neighbors

Dataset GED-Embeddings GAT-Embeddings

DHFR 0.78 (± 2.04) 0.66 (± 3.86)

MUTAG 0.78 (± 0.13) 0.83 (± 0.13)

PROTEINS 0.80 (± 0.01) 0.73 (± 0.03)

MUTAGENICITY 0.71 (± 0.06) 0.68 (± 0.05)

Random Forest

Dataset GED-Embeddings GAT-Embeddings

DHFR 0.74 (± 1.54) 0.70 (± 1.33)

MUTAG 0.76 (± 0.09) 0.83 (± 0.16)

PROTEINS 0.79 (± 0.01) 0.73 (± 0.02)

MUTAGENICITY 0.76 (± 0.03) 0.70 (± 0.04)

3.5 Computation Time

Last but not least, Table 4 shows the computational cost (in milliseconds) asso-
ciated with the calculation of the GED-Embeddings and GAT-Embeddings. For
this experiment, 100 graphs are embedded for each dataset and we repeat the
embedding 1000 times and show the average computation time.

For the GED-Embedding we use an optimized implementation of BP-
GED [29] using 8 CPUs. The GAT-Embedding is performed on both the CPU
and GPU2. In addition, the calculated ratio of the time taken by the GED-
Embedding versus the time taken by the GPU based GAT-Embedding is shown
in Table 4. The results highlight that the proposed GAT-Embedding confers a
significant computational advantage over the optimized GED-Embedding on all
tested datasets. That is, our novel approach is about 6 to about 3,500 times
faster than the time consuming GED-Embedding.

2 The CPU used is AMD EPYC 7742. The GPU used is a GeForce RTX 4070 Ti.
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Table 4. Computational cost for the calculation of 100 DBGE (in milliseconds)

Dataset GED-Embeddings
(8 CPUs)

GAT-Embeddings
(CPU)

GAT-Embeddings
(GPU)

Ratio

DHFR 2,799 6.34 2.92 959

MUTAG 10.19 2.17 1.66 6

PROTEINS 3,731 7.95 3.52 1,060

MUTAGENICITY11,397 3.24 3.21 3,550

4 Conclusion

The basic idea of Dissimilarity Based Graph Embedding (DBGE) is to interpret
the distances to graph prototypes as features of a graph to be embedded. This
type of graph embedding is known to be powerful and flexible, but suffers from
the fact that the runtime is largely dependent on graph matching. In this paper,
we introduce a novel graph embedding method that learns DBGE by means
of a Graph Attention Network (GAT). The motivation for combining a GAT
with DBGE is that we want to maintain the strong embeddings of DBGE but
with much faster computations that operate independently of a graph matching
procedure. In an experimental evaluation, we show that our novel method signif-
icantly reduces the computation time for DBGEs, making it thousands of times
faster than the reference method. This massive speed-up makes DBGE usable in
real-time applications for the first time. Furthermore, the analysis of the classifi-
cation accuracy shows that the DBGE predicted by the GAT can achieve similar
performance to those calculated using the original (time consuming) embeddings.

For future work, we see several rewarding avenues that can be pursued. First,
it might be useful to implement advanced prototype selections to include more
informative and representative graphs for DBGE (currently, no selection of pro-
totypes takes place). These selection strategies could be extended to more chal-
lenging targets and projects, e.g., by training networks to produce embeddings
that are interoperably applicable on multiple datasets simultaneously. Another
interesting line of research could be to replicate our approach with other types
of embeddings (e.g., Weisfeiler-Lehman embeddings [30] or others).
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Abstract. With the development of cities, racial segregation is one of
the reasons for social inequality on a large scale, it is also a major factor
affecting economic development. However, racial segregation has received
comparatively limited attention in research. In the paper, we propose a
segregation index independent of any parameters( titled Quantum Walk
Convergence Time), which calculates the convergence time statistics for
accessing different racial categories through quantum walks on complex
networks constructed from urban systems. The magnitude of the time
statistics represents the degree of racial segregation. The results gener-
ated by our method can also be applied to other social factors, includ-
ing family situation, income level, and education level. We evaluate our
method using large-scale real datasets, including statistics from the U.S.
Census Bureau and the Office for National Statistics in the UK. The
results demonstrate the close correlation between our method and the
degree of racial segregation, showing advantages over traditional random
walk methods.

Keywords: Quantum walk · Racial segregation · Convergence time ·
Complex social systems

1 Introduction

Spatial heterogeneity is an important characteristic of complex social systems,
and quantifying spatial segregation is a crucial topic within the study of spatial
heterogeneity. We can measure and assess the distribution and segregation of
different groups in urban or geographical spaces using various statistical methods
and indicators. The fundamental framework for quantifying spatial segregation
begins with subdividing a geographical area into smaller units, often census
tracts or neighborhoods. We regard the distribution of different social groups
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within these census tracts as given and estimate the tendency of units to cluster
around their surroundings. In this context, Massey and Denton[1] proposed five
dimensions of segregation: Evenness, which measures the degree of uniformity
in the distribution of a group across different communities; Exposure, which
assesses the potential for contact with other groups; Concentration, indicating
the amount of physical space occupied by a group; Centralization, reflecting
the degree to which a group resides near the city center; and Clustering, which
measures the tendency for individuals of the same group to reside in adjacent
communities.

Previous studies have proposed various segregation indices to quantify
social segregation, including metrics based on spatial heterogeneity and spa-
tial clustering[2][3]. However, these methods rely on the scale and size of the
study objects, overlook large-scale spatial correlations, or depend on temporary
parameters. They often ignore the multi-scale characteristics of urban spatial
heterogeneity, resulting in limited accuracy when comparing different systems
on an equal basis. Therefore, it is crucial to seek a method capable of comparing
spatial heterogeneity at multiple scales equally.

In this paper, we aim to quantify racial segregation in complex urban sys-
tems by constructing networks of these systems and performing quantum walks
on the generated target graphs to compute convergence time statistics. Analyz-
ing the spatial distribution of quantum walk convergence time, which represents
the expected number of steps for a quantum walk starting from an initial node to
visit certain categories in the system, reveals that Quantum Walk Convergence
Time results from diffusion on the graph. The diffusion outcome depends on the
structure of the target graph and node attributes. Quantum Walk Convergence
Time is associated with the degree of regional segregation at each node, effec-
tively capturing the manifestation of urban area social segregation at different
scales, shapes, and specific micro-level features. It quantifies the level of racial
segregation in different areas of the city.

Quantum walks simulate random walks using quantum mechanics, but they
differ significantly in their walking states. In random walks, the state vector is
real-valued, while in quantum walks, it is complex-valued. This property allows
interference between different walking paths. In classical cases, doubly stochastic
matrices control the walk’s evolution. In quantum cases, unitary matrices con-
trol the evolution, making quantum walks reversible. Researchers study quantum
walks extensively on various graphs[4][5], such as linear chains, cycle graphs,
complete graphs, regular graphs, and grid graphs. In quantum walks, parti-
cles propagate along multiple paths simultaneously. The superposition property
allows quantum walks to traverse the network faster. Moreover, the reversibility
of quantum walks enables the system to correct errors by returning to previous
states, improving the accuracy and reliability of the analysis. Through experi-
ments, we compare the convergence time statistics of quantum walks and random
walks[6]. The comparison demonstrates that quantum walks perform better and
describe racial segregation across different spatial scales more accurately. This
provides new insights for optimizing urban planning and social policies.
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2 Related work

The section explains how the target graph is constructed. It also proves the
relationship between Quantum Walk Convergence Time and racial segregation
through virtual experiments.

2.1 Constructing the target graph

First of all, we connect the target regions through code name. Then, we map
the blocks in the city to nodes in the network, and if two blocks are adjacent, we
connect them with an edge, forming a graph G = (V,E). In graph G, each node i
has a corresponding feature xi. In this paper, xi represents the racial distribution
in the census area associated with node i. Specifically, it can be expressed as
xi = {xi,1, xi,2, ..., xi,c}, where xi,c represents the number of citizens belonging
to racial category c residing in that area.

2.2 Relation

We perform a quantum walk on the target graph G = (V,E), starting from the
initial node i0 with the corresponding quantum state |ψ(0)〉 = [0, 0, ..., 1, ..., 0]T .
Then, we calculate the expected number of steps required for the walker to visit a
subset of categories in the graph. This expected number of steps is defined as the
Quantum Walk Convergence Time (QWCT). To demonstrate that the statistical
data of QWCT can quantify the level of segregation and heterogeneity in a city
area, we conduct simulation experiments.

As shown in Fig. 1, we illustrate two extreme fictional racial distribution
scenarios in Bristol. The racial distribution in Fig. 1a is randomly uniform,
indicating no segregation between specific clusters. If a pedestrian starts from
any blue area, they typically encounter a red area after a few steps. In contrast,
in Fig. 1b, races in the neighborhoods are artificially organized into distinct
spatial clusters, similar to many metropolitan areas. If a walker starts from the
large blue cluster in the middle of Fig. 1b, it takes quite a few steps to reach a
red area.

This simulation experiment shows that the number of steps needed to access
other racial categories after leaving homogeneous clusters on the graph is corre-
lated with the spatial distribution of races. Therefore, we propose a method to
quantify the degree of racial segregation in urban areas by conducting quantum
walks on the graph. A smaller QWCT value indicates that quantum walks cover
nodes of different categories more rapidly in the network, implying that nodes
of different categories are relatively easier to access, and segregation is lower.

3 Continuous-time quantum walk

Continuous-time quantum walks, the quantum counterparts of continuous-time
random walks, evolve over time between the vertices of a graph. The Schrödinger
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Fig. 1. Virtual distribution of the seven races in the Bristol map, a There is no obvious
difference in the spatial distribution, and the quantum walk convergence time is small.
b it forms an obvious cluster distribution, with strong spatial heterogeneity and long
quantum convergence time.

equation governs the mathematical structure of quantum walks[7]. Classical ran-
dom walks model the diffusion process on a graph and prove to be useful tools
for analyzing its structure.

In classical random walks, the state vector represents the walker’s probability
at each vertex of the graph. In quantum systems, the state vector is defined by
a vector of complex amplitudes at the graph vertices. The squared norm sums
to 1 across all vertices, with no restriction on sign or complex phase. These
phase differences produce interference effects. Additionally, in quantum walks,
the evolution of the state vector is governed by a complex unitary matrix, while
the dynamics of classical random walks are controlled by a stochastic matrix[8].

Farhi and Gutman[9] introduce the concept of continuous-time quantum
walks. Unlike discrete-time quantum walks, which require a coin state to decide
the walk direction, continuous-time quantum walks do not need such a coin state.
In this paper, we apply continuous-time quantum walks rather than discrete-
time quantum walks. The former is more suitable for simulating systems with
continuous evolution, such as diffusion processes in space.

3.1 Quantum state

Let G = (V,E) be an undirected graph, where V is a set of n vertices, and
E = (V × V ) is the set of edges. A quantum state can be represented by a
state vector |ψ〉 in Dirac notation. This state vector contains all the information
about the system. It exists in a Hilbert space H spanned by the orthonormal
basis states |i〉, i ∈ V [10]. For example, the state of a two-state system can be
represented as:

|ψ〉 = α|0〉 + β|1〉 (1)

where α2 + β2 = 1, α and β are complex numbers, |0〉 and |1〉 are the ground
states of the qubit.
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3.2 Superposition

Superposition is the combination or addition of two or more basis states to
produce another valid state. It describes a quantum system being in a linear
combination of multiple states simultaneously. For quantum walks, this means
the system can walk multiple paths at the same time. In a graph with N nodes,
the quantum state can be represented as a superposition of the basis states of
all nodes:

|ψ(t)〉 =
N∑

i=1

αi(t)|i〉 (2)

where |i〉 represents the basis vector corresponding to the i-th node. αi(t) is the
probability amplitude of the i-th node at time t, satisfying the normalization
condition:

N∑

i=1

|αi(t)|2 = 1 (3)

In quantum walks, a particle jumps in space probabilistically, existing in a super-
position of multiple positions. Interference is a phenomenon observed in quantum
walks. When a particle moves along different paths, these paths can interfere with
each other, leading to the addition or cancellation of probability amplitudes.

3.3 Unitary evolution

In quantum walks, the system’s evolution is described by the Schrödinger
equation[11]. Specifically, the quantum state of the system changes over time,
and this change is determined by the Hamiltonian. In the context of quantum
walks, we usually replace the system’s Hamiltonian with the graph Laplacian
operator L. This replacement allows the evolution of the quantum walk to be
described in terms of the graph’s structure, where the graph Laplacian L char-
acterizes the connectivity and propagation properties between the nodes of the
graph:

i
∂

∂t
|ψ(t)〉 = L|ψ(t)〉 (4)

Among them, the quantum state at time t |ψ(t)〉 ∈ C
|V|.

Therefore, the evolution of the quantum walk follows the unitary evolution
operator U(t). This implies that the quantum walk is reversible, non-ergodic,
and lacks a limiting distribution. The unitary operation outputs probability
amplitudes rather than probabilities. For any given initial state, after t unitary
operations, the state is given by:

|ψ(t)〉 = e−iLt|ψ(0)〉 (5)
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4 Quantum walk on graph

4.1 Quantum walk convergence time

Performing quantum walks on the graph G = (V,E) requires considering two
aspects: the particle being in a superposition of quantum states and the selection
of the next node. Algorithm 1 illustrates the generation process of Quantum Walk
Convergence Time.

Algorithm 1 Quantum Walk Convergence Time
Input: Target graph G = (V, E), graph Laplacian L,start node index start, end node

index end, matrix of node properties classes, number of walk iterations num, Total
number of categories C.

Output: Perform quantum walks on graph G, encountering convergence times t for
different categories.

1: avg_list=[]; {Initialize an empty list}
2: for node = start to end do
3: nrc=classes[node]; {Current node properties}
4: |ψ(0)〉 = [0, 0, ..., 1, ..., 0]T ; {Starting node quantum state}
5: for n = 1 to num do
6: s=0;
7: while 0 in nrc do
8: U(s) = e−iLs; {Unitary Evolution Operator U(s)}
9: |ψ(s)〉 = e−iLs|ψ(0)〉; {Update quantum state}

10: P (u, s) = |〈u|ψ(s)〉|2; {Probability of visiting a node u}
11: j {Select the next node j}
12: s = s + 1; {The number of steps to visit each node}
13: nrc=nrc+classes[j]; {The current and next node’s properties}
14: v = count_nonzero(obs); {The number of categories visited}
15: return avg_list = [v1, v2, ..., vn]
16: end while
17: end for
18: avg_list=sum(avg_list)/num; {Average categories visited over time}
19: for q = 1 to 100 do
20: t=0; {Initializing quantum walk convergence time}
21: th = (q ∗ C)//100; {Set threshold}
22: for x in avg_list do
23: t=t+1;
24: if x � th then
25: break
26: end if
27: end for
28: return t; {Access to different scaled QWCT matrix}
29: end for
30: end for
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We describe an algorithm to compute the Quantum Walk Convergence Time.
The goal is to calculate the expected number of steps from the initial node to
visit a specific proportion of racial categories. Algorithm 1 includes four for loops:
the first for loop iterates over initial nodes, the second for loop repeats the walk
to calculate averages and reduce errors, the third for loop sets thresholds, and
the fourth for loop traverses the list of average visited categories and compares
it with the thresholds.

The algorithm’s main steps include initialization, quantum walk, and com-
puting the expected convergence time. In step 4, the algorithm creates the initial
quantum state based on the node’s attribute information. The initial node i0 cor-
responds to the qubit in the ground state |1〉, while the qubits of other nodes
are in the ground state |0〉. During initialization, the algorithm also constructs
an empty list to store the number of visited categories, initializes the step count,
and sets the node attributes.

In the quantum walk phase, the walker starts from the initial node, per-
forms multiple repetitions, and evolves the quantum state at each time step. In
step 9, according to Eq. 5, given the initial state |ψ(0)〉, the algorithm updates
the quantum state superposition to a new state. The evolution process uses the
Laplacian matrix. The algorithm traverses each node in the target area and cal-
culates the probability of each node being visited based on the updated quantum
state superposition to select the next node.

In the expected convergence time calculation phase, In step 18, we obtain
the average number of categories visited starting from different nodes, which
increases over time. Then, we set the target category proportion q and compare
it with the average number of categories obtained. If it meets or exceeds the
threshold, we return the calculated expected convergence time t as the output.

4.2 Spatial indicators

We find a strong correlation between the QWCT required to access different
categories and the degree of racial segregation. In graph G, we initiate the quan-
tum walk from node i0 and traverse the nodes with steps t = 0, 1, ..., t, forming
a sequence of visited nodes i = {i0, i1, ..., it}. We define the QWCT on node i
with category proportion q as the expected value of steps required to encounter
a category representing a proportion q of the total categories, starting from node
i:

Qi(q) = min

{
t| 1

N

N∑

n=1

qi(t) � q

}
(6)

Among them, qi(t) is the proportion of accessing a certain category after spend-
ing time t starting from the starting node i0 and time 0. q is the threshold, and
N is the number of quantum walks starting from the starting node.
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By averaging Eq. 6, we obtain the corresponding QWCT change trend when
accessing different category proportions q from different nodes:

μ(q) =
1
I

I∑

i=1

Qi(q) (7)

For the result obtained from Eq. 6 and the mean value obtained from Eq. 7,
we calculate its variance:

σ(q) =
1
I

I∑

i=1

(Qi(q) − μ(q))2 (8)

At the level of local spatial diversity, we measure spatial diversity by calcu-
lating the Shannon Diversity Index[12]:

H(q) = −
I∑

i=1

pi ln(pi) (9)

Where pi represents the relative abundance of the Qi(q) at node i. If the differ-
ence in relative abundance of different Qi(q) increases, the Shannon index will
decrease.

In general, a higher value of μ(q) indicates a more uneven distribution of
categories within the system. σ(q) measures the variation of QWCT across the
entire space. A smaller H(q) value indicates greater disparity in QWCT among
neighboring nodes, indicating the presence of local spatial diversity. It’s worth
noting that these metrics may be influenced to some extent by the characteristics
of each node and the size of the graph.

To mitigate these influences, we introduce a null model in this study. The
null model is constructed based on the target graph G, where category attributes
{xi} are randomly and uniformly assigned to each node. This preserves the
edge connectivity and topological structure between nodes while maintaining the
overall relative abundance of categories and their distribution within individual
regions. However, it disrupts the existing spatial arrangement of categories[13].
We will compute the average deviation of these metrics from the corresponding
metrics of the null model to represent spatial distribution:

Δμ =
∫ 1

0

∣∣μ(q) − μ(q)null
∣∣ dq (10)

Δσ =
∫ 1

0

∣∣σ(q) − σ(q)null
∣∣ dq (11)

ΔH =
∫ 1

0

∣∣∣H(q) − H(q)null
∣∣∣ dq (12)

Where q represents the category proportion, and its value falls within the range
of [0, 1].
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We refer to Δμ,Δσ and ΔH as spatial heterogeneity, spatial variance and
spatial diversity,respectively. μ(q),σ(q), and H(q) deviations from the expected
values of the null model constitute a set of fundamental metrics, enabling com-
parisons across spatial systems with different category counts, shapes, sizes, and
features.

4.3 Similarity comparison

To quantify the similarity between the QWCT distributions generated by the
original system and the null model through quantum walks, we employ the
Jensen-Shannon divergence (JS divergence) to measure the proximity of the
model’s results to reality[14]. Before delving into that, it’s important to under-
stand KL divergence[15], also known as relative entropy, which is a distance
measure used to calculate the similarity between two probability distributions
p(xi) and q(xi):

DKL(p ‖ q) =
I∑

i=1

p(xi) log
(

p(xi)
q(xi)

)
(13)

Among them, DKL(p ‖ q) represents the KL divergence of the real system and
the null model. The smaller the value, the more similar the estimated probability
distribution is to the actual distribution.

The JS divergence also measures the similarity between two probability dis-
tributions and shares the property of non-negativity with the KL divergence.
However, unlike the KL divergence, its results are symmetric. The formula for
calculating the JS divergence is as follows:

DJS(p ‖ q) =
1
2
DKL(p ‖ p + q

2
) +

1
2
DKL(q ‖ p + q

2
) (14)

The JS divergence ranges from 0 to 1, where a value of 0 indicates identical
distributions and a value of 1 indicates completely dissimilar distributions.

We use the JS divergence to compare the similarity between two probabil-
ity distributions. When the JS divergence approaches zero, it indicates that the
two distributions are very similar or overlapping. Conversely, when the JS diver-
gence is larger, it suggests that the distributions differ significantly. Therefore,
by calculating the JS divergence, we can quantify the similarity or dissimilarity
between the QWCT distributions generated by the original system and the null
model through quantum walks.

As shown in Table. 1, we observe that the JS divergence between the real-
world spatial system and the null model is close to zero, indicating a small
difference in distributions. This occurs because the null model preserves the
topological structure of the graph while also maintaining the overall relative
abundance and distribution of categories. It only alters the category attributes
of each node.
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Table 1. The JS divergences between the original systems and null models for the five
cities.

Atlanta Boston Cardiff Dallas London

DJS(p ‖ q) 0.0096 0.0425 0.0292 0.0053 0.0602

5 Evaluation

In the experiments, we first compare the spatial distribution of convergence time
statistics between quantum walks and random walks. Then, we demonstrate
the spatial indicators of London, a representative area, to validate the superior
performance of quantum walks in quantifying racial segregation.

5.1 Settings

We evaluated our approach using the following datasets:
The Census data from the UK Office for National Statistics, which includes

racial distribution information for England and Wales. The data categorizes
cities into three levels:LSOAs, OAs, Wards, with a total distribution of 250
racial categories. They are linked by geo_code to different regions[16].

The Census data from the United States Census Bureau, which contains
population distribution information for 64 racial categories in different regions.
They are linked by GEOID10 to different regions[17].

The default settings for numerical simulation in this section are as follows:
q = 0.7, where q represents a threshold value, and q ∗ c represents the number
of categories of interest, where c represents the total number of categories in
the area. QWCT on q is defined as the expected number of steps required for
the quantum walker to first visit q ∗ c categories starting from the initial node
i0. To avoid errors, we set the number of repeated walks to 1000, denoted as
num = 1000. The node range is determined by the number of regions divided in
the CSV file of the target area. Taking London as an example, the node range is
from 0 to 632. It is worth noting that because the UK census divides cities into
three levels: LSOAs, OAs, and wards, in this section, experiments related to the
UK are based on ward-level divisions. The experimental results in this section
are the average of 1000 independent experiments.

5.2 Comparative experiment

Spatial distribution of QWCT Fig. 2 illustrates the spatial distribution of
Q̃i(q) = Qi(q)/Qi(q)null values generated by quantum walks and traditional
random walks for four cities. We observe that blue and green areas represent
regions with lower Q̃i(q) values, indicating easier access to all ethnicities. Typi-
cal regions include the southern area of Cardiff and the central area of Dallas. In
reality, Cardiff is a multicultural city attracting populations from various racial
and cultural backgrounds, resulting in relatively lower levels of racial segregation
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compared to some other major cities. Yellow and red areas, on the other hand,
represent regions with higher Q̃i(q) values. Typical regions include the south-
western area of Atlanta and the northeastern area of Boston. The Q̃i(q) values
in the northeastern area of Boston are three times higher than those predicted
by the null model, indicating a high level of racial segregation.

Nevertheless, Fig. 2 shows only partial regional segregation levels. It does not
provide a clear comparison of the accuracy of quantum walks and random walks
in quantifying segregation levels. Therefore, we analyze three spatial indicators
proposed in this paper: μ(q), spatial variance σ(q) and spatial diversity H(q).
These indicators allow us to directly compare the performance of quantum walks
and random walks.

Fig. 2. The normalized quantum walk convergence time Qi(q)/Qi(q)
null spatial distri-

bution provides detailed insights into the degree of racial segregation. q = 0.7

Spatial indicators of London Through Fig. 3, we first analyze the spatial
distribution of Q̃i(q) values in London. Then we closely examine the behavior
of spatial heterogeneity μ(q), spatial variance σ(q), and spatial diversity H(q).
London is characterized by strong racial segregation[18]. In fact, some areas of
the city clearly show larger Q̃i(q) values. In the east area of London, its Q̃i(q)
value is more than seven times larger than the null model. We also observed an
interesting phenomenon. When accessing the last one hundredth category, the
random walk often takes an extremely large number of steps to access, while
the image of the quantum walk appears relatively smooth. This is one of the
advantages of quantum walks.

We understand that a larger value of μ(q) indicates an uneven distribution
of categories within the system. A higher σ(q) value reflects categories tending
to form segregated homogeneous groups and clusters, quantifying the variation
of QWCT across the entire space. A larger H(q) value suggests minimal differ-
ences in QWCT between neighboring nodes, indicating local spatial diversity.
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As shown in Fig. 3b, the lower μ(q) value of the null model implies a more uni-
form category distribution compared to the actual system. Similarly, as shown
in Fig. 3a, the higher H(q) value of the null model indicates less variation and
greater uniformity in QWCT between adjacent nodes. In summary, for the city of
London, the null model exhibits a more uniform category distribution compared
to the real system.

Fig. 3. a The spatial distribution of normalized QWCT values in London. bcd The
values of spatial heterogeneity μ(q), spatial variance σ(q) and spatial diversity H(q)
for the real model(solid red line) and the corresponding null model(black dashed line),
with the independent variable being the proportion q of categories visited(Color figure
online).

From the analysis of category distribution, spatial heterogeneity Δμ is
directly related to the size of clusters with similar racial compositions. Higher
spatial variance Δσ is associated with a more imbalanced distribution of cate-
gories in space. For cities and races, this implies that the convergence time varies
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greatly depending on the starting node. A high spatial diversity ΔH value sug-
gests that convergence times in adjacent areas are relatively balanced, with no
significant differences. Conversely, a low ΔH value indicates significant differ-
ences in convergence times between neighboring nodes, influenced by clusters
with similar racial distributions. In general, smaller clusters result in shorter
convergence times because walkers require less time to leave them and access
neighboring nodes. Conversely, walkers need more time to exit larger clusters
and find other races.

We computed the time statistics generated by quantum walk and random
walk on the London area and its null model, resulting in three spatial metric
indicators Δμ, Δσ and ΔH, as shown in Table. 2. We observed that the three
metrics generated by the random walk method are all larger than those gener-
ated by the quantum walk. In reality, adjacent areas in London often organize
into small clusters with very similar racial distributions[19], so its spatial het-
erogeneity metric Δμ should be smaller. The characteristic of quantum walk,
where convergence time is not heavily dependent on the starting node, results in
a smaller spatial variance metric Δσ. However, there is no significant difference
in spatial diversity metric ΔH between them. Therefore, we conclude that the
performance and accuracy of quantum walk are superior to those of random
walk.

Table 2. Δμ, Δσ, ΔH of time statistics generated by quantum walks and random
walks in the London area.

Δμ Δσ ΔH

Quantum Walk 3.812 590.936 0.0642
Random Walk 5.532 750.476 0.0643

6 Conclusion

This paper proposes a method to quantify racial segregation between cities using
quantum walks. We perform quantum walks on graphs and define the expected
number of steps taken by the walker to visit different categories as Quantum
Walk Convergence Time. Through virtual experiments, we demonstrate that
higher QWCT values indicate more severe social segregation. By computing the
average deviation from the corresponding null models, Δμ, Δσ, and ΔH are
suitable for comparing the spatial heterogeneity of the same variable in different
systems, regardless of size, shape, or the number of different categories in the
system.

We compare the results of quantum walk with those of traditional random
walks and find that quantum walks can cover nodes of different categories faster.
This is because particles in quantum walks can exist in superposition, enabling
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them to reach the target location more quickly, thus having a faster "diffusion"
rate. In contrast, in random walks, walkers can only choose one path from all
possible paths.Through measurements in the city of London, we find that QWCT
generated by quantum walks provides a more accurate assessment of racial segre-
gation. Additionally, we observe that the JS divergence between the real system
and the null model is not significantly different, indicating that attribute invari-
ance has minimal impact on the time statistics generated by quantum walks.

Due to the complexity involved in the concept of quantum walks and the
extensive computational requirements, this study primarily focuses on two main
concepts: quantum state superposition and unitary evolution. Therefore, further
enhancement of the quantum walk method is needed for future research.

In summary, the QWCT shows promising results in quantifying racial segre-
gation. While this study specifically investigates the relationship between QWCT
and racial segregation, QWCT can also be applied to quantify the spatial distri-
bution of other categories, such as socioeconomic status, educational level, and
more.
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Abstract. Learning domain-invariant visual representations is impor-
tant to train a model that can generalize well to unseen target task
domains. Recent works demonstrate that text descriptions contain high-
level class-discriminative information and such auxiliary semantic cues
can be used as effective pivot embedding for domain generalization prob-
lems. However, they use pivot embedding in a global manner (i.e., align-
ing an image embedding with sentence-level text embedding), which does
not fully utilize the semantic cues of given text description. In this work,
we advocate for the use of local alignment between image regions and cor-
responding textual descriptions to get domain-invariant features. To this
end, we first represent image and text inputs as graphs. We then cluster
nodes within these graphs and match the graph-based image node fea-
tures to the nodes of textual graphs. This matching process is conducted
both globally and locally, tightly aligning visual and textual semantic
sub-structures. We experiment with large-scale public datasets, such as
CUB-DG and DomainBed, and our model achieves matched or better
state-of-the-art performance on these datasets. The code is available at:
https://github.com/noparkee/Graph-Clustering-based-DG

Keywords: Domain Generalization · Multimodal Learning

1 Introduction

How can humans effectively comprehend visual concepts despite variations in
backgrounds, textures, and artistic styles? If it is impossible to collect suffi-
cient examples of various combinations of domains, can current machine learn-
ing methods found on the i.i.d. assumption achieve robust generalization per-
formance across domains? In this paper, we consider the domain generalization
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Fig. 1. Our model learns domain-invariant visual representations by matching images
and text descriptions at both global and local levels. Images and texts are represented as
clustering-based graphs, encouraging the model to learn domain-invariant local seman-
tic cues (e.g., “a yellow belly” and “green primaries”).

problem on image datasets and introduce a novel clustering-based image-text
graph matching to tackle the problem.

Domain generalization aims to improve a model’s generalization ability for
unseen task domains. Previous research has explored various approaches to
address this challenge, including minimizing domain discrepancies in the visual
feature space [19,35], augmenting data to cover various domains [18,40], and uti-
lizing ensemble learning [8,22]. Notably, recent work such as GVRT [28] suggests
leveraging natural language descriptions (e.g., “this bird has a blue crown, green
primaries, and a yellow belly”) to infuse visual encoders with domain-invariant
semantic cues, i.e., a visual encoder is optimized to produce an embedding that
aligns well with the corresponding text embedding. While promising, optimizing
a model with such global alignment often leads to suboptimal results, as these
models may lack diverse attribute focus and occasionally attend to irrelevant
regions for the class (e.g., see Figure 6a).

To address these limitations, as shown in Figure 1, we focus on local match-
ing, wherein image regions are matched with corresponding textual descriptions
(e.g., an image region of blue crown and “blue crown” in a sentence). This app-
roach involves representing the text descriptions with graphs and aligning the
embedding of images and text by matching the graphs.

As shown in Figure 2, the suggested method consists of three parts: (i) a
graph-based visual encoder, (ii) a graph-based textual encoder, and (iii) a graph-
based alignment. Based on the graph-based representations, we aim to learn
the domain-invariant features by grounding the graph-based image features into
textual graphs, as the textual graphs contain explicitly verbalized knowledge
from humans’ typical reasoning. To solve the language grounding with structural
information, we suggest a new method that clusters the graph node features then
matches those clusters. By matching the multimodal graphs while clustering each
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node’s features, our suggested method can get robust domain-invariant features
representing multilevel semantic alignment.

Experimental results with two popular benchmark datasets, CUB-DG [28]
and DomainBed [14], show the pivotal role of multimodal structural represen-
tations. Quantitatively, our suggested method achieves a new state-of-the-art
performance, especially by increasing generalization ability on the most difficult
domain paint of CUB-DG dataset. With robust qualitative visualization results,
we argue that our model learns domain-invariant features across various feature
resolutions by locally and globally aligning with textual graphs.

Our contributions can be summarized as follows. (1) We propose the first
approach using graph representations for both image and text inputs for the
DG problem. (2) We suggest a novel method that clusters and matches node
features to align two multimodal graphs. (3) We achieve a new state-of-the-art
DG performance on the CUB-DG dataset and DomainBed benchmark.

2 Related Work

Domain Generalization. Domain generalization aims to enhance a model’s
ability to generalize to unseen target domains with different data distributions
compared to the source domains. The main idea of domain generalization is to
learn domain-invariant features from multiple source domains. Various methods
have been proposed to resolve this problem (i) by reducing domain discrepancies
in the feature space [19,35], (ii) by implementing data augmentation [18,40], and
(iii) by utilizing ensemble learning [8]. (iv) Other studies have proposed using
auxiliary semantic cues to facilitate learning domain-invariant features [2,9,33].

Recently, GVRT [28] successfully leverages textual descriptions for models to
learn domain-invariant visual representations by aligning them with verbalized
(domain-invariant and class-discriminative) knowledge from humans’ typical rea-
soning (e.g., given a text “this bird is black with an orange spot on its wing”).
GVRT improves the model’s generalization power by leveraging visual and tex-
tual inputs together and simply matching global representations. However, our
focus extends beyond this, emphasizing the alignment of locally-aware high-order
semantic relations via graph structures.

Graph Neural Network. Along with the huge success of neural networks in
computer vision and natural language processing domains, new methodologies
to deal with irregular structural inputs have been recently suggested. Various
graph-based neural network algorithms are recommended for learning represen-
tations from structural inputs like molecular graphs, social networks, and meshes.
According to the ways of representing graph data, attention-based methods (e.g.,
MoNet [6]), convolution-based methods (e.g., GCN [20]), and message-passing
methods (e.g., MPNN [13]) can be applied to graph representation learning.
Those graph neural network methods have achieved great performance on graph-
related tasks, such as node classification [4], link prediction [41], and graph clas-
sification problems [42], by leveraging the non-euclidean data manifolds to get
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informative representations. Recently, the applications of graph neural networks
have been extended to image and text domains [26]. By representing the image
and text inputs as graphs, it becomes possible to consider the irregular and
high-order correlations between tokens. In this paper, we suggest representing
the multimodal inputs as graphs and matching the semantic correspondences
between the multimodal inputs using graph neural networks to get the domain-
invariant features.

Fig. 2. An overview of our proposed method. We introduce multimodal graphs (visual
and textual) that align with each other locally and globally, yielding domain-invariant
visual features that are well-aligned with humans’ explicitly verbalized knowledge.

3 Method

Given a distribution over multiple (or single) source domains {S1,S2, . . . } ∈
S, the domain generalization (DG) problem considers the following classical
stochastic optimization, in which we minimize the data-dependent generalization
upper bound of the expected task loss [34]:

minimize
θ

sup
T :D(S,T )≤ρ

ET
[
L(θ;S)

]
(1)

where we consider unseen target domains T = {T1, T2, . . . } and the discrep-
ancy between S and T is bounded by an arbitrary bound ρ, i.e. D(S, T ) ≤ ρ. We
consider image classification scenarios and define the task-specific loss L function
by the cross-entropy loss. Extracting domain-invariant representations from an
image is key for training a model to generalize well to unseen domains.

Inspired by recent work by [28], we also want to improve the model’s general-
ization power by leveraging visual and textual inputs together. Our model learns
to extract (domain-invariant) visual representations that are well-aligned with
explicitly verbalized knowledge from humans’ typical reasoning. Unlike from [28]
in that we focus more on aligning locally-aware high-order semantic relations via
graphs instead of simply aligning global representations.
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Figure 2 illustrates the architecture of our model, which is composed of three
primary components: (i) a Graph-based Visual Encoder, (ii) a Graph-based Tex-
tual Encoder, and (iii) Graph-based Alignment for Learning Domain-Invariant
Features. In (i), local latent representations (from a backbone network) are rep-
resented as a graph structure. Each local latent vector becomes a node, creating
edges based on pairwise similarity in the embedding space (see Section 3.1). In
(ii), we build a textual graph given a natural language description about a specific
class (e.g., if the image corresponds to the Florida Jay class, the description could
be “a tan bird with blue wings and a blue head.”). Each word embedding forms
a node, creating edges based on embedding-level similarity (refer Section 3.2).
In (iii), We regularize multi-modal encoders for locally aligned representations
by minimizing graph-level distances between visual and textual data. Apply-
ing clustering-based graph matching makes our model generalizable by learning
human-compatible visual cues. (see Section 3.3).

3.1 Graph-based Visual Encoder

Global Visual Feature Extraction. Following standards in the domain gen-
eralization task, we use the pretrained ResNet50 [16] on ImageNet dataset [11]
as a backbone. Our backbone takes an image I as an input and produces a
d-dimensional global visual representation xg ∈ R

d. This global representation
xg is trained to predict its classification label y with a linear layer, yielding
the per-class softmax probabilities ŷ. Both the backbone and the classifier are
trained by a classification loss Lc as follows:

Lc(y, ŷ) = −
∑

i

yilog(ŷi) (2)

where y ∈ R
|C| represents the ground-truth one-hot vector, and |C| denotes

the size of the ground-truth class set. The model minimizes the loss function
Lc, but, unfortunately, this optimization often results in the model becoming
semantically shallow. Thus model would not generalize well in environments
different from those in which they were trained. In our work, we aim to regularize
our model to understand relations between visual cues and use those relations
for the final verdict, thus making it more generalizable. We want to achieve such
a regularization effect through utterances from human verbalized reasoning.

Locally-aware Visual Graph Construction. We first construct a graph with
visual representations to achieve the above mentioned goal. Formally, given M
number of d-dimensional local visual representations xl ∈ {xl,1,xl,2, . . . ,xl,M}
extracted from intermediate layers of the backbone (before global average pool-
ing layer), we consider these representations as a set of unordered nodes. Note
that each representation vector xl,i ∈ R

d for i ∈ [1,M ] corresponds to a certain
grid over an input image I. Inspired by the recent work [15], we construct a
graph such that each node xl,i has an edge with the other Kv nearest neighbors
(Visual Graph in Figure 2). We use the widely-used L2 distance to measure
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pairwise node similarity. In summary, our visual graph Gv = (Vv, Ev), where Vv

denotes the node set consisting of M nodes (representing each visual feature of
the local grid). The edge set Ev is comprised of the connections between nodes,
with each node connected to its Kv nearest neighbors. Detailed explanations are
provided in the supplementary material.

Graph-based Visual Representation. Given the visual graph Gv, we further
apply two layers of graph convolution network (GCN) [20], each followed by a
linear layer, BatchNorm [17] layer and ReLU [1] activation. Subsequently, we
employ dropout layer (only during training) and average readout operation to
learn relational knowledge between local visual representations. Formally, we use
a GCN-based function fGCN(Gv) to obtain a final dg-dimensional locally-aware
visual graph representation gv ∈ R

dg , gv = fGCN(Gv). Note that, we also add an
additional classifier that takes the gv as an input to create a graph that better
captures the characteristics of the class. We provide detailed explanations in the
supplementary material.

3.2 Graph-based Textual Encoder

Word-level Textual Graph Construction. Our graph-based visual represen-
tation gv encodes relational knowledge via a graph structure between represen-
tations of local visual features xl. We empirically observe that such graph-based
representation’s sole use is still insufficient for models to learn domain-invariant
and human-compatible visual cues. Thus, to regularize our visual encoders to be
aligned with human knowledge, we build a textual graph from a natural language
description of each image, followed by aligning both visual and textual graphs.
A sequence of L (at maximum) words is first tokenized and encoded with a stan-
dard word-level (learnable) embedding layer, producing dt-dimensional embed-
ding vectors t ∈ {t1, t2, . . . , tL} where ti ∈ R

dt . Similar to our Visual Graph
Gv, we consider these word embeddings as an unordered set. We then construct
a graph such that each node ti has an edge with the other Kt nearest neighbors
(textual graph in Figure 2). We use L2 distance to measure pairwise node simi-
larity. Finally, we create a textual graph Gt = (Vt, Et), where Vt denotes the node
set comprising L nodes, each representing a textual feature of word embedding,
and Et signifies the edge set.

Graph-based Textual Representation. Given the textual graph Gt, we apply
the same architecture (but not shared) to obtain textual graph representation
gt ∈ R

dg . I.e. we apply another GCN-based function fGCN(Gt) to learn relational
knowledge between word embeddings, gt = fGCN(Gt).



396 N. Park et al.

3.3 Graph-based Alignment for Learning Domain-Invariant
Features

We apply the following two graph-alignment approaches: (i) Graph-based Global
Alignment and (ii) Local Alignment through Clustering-based Fine-grained
Graph Matching, which comprises clustering and matching steps.

Global Graph Alignment. We assume that text descriptions inherently con-
tain class-discriminative semantic cues. Thus, our model can learn domain-
invariant features with aid of textual information. A standard approach to align-
ing different representations is minimizing the Euclidean distance. We employ
this alignment technique to graph features as follows:

Lglobal = ||fproj,x(xg) − fproj,v(gv)||2 + ||fproj,x(xg) − fproj,t(gt)||2 (3)

where we use a linear layer to project each feature (i.e. xg, gv, and gt) such
that these three projected features are pulled together. Note that fproj,x, fproj,v,
and fproj,t represent a projection layer. Importantly, as we use only a force to
pull latent representations together, the training dynamics may become unstable,
causing a representation collapse. To avoid this, like the approach in [28], we add
an auxiliary classifier which is trained with the standard cross-entropy loss takes
fproj,x(xg) as an input to prevent a mode collapse, outputting the per-class
softmax probability.

Clustering Graph Nodes. In addition to global alignment, initially, we tried
to match the nodes in the visual graph with textual graph to align the locally-
aware semantic relations. However, simply aligning nodes from two different
graphs may not work as these nodes have different representations (i.e. a visual
feature of a local image region vs. a word-level representation). Therefore, we
present clustering-based local graph matching, which applies a node clustering
algorithm to ensure that the two graphs have the same level of semantic represen-
tation and then performs graph matching. We define user-specified parameters
Nv(≤ M) and Nt(≤ L) to the number of clusters for our visual and textual
graphs, respectively. Note that we set Nv ≥ Nt since images may contain visual
contents (e.g. backgrounds) that are not generally described in the text.

Our approach to constructing a graph is based on measuring node similarity,
which can result in a well-defined semantic structure in the graph. Therefore,
we choose a modularity-based method for graph clustering that can reflect this
semantic structure while remaining stable. Specifically, we use a deep learning-
based modularity measurement method [36]. Our model first encodes the cluster
assignment matrix using the features of the graph nodes. Then, we calculate
the modularity using this matrix, which measures the quality of the clustering.
We train the model to maximize the modularity while also constraining it with
collapse regularization to prevent trivial solutions such as assigning all nodes to
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the same cluster. We formulate it as follows:

Ld = − 1
2m

Tr
(
CTBC

)
+

√
k

n

∥
∥
∥
∥
∥

∑

i

CT
i

∥
∥
∥
∥
∥

F

− 1 (4)

where C is the cluster assignment matrix calculated with our graph feature, and
B is the modularity matrix calculated with the adjacency matrix. m, n, and k
represent the number of edges, the number of nodes, and the number of clusters,
respectively. The first term refers to modularity, which is measured using the
assignment matrix and the modularity matrix, while the second term represents
the collapse regularization term. So, our model can cluster semantically similar
nodes together, allowing us to proceed with the matching process.

When applying node clustering to the visual graph Gv, the cluster assignment
matrix C has dimensions of R

M×Nv (or R
L×Nt when applied to the textual

graph). Each element in matrix C at the i-th row and j-th column represents
the softmax probability that the i-th local feature (or the i-th node) belongs to
the j-th cluster. In this context, cluster feature is obtained through the following
equation: Cv = fproj,x(SeLU((C/Nv)Txl)), where SeLU [21] serves as one of the
activation functions. Note that when dealing with the textual graph Gt, Nv and
xl are replaced by Nt and t, respectively.

Clustering-based Graph Matching. Inspired by previous work [7], we use
the set-based loss, i.e. the bipartite matching loss, between two disjoint sets of
clusters: (i) a set of clusters Cv ∈ {C1

v , C2
v , . . . , CNv

v } of the visual graph Gv and (ii)
a set of clusters Ct ∈ {C1

t , C2
t , . . . , CNt

t } from the textual graph Gt. We minimize
the following pair-wise matching loss:

Lp =
1
Nt

Nt∑

i=1

||Cμi
v − Ci

t ||2 (5)

where μi ∈ {1, 2, . . . , Nv} is the cluster index of Cv which matches to i in Ct,
producing the smallest total Euclidean distance by bipartite matching.

As the pair-wise matching loss pulls positive pairs together, negative pairs
to add a repulsive force may need to prevent representation collapse. Thus, we
also use a hinge loss based on Ci

v and C′j
t (where i ∈ [1, Nv] and j ∈ [1, Nt]),

considering them as a negative pair if they are clusters for different input images.
Thus, the matched distance Lp should be smaller than any other pairs between
Cj

v and C′i
t (or C′j

v and Ci
t). We formulate it as a hinge loss as follows:

Lh = max(0,Lp − MinDst(C′
v, Ct) + ε) + max(0,Lp − MinDst(Cv, C′

t) + ε)
(6)

where MinDst(Cv, C′
t) and MinDst(C′

v, Ct) represents the minimum pair-wise
matching loss similar to Lp, but is applied between two disjoint sets of clusters
originating from different inputs within a mini-batch. We compute it across all
sample pairs in a mini-batch and use the average as the final loss value:
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Llocal =
1
B

∑

b

(λdLd + λhLh + λauxLaux) (7)

where we set the size of a mini-batch to B and λp, λh, and λd adjustable hyper-
parameters that control the weight of each loss term. In our model, values of
1, 0.1, and 0.1 are used for λd, λh, and λaux, respectively. Note that, similar to
our global alignment module, we also add an auxiliary classifier that takes the
average-pooled representation of visual clusters matched with textual clusters,
denoted as 1

Nt

∑Nt

i=1 Cμi
v , as an input. This classifier outputs the per-class softmax

probability and is trained using the standard cross-entropy loss Laux.

Loss Function. Ultimately, we train our model end-to-end by minimizing the
following loss L:

L = Lc + Lglobal + Llocal (8)

4 Experiments

4.1 Setup

ImplementationDetails. Same as previous domain generalization approaches,
we also use ResNet50 [16], pre-trained on ImageNet [11], as our backbone, yield-
ing a 2,048-dimensional visual representation from the last layer. Our model is
trained end-to-end for 5,000 training steps using Adam optimizer with a learning
rate of 5e-5. For training, we use standard image augmentation techniques such
as random cropping, horizontal flipping, color jittering, grayscale conversion, and
normalization. Our implementation is based on DomainBed [14], which is a unified
domain generalization testbed, and our code will be publicly available upon publi-
cation. More details, including information that varies depending on the dataset,
are available in supplementary material.

Datasets. To demonstrate our model’s effectiveness, we first use the CUB-
DG dataset (for fine-grained image classification task), which is extended from
the CUB dataset [39] for the domain generalization task. This dataset contains
11,768 images for 200 classes of North American bird species. Each image has 10
text descriptions describing the content in detail, e.g., “this bird is black with an
orange spot on its wing.” Each image is manipulated to create the following four
domains: Photo, Cartoon, Art, and Painting. We follow the common evaluation
protocol and use the CUB-DG dataset’s official split (the train and validation
set has 5,994 samples, while the test set has 5,794 samples).

Further, we also evaluate our model on DomainBed [14], which contains the
following five multi-domain DG datasets: VLCS [12], PACS [25], OfficeHome [38],
TerraIncognita [3], and DomainNet [23]. Among these, we would emphasize that
PACS [25] dataset is useful for our experiments as (i) it provides a bigger domain
shift than existing photo-only benchmarks, and (ii) it needs to exploit local
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information to learn discriminative subtle visual features. We follow the standard
evaluation protocol used in [14]. For datasets that do not provide text inputs,
we use both (1) textual class definitions from the Oxford dictionary similar to
GVRT [28] and (2) descriptions generated by InstructBLIP [10] with the prompt
“write a detailed description about the image.” (refer supplementary material).

4.2 Performance Comparison

Table 1. The out-of-distribution classification accuracies (in %) on CUB-DG (top)
and PACS (bottom) datasets based on the standard leave-one-out multi-source DG
task setting. We compare ours with other existing DG approaches. (we provide full
tables in supplementary material). Abbr. I: Image, T: Text.

Algorithms ModalityTarget Domain (Data: CUB-DG [28]) Avg. ↑
Photo Cartoon Art Paint

MIRO [9] I 68.2 59.1 46.5 38.2 53.0

SD [31] I 71.3 62.2 50.8 34.8 54.7

CORAL [35] I 72.2 63.5 50.3 35.8 55.4

CCFP [24] I 70.0 61.5 52.1 40.4 56.0

GVRT [28] I+T 74.6 64.2 52.2 37.0 57.0

Ours I+T 75.4 65.5 54.0 41.4 59.1

Algorithms ModalityTarget Domain (Data: PACS [25]) Avg. ↑
Art PaintingCartoon Photo Sketch

SelfReg [19] I 87.9 ± 1.0 79.4 ± 1.4 96.8 ± 0.7 78.3 ± 1.2 85.6

CORAL [35] I 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2

mDSDI [5] I 87.7 ± 0.4 80.4 ± 0.7 98.1 ± 0.378.4 ± 1.2 86.2

SagNet [29] I 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3

CCFP [24] I 87.5 ± 0.1 81.3 ± 0.3 96.4 ± 0.3 81.4 ± 0.886.6

Ours I+T 87.9 ± 0.7 81.4 ± 0.198.0 ± 0.1 80.5 ± 1.1 87.0

As shown in Table 1, we compared the out-of-distribution classification
accuracies on the following two datasets: CUB-DG (top) and PACS (bottom)
datasets. We compare ours with other existing state-of-the-art domain general-
ization approaches, SagNet [29], MIRO [9], SD [31], CORAL [35], GVRT [28],
SelfReg [19], mDSDI [5], and CCFP [24]. Due to space constraints, we only
report top-6 results (we provide full tables in supplementary material).

As shown in Table 1 (top), our proposed method clearly outperforms the
other domain generalization techniques on the CUB-DG dataset in all target
domains with a significant gain. In terms of the average image classification
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accuracy, ours shows 59.1%, which is 2.1% higher than GVRT [28] (which uses
the same image and text inputs) and 3.1% higher than image-only approach,
CCFP [24]. Similar trends are also observed in our experiment on the large-scale
PACS [25] dataset. As shown in Table 1 (bottom), our model also outperforms
the other approaches, i.e., ours shows 87.0% that is 0.4% higher than CCFP [24]-
based SOTA approach and 1.9% higher than GVRT [28]. These confirm that our
graph-based approach is effective in aligning visual and textual encoders for fine-
grained image classification tasks, improving the visual encoder’s generalization
power to unseen target domains.

4.3 Few-shot DG Performance Comparison

Table 2. Few-shot DG performance comparison.

Algorithm (Data: PACS [25]) Avg. Algorithm (Data: VLCS [12]) Avg.

mDSDI [5] 63.5 mDSDI [5] 68.5
CORAL [35] 64.6 GVRT [28] 69.4
MIRO [9] 65.5 MIRO [9] 69.6
GVRT [28] 68.7 CORAL [35] 71.1
Ours 70.7 Ours 71.4

Conventional DG approaches
often assume that a sufficient
number of images is available
for all classes and domains
enough to learn domain-
invariant class-discriminative
features. However, this may
be practically challenging in
real-world scenarios. We emphasize that our method, which leverages textual
descriptions as pivotal information, can benefit learning domain-invariant fea-
tures in the few-shot setting. In Table 2, our model significantly outperforms
the other approaches on PACS [25] and VLCS [12] datasets. Note that we use
randomly chosen five images (per class in each domain) as an input to train all
models (i.e., 5-shot DG). Except for the number of training images, we generally
follow the standard protocol of DomainBed for evaluation.

Fig. 3. Examples of the matched image region (in visual graph clusters) and texts (in
textual graph clusters).
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4.4 Analysis on CUB-DG Dataset

Analysis of Graph Clusters and Their Matchings. In Figure 3, we provide
examples of a matched pair of image regions and a set of words. For example, in
(a), a region around the bird’s head is matched with a textual graph cluster that
contains words including “orange eyes”. We observe that our model reasonably
matches image features with class-discriminative texts, e.g., red crown, cheek
patch, extremely long tail, and long neck.

Fig. 4. Visualizations by t-SNE for (a)ERM [37], (b)GVRT [28], and (c)Ours on CUB-
DG. Points are color-coded differently by its class and has different shapes according
to its domain. (d)We also compare inter-domain same-class distances.

Fig. 5. Exemplars of the nearest exam-
ples from PACS dataset (in the unseen
target domain) to the given image (e.g.,
“dog” and “horse”).

As shown in Figure 4, we provide t-
SNE [27] visualization of (a) ERM [37],
(b) GVRT [28], and (c) Ours to visual-
ize their embedding space on CUB-DG
dataset. We use different marker styles
(for target domains) and different colors
(for classes). An ideal model would show
that visual features of the same class but
different domains are gathered together.
Ours clearly outperform ERM, which has
scattered points per domain and better
than GVRT in that features of the same
class but different domains are more clus-
tered (see red boxes). In Figure 4 (d), we provide box plots for GVRT and
ours, showing that our model produces lower same-class inter-domain distances
than GVRT. Note that we provide detailed t-SNE visualizations in supplemen-
tary material. Figure 5 further shows the nearest examples in the unseen target
domain to the given image (e.g., “dog”). In contrast to MIRO and GVRT, which
often provide examples of different classes (e.g., “person”), ours consistently pro-
vide examples of the same class. This is consistent with our t-SNE analysis. We
provide more examples in in supplementary material.
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GradCAM Visualization. In Figure 6, we use GradCAM [32] to visualize
image regions where the model focuses on for the final verdict. We observe that
our model generally focuses on multiple class-discriminative features, giving the
benefits of more robust and generalizable recognition performance. More specif-
ically, in the first image of Figure 6b, our model focuses on the head region, a
relevant area for the classification task, in contrast to the GVRT model which
attends to a region less relevant to class information (Figure 6a).

Fig. 6. GradCAM [32] visualizations to evaluate
where the model sees.

Furthermore, in the second
image of the GVRT scenario,
the model concentrates solely
on the belly region, while our
model exhibits a more diverse
focus on attributes, encompass-
ing both the belly and beak.
Unlike GVRT, which focuses
solely on global alignment, our
model incorporates local align-
ment through graphs. This app-
roach enables our model to capture diverse attributes, increasing its ability to
generalize effectively.

Table 3. Ablation studies to compare variants of our model. Data: CUB-DG.

Global
Alignment

Local
Alignment

Visual
Graph

Textual
Graph

Target Domain Avg.

PhotoCartoonArt Paint

- - � � 65.1 52.5 38.2 29.0 46.2

� - - - 69.5 57.1 44.2 30.2 50.2

� - � - 70.3 57.0 48.1 33.5 52.2

� - - � 75.0 64.4 53.0 34.7 56.8

- � � � 71.4 57.6 46.6 37.2 53.2

� � � � 75.4 65.5 54.041.4 59.1

Ablation Studies. In Table 3, we conduct an ablation study to demonstrate
the effect of main modules: (i) a global alignment, (ii) a local alignment, (iii) a
visual graph, and (iv) a textual graph. Our study demonstrates that (1) a global
alignment, which aligns graph-level features together, effectively improves accu-
racies, especially in photo, cartoon, and art domains. (2) Adding local alignment,
which aligns graphs via the clustering-based matching algorithm, improves all
domains while using both alignments outperforms the alternatives. (3) Either
using a visual or textual graph alone improves model generalization, but the
gain is marginal with the visual graph alone. (4) The gain is maximized by using
both graphs, which indicates that a graph structure effectively transfers text
knowledge to train a generalizable visual encoder.
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Table 4. The test accuracies (in %) on the DomainBed datasets in the multi-source
DG task setting. We compare ours with other existing DG approaches (we provide full
tables in supplementary material). †: utilizing texts from a dictionary, ‡: incorporating
texts from InstructBLIP. Abbr. I: Image, T: Text.

Algorithm ModalityDataset Avg.

VLCS PACS OfficeHomeTerraIncognitaDomainNet

CORAL [35] I 78.8 ± 0.686.2 ± 0.368.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6

CCFP [24] I 78.9 ± 0.386.6 ± 0.268.9 ± 0.1 48.6 ± 0.4 41.2 ± 0.0 64.8

mDSDI [5] I 79.0 ± 0.386.2 ± 0.269.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1 65.1

GVRT (PTE) [28] I+T 79.0 ± 0.285.1 ± 0.370.1 ± 0.1 48.0 ± 0.2 44.1 ± 0.1 65.2

MIRO [9] I 79.0 ± 0.085.4 ± 0.470.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9

Ours† I+T 78.3 ± 0.485.7 ± 0.170.1 ± 0.1 49.5 ± 0.9 43.7 ± 0.0 65.5

Ours‡ I+T 78.6 ± 0.387.0 ± 0.470.4 ± 0.2 49.2 ± 0.5 44.2 ± 0.0 65.9

Table 5. Performance comparison between variants of our model with different match-
ing techniques: bipartite matching and greedy matching. Data: CUB-DG.

Bipartite

Matching

Greedy

Matching

Time
Complexity

Target Domain Avg.

PhotoCartoonArt Paint

- � O(V 2) 75.3 64.7 54.836.6 57.8

� - O(V 3) 75.4 65.5 54.0 41.4 59.1

Complexity of Graph Matching. In our matching algorithm design, we
explored two approaches: bipartite matching and greedy matching. Bipartite
matching establishes one-to-one correspondences between clusters, minimizing
pairwise distances, while greedy matching allows many-to-one associations based
on spatial proximity. Bipartite matching operates with a time complexity of
O(V 3), where V denotes the number of vertices, while greedy matching oper-
ates in O(V 2). Despite the higher time complexity of bipartite matching, our
experimental results (refer to Table 5) demonstrate its superior performance
over greedy matching. This may be attributed to the constraints imposed on
one-to-one matching, which result in a dispersed effect on models attempting to
optimize cluster pairs on a global scale. Moreover, given that V does not exceed 5
in our method, we opted for bipartite matching due to its enhanced performance
in our specific context.

4.5 Performance on DomainBed Benchmark

We evaluate our model with a large-scale DomainBed [14] datasets. We use the
following five multi-domain datasets, including VLCS [12], PACS [25], Office-
Home [38], TerraIncognita [3], and DomainNet [30], comparing ours with 19
domain generalization algorithms. Due to space constraints, we only report top-
6 results (see supplementary material for full table). The reported score rep-
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resents averaged results obtained from three independent runs using randomly
chosen hyperparameters. We observe in Table 4 that our proposed method shows
matched or better state-of-the-art performance, where it ranks 1st (tied) in aver-
age performance.

5 Conclusion

We propose a novel domain generalization method that encodes domain-
invariant visual representations. To this end, we use a textual description to
utilize verbalized (domain-invariant) knowledge from humans’ typical reason-
ing. To align these, we use a clustering-based graph-matching algorithm based on
visual and textual graphs built upon images and texts, respectively. We evaluate
our model with state-of-the-art domain generalization approaches on CUB-DG
and DomainBed datasets, achieving SOTA performance.

Acknowledgements. This work was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry of
Education(NRF-2021R1A6A1A13044830, 20%) and supported by Institute of Infor-
mation & communications Technology Planning & Evaluation(IITP) grant funded by
the Korea government(MSIT) (RS-2022-II220043, Adaptive Personality for Intelligent
Agents, 30%, IITP-2024-RS-2024-00397085, Leading Generative AI Human Resources
Development, 30%, RS-2202-II220264, Comprehensive Video Understanding and Gen-
eration with Knowledge-based Deep Logic Neural Network, 20%). Daewon Chae was
supported by Hyundai Motor Chung Mong-Koo Foundation.

References

1. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375 (2018)

2. Bai, H., Sun, R., Hong, L., Zhou, F., Ye, N., Ye, H.J., Chan, S.H.G., Li, Z.:
Decaug: Out-of-distribution generalization via decomposed feature representation
and semantic augmentation. In: Proceedings of the AAAI Conference on Artificial
Intelligence (2021)

3. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Proceedings
of the European conference on computer vision (ECCV) (2018)

4. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks.
CoRR (2011)

5. Bui, M.H., Tran, T., Tran, A., Phung, D.: Exploiting domain-specific features to
enhance domain generalization. Advances in Neural Information Processing Sys-
tems (2021)

6. Burgess, C.P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M.M.,
Lerchner, A.: Monet: Unsupervised scene decomposition and representation. CoRR
(2019)

7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-End Object Detection with Transformers. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58452-8 13

http://arxiv.org/abs/1803.08375
https://doi.org/10.1007/978-3-030-58452-8_13


Clustering-based Image-Text Graph Matching for Domain Generalization 405

8. Cha, J., Chun, S., Lee, K., Cho, H.C., Park, S., Lee, Y., Park, S.: Swad: Domain
generalization by seeking flat minima. Advances in Neural Information Processing
Systems (2021)

9. Cha, J., Lee, K., Park, S., Chun, S.: Domain generalization by mutual-information
regularization with pre-trained models. In: Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXIII (2022)

10. Dai, W., Li, J., Li, D., Tiong, A.M.H., Zhao, J., Wang, W., Li, B., Fung, P., Hoi,
S.: Instructblip: Towards general-purpose vision-language models with instruction
tuning (2023)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition (2009)

12. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (2013)

13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. CoRR abs/1704.01212 (2017)

14. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. arXiv preprint
arXiv:2007.01434 (2020)

15. Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E.: Vision gnn: An image is worth
graph of nodes. Advances in Neural Information Processing Systems (2022)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition
(2016)

17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning
(2015)

18. Kang, J., Lee, S., Kim, N., Kwak, S.: Style neophile: Constantly seeking novel
styles for domain generalization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2022)

19. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: Selfreg: Self-supervised contrastive
regularization for domain generalization. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (2021)

20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

21. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. Advances in neural information processing systems (2017)

22. Lee, K., Kim, S., Kwak, S.: Cross-domain ensemble distillation for domain gener-
alization. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXV (2022)

23. Leventidis, A., Di Rocco, L., Gatterbauer, W., Miller, R.J., Riedewald, M.:
Domainnet: Homograph detection for data lake disambiguation. arXiv preprint
arXiv:2103.09940 (2021)

24. Li, C., Zhang, D., Huang, W., Zhang, J.: Cross contrasting feature perturbation for
domain generalization. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 1327–1337 (2023)

25. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV) (2017)

http://arxiv.org/abs/2007.01434
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2103.09940


406 N. Park et al.

26. Liu, C., Mao, Z., Zhang, T., Xie, H., Wang, B., Zhang, Y.: Graph structured
network for image-text matching. CoRR (2020)

27. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research (2008)

28. Min, S., Park, N., Kim, S., Park, S., Kim, J.: Grounding visual representations with
texts for domain generalization. In: European Conference on Computer Vision. pp.
37–53. Springer (2022)

29. Nam, H., et al.: Reducing domain gap by reducing style bias. In: CVPR (2021)
30. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching

for multi-source domain adaptation. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV) (2019)

31. Pezeshki, M., Kaba, S.O., Bengio, Y., Courville, A., Precup, D., Lajoie, G.:
Gradient starvation: A learning proclivity in neural networks. arXiv preprint
arXiv:2011.09468 (2020)

32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE international conference on computer vision (2017)

33. Shahtalebi, S., Zhu, Z., Rudzicz, F.: Out-of-distribution failure through the lens of
labeling mechanisms: An information theoretic approach. In: ICML 2022: Work-
shop on Spurious Correlations, Invariance and Stability (2022)

34. Sinha, A., Namkoong, H., Volpi, R., Duchi, J.: Certifying some distributional
robustness with principled adversarial training. ICLR (2017)

35. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation.
In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)

36. Tsitsulin, A., Palowitch, J., Perozzi, B., Müller, E.: Graph clustering with graph
neural networks. arXiv preprint arXiv:2006.16904 (2020)

37. Vapnik, V.N.: An overview of statistical learning theory. IEEE transactions on
neural networks (1999)

38. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (2017)

39. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.:
Caltech-UCSD Birds 200. Tech. rep, California Institute of Technology (2010)

40. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for
domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021)

41. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. CoRR
(2018)

42. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. Proceedings of the AAAI Conference on Artificial
Intelligence (2018)

http://arxiv.org/abs/2011.09468
http://arxiv.org/abs/2006.16904


Knowledge from Large-Scale Protein
Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA

Contact Prediction Task

Yiren Jian1(B), Chongyang Gao2, Chen Zeng3, Yunjie Zhao4,
and Soroush Vosoughi1

1 Dartmouth College, Hanover, NH 03755, USA
yiren.jian.gr@dartmouth.edu

2 Northwestern University, Evanston, IL 60208, USA
3 The George Washington University, Washington, DC 20052, USA

4 Central China Normal University, Wuhan 430079, China

Abstract. RNA, whose functionality is largely determined by its struc-
ture, plays an important role in many biological activities. The predic-
tion of pairwise structural proximity between each nucleotide of an RNA
sequence can characterize the structural information of the RNA. Histor-
ically, this problem has been tackled by machine learning models using
expert-engineered features and trained on scarce labeled datasets. Here,
we find that the knowledge learned by a protein-coevolution Transformer-
based language model can be transferred to the RNA contact predic-
tion task. As protein datasets are orders of magnitude larger than those
for RNA contact prediction, our findings and the subsequent frame-
work greatly reduce the data scarcity bottleneck. Experiments confirm
that RNA contact prediction through transfer learning using a publicly
available protein language-model is greatly improved. Our findings indi-
cate that the learned structural patterns of proteins can be transferred to
RNAs, opening up potential new avenues for research. The code and data
(for inference and training) are available at https://github.com/yiren-
jian/CoT-RNA-Transfer.

Keywords: Transfer Learning · RNA Contact Prediction · Biological
Modeling

1 Introduction

Proteins and RNAs are critical to many biological processes such as coding,
regulation, and expression [9,10,13,30,31]. Understanding their structures is
key to deciphering their functionalities. While experimental methods like X-ray
diffraction [32], nuclear magnetic resonance (NMR) [5], and Cryogenic electron
microscopy (Cryo-EM) [11] can determine 3D structures, it remains challenging
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for structurally flexible molecules, e.g., RNAs [24]. Consequently, the Protein
Data Bank has limited RNA structures cataloged [3].

In response, many computational tools for 3D structure prediction of bio-
logical molecules have been developed in the last decade [19,20,40]. Recently,
deep neural networks [6,18,22] have revolutionized 3D protein structure predic-
tion, partly due to their large size and training datasets. However, this progress
has not been paralleled for RNAs, mainly due to the scarcity of RNA datasets.
Current RNA datasets are significantly smaller than protein datasets, with well-
curated datasets containing less than 100 RNAs [42] and models trained on fewer
than 300 RNA structures [33]. These small datasets are insufficient for training
large deep neural networks.
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Fig. 1. Our study is focused on RNA contact prediction, i.e., predicting the contact
map matrix for an RNA sequence. The contact map indicates the proximity between
each nucleotide, with those closer than a threshold (10 Å) being deemed in contact.
Correct predictions of the contact map can benefit downstream tasks, e.g., by acting
as constraints for filtering 3D RNA structure predictions.

In the absence of powerful 3D structure prediction models, certain structural
properties of RNAs can be determined through RNA Contact Prediction [16].
The contact predictions can be used as an intermediary step to facilitate the
prediction of 3D structures or directly for downstream tasks that rely on RNA
structural information. For an RNA sequence of length L, this task aims at
predicting a L×L symmetric binary matrix (called contact map) where a value
of 1 at position (i, j) indicates that the ith and jth nucleotides are in contact1
with each other to each other in 3D space. The predicted contact maps capture
structural constraints, which can be used for downstream tasks, such as refining
RNA 3D prediction tools [37] (see Fig. 1 for an overview of the task). Note that
for a target RNA sequence, the input for an RNA contact prediction model is
an RNA multiple sequence alignment (MSA), which corresponds to the target
RNA sequence stacked with known homologous sequences.
1 Contact is defined as distances smaller than a specific threshold. Following prior

works, this is set by a hard distance threshold of 10 Å.
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The first RNA Contact Prediction attempt was Direct Coupling Analysis
(DCA), with variants like mfDCA [25], mpDCA [38], plmDCA [8], bmDCA [26],
and PSICOV [17]. These self-supervised methods infer contact maps using max-
imum likelihood estimation without labeled datasets. Recently, supervised RNA
contact prediction methods leverage additional knowledge from RNA analytic
tools for more informative features. These small models are necessitated by lim-
ited training examples. In contrast, abundant protein data allowed for training a
large Transformer-based deep neural network, Co-evolution Transformer (CoT),
for protein contact prediction [43]. CoT was trained on 90K curated protein
structures, compared to ≤ 100 RNA structures.

Since we lack the data to train such a model for RNA contact prediction from
scratch, we investigate the possibility of re-using and tuning the learned param-
eters of a pre-trained protein language-model (such as CoT) to create an RNA
contact prediction model, a process referred to as transfer learning. Inspired
by recent breakthroughs in unified vision-language models [2,21,36] and trans-
fer learning across text and visual domains [15,23], which have demonstrated
the effectiveness of transferring knowledge between related modalities, such as
leveraging the structural abilities learned from code and music to enhance lan-
guage models [27], we propose that bio-molecule contact patterns learned by the
CoT protein Transformer network could be transferred to improve RNA contact
prediction performance.

Similar to RNA contact prediction models, CoT takes protein MSAs as input.
The input to CoT is represented using English characters, with each amino acid
represented by a unique English character. CoT then utilizes the attention mech-
anism of Transformers [35] to learn the contacts, analogous to how Transformer-
based language models, such as GPT-3 [4], learn dependencies between words in
a given text. Though at the surface level, RNA and protein sequence data are
comprised of different building blocks (nucleotides for RNAs and amino acids
for proteins), we speculate that they share deeper similarities concerning their
contact patterns, analogous to two languages with different lexicons but a similar
syntax. Hence, it may be possible to transfer knowledge about contact patterns
from one to another, analogous to cross-lingual transfer in Transformer-based
language models [12].

We investigate our hypothesis by adapting the pre-trained CoT to our RNA
dataset and using the adapted representations to train a convolutional network
(ConvNet) for RNA contact prediction (see Fig. 2 for an overview of our method).
Our explorations show that this simple method, which does not rely on any
additional pre-processing or feature engineering and can detect true contacts
missed by prior works. In addition to improving RNA contact prediction by using
knowledge from a pre-trained protein language-model, more importantly, our
study serves as a strong proof of concept for the possibility of transfer
learning between the proteins and RNAs.
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Fig. 2. Overview of our three-stage method (from top to bottom). Adapted Feature
Extraction: First, a projection layer is used to translate the RNA MSA sequences into
protein language (e.g., from nucleotide “AUCG” to amino acids “HETL”). Then, we
leverage a fixed large-scale pre-trained protein contact prediction transformer model
(called Co-evolution Transformer model (CoT)) to extract attentive (i.e., contribution)
features at different layers. Feature Fusion: Features from different layers are processed
by separate convolution blocks before being concatenated. Classification: The aggre-
gated features are sent into a standard Convolutional Network (ConvNet) classifier
with three layers of convolution.

2 Background and Related Works

Unsupervised Contact Prediction Based on the Co-Evolution Hypothesis. The co-
evolution hypothesis is the basis of many contact prediction methods (for both
proteins and RNA). The hypothesis suggests that spatially proximate pairs of
amino acids or nucleotides tend to co-evolve to maintain their structure and
function [38]. DCA methods are all purely unsupervised, based on the counting
frequency of the residues in MSA, and can be applied to proteins and RNA
sequences.

Supervised Contact Prediction. Given ∼ 180K known protein structures in PDB,
A 20M-parameters attention-based Transformer model for end-to-end prediction
of protein contacts based on MSA [43]. The attention mechanism of the model,
called the Co-evolution Transformer (CoT), is specifically designed to model co-
evolution by considering the outer product of representations of two positions.
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Such a model is only successful given a large labeled dataset of known MSA to
contact mappings.

Training such a large model for RNA is unfortunately not practical as there
are currently no such large datasets available. The largest of such data is at
least 2–3 orders of magnitude smaller than what is available for proteins. To
overcome this bottleneck, most resort to feature engineering to train smaller
models. For instance, a recent work [33] combines DCA outputs (or similarly,
covariance matrices) with other features (such as predicted secondary structures,
solvent surface areas, etc.) extracted from different RNA analysis tools to train
relatively small convolution networks, using only hundreds of labeled data point.
Then, CoCoNet [42] shows that the output of DCA by itself is sufficient for
training such models and that oftentimes expensive additional feature extraction
is not needed. Finally, a recent work [34] investigates self-supervised training with
regression for RNA contact prediction.

Transfer Learning. We show in this paper that the learned knowledge of a pre-
trained protein contact prediction model can be effectively used for RNA contact
prediction, not only removing the need for additional feature engineering and
extraction but also vastly outperforming CoCoNet. Our proposed method is
built upon the concept of “Transfer Learning” [7], which assumes that knowledge
learned from one task is beneficial to other related tasks. Transfer learning has
enabled the adaption of large pre-trained deep neural networks to new tasks with
a limited number of labeled examples. This is typically done by training newly
initialized layers at the end of the pre-trained network (which tends to be task-
specific) using the small dataset while keeping the other layers frozen (which
preserves the learned knowledge from the previous task). Only the relatively
small set of parameters in the final layers will be updated, which will adapt the
network to the new task.

A key challenge of RNA contact prediction is the small dataset size, which
prohibits us from learning a deep model from scratch. We hypothesize (and
later verify) that knowledge could be effectively transferred from a pre-trained
protein contact Transformer to RNA contact prediction, enabling us to train
high-performing RNA contact prediction models without the need for additional
labeled or feature engineering, both of which can be prohibitively expensive.
Analogies can be drawn between our approach and research done on the cross-
lingual transfer of language models [12] that adapt a pre-trained model to a new
language by learning its syntax while retaining the semantic knowledge in the
pre-trained model; here we are adapting a biological model pre-trained on the
“language of proteins” to the “language of RNAs”.

Our model design incorporates Transformer blocks followed by convolutional
networks [1,39,44]. While this framework is not innovative in terms of its archi-
tecture, we are the first to apply it to the RNA contact prediction task. This
novel application demonstrates significant improvements and addresses the criti-
cal challenge of data scarcity in RNA contact prediction by leveraging knowledge
transferred from protein datasets.
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3 Methods and Setups

3.1 Protein-To-RNA Transferred Contact Prediction Model

In this section, we provide details of our model’s architecture, input, and output.
An overview of our approach is visualized in Fig. 2.

MSA as Input. Our RNA contact prediction model relies on the CoT model,
which takes protein MSA as the input. Thus, we need to adapt or map the
RNA language, which is comprised of nucleotides, to the protein language,
which is comprised of amino acids. Specifically, suppose our target RNA MSA
has M aligned sequences, each with the length of L nucleotides. Then, the
RNA MSA can be represented as a M × L matrix, with each element being
“A”, “U”, “C” ’, “G”, “-”, where “-” denotes a gap in the alignment. As the
CoT embedding layer recognizes only symbols corresponding to amino acids
and not nucleotides, we assign each type of nucleotide in the RNA MSA
to an amino acid symbol. For example, we could take a random translation
from “A”, “U”, “C” ’, “G” to “H”, “E”, “T” ’, “L”, to get the following transla-
tion: “A” ( Adenine) → “H” (Histdine), “U” (Uracil) → “E” (Glutamic Acid),
“C” (Cytosine) → “T” (Threonine), “G” (Guanine) → “L” (Leucine).

As we show in our experiments, a random translation between nucleotide
and amino acid symbols would be sufficient for adapting the protein contact
prediction model, CoT, to RNA contact prediction. However, as discussed in
Sect. 4.2, smarter translations, which can be manually devised or learned, could
result in a better performance for our adapted RNA contacted prediction model.

The Learnable Model. The CoT model has six consecutive attention blocks
and one refinement block, each outputting a L × L × C attentive feature map,
where C is a hyper-parameter corresponding to the number of features being
learned by the model. In the original implementation of the protein CoT, C is
set to 96, and the output of each attention block (i.e., the feature map for that
block) is fed into the next block (see the “Adapted Feature Extraction” row in
Fig. 2).

For our RNA contact prediction, we further attach four layers of 2D con-
volution (Conv2d) modules to the intermediate feature map outputs for each
of the seven attention blocks described above (see the “Feature Fusion” row in
Fig. 2). We concatenate the output of the Conv2d modules for each of the seven
attention blocks into one L×L× (C × 7) tensor and finally pass it to a classifier
module with 3 Conv2d layers for contact prediction (see the “classification” row
in Fig. 2). The output of our model has shape L×L×37, i.e., the distance between
pairs of nucleotides is divided into 37 bins. Our model is trained using standard
cross-entropy loss with the bins as labels. The summed probability value of the
bins for a distance less than 10Å is used as the final contact prediction.

The complete architecture of our model is visualized in Fig. 2.
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3.2 Dataset

We use a publicly-available well-curated RNA dataset [42]. We use the provided
data split for training, validation, and testing. RNA_DATASET is used for training
(and validation) and RNA_TESTSET is for testing. We removed 3 RNAs (RF02540,
RF01998 and RF02012) whose sequences are too long for CoT. In total, we have
56 RNAs for training and validation and 23 RNAs for testing, all from different
RNA families. We set the maximum number of homology sequences in MSA to
be 200, based on the limits of our GPU memory. This constraint can be alleviated
if large GPUs are available.

To avoid overfitting, we split the dataset into training and validation sets,
allowing us to select models that are less prone to overfitting. We provide the
validation splits in Table 1. Most experiments are carried out using Validation
Set 1. Additionally, we average the results of the four different runs using all
validation splits and report the means and standard deviations in Table 2.

Table 1. Validation set partitions.

Validation Set 1 Validation Set 2 Validation Set 3 Validation Set 4

RF01510 RF01826 RF00442_1 RF00921
RF01689 RF01831_1 RF00458 RF01051
RF01725 RF01852 RF00504 RF01054
RF01734 RF01854 RF00606_1 RF01300
RF01750 RF01982 RF01750 RF01415
RF01763 RF02001_2 RF01763 RF01510
RF01767 RF02266 RF01767 RF01689
RF01786 RF02447 RF01786 RF01725
RF01807 RF02553 RF01807 RF01734

3.3 Baseline Methods

We compare our method to several representative MSA-based methods: (1)
Unsupervised methods: mfDCA and plmDCA, using the implementations from
pydca [41], and PSICOV [17], and PLMC [14] (2) Supervised method: CoCoNet.

Note that all these baselines are variants of DCA or are based on DCA (the
current trend in studying RNA contacts). Our proposed method does not rely
on DCA and approaches the problem from a different angle through the trans-
fer learning of learned knowledge from a pre-trained protein contact prediction
model.
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3.4 Training Details

We use the Adam optimizer and cosine anneal learning rate scheduler with an
initial learning rate of 1e−3. We train on an RTX-A6000 GPU using PyTorch-
1.8 and CUDA-11 and search the hyper-parameters for the total training epochs
among {100, 300, 500} and batch sizes among {4, 8, 12, 16}. The code is available
at https://github.com/yiren-jian/CoT-RNA-Transfer.

We randomly divide the 56 RNAs reserved for training into 47 RNAs for
training and 9 RNAs for validation and use the given 23 RNAs in the test dataset
for testing. The best-validated model during the training is used for testing.

3.5 Evaluation Metrics

Following the standard protocol of prior works [16,33], we evaluate the preci-
sion on each RNA sequence of length L with top-L predictions of each method
(PPVL). We also report results for PPV0.3/0.5L.

4 Results

Unless specified otherwise, the results presented in this manuscript employ trans-
lation nucleotides to amino acids (AUCG → HETL) as detailed in Sect. 3.1.

4.1 Main Results

We first compare our method to those only using MSA as input to evaluate the
contribution of the pre-trained protein Transformer to RNA contact prediction.
Unsupervised algorithms like mfDCA, plmDCA, PSICOV, and PLMC are based
on covariance analysis. CoCoNet uses DCA output as input and ground truth
contact maps to train a supervised ConvNet classifier. We compare six CoCoNet
configurations [42].

Table 2 shows supervised models significantly outperform unsupervised base-
lines. Our transfer learning-based model outperforms the best CoCoNet config-
uration by an absolute of 5.0, 7.4, and 7.8 for PPVL, PPV0.5L, and PPV0.3L,
respectively.

CoCoNet is designed to be shallow, with a few parameters to learn, given
the very limited number of available RNA contact prediction training data and
features (from DCA). In contrast, by transfer learning of CoT, a large pre-trained
protein contact prediction model, our model is much larger and deeper and can
learn more diverse features through the multi-layer attentions of CoT contain.

While CoCoNet takes DCA as input which is a tensor of 1 × L × L (L
being the RNA sequence length), our method, leveraging multi-layer CoT, has
diverse attentive features of shape (7 × 96) × L × L (There are 7 layers in CoT
and each layer outputs 96 channels/features). These diverse features allow us
to learn deeper and larger models that can better generalize. In Sect. 4.2, we
further investigate this, showing that our model indeed benefits from increasing
the number of parameters in the transfer modules.

https://github.com/yiren-jian/CoT-RNA-Transfer
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Table 2. Comparison of different RNA contact prediction methods based on MSA.
§: Using the publicly released parameters [42], which are trained using our training
and validation sets. ¶: Using prior knowledge of Watson-Crick pairs is used. †: Our
models trained using only the training set, selected based on the best validation and
evaluated on the testing set. ‡: We repeat the experiments four times using different
random training and validation splits and report the mean and standard deviation of
the results on the test dataset.

Method PPVL PPV0.5L PPV0.3L

mfDCA 34.1 46.7 57.4
plmDCA 30.6 43.2 57.8
PSICOV 32.1 43.8 57.8
PLMC 33.5 45.9 57.4
CoCoNet§ (3×3) 61.6 67.7 69.1
CoCoNet§ (5×5) 61.8 65.2 67.8
CoCoNet§ (7×7) 62.4 66.6 69.2
CoCoNet§¶ (3×3)×2 67.1 71.6 72.3
CoCoNet§¶ (5×5)×2 67.5 71.9 75.0
CoCoNet§¶ (7×7)×2 68.5 73.2 75.2
CoT-RNA† (Ours) 73.5 80.6 83.0
CoT-RNA‡ (average)72.1 ±1.1 79.2 ±1.7 81.9 ±2.2

4.2 Ablation Studies

Here, we examine the design choices of our model for transfer learning by explor-
ing different configurations.

Common Transfer Learning Strategies. We investigate three common
transfer learning strategies (see Fig. 3 for an overview) and show that they are
not well-suited for this task:

Using CoT directly (CoT directly). By adapting the embedding to map
RNA nucleotides to protein amino acids, the pre-trained CoT can directly output
a prediction of a distance map for RNA contact prediction without any model
modifications.

Fine-tuning the classification block of CoT (CoT cls fine-tuned). A
typical approach in transfer learning is to fine-tune the last few layers of a model.
CoT has six attention blocks followed by a final ResNet block for prediction. We
attach a new classification block while keeping others fixed.

Fine-tuning the entire CoT end-to-end (CoT end-to-end). Another
common protocol for transfer learning is to fine-tune the entire pre-trained model
end-to-end. We update all parameters in the pre-trained protein CoT by the
RNA training set.

Table 3 shows the performance of these methods on our dataset. With a
PPVL of 30.4, the direct use of CoT (CoT directly) without any learning is
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Fig. 3. Common baselines for transferring protein CoT to RNA contact prediction.

shown to be inefficient. This suggests that learned protein knowledge by itself
cannot be successfully transferred to RNA tasks without some fine-tuning. The
results for transfer learning through fine-tuning the classification block of CoT
(CoT cls fine-tuned) are considerably better, being competitive with the mfDCA
baseline. These results suggest that tuning the attention features in the last layer
of CoT enables the transfer of knowledge to the RNA tasks to some extent.
However, as this configuration ignores the attention features from the other
layers, it performs significantly worse than our method, suggesting that these
features also play an important role in contact prediction and need to be tuned
for RNA contact prediction. Finally, the end-to-end model, which updates all
the parameters in CoT (CoT end-to-end), performs similarly to the last variant.
Though this model does not ignore any part of the CoT, it requires the tuning
of ∼20M parameters. With only 56 RNA training points, the model is likely to
over-fit.

From these experiments, we can conclude that the effective transfer of protein
CoT to the RNA contact prediction task requires (1) adapting some of the
parameters of CoT to the new task, (2) leveraging the multi-layer attention
features from CoT, and (3) making the number of learnable parameters “small”
and proportional to the size of the training set for the new task. These findings
lead to our final model design described in Sect. 3.1 that leverages multi-layer
attention features from CoT and learns an appropriate number of parameters
for our small training set.
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Table 3. Common transfer learning strategies applied to CoT.

Method PPVL PPV0.5L PPV0.3L

mfDCA (baseline) 34.1 46.7 57.4
CoT directly 30.4 33.1 34.0
CoT cls fine-tuned 38.3 41.6 41.2
CoT end-to-end 36.2 43.2 46.6
Ours 73.5 80.6 83.0

...

Concatenate

...

Concatenate

...

Concatenate

Mid-fusion (Our method)Early-fusion Late-fusion

Feature ConvNet block

Fig. 4. Different feature fusion strategies. Our final model (shown in Fig. 2) uses the
mid-fusion design.

We examine various strategies for combining attention features from differ-
ent CoT layers/blocks. Our model, as shown in Fig. 2, employs multi-branch
networks (each with 4 ConvNet layers) followed by a shared 3-layer ConvNet
classification block. Each branch network separately processes the attention fea-
tures of CoT at each layer, before being fused and passed into the classifica-
tion block (termed mid-fusion design). Other designs include early-fusion and
late-fusion. Early-fusion concatenates all CoT features from different layers and
processes them using a single shared network. Late-fusion has separate branch
networks for each CoT layer’s features before being merged at the very end,
followed by a single classification layer. Figure 4 provides a schematic diagram
of these three fusion strategies.

To make the comparison of these three designs fair, we modify the number
of channels in each layer so that the three models have a similar number of
parameters. As shown in Table 4, while all design choices work well, mid-fusion
has the best performance. It is possible that features from different layers contain
different types of information that may need to be processed by different “expert”
models (i.e., ConvNet branches in our model), making an early-fusion model
inefficient. In both mid-fusion and late-fusion, each branch network will process
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Table 4. Comparison of different feature fusion designs. We modify the number of
channels in each layer so that all three models have a similar number of parameters for
fair comparison.

Method PPVL PPV0.5L PPV0.3L

early-fusion 71.8 79.5 82.4
mid-fusion (Ours) 73.5 80.6 83.0
late-fusion 72.0 77.7 79.4

the attention features of each layer separately, with late-fusion having a relatively
smaller classification head. The overall better performance of mid-fusion suggests
that a good design choice is to have a balanced distribution of parameters into
the branch networks and the classification head.

Different Model Sizes. As discussed in Sect. 4.1, the deep-CoCoNet variant
of CoCoNet under-performs compared to the shallower original CoCoNet, likely
due to the limited expressiveness of input DCA features which are single channel
with a shape of [1×L×L]. In contrast, here we demonstrate that our transferred
CoT model allows for learning deeper networks, with its performance improving
as we increase the parameters in the transfer modules.

We create larger and smaller versions of our model by increasing and decreas-
ing the number of channels in each layer, respectively. As shown in Table 5, the
larger models outperform smaller ones, possibly due to the expressiveness of the
CoT features from the 7 different attention blocks.

Table 5. Comparison of our model with different sizes. While maintaining the network
structures, we vary the number of channels in each layer so that we end up with models
with different numbers of parameters.

Method PPVL PPV0.5L PPV0.3L

Ours (small) 71.1 76.0 79.0
Ours 73.5 80.6 83.0
Ours (large) 78.3 82.3 86.1

Table 6. Results of different translations/translations from nucleotides to amino acids
of our transferred CoT. Bold corresponds to the best-performing translation; underline
corresponds to the main translation used in the experiments.

Method PPVL PPV0.5L PPV0.3L

AUCG → ACDE 68.6 76.9 82.5
AUCG → HETL 73.5 80.6 83.0
AUCG → RDSY 76.1 81.4 83.4
AUCG → KDNY 77.3 84.5 88.6
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Table 7. esults of different translations/mappings from nucleotides to amino acids of
our transferred CoT. A. We experiment with an additional set of mappings. While
performances vary, they are all competitive over the baseline CoCoNet. B. We explore
different mappings using permutations of KDNY, which is shown to a good mapping.
C. We explore different mappings using permutations of RDSY, which is shown to a
good mapping. D. We explore different mappings using permutations of ACDE, which
is shown to be less competitive.

Method PPVL PPV0.5L PPV0.3L

A. Different RNA-to-protein mappings

AUCG → AVIL 66.9 76.3 80.8
AUCG → ILMF 67.0 74.0 78.0
AUCG → YDKS 68.6 77.6 82.3
AUCG → RDSC 72.3 81.7 82.7
AUCG → KDSU 73.9 80.4 81.4
AUCG → HETG 75.1 81.2 84.4
AUCG → HDTU 76.2 83.2 86.8
AUCG → KEQG 76.9 80.9 81.4
AUCG → KDTI 76.9 83.6 85.8
AUCG → KDQG 77.3 84.8 87.7
AUCG → KDNU 78.2 86.2 88.0
AUCG → RSKY 78.6 84.3 87.7
AUCG → SDYK 79.8 85.5 87.7

B. Different permutations of KDNY

AUCG → KYND 74.0 79.8 83.6
AUCG → DNYK 77.0 82.7 85.7
AUCG → NYKD 78.6 83.7 84.5
AUCG → YNDK 80.6 85.2 86.2

C. Different permutations of RDSY

AUCG → RYSD 77.2 82.3 85.9
AUCG → YRDS 78.9 86.4 90.7
AUCG → DRSY 80.3 85.4 87.1
AUCG → SDYR 81.4 87.2 88.6

D. Different permutations of ACED

AUCG → EDAC 64.8 70.3 71.7
AUCG → CAED 65.3 72.8 76.0
AUCG → DECA 66.2 76.7 82.7
AUCG → ACDE 68.6 76.9 82.5

Protein to RNA Translation Variations. We have used a random trans-
lation from RNA nucleotides to protein amino acids (e.g., “AUCG” to “HETL”)
in our experiments. Here, we study the effects of different translations on our
model’s performance.
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The 20 amino acids can be categorized into four groups: (1) electrically
charged, (2) polar uncharged, (3) hydrophobic, and (4) special cases. Randomly
selecting one from each group generally works well (e.g., “AUCG” → “RDSY”
and “AUCG” → “KDNY” in Table 6), indicating our framework’s robustness to
translation choices.

We also test possibly one of the worst translations, “AUCG” → ACDE”, as
it may generate unlikely amino acid chains (e.g., a string of negatively charged
residues, as “D” and “E” are negatively charged) and hence CoT will have had
limited exposure to such sequences during its pre-training. Though we see a
relative performance drop, the results are still comparable to CoCoNet.

A learnable 4 × 20 nucleotide-to-amino acid embedding could yield better
results but faces implementation challenges, such as requiring powerful GPUs
and adapting the original CoT model’s separate binary executable embedding
layer to the PyTorch framework.

We provide additional experiments using different protein/RNA mappings
in Table 7. Given the approximately 204 distinct nucleotide-to-amino acid trans-
lations, exhaustively examining all combinations is not feasible. Instead, we
evaluate our method using an alternative set of randomly chosen translations.
As demonstrated in Table 7, our method exhibits considerable robustness with
respect to the selection of different translations. While selecting different amino
acids (e.g., DNYK or ACDE) may lead to varying performance, permutations
of a set of amino acids generally yield similar results. For example, AUCG →
DNYK, KYND, NYKD, YNDK all perform well, whereas AUCG → ACDE,
CAED, DECA, EDAC underperform. Based on these experiments, we hypoth-
esize that the transferable contact patterns from the protein transformer CoT
to RNA tasks may not rely on an exact translation. It is likely that the rich
attention information learned in CoT is preserved across specific sets of amino
acids.

5 Discussion and Conclusion

We demonstrate the effectiveness of transferring CoT, a pre-trained protein
Transformer model for contact prediction, to the RNA contact prediction task
using a small curated RNA dataset. Unlike hybrid methods, our approach does
not use additional features extracted by RNA analysis tools (e.g., RNAcontact).
Incorporating CoT features and RNA features (extracted by tools like RNAcon-
tact) could potentially improve our method’s performance.

Note that even though our method uses a Transformer-based architecture
that models attention between every element in a sequence, the maximum
sequence length is typically limited to a few hundred elements due to computa-
tional constraints. Additionally, we sample only 200 homologous sequences from
the multiple sequence alignment (MSA) of an RNA as input. This sampling pro-
cess may result in the loss of co-evolutionary information, potentially limiting the
learning capacity of CoT. Furthermore, instead of utilizing a “manual transla-
tion” of CoT with a translation of AUCG → HETL, a “soft-learnable translation”
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from RNA to proteins (a 4×20 matrix) could potentially yield improved results.
Nevertheless, as discussed in Sect. 4.2, implementing such an approach currently
faces several engineering challenges.

Our findings shed light on a compelling representation transfer problem in
computational structural biology; specifically, we investigate if structural pat-
terns learned from large-scale protein datasets can be transferred to data-scarce
RNA problems, particularly for structural contact predictions. Our results indi-
cate that protein-to-RNA transfer learning can improve RNA model perfor-
mance, suggesting that other pre-trained protein Transformers, such as MSA-
Transformer [29] and ESM [28], could potentially be transferred to RNA for
other downstream tasks.
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Abstract. Multi-label Recognition (MLR) involves the identification
of multiple objects within an image. To address the additional com-
plexity of this problem, recent works have leveraged information from
vision-language models (VLMs) trained on large text-images datasets
for the task. These methods learn an independent classifier for each
object (class), overlooking correlations in their occurrences. Such co-
occurrences can be captured from the training data as conditional prob-
abilities between a pair of classes. We propose a framework to extend
the independent classifiers by incorporating the co-occurrence informa-
tion for object pairs to improve the performance of independent clas-
sifiers. We use a Graph Convolutional Network (GCN) to enforce the
conditional probabilities between classes, by refining the initial estimates
derived from image and text sources obtained using VLMs. We validate
our method on four MLR datasets, where our approach outperforms all
state-of-the-art methods.

Keywords: Multi-label Recognition · Graph Convolution Networks ·
Vision-Language Models

1 Introduction

Multi-label recognition (MLR) involves identifying each of the multiple classes
from which objects are present in an image. It has many applications such as
identifying all different: diseases evident in a chest x-ray [22], products in a
query image for e-commerce [5], and food items in a plate for diet monitoring
systems [2,36]. MLR is more challenging than classifying images having a single
object [15,18] because an image may contain combinatorially large mix of classes,
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for which learning would require exponentially larger number of images (O(2N )
images for N classes) than for Single label recognition (SLR). The objects may
also occur in different layouts so recognition either requires object segmenta-
tion and recognition of each segmented object independently, or recognizing the
object mix from the features measured over the entire image.

Several approaches [9,41] have taken the latter approach, namely recognition
from image level features. Further, these approaches also reduce complexity by
recognizing the presence of each object in an image independent of the others
that may also be present. Training here amounts to learning independent clas-
sifiers for each object, which are then used to detect the corresponding objects,
both using image level features. Apart from not segmenting the image and fea-
tures into those for different objects, these methods also neglect the evidence for
the presence of an object provided by the context of other objects. In practice,
many objects are in sets, making their occurrences interdependent. Using inde-
pendent classifiers neglects the mutual information present, which, if used, could
enhance the performance of individual classifiers. This is particularly important
in view of the already larger amount of data needed for MLR, and the relatively
small sizes (vs SLR) of available annotated MLR datasets (because multiple
classes present in an image require more annotation effort than required for SL
images).

To mitigate the paucity of labeled data, recent MLR approaches [17,41]
have focused on adapting large Vision Language Models (VLMs) e.g. CLIP [39],
ALIGN [24], OpenCLIP [23] for the task. Instead of finetuning the VLM on small
MLR datasets, these approaches [17,41] rely on learning text prompts associated
with each class; the prompts associated with a class are learned by maximizing/
minimizing the similarities of their embeddings with those of the embeddings
extracted from images containing objects of the class. The additional informa-
tion captured by the prompts constrains possible matches between the data
and the desired labels, in turn limiting the number of parameters needed to be
learned. This helps mitigate overfitting on small datasets. At test time, whether
a class is present in a given image is ascertained by measuring the similarity of
the image embeddings with embeddings extracted from previously learned pos-
itive/negative prompts for the class. However, the learning of prompts here is
done independently for each class, again neglecting the class co-occurrences.

We propose a two-stage framework that leverages the knowledge of VLMs
but injects the co-occurrence information into the models. We obtain an ini-
tial estimate of the evidence logits for each class in a subimage in terms of the
match between the embeddings of the subimage and those of the positive and
negative text prompts associated with the class. Results from the subimages are
aggregated to obtain logits for all classes across the image. These independently
extracted subimage logits are refined to enforce prior knowledge of the joint
probabilities of pairs of classes present in different subimages. Given that a class
is present in a training image, the conditional probabilities of other classes being
also present are measured from the frequencies of observing those classes in the
image. Since the prior probability of a class is known from the VLM output,
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we can combine it with the conditional probabilities of other classes to obtain
joint probabilities of class pairs. Enhancement of the outputs of the independent
classifiers by using conditional probabilities is carried out through a graph con-
volutional network (GCN). GCN thus utilizes the conditional probabilities to
improve upon the outputs of the independently obtained class estimates using
the vision-language model. As commonly done, we compensate for the differ-
ences in the frequencies of different classes occurring in the training images by
reweighting the estimated probabilities of different classes to remove the class
bias in the training data.

We test our approach on four benchmarks: MS-COCO-small (5% of the train-
ing set), PASCAL VOC, FoodSeg103, and UNIMIB-2016. The first two are com-
monly used for MLR, whereas we have two additional datasets that have been
used in other contexts [10,44]. The number of images in each of these datasets
is small compared to even many SLR datasets, although MLR calls for larger
datasets. This makes MLR here even harder. Our experiments show that the
use of inter-class influence in the second stage of our framework significantly
improves performance over the state-of-the-art methods, which detect each class
independently. As expected, the advantage is higher for classes for which VLM
yields low accuracy but which frequently co-occur with other classes for which
VLM accuracy is higher. We also show that our loss re-weighing greatly improves
the performance on datasets where there is a significant class bias.
Our contributions:

– We propose a two-stage framework to adapt VLMs for MLR with limited
annotated data, by enhancing the VLM based independent class estimates
obtained in the first stage, with conditional probability priors extracted from
the dataset, using a GCN.

– We validate our algorithm quantitatively using mean average precision (mAP)
on four MLR datasets. Our method surpasses the previous SOTA MLR
approaches by more than 2% (COCO-14-small), 0.4% (VOC-2007), 3.9%
(FoodSeg103) and 11% (UNIMIB2016).

2 Related Works

2.1 Multi-Label Recognition

Multi-label recognition is an important, well-studied problem in computer vision,
with a wide range of approaches being proposed to tackle it [32]. An important
line of work has focused on learning disjoint binary classifiers for identifying each
class of objects in an image [9,11,31,37]. These approaches require large labeled
datasets for training. They make no use of information that can be derived from
modeling the co-occurrence of different classes, which is especially important
when only a small amount of annotated data is available for training.

Other works have proposed to use recurrent neural networks (RNNs) to model
label dependencies in an image [30,42,48]. Specifically, they cast MLR into a
sequence prediction problem, using beam search to find a sequence of objects
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having the highest likelihood of being present in the image. Like our method,
these methods also model label dependencies, but do so implicitly via the hid-
den state of RNNs. This requires vast amounts of labeled data to learn them.
Recent approaches for MLR have proposed the use of VLMs to improve MLR
performance when only a limited amount of labeled data is available.

2.2 Vision-Language Models for MLR

VLMs learn representations that are transferable to a wide range of downstream
tasks such as classification [21,43,47,51], retrieval [3,26], and segmentation[45,
49,50] by aligning hundreds of millions of image-text(prompts) pairs. Such
approaches commonly focus on learning prompts suitable for these downstream
tasks [53]. [41] adapts VLMs for MLR, proposing to learn a pair of prompts asso-
ciated with the presence/ absence of each class. Text embeddings extracted from
the learned prompts are used to gather local evidence from the image features
extracted by the VLM, which is then aggregated and combined. On the other
hand, SCPNet [17] is another VLM based approach for MLR that uses a GCN to
learn prompt embeddings, where the GCN helps model priors derived from class
name similarities (derived from CLIP’s embedding space). They augment the
training with a self supervised contrastive loss. Both these methods learn inde-
pendent classifiers, not modeling any co-occurrence information. In contrast, our
method learns inter-dependent classifiers by using a GCN to model conditional
probabilities (co-occurrence of actual training dataset), enhancing the VLM’s
initial independent prediction.

2.3 Long tailed Learning

The distribution of frequency with which objects belong to a class in real-world
images often follows a long-tailed distribution[13,25,34,35]. Networks trained
for multi-class classification on such data tend to perform poorly on the tail
classes which have less data available. Several approaches have been proposed to
mitigate this issue including data augmentation (augment the tail classes) [46],
data re-sampling (sample images to obtain balanced distribution) [6,19,33,52],
adjusting classifier margins (classification thresholds vary for every class)[4,27]
and loss re-weighing [14,38] being popular. We use loss re-weighing to mitigate
the effect of label imbalance on our method when it is trained to model label
conditional probabilities.

3 Method

Suppose in a given set of images, D = {xi}, i ∈ {1 . . . |D|}, every image xi may
contain objects from up to N classes. The image is thus associated with N labels
yi ∈ {0, 1}N where yj

i denotes the presence or absence (1 or 0) of the j-th class in
the image. Then the MLR problem requires identification of all labels associated
with any input image.
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Our approach in this paper uses a VLM gφ, parameterized using weights φ (a
pair of encoders gφ,img, gφ,text). VLMs are pretrained to align image and textual
features over large datasets to learn features suited for various tasks/domains.
As mentioned in Sec. 1, these models associate a pair of positive and nega-
tive text prompts {tj,+, tj,−} with each class j (complete set denoted by ψ).
A text encoder gφ,text extracts text embeddings from each of these prompts,
gives them to an image-text feature aggregation head p, which matches visual
features extracted from different subimages with the text embeddings, and com-
bines them to obtain an initial set of logits for each class in the image. We then
use a GCN fθ with weights θ to refine the logits output by p, by leveraging the
statistical co-occurrence of classes observed in the training dataset. An overview
of our proposed method is given in Figure 1.

The following subsections present the various parts of our method.
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Fig. 1. Method Overview: Given an image with multiple objects, we extract image
features and text features from the subimages using a vision-language model (CLIP).
An image-text feature aggregation module (Sec. 3.1) combines these features to identify
all classes present in the image as a union of the classes present in the subimages, giving
an initial set of image level class logits. These logits are passed to a GCN, that uses
conditional probabilities between classes to refine these initial predictions (Sec. 3.2).
We train this framework while reweighting the loss generated by classes to address any
class imbalance in the training data using a Reweighted Asymmetric Loss (RASL), a
weighted version of the familiar ASL.

3.1 Initial Logits Estimation

We use a VLM as a feature extractor and initial classifier for our method. The
VLM’s image encoder does spatial pooling of windows in the final layer to obtain
a single d dimensional feature vector for a single-label image xi. This is not
suitable for MLR case as spatial pooling operation combines the features of
multiple objects in different regions of the image, with overall features being
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dominated by those extracted from a single object. We remove the pooling layer
of the image encoder, using it to get features gφ,img(xi) = zi (of shape d×H×W )
for a given image xi, hence preserving information from the individual windows.

Our image-text feature aggregation head p is similar to [41]. For each class j,
it learns a pair of text prompts {tj,+, tj,−}, which are projected to d-dimensional
embeddings rj,+, rj,− using gφ,text. Cosine similarity of the d-dimensional image
features at a particular point (h,w) with rj,+ indicates the presence of the class,
while similarity with rj,− indicates its absence. These similarities are aggregated
and used by p to give logits p(zi) for the image.

3.2 Refining Logits using Conditional Prior

We refine the logits p(zi) using a GCN, which ensures conformity with the con-
ditional probability priors extracted from the training dataset.

Estimating Label Conditional Probability Prior: To derive the label prior
from the dataset, we first calculate the label co-occurrence matrix CN×N = (cmn)
over training dataset D. Each entry cmn is given by

cmn =
|D|∑

i=0

ym
i × yn

i (1)

The cmn denotes the number of times that objects belonging to classes m and n
occur together in an image. Using this, we calculate an estimate of conditional
probability matrix AN×N = (amn), where each entry gives an estimate for the
probability P (yn

i = 1|ym
i = 1):

amn = P̂ (yn
i = 1|ym

i = 1) =
cmn

cmm
(2)

GCN for Refinement: We refine the logits pψ(zi) using the GCN fθ which uses
the conditional probability matrix A to define the connection weights between
its N nodes. Specifically, given that fθ has L layers, each layer calculates:

H l = ρ(AH l−1W l) (3)

where H l−1 is the output vector of the previous layer and ρ is a non linear-
ity (Leaky ReLU). H0 is defined as the input logits pψ(zi). W l are learnable
weights for each layer. Using a GCN layer ensures that the logits are refined
using information from only those nodes used for computing the logits, reducing
the number of parameters learned while also taking advantage of the conditional
probability estimates. After passing through multiple layers of the GCN, we get
the updated predictions fθ(pψ(zi)). We add the initial logits to the updated
logits to obtain our refined logits prediction pψ(zi) + fθ(pψ(zi))
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3.3 Training

We train the image-text feature aggregation module p and the GCN fθ, while
freezing the VLM gφ. We adopt the widely used Asymmetric Loss (ASL) [40], a
modified version of the focal loss, to train our network for MLR.

ASL [40] addresses the inherent imbalance in MLR caused by the prevalence
of negative examples compared to positive ones in training images. Similar to
focal loss [28], ASL underweighs the loss term due to negative examples. How-
ever, it does so using two focusing parameters (γ+ and γ− ) instead of one (γ)
used by focal loss. However, ASL does not address the issue of sample imbalance,
caused by some classes having fewer examples in the dataset. Towards this, we
add a loss re-weighting term (α) to ASL. Our re-weighed ASL (RASL) is defined
as:

LRASL(ŷ
j
i ) =

⎧
⎨

⎩
αj

(
1 − ŷj

i

)γ+

log
(
ŷj

i

)
when yj

i = 1

αj

(
ŷj

i,δ

)γ−
log

(
1 − ŷj

i,δ

)
when yj

i = 0
(4)

where ŷj
i represents the corresponding prediction associated with label yj

i ; ŷj
i,δ =

max(ŷ − δ, 0), with δ representing the shifting parameter defined in ASL; and αj

is the re-weighting parameter for class j, defined as:

α =

(
ajj∑N

j=1 ajj

)−1

(5)

Then the total loss over the dataset |D| is given by:

Ltotal =
|D|∑

i=1

N∑

j=1

LRASL(ŷ
j
i ) (6)

4 Experiments

In this section, we discuss the datasets used, implementation details of our app-
roach, evaluation metrics and provide a thorough analysis of our approach.

4.1 Datasets

We evaluate our method on four different MLR benchmarks: MS-COCO 2014-
small and PASCAL VOC 2007, which are widely used MLR benchmarks, as well
as FoodSeg103 and UNIMIB 2016, which are smaller MLR datasets suitable
for testing in the low data regime. Details of these datasets are given below:
MS-COCO 2014-small: MS-COCO [29] is another popular MLR dataset and
consists of 82,081 training images and 40,504 validation images with objects
belonging to 80 classes. To evaluate our methods performance in the low data
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Table 1. Comparison of results obtained by our method and the state-of-the-art base-
lines, on four MLR datasets in the low data regime: FoodSeg103, UNIMIB 2016, COCO-
small (5% of COCO’s training data) and VOC-2007. Our approach achieves the best
performance on all metrics: per-class and overall average precisions (CP and OP),
recalls (CR and OR), F1 scores (CF1 and OF1), and mean average precision (mAP).
* indicates methods that fine-tune the complete backbone network.

Dataset Method CP CR CF1 OP OR OF1 mAP

COCO-small [29] DualCoOp[41] 53.3 73.5 59.8 47.1 79.5 59.2 70.2
SCPNet[17] 51.9 70.3 59.7 47.2 78.9 59.1 69.3
Ours 54.174.3 62.647.7 82.660.5 72.6

VOC [20] SSGRL*[8] - - - - - - 93.4
GCN-ML*[9] - - - - - - 94
KGGR*[7] - - - - - - 93.6
DualCoOp[41] 81.1 93.3 86.5 83.5 94.1 88.5 94.0
SCPNet[17] 68.9 91.6 76.8 68.5 93.5 79.1 87.4
Ours 81.194.1 87.183.6 94.588.6 94.4

FoodSeg103 [44] DualCoOp[41] 44.9 52.7 46.9 59.2 69.2 63.8 49.0
SCPNet[17] 39.4 54.4 43.2 61.4 67.8 64.4 48.8
Ours w/o reweigh 44.8 55.0 48.0 58.6 70.2 63.9 51.3
Ours 47.155.1 50.863.7 69.966.7 52.9

UNIMIB [10] DualCoOp[41] 46.9 54.7 48.4 69.0 79.0 73.7 58.1
SCPNet[17] 50.5 52.9 49.9 69.6 78.4 73.8 60.0
Ours w/o reweigh 52.6 59.6 53.8 73.5 83.3 78.1 64.4
Ours 66.865.8 64.280.9 86.183.4 72.2

regime, we use MS-COCO 2014-small, which is a small, randomly selected sub-
set comprising 5% of MS-COCO 2014 which amounts to 4014 images. During
testing, we use the complete validation set.
PASCAL VOC 2007: VOC [20] is a widely used outdoor scene MLR dataset
consisting of 9,963 images from 20 classes. We follow the standard trainval set
for training and use the test set for testing.
FoodSeg103: FoodSeg103 [44] serves as a benchmark dataset for food segmen-
tation and multi-label food recognition. It consists of 4983 training images and
2135 test images, with a total of 32,097 food instances belonging to 103 differ-
ent food classes. The number of images per class follows a long-tail distribution
typical of real-world datasets. We use the standard train-test data split.
UNIMIB 2016: UNIMIB [10] is another multi-label food recognition dataset.
It consists of 1027 images with 3616 food instances spanning 73 classes. Similar
to FoodSeg103, UNIMIB also follows a long-tail distribution typical of real-world
datasets. We comply with the official train-test split.
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4.2 Implementation Details

In our experiments, we use CLIP (Contrastive Language-Image Pre-Training)
[39] as the VLM. Consistent with recent works that use VLMs for MLR [1,17,41],
we select ResNet-101 as the visual encoder and standard transformer within
CLIP as the text encoder. Both encoders are kept frozen during our experiments,
and we train the GCN and learnable prompts. Following [9,17,41], we resize the
images to 448× 448 for COCO and VOC datasets and to 224× 224 for UNIMIB
and FoodSeg103. Similar to previous works [17,41] we apply Cutout [16] and
RandAugment [12] to augment training images. We use a 3-layer GCN network
for all our experiments. We use SGD for optimizing parameters with an initial
learning rate of 0.002, which is reduced by cosine annealing. We train for 50
epochs and use a batch size of 32. We set the loss hyperparameters in Eq. 4 as
γ− = 3, γ+ = 1 and δ = 0.05 . We conduct all experiments on a single RTX
A4000 GPU.

4.3 Evaluation Metrics

To evaluate the performance of our approach on the four MLR datasets, we
use standard metrics, also used by previous MLR approaches [7–9]. The metrics
include the commonly used mean average precision (mAP) as well as class and
overall precisions (CP and OP), recalls (CR and OR), and F1 scores (CF1 and
OF1). mAP is obtained by calculating the mean of individual average precision
(AP) values over all classes. For each class, AP is computed as the area under
the Precision-Recall curve.

4.4 Results

We primarily compare our approach with DualCoOp [41] and SCPNet [17], as
they are the only other MLR baselines that use VLMs. Making them SOTA
VLM-based methods in limited data settings across all four standard bench-
marks discussed earlier. As seen in Table 1, our method outperforms DualCoOp
by 0.4% and SCPNet by 7.0% mAP on the VOC-2007. On COCO-small, our
method outperforms DualCoOp by 2.4% and SCPNet by 3.3% mAP. On the
FoodSeg103 dataset, our approach significantly improves upon DualCoOp by
3.9% and SCPNet by 4.1% mAP. In the UNIMIB dataset, our method achieves
substantial performance gains of 14.1% over DualCoOp and 12.2% mAP over
SCPNet.

Furthermore, for VOC, we extend our comparison to approaches that do not
use VLMs and instead rely on complete fine-tuning[7–9]. These approaches also
use a ResNet-101 backbone similar to our visual encoder, but the backbone is
initialized with weights pre-trained on ImageNet instead [15]. Our method also
outperforms these methods. More detailed comparison can be found in Table. 1.
Additionally, we provide a comparison of our method with zero-shot MLR using
VLMs in Sec 1. of the supplementary material.

https://drive.google.com/file/d/13Z-YlxIuTcxI6sUilkTNlom9IWQEjUB2/view?usp=sharing
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Fig. 2. Improvement in average precision (ΔAP) of a class obtained by refining VLM-
based initial logits to incorporate the information provided by conditional probabilities,
shown as a function of the mean conditional probability of most co-occurring three
classes.

4.5 Impact of the Strength of Conditional Probability on
Performance

In this section, we determine the impact of the strength of conditional probability
of a pair of classes on MLR performance on the COCO-small dataset. Specifically,
we observe how the improvement in average precision of a class of objects (ΔAP)
brought by our method varies with the average conditional probability of the
class paired with the top three other classes it co-occurs the most with. Note
that we choose to average the top three values of conditional probabilities of the
class because the COCO dataset typically contains an average of around three
objects per image. The improvement in (ΔAP) for a class = AP achieved by
logits after refinement - AP achieved by the raw VLM logits before refinement.

We visualize the variation in ΔAP with the avg. conditional probability in
Figure 2, where we observe an increasing trend of ΔAP with increase in the
average of the top-3 conditional probabilities for a given class. Note that for
ease of visualization of the scatterplot, we use bins of size 0.02 to group together
classes having similar average conditional probabilities. The points represent the
average ΔAP value of all classes within the respective bin.

This implies that classes having stronger conditional probabilities with other
classes benefit more from our approach of refining logits using conditional prob-
abilities, as is intuitively expected.
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4.6 Performance on Classes that are Difficult to Recognize

In this section, we empirically explore the impact of our approach on classes that
are difficult to recognize when using image features exclusively. For concreteness,
we focus our analysis on the 10 classes in FoodSeg103 and UNIMIB datasets on
which the previous state-of-the-art approach (DualCoop[41]) performs (in terms
of CF1) the worst.

Table 2 compares the performance of our method on these classes with the
previous SOTA DualCoOp[41] and SCPNet[17]. We see that our method sig-
nificantly improves the performance of these methods, which relies solely on
VLMs without modeling any conditional probabilities. Specifically, for Dual-
CoOp, we observe a growth of 22.3% in CP, 33.9% in CR and 34.8% for CF1
on UNIMIB2016, and 15.6% in CP, 7.2% in CR and 11.89% in CF on Food-
Seg103. For SCPNet, we see gains of 27.1% CP, 25.2% CR, and 26.5% CF1 on
UNIMIB2016, and 15.8% CP, 5.8% CR, and 12.4% CF1 on FoodSeg103.

This underscores the importance of the information obtained by modeling
joint class probabilities in recognizing classes of objects that are difficult to
recognize from image features alone.

Table 2. A comparison of the average performance of our approach with the previ-
ous state-of-the-art VLM-based method DualCoOp[41] amd [17] on classes that are
difficult to recognize using only visual features (having 10 lowest CF1 values on the
FoodSeg103[44] and UNIMIB[10]). Our approach significantly improves MLR perfor-
mance on such classes due to its use of information derived from class conditional
probabilities.

UNIMIB FoodSeg103

Methods CP CR CF1 CP CR CF1
DualCoOp 25.4 26.2 24.3 13.7 19.7 16.5
SCPNet 30.5 34.8 32.5 12.9 21.1 16.0
Ours w/o reweigh 41.9 57.5 44.9 14.8 22.5 18.7
Ours 57.6 60.0 59.1 28.7 26.9 28.4

4.7 Effect of Loss Reweighing

In this subsection, we investigate the effects of our loss reweighing strategy for
UNIMIB2016 and FoodSeg103, which exhibit significant class imbalance. We
analyze its impact on performance on (1) All classes as a whole and (2) Classes
that are difficult to recognize using only visual features, and hence have a greater
reliance on information obtained from conditional probabilities.

(1) All classes as a whole: As observed in Table 1, loss re-weighing improves
the performance of our method by 1.6% and 7.8% in mAP on FoodSeg103
and UNIMIB2016, respectively.
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This demonstrates the utility of using loss re-weighing when training a
method modeling the joint probability distribution of classes as opposed.

(2) Classes that are difficult to recognize using only visual features: As
seen in Table 2, loss re-weighing also significantly boosts the performance of
our method on these classes. It improves CP, CR and CF1 by 13.9%, 4.4%
and 9.7%, respectively on the FoodSeg103 dataset and by 15.7%, 4.5% and
14.2%, respectively on the UNIMIB2016 dataset. Note that these increases
are higher than corresponding gains observed for all classes in the dataset,
signifying that loss re-weighing delivers larger benefits to classes more reliant
on conditional probabilities for recognition (as opposed to those that derive
more information from initial logits estimated from logits)

5 Conclusions

In this paper, we present a novel two-stage framework for multi-label recogni-
tion when only a small number of annotated images are available. Our frame-
work builds on recent methods that make use of VLMs to counter this paucity
of labeled data but overlook information derived from co-occurrence of object
pairs. Our framework refines the logit predictions made by VLMs adapted for
multi-label recognition by leveraging known conditional probabilities of class
pairs derived from the training data distribution. Specifically, we use a graph
convolutional network to enrich the logits predicted by the VLM with infor-
mation from conditional probabilities of classes. Our method outperforms all
state-of-the-art approaches on 4 MLR benchmarks: COCO-14-small, VOC 2007,
FoodSeg103 and UNIMIB2016 in a low data regime, demonstrating the utility
of modeling class co-occurrence in such cases.

6 Limitations

(1) If the independent classifiers learned by state-of-the-art approaches (relying
on only visual information, not modeling the conditional probability of class
pairs) are strong, and characterized by a high average precision (AP) of
each class, our method would yield lower improvements. However, in prac-
tice, many MLR datasets are not very large, with independent classifiers
learned from them being relatively weak. MLR on such datasets is likely to
benefit significantly from our method.

(2) As shown in Figure. 2, the advantage provided by our method is higher
when the conditional probability of pairs of classes co-occurring in an image
is higher. For images that consist of objects which are rarely found together,
our method provides very little added benefit over independent classifiers.
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