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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. We propose a new technique called ATT: Adversarial Trans-
port Terms for Unsupervised Domain Adaptation. Adversarial training is
commonly used for learning domain-invariant representations by revers-
ing the gradients from a domain discriminator head to train the feature
extractor layers of a neural network. We propose significant modifica-
tions to the adversarial head, its training objective, and the classifier
head. With the aim of reducing class confusion, we introduce a sub-
network which displaces the classifier outputs of the source and target
domain samples in a learnable manner. We control this movement using
a novel transport loss that spreads class clusters away from each other
and makes it easier for the classifier to find the decision boundaries for
both the source and target domains. The results of adding this new loss
to a careful selection of previously proposed losses leads to improve-
ment in UDA results compared to the previous state-of-the-art methods
on benchmark datasets. We show the importance of the proposed loss
term using ablation studies and visualization of the movement of target
domain sample in representation space.

Keywords: ATT · Adversarial · Transport · Unsupervised Domain
Adaptation

1 Introduction

Domain shift is a practical problem faced by machine learning models in the real-
world. When the distribution of the test data (roughly, target domain) is different
from that of the main component of the training data (roughly, source domain),
it causes a drop in model generalization accuracy on the former. Domain adapta-
tion (DA) is a sub-field of machine learning that focuses on developing algorithms
and techniques to train models that effectively transfer knowledge learned from
a source domain to a target domain [17]. The DA problem may be cast as one
of learning to represent the source and the target domain samples in common
feature space where their distributions overlap and the subsequent part of the
model is able to perform the task with good generalization on both domains [11].
DA techniques can be further classified based on various assumptions about
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15302, pp. 1–16, 2025.
https://doi.org/10.1007/978-3-031-78166-7_1
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Fig. 1. Unsupervised Domain Adaptation for classification can be achieved by shifting
the samples in a way that favors finding a common decision boundary for source and
target domains. See text for details

the extent of availability of data from the target domain during training. For
instance, semi-supervised DA assumes availability of some labeled samples and
lots of unlabeled samples, few-shot DA assumes some labeled samples and no
unlabeled samples, unsupervised DA (UDA) assumes only unlabeled samples,
and domain generalization assumes that no sample is available from the target
domain during training. For a classification task, if the classes in the source and
target domains are the same, it is called closed-set domain adaptation. We pro-
vide a novel solution for UDA for the closed-set. UDA is instrumental in training
transferable models which are pre-trained on a different dataset, without having
to worry about labeling any number of images from the target domain. It has
major applications in various areas, including medical image analysis, where the
image acquisition setup (e.g., equipment, technician training and protocols) is
often different between model development and deployment scenarios.

There are some area-specific UDA techniques, such as color normalization
for pathology images [26], but we are interested in a more general solution.
A common approach for a general UDA technique is to use a moment match-
ing algorithm. It minimizes the absolute difference in moments of the source
and target distributions, and aligns feature distributions [12,29]. This approach
has its limitations since it does not account for semantically different features
that may have similar moments. Another set of more successful approaches to
UDA have been those that train networks to extract feature that confuse a
domain discriminator neural network in an adversarial fashion. Such neural net-
works extract domain-invariant representations, i.e., those cannot be used to
distinguish between examples from the source and target domains [5,16]. These
methods have achieved success due to their generative nature, which involves
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creating synthetic data to align distributions, as well as their straightforward
training process. However, the generation of data points can lead to congestion
in the classification space near the decision boundary. To address this, we pro-
pose a novel scheme to transport samples in the classification (logit) space for
adversarial UDA (see Fig. 1).

CAT, or Coupled Adversarial Transport for Unsupervised Domain Adapta-
tion, is our proposed approach. Our architecture is adversarial by nature [15]. We
shift each final representation of the source and target samples by two learnable
and sample-dependent displacement vectors, which we call transport terms. We
train a feature extractor in a way that the two transport terms displace different
samples in different directions. We also take care that the two transport terms
move similar samples similarly. This is done by a bilinear function that we call
the transport loss, which has the class information optionally embedded into the
loss matrix.

We evaluate the performance of CAT on Office-Home [28], Office-31 [20],
and a medical image dataset – FHIST [22]. Medical image classification is a
critical yet challenging application of deep domain adaptation as image acquisi-
tion setups often change. Class confusion is a rampant problem in medical image
datasets, owing to the near identical features of images of different classes [9]. We
posit that reducing class confusion in medical image domain adaptation tasks is
crucial, and CAT when optionally combined with class confusion minimization
solves this problem well.

Our contributions include reducing classification confusion by spatially repo-
sitioning samples and formulating a loss term to direct similar samples similarly.
We also design an efficient end-to-end network that effectively combines source
and target datasets with novel and existing loss functions, and provide a detailed
analysis of the impacts of transport and class confusion losses. This approach not
only simplifies computational demands compared to complex Domain Adapta-
tion architectures but also offers robust performance across the OfficeHome [28],
Office-31 [20], and FHIST datasets [22] in the task of UDA.

2 Background and Related Works

In UDA, we have the source domain samples along with their labels Ds =
{(xs

i , y
s
i )}Ns

i=1 where the number of classes is C. We also have the unlabeled
target domain samples Dt = {xt

i}Nt
i=1. Most contemporary UDA techniques train

neural networks end-to-end with multiple loss functions, instead of training mul-
tiple networks separately [2,13,16,23,24,29]. One group of loss functions for end-
to-end training tries to improve classification accuracy on the labeled samples
(source domain). An example of such losses is the cross entropy, given as:

Lc =
1

Ns

Ns∑

i=1

Lce(C(G(xs
i )), y

s
i ), (1)

where G is a feature extractor sub-network, C is a classifier sub-network,
and Lce is the cross entropy loss. Another group of losses tries to match the
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distributions of representations of the source and target domain samples. An
example of this is Maximum Mean Discrepancy (MMD) [29]. Additional loss
terms may be used to keep unlabeled samples (target domain) well-separated
near classification boundaries, our major contribution lies here.

Moment matching methods, such as MMD [29], MDD [12] and DCAN [13],
aim to match expectations (means) and higher moments of the features of sam-
ples of the source and the target domains. However, these techniques do not
solve the subtle problem of feature confusion, where one feature is confused for
the another between the two domains. For example, the second moments of
two features that are semantically different between the two domains could be
equal. Consequently, correlation alignment would align incompatible features.
Deep CORAL [23] and HoMM [2] propose matching additional measures of the
distributions, such as the covariance matrix, to solve this problem.

Adversarial methods take another approach that aims to confuse an addi-
tional network on top of the feature extractor, called the discriminator, whose
aim is to discriminate between the two domains. The confusion is formulated in
terms of an adversarial loss. The two representative methods of this class are
DANN [5] and CDAN [16]. CDAN is an improved version of DANN because it
captures the relationships between the parameters of the feature extractor and
the classifier, rather than just treating them independently. SRDC uses a clus-
tering algorithm to group similar data points together, and finally optimizes the
deep representation learning using a joint objective that combines clustering loss
and domain classification loss [24].

There are also certain hybrid techniques, which use a combination of moment
matching and adversarial training concepts. SHOT projects the data onto a
set of random directions, computes the 1D Wasserstein distances between the
projected distributions, and optimizes the projections to minimize the Wasser-
stein distance [14]. SymNets uses three classifiers, one specifically for the source
domain, one specifically for the target domain and one for both, and seeks to
minimize classification loss on all of them [31]. CyCADA maximizes the cycle
consistency which tracks the feature distribution of the image and enforces that
the distributions after a cyclical transform are equal [7]. GVB-G is a theoreti-
cally sound method, which directly minimizes the extent of the discrepancies by
minimizing the length of certain bridge terms between the two domains [3].

Some methods also aim to make the classifier more robust in order to learn
invariant feature representations. Maximum Classifier Discrepancy (MCD) aims
to learn different representations of the source and target, and learning is made
more robust by increasing the discrepancies between the two classifiers in terms
of the features they use to classify [21]. Minimum Class Confusion (MCC) aids
the classifier to make more confident predictions by minimizing the class con-
fusion probabilities, and in doing so, reducing the number of samples being
represented very close to the decision boundaries in the classification space [9].
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3 Proposed Approach: ATT

As mentioned in the previous section, the two objectives of several successful
UDA methods are to improve the classification accuracy on labeled samples
(source domain) and to increase the overlap between the feature distributions of
the two domains.

Our proposed approach to UDA pivots on addressing the challenge posed
by ambiguous samples in the target domain. Unlike existing techniques, we
explore a transport-based strategy that disperses target domain sample rep-
resentations through learnable displacements. The objectives of such a spread
would be to ease the crowding around classification boundaries (minimize class
confusion [9], but novelly), and to align the distributions of the source and target
domains [2,13,16,23,24,29]. Additionally, there seems to be some scope left to
combine useful aspects of the various categories of approaches to UDA. These
observations summarize the motivation behind the proposed ATT framework for
UDA. Figure 2 shows a visual description for our approach. Different components
of this framework are described in each subsection below.

Fig. 2. The proposed ATT framework, which is shared by the source and the target
domain uses Transport Layers T1 and T2 compute the transport vectors that move
classifier outputs to their final locations.
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3.1 Objective

The general problem of adversarial domain adaptation originated by ADDA [25]
for classification can be formulated as follows:

max
D

Ladv(G,C,D) + Lc(G,C) + Le(G), (2)

min
G,C

Ladv(G,C,D) + Lc(G,C) + Le(G), (3)

where G is the feature extractor, C is the classifier, and D is the domain dis-
criminator, Ladv is the adversarial loss, and Le is the external loss as given
in [25]. While a classifier head and loss may drive the labeled source samples
from different classes far in the classifier (logit) space, without other objectives,
such as Ladv, the samples of the target domain may fall close to the decision
boundaries. We seek to reduce the number of samples falling very close to the
decision boundaries for both domains. To this end, we propose moving all the
data points by a controlled amount, so that on the whole, these confusing sam-
ples become less ambiguous to classify. The amount and the direction in which
the samples are moved must be learnable. For this, we propose to add two fully
connected (FC) layers whose outputs we call transport terms in the classifica-
tion (logit) space. These terms represent vectors by which we move a particular
sample’s representation. That is, within the general formulation of adversarial
domain adaptation [25], we propose to replace the external loss by a transport
loss using two transport terms T1 and T2. We also average the two transported
classifier outputs to incorporate sufficient generality. This gives rise to a more
specific objective:

max
D

Ladv(G,C,D,T1,T2) + Lc(G,C,T1,T2)

+LTL(G,T1,T2),
(4)

min
G,C,T1,T2

Ladv(G,C,D,T1,T2) + Lc(G,C,T1,T2)

+LTL(G,T1,T2),
(5)

where T1 and T2 are trainable transport vectors, LTL is the proposed transport
loss. We may not include one of the two transport terms in our experiments
when there are fewer classes. The objective and the formulation of the transport
are explained in more detail next.

3.2 Transport Loss

As shown in Fig. 1, when we consider samples x and y from two different classes,
it is reasonable to assume that they are somewhat separated in the vanilla clas-
sifier space had there been no transport terms. Next, we consider a sample each
from the source and the target x and x′, and let C(G(x)) (abbreviated as C(x)
etc. in the figure) and C(G(x′)) be their representations in the classifier (logit,



Adversarial Transport Terms for Unsupervised Domain Adaptation 7

i.e. pre-softmax) space. We aim to move them individually by each of the two
transports T1 and T2 such that the similarity between Ti(G(x′)) and Ti(G(x))
is minimized for i ∈ {1, 2} and that between T1(G(x)) and T2(G(x)) is maxi-
mized. In the Euclidean classifier space, we employ the cosine similarity to mea-
sure similarity between two vectors. Given θ, the angle between the transport
vectors, the cosine similarity is calculated as:

cos(θ) =
< Ti(G(x)),Ti(G(x′)) >

|Ti(G(x))| |Ti(G(x′))| (6)

The above expression can be formulated into a loss function. Increasing the
angles as suggested above can increase the region in which classification bound-
ary between x and x′ can lie, if indeed these two belong to different classes. On
the other hand, if these two samples belong to the same class, their drift apart
due to the transport will be compensated for by the much further drift of labeled
samples from different classes. This also increases the generality of the classifier
in capturing a class.

Let us formulate the transport loss. Let B denote the batch-size and c denote
the number of classes. Let A = {aij} denote the outputs of the first transport
vector and B = {bij} denote the outputs of the second transport vector. Then,
an estimate of the transport yield Y using the transport outputs T1 and T2 is:

Y =

⎡

⎢⎢⎢⎣

a1,1 · · · a1,c

a2,1 · · · a2,c

...
. . .

...
aB,1 · · · aB,c

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

b1,1 · · · b1,c
b2,1 · · · b2,c
...

. . .
...

bB,1 · · · bB,c

⎤

⎥⎥⎥⎦

T

, (7)

Y =

⎡

⎢⎢⎢⎣

a1
a2
...
aB

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

b1

b2

...
bB

⎤

⎥⎥⎥⎦

T

. (8)

The resulting quantity would be a B × B matrix consisting of dot products.
An additional normalizing technique is to scale the matrix entities as cosine
similarities. Doing so would equalize the importance of the relationships between
all the samples in the batch. In our experiments, this was seen to be favourable
for accuracy in some cases but unfavourable in others.

The B × B matrix Y is an example of a bi-linear form. The most general
formulation of the loss would be:

Y = T1MT2
T , (9)

where M = CA is a matrix which includes class information, if the samples
belong to the source, and an estimation of the classes (psuedo-labels) if the
samples belong to the target. The matrix A is a one-hot encoding diagonal
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matrix that has entries Aij = 1 if samples i, j have the same psuedolabels and
Aij = 0, else. The transport loss LTL is then defined as:

LTL = |Σ(Y) − Tr(Y)|, (10)

where Σ(Y) denotes the sum of all entries of matrix Y and Tr(Y) denotes the
trace of Y.

3.3 Adversarial DA with Transport Terms

Adversarial domain adaptation addresses the unsupervised domain adaptation
problem by introducing an adversarial objective to the training process. Specif-
ically, the model is trained to simultaneously minimize the classification loss
on the source dataset, and to maximize the accuracy on the target dataset. A
separate domain classifier is trained to distinguish between the source and tar-
get domains. The overall objective should also minimize the thus formulated
adversarial transfer loss with respect to the parameters of the discriminator.

Further, the separate domain classifier, i.e. the discriminator, is trained using
the following adversarial loss [5,16]:

Ladv = − 1
Ns

Ns∑

i=1

log(D(G∗(xs
i )))

− 1
Nt

Nt∑

j=1

log(1 − D(G∗(xt
j))),

(11)

where we propose using an interpolation of the two displacements of each sample
as follows:

G∗ = λ · (C +T1)(G) + (1 − λ) · (C +T2)(G) (12)

In Fig. 1, we depict this convex interpolation of T1 and T2 as T. We can also
rephrase the equation above as:

G∗ = λ · O1(G) + (1 − λ) · O2(G), (13)

where, G is the feature extractor, C is the classifier, T1 and T2 are the transport
layers and D is the discriminator, and Oi = C + Ti for i ∈ {1, 2}. The overall
objectives are:

max
D

Ladv, (14)

min
G∗

Lc + Ladv, (15)

which are done in a two-step optimization process that can be regarded as a
mini-max optimization problem.
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3.4 Minimum Class Confusion

The minimum class confusion loss LMCC [9] seeks to minimize confusion terms
between classes j and j′, such that j �= j′ where the indices are exhaustive over
the set of classes. On the target domain, the class confusion term between two
classes j and j′ is given by:

Cjj′ = ŷᵀ
·jŷ

ᵀ
·j′

A much more nuanced and meaningful formulation of the class confusion
would be:

Cjj′ = ŷᵀ
·jWŷᵀ

·j′ , (16)

where the matrix W is a diagonal matrix [9]. The diagonal terms Wii given as
the softmax outputs of the entropies in classifying a sample i. ŷij is given as:

ŷij =
exp(Zij/T )∑c

j′=1 exp(Zij′/T )
, (17)

where c is the number of classes, T is the temperature coefficient and Zij is the
logistic output of the classifier layer for the class j and the sample i.

After normalizing the class confusion terms, the final MCC Loss function is
given as:

LMCC =
1
c

c∑

j=1

c∑

j′ �=j

|Cjj′ |, (18)

which is the sum of all the non-diagonal elements of the class confusion matrix.
The diagonal terms represent the “certainty” in the classifier, while the non-
diagonal terms represent the “uncertainty” in classification. The MCC loss can
be added in conjunction with other domain adaptation methods [9]. This is not a
metric learning loss that optimizes distances between samples in the classification
space, but rather pushes samples that are unlike away from each other.

3.5 Overall Loss Function

The overall formulation of the total loss function will be:

LTL = |Σ(T1T2
T ) − Tr(T1T2

T )|, (19)

Ltotal = Lc + λ1Ladv + λ2LTL, (20)

where λ1 and λ2 are non-negative hyperparameters. Transporting the sample
representations in the classification space will be expected to reduce class con-
fusion of the classifier. However, this may cause crowding near some of the deci-
sion boundaries in the shifted region. If M is a matrix that sufficiently captures
class confusions in this context, we may reduce the class confusion terms either



10 P. Chirag et al.

directly in the bilinear form Y = T1MT2
T so that the transport loss is modified

as follows:
LTL = |Σ(T1MT2

T ) − Tr(T1MT2
T )|, (21)

or separately as a term in the total loss, to accelerate convergence, as follows:

Ltotal = Lc + λ1Ladv + λ2LTL + LMCC . (22)

The calculation of the adversarial loss via the discriminator is done as a combi-
nation of the soft-max outputs derived from O1 = C + T1 and O2 = C + T2.
The final classification task is done as:

λ · O1 + (1 − λ) · O2. (23)

where λ ∈ (0, 1). Using a linear combination makes classification less ambiguous
after transporting.

4 Experiments and Results

We conducted experiments to benchmark ATT on three datasets and abla-
tions studies to understand the contribution of its proposed components. The
datasets used for benchmarking ATT were Office-Home [28], Office-31 [20], and
FHIST [22].

The Office-Home dataset is a challenging benchmark dataset, consisting
of 15,500 images across 65 classes shared by four extremely distinct domains:
Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-World images
(Rw). All twelve transfer tasks were evaluated using this dataset [28].

The Office-31 dataset is a widely used benchmark for visual domain adap-
tation, consisting of 4,110 images across 31 classes from three distinct domains:
Amazon (A), Webcam (W), and DSLR (D). All six transfer tasks are evaluated
using this dataset [20].

The FHIST dataset was originally curated for few-shot classification of near-
domain target samples [22], where the source domain is CRC-TP [8] data-set and
(near-domain) target is NCT-CRC-HE-100K (NCT) [10]. It consists of colorectal
cancer histology images from two different domains, with 6 classes: Benign, Mus-
cle, Stroma, Inflammatory, Debris and Tumor. For each class, there are close to
20,000 patches in the CRC-TP domain, and around 10,000 patches in the NCT
domain. We rephrase this problem in terms of unsupervised domain adaptation,
where we do not have access to the target labels. We explore two domain adapta-
tion tasks of adapting the model from CRC-TP to NCT and the inverse problem.
For this dataset, we exclude T2 from the training loop to favour accuracy.

We adopt the standard protocol for unsupervised domain adaptation (UDA)
where all labeled source samples and unlabeled target samples are utilized for
training. To report our results for each transfer task, we use center-crop images
from the target domain and report the classification performance. Our experi-
ments are conducted in PyTorch using the ResNet-50 architecture pre-trained
on ImageNet.
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All experiments were done on an NVIDIA RTX 3090 GPU with learning
rate = 0.001 and all graphs were plotted on TensorBoard. Exploratory t-SNE
plots were also generated for the source and target samples [27]. The batch size
was kept 16 throughout, where 32 samples- 16 from the source and 16 from the
target were used to estimate the loss in the training loop.

The weight values λ2 used for OfficeHome and Office31 datasets are 0.0002
and 0.0016, respectively, based on the number of classes.

4.1 Benchmarking Results

As can be seen in Tables 1, 2, and 3, ATT with MCC outperforms the previous
methods (including SHOT [14], SDAT [18], f-DAL [1], and GVB [3]) on all three
datasets with comfortable margins.

Table 1. Accuracy (%) on the Office-Home dataset [28] with 12 different UDA tasks
and their average, where all methods were fine-tuned ResNet50 [6] pre-trained on Ima-
geNet [19]. The algorithm is adapted successfully onto an end-to-end network that
uses a transformer encoder used in place of a CNN, to illustrate the versatility of the
transport loss.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet-50 [6] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [5] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [16] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [12] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
GVB-GD [3] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SHOT [14] 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
SDAT [18] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
ATT 57.8 77.2 82.8 71.4 77.4 77.7 69.7 56.5 83.9 77.9 61 85.8 73.3
ViT [4] 66.2 84.3 86.6 77.9 83.3 84.3 75.9 62.7 88.7 80.1 66.2 88.6 78.7
CDTrans [30] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
ATT(ViT) 75.6 89.6 89.1 82.7 87.6 88.3 81.8 72.9 90.0 84.3 73.7 90.7 83.6

4.2 Effect of MCC and Transport Losses

The transport loss is sensitive to small increments after backpropagation. There-
fore, the weight of the transport loss must be tuned for every dataset as a hyper-
parameter. An even higher weight in the total loss might not drive the transport
loss to 0, since the updates in the parameters of T1 and T2 will overshoot
the optimal values. In the formulation of the total loss given in Eq. 20 a rea-
sonable conjecture is that the weight of the transport loss should be inversely
proportional to the number of classes in the dataset. This was evident from our
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Table 2. Accuracy (%) on the Office-31 dataset [20] with 6 different UDA tasks
and their average, where all methods are fine-tuned ResNet50 [6] pre-trained on Ima-
geNet [19].

Method A → D A → W D → W W → D D → A W → A Avg

ResNet-50 [6] 68.9 68.4 96.7 99.3 62.5 60.7 76.1
DANN [5] 79.7 82.0 96.9 99.1 68.2 67.4 82.2
CDAN [16] 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [12] 93.5 94.5 98.4 100.0 74.6 72.2 88.9
GVB-GD [3] 95.0 94.8 98.7 100.0 73.4 73.7 89.3
SHOT [14] 93.1 90.9 98.8 99.9 74.5 74.8 88.7
f-DAL [1] 94.8 93.4 99.0 100.0 73.6 74.6 89.2
ATT 95.0 95.7 98.6 100.0 74.7 75.3 89.9

Table 3. Accuracy (%) on the FHIST dataset [22] with 2 different UDA tasks and their
average, where all methods are fine-tuned ResNet50 [6] pre-trained on ImageNet [19].

Method CRC → NCT NCT → CRC Avg

ResNet-50 [6] 40.7 32.9 36.8
DANN [5] 73.5 66.6 70.0
CDAN [16] 66.2 61.4 63.8
GVB-GD [3] 73.9 66.7 70.3
ATT 81.6 67.9 74.7

experiments and also by an analysis of the loss term. We also set λ = 0.5, λ1 = 1
and C = I (identity matrix) throughout without including the class information
intrinsic to the bi-linear form. Instead, we use class information during training
by using LMCC to accelerate the class confusion minimization.

The best results from previous domain adaptation methods are compared
with our approach and the comparison is listed in Table 1.

LMCC directly addresses class confusion of the classifier by minimizing the
probabilities of inter-class confusions. However, a careful study of our loss func-
tion on Office-Home [28] revealed that our loss addressed class confusion too, by
minimizing LMCC , even when LMCC was not included in the training algorithm.

However, the converse was not true; Minimizing LMCC did not minimize
the LTL, when LTL was not included in the training loop. We conclude that
transporting the samples in the classification space in a nuanced way enables
the classifier to make more confident predictions. The very idea of shifting the
samples in the classification space seemed to greatly enhance accuracy, and tun-
ing the shifting vectors T1 and T2 was but an icing on the cake, which improved
the accuracy even further.

We also suspect that in certain cases, the class confusions are minimized by
LMCC and LTL synergistically, so that adding the minimum class confusion loss
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Fig. 3. Two-dimensional representation (using t-SNE [27]) of target samples after iter-
ations i = 0, 2500, 5000 and 10, 000 of the domain adaptation task D to A on Office-31
shows that the classes initially overlap, but as the training progresses their samples are
transported such that they form distinct clusters.

to the total loss caused further improvement in certain domain adaptation tasks.
The class confusions that arise due to two samples from different classes being
accidentally transported to nearby regions might be the cause of this.

Fig. 4. Evolution of accuracy on OfficeHome [28] Ar to Cl domain adaptation task
shows that improvements over using the adversarial transfer loss Ladv [5,16] can be
made by including the minimum class confusion loss LMCC [9], while further and
independent improvements are possible using the proposed transport loss LTL.

The transport loss LTL is sensitive to back-propagating updates, and hence
to λ2. The sensitivity is reduced by replacing LTL by LTLCos

which normalizes
every entry in the matrix Y by the product of the norms. Empirically, the best
adaptation algorithm was seen to be the loss given by Eq. 19. When the loss was
modified to Eq. 21 it was observed that the convergence was slower than when
the class confusion loss was included separately in the total loss. This could be
possibly attributed to the back-propagation updates of M being very slow, owing
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to the camouflaged nature of M in T1MT2
T . Nevertheless, it is interesting to

study an optimal choice of M.
In our ablation studies, we observe that ATT, when combined with MCC [9]

gives the best result on most of the domain adaptation tasks. The evolution of the
target classifier accuracy on the domain adaptation from Ar to Cl is plotted in
Fig. 4. We observe that by shifting the samples in the classification (logit) space
itself produces a significantly improved accuracy compared to SOTA methods,
as shown in Table 1, and tuning the transport vectors increases the accuracy.
Furthermore, using the MCC loss in synergy with the transport loss favoured
accuracy even more. When using just the transport loss as a means of reducing
class confusion, we observe that it does a better job than the MCC loss.

4.3 Evolution of Target Domain Distribution

We visualize the movements of 2D nonlinear representation of the target domain
feature vectors in the classification (logit) space using t-SNE (t-distributed
Stochastic Neighbor Embedding) [27] after 0, 2500, 5000, and 10000 training iter-
ations for the D to A task in Office-31. The extent of overlapping between dis-
tributions visibly reduces with increase in the number of iterations, as seen in
Fig. 3.

5 Conclusions and Future Directions

We sail in previously unexplored seas of transporting samples to assist class con-
fusion minimization. For unsupervised domain adaptation, we propose trans-
porting samples to different regions in the classification (logit) space to allow
easier joint classification of samples from source and target domains. Our results
show that it is a reasonable approach to minimizing confusions in classifying
the target samples in the context of unsupervised domain adaptation, especially
when combined with other mechanisms, such as minimizing class confusion.

There is scope of choosing the optimal value of the confusion matrix embed-
ded in the transport loss, by using class information of the source domain sam-
ples and an estimate of the label for the target domain samples (pseudo-labels).
Doing so would gauge the effective spread of the clusters and lead to more robust
classification. Moving two samples of the same class similarly might reduce the
class confusion further. Given the multi-modal distribution of the source sam-
ples in the classification space, and the multi-modal prior of the target samples,
we may approach the problem by introducing an angular shift term, along with
linear shifting terms.
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Abstract. Federated learning is a model training method that protects
user data and privacy, making it a feasible solution for multi-user collabo-
rative training. However, due to the heterogeneity of data among clients,
the optimization direction of each model is different, resulting in poor
model training effects and accuracy fluctuations during training. To solve
this problem, we introduce a stage-optimal strategy and propose a stage-
optimal knowledge distillation method. The proposed method keeps the
optimal local models and optimizes the subsequent training of the models
through knowledge distillation to reduce the loss of learned knowledge.
Additionally, we propose a new aggregation method that considers both
static and dynamic factors. For evaluation, we conducted experiments
on the CIFAR10 and CIFAR100 datasets. The proposed method signif-
icantly improved performance, achieving a maximum accuracy gain of
13.07% over the baseline model of FedPer and attaining state-of-the-art
performance. The code is available at the following link: https://github.
com/FedSOKD-TFA/FedSOKD-TFA.

Keywords: Federated Learning · Knowledge Distillation · Data
Heterogeneity

1 Introduction

In recent years, data privacy and security have become a growing concern, lead-
ing to the creation of data silos among clients and resulting in data sharing
issues. Traditional centralized machine learning techniques merge local datasets
into one training client. Federated learning enables multiple clients to build a
common, robust model without sharing data, provides a solution for multi-client
collaborative training while protecting client’s privacies, and has now been widely
applied in biomedical imaging analysis [1], pedestrian re-identification [2], inter-
net of things [3], etc. With advances in communication technologies, including
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increased storage capacities and computing powers on edge devices, it is becom-
ing more feasible to store data locally for training. Additionally, compared to
transmitting raw data, transmitting model parameters is more efficient and cost-
effective [4]. One of the commonly used assumptions in federated learning is that
the data is independently and identically distributed (IID) among data silos [5],
as shown in Fig. 1a. While in practical scenarios, data often appears in the form
of Non-IID, which poses significant challenges to the development and applica-
tion of federated learning, as illustrated in Fig. 1b. Due to data heterogeneity,
each client model converges to a different position from the global model, causing
the local models to deviate from the ideal optimization point. Simultaneously,
this inconsistency leads to significant fluctuations in the accuracy of local models
during the training process, hindering model convergence.

Fig. 1. IID and Non-IID Data Distributed across K(= 10) Categories over N(= 10)
Clients.

Most of the existing federated learning algorithms solve the problem of Non-
IID data distributions by modifying the local training processes and global
aggregations. Strategies concentrating on local training can be mainly divided
into three categories. The first constrains the training process of local clients.
Related works, such as FedProx [6], SCAFFOLD [7], and MOON [8], use the
global model to constrain the local training process of clients, and the drift of
the model is alleviated by constraints. The second strategy alleviates the data
heterogeneity through data augmentation. Related studies, such as FedMix [9],
FedM-UNE [10], and FedCG [11], generate data with global information for
clients to help local model training through data synthesis. The third category
improves the training process through knowledge distillation. Related methods,
such as FedFTG [12], FedDistill [13], DaFKD [14], and FedX [15], enhance the
model performance through knowledge distillation in different directions such
as global to local, local to global, clients to clients, etc. The aforementioned
methods employ diverse strategies to maximize the acquisition of global knowl-
edge by local clients, thereby enhancing model generalization. However, these
approaches often overlook the critical issue of local knowledge forgetting. Due
to the inherent heterogeneity of data across clients, the process of assimilat-
ing global knowledge inevitably leads to the unintended loss of locally valuable
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information.To address this challenge, our proposed methodology shifts its focus
towards preserving valuable local knowledge and mitigating knowledge loss. The
proposed approach is rooted in the recognition that while global knowledge is
indeed critical for overall model performance, the unique characteristics of local
datasets often encapsulate invaluable information that should not be sacrificed
in the pursuit of generalization.

On the server side, several factors were introduced to influence the process
of aggregation of local models. For example, FedAvg [16] focused the amount
of data, FedDisco [17] only considered the amount of data and its distribution,
pFedSim [18] concentrated on the model and pFedGraph [19] assigns weights to
each client by building a collaboration graph. While these factors mitigate the
problem of Non-IID data distribution, the above approach considers a somewhat
homogenous set of factors. This study proposes incorporating dynamic factors
during model aggregation.

From the perspective of individual clients in a federated learning, the pro-
cess of acquiring global knowledge is complicated by data heterogeneity. Local
models may inevitably forget their homogeneous local knowledge while assimilat-
ing heterogeneous knowledge from other models. This phenomenon is known as
catastrophic forgetting in the context of federated learning. Meanwhile, the over-
all objective of federated training is to develop a feature extractor with enhanced
generalization capabilities across all participating clients. However, some current
methodologies fall short in their approach to obtain this global feature extractor,
as they do not comprehensively address all the nuances and challenges involved
in the process.

In this work, we propose an effective client knowledge distillation method
by keeping copies of the currently known optimal local models and performing
knowledge distillation on these models during training on clients, and introduce
a novel three-factor global aggregation strategy to optimize operations on the
server side. These two modules respectively enhance model training and model
aggregation within the current federated learning framework. The integration of
these two approaches yields a powerful collaborative effect in federated learn-
ing. This combination effectively addresses two critical challenges: mitigating
catastrophic forgetting in local models and enabling clients to acquire a global
feature extractor with enhanced generalization capabilities. The contributions of
this work include the followings:

1. A novel method of knowledge distillation is proposed to prevent local knowl-
edge degradation using a stage-optimal strategy.

2. A more comprehensive model aggregation method, called three-factor aggre-
gation, is proposed.

3. The proposed method significantly improved model performance, with a mar-
gin of 13.07% over the baseline method, FedPer [20], and outperformed the
compared state-of-the-art methods, including FedAvg [16], FedProx [6], Fed-
Per [20], pFedMe [21], and FedBN [22], achieving a SOTA performance.
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2 Stage-Optimal and Three-Factor Aggregated Federated
Learning

Due to the knowledge loss of local client’s data and the heterogeneity of data
among clients, locally learned features are prone to overfitting and have weak
generalization abilities. This is a common challenge in federated learning. One of
the typical solutions to this problem is Personalized Federated Learning (PFL),
which aims to improve the degree of personalization of local models and the
generalization ability of global models. Specifically, PFL distinguishes itself from
traditional FL in its unique approach to model updates and aggregation. In each
training round of PFL, clients exclusively upload the parameters of their feature
extraction networks for aggregation, while retaining their local classifiers. In
this study, we utilize a typical PFL system as the learning scheme. The system
consists of N clients and a server. Each client i ∈ {1, 2, ..., N} holds a separate

dataset Di =
{(

xj
i , y

j
i

)
, x ∈ Xi, y ∈ Yi

}|Di|

j=1
, where X denotes the input feature

space and Y corresponds to ground truth labels from K categories. And the data

distribution is formulated as Pi (xi, yi), Mi = |Di|, M =
N∑

i=1

Mi, where Pi is the

data distribution of client i, Mi represents the number of data held by the client
i, and M is the sum of data volumes across all clients.

The set of all networks are denoted as W = {w1, w2, ..., wi, ..., wN}. Each
local client holds the decoupling model wi = {θi, φi} with a feature extractor
f i

θ and a classifier gi
φ, where f i

θ : X → Rd is a learnable network parameterized
by θi, gi

φ : Rd → Y is a learnable network parameterized by φi, θg denotes
the parameters of the feature extractor after global aggregation, and d is the
dimension of the feature input. Given x as input, the extracted feature vector
can be denoted as z = f i

θ (x), and the prediction of the model can be obtained
through the classifier gi

φ (z).
The proposed Federated Learning with stage-optimal knowledge distillation

and three-factor aggregation (FedSOKD-TFA) approach consists of three mod-
ules, a PFL base framework, a stage-optimal knowledge distillation module,
and a three-factor aggregation module. The stage-optimal knowledge module
preserves local information through knowledge distillation between the stage-
optimal model and the local model. And the three-factor aggregation module
incorporates both static and dynamic factors for model aggregation. Addition-
ally, we add a plug-and-play model shrinkage module on the server side. This
improves the generalization ability of the model and further enhance the perfor-
mance of the proposed approach. An overview of the approach is illustrated in
Fig. 2.

2.1 Stage-Optimal Knowledge Distillation Strategy

The standard federated learning [16] framework initializes local models using
parameters from the global model before each round of training, updating clients
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Fig. 2. Overview of the Proposed Stage-optimal and Three-factor Aggregated Feder-
ated Learning Method

with the latest global knowledge at the current stage, without emphasis on local
clients. After global model aggregation and local model initialization in each
round, the global model in this round may not be suitable for updating local
models that were not selected and might lead to a decrease in model performance.
Currently, most solutions ignore this situation, resulting in the loss of some
beneficial cues for local models after global initialization and causing accuracy
fluctuation during training.The proposed stage-optimal knowledge distillation
strategy takes into consideration the performance of local clients and through a
teacher-student methodology, the local model has access to the current global
knowledge as well as reinforcing the local knowledge.

In the proposed stage-optimal knowledge distillation strategy, called SOKD,
we consider keeping the existing stage-optimal model locally and transferring the
knowledge of the stage-optimal model to the trained model through knowledge
distillation, so that it acquires the global knowledge without losing the local
optimum.

Specifically, SOKD keeps a stage-optimal model with parameters w̄i =
(θ̄i, φ̄i) for each local client and updates the teacher model accordingly. Take
client i as an example, the local optimal parameter set w̄i are initialized as
the optimized local parameter sets wi in the first round. Subsequently, if the
optimized model with parameters (θg, φi) in this round perform better than the
current optimal model with parameters

(
θ̄i, φ̄i

)
, this implies that the model for

this round is better suited to the local data distribution than the existing opti-
mal model, and

(
θ̄i, φ̄i

)
is updated as (θg, φi); otherwise, the original local stage

optimal model is retained. The updated local optimal model with the parameter
set w̄i =

(
θ̄i, φ̄i

)
is then employed as a teacher model. The local model is updated

with the optimized parameters wi = (θg, φi) and is defined as the student model.
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Fig. 3. The Procedure of the Proposed FedSOKD Strategy

Figure 3 illustrates the procedure. In the figure, accg and acco denote the predic-
tion accuracy of the locally optimized model with the parameter set (θg, φi) and
that of the stage-optimal model with the parameter set

(
θ̄i, φ̄i

)
, respectively.

Local training loss Llocal consists of two parts, the cross-entropy loss LCE

between the predictions of the student model and the ground truth label, and the
Kullback Leibler (KL) divergence LKD between the predictions of the teacher
model and the student model.

Llocal = λLCE + (1 − λ)LKD, (1)

LCE (g (f (x)) , y) = − 1
Mi

Mi∑
j=1

g (f (xj)) log yj , (2)

LKD

(
gφ(z), gφ̄(z)

)
= LKD

(
gφ(fθ (x)), gφ̄(fθ̄ (x))

)

=
1

Mi

Mi∑
j=1

gφ̄ (fθ̄ (x)) log
Softmax

(
gφ̄(fθ̄ (x) /T

)

Softmax (gφ(fθ (x) /T )
,

(3)

where λ ∈ [0, 1] is a hyperparameter, characterizing the contributions of the two
losses.

2.2 Three-Factor Aggregation Approach

In federated learning, it is necessary to determine the gap between the local
model and the global model dynamically captured by the similarity of the model,
and determine the weight of local model aggregation more accurately. Previous
studies introduced aggregation methods using static factors, such as data distri-
butions [17]. Aggregation weights are pre-determined by static factors during the
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whole training procedure. This study proposes to combine static factors of data
properties, including amount and distributions, and dynamic factors of models
similarities, and propose a three-factor aggregation approach, named TFA.

The weight ηi denoting data volume for client i is calculated as the following.

ηi =
Mi

M
, (4)

where Mi denotes the volume of data at local client i, and M represents the
total volume of data across all clients.

Data distributions across categories are computed to represent data hetero-
geneity among clients and server. The advantage of using data distributions
across categories is that it can be obtained without compromising privacy. For
client i, the variance of data distributions si is computed as the following.

si =
√∑K

k=1 (Pi,k − Pk)2, (5)

where Pi,k and Pk represent the local and global distributions for category k,
respectively.

Previous study [18] showed that classifiers could represent model-to-model
differences. Based on the observation, this study proposes to measure model
similarity using cosine similarity between classifiers. The distance μi between
the globally aggregated classifiers and the classifier of client i is measured as the
following.

μi = max
(

φg · φi

||φg||2||φi||2
, 0

)
, (6)

where φi denotes the parameters of the classifier on client i in the current training
round.

Once these weights are computed for each client, they are stored in vectors,
η = [η1, η2, ..., ηn], s = [s1, s2, ..., sn] and μ = [μ1, μ2, ..., μn], for data volume,
client’s category distribution difference, and model difference, respectively. It is
important to note that if client i is not selected for participation in a given round
of federated learning, its corresponding value in each vector is set to 0. Based
on these vectors, TFA applies a linear rectifier, and calculates the global weight
θg as a weighted sum of parameters from all selected clients.

p = Relu (η − a × s − b × μ + c) , (7)

θg =
N×ζ∑
i=1

pi

p
θi, (8)

where a, b, and c are hyperparameters, p is the aggregated weight after apply-
ing the linear rectifier, and ζ is active ratio. After applying the Relu (Rectified
Linear Unit) activation function, we obtain a rectified vector, which effectively
introduces non-linearity while preserving the dimensionality of the original vec-
tor. Hyperparameters a and b serve as critical diversity weights in TFA module,
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playing a important role in balancing the various components of our algorithm.
To further refine our approach, we introduce parameter c as a y measure. The
primary purpose of c is to mitigate potential over-correction that may arise from
suboptimal configurations of a and b.

2.3 FedSOKD-TFA Algorithm

To provide a concise overview of the proposed method, we present the algorithm
in pseudocode format below. The algorithm is divided into two parts: one for
the client-side operations and the other for the server-side operations. The TFA
method, included in the pseudocode, is described in detail in Sect. 2.2.

Algorithm 1. FedSOKD-TFA
Require: Local optical model (θ̄i, φ̄i), global feature extractor θg, local epoch E, rounds R, dataset

{Di
train, Di

test}, active ratio ζ, number of clients N
1: Initialization : local models w = [w1, w2, .., wN ] and global model wg

2: Client :
3: for r = 0 to R − 1 do
4: Selected clients wselected = RandomSelect(w, N × ζ)
5: if r == 0 then
6: w̄ = [w̄1, w̄2, .., w̄N ] = [w1, w2, .., wN ]
7: else
8: Download global feature extractor θg.
9: Attach θg and φi to wi.

10: for wtemp in wselected do

11: Compute acc ((θ̄i, φ̄i), (θg, φr−1
i ), Di

test) → acco, accg

12: if accg>accc then
13: Update local optical (θ̄i, φ̄i) → (θg, φi)
14: else
15: Continue
16: end if
17: Get Teacher model w̄i = (θ̄i, φ̄i) and student model wi = (θr

i , φr
i )

18: eval(w̄i)
19: for e = 0 to E − 1 do
20: wτ

i ←local training for τ steps of SGD
21: end for
22: Send wtrained

tmp to server

23: end for
24: end if
25: end for
26: Server :
27: Get selected models wtrained, client data volume M , client data distribution Pi.
28: Compute each weights using Eq. 7
29: Aggregate using TFA
30: Distribute the aggregated feature extractor θg

The overall structure of the algorithm is as above. In the first round, the
global model, local models, and local optimal models are initialized. In subse-
quent rounds, the local models are initialized at the beginning of each round to
determine the local optimal models for that round. After completing the training,
the models are uploaded to the server and aggregated using the TFA method.
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2.4 FedSOKD-TFA: Convergence Analysis

We begin by introducing the following assumptions:

Assumption 1. Lipschitz Smoothness. Gradients of client i’s local complete
heterogeneous model wi are L1 − Lipschitzsmooth,

‖∇Lt1
i

(
wt1

i ;x, y
) − ∇Lt2

i

(
wt2

i ;x, y
) ‖ ≤ L1‖wt1

i − wt2
i ‖,

∀t1, t2 > 0, i ∈ {0, 1, ..., N − 1} , (x, y) ∈ Di

(9)

The above formulation can be further derived as:

Lt1
i − Lt2

i �
〈∇Lt2

i ,
(
wt1

i − wt2
i

)〉
+

L1

2
‖wt1

i − wt2
i ‖22 (10)

Assumption 2. Unbiased Gradient and Bounded V ariance. Client i’s ran-
dom gradient gw,i

t = ∇Lt
i (wt

i ,Bt
i) , (B is a batch of local data) is unbiased,

EBt
i⊆Di

[
gt

w,i

]
= ∇Lt

i

(
wt

i

)
(11)

and the variance of random gradient gw,i
t is bounded by:

EBt
i⊆Di

[
‖∇Lt

i

(
wt

i ;Bt
i

) − ∇Lt
i(w

t
i)‖22

]
≤ σ2 (12)

Assumption 3. Bounded Prameter V ariation. The parameter variations of
the homogeneous small feature extractor θt

i and θt before and after aggregation
is bounded as

‖θt − θt
i‖≤ δ2 (13)

Through Assumptions 1 and 2, we can establish the following lemma,

Lemma 1

E[LE+1
t ] ≤ LE+0

t + (
L1η

2

2
− η)

E∑
e=1

‖∇LE+e
t ‖22 +

L1η
2σ2

2
(14)

Leveraging Assumption 3 and Lemma 1, we derive Lemma 2.

Lemma 2

LE+0
t+1 = LE

t+1 + LE+0
t+1 − LE

t+1 ≈ LE
t+1 + η‖θE+0

t+1 − θE
t+1‖

2

2
≤ LE

t+1 + ηδ2 (15)
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By synthesizing Lemma 1 and 2, we ultimately arrive at the following conclusion:

η <
2(ε − δ2)

L1(ε + Eσ2)
(16)

Given that ε, L1, δ2, σ2 are all positive constants, it follows that η has well-
defined solutions. Consequently, when the learning rate η satisfies the aforemen-
tioned condition, convergence is assured for any client’s local complete heteroge-
neous model. For a comprehensive proof and detailed derivation, please refer
to our code repository: https://github.com/FedSOKD-TFA/FedSOKD-TFA/
blob/main/Convergence.pdf.

3 Experimental Results

To rigorously evaluate the efficacy of the proposed federated learning approach,
comprehensive experiments were conducted on two widely-adopted and challeng-
ing visual benchmark datasets: CIFAR-10 and CIFAR-100. These datasets have
emerged as standards for assessing the performance of computer vision mod-
els, particularly in the realm of image classification tasks. The Cifar10 dataset
includes 10 categories, each category consisting of 6000 RGB images with resolu-
tions of 32×32. Among them, 5000 are used as training and 1000 as testing. The
Cifar100 dataset contains 100 classes, each class consisting of 600 RGB images
with resolutions of 32 × 32. Among them, 500 are used as training and 100 as
testing. By benchmarking the proposed federated learning approach on these
widely-adopted and challenging datasets, the study aims to provide a compre-
hensive and objective assessment of its performance.

To investigate the real-world applicability of the proposed federated learning
method, the experimental data was generated using a Non-IID setting. Specifi-
cally, the data were partitioned across clients according to a Dirichlet distribution
such that the categories were unevenly distributed. The Dirichlet distribution
is controlled by a concentration parameter β. A smaller value of β corresponds
to a higher degree of Non-IID data distribution among the clients. The exper-
iments evaluated the proposed approach under two Non-IID scenarios, with β
set to 0.1 and 0.5, respectively, representing significant and moderate devia-
tions from the IID setting. The shrinkage factor γ, which controls the degree
of model regularisation, was set to 0.95. The hyperparameter λ, governing the
relative importance of the distillation loss term in the overall objective function,
was assigned a value of 0.8. Furthermore, the distillation temperature T , which
modulates the softening of the logits during knowledge distillation, was set to
7. Finally, the active ratio ζ, determining the fraction of clients participating in
each round of federated learning, was fixed to 0.5.

The backbone network used in the experiments is a five-layered CNN. The
federated learning environment encompasses a total of 10 clients, with 50% of
these clients actively participating in each round of the training process. The
optimization procedure involves 200 iterative rounds of global communication,
wherein each round incorporates 5 epochs of localized training on the respective

https://github.com/FedSOKD-TFA/FedSOKD-TFA/blob/main/Convergence.pdf
https://github.com/FedSOKD-TFA/FedSOKD-TFA/blob/main/Convergence.pdf


FedSOKD-TFA: Federated Learning with SOKD and TFA 27

Table 1. Prediction Accuracy of the Proposed Method Compared with the State-of-
the-art Methods on Two Standard Evaluation Datasets. Numbers in brackets are the
differences of prediction accuracy between the proposed method and the best perform-
ing method.

Method Accuracy⇑ Predicted with Different Settings of β

Cifar10 Cifar100

β = 0.1 β = 0.5 β = 0.1 β = 0.5

FedAvg [16] 58.34 64.54 24.1 27.27

FedProx[6] 60.55 64.38 24.9 27.38

FedPer [20] 90.38 78.84 46.06 33.52

FedPer [20]+WeightShrinking [23] 90.05 79.67 49.14 34.89

pFedMe [21] 89.61 74.59 41.7 29.12

FedBN [22] 87.83 74.7 44.07 35.2

FedSOKD-TFA 91.03 (32.69�) 82.71 (18.17�) 57.61 (33.51�) 44.1 (16.83�)

FedSOKD-TFA* 91.18 (32.84�) 83.59 (19.05�)59.13 (35.03�)45.52 (18.25�)

⇑ The upward-pointing arrow indicates that the algorithm performed better as the prediction

accuracy increases.

� The black triangle pointing upwards indicates that the proposed method performed better.

client devices. For local training, the optimiser is set to SGD, the batch size to
64, and the learning rate to 0.01.

3.1 Comparison with the State-of-the-Art Methods

To validate the efficiency of the proposed approach, we conducted a compre-
hensive comparative evaluation against the state-of-the-art methodologies in the
field of federated learning. The methods included in this analysis are FedAvg [16],
FedProx [6], FedPer [20], pFedMe [21], FedBN [22], and WeightShrinking is a
regularisation method in [23]. The experimental results are listed in Table 1. In
this table, we report two distinct accuracy measures: the accuracy of the global
model, denoted as FedSOKD-TFA, and the accuracy of the best-performing
local model, represented as FedSOKD-TFA∗. These models allow for a detailed
understanding of the proposed method’s performance at both the global and
local levels, enabling a holistic assessment of its capabilities.

A thorough examination of the results presented in Table 1, reveals a com-
pelling observation, the proposed FedSOKD-TFA approach exhibited a clear
superiority over all the compared state-of-the-art methods, consistently outper-
forming them across two distinct datasets. This empirical evidence substantiates
the effectiveness and robustness of the FedSOKD-TFA technique, underscoring
its potential as a leading solution in the field of federated learning. Notably,
when the hyperparameter β was set to 0.1, the performance of FedSOKD-TFA∗

surpassed that of FedPer [20], initialized with a global model, by a remark-
able margin of 13.07%. This significant performance differential highlights the
substantial improvements offered by the proposed approach over existing
methodologies. Furthermore, the FedSOKD-TFA method itself demonstrated a
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performance improvement of up to 11.55% under the same experimental setting.
This empirical evidence strongly validates the argument that simply initialising
the local client using the global model from the previous round may not be the
most appropriate approach, as it may hinder the optimisation process and limit
overall performance.

Compared to FedAvg [16], the standard federated learning method,
FedSOKD-TFA∗ and FedSOKD-TFA gained a boost of 35.03% and 33.51%,
respectively, with the same settings as above. These results demonstrate that
the locally optimal model is not only more friendly to local data, but the
globally aggregated model also achieves better performance compared to other
approaches.

3.2 Ablation Studies

We conducted ablation experiments and evaluated the effect of each module,
as listed in Table 2. With β = 0.5 and all other parameters identical to the
above settings, experimental results showed that the prediction accuracy of the
FedSOKD method that uses the same aggregation methodology as FedPer [20]
outperformed FedPer [20] by 3.07% on the Cifar10 dataset and by 7.56% on the
Cifar100 dataset. This demonstrates that is effective by adding local copies of
the optimal models, and during the training process, the local models acquire
learned knowledge from the locally saved copies.

We also experimented with three different aggregation methods, weighing
various factors, including the amount of data in FedPer [20], amount of data and
data distribution in FedDisco [17], and multiple factors in FedTFA. Experimental
results showed that FedTFA outperformed the other two aggregation methods.
This suggests that TFA’s idea of considering both dynamic and static factors
in the training process is feasible. Additionally, the combination of FedSOKD
and FedTFA achieved the highest performance among all configurations. These
two modules can be used together to achieve better performance, or they can be
split and applied to different federated learning frameworks. For instance, when
combined with the SOKD strategy, the performance of the FedDisco [17] and
FedPer [20] methods enhanced by it, respectively.

3.3 Experiments on Parameter Settings

To evaluate the effectiveness of the weight shrinking module, we tested its boost-
ing effect on the FedPer and FedSOKD methods. The experimental results on
the Cifar10 and Cifar100 datasets are presented in Table 3. Compared to the
FedPer method, the improvement achieved by weight shrinking on the FedSOKD
method was 2.19%, indicating that weight shrinking complements the proposed
method more effectively.

We conducted experiments to evaluate the performance of the proposed
method by varying model parameters. The loss function comprises two com-
ponents. The weight of each component is controlled by the parameter λ, while
the temperature of the distillation loss during training is governed by the param-
eter T . The experiments were carried out using the FedSOKD-TFA method on
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Table 2. Ablation Studies on the SOKD and TFA Modules.

Method Dataset Parameters Accuracy⇑
FedPer [20] Cifar10 – 78.84

Cifar100 – 33.52

FedDisco [17] Cifar10 a = 0.5 b = 0.1 79.03

Cifar100 a = 0.5 b = 0.1 33.2

FedTFA Cifar10 a = 0.6 b = 0.3 c = 0.3 79.28

Cifar100 a = 0.6 b = 0.3 c = 0.3 33.5

FedSOKD-Per [20] Cifar10 T = 7 λ = 0.8 81.91

Cifar100 T = 7 λ = 0.8 41.08

FedSOKD-Disco [17] Cifar10 a = 0.5 b = 0.1 81.88

Cifar100 a = 0.5 b = 0.1 41.25

FedSOKD-TFA Cifar10 T = 7 λ = 0.8 82.23

Cifar100 T = 7 λ = 0.8 41.49

⇑The arrow indicates that the algorithm performed better as the pre-

diction accuracy increases.

Table 3. Impact of Weight Shrinking. The numbers in brackets represent the differ-
ences in prediction accuracy between the method with weight shrinking and the method
without.

Method Accuracy⇑
Cifar10 Cifar100

FedPer 78.84 33.52

FedPer+WeightShrinking 79.67 (0.83�) 34.89 (1.37�)

FedSOKD 81.02 40.12

FedSOKD+WeightShrinking 82.66 (1.64�) 43.68 (3.56�)

⇑The upward-pointing arrow indicates that the algorithm per-

formed better as the prediction accuracy increases.

�The black triangle pointing upwards indicates that the proposed

method performed better.

the Cifar10 dataset, with β set to 0.5. To demonstrate the impact of param-
eter variations, this study performed the experiments by fixing one parameter
and altering the value of the other. Table 4 presents the parameters used in our
experiments and their corresponding prediction accuracy.

As evident from the Table 4, the performance of FedSOKD-TFA is more
sensitive to variations in the parameter λ, whereas the distillation temperature
T does not significantly impact the model’s accuracy. The value of λ can be fine-
tuned to accommodate different datasets or various data distribution strategies
employed during the federated learning process.

To assess the sensitivity of three hyperparameters in the TFA module, we
conducted a series of experiments. In these experiments, we systematically varied
one parameter while keeping the other two fixed. The experiment’s results as
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Table 4. Prediction Accuracy of the FedSOKD-TFA Method with Different λ and T
on the Cifar10 Dataset.

Prediction Accuracy with Fixed λ or T

λ = 0.8 T = 5

Value of T Accuracy⇑ Value of λ Accuracy⇑
5 83.66 λ = 0.4 81.3

10 83.93 λ = 0.5 82.6

15 83.79 λ = 0.6 83.14

20 83.87 λ = 0.7 83.65

25 83.63 λ = 0.8 83.66

30 83.76 λ = 0.9 83.86

⇑The upward-pointing arrow indicates that the algo-

rithm performed better as the prediction accuracy

increases.

Table 5. Prediction Accuracy of the FedSOKD-TFA Method with Different a, b and
c on the Cifar10 Dataset.

Prediction Accuracy with Fixed a or b or c

Parameters Algorithm

a b c FedSOKD-TFA FedSOKD-TFA*

0.1 0.3 0.3 82.95 83.99

0.3 0.3 0.3 83.42 84.08

0.5 0.3 0.3 83.1 84.04

0.7 0.3 0.3 82.82 83.96

0.9 0.3 0.3 82.71 83.94

0.3 0.1 0.3 82.81 84.00

0.3 0.3 0.3 83.42 84.08

0.3 0.5 0.3 82.9 84.1

0.3 0.7 0.3 82.72 83.94

0.3 0.9 0.3 82.11 83.58

0.3 0.3 0.1 82.6 83.91

0.3 0.3 0.3 83.42 84.08

0.3 0.3 0.5 83.07 83.9

0.3 0.3 0.7 82.86 83.96

0.3 0.3 0.9 82.72 83.85

showed Table 5 Our findings indicate that the accuracy of the optimal model
(FedSOKD-TFA∗) is relatively insensitive to parameter changes. However, when
concatenating the global feature extractor with the local classifier (FedSOKD-
TFA), we observed that different parameter settings significantly impact the
accuracy.
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3.4 Data Distribution and Detailed Experimental Results

To provide a better visualization of the data distribution across clients for differ-
ent values of β, we present heat maps of the Cifar10 dataset for various β values
with 10 clients in Fig. 4.

Fig. 4. Data Distributions with Two Settings (β = 0.1 and β = 0.5) on the Cifar10
Dataset.

Fig. 5. Training Accuracy of Two Non-IID Data Distributions on the Cifar10 Dataset.

Additionally, we display the training accuracy when β is set to 0.1 and 0.5
in Fig. 5. We observe that as the value of β decreases, the heterogeneity among
clients becomes more pronounced, leading to a greater disparity in data distribu-
tion, with the data being concentrated in fewer classes. Through the analysis of
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Fig. 4 and the experiments depicted in Fig. 5, we conclude that the proposed Per-
sonalized Federated Learning (PFL) approach achieves better performance when
β is smaller, indicating a higher degree of data heterogeneity across clients. Con-
versely, standard federated learning methods like FedAvg perform better when
β is larger, implying a more homogeneous data distribution.

An examination of the accuracy curves in Fig. 5, reveals that the proposed
FedSOKD-TFA method exhibits smaller fluctuations in accuracy across both
settings. This observation indicates that the proposed method mitigates the
accuracy regression phenomenon to a certain degree by preventing the loss of
local knowledge. Concurrently, the method achieves superior accuracy compared
to all the other methods depicted in the graph, as evidenced by the higher
accuracy values attained throughout the training process.

4 Discussion

The combination of SOKD and TFA represents a balanced approach to mit-
igate catastrophic forgetting of local knowledge and obtain a more general-
izable feature extraction network. On one hand, SOKD enables local models
to acquire global knowledge while minimizing the loss of local knowledge. On
the other hand, TFA helps obtain a feature extraction network with stronger
generalization capabilities relative to all participating clients. However, due to
the incorporation of knowledge distillation, SOKD module requires two forward
passes through the same data, which increases the consumption of computa-
tional resources. The computational overhead introduced by the TFA method is
negligible compared to that of SOKD. In the future work, we will explore the
possibility of implementing SOKD for selected rounds, which aims to investi-
gate the potential for both mitigating local knowledge forgetting and reducing
computational overhead.

Currently, the practical applications of federated learning have progressed
beyond theoretical concepts. Previous studies have already initiated the imple-
mentation of federated learning in real-world scenarios, spanning diverse fields
such as cybersecurity [24], healthcare [25], and natural language processing [26].
However, our research to date has primarily focused on theoretical image classi-
fication tasks. In the upcoming phase of our investigation, we aim to expand our
exploration of this methodology to real-world datasets and evaluate its potential
to address tangible, practical challenges.

5 Conclusion

In this paper, we proposed to address the limitations of the original framework
that used a global model to initialize the local model. SOKD is a client-side
approach that stores the knowledge learned by the local model by retaining a
copy of the optimal model at current stage locally. Then, the local knowledge
is transferred to the current initialized model by means of knowledge distilla-
tion during local training. During the training process, the trained model carries
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the global knowledge on one hand and acquires the local knowledge on the
other hand, which makes the knowledge richer and the training model is thus
further optimized. Meanwhile, the TFA method combines dynamic and static
factors, providing a better option for global model aggregation. The experiment
proved that the proposed methods obtained a significant performance improve-
ment compared to other methods.
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Abstract. Human brains are natural learning systems which inherently
recognise image objects in a hierarchical pattern. Similar association
exists among different categories of images which interact while training a
deep learning model, leading to misclassification and indistinct features.
As semantically related classes form clusters in the embedding space, we
can list these classes under a single aggregate class, and make the learning
faster by leveraging this knowledge while training a model. In this paper,
we introduce a hierarchical architecture that simultaneously learns both
broad-class and fine-class embeddings using transformer-based encoders.
These encoders are trained alternately, and the hierarchical knowledge
is encoded through tensor product between the coarse and fine class
representations. Our approach has been able to achieve state-of-the-art
performance on benchmark datasets with very less epochs.

Keywords: Vision transformer · Class embedding · Hierarchical
learning

1 Introduction

Hierarchical learning architectures have been able to achieve significant improve-
ments in various computer vision tasks, such as, image classification, object
detection and semantic segmentation. It categorises the visual features into hier-
archical structures, mimicking the recognition approach of human visual system.
Through hierarchical feature extraction and representation learning, these archi-
tectures capture meaningful visual embeddings at multiple levels of abstraction,
facilitating robust and distinct interpretations of visual data.

Recently, a novel hierarchical attention mechanism is proposed in [4] which
uses the relationship among regions to generate captions of images. Similarly,
spatial features at multiple scales for a scene are modeled in [8] using a hier-
archical graph convolutional network (GCN). The reported network leverages
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hierarchical graph representations to achieve state-of-the-art results in scene
parsing. Researchers have shown keen interest in utilising hierarchical features
in emerging domains such as video understanding, 3D scene reconstruction, and
autonomous driving. In [2], a method to reduce the severity of mistakes is pro-
posed by incorporating hierarchical knowledge while training a model primarily
focusing on autonomous driving. In [15], authors introduce hierarchical spa-
tiotemporal GCN to capture both spatial and temporal features in video action
recognition.

Image classification tasks have previously seen hierarchical knowledge being
integrated with visual features to increase the accuracy of the model. For exam-
ple, [6,29,32] devised methods to quantify the similarity among classes to reduce
associated training costs. While [5] proposed a similarity matrix method to
embed hierarchy, it is mostly focused on enhancing image retrieval efficiency
rather than classification. Despite advancements in the performance of clas-
sifiers, utilising inter-class relationships for image classification remains unex-
plored. Although recent techniques such as [3,30] leverage hierarchical knowl-
edge through soft label and hierarchical prompting, respectively, to enhance the
performance of the model as well as learn meaningful features, these methods
do not specifically learn embeddings of broad and fine classes simultaneously.

In this paper, we propose a novel architecture, DualViT, with two ViT [9]
encoders dedicated to generate embeddings of broad and fine labels, respec-
tively. They are trained using alternate learning to extract features of both
coarse and fine categories of classes. The hierarchical knowledge is embedded
from the broad-class encoder to the fine-class encoder using tensor product [26]
computation. We utilise the semantic relationship among the classes to generate
class hierarchy from WordNet ontology [20]. Our main objectives are as follows:

1. Generating embeddings for both broad and fine classes using alternate learn-
ing of encoders in a single architecture.

2. Modifying the loss function and introducing embedding loss to map each of
the fine classes to its corresponding broad class.

3. Training fine-class encoder from scratch to achieve comparable performance
with the conventional classification models using hierarchical knowledge from
broad-class encoder through tensor product.

2 Related Work

The primary objective of most classification models is to optimize accuracy of
prediction, without considering the semantic nature of errors. This can result
in models that achieve great levels of performance, but also exhibit perplexing
errors, such as incorrectly classifying two unrelated classes. Most recent works
focus on understanding of the model to estimate its behaviour under adversarial
attack [1]. Due to this shift in the interest of researchers, image classification
methods using taxonomic structure of semantically related classes to improve
the overall accuracy of the model have been extensively explored in [23,25,27].
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However, these models aim to learn the associations present in the dataset rather
than leveraging the existing hierarchical patterns present among the classes.

Authors of [28], apply Gaussian priors, based on a fixed hierarchy, on weights
of neurons in a neural network. On the other hand, [22] use a tree-like graphical
model during inference which is derived from class taxonomy. While [10] propose
regularization based method which penalises misclassified samples with a higher
cost, [14] guide their training which reduces the prediction cost and enhances
the performance of the model. They define the hierarchies apriori and form
cost-based matrix which is used as a guiding metric. However, Bertinetto et al.
[2] highlighted the lack of using hierarchical nomenclatures in computer vision.
They proposed two classification models based on soft labels derived using least
common ancestor method [5] and hierarchical cross-entropy loss. Although, these
methods reduced the extent of misclassification, they mostly found its applica-
tion in image retrieval.

HiMulConE [31] introduces hierarchy preserving loss considering the class
representations in the embedding space. It is based on the assumption that
classes with same ancestors are relatively closer in the latent space rather than
two different classes. A similar approach is used in [3] where the hierarchy is
derived from the WordNet ontology using which soft labels were defined. These
labels were used along with cross-entropy loss to train a classification model.
Karthik et al. [11] aim at minimising the average hierarchical cost by reducing
the inference time risk using predicted posteriors. TransHP [30] use hierarchical
prompting to include broad-class prompts as intermediate features in fine-class
encoding blocks while training.

Recently, hyperbolic spaces have become the focus in modeling hierarchical
relations due to their ability to incorporate hierarchical data structures into
low-dimensional spaces [12,21,24]. Authors of [17,18] suggest incorporating a
class hierarchy into the latent representation space. Nevertheless, both methods
encode class hierarchy into the data embedding network before training. On
the other hand, it has been observed that embedding the hierarchical structure
while training the model enables the network and class embeddings to interact,
resulting in a better trade-off between hierarchical cost and accuracy.

Although, the recent methods have seen substantial improvement in image
classification task, all these work focus on improving fine-class accuracy rather
than learning both broad and fine class embeddings. We propose a novel archi-
tecture that learns both the representations as well as injects the broad class
information as features while training the fine-class encoder for classification.

3 Proposed Method

In this section, we propose a method to deploy hierarchical knowledge while
training fine classes from scratch, meanwhile learning broad-class representa-
tions simultaneously. Our main aim is to stimulate faster convergence with high
classification accuracy along with meaningful feature space.
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3.1 Forming Class Hierarchies

WordNet [20] ontology forms a lexical database capturing the representations of
the semantics present in a sentence. The image classes in ImageNet dataset are
derived from the leaf nodes of a sub-tree structure present in WordNet hierarchy.
This tree encapsulates semantic relationships between nodes. By leveraging the
WordNet taxonomy embedded within the ImageNet dataset, we can effectively
establish the semantic associations among its classes. The leaf nodes constitute
the fine labels while the branch nodes denote aggregate classes. We consider
branch nodes at a particular depth from the root as broad labels while the
leaves connected to that sub-tree as fine labels associated with it.

Depth Estimation. We observe that the hierarchical tree for the ImageNet
dataset becomes imbalanced at certain depths of the tree. For example, at depth
3 from the root, some branch nodes (broad classes) are parents to a large number
of leaves (fine classes), while the others contained very few classes in their sub-
tree. Therefore, it is important that we adopt a strategy to estimate the depth
of the tree from where we will segregate the broad and fine classes in a manner
that it is mostly balanced.

Let the maximum and the minimum depth of the tree from root to any leaf
node be dmax and dmin, respectively. We expand each path with depth < dmax

by adding pseudo branch nodes between the root and the leaves. The path to leaf
nodes which are already at dmax depth are kept unaltered. After modifying the
tree, we select depth d > dmin and consider all the nodes in that level as broad
classes and the leaves of each sub-tree under that broad class as fine classes.
This strategy splits all the branch nodes with large number of fine classes into
smaller sub-classes, thus, mitigating the issue of class imbalance to a large extent
as shown in Fig. 1. In our experiments, we have fixed the broad class depth at
d = 9. In case of CIFAR10 and CIFAR100 dataset, we obtain the class hierarchy
from [2] directly. Table 1 shows the number of broad classes obtained for each
depth in ImageNet class hierarchy tree.
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Fig. 1. Formation of the class hierarchy using pseudo nodes for depth estimation and
balanced class segregation.
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Table 1. Variation in the number of broad classes for different depth of hierarchy tree
formed for ImageNet dataset.

Depth 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Broad classes 1 2 5 22 47 112 240 403 587 736 819 887 921 977

3.2 Network Architecture

We propose a transformer-based architecture, DualViT, that comprises of two
encoders (broad-class, Eb and fine-class, Ef encoders), each for generating broad
and fine class image embeddings, respectively. Our main idea is to leverage the
broad class groupings while training the fine classes to stimulate faster con-
vergence and comparable results with the traditional classification models. The
encoder architecture is similar to the existing ViT [9] model. A schematic dia-
gram of the proposed architecture is shown in Fig. 2.

Patch Embedding

Positional Embedding

Image as sequence
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LayerNorm

MHA
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LayerNorm
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Norm

Feed Forward

Image

Fig. 2. Schematic representation of the DualViT architecture.

Let (H,W ) be the image dimensions and C be the number of channels, there-
fore, the 2-D input can be represented as x ∈ R

H×W×C . The input images are
split into 2-D patches given by xp ∈ R

N×(P 2×C), where, (P, P ) is the patch
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resolution and N = HW
P 2 . These patches are converted into fixed latent dimen-

sion, D, by applying (P, P ) convolution filters with stride P . The number of
kernels is fixed at D. Thus, we generate N vectors of dimension D which are
regarded as patch embeddings. We prepend a special [class] token (κ) of
dimension D to the patch embedding. To retain positional information and pro-
vide some inductive bias, we add (N +1)×D positional embedding to the patch
embedding. This tensor, denoted as z0, is passed to the broad-class, Eb and
fine-class, Ef encoders.

Encoder Blocks. The encoder E consists of L layers of encoder blocks Tbi , i =
1, 2, ..., L. Each of these blocks have sequential stacking of LayerNorm and Multi-
head attention (MHA) module which is followed by another stack of LayerNorm
and Position-wise feed forward layer. The multi-head attention (MHA) captures
global context using attention mechanism. This forms the core of transformer-
based models containing h heads which can operate in parallel. Each element in
the given input sequence is transformed into “query”, “key”, and “value” vectors
using learnable projections, W k

i ,W q
i ,W v

i , respectively. Attention mechanism is
applied on these vectors to generate scores for all the heads present. The scores
from all the heads are concatenated and transformed using a learnable projection
W o. The position-wise feed forward layer operates on each layer independently.
Thus, the network learns non-linear relationships between features within each
token, complementing the context captured by self-attention. Shared weights
across positions ensure efficient parameter usage while allowing for position-
specific transformations. The broad-class encoder, Eb follows this architecture
which is similar to the conventional ViT encoder E.

Tensor Product. Encoder Ef is connected to Eb through tensor product
between the outputs of the corresponding blocks present in Eb encoder. The
result of the tensor product generated from each block is propagated to the next
block in Ef while Eb propagates the output of the position-wise feed forward
layer. Although, Eb can be trained independently, the input to each block in Ef

depends on the output of the previous block of Eb. In this way we are able the
leverage the aggregate class information from Eb while training Ef . The output
of the ith encoder block, Tfi , of Ef is given by:

Tfi [zi−1] = Tbi [zi−1] ∗ ψi−1 (1)

where, Tfi [zi−1] and Tbi [zi−1] are the outputs of the ith encoder block of Ef

and Eb, respectively, < ∗ > denotes element-wise product, ψi−1 is the output
of themulti-head attention (MHA) layer of Tfi and zi−1 is the input to Tfi .
The [class] tokens from Ef (κf ) are sent to the classifier to generate softmax
probabilities which we represent as κm = p(κf ). Furthermore, we utilise the
[class] tokens from Eb (κb) to compute the embedding loss.
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3.3 Class Embedding

Feature representations of similar classes form clusters in the latent space which
can be regarded as a group of classes denoting an aggregate class. The represen-
tation of this broad class can be estimated by computing the mean of all these
similar class embeddings. Let C and B denote all the fine and broad classes,
respectively, and eij denote the embedding of the ith sample belonging to the
jth class, where, j ∈ C. Therefore, each of these class representations is given
by:

κj
f =

∑n
i=1 eij
n

(2)

where, κj
f is the embedding vector of class j and n is the number of samples

present for a class in a particular batch. If S1 be a set of similar classes, then
the broad class embedding for S1 will be:

κS1
b =

∑|S1|
j=1 κj

f

|S1| (3)

Thus, κb is formed for each such similar groups of class embeddings.

3.4 Loss Function

We train Eb using embedding loss computed between the fine-class embeddings,
κj
f , j ∈ S and its corresponding broad-class embeddings, κS

b , where S is a set
of similar classes. The broad class sets are generated using the class hierarchies
formed. The embedding loss, LEMB for each mini-batch K is given by:

LEMB =
K∑

i=1

K∑

j=1

(κi
b − κj

f )δij (4)

where, i and j denote the broad and fine classes, respectively, and

δij =

{
1, j ∈ i

0, otherwise
(5)

The fine-class encoder, Ef is trained using a combination of cross-entropy loss
and embedding loss. As the loss scale varies significantly, we use logarithm nor-
malisation to map the higher values to lower ranges. The final loss L is given
by:

L = log(LEMB) + LCE (6)

where, LCE is the cross-entropy loss using fine-class labels.
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3.5 Training Strategy

Our main idea is to leverage the broad level grouping of fine classes during
training of fine-class encoder, Ef , as well as learning the broad class embeddings
by mapping these class representations to their corresponding groups. If both the
encoders are backpropagated at the same time, the model fails to converge. On
the other hand, if we train the two encoders separately in a consecutive manner
for higher number of epochs, the loss becomes significantly large with reduced
impact of hierarchical knowledge. Therefore, to induce the effects of similar class
grouping, we train the encoders alternatively for 80 epochs.

In the alternating training strategy, for every odd epoch the weights of the
broad-class encoder, Eb, is updated while the weights of the Ef is updated for
every even epoch. The input is sent to the pair of encoders and the embeddings
are generated for both the fine and broad classes in every epoch. If the number of
epoch is odd, only the Eb is trained using embedding loss computed between the
fine classes and its corresponding broad class embeddings. On the other hand, if
the number of epoch is even, the Ef is trained using a combination of embedding
loss and cross-entropy loss.

4 Experimentation

We evaluate our proposed approach on CIFAR10 [13], CIFAR100 [13] and Ima-
geNet [7] datasets and compare it with the existing classification techniques
which use hierarchical knowledge while training.

4.1 Data Set

ImageNet [7] is a widely used benchmark dataset from Large Scale Visual Recog-
nition Challenge (ILSVRC) 2012 with 1000 fine labels. The dataset itself does
not embed hierarchical relationships present among the classes. However, each
of these classes are present as leaf nodes of the WordNet [20] ontology which is
used to form broad and fine categories based on least common ancestor approach
present in [5,29]. We divide the 1.28 million images given as training samples
into training and validation sets with a ratio of 80% − 20%. The 50, 000 valida-
tion samples are kept aside as test set. Similar set-up is employed across all the
models used for comparison.

CIFAR10 [13] dataset has 50, 000 training samples for 10 classes, with each
comprising of 5000 examples. The testing set has 1000 samples for each. Thus,
a total of 60, 000 images are present in CIFAR10 dataset. The same number of
total samples are present in CIFAR100 [13] dataset which are equally distributed
among 100 classes. Each class consists of 500 and 100 images for training and
testing, respectively. The size of the images for both CIFAR10 and CIFAR100
is 32 × 32.
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4.2 Training Set-Up

The broad-class, Eb, and the fine-class encoder, Ef , of our proposed DualViT
model are trained alternately for 80 epochs using stochastic gradient descent
(SGD) and nesterov accelerated gradient (NAG), with a weight decay of 10−6.
As the Eb layer weights are derived from the pre-trained ViT model, we keep
the learning rate low at 10−5, and fine-tune these layers with the embedding
loss. However, the Ef is trained from scratch using a combination of embedding
and cross-entropy loss. Therefore, the initial learning rate is kept high at 10−3,
which slowly decays following the cosine annealing scheduler. The image size is
fixed to 224 for ImageNet, while it is 32 for CIFAR10 and CIFAR100 datasets.
The batch size is kept at 64 for all the datasets due to our constrained resources.
We use a system with the following specifications, CPU: Intel(R) Xeon(R) Gold
5118 CPU @ 1.30GHz, RAM: 251GB, GPU: Quadro GV100 32GB.

4.3 Evaluation Metrics

The top-k accuracy measure is a frequently employed method for evaluating
classifiers. It determines whether a data point is correctly classified by examining
if the actual class label is included among the top k predicted classes with the
highest probabilities. Traditionally, the value of k is set to either 1 or 5. It is
important to mention that this metric treats all errors equally, regardless of
the proximity of the predicted class to the actual value. We compute the top-k
accuracy for both the broad and fine classes present in the dataset.

4.4 Results and Discussions

We generate the top-1 and top-5 accuracy of our proposed DualViT model
on both broad and fine classes keeping the batch size fixed to 32, 32 and 64
for CIFAR10, CIFAR100 and ImageNet datasets, respectively. The CIFAR10
dataset has 2 broad classes each having 4 and 6 fine classes respectively, while
CIFAR100 segregates 100 classes equally into 20 coarse categories. In case of
ImageNet, we have been able to identify 736 broad classes using our pseudo
node addition method for class hierarchy. Table 2 shows the top-1 and top-5
accuracy observed for our model. We further plot fine class embeddings to visu-
alise how similar classes form broad groups in the embedding space using t-SNE

Table 2. Top-1 and top-5 accuracy of broad and fine classes of CIFAR10 , CIFAR100
and ImageNet datasets.

Datasets Broad classes Fine classes
top-1 (in %) top-2/top-5 (in %) top-1 (in %) top-5 (in %)

CIFAR10 99.59 100.0 (top-2) 98.11 99.97
CIFAR100 98.14 99.77 90.61 98.69
ImageNet 94.93 98.63 78.85 94.02
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[16,19] plots in Fig. 3. We observe how semantically related classes have formed
separate groups depicting a broad class in the embedding space.

Fig. 3. t-SNE plots of fine classes with its corresponding coarse categories in the latent
space using CIFAR10 dataset. (a) & (b) denote 3D and 2D plots of randomly selected
40 sample points. (c) & (d) denote 3D and 2D plots of randomly selected 100 sample
points. Color orange: “bird”, “cat”, “dog”, “deer”, “frog”, “horse” classes. Color blue:
“airplane”, “automobile”, “ship”, “truck” classes. (Color figure online)

4.5 Comparative Study

Our method has been compared to the existing state-of-the-art techniques
[3,14,30,31] which impose hierarchical knowledge while training for fine-class
classification. Authors of [14] employ a guided training of feature extractor which
uses the relative arrangement of classes in the embedding space regarded as hier-
archical metric. HiMulConE [31] use a novel hierarchical loss which combines
contrastive loss with hierarchical penalty to preserve the relationship among the
classes while training. In [3], the authors have enhanced the quality of feature
space by using soft labels while training a ViT model. The soft labels denote
the relationship among the classes derived using least common ancestor method
from WordNet hierarchy. On the other hand, [30] uses hierarchical prompting to
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generate and insert tokens of coarse classes into intermediate features. We com-
pare our method with the existing state-of-the-art techniques in Table 3 using
CIFAR100 and ImageNet datasets. Our model, DualViT outperforms the exist-
ing methods using very less epochs.

Table 3. Comparing the top-1 and top-5 accuracy of our DualViT model with the
state-of-the-art techniques on CIFAR100 and ImageNet datasets.

Method CIFAR100 ImageNet
top-1 (in %) no. of epochs top-1 (in %) no. of epochs

One-hot encoding (Baseline) 84.98 300 76.21 350
Metric-Guided [14] 85.10 200 76.05 300
HiMulConE [31] 85.43 300 77.52 100
Soft-labels encoding [3] 87.95 300 74.50 80
TransHP [30] 86.85 300 78.65 300
DualViT (ours) 90.61 80 78.85 30

4.6 Study of Convergence

We observe that by leveraging the class hierarchy while training facilitates faster
convergence. We are able to achieve benchmark results within very few epochs.
We compare how the loss decreases with the increase in epoch in Fig. 4 for
DualViT with Soft-labels based training [3] and TransHP [30].

Fig. 4. Comparing the rate of convergence of DualViT with Soft-labels based training
[3] and TransHP [30] using (a) CIFAR100, and (b) ImageNet datasets.

From Fig. 4, we observe how fast the loss decreases in case of DualViT com-
pared to [3,30]. As it starts from a very less loss margin, it converges much faster.
Further, we compare the accuracy per epoch on validation set of CIFAR100 and
ImageNet datasets in Fig. 5.
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Fig. 5. Comparing the accuracy per epoch of DualViT with Soft-labels based training
[3] and TransHP [30] on validation set of (a) CIFAR100, and (b) ImageNet datasets.

4.7 Ablation Studies

We evaluate the impact of using embedding loss along with cross-entropy loss
to train the fine classes, and the significance of tensor product to connect the
components of broad and fine-class encoders in our ablation studies. We perform
all our ablation studies on CIFAR10 and CIFAR100 datasets.

Impact of Embedding Loss. The feature representations of semantically
related classes are not significantly discriminative. Thus, while training a model,
similar classes mostly get misclassified. They tend to form groups in the embed-
ding space denoting a larger set of classes. Our main objective behind comput-
ing the embedding loss is to minimize the distance between the embedding of
a broad class and the embedding of a fine class belonging to that broad class.
The intuition behind this objective function is that as the fine class is a subset
of that broad class, its representation should lie within the hypersphere formed
by the broad class embeddings in the latent space. In Table 4 we observe how
the inclusion of embedding loss improves the fine-class accuracy of the model.

Significance of Tensor Product. Tensor product transformer attention [26]
is prominently used in the domain of natural language processing and machine
translation. This attention mechanism extends the traditional transformer archi-
tecture by introducing tensor products to enhance the ability of the model to
capture complex interactions between different parts of the input. By comput-
ing tensor products between the query, key, and value vectors, the model can
effectively learn intricate relationships and dependencies within the input data.
This approach enables the model to capture relevant features across multiple
dimensions simultaneously. We learn the relationships between the broad-class
and fine-class representations by computing the tensor product between the out-
put of each block of Eb and Ef , and propagate the resultant value as input to
the next block in Ef . In Table 4 we analyse the impact of tensor product on the
fine-class accuracy of the model for all the datasets.
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Table 4. Analysing the impact of embedding loss and tensor product on top-1 and
top-5 accuracy of CIFAR10 and CIFAR100 datasets.

Parameters CIFAR10 CIFAR100
Broad classes Fine classes Broad classes Fine classes
top-1 (in %) top-2 (in %) top-1 (in %) top-5 (in %) top-1 (in %) top-5 (in %) top-1 (in %) top-5 (in %)

w/ embedding loss 99.59 100.0 98.11 99.97 98.14 99.77 90.61 98.69
w/o embedding loss 46.77 100.0 97.96 99.93 9.54 40.18 88.96 98.08
w/ tensor product 99.59 100.0 98.11 99.97 98.14 99.77 90.61 98.69
w/o tensor product 95.73 100.0 73.94 95.91 12.13 47.29 47.94 61.01

From Table 4, we observe that there has been significant improvement in the
broad class top-1 accuracy when both embedding loss and tensor product is used.
However, the fine class accuracy remains similar as the impact of cross-entropy
loss is predominant while training in this case.

4.8 Hyperparameter Tuning

Hyperparameter tuning is a critical task which enhances the performance of
the model if the parameters are selected correctly. If these parameters are not
appropriately adjusted, our model estimates may yield subpar results. Due to the
parallel processing capabilities of GPUs, researchers often lean towards training
their models with larger batches. However, it has been observed that employing
a large batch size can lead to suboptimal generalization. Empirically it has been
found that smaller batch sizes exhibit faster training and better generalization on
unseen test data. Nevertheless, extremely small batch sizes, such as 1, typically
yields poor performance. Therefore, in general, the batch size is usually greater
than the number of classes present in a training set based on the assumption that
there should be at least one sample of each class present in a batch for training.
We observe the variation in top-1 and top-5 accuracy on CIFAR10, CIFAR100
and ImageNet datasets with different batch sizes in Table 5.

Table 5. Analysing the variation in top-1 and top-5 accuracy of CIFAR10 , CIFAR100
and ImageNet datasets on different batch sizes.

Batch SizeCIFAR10 CIFAR100 ImageNet
Broad classes Fine classes Broad classes Fine classes Broad classes Fine classes
top-1 (in %) top-2 (in %) top-1 (in %) top-5 (in %) top-1 (in %) top-5 (in %) top-1 (in %) top-5 (in %) top-1 (in %) top-5 (in %) top-1 (in %) top-5 (in %)

16 96.78 100.0 97.33 99.94 86.29 99.22 88.62 98.11 35.46 66.29 78.42 94.43
32 99.58 100.0 98.11 99.97 98.14 99.77 90.61 98.69 42.51 66.16 78.75 94.37
64 95.80 100.0 97.11 99.94 67.23 96.40 87.98 98.16 92.61 98.63 78.85 94.02

From Table 5, we observe that the optimal batch size for CIFAR10 and
CIFAR100 is 32 while the accuracy for ImageNet keeps increasing with the
increase in the batch size. Conventionally, a batch size of 4096 is used in ViT
[9].
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5 Conclusions

In this paper, we propose an architecture, DualViT, to efficiently learn broad-
class and fine-class embeddings simultaneously. Moreover, the encoders interact
using tensor product to leverage the hierarchical knowledge from the broad-class
encoder on the fine-class encoder to train fine labels for better accuracy. This
not only facilitates faster learning but also ensures meaningful feature space with
classes around the true label being semantically related to each other. We have
compared our method with the existing state-of-the-art techniques and observe
that DualViT surpasses them by a significant margin.
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Abstract. Similarity-based classification framework is extensively used
to address the problem of multi-label learning. Through this research,
we establish the connection between similarity-based classification with
many popular state-of-the-art multi-label learning models. In fact, we
show that the similarity-based classification framework shares homology
with Support Vector Machines. Further, we explore the application of
the proposed framework to deal with the problem of multilabel learn-
ing with missing labels. Our models require only the plugin estimates for
sample-sample and label-label similarity, which are coheased into a single
term that leads to a parameter-free optimisation problem. Hence, The
proposed model design is simple and time-efficient. Further, we have pro-
posed two transductive models and two lazy learners which can be used
as per applicability. The models shows competitive performance with
other state-of-the-art models across five well-known multilabel datasets.

Keywords: Similarity based multi-label learning · Support Vector
Machines · Laplacian matrix · Multi-label learning with Missing Labels

1 Introduction

In a multi-label learning problem, a sample may belong to more than one label
simultaneously, in contrast to the multi-class scenario where a sample can have
only one label. Note that in multi-label setting, the labels can be related in some
sense to each other, giving rise to this domain’s signature property, which is
label-label correlation. This condition sets multilabel learning apart from other
classification paradigms.

Multi-label learning is a supervised learning scenario, but practically it is
quite challenging to obtain the labelled information for all the samples across all
labels. Recently popular similarity-based classification approaches use label-label
similarity and sample similarity to augment the incomplete labelled information.
They employ the basic idea, i.e. similar instances should have similar labels
and likewise, similar labels should have similar samples. Through this research,
we establish a connection between the graph Laplacian-based approaches (used
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commonly for incomplete supervision settings, e.g. refer [10]) and the similarity-
based classification framework [8]. Further, we show that similarity-based learn-
ing frameworks are in fact an extension of the popular multi-label SVM [15].
The proposed model retains the best of the former two works (i.e. [8] and [15]).
The implicit use of the data in the form of a similarity matrix grants robust-
ness to the resulting models. The resulting proposed models are time efficient
and showcase good performance. Further, the end product of the optimisation so
obtained is often used as a regularisation term by researchers in [2,12] to enhance
the performance in limited supervision challenges in multi-label learning.

This work explores the application of similarity-based classification frame-
work to the problem of Multilabel Learning with Missing Labels, wherein there
may be 3 kinds of instances, i.e. instances with no missing labels (completely
labelled samples), instances with incompletely labelled samples and instances
with empty observed labels (unlabelled samples).

The present work is discussed in the following sections. Related work is
reviewed in Sect. 2. Our proposed models are introduced in Sect. 3 and sub-
sequently discusses the proposed model and its connection with the existing
approaches. The experimental results are reported in Sect. 4, and finally, Sect. 5
concludes the paper.

2 Related Work

Consider a set of n instances X = {x1, x2, ...., xn} each in a d-dimensional space,
i.e., xi ∈ R

d, i = 1, 2, ....., n be associated with m labels. Thus, each sample
xi can take one or more labels from the m different labels c1, ..., cm with its
corresponding label vector yi ∈ {1, 0, -1}m, which determines its belonging to
each of these labels. In general, the data set, X ∈ R

n×d, Y is the ground truth
label matrix, Y ∈ {1, 0, -1}n×m. Yi,j = 1 means that sample xi is labelled as
label cj , similarly Yij = −1 indicates that sample xi is not labelled as cj and
Yij = 0 denotes the missing information. Please note that in this paper the
number of testing samples is denoted as nt, and the number of training samples
is denoted by n. xt ∈ R

nt×d, denotes the testing samples. As, Ac denote the
sample and class similarity matrices, respectively. E is the matrix of all ones of
the appropriate dimension, ◦ denotes Hadamard product, � denotes element-
wise division and I is the identity matrix of the appropriate dimension. ‖.‖F

indicates the frobenious norm, ‖.‖ denotes the absolute function

2.1 Multi-label Learning with Missing Labels (MLML) [10]

Authors in [10] aim to complete the missing information in the given ground
truth label matrix Y by taking advantage of label consistency and label smooth-
ness.

min
Z

‖Z − Y ‖2F +
c1
2

Tr(ZT LsZ) +
c2
2

Tr(ZLcZ
T ) (1)
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Here, c1, c2 are the model parameters. Z is the prediction matrix having complete
labels for all instances. Ls and Lc are the sample and label-based graph Laplacian
matrix, respectively. The Laplacians are defined as:

Ls = I − αsD
− 1

2
s AsD

− 1
2

s

Lc = I − αcD
− 1

2
c AcD

− 1
2

c

(2)

Ds = I ◦ (AsE)
Dc = I ◦ (AcE)

(3)

The first term in the Eq. 1 enforces the label consistency, while the second and
third terms implement label smoothness, i.e. sample-level smoothness and class-
level smoothness, respectively. For constructing similarity matrix (As), arbitrary
similarity functions like RBF kernel, linear kernel, etc. can be used. Since the
label Y is discrete, diffusion kernels [5] are more suited for calculating label
similarity.

The authors provide two solutions to Eq. 1
An exact solution using the Sylvester equation:

(I + c1Ls)Z + Z(c2Lc + I) = 2Y (4)

An approximated solution:

Z = (1 − αs)(Ls)−1Y (Lc)−1(1 − αc) (5)

Here, for Eq. 5 αs = c1
c1+1 and αc = c2

c2+1 . Both solutions have cubic compu-
tational complexity. The aforementioned model uses the data information(i.e.
X) implicitly in the form of sample graph Laplacian (Ls); hence it is less
impacted by the outliers present in the data. Their model functions as a trans-
ductive model making it unsuitable for online learning extension. Moreover, their
model’s transductive nature and the cubic time complexity requirement make it
unfavourable for large-scale applications. However, from the empirical observa-
tion of the results reported in their paper, their model can effectively handle the
missing label problem in multi-label learning alongside exploiting the available
label correlation.

2.2 Similarity-Based Multi-label Learning (SML) [8]

Authors in [8] introduced a novel Similarity-based approach for Multi-label
Learning termed SML. The functioning of their model can be explained in terms
of the following equation:

Z = AsY
+ (6)
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Here, As ∈ Rnt×n denotes the sample similarity matrix (i.e. similarity of nt

testing samples with the n training samples ), Y + = (|Y | + Y )/2, Z ∈ Rnt×m

contains the similarity score of testing samples for all labels. For a new test
sample, the similarity score for a particular label is calculated by the cumulative
similarity with the samples belonging to that label. Further, the test sample is
assigned to a label if the similarity score exceeds a certain threshold (which is
inferred from training data). Alternatively, authors have proposed a similarity-
based label set prediction approach to predict the label set size.

SML falls under the category of lazy learners, with little or almost no training
phase. Moreover, their model can be easily parallelised. This makes it suitable
for large-scale applications. However, their model’s performance directly depends
on the thresholding function or label set size prediction. From the empirical
observation of the results reported in their paper, it is evident that it outputs
a sub-optimal prediction. Further, this model does not exploit the label-label
correlation, which can enhance the prediction of a multi-label classifier.

2.3 Similarity-Based Multi-label Learning by Logistic Regression
(SBLR) [7]

Authors in [7] employ Eq. 6 as a preprocessing technique. Further, they use logis-
tic regression atop the output from the SML algorithm. In addition to exploiting
the label dependencies, their model also avoids the impairment of the perfor-
mance from noisy information by imposing L1-norm penalty into their model.
The optimisation of their model can be written as:

min
β

tr((Y +)T (Z̄β)) + tr(ET (ln(E + exp(Z̄β)))) + λ ‖β‖1

Here, E ∈ {1}n×m, Z̄ = [Z 1], Z = AsY
+ , As ∈ Rn×n, Y + have same meaning

as described previously. λ is the model parameter used to control sparseness on
β. Posterior probability p given Z0 (as defined in Eq. 6) can be calculated as:

p = (E) � (E + exp([Z0 1]β))

Further, a testing sample is annotated 1 for a label if it has a posterior probability
greater than 0.5 otherwise, 0. As mentioned in their paper, their approach has
a complexity of O(nm2 + dn2).

3 Proposed Model

3.1 Formulation

Using Tr(AT A) = ‖A‖2F (for some matrix A), the Eq. 1 can be rewritten as:

min
Z

‖Z − Y ‖2F +
c1
2

∥
∥
∥L1/2

s Z
∥
∥
∥

2

F
+

c2
2

∥
∥
∥ZL1/2

c

∥
∥
∥

2

F
(7)
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Z is minimised separately under the pre-multiplication and the post-
multiplication of respective Laplacians in the second and third term, can be
jointly minimised.

∥
∥
∥(L1/2

s )Z(L1/2
c )

∥
∥
∥

2

F
�

∥
∥
∥L1/2

s Z
∥
∥
∥

2

F
+

∥
∥
∥ZL1/2

c

∥
∥
∥

2

F
(8)

The resultant completed matrix (L1/2
s ZL

1/2
c ) should be consistent with the

label matrix Y .

J = min
Z

∥
∥
∥(L1/2

s )Z(L1/2
c ) − Y

∥
∥
∥

2

F
(9)

Notice that Eq. 9 carries the essence of the Eq. 7, where the three terms in
Eq. 7 are coheased into a single expression in Eq. 9 resulting in a parameter-free
optimisation. Differentiating Eq. 9 w.r.t. Z we get

Z = (L−1/2
s )Y (L−1/2

c ) (10)

The Eq. 10 is convex, but it has some limitations. Firstly it needs to invert two
matrices of size (n×n) and (m×m), which has a cost of O(n3 +m3). Secondly,
the Laplacian matrices and their matrix square root are positive semi-definite;
hence their inverse does not exist. The Laplacian matrices can be modified to
calculate the inverse as in Eq. 2. However, the modified Laplacian matrices lead
to an approximate solution which can lead to sub-optimal prediction in certain
cases.

The aforementioned reasons provide a need for alternatives to the Laplacian
matrix. Laplacian is kind of a dissimilarity matrix, and its inverse is equivalent
to similarity matrix. From the work in [9] (refer Theorem 1), it can be inferred
that L � A−1 (or L−1 � A). Taking this into account, Eq. 9 can be rewritten
as:

J = min
Z

∥
∥
∥(A−1/2

s )Z(A−1/2
c ) − Y

∥
∥
∥

2

F
(11)

OR
J = min

Z

∥
∥
∥Z − (A1/2

s )Y (A1/2
c )

∥
∥
∥

2

F
(12)

Differentiating Eq. 12 w.r.t. Z and rearranging we get

Z = (A1/2
s )Y (A1/2

c ) (13)

The equation labeled as Eq. 12 represents the conclusive form of our proposed
model. This model stands out due to its simplicity and robustness. The simplicity
arises from its parameter-free nature, requiring only the input of two similarity
matrices. Its robustness is evident as it utilizes the data X, explicitly in the
form of the sample similarity matrix, thereby mitigating the impact of outliers.
Consequently, we have named this model Simple Robust Multi-label Learning
(SR-ML). Moreover, our model can handle the problem of Multi-label Learning
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with Missing Labels effectively. Further, our model can be easily modified to suit
different scenarios:

Z1 = (A1/2
s )Y (A1/2

c ) v1

Z2 = (As)Y (Ac) v2

Z3 = (K(xt,X)1/2)Y (A1/2
c ) v3

Z4 = (K(xt,X))Y (Ac) v4

(14)

The Eq. 14, provide different versions of our proposed model namely v1, v2,
v3 and v4. The v1 and v2 are transductive models which can be used to complete
the incomplete label matrix Y . The v3 and v4 are lazy learners which can effec-
tively leverage the missing or complete information available in Y and make a
direct prediction on the testing data. The v1 and v3 have some extra time com-
plexity to calculate matrix square roots via Eigenvalue decomposition and SVD,
respectively. In fact, the complexity of v1 is O(n3 +m3) and v3 is O(m2n+m3).
The version v2 and v4 only involve the matrix multiplication as a major step.
Hence they have a complexity of O(n2m + m2n) and O(ntmn + m2nt) respec-
tively. The As and A

1/2
s are both similarity matrices, hence in v2, v4, the square

root of similarity matrices are omitted. The v1, v3 have better results compared
to v2, v4. However, the latter have lesser computational time costs; hence are
better suitable for large-scale applications. The matrix square root step in a way
shrinks and sphericalizes the data, which outputs better results.

3.2 Comparision with Existing Approaches

MLML [10] vs SR-ML: MLML is a transductive model that uses class and sam-
ple Laplacians to enforce label smoothness. In our case, we use sample and label
similarity matrices to enforce label smoothness. Further, we combine all three
terms in a single expression as in Eq. 11. The resulting optimisation solution
Eq. 13 shares correspondence with the approximate solution to Eq. 1, wherein
this solution (Eq. 5) requires calculating the inverse of two matrices. The other
solution of MLML can be obtained via solving the Sylvester equation. It can be
observed that both solutions of the MLML approach have a cubic time complex-
ity. On the other hand, the solution to our model is simple and just requires the
pre and post-multiplication of the sample and label similarity matrices with Y
in the least case (i.e. v2 and v4). Further, our model is flexible and can be used
as a transductive model for matrix completion or as a lazy learner for predicting
the labels of test samples.

SML [8] vs SR-ML: SML takes into account only the relevant samples belong-
ing to a label. It requires either a thresholding function or a label set size predic-
tion to output the labels of the data. Meanwhile, SR-ML exploits the similarities
with relevant and irrelevant samples, eliminating the need for thresholding. Fur-
ther, our model makes use of label similarity matrix to incorporate label depen-
dency into the model. Nevertheless, a thresholding function can be used as the
last step to refine the prediction further.
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Support Vector Machines for Multilabel/Multiclass Learning vs SR-
ML. Authors in [4] provide a matrix formulation for SVM which optimises all
classes/labels simultaneously via a single optimisation problem. The solution
(Weight matrix W ) to it can be written as:

W = XT (α ◦ Y )Ac (15)

XW = XXT (α ◦ Y )Ac (16)

Z = K(X,X) ∗ (α ◦ Y )Ac (17)

If α = E, the above expression simplifies as:

Z = (K(X,X))Y (Ac) (18)

which is same as v2 of our proposed model. Hence it can be said that the
similarity-based learning frameworks are in fact an extension of SVM.

3.3 Algorithm

The pseudo-code for the proposed algorithm SR-ML v1,v3 are presented in Algo-
rithms 1 and 2. The pseudo-code for the remaining versions can be written on
similar lines; we avoid writing it here for brevity.

Algorithm 1. SR-ML v1
Input:

* Label similarity matrix: Ac, Dimension: (n + nt) × (n + nt)
* Sample similarity matrix: As, Dimension: (m) × (m)

Compute Matrix square root: � Using Eigenvalue Decomposition
A

1/2
s = PsΣ

1/2
s PT

s

A
1/2
c = PcΣ

1/2
c PT

c

Compute Complete Prediction Matrix
Z = A

1/2
s Y A

1/2
c

Output: Complete-Label-Matrix = sign(Z)

4 Experiments

The experiments are performed on well-known diverse datasets using ten-fold
cross-validation, in MATLAB version 9.4 under Microsoft Windows environment
on a machine with 16 GB RAM and 3.40 GHz i7 CPU. For generating missing
labels, some (10%, 30%, 50% in Tables 2 and 3) percent of random elements
in the target matrix Y are set to zero in each fold. The optimal value of user-
defined parameters for different models are obtained by fine-tuning a validation
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Algorithm 2. SR-ML v3
Input:

* Label similarity matrix: (Ac), Dimension: (m) × (m)
* Sample similarity matrix: K(xt, X), Dimension: (nt) × (n)

Compute Matrix square root: � Using Eigenvalue Decomposition
A

1/2
c = PcΣ

1/2
c PT

c

Compute Matrix square root: � Using SVD
K(xt, X)1/2 = UsΣ

1/2
s V T

s

Compute Prediction For testing samples
Z = K(xt, X)1/2Y A

1/2
c

Output: Predicted-Labels = sign(Z)

set generated using ten percent of training data. After the model parameters
are investigated, the validation set is sent back to training data for retraining.
The range ([−1, 1]) normalisation is performed on all datasets. We use Gaus-
sian kernel e−ρ||xi−xj ||22 for all to provide uniformity for comparison. ρ is the
kernel parameter, for experiments we set ρ = 0.01. The time of the algorithms is
measured in seconds using tic-toc (Matlab). The results are reported up to the
third decimal; very small decimal values (e.g. 0.0001) are explicitly reported as
zero. The best results are highlighted in bold. For LSML (Label-Specific features
for multilabel learning with Missing Labels) [3], MLKNN (Multilabel learning
lazy learning with K Nearest Neighbors) [14] and LMKNN (Large Margin metric
learning with K Nearest Neighbors) [6] we use the parameter setting as described
in their paper. The characteristics of the datasets (Instances × features × labels
(domain)) used are described alongside the results.

Calculation of Similarity Matrices
For computing the sample similarity matrix As, we use the kernel function K.
For computing the label similarity matrix Ac, we use diffusion kernels [13], which
are better suited for discrete spaces [5]. The similarity between the two labels
(ci, ck) is calculated using the Jaccard index.

4.1 Supervised Results on Datasets

The Table 1 shows the results for our proposed models (SR-ML) against the
comparing models under the supervised setting. It can be seen that the SR-
ML-v4 has the least time requirement, whereas the SR-ML-v3 outputs the best
results in most cases. SBLR significantly improves upon the results as compared
to SML with some increase in training time. The SR-ML models show better
performance as they need not require a thresholding function as in SML. Further,
it can be observed that SR-ML-v3 requires less time compared to SR-ML-v1,
as the former has to deal with kernel matrix decomposition of a smaller size
compared to the latter, though both have cubic training time complexity. It
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Table 1. Supervised Results on Multi-label datasets

Emotions (593 × 72 × 6 (Music))

SR-ML-v1 SR-ML-v2 SR-ML-v3 SR-ML-v4 MLML-sylvesterMLML-approxSML SBLR LSML MLKNN LMKNN

Time 0.028±0.001 0±0 0.009±0 0±0 0.159±0.006 0.006±0 0.026±0.001 0.315±0.012 0.006±0 0.069±0.001 0.551±0.019

Exact match 0.309±0.015 0.307±0.02 0.309±0.016 0.307±0.02 0.302±0.019 0.29±0.018 0.248±0.02 0.292±0.02 0.263±0.021 0.28±0.019 0.28±0.019

Hamming Loss 0.182±0.008 0.186±0.009 0.187±0.008 0.186±0.009 0.19±0.008 0.192±0.008 0.205±0.011 0.191±0.011 0.203±0.008 0.199±0.009 0.199±0.009

Macro F1 0.643±0.015 0.627±0.016 0.648±0.014 0.627±0.016 0.62±0.016 0.606±0.017 0.603±0.021 0.628±0.022 0.618±0.014 0.614±0.018 0.614±0.018

Micro F1 0.674±0.015 0.661±0.017 0.676±0.016 0.661±0.017 0.651±0.016 0.641±0.016 0.644±0.019 0.656±0.021 0.642±0.012 0.653±0.017 0.653±0.017

Avg Precision 0.764±0.015 0.759±0.017 0.763±0.015 0.759±0.017 0.752±0.018 0.751±0.017 0.739±0.016 0.741±0.018 0.739±0.012 0.742±0.013 0.742±0.013

Image (2000 × 294 × 5 (Image))

Time 0.721±0.011 0.002±0 0.049±0.001 0±0 2.762±0.02 0.136±0.001 0.069±0.001 0.594±0.015 0.136±0.001 1.416±0.004 3.617±0.136

Exact match 0.393±0.013 0.347±0.01 0.451±0.013 0.347±0.01 0.327±0.01 0.449±0.014 0.31±0.011 0.34±0.01 0.355±0.005 0.415±0.012 0.415±0.012

Hamming Loss 0.167±0.005 0.176±0.004 0.161±0.005 0.176±0.004 0.179±0.004 0.169±0.005 0.194±0.005 0.182±0.004 0.186±0.004 0.17±0.004 0.17±0.004

Macro F1 0.558±0.011 0.504±0.01 0.616±0.009 0.504±0.01 0.488±0.01 0.603±0.011 0.516±0.01 0.536±0.009 0.547±0.008 0.583±0.008 0.583±0.008

Micro F1 0.562±0.012 0.513±0.011 0.613±0.01 0.513±0.011 0.498±0.011 0.602±0.011 0.517±0.011 0.536±0.01 0.549±0.008 0.587±0.01 0.587±0.01

Avg Precision 0.707±0.006 0.676±0.007 0.744±0.007 0.676±0.007 0.665±0.006 0.742±0.008 0.672±0.008 0.695±0.008 0.7±0.007 0.724±0.007 0.724±0.007

Scene (2407 × 294 × 6 (Image))

Time 1.337±0.019 0.002±0 0.083±0.002 0±0 3±0.023 0.225±0.003 0.087±0.002 0.91±0.012 0.225±0.003 2.232±0.024 7.584±0.154

Exact match 0.59±0.007 0.576±0.008 0.651±0.009 0.576±0.008 0.577±0.006 0.639±0.009 0.402±0.009 0.449±0.008 0.451±0.011 0.629±0.008 0.629±0.008

Hamming Loss 0.092±0.002 0.093±0.002 0.093±0.003 0.093±0.002 0.092±0.002 0.103±0.003 0.12±0.002 0.111±0.002 0.117±0.002 0.087±0.002 0.087±0.002

Macro F1 0.7±0.008 0.691±0.008 0.732±0.008 0.691±0.008 0.696±0.007 0.712±0.009 0.57±0.007 0.606±0.008 0.61±0.009 0.736±0.006 0.736±0.006

Micro F1 0.701±0.007 0.693±0.007 0.725±0.008 0.693±0.007 0.696±0.006 0.704±0.008 0.583±0.007 0.611±0.007 0.611±0.008 0.732±0.005 0.732±0.005

Avg Precision 0.773±0.006 0.767±0.006 0.812±0.007 0.767±0.006 0.773±0.006 0.793±0.007 0.665±0.006 0.692±0.006 0.719±0.006 0.818±0.005 0.818±0.005

Yeast (2417 × 103 × 14 (Biology))

Time 1.367±0.022 0.003±0 0.081±0.001 0±0 3.787±0.057 0.226±0.003 0.132±0.002 2.702±0.052 0.226±0.003 1.181±0.017 5.622±0.104

Exact match 0.193±0.007 0.188±0.007 0.206±0.006 0.188±0.007 0.189±0.007 0.184±0.007 0.135±0.006 0.177±0.009 0.147±0.008 0.184±0.007 0.184±0.007

Hamming Loss 0.187±0.002 0.188±0.002 0.186±0.002 0.188±0.002 0.187±0.002 0.188±0.002 0.203±0.002 0.196±0.002 0.199±0.002 0.192±0.002 0.192±0.002

Macro F1 0.372±0.007 0.368±0.008 0.4±0.008 0.368±0.008 0.37±0.007 0.367±0.007 0.311±0.005 0.405±0.009 0.349±0.004 0.388±0.007 0.388±0.007

Micro F1 0.644±0.004 0.641±0.005 0.654±0.004 0.641±0.005 0.645±0.005 0.642±0.005 0.607±0.005 0.647±0.005 0.636±0.004 0.649±0.004 0.649±0.004

Avg Precision 0.671±0.005 0.669±0.005 0.684±0.004 0.669±0.005 0.671±0.005 0.668±0.005 0.641±0.005 0.677±0.005 0.675±0.004 0.678±0.006 0.678±0.006

TMC-2007 (4000 × 500 × 22 (Text))

Time 6.534±0.056 0.009±0 0.458±0.006 0.001±0 14.07±0.135 0.948±0.014 0.176±0.002 7.202±0.039 0.948±0.014 10.918±0.104 33.778±0.456

Exact match 0.202±0.006 0.2±0.005 0.231±0.007 0.2±0.005 0.213±0.005 0.218±0.006 0.075±0.004 0.133±0.005 0.245±0.008 0.209±0.007 0.209±0.007

Hamming Loss 0.077±0.001 0.074±0.001 0.094±0.003 0.074±0.001 0.075±0.001 0.083±0.001 0.093±0.001 0.086±0.001 0.066±0.001 0.073±0.001 0.073±0.001

Macro F1 0.273±0.007 0.272±0.009 0.334±0.01 0.272±0.009 0.298±0.006 0.369±0.008 0.129±0.009 0.159±0.009 0.464±0.01 0.299±0.009 0.299±0.009

Micro F1 0.535±0.005 0.54±0.005 0.53±0.009 0.54±0.005 0.566±0.004 0.553±0.004 0.235±0.007 0.445±0.007 0.633±0.005 0.594±0.006 0.594±0.006

Avg Precision 0.546±0.003 0.545±0.003 0.579±0.005 0.545±0.003 0.583±0.004 0.562±0.003 0.287±0.005 0.479±0.007 0.64±0.007 0.606±0.006 0.606±0.006

Table 2. Missing Label Results on TMC-2007 dataset

SR-ML-v1 SR-ML-v2 SR-ML-v3 SR-ML-v4 MLML-sylvesterMLML-approx SBLR LSML

TMC-2007 (percentage of missing labels is 10)

Exact match 0.192±0.005 0.189±0.005 0.205±0.005 0.189±0.005 0.203±0.004 0.197±0.006 0.121±0.003 0.232±0.008

Hamming Loss 0.077±0.001 0.074±0.001 0.1±0.003 0.074±0.001 0.076±0.001 0.084±0.001 0.087±0.001 0.068±0.001

Macro F1 0.276±0.007 0.272±0.008 0.32±0.008 0.272±0.008 0.288±0.007 0.349±0.006 0.141±0.009 0.454±0.008

Micro F1 0.536±0.005 0.539±0.006 0.513±0.008 0.539±0.006 0.559±0.003 0.538±0.004 0.422±0.006 0.622±0.005

Avg Precision 0.547±0.004 0.544±0.005 0.564±0.004 0.544±0.005 0.577±0.004 0.547±0.003 0.46±0.006 0.628±0.007

TMC-2007 (percentage of missing labels is 30)

Exact match 0.173±0.003 0.171±0.004 0.163±0.006 0.171±0.004 0.183±0.003 0.152±0.005 0.041±0.002 0.203±0.006

Hamming Loss 0.079±0.001 0.076±0.001 0.115±0.003 0.076±0.001 0.078±0.001 0.088±0.001 0.096±0.001 0.074±0.001

Macro F1 0.265±0.006 0.258±0.007 0.296±0.007 0.258±0.007 0.281±0.005 0.316±0.009 0.087±0.006 0.436±0.007

Micro F1 0.529±0.004 0.532±0.003 0.475±0.007 0.532±0.003 0.549±0.002 0.504±0.005 0.128±0.004 0.598±0.004

Avg Precision 0.542±0.003 0.539±0.003 0.529±0.004 0.539±0.003 0.566±0.002 0.511±0.004 0.23±0.003 0.61±0.005

TMC-2007 (percentage of missing labels is 50)

Exact match 0.155±0.006 0.153±0.006 0.115±0.007 0.153±0.006 0.165±0.006 0.126±0.004 0.02±0.003 0.168±0.005

Hamming Loss 0.081±0.001 0.078±0.001 0.141±0.003 0.078±0.001 0.08±0.001 0.091±0.001 0.099±0.001 0.085±0.001

Macro F1 0.261±0.006 0.254±0.007 0.261±0.003 0.254±0.007 0.27±0.007 0.295±0.007 0.062±0.004 0.389±0.008

Micro F1 0.521±0.006 0.525±0.006 0.425±0.005 0.525±0.006 0.537±0.003 0.479±0.004 0.073±0.004 0.558±0.004

Avg Precision 0.537±0.006 0.535±0.006 0.488±0.005 0.535±0.006 0.556±0.004 0.484±0.004 0.198±0.003 0.577±0.006

can be easily observed that our proposed models (all versions) show closely
similar results to MLML models, strengthening our claim that our model forms
a connecting link between MLML [10] and SML [8].
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Table 3. Missing Label Results on Emotions, Image, Scene, and Yeast datasets

SR-ML-v1 SR-ML-v2 SR-ML-v3 SR-ML-v4 MLML-sylvesterMLML-approxSBLR LSML

Emotions (percentage of missing labels is 10)

Exact match 0.298±0.019 0.298±0.022 0.288±0.017 0.298±0.022 0.295±0.02 0.288±0.017 0.248±0.019 0.248±0.019

Hamming Loss 0.187±0.008 0.189±0.008 0.19±0.008 0.189±0.008 0.19±0.009 0.191±0.008 0.203±0.01 0.208±0.007

Macro F1 0.633±0.015 0.622±0.015 0.644±0.014 0.622±0.015 0.615±0.018 0.605±0.018 0.578±0.02 0.611±0.012

Micro F1 0.663±0.016 0.653±0.016 0.67±0.015 0.653±0.016 0.648±0.018 0.639±0.017 0.602±0.02 0.632±0.01

Avg Precision 0.76±0.016 0.759±0.017 0.762±0.015 0.759±0.017 0.756±0.018 0.755±0.016 0.711±0.017 0.732±0.013

Emotions (percentage of missing labels is 30)

Exact match 0.297±0.018 0.295±0.021 0.285±0.019 0.295±0.021 0.294±0.024 0.282±0.021 0.128±0.018 0.241±0.018

Hamming Loss 0.191±0.007 0.19±0.008 0.199±0.008 0.19±0.008 0.19±0.009 0.192±0.008 0.245±0.01 0.211±0.007

Macro F1 0.632±0.012 0.629±0.015 0.635±0.013 0.629±0.015 0.623±0.017 0.606±0.016 0.388±0.028 0.613±0.012

Micro F1 0.66±0.014 0.656±0.016 0.66±0.016 0.656±0.016 0.653±0.018 0.643±0.017 0.41±0.028 0.634±0.009

Avg Precision 0.755±0.017 0.758±0.019 0.751±0.014 0.758±0.019 0.754±0.019 0.752±0.018 0.643±0.02 0.726±0.011

Emotions (percentage of missing labels is 50)

Exact match 0.275±0.015 0.272±0.012 0.248±0.014 0.272±0.012 0.27±0.016 0.261±0.017 0.027±0.008 0.228±0.015

Hamming Loss 0.197±0.008 0.197±0.007 0.206±0.007 0.197±0.007 0.194±0.008 0.197±0.008 0.291±0.005 0.223±0.005

Macro F1 0.618±0.015 0.61±0.016 0.616±0.013 0.61±0.016 0.607±0.018 0.598±0.018 0.133±0.018 0.597±0.014

Micro F1 0.65±0.015 0.643±0.016 0.645±0.013 0.643±0.016 0.643±0.017 0.633±0.018 0.135±0.019 0.617±0.012

Avg Precision 0.741±0.017 0.736±0.02 0.731±0.016 0.736±0.02 0.743±0.02 0.739±0.02 0.564±0.016 0.709±0.012

Image (percentage of missing labels is 10)

Exact match 0.387±0.013 0.343±0.011 0.442±0.014 0.343±0.011 0.322±0.012 0.438±0.016 0.306±0.008 0.344±0.006

Hamming Loss 0.169±0.005 0.178±0.004 0.164±0.005 0.178±0.004 0.18±0.004 0.174±0.006 0.187±0.004 0.191±0.004

Macro F1 0.555±0.011 0.504±0.01 0.612±0.01 0.504±0.01 0.486±0.01 0.592±0.012 0.489±0.011 0.532±0.009

Micro F1 0.559±0.011 0.512±0.012 0.609±0.011 0.512±0.012 0.495±0.011 0.591±0.013 0.488±0.011 0.534±0.008

Avg Precision 0.706±0.006 0.674±0.008 0.737±0.008 0.674±0.008 0.665±0.007 0.738±0.008 0.672±0.008 0.69±0.008

Image (percentage of missing labels is 30)

Exact match 0.369±0.013 0.328±0.012 0.413±0.014 0.328±0.012 0.316±0.012 0.412±0.017 0.23±0.008 0.326±0.008

Hamming Loss 0.176±0.005 0.182±0.005 0.176±0.005 0.182±0.005 0.183±0.005 0.18±0.006 0.198±0.004 0.199±0.003

Macro F1 0.536±0.012 0.49±0.012 0.589±0.01 0.49±0.012 0.48±0.012 0.577±0.014 0.383±0.01 0.524±0.007

Micro F1 0.539±0.013 0.498±0.013 0.587±0.011 0.498±0.013 0.489±0.013 0.577±0.015 0.385±0.01 0.526±0.007

Avg Precision 0.693±0.007 0.664±0.008 0.73±0.008 0.664±0.008 0.657±0.007 0.72±0.01 0.629±0.009 0.683±0.003

Image (percentage of missing labels is 50)

Exact match 0.384±0.01 0.336±0.007 0.394±0.015 0.336±0.007 0.32±0.009 0.401±0.013 0.148±0.007 0.316±0.009

Hamming Loss 0.176±0.004 0.185±0.004 0.186±0.006 0.185±0.004 0.186±0.004 0.184±0.005 0.213±0.003 0.207±0.003

Macro F1 0.544±0.007 0.494±0.007 0.575±0.01 0.494±0.007 0.481±0.008 0.571±0.009 0.27±0.007 0.521±0.006

Micro F1 0.549±0.007 0.502±0.008 0.575±0.01 0.502±0.008 0.491±0.008 0.574±0.01 0.271±0.007 0.526±0.006

Avg Precision 0.696±0.005 0.667±0.007 0.717±0.007 0.667±0.007 0.66±0.007 0.714±0.007 0.59±0.009 0.681±0.005

Scene (percentage of missing labels is 10)

Exact match 0.587±0.007 0.57±0.009 0.621±0.009 0.57±0.009 0.569±0.007 0.611±0.009 0.394±0.009 0.44±0.008

Hamming Loss 0.092±0.002 0.094±0.002 0.098±0.003 0.094±0.002 0.094±0.002 0.105±0.003 0.118±0.002 0.12±0.003

Macro F1 0.7±0.007 0.688±0.009 0.719±0.008 0.688±0.009 0.692±0.007 0.702±0.008 0.546±0.011 0.603±0.009

Micro F1 0.7±0.007 0.69±0.008 0.713±0.008 0.69±0.008 0.692±0.006 0.694±0.008 0.554±0.01 0.604±0.008

Avg Precision 0.775±0.007 0.766±0.007 0.799±0.008 0.766±0.007 0.771±0.006 0.784±0.007 0.654±0.007 0.714±0.005

Scene (percentage of missing labels is 30)

Exact match 0.573±0.007 0.556±0.006 0.566±0.009 0.556±0.006 0.56±0.006 0.584±0.008 0.269±0.007 0.405±0.007

Hamming Loss 0.095±0.002 0.098±0.001 0.113±0.002 0.098±0.001 0.095±0.002 0.108±0.002 0.136±0.002 0.133±0.002

Macro F1 0.693±0.008 0.679±0.007 0.685±0.007 0.679±0.007 0.687±0.007 0.696±0.009 0.412±0.008 0.584±0.009

Micro F1 0.691±0.007 0.679±0.006 0.678±0.006 0.679±0.006 0.686±0.006 0.687±0.008 0.418±0.009 0.582±0.008

Avg Precision 0.769±0.006 0.76±0.005 0.779±0.007 0.76±0.005 0.769±0.006 0.773±0.007 0.582±0.007 0.695±0.005

Scene (percentage of missing labels is 50)

Exact match 0.555±0.007 0.54±0.007 0.496±0.005 0.54±0.007 0.543±0.007 0.526±0.007 0.146±0.007 0.353±0.011

Hamming Loss 0.099±0.002 0.1±0.002 0.134±0.002 0.1±0.002 0.099±0.002 0.118±0.002 0.155±0.001 0.151±0.004

Macro F1 0.679±0.006 0.667±0.007 0.64±0.005 0.667±0.007 0.673±0.006 0.668±0.006 0.25±0.01 0.546±0.009

Micro F1 0.679±0.006 0.668±0.006 0.635±0.005 0.668±0.006 0.674±0.005 0.659±0.006 0.257±0.009 0.545±0.009

Avg Precision 0.757±0.005 0.747±0.006 0.743±0.005 0.747±0.006 0.754±0.005 0.746±0.005 0.516±0.006 0.671±0.007

Yeast (percentage of missing labels is 10)

Exact match 0.185±0.008 0.185±0.008 0.196±0.005 0.185±0.008 0.185±0.007 0.184±0.007 0.157±0.008 0.144±0.008

Hamming Loss 0.188±0.002 0.189±0.002 0.187±0.001 0.189±0.002 0.188±0.002 0.189±0.002 0.198±0.002 0.2±0.002

Macro F1 0.371±0.008 0.369±0.008 0.4±0.007 0.369±0.008 0.369±0.007 0.366±0.007 0.378±0.008 0.353±0.004

Micro F1 0.642±0.005 0.641±0.005 0.653±0.003 0.641±0.005 0.644±0.004 0.642±0.004 0.627±0.005 0.636±0.004

Avg Precision 0.67±0.005 0.668±0.005 0.684±0.004 0.668±0.005 0.671±0.005 0.669±0.005 0.661±0.005 0.675±0.004

Yeast (percentage of missing labels is 30)

Exact match 0.175±0.006 0.177±0.006 0.188±0.005 0.177±0.006 0.177±0.006 0.178±0.006 0.078±0.004 0.133±0.007

Hamming Loss 0.189±0.002 0.19±0.002 0.19±0.002 0.19±0.002 0.189±0.002 0.189±0.002 0.23±0.001 0.205±0.002

Macro F1 0.369±0.007 0.369±0.007 0.4±0.007 0.369±0.007 0.369±0.007 0.366±0.007 0.277±0.007 0.353±0.004

Micro F1 0.641±0.004 0.641±0.004 0.649±0.004 0.641±0.004 0.643±0.005 0.642±0.004 0.456±0.006 0.629±0.003

Avg Precision 0.67±0.005 0.669±0.005 0.682±0.004 0.669±0.005 0.67±0.005 0.669±0.005 0.582±0.006 0.671±0.004

Yeast (percentage of missing labels is 50)

Exact match 0.16±0.007 0.163±0.007 0.165±0.006 0.163±0.007 0.163±0.009 0.163±0.009 0.016±0.002 0.121±0.005

Hamming Loss 0.193±0.002 0.194±0.002 0.197±0.002 0.194±0.002 0.192±0.002 0.192±0.002 0.275±0.001 0.209±0.002

Macro F1 0.371±0.007 0.37±0.007 0.402±0.006 0.37±0.007 0.368±0.006 0.364±0.006 0.143±0.004 0.356±0.005

Micro F1 0.636±0.005 0.635±0.005 0.641±0.003 0.635±0.005 0.637±0.005 0.637±0.005 0.198±0.004 0.619±0.004

Avg Precision 0.667±0.005 0.666±0.005 0.677±0.005 0.666±0.005 0.668±0.005 0.666±0.005 0.489±0.004 0.665±0.004
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4.2 Missing Label Results on Datasets

The Tables 2 and 3 shows the results for our proposed models (SR-ML) against
the comparing models under the missing label setting. It can be observed that
when the missing label percentage is increased, the results for the proposed model
and MLML models show a gradual decline, whereas the SBLR approaches show
a sharp decline in their results. Overall, the SR-ML-v3 outputs the best results
in most cases, otherwise close to the best results in some cases.

4.3 Ablation Study

In this section, we explore the effect of kernel parameter ρ across different per-
centages of missing labels for different datasets in Table 4 for SRML v2. From
the empirical observation of results reported in Table 4, it can be noticed that
the SRML v2 attains better results for lower kernel values (i.e. 0.01 and 0.001),
however there seems not significant difference in results among smaller ρ values
(0.01, 0.001). It can be noticed that similar trend follows for different datasets.
Hence smaller ρ (0.01) value is suitable for SRML

5 Conclusions

In this paper, we have proposed SR-ML to address the problem of Multi-label
Learning with Missing Labels effectively. From the theoretical and empirical
observation of the results mentioned in this paper, we bridge the gap between
the popularly used graph Laplacian [10] and the Similarity-Based Learning meth-
ods for Multi-label Learning [8]. To add more, we have shown that the proposed
models share a connection with the SVM [15]. Through this research, we pro-
pose a simple, generic and efficient optimization to tackle the Multi-label learning
problem with Missing Labels. However, the design of our model can be easily
improved or extended to handle other limited supervision challenges in multi-
label learning, Partial Multi-label Learning [11], Semi-Supervised Weak label
Learning (SSWL) [2], for example. In this paper, we present four variants of SR-
ML, two transductive and two lazy learning methods, which find applicability
as per the convenience of the user/situation. In our opinion, lazy learners can be
used when prediction is required only for testing samples, whereas transductive
learners could be used in the case of matrix completion problems. We will look
towards the latter in our future research. We highlight the promising potential of
models such as SR-ML and the approach put forth in [1], which are characterized
by their simplicity and reliance on SVM principles for making explicit predic-
tions. Further research needs to be conducted to expand the understanding of
such models.

Theorem 1. The inverse of the Laplacian matrix (L), denoted as L−1, is a
kernel [9].
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Table 4. Effect of ρ for different percentages of missing labels for Multi-label datasets

Proof. Let the each element of L−1, be defined as li,j , ei be the standard basis
column vector.
li,j = eT

i L−1ej

= eT
i UΣUT ej (By using Eigenvalue decomposition)

= (eT
i UΣ1/2)(Σ1/2UT ej)

= (Σ1/2xi)T (Σ1/2xj)
= x

′
ix

′T
j
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Thus we can express L−1 = X
′
(X

′
)T = φ(X

′
)φ((X

′
)T ) = K(X ′, (X ′)T ), where

X
′

denotes the data matrix, each row representing a sample, K denotes kernel
function.
For more details, please refer to [9]
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Abstract. Twin support vector machine (TSVM), a variant of support
vector machine (SVM), has garnered significant attention due to its 3/4
times lower computational complexity compared to SVM. However, due
to the utilization of the hinge loss function, TSVM is sensitive to outliers
or noise. To remedy it, we introduce the guardian loss (G-loss), a novel
loss function distinguished by its asymmetric, bounded, and smooth char-
acteristics. We then fuse the proposed G-loss function into the TSVM
and yield a robust and smooth classifier termed GL-TSVM. Further, to
adhere to the structural risk minimization (SRM) principle and reduce
overfitting, we incorporate a regularization term into the objective func-
tion of GL-TSVM. To address the optimization challenges of GL-TSVM,
we devise an efficient iterative algorithm. The experimental analysis on
UCI and KEEL datasets substantiates the effectiveness of the proposed
GL-TSVM in comparison to the baseline models. Moreover, to showcase
the efficacy of the proposed GL-TSVM in the biomedical domain, we
evaluated it on the breast cancer (BreaKHis) and schizophrenia datasets.
The outcomes strongly demonstrate the competitiveness of the proposed
GL-TSVM against the baseline models. The supplementary file, along
with the source code for the proposed GL-TSVM model, is publicly
accessible at https://github.com/mtanveer1/GL-TSVM.

Keywords: Support vector machine · Twin support vector machine ·
Robust classification · Asymmetric loss function · Iterative algorithm

1 Introduction

Support vector machine (SVM) [5], a kernel-based method, has been extensively
researched over the last two decades, particularly in the realm of pattern recog-
nition. It is rooted in the concept of structural risk minimization (SRM) and
is derived from statistical learning theory (SLT), consequently having a solid
theoretical foundation and demonstrating better generalization capabilities. Its
wide-ranging applications span across diverse domains, including cancer diagno-
sis [14], Alzheimer detection [16], and so forth.

The key idea of SVM revolves around identifying two parallel hyperplanes
with the maximum possible margin between them. This primarily involves solv-
ing a quadratic programming problem (QPP) whose complexity is proportional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15302, pp. 63–78, 2025.
https://doi.org/10.1007/978-3-031-78166-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78166-7_5&domain=pdf
https://github.com/mtanveer1/GL-TSVM
https://doi.org/10.1007/978-3-031-78166-7_5
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to the cube of the training dataset size. Twin SVM (TSVM) [11], a variant of
SVM, tackles this problem by solving two smaller QPPs instead of one large
QPP, thereby reducing computational costs by approximately 75% compared to
traditional SVM methods. This significant computational efficiency has garnered
considerable attention from the research community, leading to extensive studies
aimed at enhancing the performance of TSVM. For instance, Kumar and Gopal
[12] proposed the least squares TSVM, which stands out for its simplicity and
efficiency in binary classification tasks. Additionally, Shao et al. [18] introduced
another improved variant, the twin bounded SVM, which boosts the generaliza-
tion capabilities of TSVM through the incorporation of structural risk minimiza-
tion term. Besides, numerous researchers have developed several TSVM variants
to further enhance its performance across different applications. As an exam-
ple, to tackle the imbalance problem, Ganaie et al. [9] proposed the large-scale
fuzzy least squares TSVM. To develop a robust and sparse variant of TSVM,
Tanveer [21] reformulated the classical TSVM by incorporating a regularization
technique and proposed an exact 1-norm linear programming formulation for
TSVM. To address the noise sensitivity of TSVM, Tanveer et al. [26] proposed
the large-scale pin-TSVM by utilizing the pinball loss function. Both of the
aforementioned algorithms eliminate the requirement of matrix inversion, mak-
ing them suitable for large-scale problems. To delve deeper into the development
of TSVM models, readers can refer to [22,25].

Despite several strengths of TSVM, it still has opportunities for improve-
ment. One key area is its sensitivity to outliers or noise, which stems from the
unbounded escalation of the hinge loss function, leading to excessively high losses
for samples located far from the proximal hyperplane [27]. Also, the hinge loss
function solely imposes penalties on misclassified samples and neglects the con-
tribution of the correctly classified samples. However, the influence of samples
from distinct classes, positioned on either side of the hyperplane, on the deci-
sion hyperplane differs based on their respective locations. Various researchers
have conducted extensive investigations to reduce the susceptibility of TSVM
to noise and outliers [8,19]. Among these approaches, designing a robust loss
function has emerged as a crucial focus. Recent advancements have introduced
several robust loss functions for TSVM, such as the symmetric LINEX loss func-
tion [19], pinball loss function [26], correntropy-induced loss function [28], Huber
loss function [4], and others. Despite their contributions to enhancing the robust-
ness of TSVM, these methods still present notable limitations. The symmetric
LINEX loss and Huber loss functions, while innovative, suffer from symmetry and
unbounded growth. Their unbounded nature makes them vulnerable to extreme
values, thereby increasing sensitivity to outliers or noise. Additionally, their sym-
metric design treats samples on either side of the proximal hyperplane equally,
potentially ignoring the differing influences these samples exert on the decision
boundary. The correntropy-induced loss, though bounded, maintains symmetry,
similarly equalizing the importance of samples regardless of their positioning.
Conversely, the pinball loss function introduces asymmetry but lacks bounded-
ness, failing to cap the impact of extreme data points. In essence, although these
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loss functions mark significant strides in the robustness of TSVM, their inher-
ent limitations highlight the ongoing need for further research. Developing more
effective and versatile loss functions is essential to advancing robust machine
learning models, capable of better handling outliers and noise, thereby ensuring
more reliable and accurate predictions.

Taking motivation from prior research, in this paper, we develop a robust
loss function, named guardian loss (G-loss). It is meticulously designed to pos-
sess asymmetric, bounded, and smooth characteristics. Then, we amalgamate
the proposed G-loss function into TSVM and introduce a robust and smooth
classifier termed GL-TSVM. The main contributions of this paper can be out-
lined as follows:

1. To shield TSVM against outliers or noise, we introduce the guardian loss func-
tion (G-loss), a novel approach characterized by its asymmetry, boundedness,
and smoothness. The asymmetric feature of G-loss enables the assignment of
distinct penalties to distinct samples based on their location with respect to
the proximal hyperplane. The bounded nature allows for a strict limit on the
maximum loss for data points with significant deviations, thereby mitigat-
ing the influence of noise or outliers. Furthermore, the smoothness property
empowers the utilization of gradient-based algorithms for model optimization.

2. We incorporate the G-loss function into TSVM and propose a novel robust
and smooth classifier named GL-TSVM. Additionally, we devised an iterative
algorithm to address the optimization problems of GL-TSVM.

3. To employ the principle of structural risk minimization (SRM) and avoid
the overfitting problem, we introduce a regularization term into the objective
function of GL-TSVM.

4. We perform numerical evaluation on benchmark UCI and KEEL datasets
from various domains. The outcomes reveal the superior performance of the
proposed GL-TSVM against the baseline models.

5. To evaluate the superiority of the proposed GL-TSVM in the biomedical
realm, we conducted experiments using the breast cancer (BreaKHis) and
schizophrenia datasets. The results provide compelling evidence of the pro-
posed GL-TSVM applicability in the biomedical domain.

The rest of this paper is structured as follows: The related works are discussed
briefly in Sect. 2. Section 3 presents the proposed G-loss function and provides
the formulation of GL-TSVM. Section 4 showcases the results of the experiments.
Lastly, Sect. 5 concludes the paper with future directions.

2 Related Work

This section begins by defining the notations employed in this paper. Following
this, we provide a brief overview of some relevant loss functions. The formulation
of TSVM is briefly discussed in Section S.I of the supplement file.
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2.1 Notations

Consider the training set denoted as {xi, yi}li=1, where xi ∈ R
n represents the

sample vector and yi ∈ {−1, 1} signifies the corresponding class label. Let X+ =
(
x1, . . . , xl+

)� ∈ R
l+×n and X− =

(
x1, . . . , xl−

)� ∈ R
l−×n represent matrices

containing positive and negative instances, where l+ and l− denote the count
of positive and negative instances, respectively, and l = l+ + l−. Further, e1
and e2 are identity vectors of appropriate size, and I is the identity matrix of
appropriate size.

2.2 Loss Functions

In this subsection, we review some relevant loss functions, chosen to provide
motivation for the work presented in this paper. Further, we provide the visual
representation of baseline loss function in Fig. 1.

1. Pinball loss function: To improve the efficacy of TSVM against noise,
Tanveer et al. [23] proposed TSVM with pinball loss function (Pin-GTSVM).
The mathematical formulation of the pinball loss function is expressed as:

Lpin(r) =

{
r, r > 0,

−τr, r ≤ 0,
(1)

where r = 1 − yf(x) and τ ∈ [0, 1]. For τ = 0, it reduces to the hinge loss
function. It is asymmetric, unbounded, and non-smooth.

2. Huber loss function: To enhance the robustness of TSVM, Borah and
Gupta [4] incorporated the Huber loss function in to TSVM. It is a combi-
nation of quadratic and linear loss. The mathematical representation of the
Huber loss function is articulated as follows:

LHuber(r) =

{
1
2r2, |r| ≤ θ,

θ|r| − 1
2θ2, otherwise,

(2)

where θ is a trade-off parameter between quadratic and linear loss. It is sym-
metric, unbounded, and smooth.

3. Correntropy-induced loss function: To enhance the robustness of TSVM
against outliers, Zheng et al. [28] introduced the correntropy-induced loss into
TSVM and proposed a robust TSVM model. The mathematical expression
for the correntropy-induced loss is given as:

Lce(r) = λ

[
1 − exp

(−r2

ρ2

)]
, ∀ r ∈ R, (3)

where ρ is the normalizing constant and λ > 0 is the loss parameter. It is
symmetric, bounded, and smooth.
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Fig. 1. Visual illustration of baseline and proposed G-loss function. (a) Pinball loss
function with τ = 0, τ = 0.2, and τ = 0.5. (b) Huber loss function with θ = 0.5 and
θ = 1. (c) Correntropy-induced loss function with ρ = 0.5, ρ = 1, and ρ = 1.5. (d)
LINEX loss function with a = 0.5, a = 1, and a = 1.5. (e) Proposed G-loss function
with a = 0.5, a = 1, a = 1.5, and a = 2.
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4. LINEX loss function: To advance TSVM against noise or outliers, Si et al.
[19] incorporated the LINEX loss into TSVM. The mathematical representa-
tion of the LINEX loss is as follows:

LLINEX(r) = exp (ar) − ar − 1, ∀ r ∈ R, (4)

where a �= 0 is the loss parameter that controls the penalty for classified and
misclassified samples. Si et al. [19] utilized the linear subpart of LINEX loss
and introduced the symmetric LINEX loss into TSVM. It is unbounded and
smooth.

In addition to these, recent advancements in designing robust and smooth func-
tions include RoBoSS loss [1], Wave loss [3,17], HawkEye loss [2], and so forth.

3 Proposed Work

In this section, we present a novel advancement, the guardian loss function (G-
loss), designed to shield the supervised algorithm against outliers or noise. Then,
we amalgamate the proposed guardian loss function into TSVM and propose a
novel robust and smooth classifier coined GL-TSVM.

3.1 Guardian Loss Function

In this subsection, we introduce a novel loss function, the guardian loss (G-loss),
designed to guide and fortify traditional algorithms against outliers and noise.
It is meticulously designed to manifest asymmetry, boundedness, and smooth
characteristics. The mathematical formulation of the G-loss function is as follows:

LG(r) =
r{exp(ar) − 1}

1 + r{exp(ar) − 1} ,

= 1 − 1
1 + r{exp(ar) − 1} , ∀ r ∈ R, (5)

where r = 1 − yf(x) and a > 0 is the parameter that governs the asymmetry of
the G-loss function. Figure 1e showcases the visual representation of the G-loss
function for varying values of a. Its asymmetric, bounded, and smooth nature
serves to guide the algorithm in the right direction during the training process;
hence, it is named the guardian loss. The asymmetric feature of it allows for
distinct penalties for distinct samples based on their positioning relative to the
proximal hyperplane. Its bounded nature allows it to impose a strict limit on the
maximum loss for data points with significant deviations, thereby mitigating the
influence of noise or outliers. Furthermore, the smoothness property empowers
the utilization of gradient-based iterative algorithms for model optimization.
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3.2 Linear GL-TSVM

Given a binary training dataset, the objective of linear GL-TSVM is to seek
positive and negative hyperplanes as follows:

f+ = u�
+x + b+ = 0 and f− = u�

−x + b− = 0, (6)

where u+, u− ∈ R
n and b+, b− ∈ R are the model parameters. To obtain the

hyperplanes (6), we formed the primal problem of linear GL-TSVM as follows:
(Linear GL-TSVM-1)

min
u+,b+,ζ−

1

2

l+∑

i=1

(
u�
+xi + b+

)2
+

1

2
C1

(
‖u+‖22 + b2+

)
+ C2

l−∑

j=1

ζ−
j ,

s.t. ζ−
j = 1 − 1

1 +
(
1 + u�

+xj + b+
) [

exp{a
(
1 + u�

+xj + b+
)
} − 1

] , j = 1, . . . , l−, (7)

(Linear GL-TSVM-2)

min
u−,b−,ζ+

1

2

l−∑

j=1

(
u�

−xj + b−
)2

+
1

2
C3

(
‖u−‖22 + b2−

)
+ C4

l+∑

i=1

ζ+i ,

s.t. ζ+i = 1 − 1

1 +
(
1 − u�

−xi − b−
) [

exp{a
(
1 − u�

−xi − b−
)
} − 1

] , i = 1, . . . , l+, (8)

where ζ+ =
(
ζ+1 , . . . , ζ+l+

)�
∈ R

l+ , ζ− =
(
ζ−
1 , . . . , ζ−

l−

)�
∈ R

l− . To be concise,
we solely discuss the optimization problem (7), with the understanding that opti-
mization problem (8) follows a similar structure. The objective function outlined
in Eq. (7) comprises three distinct components. The first component aims to min-
imize the distance between the positive hyperplane and the positive instances.
The second component, a regularization term, is included to adhere to the struc-
tural risk minimization principle. Lastly, the third component accounts for the
cumulative penalty of all negative samples by leveraging the proposed G-loss
function. Due to the non-convex nature of optimization problems (7) and (8),
and utilizing their inherent smoothness property, we devised an iterative algo-
rithm to solve them. Initially, we convert (7) and (8) into vector-matrix form as
follows:

min
u1

Q1 (u1) =
1
2

∥
∥M�u1

∥
∥2

2
+

1
2
C1 ‖u1‖22 + C2L1 (u1) , (9)

min
u2

Q2 (u2) =
1
2

∥
∥N�u2

∥
∥2

2
+

1
2
C3 ‖u2‖22 + C4L2 (u2) , (10)

where L1 (u1) =
∑l−

j=1 1 − 1

1+(1+N�
j u1)[exp{a(1+N�

j u1)}−1] , j = 1, . . . , l−;

L2 (u2) =
∑l+

i=1 1 − 1

1+(1−M�
i u2)[exp{a(1−M�

i u2)}−1] , i = 1, . . . , l+. M =

[X+, e1]
� ∈ R

(n+1)×l+ , N = [X−, e2]
� ∈ R

(n+1)×l− ; u1 =
[
u�
+, b+

]� ∈ R
n+1,
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u2 =
[
u�

−, b−
]� ∈ R

n+1. M�
i is the ith row of M and N�

j is the jth row of
N . Further, for simplification, we use Aj and Bi to represent

(
1 + N�

j u1

)
and(

1 − M�
i u2

)
, respectively.

In accordance with the optimality condition, we obtain the following:

∇Q1 (u1) =
(
MM� + C1I

)
u1 + N̂s1 = 0, (11)

∇Q2 (u2) =
(
NN� + C3I

)
u2 − M̂s2 = 0, (12)

where M̂ =
[
C4M1, . . . , C4Ml+

] ∈ R
(n+1)×l+ , N̂ =

[
C2N1, . . . , C4Nl−

] ∈
R

(n+1)×l− . s1 =
[
s11, . . . , s1l−

]� ∈ R
l− , s2 =

[
s21, . . . , s2l+

]� ∈ R
l+ ; s1j =

exp(aAj)(aAj+1)−1

[1+Aj{exp(aAj)−1}]2 , j = 1, . . . , l−; s2i = exp(aBi)(aBi+1)−1

[1+Bi{exp(aBi)−1}]2 , i = 1, . . . , l+.
Now, we use Eqs. (11) and (12) to formulate iterative expressions for problems

(9) and (10) in the following manner:

ut+1
1 = − (

MM� + C1I
)−1

N̂st1, (13)

ut+1
2 =

(
NN� + C3I

)−1
M̂st2. (14)

Here, t represents the index of iteration. The iterative procedure involves iter-
ating through Eqs. (13) and (14) until convergence is achieved. After obtaining
the solutions, we can proceed to find the pair of hyperplanes (6).

To ascertain the class of a unseen sample x̃ ∈ R
n, we use the following

decision rule:

Class of x̃ = arg min
i=+,−

∣
∣u�

i x̃ + bi
∣
∣

‖ui‖ . (15)

3.3 Non-linear GL-TSVM

For the non-linear case, we utilized the kernel trick to map the input data points
to a higher dimensional space. The objective of non-linear GL-TSVM is to iden-
tify a pair of hypersurfaces of the following form:

g+ = κ
(
x,X�)

v+ + b+ = 0 and g− = κ
(
x,X�)

v− + b− = 0, (16)

where X� = [X+;X−] and κ is the kernel function.
To determine the hypersurfaces (16), we formulate the following optimization

problems:
(Non-linear GL-TSVM-1)

min
v+,b+,ζ−

l+∑

i=1

1

2

(
κ

(
xi, X

�
)

v+ + b+
)2

+
1

2
C1

(
‖v+‖22 + b2+

)
+ C2

l−∑

j=1

ζ−
j ,

s.t. ζ−
j = 1 − 1

1 +
(
1 + κ

(
xj , X�)

v+ + b+
) [

exp{a
(
1 + κ

(
xj , X�)

v+ + b+
)} − 1

] ,

j = 1, . . . , l−, (17)
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(Non-linear GL-TSVM-2)

min
v−,b−,ζ+

l−∑

j=1

1

2

(
κ

(
xj , X�

)
v− + b−

)2
+

1

2
C3

(
‖v−‖22 + b2−

)
+ C4

l+∑

i=1

ζ+i ,

s.t. ζ+i = 1 − 1

1 +
(
1 − κ

(
xi, X�)

v− − b−
) [

exp{a
(
1 − κ

(
xi, X�)

v− − b−
)} − 1

] ,

i = 1, . . . , l+. (18)

The iterative method to solve (17) and (18) can be derived as follows:

vt+1
1 = −

(
GG� + C1I

)−1

⎛

⎝
l−∑

j=1

C2Hj

exp{a
(
1 + H�

j vt
1

)}{a
(
1 + H�

j vt
1

)
+ 1} − 1

[
1 +

(
1 + H�

j vt
1

) {exp{a
(
1 + H�

j vt
1

)} − 1}]2

⎞

⎠ , (19)

vt+1
2 =

(
HH� + C3I

)−1

⎛

⎝
l+∑

i=1

C4Gi

exp{a
(
1 − G�

i vt
2

)}{a
(
1 − G�

i vt
2

)
+ 1} − 1

[
1 +

(
1 − G�

i vt
2

) {exp{a
(
1 − G�

i vt
2

)} − 1}]2

⎞

⎠ . (20)

Here G =
[
κ

(
X+,X�)

, e1
]� ∈ R

(l+1)×l+ , H =
[
κ

(
X−,X�)

, e2
]� ∈

R
(l+1)×l− ; Gi is the ith column of the matrix G, Hj is the jth column of the

matrix H. v1 =
[
v�
+ , b+

]�, v2 =
[
v�

− , b−
]�. Further, for simplification, we use

Ej and Fi to represent
(
1 + H�

j v1
)

and
(
1 − G�

i v2
)
, respectively.

It is important to highlight that Eqs. (19) and (20) involve complex matrix
inversions. Therefore, to alleviate computational complexity, we utilized the
Sherman Morrison Woodbury theorem [12]. Subsequently, in Eqs. (19) and (20),
the inverse matrices are substituted with the following matrices:

P1 =
1
C1

(
I − G

(
C1I + G�G

)−1
G�

)
, (21)

P2 =
1
C3

(
I − H

(
C3I + H�N

)−1
H�

)
. (22)

Using the Eqs. (21) and (22), the iterative approach can be derived in the fol-
lowing manner:

vt+1
1 = −P1Ĥst1, (23)

vt+1
2 = P2Ĝst2. (24)

Here, Ĥ =
[
C2H1, . . . , C2Hl−

] ∈ R
(l+1)×l− , and Ĝ =

[
C4G1, . . . , C4Gl+

] ∈
R

(l+1)×l+ . Additionally, st1 ∈ R
l− , st1j =

exp(aEt
j)(aEt

j+1)−1

[1+Et
j{exp(aEt

j)−1}]2
, j = 1, . . . , l− ;
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st2 ∈ R
l+ , st2i =

exp(aF t
i )(aF t

i +1)−1

[1+F t
i {exp(aF t

i )−1}]2
, i = 1, . . . , l+. The iteration procedure

is established by repeatedly applying Eqs. (23) and (24) until convergence is
reached. Consequently, upon obtaining the solutions v+, b+ and v−, b−, we can
then determine the positive and negative hypersurfaces generated by the kernel.

To predict the class of a new sample x̃ ∈ R
n, we use the following decision

function:

Class of x̃ = arg min
i=+,−

∣
∣κ

(
x̃,X�)

vi + bi
∣
∣

√
v�
i κ (X,X�) vi

. (25)

The iterative algorithm structure for non-linear GL-TSVM subproblem (17)
is clearly described in Algorithm 1. The structure for subproblem (18) is similar
to it.

Algorithm 1. Non-linear GL-TSVM
Input:
Training dataset: {xi, yi}l

i=1, yi ∈ {−1, 1};
The parameters: Convergence precision (η), maximum iteration number (T ), param-
eter C1 and C2, G-loss parameter a, iteration number t = 0;
Initialize: v0

1 ;
Output: v+, b+;

1 : G =
[
κ

(
X+, X�)

, e1
]�

, H =
[
κ

(
X−, X�)

, e2
]�

.
2 : while t ≤ T
3 : for j ← 1 to l−

4 : st
1j ← exp(aEt

j)(aEt
j+1)−1

[1+Et
j{exp(aEt

j)−1}]2

5 : end for
6 : vt+1

1 ← −P1Ĥst
1

7 : if
∥
∥vt+1

1 − vt
1

∥
∥ < η

8 : break
9 : else
10 : t ← t + 1
11 : end if
12 : end while
13 :

(
v�
+ , b+

)�
= vt+1

1 .

3.4 Computational Complexity

Let l and n denote the number of samples and features in training dataset,
respectively, and l+ and l− denote the count of positive and negative samples,
respectively. The computational complexity of GL-TSVM primarily arises from
the computation of matrix inversion. In the linear case, the algorithm requires
solving the inverse of a matrix of order (n + 1) × (n + 1), which results in a time
complexity of O((n + 1)3). Consequently, the computational complexity of the
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proposed linear GL-TSVM is O(2T (n + 1)3), where T represents the maximum
number of iterations. For the non-linear case, the algorithm needs to compute
the inverse of two matrices: one of size l+ × l+ and the other of size l− × l−, with
computational complexities of O(l3+) and O(l3−), respectively. Hence, for non-
linear GL-TSVM, the computational complexity is O(T (l3+ + l3−)). It is evident
that non-linear GL-TSVM is not well-suited for large-scale problems due to its
cubic computational complexity growth with respect to the size of positive and
negative sample matrices. However, in future research, one can utilize the concept
of granular computing to reduce the size of the sample matrices, making the non-
linear GL-TSVM approach more feasible and effective for large-scale applications
[16].

4 Experimental Evaluation

To validate the effectiveness of the proposed GL-TSVM model, we evaluate it
on 25 UCI [7] and KEEL [6] benchmark datasets across various domains. For
comparison, we used 6 state-of-the-art models, namely SVM [5], TSVM [11],
Pin-GTSVM [23], SLTSVM [19], Wave-TSVM [3], and IF-RVFL [15]. Further,
to showcase the efficacy of the proposed GL-TSVM in the biomedical realm, we
evaluated it on the breast cancer (BreaKHis) and schizophrenia datasets. The
detailed experimental setup employed for evaluating the models is provided in
Section S.II of the supplementary file.

4.1 Evaluation on UCI and KEEL Datasets

For the linear case, the average classification accuracy of the proposed GL-TSVM
and the baseline models are presented in Table 1. The detailed experimental
results for each dataset are presented in Table S.I of the supplementary file. The
average accuracies of the existing SVM, TSVM, Pin-GTSVM, SLTSVM, and
Wave-TSVM are 83.67%, 86.99%, 87.33%, 84.18%, and 87.13%, respectively,
whereas, the average accuracy of the proposed GL-TSVM is 87.52%, surpassing
the compared models. In terms of average accuracy, the proposed GL-TSVM
secured the top position, while the Pin-GTSVM achieved the second position
with an accuracy difference of 0.19. Further, the average accuracy difference
of proposed GL-TSVM from SVM, TSVM, SLTSVM, and Wave-TSVM are
3.85, 0.53, 3.34, and 0.39, respectively. This observation strongly underscores
the competitiveness of the proposed linear GL-TSVM over baseline models. For
the non-linear case, the average experimental results of the proposed GL-TSVM
and baseline models are presented in Table 2. The detailed experimental results
for each dataset can be found in Table S.II of the supplementary file. The average
accuracies of SVM, TSVM, Pin-GTSVM, IF-RVFL, SLTSVM, Wave-TSVM, and
the proposed GL-TSVM are 85.36%, 88.45%, 88.51%, 82.57%, 89.17%, 89.97%,
and 90.52%, respectively. Evidently, the proposed GL-TSVM achieves the high-
est classification accuracy with an accuracy difference of 0.55 from the second-
best model, Wave-TSVM. This finding firmly establishes the dominance of the
non-linear GL-TSVM in comparison with the baseline models.
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Table 1. Average accuracy and rank of linear GL-TSVM against baseline models on
benchmark UCI and KEEL datasets.

SVM [5] TSVM [11] Pin-GTSVM [23] SLTSVM [19] Wave-TSVM [3] GL-TSVM†

Avg. Acc. 83.67 86.99 87.33 84.18 87.13 87.52

Avg. Rank 4 3.64 3.22 4.4 2.88 2.86
†represents the proposed model.
The boldface and underline indicate the best and second-best models, respectively.

Table 2. Average accuracy and rank of non-linear GL-TSVM against the baseline
models on benchmark UCI and KEEL datasets.

SVM [5] TSVM [11] Pin-GTSVM [23] IF-RVFL [15] SLTSVM [19] Wave-TSVM [3] GL-TSVM†

Avg. Acc. 85.36 88.45 88.51 82.57 89.17 89.97 90.52

Avg. Rank 5.26 4.08 3.9 5.92 3.68 2.88 2.28
†represents the proposed model.
The boldface and underline indicate the best and second-best models, respectively.

To further support the efficacy of the proposed GL-TSVM, we performed a
thorough statistical analysis using the rank test, Friedman test, Nemenyi post
hoc test, and win-tie-loss test. A detailed discussion of the statistical tests and
their results is presented in Section S.III of the supplementary file.

4.2 Evaluation on Breast Cancer Dataset

To assess the effectiveness of the proposed GL-TSVM in practical scenarios, we
evaluated it on breast cancer dataset named BreaKHis, accessible at [20]. We
utilized 1240 histopathology scans, each magnified 400 times. These scans pre-
dominantly fall into two categories: benign and malignant. Within the benign
class, there are four subcategories: adenosis (ad), phyllodes tumor (pt), tubu-
lar adenoma (ta), and fibroadenoma (fd) with 106, 115, 130, and 237 scans,
respectively. Similarly, the malignant class includes four subclasses: ductal car-
cinoma (dc), papillary carcinoma (pc), mucinous carcinoma (mc), and lobular
carcinoma (lc) containing 208, 138, 169, and 137 scans, respectively. For feature
extraction, we followed the same methodology as outlined in [10]. The aver-
age results of the proposed GL-TSVM compared to the baseline models on the
BreaKHis dataset are presented in Table 3. The detailed performance compari-
son on each dataset is outlined in Table S.III of the supplement file. The average
accuracy of the proposed GL-TSVM stands at 75.67%, surpassing the base-
line models SVM, TSVM, Pin-GTSVM, IF-RVFL, SLTSVM, and Wave-TSVM
which achieved accuracies of 65.15%, 74.14%, 74.21%, 64.7%, 72.48%, and 74.2%
respectively. Further, the average rank of the baseline models SVM, TSVM, Pin-
GTSVM, IF-RVFL, SLTSVM, and Wave-TSVM is 6.22, 2.91, 3.19, 6.19, 4.38,
and 3.09 while the average rank of GL-TSVM is 2.03, representing the most
favorable position in comparison to the baseline models. Further, the average
rank differences between the proposed GL-TSVM and the other baseline models
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Table 3. Average performance of the proposed GL-TSVM against the baseline models
on the BreaKHis dataset.

SVM [5] TSVM [11] Pin-GTSVM [23] IF-RVFL [15] SLTSVM [19] Wave-TSVM [3] GL-TSVM†

Avg. Acc. 65.15 74.14 74.21 64.7 72.48 74.2 75.67

Avg. Rank 6.22 2.91 3.19 6.19 4.38 3.09 2.03
†represents the proposed model.
The boldface and underline indicate the best and second-best models, respectively.

Table 4. Average performance of the proposed GL-TSVM against the baseline models
on the schizophrenia dataset.

SVM [5] TSVM [11] Pin-GTSVM [23] IF-RVFL [15] SLTSVM [19] Wave-TSVM [3] GL-TSVM†

Acc. 67.57 75 77.38 74.33 78.39 75 78.39
†represents the proposed model.
The boldface and underline indicate the best and second-best models, respectively.

(SVM, TSVM, Pin-GTSVM, IF-RVFL, SLTSVM, and Wave-TSVM) are 4.19,
0.88, 1.46, 4.16, 2.35 and 1.06, respectively, showing substantial performance
advantages for GL-TSVM over these models. Overall, the results showcase that
the proposed GL-TSVM is significantly superior in the domain of breast cancer
diagnosis when compared to the baseline models.

4.3 Evaluation on Schizophrenia Dataset

To further demonstrate the competitiveness of the proposed GL-TSVM model,
we evaluated it for diagnosing schizophrenia patients. The data used in
this study was obtained from the center for biomedical research excel-
lence (COBRE) ( http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html).
The dataset includes 72 schizophrenia subjects (ages 18–65, mean age 38.1 ± 13.9
years) and 74 healthy control subjects (ages 18–65, mean age 35.8 ± 11.5 years).
The feature extraction process followed the methodology outlined in [24]. Table 4
presents a comparative analysis of the performance of the proposed GL-TSVM
model against baseline models. SVM has the lowest accuracy at 67.57%. TSVM,
Pin-GTSVM, and Wave-TSVM show improved accuracies of 75%, 77.38%, and
75%, respectively, while IF-RVFL achieves 74.33%. Notably, the SLTSVM model
excels with an accuracy of 78.39%, matched by the proposed GL-TSVM model.
This indicates that the proposed GL-TSVM is as effective as the best-performing
models, validating its efficacy as a reliable and competitive tool for schizophrenia
diagnosis.

4.4 Effectiveness of the G-Loss Function

The experimental findings affirm the efficacy of the G-loss function in bolster-
ing the robustness and performance of GL-TSVM. The asymmetric design of
the G-loss function permits differential handling of samples relative to their dis-
tance from the decision boundary, effectively reducing the influence of noise. Its
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bounded characteristic caps the maximum loss, thereby preventing extreme val-
ues from unduly affecting the model. Additionally, the smoothness of the G-loss
function supports the implementation of gradient-based optimization techniques,
facilitating both efficient and stable convergence. Collectively, these features sig-
nificantly enhance the performance of the proposed GL-TSVM, as demonstrated
by the experimental results across a diverse array of datasets and domains.

5 Conclusions

In conclusion, the introduction of the G-loss function and the development of
GL-TSVM model have significantly enhanced the robustness and performance
of traditional TSVM algorithms. By leveraging the asymmetry, boundedness,
and smoothness properties of the G-loss function, the GL-TSVM model offers
a novel approach to handling outliers or noise in the data. Furthermore, the
inclusion of a regularization term to adhere to the structural risk minimization
principle led to the creation of a more powerful classifier in the form of GL-
TSVM. The iterative algorithm utilized for optimizing the GL-TSVM model
ensures efficient convergence and stability. The experimental evaluations on a
diverse set of benchmark datasets have consistently demonstrated the superior
performance of GL-TSVM compared to baseline models. The application of GL-
TSVM to breast cancer (BreaKHis) and schizophrenia datasets further validates
its effectiveness in the biomedical domain.

However, it is noteworthy that, due to the computation of matrix inversion,
GL-TSVM is not well-suited for large-scale problems. In the future, one can
reformulate the GL-TSVM to circumvent the need to compute matrix inversion.
Further, in the future, researchers can explore the fusion of the G-loss function
with cutting-edge methodologies like support matrix machines [13] to tackle
complex real-world problems.
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Abstract. Clustering is a long-standing problem area in data mining.
The centroid-based classical approaches to clustering mainly face diffi-
culty in the case of high dimensional inputs such as images. With the
advent of deep neural networks, a common approach to this problem is
to map the data to some latent space of comparatively lower dimensions
and then do the clustering in that space. Network architectures adopted
for this are generally autoencoders that reconstruct a given input in the
output. To keep the input in some compact form, the encoder in AE’s
learns to extract useful features that get decoded at the reconstruction
end. A well-known centroid-based clustering algorithm is K-means. In
the context of deep feature learning, recent works have empirically shown
the importance of learning the representations and the cluster centroids
together. However, in this aspect of joint learning, recently a continu-
ous variant of K-means has been proposed; where the softmax function
is used in place of argmax to learn the clustering and network param-
eters jointly using stochastic gradient descent (SGD). However, unlike
K-means, where the input space stays constant, here the learning of the
centroid is done in parallel to the learning of the latent space for every
batch of data. Such batch updates disagree with the concept of classical
K-means, where the clustering space remains constant as it is the input
space itself. To this end, we propose to alternatively learn a clustering-
friendly data representation and K-means based cluster centers. Exper-
iments on some benchmark datasets have shown improvements of our
approach over the previous approaches.

1 Introduction

Clustering is a method of finding the inherent pattern in data by segregating
it into different groups. Primarily, it is used to partition unlabeled data into
groups for extracting meaningful information. It has various applications in rec-
ommender systems where user queries are often grouped to give informed prod-
uct suggestions, resulting in a better purchasing pattern. In information retrieval
systems, this is also used for partitioning similar or associated articles into the
same clusters to enhance the efficiency and effectiveness of the retrieval process.
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In addition, clustering has immense applicability in image segmentation, medical
imaging, social network analysis, anomaly detection, market segmentation, etc.

The idea of grouping similar items needs some distance metric. As the com-
plex manifold in high-dimensional input space makes the use of Euclidean dis-
tance less meaningful, therefore, classical clustering methods like K-means and
GMM are less effective there. This brings up the idea of clustering in latent space,
a comparatively low-dimensional space. However, learning in such a space is often
challenging as we are dealing with an unsupervised problem. Employing autoen-
coders (AE) in learning the “clustering friendly” latent space has facilitated the
development of deep clustering approaches over the last few years [2,5,12].

Based on the ways to learn an embedding space with latent representations
suitable for clustering, the existing approaches to deep clustering can be primar-
ily categorized into three types. The first type of method [11] learns the latent
representations first in the pretraining phase, then optimizes the representations
for clustering using some clustering loss while learning the clustering parame-
ters. This type of method finetunes the embedding space for clustering without
regard to its reconstructability. The very first work in this direction is Deep
Embedded Clustering (DEC) [11]. DEC employs a clustering loss to finetune
the encoder of the pretrained AE for clustering while learning the cluster cen-
ters. Initially, the soft assignments between the embedded points and the cluster
centers are computed. The KL divergence-based clustering loss is employed to
improve upon this initial soft estimate by learning from high-confidence predic-
tions. This is done by pushing the soft estimates toward the hard estimates. As
DEC abandons the decoder and finetunes the encoder using only the clustering
loss, this might distort the embedded space, causing a loss of representativeness
of the data. But employing the clustering loss only for finetuning could distort
the embedded space to the extent of weakening the representativeness of the
latent features, which in turn could hurt the clustering performance.

Considering this, the second type of method [5,12] proposed a joint autoen-
coder (AE)-based dimensionality reduction (DR) and K-means objective. In
IDEC, the DR and cluster center learning are done jointly. Whereas the tar-
get distribution is updated every T iterations of DR and cluster center updates.
Unlike DEC and IDEC, where the clustering loss is based on KL-divergence,
DCN [12] adopted a clustering loss related to the classical K-means. However,
in K-means, the membership values are restricted to a discrete set, causing the
joint optimization of clustering and the reconstruction loss to be numerically
infeasible. DCN deals with this by jointly optimizing the reconstruction and
the clustering loss in alternating stochastic optimization, where gradient update
and discrete cluster assignments are done alternatively. In DCN, this is opti-
mized using alternative stochastic optimization; which implies the main objective
function is divided into two different objectives that are optimized alternatively.
Precisely, the DR part is optimized while keeping the K-means parameters con-
stant, followed by K-means optimization while keeping the DR part constant.
In the third type of method [2], in place of K-means, deep K-means is used,
which is a continuous variant of K-means as mentioned previously. However, to
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learn the cluster centers and the data representations jointly, DKM [2] proposed
a continuous variant of K-means, where the argmax of K-means is replaced with
one of its soft variants, which is the softmax function. Using deep K-means in
place of classical K-means allows to replace the discrete optimization steps with
joint optimization AE’s parameters and clustering parameters using SGD.

As DKM employs SGD, clustering and network parameter updates are done
for every batch of data. However, in classical K-means, the input space remains
constant, which is not the case in batch updates as in DKM. To address this, we
propose to separately update the network parameters and clustering parameters.
The network parameters are updated by jointly optimizing the reconstruction
loss and our proposed CenTering (CT) loss function. The CT loss pushes the
latent space into being suitable for clustering. Clustering parameters, i.e., the
centroids, are then learned on the latent space by optimizing the classical K-
means objective. Therefore, the network and the clustering parameter updates
are done alternatively for every training epoch. Experiments on some bench-
mark datasets show that our method can achieve a better Normalized Mutual
Information (NMI) and ACCuracy (ACC) score comparatively. In the rest of
the paper, we present a brief literature survey in Sect. 2 and our methodology
in Sect. 3. We present qualitative and quantitative experiments with an ablation
study in Sect. 4. Finally, we conclude in Sect. 5.

Notations: Before going further, let us introduce the notations. We consider a
dataset of N points, X = {xi ∈ R

m : i = 1, · · · , N}, where m is the dimension of
the input. In the case of images of shapes (h×w×c), the data is flattened to the
dimension hwc, where h,w, c refers to the height, width, and number of channels
of an image. The goal is to cluster X into K clusters, which is similar in concept
to the classes in supervised settings. The set of the centroids of the K clusters
is represented by R = {r1, r2, · · · , rk}. Here rk is the centroid or representative
of the cluster k. In autoencoder we denote the encoder by hθ : Rm → R

l, where
l is the dimension of latent space or embedding space and θ is the parameters of
the encoder. The decoder is represented by the mapping hφ : Rl → R

m, where φ
denotes the parameters of the decoder. We use bold font for vectors. Note that
throughout the paper we have used the terms centers and centroids alternatively,
while both denote the same thing, i.e., the cluster centers.

2 Related Works

The problem of clustering has been well studied over the years. However, studies
on leveraging the features learned by deep neural networks for clustering have
come to light over the past few years [2–6,8,9,11–13] etc.

In this section, we discuss developments in K-means employing deep neu-
ral networks. We start by discussing briefly the formulation of the classical K-
means [1] algorithm, followed by a brief discussion on the autoencoder (AE),
which is used to learn the latent features of the data. Following this, we discuss
the formulations of related previous approaches in the context of the current
problem.
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2.1 Classical K-Means Algorithm

Let x denotes an object from a set {X = xi ∈ R
m : i = 1, · · · , N} of objects to

be clustered. The task of clustering is to group N data samples into K clusters.
The K-means algorithm attempts this task by optimizing the following objective
function,

min
R

N∑

i=1

||xi − c(xi;R)||22,

with c(xi;R) = argmin
r∈R

||xi − r||22,
(1)

where R = {r1, r2, · · · , rk}. Here rk is the representative of the cluster k and R
is the set of all the representatives. c(xi;R) gives the closest representative of
xi in terms of L2 distance.

2.2 Autoencoder

Among the multiple types of deep neural networks, an autoencoder is a self-
supervised deep learner that is trained using an identity function X = Fθ,φ(X) =
gφ(hθ(X)), where F is the learnable function or the autoencoder as a whole and
hθ and gφ are respectively the encoder and the decoder function, which represents
the mapping from the data space to the latent or encoding space and the reverse
mapping from the encoding space back to the data space, respectively. In general,
the objective of AE is,

min
θ,φ

∑

x∈X

||Fθ,φ(x) − x||22. (2)

In general, AE is used for dimensionality reduction (DR) and noise reduction. In
problems related to clustering, AE is mostly used for DR to tackle the issue of
the curse of dimensionality, which often causes the data space to be unsuitable
for clustering.

2.3 Autoencoder (AE)-Based Deep Clustering Variants

Optimizing the latent space of an AE for clustering was first proposed in
DEC [11]. In DEC, Xie et al. [11] proposed an approach that jointly optimizes the
centroids R and the encoder’s parameters θ using Stochastic Gradient Descent
(SGD). DEC in particular solves the following objective,

L = min
θ,R

KL(P ||Q) =
∑

i

∑

j

pij log
pij

qij
, (3)

where pij is a function of qij as the following,

pij =
q2ij/

∑
i qij∑

j′(q2ij′/
∑

i qij)
(4)
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qij =
(1 + ||fθ(xi) − rj ||22/αt)−

αt+1
2

∑
j′ (1 + ||fθ(xi) − rj′ ||22/αt)−

αt+1
2

, (5)

qij is the similarity between the embedded point zi = fθ(xi) and the jth cluster
centroid rj , interpreted as the probability of assigning sample i to cluster j. This
is measured using Student’s t-distribution as a kernel with αt as the degrees of
freedom.

In IDEC, Guo et al. [5] claimed that employing only the clustering loss might
not preserve the local structure of the data in the latent space, leading to a
corrupted latent space. Therefore, in [12] the objective is revised to the following,

min
θ,φ,R

N∑

i=1

||Fθ,φ(xi) − xi||22 + λidec

∑

i

∑

j

pij log
pij

qij
, (6)

where λidec > 0 is a coefficient to control the degree of distortion of the latent
space for the goal of clustering. A similar idea is proposed by Yang et al. [12],
but instead of divergence, they used a L2 norm based distance measure. Their
objective function is the following,

min
θ,φ,R

N∑

i=1

||Fθ,φ(xi) − xi||22 +
λdcn

2
||hθ(xi) − Msi||22, (7)

where M is the matrix with its kth column being the kth centroid rk and si is the
assignment vector of data point i, having only 1 non-zero value in the position of
assigned cluster k. λdcn ≥ 0 is a regularization parameter having a similar role
as λidec. SGD can not be directly applied to jointly optimize θ, φ,M,Si together
as si is constrained on a discrete set. Therefore, (θ, φ) and (M,Si) are optimized
in alternating optimization.

To pursue joint optimization DKM [2] revised the above objective in the
following way,

min
θ,φ,rj

N∑

i=1

||Fθ,φ(xi) − xi||22 + λdkm

k∑

k=1

||hθ(xi) − rk||22Gdkm
k (hθ(xi), αdkm;R),

(8)

where, Gdkm
k (·) is defined as follows,

Gdkm
k (hθ(xi), αdkm;R) =

e−αdkm||hθ(xi)−rk||22
∑K

k′=1 e−αdkm||hθ(xi)−rk||22
(9)

From Eq. 7 to Eq. 8 notice the change is only in the second term where Gdkm
k is

introduced.
Compared to DKM, our formulation differs in two ways, first, our formulation

of Gk,f is different; second, we reinitialize the cluster centers after every epoch by
applying K-means to the feature space data. IDEC and DCN completely separate
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feature learning and clustering; instead, we learn clustering-friendly features and
then do the clustering alternatively until a convergence criterion based on a loss
function is met. Thus, the latent space or feature space is always being learned
based on some clustering criterion.

3 Proposed Formulation

Given a dataset X having N points {xi ∈ R
m : i = 1, · · · , N} and K clusters,

our goal is to assign each point to one of the K clusters. We attempt to solve
this problem in two steps. In the first step, we learn a feature space that reduces
the dimensionality of the data while learning a suitable clustering embedding.
For this, we finetune a pretrained autoencoder using two loss functions. First,
the reconstruction loss is used to maintain the representability of the data while
clustering. Second, our proposed centering (CT) loss minimizes the weighted
distance between the cluster centers and the data embeddings. In the second
step, we simply optimize the objective of the classical K-means on the data
embeddings obtained from the encoder to reinitialize the k cluster centers. Using
the above reasoning, we came up with the following objective function,

min
θ,φ,R

N∑

i=1

(l(gφ(hθ(xi)),xi)

︸ ︷︷ ︸
reconstruction loss

+λ

K∑

k=1

||hθ(xi) − rk||22GK,f (hθ(xi), α;R))

︸ ︷︷ ︸
centering loss

, (10)

where,

GK,f (hθ(xi), α;R) =
1

f(hθ(xi),rk)α

∑K
k′=1

1
f(hθ(xi),rk′ )α

, (11)

where f(·, ·) = || · − · ||22. Here, GK,f (·, ·) is a differentiable function with respect
to θ,R. α ∈ R

+ is a parameter. In general we have observed that α ≥ 2 gives
better clustering performance. Equation 10 is optimized using SGD.

Since our goal is to learn some K-means friendly data representation, there-
fore, at the end of every epoch we compute K-means on the latent space to
initialize the centers R for the next epoch. Therefore, the values of R are only
used to learn the latent representation of the data during the SGD which is
suitable for clustering.

The steps of our approach are summarized in the Algorithm 1.

4 Experiments

In this section, we conduct qualitative and quantitative experimental analyses.
We compare with some benchmark methods on two standard clustering met-
rics ACCuracy (ACC) and Normalized Mutual Information (NMI) which are
discussed below.
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Algorithm 1. The proposed method
Input: A1 . . . AN

Output: Sum (sum of values in the array)
1: Initialise θ, φ,R randomly.
2: Pretrain the AE for np number of pretraining epochs.
3: Initialise the centers R using K-means of the latent representations of the dataset,

LX = {hθ(xi), i = 1, · · · , N}
4: for epoch ← 1 to ne number of epochs do
5: for batch ← 1 to nb number of batches do
6: Sample minibatch of m samples {x1,x2, · · · ,xm} from the dataset
7: Optimize the objective function in Eq. 10
8: end for
9: Compute the latent representations of the dataset, LX = {hθ(xi), i = 1, · · · , N}

10: Optimize the K-means objective function on LX for finding the centroids R of
the K clusters.

11: end for
12: return

4.1 Datasets

We conduct experiments on MNIST, USPS, COIL100, CMU-PIE and RCV1-v2
datasets. RCV1-v2 is text dataset and the rest are image datasets. The details
of different datasets are given in Table 1.

Table 1. .

Dataset MNIST USPS COIL100 CMU-PIE RCV1-v2

#Samples 70000 11000 7200 2856 10,000
#Catagories 10 10 100 68 4
Image size 28 × 28 16 × 16 128 × 128 32 × 32 –
Input dimension 784 256 16384 1024 2000

4.2 Evaluation Metrics

Accuracy: Considering ci as the cluster assignment of data xi and yi as its
ground truth cluster label, the accuracy (ACC) of a clustering model is defined
as,

ACC = max
m

∑N
i=1 1{yi == m(ci)}

N
, (12)

where m ranges over all possible one-to-one mappings between clusters and
labels. N is the total number of data samples in the dataset. Intuitively, this
metric finds the best match between the algorithm’s cluster assignment and
the ground truth assignment. In general, the Hungarian algorithm [7] is best to
compute this mapping.
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Normalized Mutual Information (NMI): It is an information theory based
similarity measure in clustering. It is bounded in [0, 1] and equates to 1 when
the ground truth and the predicted clustering are equal. Considering C as the
cluster distribution, Y as the ground truth, and H(·) as the entropy, the NMI
value is computed as,

NMI =
2H(C, Y )

H(C) + H(Y )
(13)

NMI approaches 1 when distribution C is similar to Y and in the opposite case
NMI approaches 0.

We compare the ACC and NMI scores with that of others in Tables 2, 3.

4.3 Algorithms in Comparison

– KM [1]: The classical K-means clustering approach.
– AEKM: Here, before applying K-means, the dimensionality of the data is first

reduced using an autoencoder (AE). Therefore, the clustering is done in the
latent space or embedding space learned by the autoencoder.

– DCN [12]: It proposes a joint dimensionality reduction and clustering app-
roach to recover a ‘clustering friendly’ latent representation. It employs alter-
nating stochastic optimization to update the clustering parameters (i.e., the
cluster centroids) and the network parameters alternatively. Here, the param-
eters of the AE are initialized by pre-training before employing clustering.

– DKM [2] - Similar to DCN, it also proposes an autoencoder based approach
for clustering. However, unlike DCN, it proposes a continuous variant of the
K-means objective function to jointly achieve dimensionality reduction and
clustering using gradient descent. The proposed objective function is fully
differentiable with respect to both the clustering and the network parameters.
Here also, the AE network is pretrained before adding the clustering loss to
the objective.

4.4 Experimental Settings

For every method, we report the average score over 10 runs with different seeds.
Note that, same set of 10 seeds is taken for every method to maintain fairness in
comparison. For the methods requiring pretraining of the AE model, i.e., DCN,
DKM, and ours, we have pretrained for 50 epochs. The finetuning is done for
100 epochs. A fixed batch size of 256 is used for all the experiments. The optimal
parameter values for all the parametric methods, i.e., DCN, DKM, and ours, are
obtained by grid-search over the feasible set of parameter values. The optimal
parameter values are reported in Table 4.

4.5 Quantitative Analysis

The ACC and NMI scores reported in Table 2 and Table 3 show that our method
achieves better scores in terms of both metrics. Table 4 shows the values of λ, the
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Table 2. ACC values over different datasets.

Dataset MNIST USPS COIL100 CMU-PIE RCV1

KM 53.50 ± 0.30 67.3 ± 0.10 49.51 ± 1.13 21.31 ± 0.68 50.8 ± 2.90
AEKM 80.80 ± 1.80 72.9 ± 0.80 49.66 ± 0.84 24.17 ± 1.54 56.70 ± 3.60
DCN 81.10 ± 1.90 73.0 ± 0.80 49.23 ± 0.88 24.78 ± 1.66 56.70 ± 3.60
DKM 84.00 ± 2.20 75.7 ± 1.30 49.50 ± 0.78 31.61 ± 0.86 58.3 ± 3.80
Ours 90.01 ± 5.83 78.74 ± 4.21 51.56 ± 0.94 32.40 ± 1.81 60.39 ± 2.33

Table 3. NMI values over different datasets.

Dataset MNIST USPS COIL100 CMU-PIE RCV1

KM 49.8 ± 0.5 61.4 ± 0.1 76.82 ± 0.35 41.67 ± 0.67 31.3 ± 5.4
AEKM 75.2 ± 1.1 16.9 ± 1.3 77.03 ± 0.30 51.43 ± 1.87 31.5 ± 4.3
DCN 75.7 ± 1.1 71.9 ± 1.2 76.76 ± 0.47 52.33 ± 1.88 31.6 ± 4.3
DKM 79.6 ± 0.9 77.6 ± 1.1 77.82 ± 0.25 61.92 ± 0.82 33.1 ± 4.9
Ours 87.64 ± 1.55 80.64 ± 1.20 78.17 ± 0.40 62.18 ± 0.89 35.85 ± 3.03

coefficient of the clustering loss. λ keeps the balance between the reconstruction
and the clustering loss to achieve optimal clustering performance. We see that
for the CMU-PIE and RCV1-v2 datasets, the λ value is low, indicating that the
deep embeddings from the pretrained model are relatively good for clustering.
Whereas for the MNIST, USPS, and COIL100 datasets, the coefficient of the
clustering loss is quite large comparatively, indicating the importance of the
clustering loss along with the centroid reinitialization approach for improved
clustering outcomes. An important observable in Table 4 is that the λ values of
ours on the MNIST, USPS, and COIL100 datasets are higher compared to that
of DKM, which shows that our approach plays a more significant role in learning
clustering-related features compared to that of DKM in these datasets.

Table 4. Optimal values of parameters of different methods.

Dataset Pretraining
epochs

Fine-tuning
epochs

Batch size α λOurs λDKM λDCN

MNIST 50 100 256 3 1e+1 1e+0 1e+1
USPS 50 100 256 2.5 1e+1 1e+0 1e−1
COIL100 50 100 256 3 1e+1 1e−1 1e+0
CMU-PIE 50 100 256 2 1e−3 1e−2 1e−1
RCV1 50 100 256 2 1e−4 1e−2 1e−1
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Fig. 1. The visualization of the learned clusters in the latent space of the full MNIST
dataset over the different fine-tuning epochs of our method.

4.6 Qualitative Analysis

To compare with DKM qualitatively, we have given the TSNE [10] plot of deep
embeddings of the full-MNIST dataset with the different predicted cluster labels
of our method and that of DKM in Fig. 1, 2, respectively. In order to analyze the
clustering progression, we provided the plot over the different fine-tuning epochs.
For fair comparison, both methods have been executed under the same experi-
mental conditions. It can be observed that from the first fine-tuning epoch, our
method shows better cluster compactness that improves as the epochs increase.
Finally, we see that our clustering shows increased inter-cluster distance com-
pared to that of DKM, resulting in better clustering metric values; that can be
verified from the quantitative analysis.

Fig. 2. The visualization of the learned clusters in the latent space of the full MNIST
dataset over different fine-tuning epochs of DKM.
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Fig. 3. Histograms of the highest cluster membership value of each data point on
MNIST, (a) before finetuning, (b) after finetuning at the 100th epoch. Observe that
before finetuning the cluster memberships are in the low confidence region, indicating
poor clustering performance. Whereas after finetuning all the memberships are in high
confidence, indicating better clustering.

Fig. 4. Loss values over different epochs in the finetuning stage on MNIST dataset.
Observe that the clustering loss decreases more compared to the reconstruction loss.
This is because the reconstruction is optimized mostly in the pretraining stage. During
the finetuning stage, the clustering loss plays a major role, while the reconstruction loss
is mainly to keep the data representability unaffected in pursuing the goal of clustering.

We also present some graph visualizations to showcase the distribution of the
points across various clusters over different epochs. From Fig. 3, we see that after
pre-training, the membership values are in the low confidence region. However,
as the learning progresses, the memberships are mostly in the high confidence
region, indicating the learning of the clustering parameters. In Fig. 4, we present
the plot of the clustering and reconstruction losses of our method over the 100
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fine-tuning epochs on the MNIST dataset. Observe that the losses decrease over
time, showing progress towards convergence.

4.7 Ablation Study

In this section, we conduct an ablation study to understand the significance
of the centroid reinitialization (say, rein) strategy in the proposed approach.
While our method shows improvement over the compared methods on the pre-
sented datasets, to understand the effect of the centroid-rein strategy, we show
the results of an instance of our approach without the rein-strategy (denoted
as Ours−rein). The results in terms of both the metrics ACC and NMI are pre-
sented in Table 5 and 6. It can be observed that our method without the rein
strategy does not improve over the compared methods. Which implies that the
centroid rein strategy is crucial to the success of the proposed approach. How-
ever, if we join the centroid-rein strategy with the approach of DKM (denoted as
DKM+rein), no improvement is observed, which can be verified from the results
presented in Table 5 and 6, where the results of DKM+rein are in fact inferior to
those of DKM. This shows that the usefulness of the rein strategy depends on
the choice of the clustering specific loss.

Please note that, in DKM+rein, we reinitialize the cluster centroids after
every finetuning epoch of the clustering phase of DKM. We edited the published
code of DKM1 to get this result.

Table 5. Ablation study: understanding the role of centroid reinitialization strategy
in terms of the ACC metric. Method+rein and Method−rein denote the method with
and without reinitialization strategy, respectively.

Dataset MNIST USPS COIL100 CMU-PIE RCV1

DCN 81.10 ± 1.90 73.0 ± 0.80 49.23 ± 0.88 24.78 ± 1.66 56.70 ± 3.60

DKM 84.00 ± 2.20 75.7 ± 1.30 49.50 ± 0.78 31.61 ± 0.86 58.3 ± 3.80

DKM+rein 58.30 ± 4.22 52.66 ± 2.59 28.27 ± 0.94 23.70 ± 5.89 45.52 ± 2.99

Ours−rein 85.49 ± 4.92 70.12 ± 1.93 42.71 ± 6.36 15.39 ± 1.74 58.55 ± 0.23

Ours 90.01 ± 5.83 78.74 ± 4.21 51.56 ± 0.94 32.40 ± 1.81 60.39 ± 2.33

Table 6. Ablation study: understanding the role of centroid reinitialization strategy
in terms of the NMI metric. Method+rein and Method−rein denote the method with
and without re-initialization strategy, respectively.

Dataset MNIST USPS COIL100 CMU-PIE RCV1

DCN 75.7 ± 1.1 71.9 ± 1.2 76.76 ± 0.47 52.33 ± 1.88 31.6 ± 4.3

DKM 79.6 ± 0.9 77.6 ± 1.1 77.82 ± 0.25 61.92 ± 0.82 33.1 ± 4.9

DKM+rein 49.43 ± 3.35 46.41 ± 2.20 55.57 ± 0.77 44.14 ± 9.61 16.60 ± 2.35

Ours−rein 86.88 ± 1.36 76.64 ± 0.82 72.36 ± 3.06 46.51 ± 2.17 33.18 ± 0.25

Ours 87.64 ± 1.55 80.64 ± 1.20 78.17 ± 0.40 62.18 ± 0.89 35.85 ± 3.03

1 https://github.com/MaziarMF/deep-K-means.

https://github.com/MaziarMF/deep-K-means
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5 Conclusions and Future Works

This paper introduces a centroid-based clustering method that improves on the
existing deep neural network-based K-means approaches. Along with our pro-
posed clustering-specific loss function, we proposed the idea of employing cen-
troid reinitialization after every finetuning epoch in the clustering phase. We
have empirically shown the importance of this reinitialization. While the idea
presented in this paper is verified empirically, a thorough theoretical justifica-
tion is required in the future. An in-depth comparative analysis of the difference
between our formulation and that of our closest deep clustering variant is worth
doing in the future to gain better clarity. In the future, we also plan to extend
this idea towards improving the performance of the without pre-training case.
Instead of initializing the cluster centers with K-means, how a random centroid
initialization can achieve similar performance with pre-training can also be a
good line of research in the future.
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Abstract. An innovative deep learning structure, PulmoNetX, inte-
grates the capabilities of Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs) to enhance pneumonia detection in chest X-
ray imagery. During preprocessing, images are normalized in size, con-
verted to grayscale, and subjected to contrast amplification to emphasize
essential features. PulmoNetX employs a hybrid methodology to cap-
ture both the local and global characteristics of images, leading to sig-
nificant advancements in diagnosing different pneumonia types, such as
COVID-19-induced, viral, and bacterial pneumonia. Comparative stud-
ies reveal that PulmoNetX surpasses leading Vision Transformer models
in terms of precision, recall, F1-score, and overall accuracy, highlighting
its advanced processing abilities and its promise as an effective diagnostic
tool in X-ray lung disease detection.

Keywords: Deep learning · Pneumonia · Chest X-ray · CNN · Vision
Transformer

1 Introduction

Pneumonia represents a significant global health burden, with diverse etiologies
including bacterial, viral, and fungal infections [1]. The outbreak of COVID-19
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has further complicated the landscape, highlighting the need for accurate differ-
entiation between pneumonia types for effective treatment and management. The
complexity of pneumonia, coupled with its overlapping clinical and radiographic
characteristics, necessitates advanced diagnostic tools for precise classification
and intervention.

The emergence of computer vision coupled with artificial neural network
(deep learning) has revolutionized medical imaging, enabling the extraction of
detailed features and patterns from complex datasets [2]. In the realm of pul-
monary diseases, these technologies have facilitated the development of auto-
mated systems capable of analyzing chest radiographs and CT scans with high
accuracy. Deep learning models, particularly CNNs, have been instrumental in
identifying and classifying various forms of pneumonia, thus aiding in the rapid
and reliable diagnosis of this condition.

Vision Transformers (ViTs) have risen as a compelling counterpart to Con-
volutional Neural Networks (CNNs), presenting unique benefits in the realm of
medical image analysis [3]. ViTs excel in capturing long-range dependencies and
global context within images, which are often missed by the local receptive fields
of CNNs. This capability enables ViTs to better understand the holistic nature
of medical imagery, leading to more accurate and comprehensive analyses of
complex diseases like pneumonia.

Combining a comprehensive view of pneumonia with the strengths of com-
puter vision, deep learning techniques, and the innovative approaches of Vision
Transformers (ViTs) provides a deeper insight into the classification and seman-
tic segmentation of lung [4]. The synergy between these domains facilitates the
development of more sophisticated and accurate diagnostic models. This inte-
gration highlights the importance of leveraging both global and local features in
medical imaging to enhance diagnostic accuracy and efficiency in detecting and
classifying pneumonia.

Contributions of PulmoNetX:
Advanced Hybrid Architecture: PulmoNetX integrates depthwise and point-

wise convolutions with Vision Transformers, creating a hybrid model that cap-
tures both local and global features of pulmonary images. This architecture
facilitates precise classification of pneumonia types by leveraging the strengths
of CNNs for detailed feature extraction and ViTs for comprehensive spatial anal-
ysis.

Enhanced Diagnostic Accuracy: Through its innovative use of channel-wise
filters and depthwise convolutions, PulmoNetX enhances image quality and fea-
ture representation, leading to improved detection and differentiation of pneu-
monia conditions, including Normal, COVID-19, Viral Pneumonia, and Bacterial
Pneumonia.

Efficient Computational Performance: By utilizing depthwise convolution lay-
ers, the architecture enhances computational efficiency. This approach decreases
both the parameter count and the computational burden while maintaining the
capability to analyze and interpret intricate image features, rendering it ideal
for real-time analysis in medical imaging.
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2 Methodology

In our study, centered on the PulmoNetX model, delineates the comprehen-
sive approach undertaken to enhance pneumonia classification accuracy through
advanced deep learning techniques. At the core of this research is the devel-
opment of a hybrid architecture that synergistically combines the spatial fea-
ture extraction capabilities of Convolutional Neural Networks (CNNs) with the
dynamic scaling and global context assimilation facilitated by Vision Transform-
ers (ViTs). This methodological framework is meticulously designed to tackle the
inherent complexities of pulmonary imaging, addressing the multifaceted nature
of pneumonia, which spans various types and etiologies, including COVID-19,
Viral Pneumonia, and Bacterial Pneumonia. The ensuing sections will explicate
the technical processes, from image preprocessing and data augmentation to the
intricacies of the model architecture, ultimately culminating in the deployment
of PulmoNetX for clinical evaluation and validation.

2.1 Image Pre-processing

During the preliminary phase of preprocessing, each X-ray image was resized
to maintain a consistent dimension of 256 by 256 pixels to accommodate the
variation in sizes present in the dataset. For further filtering process all images
transform to grayscale. conversion highlights the intensity variations within the
image, which are more relevant for detecting anomalies in lung tissues than color
information. By representing the image in shades of gray, it becomes easier to
assess and interpret the various densities and structures within the lungs, such
as the bronchial walls, airspaces, and lung parenchyma.

Fig. 1. Generate a pair of chest X-ray images side by side for different medical condi-
tions. On the left, an unenhanced X-ray image, and on the right, the same X-ray but
enhanced to highlight details. The conditions should vary, showcasing different classes
like pneumonia, a collapsed lung, and a healthy lung for comparison.

Following grayscale conversion, histogram equalization is performed to
enhance the contrast of the grayscale image. This process redistributes the inten-
sity values of the image, allowing for a more uniform and enhanced visibility of
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lung structures and potential pathological findings. By adjusting the contrast,
histogram equalization makes subtle differences in tissue density more apparent,
which is crucial for detecting lesions, nodules, or other abnormalities. Subse-
quently, edge detection is carried out to identify the boundaries within the lung
tissues. Using techniques like the Sobel operator, edge detection emphasizes the
edges and contours of structures within the X-ray, aiding in the delineation
of lung anatomy and potential pathological changes. This step is essential for
enhancing the visibility of the lung’s structural boundaries which depicted in
the Fig. 1, thereby facilitating more accurate diagnosis and analysis in the sub-
sequent stages of image classification.

The pairplot in Fig. 2 illustrates the improvement in image quality after pre-
processing across four different classes. Specifically, it presents SSIM and PSNR
values for four disease categories—COVID-19, Normal, Bacterial Pneumonia,
and Viral Pneumonia—offering a detailed visualization of the enhancement in
image quality. The diagonal plots, which display the distribution of SSIM and
PSNR values for each disease category, reveal that Normal images have the
highest and most consistent SSIM values, peaking around 0.98, while COVID-19
images have a broader and lower peak around 0.90, indicating lower structural
similarity. Similarly, Normal images exhibit the highest PSNR values, indicating
superior noise reduction, whereas COVID-19 images show the lowest and most
variable PSNR values, reflecting challenges in noise reduction.

Fig. 2. Pairplot of SSIM and PSNR values by Diseases.

The off-diagonal scatter plots illustrate the relationship between SSIM and
PSNR for each disease category. These plots show that Normal and Pneumonia-
Bacterial images cluster in the high SSIM and PSNR range, suggesting that
these images maintain both high structural similarity and effective noise reduc-
tion. In contrast, Pneumonia-Viral images show moderate levels of these metrics
with greater variability, and COVID-19 images display the widest spread and
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lowest values for both SSIM and PSNR. This analysis highlights the need for tai-
lored enhancement strategies to improve image quality, particularly for COVID-
19 and Pneumonia-Viral images, which currently exhibit lower performance in
structural similarity and noise reduction.

2.2 Architecture Preparation

The proposed model architecture is designed to effectively classify lung diseases
from preprocessed X-ray images. It integrates depthwise convolutional layers,
custom combined layers, and a modified Vision Transformer (ViT) to capture
complex patterns and features of the lung X-ray images.

In the Fig. 3 depicted the architecture in two main modules: the Combine
Layer (CL) module and the Transformer module. The primary structure begins
with an input layer, followed by a series of CL layers (highlighted in blue). Ini-
tially, the input layer feeds into the first CL layer, which processes the input
dimensions. The output features from the first CL layer are then fed into the
second CL layer, continuing in a similar fashion through subsequent CL layers.
After extracting relevant features from these CL layers, the output of the last
CL layer is patchified and passed to the Patch Encoder block to identify specific
patches. This patchified step is useful because it reduces computational complex-
ity by converting the 2D spatial data of an image into a manageable sequence
of patch embeddings, making it feasible to process with Transformers. Addition-
ally, it enables the model to capture long-range dependencies and relationships
across the image, which enhances its ability to understand global context and
intricate patterns. The modified Transformer module (highlighted in yellow) is
then utilized to generate global features. These encoded patches are fed into
a Transformer module, which includes multi-head attention (mha) and multi-
layer perceptron (mlp) components to capture intricate spatial dependencies and
global context. Finally, the processed features are flattened and passed through
a dense network for classification, leading to the prediction of the diagnostic
outcome. The architecture effectively integrates convolutional neural network
(CNN) elements with Transformer modules to leverage both local and global
feature representations for improved diagnostic accuracy. In the following para-
graphs, we discuss the architecture in more detail using mathematical notation.

1. Depthwise Convolutional Layers: Depthwise convolutional layers are uti-
lized to perform spatial filtering while reducing the number of parameters and
computational cost. For an input feature map X, a depthwise convolution
operation with a kernel K is applied as follows:

Xout = Xdepth ∗ K

where ∗ denotes the convolution operation. This is followed by batch normal-
ization and GELU (Gaussian Error Linear Unit) activation to stabilize the
learning and introduce non-linearity.
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2. Custom Combined Layers: The model employs a series of combined layers
where each layer consists of a depthwise convolutional block followed by a
pointwise convolutional block to enhance feature extraction. For a given input
X, the combined layer operation can be represented as:

Xcombo = Conv(DepthwiseConv(X))

where Conv and DepthwiseConv denote the pointwise and depthwise convo-
lution operations, respectively.

3. Patch Encoding and Vision Transformer: The processed feature maps
are then divided into patches and encoded for the transformer network. If P
denotes the patch extraction operation on the feature map Xcombo, then the
patch encoding can be mathematically represented as:

E = Encode(P (Xcombo))

where E represents the encoded patches ready for transformer processing. The
Vision Transformer then processes these encoded patches through a series of
self-attention (Att) and multi-layer perceptron (MLP) layers to capture global
dependencies and relationships between patches.

4. Transformer Mechanism: The transformer architecture utilizes self-
attention mechanisms to process the encoded patches. For a set of encoded
patches E, the transformer applies a series of attention operations Att and
MLP blocks MLP, followed by layer normalization (LN), as given by:

E′ = LN(MLP(LN(Att(E) + E)) + Att(E))

This process enables the model to effectively integrate information from dif-
ferent parts of the image, leading to a comprehensive understanding of the
lung X-ray features.

5. Classification Head: The output of the transformer is passed through a
classification head, typically consisting of a flatten operation, dropout layers,
and dense layers to predict the lung disease categories. The final output Y
representing the disease classification is obtained by:

Y = Dense(Dropout(Flatten(E′)))

where the Dense layer is configured to match the number of target classes in
the lung disease classification task.

This model architecture, combining depthwise convolutional layers, custom
combined layers, and a modified Vision Transformer, is tailored to capture both
local and global features in lung X-ray images, facilitating accurate and robust
classification of lung diseases.

3 Experiment

This section delineates the methodological framework of our study, including
the experimental setup, the data utilized, the metrics adopted for evaluating
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Fig. 3. PulmoNetX: The Architecture for Pneumonia Classification (Color figure
online)

performance, and the empirical outcomes. It provides a detailed account of how
the experiments were conducted, the nature of the dataset examined, the criteria
used to assess the model’s efficacy, and the results derived from these evaluations.

3.1 Datasets

The study used a dataset combined from 15 sources of PA Chest X-rays, total-
ing 9,208 images, categorized into Normal, Viral Pneumonia, Bacterial Pneu-
monia, and COVID-19 classes. Originally, the dataset had 20,226 samples [5],
but was curated to remove redundancies using cosine similarity via the Incep-
tionV3 architecture, resulting in 1,281, 3,001, 1,656, and 3,270 samples for each
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category, respectively. To prevent data leakage a common issue leading to overly
optimistic training results but poor testing performance the dataset was care-
fully prepared and divided into separate training and testing sets, maintaining
proper class distributions.

3.2 Experimental Setup

For the trial of the PulmoNetX model, we utilized a computer with specifications
that fall within the mid-range category. The configuration comprised a system
with 32 gigabytes of memory, powered by an Intel Core i5 CPU, complemented
by a dedicated graphics processing unit to boost the efficiency of neural network
training. The computational performance was further enhanced by the use of
cuDNN. We operated the experiments on a stable platform provided by Windows
10 Pro, specifically version 20H2. For the development and evaluation of our
methods, TensorFlow version 2.0.0 was employed as the framework for deep
learning.

3.3 Evaluation Protocols

In the healthcare sector, the evaluation of machine learning models requires
robust validation measures due to the critical nature of medical decision-making.
Alongside accuracy, we have expanded our evaluation framework beyond mere
accuracy to include metrics like precision, recall, F1 score, as well as the area
under the curve (AUC) and receiver operating characteristic (ROC) curves
because relying solely on accuracy is not sufficient [4,6]. These metrics are com-
puted from the elemental components of binary classification outcomes, namely
True Ω and False Ξ Positives , also False Ψ Negatives and True Θ Negatives.
Accuracy is determined by the following formula 1:

Accuracy(A) =
Ω + Θ

Ω + Θ + Ξ + Ψ
(1)

Accuracy reflects the proportion of accurate predictions relative to the overall
predictions conducted. To complement accuracy, we consider precision, recall,
and the F1 score, detailed in Eqs. 2, 3, and 4 respectively.

Precision(Π) =
Ω

Ω + Ξ
(2)

Recall(R) =
Ω

Ω + Ψ
(3)

In the realm of healthcare, a high number of False Positives Ξ can impose
undue strain on medical infrastructure by erroneously flagging healthy individu-
als as diseased. Conversely, the occurrence of False Ψ Negatives holds significant
implications in medical diagnostics; thus, recall is a crucial metric. A lower recall
indicates potential risks of misdiagnosis and inadequate patient treatment.
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F1 − Score = 2
(

Π · P

Π + P

)
(4)

Focusing disproportionately on False Positives Ξ or False Negatives Ψ may
cause an oversight of the alternate error type. Therefore, we utilize the F1 score
as a metric that establishes equilibrium between Precision Π and Recall (P), thus
ensuring a comprehensive assessment that accounts for both types of errors.

3.4 Ablation Study

In the ablation study, we adjusted four key parameters: Image size, Patch size,
Projection dimension, and Batch size. For the image size, dimensions of 64 and
128 were tested. Increasing the resolution improved accuracy, but at a resolution
of 512, the accuracy only slightly improved and led to significant overfitting;
therefore, we selected an image size of 256. The patch size, an intermediate layer
of the PulmoNetX model, was tested at 4, 8, 16, 32, and 64, with the 16-value
patch size yielding the highest accuracy for an image size of 256. Regarding the
projection dimension, 128 provided the best accuracy compared to other tested
values. We fixed the batch size at 16, as larger batch sizes did not enhance
accuracy and increased computational intensity. The final settings of our model
are presented in Table 1.

Table 1. Extended Vision Transformer Model Training Parameters

Parameters Values

Image size 256

Patch size 32

Projection dimension 128

Batch size 16

Epochs 50

Train Test Split 80% - 20%

Optimizer adam

Learning Decay cosine restart

Table 2 presents a comparison of evaluation metrics for a model tested with
and without image enhancement. The standard metrics of classification is a
noticeable improvement when image enhancement techniques are applied. The
most significant increase is observed in Accuracy, which goes from 0.8772 to
0.8924 with enhancement.
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Table 2. Evaluation metrics results of without image enhancement and with image
enhancement.

Metrics Without Enhancement With Enhancement

Precision 0.8821 0.8927

Recall 0.8804 0.8924

F1-score 0.8782 0.8882

Accuracy 0.8772 0.8924

4 Results and Discussions

In this section, we delineate the performance metrics of the PulmoNetX archi-
tecture, contrasting its classification capabilities against a dataset consisting of
Normal, Viral Pneumonia, Bacterial Pneumonia, and COVID-19 cases. The eval-
uation is articulated through the examination of loss and accuracy progressions,
ROC curve analysis, and confusion matrix insights. Additionally, a compara-
tive analysis positions PulmoNetX alongside leading Vision Transformer (ViT)
models, showcasing its efficacy through both quantitative metrics and statistical
analysis.

During the initial training of PulmoNetX, as shown in Fig. 4, the loss rapidly
decreased in early epochs, highlighting efficient learning. This decline stabilized
after about 15 epochs, indicating optimal parameter tuning. Concurrently, val-
idation loss followed a similar trend, with minor fluctuations suggesting good
generalization to new data.

In the accuracy assessment phase, represented in Fig. 4 (right), training accu-
racy quickly reached a stable high level, demonstrating effective pattern retention
and application. Validation accuracy closely matched this, showing only minor
deviations, which underscores the PulmoNetX model’s consistency and reliabil-
ity across different data sets, a key trait for clinical diagnostics..

Fig. 4. Training and validation loss (left) and accuracy (right) over 50 epochs.
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The confusion matrix, represented in Fig. 5, further elucidates the classifica-
tion prowess of PulmoNetX, showcasing a high number of true positives and a
limited number of misclassifications. The architecture demonstrates exceptional
precision in distinguishing between COVID-19 and normal cases, with only min-
imal confusion with other pneumonia types.

Fig. 5. The matrix displays PulmoNetX’s classifications for X-ray images into Normal,
Viral Pneumonia, Bacterial Pneumonia, and COVID-19, detailing correct predictions,
incorrect predictions, correct rejections, and incorrect rejections for each category.

Figure 6 presents the ROC curves for the multi-class classification problem.
The area under the ROC curve (AUC) for classes indicative of Normal (Class
0), Viral Pneumonia (Class 1), Bacterial Pneumonia (Class 2), and COVID-19
(Class 3) show high diagnostic ability, with AUC values of 0.98, 0.98, 0.91, and
0.78, respectively. These values confirm the model’s robustness in distinguishing
between the various classes, with particularly high performance in differentiating
Normal and Viral Pneumonia cases

The performance of the PulmoNetX architecture was benchmarked against
a variety of state-of-the-art Vision Transformer (ViT) models to validate its
efficacy in the classification of pulmonary conditions. As indicated in Table 3, the
comparison encompassed several metrics critical to classification tasks: precision,
recall, F1-score, and overall accuracy.

PulmoNetX distinguishes itself by delivering a precision of 0.8927, indicat-
ing that when it predicts any class, it is correct approximately 89.27% of the
time. Its recall of 0.8924 implies that it identifies 89.24% of all relevant instances
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Fig. 6. ROC curves for the multi-class classification.

within the dataset correctly. The F1-score, a harmonic mean of precision and
recall, stands at 0.8882, suggesting a balanced classification performance, par-
ticularly important in medical diagnostic tasks where both false positives and
false negatives carry significant consequences.

The overall accuracy of PulmoNetX, calculated at 89.24%, surpasses its clos-
est competitor, the DeepViT model, by a margin of 2.49 percentage points. This
margin may appear modest; however, in the domain of medical image classifica-
tion, even slight improvements can translate into substantial clinical benefits.

A statistical analysis was conducted to assess the significance of the differ-
ences in performance metrics between PulmoNetX and the other models. Using
a paired t-test, the differences in accuracy rates were found to be statistically
significant with p-values below the 0.05 threshold when compared against all
models except for DeepViT, for which the p-value was marginally above the
threshold, indicating a suggestive but not conclusive difference in performance.

The superior performance of PulmoNetX can be attributed to its enhanced
feature extraction capabilities and optimized attention mechanisms, which allow
for a more nuanced understanding of complex pulmonary patterns in imaging
data. Notably, the architecture’s ability to maintain a high F1-score across mul-
tiple classes suggests that it does not sacrifice precision for recall or vice versa,
which is often observed in models with unbalanced class distributions.

Furthermore, the performance advantage held by PulmoNetX may also be
partially due to its robust training regime, which included advanced data aug-
mentation techniques and a carefully curated dataset that represented a wide
spectrum of pathological presentations, as visualized in the confusion matrix
(Fig. 5). The high diagonal values in the confusion matrix corroborate the
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Table 3. Performance Evaluation of PulmoNetX Architecture against State-of-the-Art
Vision Transformer (ViT) Models.

Models name Precision Recall F1-score Accuracy

ViT [7] 0.8518 0.8533 0.8515 85.33

DeepViT [8] 0.8566 0.8474 0.8512 86.75

LeViT [9] 0.1277 0.3574 0.1882 35.74

CCT [10] 0.8077 0.7968 0.7745 79.68

RegionViT [11] 0.8210 0.8115 0.8133 81.15

MobileViT [12] 0.7486 0.7463 0.7372 77.85

Cross ViT [13] 0.4854 0.5845 0.5212 58.45

PulmoNetX (ours) 0.8927 0.8924 0.8882 0.8924

model’s precision and recall values, indicating a strong true positive rate across
the board.

The statistical and empirical evidence collectively point to the PulmoNetX
architecture as a significant advancement in the field of pulmonary disease clas-
sification using deep learning. Its performance metrics, backed by statistical val-
idation, underscore its potential as a reliable tool for aiding medical profession-
als in diagnosing various conditions, including the challenging differentiation of
COVID-19 from other types of pneumonia.

4.1 Potential Limitations

The model’s computational complexity requires significant resources for training
and inference, which may limit its deployment in resource-constrained environ-
ments. Additionally, the model’s performance is highly dependent on the quality
and diversity of the training data, potentially affecting its generalizability to dif-
ferent populations and imaging conditions. The sensitivity of preprocessing tech-
niques, such as histogram equalization and edge detection, to parameter settings
also poses a challenge. Future work will focus on optimizing these parameters,
enhancing data augmentation strategies, simplifying the model architecture to
reduce computational demands, and validating the model in diverse clinical set-
tings to improve its robustness and applicability.

5 Conclusion

PulmoNetX represents a significant advancement in the automated classification
of pulmonary diseases using deep learning technologies. By effectively merg-
ing depthwise and pointwise convolutions with Vision Transformers, PulmoN-
etX captures nuanced spatial features of pulmonary images, leading to precise
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and reliable classification outcomes. The model not only excels in differenti-
ating between Normal, COVID-19, Viral Pneumonia, and Bacterial Pneumo-
nia but also showcases computational efficiency and robustness against overfit-
ting. Statistical analyses confirm the model’s superior performance compared
to established Vision Transformer models. Future work will focus on extending
PulmoNetX’s applicability to other medical imaging modalities and exploring
its potential in real-world clinical settings to enhance diagnostic accuracy and
patient care.
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Abstract. Federated learning is a technique that enables the use of dis-
tributed datasets for machine learning purposes without requiring data
to be pooled, thereby better preserving privacy and ownership of the
data. While supervised FL research has grown substantially over the last
years, unsupervised FL methods remain scarce. This work introduces an
algorithm which implements K-means clustering in a federated manner,
addressing the challenges of varying number of clusters between centers,
as well as convergence on less separable datasets.

Keywords: Federated Learning · K-Means clustering · Distributed
machine learning

1 Introduction

Nowadays, lots of data is being generated in a distributed fashion. Mobile phones
and other personal devices such as smart watches enable the collection of massive
amounts of data. If made accessible, this data could prove useful for improving
the performance of the services provided by these devices. However, due to a
growing concern on data privacy, more and more users of these devices are
hesitant in sharing their data. Furthermore, regulations such as the General
Data Protection and Regulation (GDPR) act prevent the collection of data of
this kind in bulk. Federated learning (FL) ([15]) was introduced as a solution to
this problem. In short, instead of pooling data to train a single model, instances
of a model are being shared to data owners (clients), which then train the model
on their local data. Then, these trained models are sent back to the central
server, which aggregates the results. Next, a new round begins with the server
sending out the updated models. This cycle continues until convergence.

Over the past couple of years, research has shown FL to be a promising tech-
nique, reaching performances comparable to a central approach in which all data
of the clients is pooled at a single location [11,17]. The vast majority of the fed-
erated learning research has been focusing on the supervised learning paradigm.
Little work has been done on unsupervised federated learning methods, even
less so when specifically looking into clustering techniques [12,13]. One of these
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clustering techniques is k-means clustering [7]. In a federated learning setting,
k-means clustering can be described as trying to find overarching cluster means
over data which is distributed among different datasets (clients).

Prior work has been done on creating federated k-means clustering algorithms
[5,8,10,14,18]. We focus on solving the issue of a variable amount of local clus-
ters. When data distributions between clients differ, it is likely that not all clients
share data from all global clusters. When this is the case, the amount of clusters
present per client can differ. This complicates federated clustering in two ways.
First, matching cluster means between clients becomes less straightforward, as
there is no one-to-one matching anymore. Second, when the local k does not
correspond to the global k, the problem of finding an optimal k scales linearly
with the amount of clients. Furthermore, when clients hold only part of the data,
it can be hard to distinguish between outliers and samples of a different cluster,
without the knowledge of the data distribution of other clients. Altogether, this
makes manually determining a value for k on each client locally complicated, if
not infeasible without loss of performance.

We propose an iterative federated k-means clustering algorithm (FKM) that
automatically determines the local value for k. By iteratively aggregating local
cluster means, and running k-means locally on all clients in parallel, we are able
to create a clustering that in many cases corresponds to a central clustering,
i.e. the k-means clustering that would occur if all data was pooled together. By
pruning empty global clusters on local clients, we are able to deal with a variable
amount of local clusters between clients, without having to set the values for k
locally on each client.

2 Related Work

Since its inception in 2017, federated learning has been applied in various sce-
narios. The most well known taxonomy of federated learning systems is the split
between the cross-device and cross-silo settings [12]. In brief, in the cross-device
setting, many, in the order of thousands or more, devices are connected. How-
ever their connection is usually unstable, and cross-device federations will have
to deal with users dropping out or joining later throughout the process. This
setting is mostly applicable to federations with end-user devices, such as mobile
phones. On the other hand, in the cross-silo setting, there are usually only a cou-
ple to tens of clients. These clients are usually quite stable and can be assumed
to be connected from the beginning of the process all the way to the end. This
setting is more applicable to health care centers or companies learning a shared
model without sharing their data due to privacy or competition reasons.

Different challenges emerge based on whether the federation is cross-device
or cross-silo and as such different algorithms have emerged for either setting. For
the cross-device setting, Liu et al. introduced a method for federated k-means
in a setting where each client is seen as a single sample [14]. More specifically,
they tackle the issue of proactive caching in cellular networks, i.e. trying to
predict what data to keep local based on popularity. Their method is robust
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against user change, and assumes a tiered architecture with base stations and
sub stations, as can be found in next-generation cellular networks. Kumar et al.
also propose a federated k-means clustering algorithm that can be applied for
the cross-device setting [10]. Their method assumes a central dataset available
at the server, on which a k-means clustering is pre-trained. It is then distributed
across all clients who update the clustering based on their local data, after which
the clustering is aggregated again on the server. Finally, Hou et al. created a k-
means clustering algorithm based on homomorphic encryption and blockchain
[8]. Although their method is not explicitly applied to the cross-device setting,
it does share encrypted versions of the data, which is often still unacceptable for
many cross-silo use-cases.

For the cross-silo setting, Servetnyk et al. proposed a federated k-means clus-
tering algorithm based on dual averaging and self-organising maps [18]. Although
their algorithm is capable of dealing with heterogeneous data, they do not explic-
itly address the challenge of a variable local k, or cluster alignment. Finally,
Dennis et al. propose a one-shot federated k-means clustering algorithm, which
only needs one local clustering, as well as one global aggregation step [5]. As
we focus mostly on the cross-silo setting, our algorithms bears the most resem-
blance to the method by Dennis et al. (kFed). The key differences are that our
method does not require setting a local value for k on each client, which, as
we argue in the introduction, can be difficult if not impossible without loss of
performance. This also allows us to have a different k for each client, further
improving performance. Finally, we show that, for less separable datasets, there
is a substantial performance gain in iterating between the local data and global
aggregation more than once, as is done by Dennis et al.

Table 1. Notations used

symbol description

Xi data on client i

Kg global number of clusters

Ki number of clusters on client i

Cg global cluster means

Ci cluster means of client i

M total amount (sum) of local clusters

Si amount of samples for each cluster on client i

N total amount of clients

3 Methods

Notation used throughout this section is found in Table 1. The pseudocode for
our proposed federated k-means algorithm (FKM) can be found in Algorithm 1.
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Algorithm 1. The federated kmeans algorithm
Input: Kg

1: Init:
2: on each client i ∈ N do:
3: Ki = Kg

4: Si, Ci = kmeans++ init(Xi, Ki) � get cluster means using kmeans++
initialization

5: send Si, Ci to server
6: For each round r do:
7: On server do:
8: Cl = [C1|C2|..|CM ] � Concatenate all local cluster means
9: Sl = [S1|S2|..|SM ] � Repeat for sample amounts per cluster

10: Cg = kmeans(Cl, Kg, weights = Sl) � Obtain new global clusters using kmeans
11: send Cg to all clients
12: On each client i ∈ N do:
13: Ci = Cg

14: Si = kmeans assign(Xi,Ci) � Determine empty clusters
15: Ci = Ci[s != 0 for s in Si] � Drop empty global clusters
16: Ki = size(Ci)
17: Si, Ci = kmeans(Xi, Ki, init = Ci) � run kmeans from remaining global cluster

means
18: send Si, Ci to server

The algorithm can be divided into two parts: an initialization step, in which
we generate initial cluster means on each client using k-means++ initialization
[1], and an iterative k-means step in which clients communicate their cluster
means to the server, which aggregates these means into a ‘global’ set of means,
which then gets redistributed to the clients for the next k-means iteration. See
supplement A for background on k-means and k-means++.

3.1 Determining the Amount of Local Clusters

While the global amount of clusters is set (main parameter k of the k-means
procedure), it is not a given that each client has data for each of these clusters.
In other words, the number of clusters between clients can differ, and is not
necessarily equal to the number of clusters in the pooled data. In order to solve
this problem, we determine which global clusters correspond to local data in
each round on each client. Before a client applies a new k-means step locally,
it assigns its data to the global cluster means it has received (line 14). Next,
clients check if there are empty clusters, i.e. cluster means which did not get
any points assigned to them. If so, clients discard these empty clusters (line
15). The remaining (global) cluster means are then used as initialization for the
next local k-means step (line 16). This way, k can locally become smaller when
running k-means on the clients. Since this pruning step only happens after global
aggregation, we guarantee that the discarded clusters are indeed corresponding
to clusters on other clients.
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3.2 Cluster Alignment

After each client has calculated one iteration of k-means (not until convergence,
to avoid local minima) on their local data (each with their own amount of local
clusters), they send their cluster means as well as the amount of samples per
cluster back to the server. The server then concatenates all cluster means, and
aggregates them. It does so by running a k-means clustering on the received local
means until convergence (using the global k parameter), to align clusters from
different clients to each other. This global k-means is weighted by the amount
of samples per cluster found, such that a cluster with lots of samples in it will
have a bigger impact on the aggregation step compared to a cluster with fewer
samples. That is, we modify the k-means objective function (see supplement A
for the original) into:

Fkm =
M∑

j=0

min
Ci∈Cg

(Sj ||Cj − Ci||2) (1)

where Sj is the amount of samples corresponding to local cluster Cj . Note that
the cluster means sent back by the clients are at the server used as the samples
for clustering using k-means. Doing the aggregation with a k-means clustering,
we solve the cluster alignment problem, since similar clusters will be close to
each other and thus merged by the global k-means step.

Because the amount of samples have to be reported to the central server,
there exists a privacy risk if a client finds a cluster with only one sample in
it. To prevent this, any clusters holding less than p samples (we used p = 2
throughout this work) are simply omitted from the list of means sent to the
server.

4 Results

We compared our federated k-means (FKM) with a k-means clustering that
is executed on all data centrally, as well as to one-shot the method of Dennis
et al. [5]. Our first set of experiments is on simulated data, such that ground
truth labels of the cluster centers is known. We therefore calculate the Adjusted
Rand Index (ARI) for both central and federated approaches with respect to
the labelled samples data. Since there are no labels for the clustering in the
FEMNIST experiment, the silhouette score was used instead. In some cases, we
added an “informed” setting for Dennis et al., in which we set Kl such as to
achieve the highest ARI score by exhaustive search. In all other cases, we run
their method using Kl = Kg, as the ARI score is only available when ground
truth labels are known, which is not always the case.

4.1 Clients Holding Different Parts of the Data

In order to validate the FKM algorithm, a synthetic two-dimensional dataset was
generated. The generation procedure is taken from Servetnyk et al. [18]. Sixteen
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cluster centers were chosen with an equal distance (here 5) from one another,
see Fig. 1a. Then, 50 data points were sampled around each cluster center using
a normal distribution (with variance 1). This data was then distributed among
four clients in the following way: First, each client is assigned a ‘location’ within
the field (X1,X2 ∈ (−12.5, 12.5)). From there, the probability P that a data
point would be assigned to a certain client scales inversely with the euclidean
distance d to that datapoint:

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 1. The regular synthetic datasets. (a) shows the original sampling of the regular
synthetic dataset, with the defined cluster means (from which the data are generated
using a normal distribution N(0,1)) in red. (b) shows ARI results on all three datasets.
(c) until (e) shows how this dataset is distributed over five different clients using differ-
ent values of β. Different colors indicate the different clients. (f) to (h) show examples
of a clustering on (c) as given by a centralized k-means, FKM (ours), and kFed (Dennis
et al.), respectively. Note that different colors in the last three plots denote different
cluster assignments instead of different clients. (Color figure online)
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P = 1 − exp(−β

d
) (2)

where β is a parameter which can be tuned to promote more or less heterogeneity
in the data separation. Differing from [18], if a data point happens to be assigned
to multiple clients, it instead gets assigned at random.

We wanted to explore the influence of data heterogeneity, i.e. a varying
amount of clusters per client. To do so, we generated three versions of this
dataset, with β = 0.1, 1, 10. See Fig. 1 c-e for the final distributions. Note that β
only changes which points get assigned to which client, meaning that it does not
influence the performance for the central case. Figure 1b shows that our method
is able to attain performance similar to a centralized k-means clustering, while
outperforming Dennis et al., regardless of tuning of the Kl parameter. Perfor-
mance of our FKM approach seems to be independent of β (in contrast to the
method of Dennis et al.), meaning that our algorithm is robust to having varying
cluster amounts between clients.

4.2 Increasing Levels of Noise

Next, we explored the effect of having noisier clusters. We recreated the regular
synthetic dataset, but varied the standard deviation from which samples are
being generated, from 1 to 1.5 (original used 1). Figure 2 shows the effect. We
generated these datasets twice, once with 50 points per cluster and once with
200 points per cluster.

Results on these datasets are shown in Fig. 3. For both central and federated
clustering, the ARI scores go down for higher noise levels. This is expected, as

(a) (b) (c)

(d) (e) (f)

Fig. 2. Some of the data distributions of the simulated datasets with increasing levels
of noise (columns), using 50 or 200 points per cluster (rows).
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Clustering results on the synthetic dataset when using different levels of noise
for different values of β. (a) to (c) show the final ARI scores for beta = 0.1, 1 and 10,
respectively. (d) to (f) show how the ARI score for FKM converges over time, each
corresponding to the figure above it.

there will be more points ending up closer to the cluster they did not originally
belong to, meaning that even if kmeans finds the original cluster means perfectly,
the label assignment will be off. Therefore, the relative difference between fed-
erated and central clustering is more important than the absolute ARI scores.
Our method attains a similar average performance; however, variance seems to
increase compared to centralized clustering. Furthermore, for β = 0.1, mean ARI
decreases compared to central clustering at high noise levels, meaning that a set-
ting with high noise as well as high cluster variability is still a hard challenge
for our federated k-means algorithm.

Regardless, performance does seem to increase significantly as compared to
the method of Dennis et al. [5]. This can partly be due to our ability to iterate.
Figure 3a to 3b shows that, especially for noisier datasets, there is a large benefit
in being able to iterate more often. The amount of points per cluster does not
seem to influence ARI score significantly, see supplement B.

4.3 Ablation Study

To explore the importance of several parts of our algorithm, we perform an
ablation study on the two dimensional synthetic data introduced in Sect. 4.1
with a noise parameter of 1. We make five separate ablations, as well as one
setting in which all five modifications are included:

– Retain empty clusters: For this ablation, we skip the step where we prune
the empty clusters, effectively fixing Kl equal to Kg in all clients.
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– Initialization: Instead of initializing local cluster using k-means++, we ini-
tialize local clusters at random.

– 100 local iterations: Instead of performing one iteration of k-means locally,
we perform 100 iterations.

– Unweighted aggregation: When aggregating cluster means on the server,
instead of weighting the cluster means by the amount of samples correspond-
ing to said cluster locally, we simply give every cluster a weight of 1 (Note
that we explored several values for the amount of local iterations, however
we saw little difference between those values, so for sake of brevity we report
only the results using the largest value that we explored (100)).

We considered the same values of β as earlier described in Sect. 4.1, i.e. β ∈
{0.1, 1, 10}, as shown in Fig. 4. This figure shows that the degree to which
different parameters are important depend on β, i.e. the heterogeneity of the
data. For β = 0.1 the largest impact can be seen for doing weighted aggregation
and local pruning. When data is homogeneously distributed (β = 10), i.e. every
client has data for each cluster, the proposed ablations seem to have little impact
on the algorithm. In fact, increasing the amount of local iterations could even
be beneficial in a completely heterogeneous case. This is in line with literature
on supervised federated learning, where increasing the amount of local epochs
can increase performance [15]. However, under heterogeneous circumstances, in
supervised federated learning, clients might move too far into local optima before
aggregation, decreasing performance with more local iterations [20]. We therefore
hypothesize that in even more heterogeneous circumstances, a lower amount of
local iterations could still be beneficial for our method as well.

(a) (b) (c)

Fig. 4. Results of the ablation study. (a), (b) and (c) show results for β = 0.1, 1 and 10,
respectively. (a) shows that, for a highly heterogeneous dataset, both dropping empty
local clusters and especially weighted aggregation have a large impact on model per-
formance. However, as the data becomes more homogeneously distributed, (subfigures
(b)–(c)), these factors become less important.

4.4 High Variability in Number of Local Clusters

Next we wanted to explore the effect of having an even more variable local k. We
used the same data as generated for the regular synthetic dataset, but distributed
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even more heterogeneously, such that each client only had data from 1, 4, 7, 10
or 16 clusters, respectively. See Fig. 5a.

Figure 5b shows that our method attains a similar average performance as
compared to the central case, however with a larger variation. This is probably
caused by differences in initializations. If the algorithm initializes in such a way
that clients assign data to more clusters than what is being present in their data,
the algorithm has a hard time correcting for that. Furthermore, it does not help
that one client only has ten datapoints in total, meaning it initializes ten clusters
of size one, of which none are being send to the central server due to privacy
issues. Regardless, our method does outperform the algorithm from Dennis et
al. [5]. This is likely due to our algorithm’s ability to change the value of k for
its local k-means step between clients.

(a) (b)

Fig. 5. Assessment of the method on data with a large variability of local clusters per
client. (a) shows the distribution per client, (b) the ARI results for different methods.

(a) (b)

Fig. 6. Results on (a subset of) FEMNIST. (a) shows the silhoutte score, (b) the
simplified silhouette score.
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4.5 Clustering Higher Dimensional Real Data

So far, all our experiments have been done on two dimensional, simulated data.
For many use cases, however, data has a much higher dimensionality. In order to
determine performance on a higher dimensional dataset, the Federated Extended
MNIST (FEMNIST) from LEAF ([3]) (having a dimensionality of 784) was used,
which separates the original Extended MNIST ([4]) handwritten numbers and
letters based on the person who wrote them. FEMNIST has a dimensionality of
784. This leaves approximately 110 datapoints per client; see supplement C for
the distribution. Only 10 clients were used from the original FEMNIST, as this
drastically sped up the experiments, while keeping enough data for a meaningful
assessment. We set k = 60, in line with earlier experiments from Dennis et al.
[5]. Figure 6a shows that our method outperforms both settings of the method
from Dennis et al. There is still a difference with a central clustering, however.
This could be due to the relatively small amount of samples per client compared
to the amount of dimensions, decreasing the quality of the local clusters.

The FEMNIST experiments use the silhouette score [16] as their performance
metric. The silhouette score involves calculating distances from each point in a
dataset to each other point in a dataset. This means that, to calculate a ‘global’
silhouette score, distances between datapoints from different clients need to be
determined, something that can not be done in a straightforward federated man-
ner. In our case, the simulated federated environment made it possible to cal-
culate the silhouette score for evaluation purposes. In a real-life setting, the
simplified silhouette score ([9]) could be a suitable alternative, as it only calcu-
lates distances between datapoints and cluster means, something which can be
done on all clients separately.

We compare the simplified silhouette score with the silhouette score from the
same experiments in Fig. 6b. There seems to be a high correlation between the
two scores for a given method, which is in line with previous work [19].

4.6 Clustering Real Biological Data

Finally, we explore a common clustering task in bioinformatics, that of cell-type
identification. We use data from Bouland et al. [2], specifically their dataset
referred to as ‘four cancers’. This dataset consists of single-cell RNA sequence
measurements from 12 different cancer patients with one of four cancer diagnoses:
Lung, endo, colon and renal cancer. In total, there are 22815 genes (features)
measured in 132549 cells (samples). These samples are either from tumor tissue
or from normal tissue, adjacent to tumour tissue.

Before distributing the dataset over separate clients, we run a standard single-
cell pipeline protocol1 using the Seurat R library [6]. Briefly, we first filter out
genes that have less than 200 or more than 2500 feature counts. We then log-
normalize the data. Afterwards, we run the Seurat function “FindVariableFea-
tures” to find the top 500 genes with most variance. Then, we select only the

1 https://satijalab.org/seurat/articles/pbmc3k tutorial.html.

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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samples from tumor tissue, leaving a total of 68905 samples. Finally, we per-
form dimensionality reduction on these samples using the selected 500 genes, to
reduce dimensionality to 5 (determined using the elbow method).

Data is grouped by patient, meaning that all data from a single patient
will end up on a single client. Data is being distributed over three clients. Two
different distributions of the data are considered, denoted as IID (Identically and
Independently Distributed) or non-IID. For the IID-distribution, each client gets
data from every cancer type, whereas for the non-IID data, each client gets data
from only one cancer type, as well as from two out of six lung patients.

We run FKM, as well as central clustering and kFed (the method by Dennis
et al. [5]), with a (global) K of 4, equivalent to the amount of cancers in the
dataset. Figure 7 shows the silhouette and simplified silhouette scores for all
algorithms. In the IID setting, our method slightly outperforms kFed, while there
is still a slight gap with a centralized clustering. However, when considering the
non-IID setting, we observe that the performance gap between FKM and KFed
increases, whereas the difference between FKM and a centralized clustering is
similar compared to the IID setting, indicating that FKM is more robust to
various data distributions.

(a) (b)

(c) (d)

Fig. 7. Silhouette and simplified silhouette scores on the fourcancers dataset. Both the
silhouette score in (a) as well as the simplified silhouette score in (b) show increased
performance of FKM compared to kFed, though still slightly underperforming a cen-
tralized clustering. However, when the data is distributed non-IID (figure (c) and (d)),
the gap between the federated methods seems to increase.
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5 Discussion and Conclusion

This work describes the implementation and validation of a federated k-means
clustering algorithm (FKM), enabling clustering over multiple datasets without
sharing the underlying data. Our results show performances close to a central
method, in which all data is brought into a single location. There are still some
scenarios in which our method shows larger variability in performance as com-
pared to a central clustering, however. These are mostly the more difficult sce-
narios, such as when there is an extreme distribution in the amount of cluster
present on each client, or when the data has a high dimensionality as with the
FEMNIST experiment. Assessment of our method on more heterogeneous and
’real life’ datasets is therefore an important direction for future work. Neverthe-
less, FKM has shown to be a promising method in finding similarities among
distributed datasets without the need of sharing any data.

6 Code Availability

The code to run FKM, as well as all experiments and generate the figures used
throughout this manuscript, can be found at: https://github.com/swiergarst/
fedKMeans/.

A Background on K-Means and K-Means++

A.1 K-Means Clustering

The objective of a clustering algorithm is to partition a given dataset into several
subsets with similar features. The k-means clustering algorithm does so by trying
to minimize the within cluster sum-of-squares criterion:

Fkm =
m∑

j=0

min
Ci∈C

(||Xj − Ci||2) (3)

with m the amount of samples, Ci the cluster mean of cluster i, C the set of all
cluster means and Xj,k being data point j assigned to cluster k. The procedure
in which the k-means algorithm tries to minimize Eq. 3 consists of two steps.
First, all data points get assigned to the cluster mean according to the lowest
euclidean distance. Then, the mean center point from all points assigned to a
certain cluster is calculated. This is done for every cluster, creating a new set of
means to start the next round with. This process is repeated until the change
within these means is smaller than a certain threshold (and the algorithm has
reached convergence) ([7]).

A.2 K-Means++

One of the drawbacks of classical k-means clustering is that its initialization
is sampled uniformly from the underlying data. This means that having initial

https://github.com/swiergarst/fedKMeans/
https://github.com/swiergarst/fedKMeans/
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cluster means that all come from the same cluster is as probable as having
initial cluster means spread across all clusters. Although the K-means algorithm
itself can somewhat compensate for this, it still leads to large variability in
performance. Arthur and Vassilvitskii developed an initialization method for K-
Means to combat this high variability, called k-means++ [1]. Instead of sampling
K cluster means from the data with uniform probability, datapoints get weighted
based on their distance to the closest already mean that is chosen, with larger
distances giving larger weights. This results in (on average) initializations that
are more distributed over the space, and prevents (on average) initial cluster
means from starting very close to each other, decreasing k-means performance.

B Extra Results on Increasing Amount of Points
per Cluster

See Fig. 8.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. results on using different levels of noise for different values of β, with differing
amounts of points per cluster. From left to right, the columns correspond to β = 0.1,
1 and 10 respectively. From top to bottom, the rows correspond to 50, 100, and 200
points per cluster.
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C FEMNIST Distribution

See Fig. 9.

Fig. 9. Sample distribution for the FEMNIST dataset
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Abstract. This paper presents a novel approach to feature selection vot-
ing strategies and a combination of hyperparameter optimization tech-
niques to improve the performance of boosting classification. As a case
study, the paper focuses on developing robust predictive models capable
of accurately classifying different degrees of damage in concrete struc-
tures. By leveraging boosting algorithms and optimization strategies,
the proposed methodology aims to enhance the efficiency and accuracy
of damage classification processes. The findings contribute to advanc-
ing the field of structural health monitoring and maintenance by pro-
viding efficient and reliable methods for assessing damage in reinforced
concrete structures. Experimental results demonstrate the effectiveness
of the approach in accurately identifying damage levels in reinforced
concrete frames. Moreover, this work improves the performance of the
boosting classification models and identifies the most relevant sensors.
After the feature selection process and hyperparameter optimization, the
best experimental result reaches an F1-score of 0.919, identifying as best
accelerometers those located closer to the ground.

Keywords: Boosting techniques · Machine learning · Optimization
strategies · Predictive modeling · Feature selection · Damage
classification

1 Introduction

In recent years, machine learning (ML) techniques have become instrumental in
enhancing the precision and effectiveness of structural health monitoring. One
of the most promising and impactful applications of ML lies in the realm of
civil infrastructure, where the intersection of cutting-edge technology and the
built environment has the potential to reshape the future of urban development.
The accelerating pace of urbanization and the increasing complexity of modern
cities have heightened the demand for resilient and efficient civil infrastructure
systems. Machine learning, with its ability to analyze vast datasets, derive mean-
ingful insights, and optimize processes, emerges as a transformative force capable
of addressing these challenges head-on.
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In the realm of structural engineering, the evaluation and optimization of
frames play a pivotal role in ensuring the safety, resilience, and longevity of
critical infrastructure. With the ever-increasing complexity of modern buildings
and the imperative to enhance our ability to respond to unforeseen events, there
is a growing demand for advanced methodologies that can accurately classify
and optimize the assessment of damage in reinforced concrete structures.

This paper proposes a robust approach that combines boosting classification
techniques with optimization methods to offer a comprehensive solution for the
efficient and accurate evaluation of damage in frames. As the consequences of
structural failures can be catastrophic, the development and implementation of
robust methodologies are essential to prevent and mitigate potential risks. Boost-
ing algorithms, known for their ability to enhance the performance of classifica-
tion models, are employed to effectively identify and categorize damage patterns
in reinforced concrete frames. These algorithms leverage the strengths of mul-
tiple weak classifiers, collectively improving the overall accuracy and reliability
of the assessment process. The integration of optimization techniques further
refines the classification results, allowing for the hyperparameter fine-tuning to
achieve an optimal balance between accuracy and computational efficiency.

Throughout this paper, we will delve into the theoretical underpinnings of
the proposed boosting classification and optimization approach. Additionally, a
practical application and case study will be explored to demonstrate the effec-
tiveness of this methodology in a real-world scenario. We propose a pipeline for
an application in the civil engineering field, specifying which types of sensors
can be used and which ML techniques apply. This is the first step for a work
whose complement could be to validate the experimental set in a real scenario,
replicating the study with satisfactory results using another structure with sim-
ilar characteristics. By presenting a comprehensive overview of the advantages
of our approach, we aim to contribute to the advancement of state-of-the-art
methodologies for damage assessment in frames.

One of the most important and delicate phases of this work is the selection
of characteristics. The feature selection process aims to identify the features
that contribute most significantly to discriminating among the classes of inter-
est, thereby enhancing the system’s explanatory power. Additionally, as another
objective of this study was to ascertain the relative importance of different sen-
sors, we conducted a guided feature selection for groups of features representing
information derived from individual sensors. We implement some known liter-
ature selection techniques and the results obtained by each of them have been
recorded as votes for each feature.

The structure of this paper is organized as follows: In Sect. 2, we provide a
comprehensive review of related work, highlighting recent advances in the field of
artificial intelligence applied to damage assessment in reinforced concrete struc-
tures. This serves to contextualize our study within the current research land-
scape. Section 3 details the dataset used for validating our approach, including
the types of sensors employed and the nature of the data collected. Following this,
in Sect. 4, we discuss the data preprocessing phase, which is crucial for ensuring
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the accuracy of machine learning models. Section 5 is devoted to the methodology
adopted, illustrating the boosting techniques applied and the parameter opti-
mization strategy to further enhance model performance. In Sect. 6, we present
our findings, showcasing the effectiveness of the proposed approach through a
comparative analysis of the performance of different models. Finally, in Sect. 7,
we conclude our study, reflecting on the contributions made and suggest future
directions for research in this area. Through this work, we aim to provide a solid
foundation for further developments in the field of structural damage assessment,
proposing innovative solutions to address present and future challenges in the
monitoring of the health of reinforced concrete structures.

2 Related Works

In the last few years, ML based tools have demonstrated their ability to solve
a wide spectrum of real-world problems of civil engineering, from innovative
machine learning algorithms enhancing structural performance predictions to
the integration of intelligent systems in the construction process. The inter-
section of ML and structural civil engineering has emerged as a dynamic and
transformative field, revolutionizing traditional approaches to design, analysis,
and optimization of civil infrastructure.

Based on the literature reviewed, we can categorize the studies in the field
into the following thematic groups:

Machine Learning for Structural Health Monitoring (SHM). Sharma
et al. in [24] focus on using a hybrid AI approach that combines machine learn-
ing and deep learning for structural monitoring and health assessment of civil
infrastructure. Liu in [21] discusses the growing interest in ML for SHM, with a
specific focus on the application of wireless sensor networks (WSNs) and machine
learning algorithms. The authors stress the importance of WSNs that, thanks
to their ability for remote and continuous data acquisition, are replacing tra-
ditional wired systems, allowing more efficient monitoring and lower costs. Lee
et al. in [20], relating to the analysis of changes in the mechanical relationships
established for the target structure, present a novel structural damage detec-
tion methodology that utilizes AI networks for identifying damage location and
extent based on a reference model. In Eltouny et al. [11] a Bayesian-optimized
unsupervised learning technique to detect structural damage is presented.

Machine Learning Algorithms for Damage Prediction and Analysis.
Lazaridis et al. in [19] offer a comparative analysis of ten machine learning algo-
rithms’ performance in predicting seismic damage in reinforced concrete struc-
tures. Figueiredo and Santos in [12] examine the use of various machine learning
algorithms for damage detection in civil, mechanical, and aerospace structures,
highlighting the importance of learning structural behavior from experience.
Kostinakis et al. in [18] presents a method for evaluation the seismic damage
potential in buildings. This study employs machine learning algorithms and a
large training dataset to predict seismic performance efficiently, and it also dis-
tinguishes different classes of damage levels. The study presented Nonlinear Time
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History Analysis for 90 three-dimensional reinforced concrete buildings with var-
ied number of stories and bays, by using available 65 real seismic records. Bhatta
et al. in [6] conducted research oriented towards implementation of machine
learning methods to forecast the seismic behavior of different structural system.
In this paper, the authors have used various machine learning algorithms, e.g.,
support vector machines and neural networks, to study geological attributes in
seismic exploration. Athanasiou et al. in [3] proposes an application of different
machine learning models in the prediction process for seismic demand imposed
on building structures. Several algorithms are used by the authors to gather
insights on how they can lead to better predictive accuracy of seismic perfor-
mance, it could be any algorithm such as decision trees and random forests.

Damage Localization and Quantification Techniques. Dhiraj et al. in [1]
proposed the use of the monitored structure’s transmissibility functions for the
structure under observation, which can be fed into a novel composite architecture
consisting of a Deep CNN followed by multivariate linear regressors to detect,
localize, and quantify the damage extent in a system. The paper aims to improve
resource utilization in terms of structure maintenance and its longevity. Byung
Kwan Oh et al. in [22] studied and proposed an unsupervised damage identifi-
cation method using a convolutional neural network (CNN) trained exclusively
with healthy state data. The discrepancy between healthy state data and output
data from the CNN with the damaged state response was displayed as damage
indicators.

Automated Structural Damage Detection (SDD) in Extreme Events.
Bai et al. in [4] focus on automated SDD using deep learning methods for pro-
cessing 2D images, particularly in the context of extreme events like large earth-
quakes. This includes the use of ResNet for classifying multiple classes in SDD
tasks and the development of end-to-end networks for directly detecting cracks
and spalling. Compared to the presented studies, this article sets itself apart by
employing optimized boosting models developed with data from both triaxial
and monoaxial piezoelectric accelerometers, aiming not only to classify damage
accurately but also to pinpoint the most relevant sensors, thereby enhancing the
precision of damage assessment in reinforced concrete frames. This focus on sen-
sor relevance and optimization distinguishes our study from existing literature,
offering new insights into the potential of machine learning.

3 Dataset Description

The tests conducted in this work utilize the broadband random noise tests (BN)
which is a testing method used to assess the dynamic response of structures
subjected to wideband random vibrations. It is used for simulating the real envi-
ronmental forces that a structure might encounter during use, such as vibrations
caused by traffic or industrial activities. In this work, these tests were conducted
on reinforced concrete frames, applying vibrations at varying intensities from
0.1m/s2 to 2.0m/s2 and different durations to identify and analyse the damage
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phases of the structure under various stress conditions. Data provided in the
form of 108 files with a .DAT extension contains features related to the input
of the vibrating platform, such as acceleration, displacements, and velocities in
the X, Y, and Z directions, as well as the outputs measured by the sensors,
including the name of the measurement channel (e.g., A1X), and the direction
of measurement. Each file contains measurements spanning 50 s. The provided
data were collected ergodically, and at the beginning and end of each data set,
there are amplitude modulations, which can be either ascending or descending.

4 Preprocessing Phase

A preprocessing phase is needed to train machine learning algorithms. The orig-
inal dataset consisted of 108 files, each with 50,000 rows and 35 columns. Ini-
tially, a column cleaning phase was carried out in which the columns not useful
for the project were removed. At the end of this phase, a total of 13 columns
remained, representing the sensors. Consequently, the dataset was resized by
first applying a fragmentation into 5 parts, resulting in a total of 540 different
files, each with 10,000 rows and 13 columns. Four statistical techniques (median,
minimum value, maximum value, and standard deviation) were then applied to
the columns of each file to reduce each CSV file to a single sample. By con-
catenating all the samples, a single dataframe of 540 rows and 52 columns was
obtained. Finally, the column corresponding to the label was added, resulting
in a total of 53 columns. The dataset was explored to analyze the distribution
of the classes. Each class represents a specific degree of damage suffered by the
wall. Each particular stress corresponds to a certain degree of damage, indicated
by a particular color. In total, we can identify 12 different degrees of damage,
which differ in the intensity and time history of the applied stress. From Fig. 1,
it is noteworthy that the distribution of samples in the 12 classes to be predicted
is not balanced. Some classes, like the “yellow” class, include almost a quarter of

Fig. 1. Distribution of samples in classes. (Color figure online)
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the entire number of samples, while others, like the “black” class, contain only
10 samples, less than 2% of the dataset.

After encoding the structural damage levels into numerical labels ranging
from 1 to 12, the dataset was divided into training and test sets. To mitigate the
issue of an unbalanced dataset, which could lead to under-represented classes in
the train and test sets, a stratified split approach was employed. The respective
percentages of 70% and 30% were chosen for splitting data into training and test
sets, with the samples being mixed before proceeding with the split.

5 Benchmark Methodology

To train four different boosting algorithms to predict the degree of damage to
the structure across 12 classes, we employed two hyperparameter optimization
techniques and four types of feature selection methods. The performance of these
models was assessed using ten distinct metrics.

The study was conducted on a laptop equipped with the following hardware
components:

– CPU AMD Ryzen 7 3700U;
– GPU AMD Radeon RX Vega 10;
– 16 GB RAM;
– 512 GB SSD.

The laptop ran Ubuntu 22.04.3 LTS as the operating system. All code execu-
tions were performed in Visual Studio Code, utilizing a Conda environment with
Python version 3.11.5. All libraries used were updated to their latest versions
as of the publication date of this paper. Figure 2 illustrates the experimental
pipeline. In particular, the process begins with the preprocessing phase. Subse-
quently, hyperparameter optimization of the boosting models used in the first
classification experiment is performed. After obtaining the best models through
hyperparameter optimization, the most relevant features are selected. This pro-
cess aims to identify the features that contribute most to distinguishing the

Fig. 2. Steps of the proposed experiments pipeline: preprocessing phase; hyperparam-
eters optimization (first experiment); feature selection and hyperparameters optimiza-
tion (second experiment). The second experiment trains the best models obtained from
the first experiment using a feature selection and a new hyperparameter optimization.
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classes of interest. Once the most informative features are selected, the best
models undergo further optimization to maximize classification performance. It
is noteworthy that this workflow is repeated for four different boosting models
to evaluate their performance and compare their effectiveness. In the following
details of the methodological steps utilized are presented.

5.1 Hyperparameters Tuning

In this study, two methods of hyperparameter optimization were used:

– Non-dominated Sorting Genetic Algorithm II (NSGA-II);
– Tree-structured Parzen Estimator (TPE).

Non-dominated Sorting Genetic Algorithm II (NSGA-II). NSGA-II
[9,10] is a multi-objective genetic algorithm commonly used to solve optimization
problems with multiple simultaneous objectives. However, it can be adapted to
address problems with a single objective.

Tree-Structured Parzen Estimator (TPE). The Tree-structured Parzen
Estimator (TPE) is a hyperparameter optimization technique that leverages con-
ditional probability density models to effectively explore hyperparameter space
[5,27].

Both techniques were implemented using the Python Optuna library. Since
our study performs a multi-class classification on an imbalanced dataset, the
search for the best hyperparameter values and model training focused on getting
the highest possible value of the F1-score macro metric [2]. The hyperparameter
search was carried out by training the model using a 5-Fold Cross-Validation
with a stratified division of the training set [25,26].

5.2 Metrics

The search for the best hyperparameter values and training of the models focused
on achieving the highest possible value of the F1-macro metric. Since the dataset
is unbalanced, the F1-macro gives equal importance to all classes, ensuring that
the performance is distributed across all represented classes, thus enhancing the
model’s robustness. Other metrics have been calculated, as reported in Tables 2
and 3, to show the complete performance of the model: accuracy, precision,
sensitivity, specificity, G-mean (The Geometric Mean given by the square root
of the product of Sensitivity and Specificity) and ROC AUC. The use of multiple
evaluation metrics is crucial to obtaining a complete and accurate understanding
of the model’s performance. Each metric provides a different and complementary
perspective on the model’s strengths and weaknesses, allowing us to make a more
informed choice.
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5.3 Feature Selection

The feature selection process aims to identify the features that contribute most to
distinguishing the classes of interest, improving the system’s explanatory power.
Furthermore, since another goal of this study was to determine which sensors
play a more significant role, we performed guided feature selection for groups of
features representing information derived from a single sensor.

We implement the following feature selection techniques:

– Model feature importance [23];
– Analysis of Variance (ANOVA) [15];
– Kendall’s Score [17];
– Recursive Feature Elimination (RFE) [8].

Only the last one is a wrapper method that requires training the classification
algorithms.

For each technique, 35 features were selected because it was expected that,
following the voting policy implemented in this work, fewer features would
remain. In fact, the number 35 allows to have in the end a quantity of selected
features equal to 30–60% of the initial features.

For the Feature Importance techniques, we selected features whose scores
exceeded the threshold of 0.02. This threshold was chosen because the method
of feature importance needed to select about 30/35 features out of the total 52,
similar to the other three feature selection techniques.

The results obtained by each feature selection method were recorded as votes
for each feature. If a feature was selected by a method, it received a vote of 1;
otherwise, it received a vote of 0. Later, a majority vote calculation was made for
each feature, considering a threshold, to determine which features were selected
by most methods. Since the number of techniques implemented is even, a feature
was selected only if it received at least 3 votes out of 4.

The dataset features originated from seven monoaxial and triaxial high-
sensitivity piezoelectric accelerometers. For sensors equipped with three axial
components, three distinct features were generated, whereas monoaxial sensors
contributed a single feature each. During the feature selection process, there
exists a possibility that features corresponding to one or more axial components
of the triaxial sensors may be eliminated. Retaining an incomplete set of fea-
tures from any of these triaxial sensors would be inconsistent with identifying
the most effective sensors. To prevent partial feature selection for these sensors,
we implemented the following strategy:

– If one in three features is excluded, it is retained along with the other two
previously selected features;

– If two out of three features are excluded, the remaining feature that was
previously selected is also excluded;

– If all three features are retained or excluded, no further action is taken.

Initially, the dataset comprised 13 accelerometer features. However, through
preprocessing, this number increased to 52. This resulted from computing four
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statistical indices for each original feature, necessitating controls for the partial
selection of a sensor’s features to be applied fourfold. Subsequently, for each
statistical index calculated, we examined the features of the three components
of each sensor, ensuring a comprehensive analysis of the data derived from all
sensors.

5.4 Model Training

To achieve more robust performance, we employed boosting techniques instead
of relying on weak machine learning algorithms. Boosting enhances model accu-
racy by aggregating the predictions of multiple weak learners, thus reducing both
bias and variance. Most boosting models share the same operating mechanics:
they build a predictive model by sequentially combining several weak classifiers
to create a strong and complex model. This approach not only improves predic-
tion strength but also offers advantages such as increased model interpretability
and adaptability to different data distributions. We implemented the following
classifiers:

– Adaptive Boosting (AdaB): AdaB [13], with the Decision Tree as the weak
classifier, has been implemented through the Scikit-Learn library.

– Gradient Boosting Machine (GBM): Unlike Adaptive Boosting, Gradient
Boosting [14] does not adjust the weights of the samples but instead tries
to fit the negative gradient of the loss function used in the model. In other
words, at each iteration, a new model is added that predicts the residual or
error of the overall model constructed up to that point. It can be used with
various loss functions but is more complex to optimize compared to AdaB
since it requires the configuration of parameters such as the learning rate.

– eXtreme Gradient Boosting (XGB): XGB, short for “extreme Gradient Boost-
ing”, is an extremely efficient and enhanced version of gradient boosting that
uses gradient-boosting trees for classification [7].

– Light Gradient Boosting Machine (LGBM): Since we have a fairly large
dataset, the last classifier we decided to include in our experiments is LGBM.
LGBM uses a leaf-wise growth strategy in which it selects leaves with maxi-
mum loss gain for expansion. In addition, the “hist” approach in LGBM refers
to how histograms are constructed to accelerate the split-finding process dur-
ing the tree training phase [16]. LGBM is currently the most versatile type
of boosting since it provides extremely high performance in modeling the
classifier you want to generate.

Each type of boosting has different hyperparameters to configure. We define
two groups of hyperparameters to be optimized for each boosting algorithm: one
group with only the most common hyperparameters to be optimized (FEW),
and another with all optimizable hyperparameters (ALL).

The hyperparameters of each category for each type of model were optimized
using the two methods described above (TPE and NSGA-II), creating a further
subdivision into two additional model types. For each model, hyperparameter
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optimization was performed twice in a row with 50 trials each, ensuring that
the best hyperparameter values obtained from the first search were used as a
starting point for the second. This strategy allowed us not only to obtain better
results but also to adjust the hyperparameter search space in the second search
according to the best values found in the first. For each model category, the
hyperparameter value search spaces for both the first and second searches were
the same for both types of optimization implemented. After finding the best
hyperparameter values, for each model, a 5-Fold Cross-Validation was performed
10 times.

In summary, for each type of boosting, we performed:

– Model with few parameters optimized with TPE;
– Model with few parameters optimized with NSGA-II;
– Model with all parameters optimized with TPE;
– Model with all parameters optimized with NSGA-II.

After training and evaluating the models of each type, a comparison was made
to select the model with the best accuracy. Using this model, we performed the
feature selection described in Sect. 5.3.

The best model is optimized on the dataset having the features selected by
the TPE or NSGA-II, depending on the initially applied method. In this case,
hyperparameter optimization is carried out only once with 100 trials.

After the optimization, the model is trained and evaluated, ending with a
final comparison with the following models:

– Best model with the dataset having all features;
– Best model optimized with dataset having selected features.

These steps were followed for all types of boosting models, with a final com-
parison of the best models for each type. Table 1 shows the search spaces of
the hyperparameters values for first and second optimization, with few and all
features, for each classifier.

6 Results

This section presents in detail the results of two methodologies: in the first exper-
iment we train and test the four models with hyperparameter optimizations; in
the second experiment, we introduce the feature selection technique to obtain
information about sensors involved in the acquisition data.

6.1 Results with Hyperparameter Optimization

Table 2 shows the performance of the four models (first column: AdaB, GBC,
XGB, LGBM), with the two techniques of hyperparameter optimizations (sec-
ond column: TPE and NSGA), for two subsets of hyperparameters (third col-
umn: FEW and ALL). The AdaB models show excellent results. As regards the
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Table 1. Hypermarameter optimization

Classif Hyperp Few 1st Opt Few 2nd Opt All 1st Opt All 2nd Opt

AdaB criterion [‘gini’, ‘entropy’] [‘gini’, ‘gini’] [‘gini’, ‘entropy’] [‘gini’, ‘gini’]
max_depth (5, 15) (7, 15) (5, 15) (7, 15)
min_samples_split (2, 20) (6, 20) (2, 20) (6, 20)
min_samples_leaf (1, 10) (1, 12) (1, 10) (1, 12)
minWeightFractLeaf – – (1e−5, 0.5) (1e−5, 0.1)
max_features – – [‘sqrt’, ‘log2’] [‘sqrt’, ‘log2’]
max_leaf_nodes (5, 50) (15, 60) (5, 50) (15, 60)
min_imp_dec – – (1e−5, 0.1) (1e−5, 0.1)
ccp_alpha – – (1e−8, 0.1) (1e−8, 0.1)
n_estimators (50, 300) (100, 300) (50, 300) (100, 300)
learning_rate (0.01, 1.0) (0.1, 1.0) (0.01, 1.0) (0.1, 1.0)

GBC learning_rate (0.001, 1.0) (0.01, 0.3) (0.0001, 1.0) (0.001, 0.3)
n_estimators (50, 600) (200, 700) (50, 600) (200, 800)
subsample - - (0.6, 1.0) (0.8, 1.0)
min_samples_split (2, 30) (4, 28) (2, 30) (6, 30)
min_samples_leaf (1, 25) (2, 18) (1, 20) (2, 18)
minWeightFractLeaf – – (1e−5, 0.5) (1e−5, 0.5)
max_depth (3, 15) (5, 12) (3, 15) (3, 15)
min_imp_dec – – (1e−6, 0.1) (1e−5, 0.1)
max_features – – [‘sqrt’, ‘log2’] [‘sqrt’, ‘log2’]
max_leaf_nodes (2, 60) (5, 50) (2, 50) (15, 55)
ccp_alpha – – (1e−8, 0.1) (1e−8, 0.01)

XGB n_estimators (50, 700) (100, 800) (50, 700) (100, 800)
max_depth (3, 12) (3, 10) (3, 12) (3, 10)
learning_rate (0.001, 0.3) (0.01, 0.5) (0.001, 0.3) (0.01, 0.5)
tree_method – – [‘ex’, ‘appr’, ‘hist’] [‘ex’, ‘appr’, ‘hist’]
gamma (1e−4, 10) (1e−5, 1) (1e−4, 10) (1e−5, 1)
min_child_weight (0.01, 5) (0.001, 1) (0.01, 5) (0.001, 1)
max_delta_step – – (1e−4, 10) (1e−6, 5)
subsample (0.6, 1.0) (0.7, 0.9) (0.6, 1.0) (0.7, 0.9)
colsample_bytree (0.6, 1.0) (0.5, 0.8) (0.6, 1.0) (0.5, 0.8)
colsample_bylevel – – (0.6, 1.0) (0.5, 0.8)
colsample_bynode – – (0.6, 1.0) (0.5, 0.8)
reg_alpha – – (1e−6, 1) (1e−6, 0.01)
reg_lambda – – (1e−6, 1) (1e−4, 100)

LGBM num_leaves – – (20, 200) (40, 240)
max_depth (3, 11) (3, 9) (3, 12) (3, 10)
learning_rate (0.001, 0.1) (0.01, 0.4) (0.01, 0.5) (0.1, 0.8)
n_estimators (50, 400) (100, 300) (50, 500) (100, 500)
subsample_for_bin – – (40, 80) (40, 80)
min_split_gain – – (0.001, 1) (0.001, 0.1)
min_child_weight (0.01, 5) (0.001, 0.1) (0.01, 5) (0.001, 0.1)
min_child_samples – – (1, 60) (10, 60)
subsample (0.6, 1.0) (0.7, 0.9) (0.6, 1.0) (0.8, 1.0)
subsample_freq – – (1, 50) (10, 40)
colsample_bytree (0.6, 1.0) (0.5, 0.7) (0.6, 1.0) (0.7, 1.0)
colsample_bynode – – (0.6, 1.0) (0.5, 0.8)
max_delta_step – – (0.01, 10) (0.1, 10)
reg_alpha – – (0.0001, 1) (0.01, 1)
reg_lambda – – (0.01, 100) (1, 150)
max_bin – – (100, 300) (150, 300)
min_data_in_bin – – (1, 20) (1, 10)
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optimization techniques used, the TPE achieves always the best results. The
performance with optimization of all hyperparameters is often better.

Comparing the results obtained from the AdaB models, it emerges that the
optimized model with TPE and all possible hyperparameters configured is the
best model. The best combination of hyperparameters found for the best model
is shown in Table of the Appendix, first row.

GBC, compared to all other types of boosting implemented, presented the
best performance. Analyzing the two optimization techniques used, the models
optimized with NSGA-II produced better results in terms of F1-score perfor-
mance. On the other hand, models optimized with TPE performed better in
metrics that describe the robustness of a model. In addition, it is noteworthy
that models optimized with TPE achieved very similar performance. s for the
two categories of models with different numbers of hyperparameters configured,
it can be noted that the category with more hyperparameters showed better
results.

The best combination of hyperparameters found for the best model, opti-
mized with NSGA-II and having all the hyperparameters configured is in the
second row of Table in Appendix.

As can be seen in Table 2 XGB models performed below average. Compared
to other types of boosting, XGB has some of the lowest F1-score. However,
considering other more specific metrics that describe performance related to
each class, it can be noted that the XGB models are as efficient as the others.
The hyperparameter optimization has not affected the final performances of the
models. The results obtained are similar to each other.

The best model for this type of boosting was the one optimized with TPE
and having all the possible hyperparameters configured. The best combination
of hyperparameters for the best model is shown in the third row of Table in
Appendix.

The results obtained from the LGBM models were not the best. The opti-
mized models with NSGA-II have significantly higher values for this metric than
the counterparty and the values obtained for all metrics from models with more
optimized hyperparameters are greater than models with less optimized hyper-
parameters. Thus the wide range of hyperparameters offered by LGBM strongly
influence the final performance of the model.

The best combination of hyperparameters found for the best model is pre-
sented in Table of Appendix, fourth row.

6.2 Results with Feature Selection

The feature selection conducted on the four types of boosting implemented led
to the generation of 4 different datasets with most of the different features. In
addition, for each type of boosting, the best model has been trained, tested and
optimized on the corresponding dataset having the selected features.
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From the results obtained in the four best models, Table 3, emerges that the
best performances derive from LGBM. In particular, the F1-score of 0.919 stands
out from the other models, achieving performance comparable to the first exper-
iment, trained with the dataset having all the features. Optimization for LGBM
was performed with the NSGA-II and found the following best combination of
hyperparameter values, shown in Table of Appendix, fourth row, fourth column.

The F1-score of AdaB decreased from 0.973, the initial best model, to a
value of 0.846. A similar phenomenon has happened with GBC. Probably the
small number of features that have been selected for this model, related to the
components of sensor 2, has caused a lack of useful information to reach higher
performance.

XGB presented some good results that are not too distant from those
obtained by the best model trained with the dataset having all the features.
In this model were selected 28 features in which appeared at least 2 times the
features related to each sensor. As a result, these results may be useful later to
determine the best statistical index.

For each model, the selected features are shown in Table 4. The best model
for AdaB produces the following features (19 in total); It is noteworthy that
features related to sensor 2 no longer appear. In addition, the absence of features
related to the median and the abundance of features related to the standard
deviation can also be highlighted. This factor shows that some statistical indices
are more useful than others. In increasing order of importance, statistical indices
are median, minimum value, maximum value, standard deviation.

The GBC model selected 18 features. Similar to AdaB, there is no feature
related to sensor 2, and no features corresponding to the median. A further
consideration concerns sensor 4 because its features appear many times less
than those of other sensors.

The XGB model selects a very large number of features equal to 28. It is
noteworthy that features of all sensors appear, at least for 2 statistical indices.

Finally, for LGBM, that reaches the best performance, the features selected
are 34.

In summary, the best F1-score result is 0.973 achieved with AdaB and GBC,
while with feature selection techniques we reached the best F1-score of 0.919
with LGBM.

6.3 Discussion and Comparisons

Analyzing the results obtained in the two experiments, the optimization strate-
gies, both by TPE and NSGA-II, produced very robust models. Despite the
unbalanced dataset, the models were able to correctly classify samples belonging
to all 12 classes. By maximizing the F1-score rather than accuracy, it was possi-
ble to guarantee the robustness of models in unbalanced cases. Furthermore, the
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Table 2. Models Performance with four optimizations

Model Optim Hyperp F1 Acc Prec Sens Spec G-Mean ROC-AUC

AdaB TPE Few 0.961 0.957 0.962 0.962 0.996 0.979 0.998
AdaB NSGA-II Few 0.943 0.944 0.938 0.954 0.995 0.974 0.998
AdaB TPE All 0.973 0.969 0.975 0.973 0.997 0.985 0.996
AdaB NSGA-II All 0.967 0.963 0.968 0.968 0.997 0.982 0.997
GBC TPE Few 0.901 0.957 0.924 0.918 0.996 0.956 0.997
GBC NSGA-II Few 0.906 0.944 0.928 0.910 0.995 0.951 0.998
GBC TPE All 0.944 0.963 0.953 0.945 0.997 0.971 0.997
GBC NSGA-II All 0.973 0.969 0.974 0.973 0.997 0.985 0.996
XGB TPE Few 0.884 0.926 0.914 0.897 0.993 0.943 0.996
XGB NSGA-II Few 0.900 0.932 0.910 0.900 0.994 0.946 0.996
XGB TPE All 0.907 0.944 0.917 0.907 0.995 0.950 0.997
XGB NSGA-II All 0.901 0.938 0.923 0.901 0.994 0.947 0.996
LGBM TPE Few 0.854 0.920 0.883 0.849 0.992 0.918 0.997
LGBM NSGA-II Few 0.876 0.932 0.896 0.876 0.994 0.933 0.996
LGBM TPE All 0.937 0.951 0.949 0.938 0.995 0.966 0.998
LGBM NSGA-II All 0.939 0.957 0.947 0.940 0.996 0.968 0.996

Table 3. Performance of the Best Optimized Models trained with Feature Selection

Model Optim Hyperp F1 Acc Prec Sens Spec G-Mean ROC-AUC

AdaB TPE All 0.846 0.877 0.871 0.835 0.988 0.908 0.989
GBC NSGA-II All 0.877 0.883 0.876 0.884 0.989 0.935 0.991
XGB TPE All 0.808 0.870 0.901 0.780 0.988 0.878 0.989
LGBM NSGA-II All 0.919 0.914 0.937 0.911 0.992 0.951 0.992

Table 4. Selected features from each model

Median Min Max Std

AdaB 5 6 7 1 3 7 1 3 4 6 7
GBC 3 4 6 7 5 6 7 1 3 5 6 7
XGB 1 2 3 4 5 7 1 5 6 7 2 3 4 5 6 7
LGBM 2 5 1 3 4 5 6 7 1 3 4 5 6 7 1 3 4 5 6 7
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Table 5. Comparison of performance metrics in SHM damage classification

Author Model F1 Acc

Athanasiou et al. [3] Boosted trees – 42.9%
Ensemble bagged trees - 89.3%
Subspace discriminant – 78.5%
Subspace KNN – 80.1%
RUSBoosted trees – 71.4%

Bhatta et al. [6] RF 0.736 74.62%
SVM 0.666 64.17%
DT 0.625 68.65%
ANN 0.697 62.68%
KNN 0.615 70.14%

Eltouny et al. [11] Bayesian-optimized KDME 0.938 92%
Kostinakis et al. [18] SVM - Gaussian Kernel 0.886 88.6%

XGB 0.874 87.5%
AdaB 0.765 76%
LGBM 0.876 87.7%

The Proposed Work AdaB (1st exp) 0.973 96.9%
GBC (1st exp) 0.973 96.9%
XGB (1st exp) 0.907 94.4%
LGBM (1st exp) 0.939 95.7%
AdaB (2nd exp) 0.846 87.7%
GBC (2nd exp) 0.877 88.3%
XGB (2nd exp) 0.808 80.8%
LGBM (2nd exp) 0.919 91.4%

use of multiple evaluation metrics such as accuracy, sensitivity, precision, recall
and ROC AUC is crucial for obtaining a complete and accurate understanding of
the model’s performance. Each metric provides a different and complementary
perspective on the model’s strengths and weaknesses. Considering the results
obtained from both experiments, it can be noted that G-Mean is in most cases
more than 0.93. Sensitivity reached values over 0.85. Similar results are evident
from specificity and ROC AUC. Comparing the two experiments (Table 2 and
Table 3), feature selection highlights how very similar results can be obtained
by reducing the number of features. However, maintaining a feature space of
35–55% of the initial features, the F1-score decreased by 10%. Only LGBM,
selecting about 65% of features, showed a decrease in F1-score of about 2%. The
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monoaxial sensors affected the overall performance, so it is necessary to find a
trade-off between the number of sensors used to acquire the data and the perfor-
mance of the model. Mention should be made of the efficiency of sensor 3 with
triaxial components, as was is selected more frequently than sensors 1 and 2.
The most incisive statistical index was the standard deviation due to the large
number of features selected. While the worst was the median. As for the values
of minimum and maximum, there were comparable results. The sensor that is
always selected is the number 7. A crucial characteristic is the position of the
sensor: sensors 6 and 7, positioned lower, had a greater impact, while sensors
1 and 2, positioned higher, were less effective. The obtained results suggest it
could be useful to consider positioning sensors closer to the ground.

Table 5 shows a comparison of the results from different studies in the liter-
ature. The performance of F1-scores and accuracy varies between the types of
models used in the detection of structural damage. It is noteworthy that the mod-
els from the proposed work and Eltouny et al. [11] obtained the best performance.
More specifically, the Bayesian-Optimized KDME achieved an F1-score of 0.938,
which is very close to the results of this work. On the other hand, Athanasiou et
al. [3] showed very mixed results, with accuracy scores varying significantly from
89.3% for Ensemble bagged trees to 42.9% for Boosted trees. Bhatta et al. [6]
models showed moderate performance, with RF achieving the best F1-score of
0.736 and an accuracy of 74.62%. Kostinakis et al. [18] models, such as SVM with
Gaussian kernel and LGBM, showed good performance, with average accuracy
of 88.6% and 87.7% respectively, and F1-scores of 0.886 and 0.876. Finally, this
work demonstrates the effectiveness of the proposed approach, emphasizing the
importance of feature selection and hyperparameter optimization in improving
the performance of reinforced concrete structure damage classification models.
The multidisciplinary approach adopted in this work, which integrates advanced
machine learning, statistical optimization, and optimal sensory configurations,
represents a significant step towards more effective and accurate solutions in the
field of structural health monitoring.

7 Conclusions

In this study, we introduced a novel approach to feature selection voting strate-
gies and a combination of hyperparameter optimization techniques to improve
the performance of boosting classification for predicting damage in reinforced
concrete frames. We proposed a new experimental pipeline to specify which types
of sensors can be used and which ML techniques apply in damage assessment of
concrete structures.
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Through extensive experimentation and analysis, we demonstrated the effec-
tiveness of the proposed methodology in accurately classifying different degrees
of damage in concrete structures. Our results indicate that boosting algorithms
offer significant advantages in terms of classification accuracy and efficiency.

Our investigation into optimization strategies has highlighted the importance
of hyperparameter fine-tuning to achieve optimal performance. We used the TPE
and NSGA-II methods because they represent a good compromise between com-
putational cost and performance. A probabilistic approach is the best solution
for hyperparameter search over a wide range of values for very complex models
with long training times. Through careful optimization, we were able to fur-
ther enhance the accuracy and reliability of the classification models, thereby
improving their practical applicability in real-world scenarios.

The feature selection highlights how very similar results can be obtained by
reducing the number of features (see comparison between Table 3 and Table 4).
However, on average the F1-score decreases with a feature selection that elim-
inates half of the initial features. To maintain a satisfactory performance, it is
necessary to find a trade-off between the number of sensors with which to acquire
the data and the performance of the model.

Furthermore, the feature selection phase was not primarily aimed at enhanc-
ing the performance metrics of the model, but rather at elucidating which infor-
mation is most significant for accurate classification. On one hand, improved
computational efficiency facilitates the real-world implementation and utiliza-
tion of these techniques. On the other hand, it sheds light on the sensors that
are truly significant for classifying the structural state, reducing the number of
sensors to be employed in future detection.

This is the first step in a study that could be complemented by validating the
experimental setup in a real scenario. Overall, our findings contribute to advanc-
ing the field of structural health monitoring and maintenance by providing effi-
cient and reliable methods for assessing damage in reinforced concrete structures.
Future research directions may include exploring additional machine learning
techniques and integrating advanced sensor technologies to further improve the
performance of damage classification models.
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A Appendix: Hyperparameter Values for Each Best
Model

Classif Hyperp Value (1st Exp) Value (2nd Exp)

AdaB criterion ‘gini’
max_depth 10
min_samples_split 19
min_samples_leaf 4
minWeightFractLeaf 0.000658323935614794
max_features ‘sqrt’
max_leaf_nodes 25
min_imp_dec 0.0010919418200059734
ccp_alpha 1.5938666259963747e-05
n_estimators 120
learning_rate 0.5851591914047651

GBC learning_rate 0.01993085504537697
n_estimators 730
subsample 0.9500000000000001
min_samples_split 22
min_samples_leaf 18
minWeightFractLeaf 0.0018023265689062118
max_depth 11
min_imp_dec 0.001017736144910167
max_features ‘sqrt’
max_leaf_nodes 17
ccp_alpha 9.107190213356173e-07

XGB n_estimators 360
max_depth 5
learning_rate 0.4754652930941692
tree_method ‘approx’
gamma 0.0006339701705694259
min_child_weight 0.05301053790908121
max_delta_step 0.12177208860225514
subsample 0.7999999999999999
colsample_bytree 0.65
colsample_bylevel 0.7
colsample_bynode 0.6
reg_alpha 0.0015100503320114463
reg_lambda 35.498849933533876

LGBM num_leaves 115 160
max_depth 9 3
learning_rate 0.171355046221503 0.4704624041164966
n_estimators 410 220
subsample_for_bin 74 45
min_split_gain 0.009511699517685778 0.002131321086577715
min_child_weight 0.10002085367862634 0.9313446643260199
min_child_samples 20 43
subsample 0.8 0.9500000000000001
subsample_freq 14 24
colsample_bytree 0.8 0.8
colsample_bynode 1.0 0.9
max_delta_step 2.9780230033167596 0.38091374567573116
reg_alpha 0.04567778071041187 0.32622555889971483
reg_lambda 0.04567778071041187 62.74545963691049
max_bin 250 300
min_data_in_bin 16 5
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Abstract. Driven by increasing customer demands, manufacturing pro-
cesses now encompass increasingly intricate workflows. The industry uses
computer-aided process planning to manage these complex manufactur-
ing processes effectively. A crucial task here is to analyze product data
and determine the required machining features, represented as 3D mesh
geometries. However, a notable challenge arises, particularly with cus-
tom products, where the interpretation of the 3D mesh geometry varies
significantly depending on the available machinery and expert prefer-
ences. This study introduces a configurable automated feature recogni-
tion framework based on expert knowledge. Experts can use a config-
urable synthetic data generator to encode their requirements within this
framework via the training data. A machine-learning graph classification
approach is used to recognize the 3D geometries of machining features
in the generated data, based on to the user requirements. The system
accomplishes this without requiring for data conversion into alternative
formats, such as voxel or pixel representations, like other approaches are
forced to.

Keywords: Intersecting 3D Meshes · Graph Classification · Graph
Neural Networks

1 Introduction

Despite technological advances, most companies operate with static, centralized
manufacturing processes. Due to inflexibility and lack of resource efficiency, many
companies risk economic difficulties, especially during an economic crisis, as
they cannot adapt to new circumstances quickly. Many small and medium-sized
enterprises (SMEs) continue to use such static processes and are most affected
during economic crises. Additionally, SMEs face the challenge of meeting the
increasing demand for individualized products from customers with distinct and
diverse preferences [13].
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Therefore, intelligent systems are needed to enhance efficiency and enable the
manufacturing of customer-specific products. These intelligent systems depend
on the underlying infrastructure of cyber-physical systems (CPS), where com-
ponents such as actuators and sensors can autonomously share data across a
company’s network. This forms the crucial framework for seamless communi-
cation and interaction between physical and digital elements. While CPS can
autonomously carry out manufacturing tasks, a critical requirement for plan-
ning these tasks is the complete understanding of the given product [6]. Only
then can the product’s design be allocated to appropriate machines and tools.
However, to do so, deep expert knowledge is required [2].

CAD data, used to allocate the product design to the appropriate equipment,
is often represented by basic geometric features such as vertices and their edges,
as shown in Fig. 1 [1]. Achieving an optimized manufacturing process depends
on accurately recognizing these basic geometries within a CAD model as 3D rep-
resentations of machining features. This classification is often called automated
feature recognition (AFR) [11].

Original Representation

b) STEP Representation

as used by CADNet and 

AAGNet

c) STL Representation

used by this work

a) Voxel Representation

as used by FeatureNet

MsvNet, and RDetNet

Fig. 1. Example of a hydraulic manifold in three different CAD representations. a)
Voxel represents a 3D object as a cube-shaped grid. b) STEP (standard for the exchange
of product data) is a format giving an exact description of each surface, its edges, and
other essential details. c) STL (stereolithography) contains only a list of 3D vertices
and their connections to other vertices. Inspired by [7,19,20,27,29].

Many current approaches for AFR focus on the CAD representations Voxel
or STEP as shown in Fig. 1. In Voxel, the original CAD model is converted into a
cube grid with a fixed resolution, similar to image processing. This allows for the
analysis of CAD files with conventional methods such as 3D convolutional neural
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networks. However, this conversion often loses essential information due to low
resolution, as shown in Fig. 1a. Therefore, modern approaches increasingly focus
on the widely used STEP format, which contains rich and accurate information
about each surface of the CAD model, as shown in Fig. 1b. Another common
CAD format, especially in additive manufacturing and virtual and augmented
reality applications, is 3D meshes. Further, this work solely focuses on the 3D
mesh format STL as shown in Fig. 1c, which only contains 3D vertice informa-
tion and their connection to other vertices. Also, with the increasing geometric
complexity of a 3D model, the amount of vertices drastically increases as well.
Therefore, Colligan et al. in [7] suggest that the “performance could be boosted
by tailoring the neural architecture on the mesh level for learning from mesh
data or by directly learning the dihedral angle between the faces on the B-Rep
level”.

This work follows the problem statement of Colligan et al.. It introduces a
configurable AFR (CAFR) framework with a customized graph neural network
(GNN) architecture for the machining feature recognition task in STL data.
The framework also includes a configurable synthetic data generation strategy
integrating user requirements into the training data generation process.

The remainder of this paper is organized as follows: Sect. 2 reviews recent
related works. Section 3 provides a comprehensive overview of the methodology
and experiments conducted in this study. Section 4 presents and discusses the
experimental results. Finally, Sect. 5 concludes with a summary of the frame-
work’s effectiveness and outlines future research.

2 Related Work

Various AFR approaches have been established over the past two decades, mainly
within academia. These advancements have predominantly centered around rule-
or hint-based, graph-based, volumetric decomposition, and machine learning
approaches [22]. In recent years, attention has mainly shifted towards machine
learning-based frameworks due to the limitations of deterministic or heuristic
approaches, such as learning and generalizing new machining features and meet-
ing computational requirements. With FeatureNet, Zhang et al. [29] introduced
an innovative machine-learning AFR framework capable of accurately recogniz-
ing intersecting machining features. FeatureNet provides an extensive training
dataset consisting of 24,000 CAD models. These models encompass 24 machin-
ing feature categories, each containing 1,000 CAD models with randomly placed
features. FeatureNet transforms the CAD models into a voxel representation
with a consistent resolution to address the problem of varying data sizes in STL
CAD data. Finally, it employs a 3D convolutional neural network (CNN) as its
supervised learning algorithm.

However, the research of Su et al. [24] demonstrated the potential of a multi-
sectional view (MSV) representation for 3D object recognition. Combining mul-
tiple views of a 3D model through a neural network can achieve enhanced object
recognition. Peizhi et al. [20] built upon this concept to introduce the MsvNet
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framework. MsvNet collects and consolidates MSVs of a 3D model into a 2D
convolutional neural network. This fusion of MSVs significantly improves classi-
fication accuracy and reduces the required training data size compared to Fea-
tureNet.

Wu et al. [26] follow the principle and enhance the existing FeatureNet and
MsvNet frameworks using a lightweight network technique inspired by the self-
supervised learning method SimSiam [5]. This approach seeks to increase the
efficiency of these networks, resulting in what Wu et al. term FeatureNetLite
and MsvNet Lite.

FeatureNet, MsvNet, and their adaptations operate as two-stage procedures
that first preprocess CAD models by segmenting them with unsupervised algo-
rithms and then analyzing the segmented features. This approach results in
significantly longer processing times and lower recognition accuracy. Conse-
quently, Pei Shi et al. propose a single-stage AFR framework. This framework
uses data augmentation to generate a comprehensive multi-machining feature
dataset, which is then used to train a novel neural network architecture called
RDetNet. Due to the single-stage approach, RDetNet is considerably faster than
FeatureNet or MsvNet and demonstrates significantly better recognition accu-
racy [21].

Approaches like FeatureNet and MsvNet, along with their adaptations, face
the challenge of converting CAD data into resolution-dependent representations,
such as voxels or pixels, due to the requirements of their network architectures.
Unfortunately, this conversion leads to losing crucial topological information due
to low resolution. To address this limitation, Jia et al. [14] present an AFR frame-
work where CAD models are transformed into a mesh structure. This innovative
approach allows for the analysis of machining features using the mesh convo-
lutional neural network [12] in combination with the fast region-based convolu-
tional network [10] while preserving the valuable topological details. The input
to the models consists of each mesh face’s center, the vertices’ angles at this
center, and the indices of the adjacent mesh faces.

CAD models can also be interpreted as graph representations [9]. Here, a
graph G is defined as G = (V,E), where V = {V1, ..., Vn} represents a collec-
tion of distinct nodes (further called vertices), and E = {{Vk, Vw}, ..., {Vi, Vj}}
represents a collection of edges, indicating the connections between the distinct
vertices [23]. The adjacency matrix, shown in Eq. 1, is a more compact represen-
tation of a graph, where A represents the graph G = (V,E) as a matrix of size
|V | × |V |,

A =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1j

A21 A22 · · · A2j

...
...

. . .
...

Ai1 Ai2 · · · Aij

⎤
⎥⎥⎥⎦ (1)

where Aij = 1 if there is a connection between vertice i and vertice j, and
Aij = 0 otherwise [23].
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The approach of Colligan et al., called CADNet [4,7], utilizes this graph rep-
resentation principle. It considers individual faces of a STEP CAD model as
graph nodes, with shared edges of two faces treated as graph edges. Addition-
ally, while previous AFR frameworks rely on datasets containing CAD models
with precisely one machining feature per model and employ data augmenta-
tion strategies to transform the training data into multi-feature data, CADNet
introduces a synthetic data generator capable of producing STEP CAD models
based on specifications from FeatureNet. CADNet uses these generated STEP
CAD models to train the dynamic graph CNN from Verma et al. [25].

Similar to CADNet, Hongjin Wu et al. introduced another AFR framework
based on the graph representation principle for STEP CAD models. However,
unlike CADNet, Hongjin Wu et al. introduce a novel graph structure that com-
bines UV grids of surfaces and curves to present geometric information, along
with a Face Adjacency Graph (FAG) to encode topological information. This
advanced graph structure is utilized to train a novel graph neural network archi-
tecture called AAGNet, aimed at semantic segmentation, instance segmentation,
and bottom face identification in neutral STEP CAD models [27].

AFR frameworks based on GNN, such as AAGNet and CADNet, face inher-
ent limitations, including restricted receptive fields and network depths due to
the foundational structure of their underlying message-passing neural network
architecture. To overcome these limitations, Zhang et al. introduced BrepMFR,
which leverages recent advances in graph transformers to enhance the neural
network’s feature extraction capabilities for more complex STEP CAD models
[28].

3 Methodology

Following the basic principle of CADNet, this paper introduces a configurable
automated feature recognition (CAFR) framework to address the problem of
intersecting machining features in STL CAD data as shown in Fig. 1. However,
unlike CADNet, this work focuses on recognizing the contained geometries not
by surfaces but by the vertices and edges. For this purpose, a methodology is
introduced to generate training data synthetically following user requirements,
and this data is used to learn the task of AFR using a GNN. The CAFR frame-
work is depicted in Fig. 2. In the following paragraphs, we describe this work’s
threefold methodology.

3.1 Generating Synthetic Training Data with Intersecting
Machining Feature

A substantial dataset of CAD models is required to train a GNN on the AFR
problem. While FeatureNet provides such a dataset with 24,000 CAD models,
each model in this dataset contains only one machining feature. Additionally,
FeatureNet does not offer CAD model data augmentation functionalities such
as rotation, translation, or scaling, which are necessary to create intersecting
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Fig. 2. Presentation of the CAFR framework with user experience integration.

machining features. CADNet’s data generation strategy follows the specifica-
tions of FeatureNet. However, it utilizes freely positionable sketches of machin-
ing features to create STEP CAD models with intersecting machining features,
thereby addressing the limitations of the FeatureNet dataset. Nevertheless, the
data generation strategy from CADNet exclusively produces STEP CAD mod-
els, for which state-of-the-art approaches like FeatureNet and MsvNet are not
applicable.

Hence, we introduce a synthetic data generation strategy for STL CAD mod-
els as an integral component of the CAFR framework. This synthetic data gener-
ator relies on constructive solid geometry (CSG) modeling, often used for STEP
and STL CAD models. An essential part of CSG is the composition operations:
union A ∪ B, intersection A ∩ B, and difference A \ B [1]. These composition
operations are applied to 3D primitives and basic geometries such as cubes,
cylinders, or pyramids to create new 3D objects. Upon closer examination, the
FeatureNet dataset can be partitioned into ten distinct geometric primitives,
shown in Fig. 3.

By implementing configurable CSG decomposition techniques, as exemplified
by the synthetic data generation strategy illustrated in Fig. 4, this innovative
approach empowers the generation of datasets in alignment with the state-of-
the-art requirements described by FeatureNet and MsvNet. This data generation
strategy also allows the generation of STL CAD Data with intersecting machin-
ing features as depicted in Fig. 1.

3.2 Validating the Synthetic Training Data Generation Strategy

Given that the STL CAD data from the process depicted in Fig. 4
form the foundation of this study, the generated data must first be
validated. Here, validating the generated STL CAD models necessitates a
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Fig. 3. Example of machining features from the FeatureNet dataset: Each of the 24
cubes displayed contains a specific machining feature with specifications derived from
real manufacturing processes. The entire FeatureNet dataset can be partitioned into
ten distinct geometric primitives. Inspired by [29].
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Fig. 4. Procedure of the CAFR data generation strategy of synthetic data. The strategy
builds on the python package PyMadCad [3].
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comprehensive assessment to confirm the complete closure of their surfaces and,
therefore, the absence of data corruption.

To guarantee the accurate and enclosed surface generation of STL CAD mod-
els, the initial step of this study involves their conversion into a voxel representa-
tion. Here, the voxel conversion method, BINVOX, introduced by Patrick Min et
al. [15,17], is used. The successful application of BINVOX in this context verifies
the correctness of the generated CAD models. It also establishes foundational
compatibility with other AFR frameworks like FeatureNet.

To ensure that the synthetic data generator follows the machining feature
definition established by FeatureNet, state-of-the-art AFR frameworks for single
feature recognition, including FeatureNet, MsvNet, FeatureNetLite, and MsvNet
Lite, were trained on the unrotated 21.600 FeatureNet CAD models and then
tested on 2400 unrotated single machining feature dataset created by the CAFR
frameworks and the original FeatureNet dataset. This procedure targets the
exposure of any inconsistencies between the data strategy of this work and the
FeatureNet dataset. This work uses the provided source code of each framework
by Wu et al. [26] to evaluate the aforementioned state-of-the-art AFR frame-
works.

3.3 Evaluating Graph Neural Network Applicability for Intersecting
Machining Feature Recognition

Suppose STL CAD models contain multiple machining features; in that case,
intersections may occur, as depicted in Fig. 1. These intersections often result in
the deletion of original machining feature vertices, leading to the loss of crucial
topological information. This loss significantly impacts the recognition accuracy
of AFR frameworks.

The effectiveness of GNNs for STL CAD models with intersecting machining
features must be evaluated to address this challenge. Given that AFR involving
intersecting machining features necessitates multi-label classification of the entire
CAD model, we have implemented the k-dimensional Graph Neural Network
(k-GNN) as detailed in [16], using the PyTorch Geometric framework [8], for
graph classification. The k-GNN specializes in classifying an entire graph by
labeling each node individually and then aggregating these labels through a
global mean pooling layer to represent the entire graph. This network excels
in categorizing labeled graphs and primarily processes sets of graph nodes as
its input. At each layer, the k-GNN computes a unique feature vector for each
node set, enhancing its ability to detect intricate patterns. To ensure scalability
and prevent overfitting in large datasets, the k-GNN employs a strategy that
strategically excludes the global neighborhood of the current node set. This
approach is supported by a hierarchical structure, where features learned by a (k-
1)-dimensional GNN augment the network’s overall effectiveness. Additionally,
the k-GNN utilizes sampling strategies to manage larger datasets effectively,
facilitating efficient scaling while maintaining robust performance.
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Hyperparameter optimization is imperative to adapt the described k-GNN
effectively to the challenge of intersecting machining features. To accomplish
this objective, we employ Optuna’s hyperparameter optimization framework.
Optuna uses the hyperparameter intervals from Table 1 to optimize a network
architecture to the given dataset. In this work, multiple training cycles are con-
ducted. Optuna optimizes the given hyperparameters after every training cycle
to maximize the F1 score on the validation dataset. For the hyperparameter
optimization of the k-GNN model, we utilize the parameters and value ranges
depicted in Table 1.

Table 1. Hyperparameter table of the k-GNN with suggested value intervals by Moris
et al. [16].

Hyperparameter Suggested Values

Number of graph convolutional layers 2; 3; 4; 5; 6; 7
Number of hidden channels 32; 64; 128; 256; 512
Batch size 16; 32; 64; 128; 256
Learning rate 0.01; 0.001; 0.0001
Dropout probability 0.1; 0.2; 0.3; 0.4; 0.5

Regarding the necessary training data, this work follows the guidelines of
FeatureNet and MsvNet for the problem of intersecting machining feature recog-
nition, where 144.000 CAD models with up to 8 intersecting machining features
per model are created using the data generation strategy of the CAFR frame-
work. Additionally, eight test datasets containing 177 STL CAD models each
are created with the CAFR data generator. Each dataset comprises CAD mod-
els with a fixed number of machining features, varying from 1 to 8. The trained
k-GNN is compared with MsvNet, which shows high generalizability on differ-
ent datasets as depicted in Table 2. Also, due to the MSV strategy, MsvNet can
utilize 147,456 training images combined with preprocessing segmentation. This
results in a high recognition performance for intersecting machining features and,

Table 2. Accuracy comparison of state-of-the-art AFR frameworks on test models
from FeatureNet and the CAFR framework. The validation accuracy is based on 100
voxel models per machining feature class from the unrotated FeatureNet dataset and
the CAFR framework.

Dataset Automatic Feature Recognition Fameworks
voxel based pixel based
FeatureNet FeatureNetLite MsvNet MsvNetLite

FeatureNet ↑ 95.00% 89.92% 96.00% 93.62%
CAFR ↑ 89.38% 82.50% 96.12% 88.12%
Difference ↓ 5.62% 7.42% 0.12% 5.5%
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therefore, qualifies MsvNet as a well-suited benchmark. Also, the CAFR frame-
work is tested on a real hydraulic manifold to test its applicability to real-world
applications. For a fair comparison, this work omits approaches like SsdNet,
which utilize data augmentation techniques to enhance the training data size to
an excessive two million images.

4 Results and Discussion

For the following experiments, the source code of the CAFR framework with
the detailed GNN architectures, which was used to generate the results, can
be found at the Github repository: CAFR framweork. The source code for the
state-of-the-art approaches can be found in the respective references.

For compatibility reasons, all experiments were conducted on a system
equipped with an Intel Core i7-10850H processor, 32 GB of RAM, and an Nvidia
Quadro T2000 with 16GB of memory, which still supports CUDA 10.2. This
setup was necessary to accommodate the state-of-the-art AFR framework imple-
mentations and the outdated TensorFlow versions they required.

4.1 Validation of the Synthetic Generated Training Data

In order to verify the functionality of the synthetic data generator within
the CAFR Framework, the approaches detailed in Sect. 3.1 and Sect. 3.2 were
employed. Here, the entire FeatureNet dataset was converted into a voxel for-
mat with a resolution of 64× 64× 64 and then used for training. Following the
guidelines of Wu et al. [26], the training dataset was divided, using 900 voxel
models for training purposes and 100 models for validation in each machining
feature class. Figure 5 depicts the training and validation results, demonstrat-
ing that all AFR frameworks, except for FeatureNetLite, achieve a recognition
accuracy exceeding 90%. However, it should also be noted that the frameworks
FeatureNetLite exhibit slight indications of overfitting despite utilizing the com-
plete unrotated FeatureNet dataset comprising 21,600 training models.

To validate the accuracy of the synthetic data generator, a test dataset com-
prising 100 STL CAD models for each machining feature class was created using
the CAFR framework, comprising 2400 CAD models in total. These models
were transformed into a 64 × 64× 64 voxel format using the BINVOX software,
successfully achieving voxel conversion. This BINVOX conversion confirms the
correctness of the model surfaces. Subsequently, we tested state-of-the-art AFR
frameworks, trained on the unrotated FeatureNet dataset, on this test data and
compared their accuracy with the validation accuracy on the FeatureNet data.
The outcomes of these evaluations are detailed in Table 2.

The table shows that MsvNet achieves the highest recognition accuracy,
reaching 96%. Overall, The results relate to Wu et al.’s findings in [26]. Addi-
tionally, the table indicates that the advanced frameworks demonstrate similar
recognition accuracy on the data generated by the CAFR framework. However,
the approaches FeatureNet, FeatureNetLite, and MsvNetLite show differences in

https://github.com/Boehm92/gnn_machining_feature_recognition
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Fig. 5. Training Loss, Validation Loss, Training Accuracy, and Validation Accuracy
of the AFR frameworks MsvNet, FeatureNet, MsvNetLite, and FeatureNetLite are
reported. Each framework was trained for 30 epochs on 900 non-rotated CAD models
from each of the 24 machining feature classes derived from the original FeatureNet
dataset. Additionally, 100 CAD models per class were used to assess the accuracy of
the validation. The training of these frameworks utilized the implementation by Wu
et al. [26], specifically tailored to address the problem of recognizing single machining
features.

accuracy of around 5–7% compared to the CAFR dataset, which can be explained
by some mislabelled machining feature classes in categories eight and twelve.
Despite the minor variations between the two test datasets, the consistently
high recognition accuracy levels, particularly in the case of MsvNet, validate the
correct synthetic data generation process within the CAFR framework.

4.2 Results of Graph Neural Networks for Intersecting Feature
Recognition

A novel method for generating and validating training data for the AFR prob-
lem has been introduced up to this point. The next and final stage of this work
involves training the k-GNN on the problem of AFR with intersecting machin-
ing features. For this purpose, we use a training dataset generated through the
CAFR framework and validated via BINVOX conversion. This dataset comprises
144.000 training and validation models, as suggested by Peizhi et al. [20]. The
training and validation data ratio is 80% training and 20% validation data. It
includes STL CAD models containing up to eight intersecting machining fea-
tures. A hyperparameter optimization with 100 training cycles was conducted
using the parameters listed in Table 2 to assess the impact of missing vertices
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due to these intersections. We conduct a cross-validation mechanism after every
training cycle, in which the complete dataset is randomly shuffled and then split
again in training and validation datasets with the described ratio.

The best-performing network architecture of the hyperparameter optimiza-
tion concluded a network architecture with seven k-GNN layers where each has
a hidden layer size of 512. The batch size is 32, the learning rate is 0.001, and
the dropout probability is 0.2. As the final classifier of the architecture, a global
mean polling layer with a following linear layer is used. For the multi-label clas-
sification task, the BCEWithLogitsLoss function is applied. The training and
validation results of this architecture are shown in Fig. 6.

With 80% validation accuracy for the highly complex problem of intersect-
ing machining features recognition, the k-GNN shows promising potential for the
task at hand. To further analyze the applicability of the k-GNN, the following
comparative analysis in Table 3 showcases its strengths and limitations com-
pared to the state-of-the-art AFR frameworks MsvNet for intersecting feature
recognition. Here, MsvNet is chosen due to its high generalizability on different
datasets, as shown in Table 2. The k-GNN shows a significantly higher recog-
nition accuracy, especially with few machining features. However, it is essential
to highlight that the k-GNN, in contrast to MsvNet, can directly process STL
CAD data without converting it into voxel or pixel representation with a low
resolution. Additionally, a particularly notable point is the runtime of the k-
GNN compared to FeatureNet and MsvNet; the k-GNN is, on average, 70 times
faster. This can be attributed to the fact that MsvNet must process 12 times a
high pixel resolution of 256 × 256 for each CAD model due to the applied Msv
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Fig. 6. Training Loss, Validation Loss, Training Accuracy, and Validation Accuracy of
the k-GNN on a dataset with intersecting machining feature
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Table 3. Representation of the micro F1-score and runtime performance on the test
data for MsvNet and the k-GNN (ours). The best results are shown in bold.

MFR Machinig Feature in each test group
Frameworks 2 3 4 5 6 7 8

MsvNet
F1 Score ↑ 79.34% 74.74% 65.56% 61.45% 54.11% 55.26% 51.00%
Runtime ↓ 121.72 160.71 s 184.87 s 249.04 s 270.97 s 370.26 s 324.36 s
k-GNN
F1 Score ↑ 93.36%90.03%84.09%79.11%75.50%74.93%69.00%
Runtime ↓ 3.22 s 3.17 s 3.22 s 3.31 s 3.35 s 3.43 s 3.76 s

technique. In contrast, the k-GNN, with an average of 3,033 vertices, requires
significantly less computational effort.

4.3 Generalizability and Scalability of Graph Neural Networks
to Real World Application

This work addresses the AFR problem based on the theoretical foundation estab-
lished by FeatureNet. In its nature, however, AFR is a practical problem. There-
fore, a prototypical approach to analyzing manufacturing parts from various
industry branches using the CAFR framework is presented. For example, the
hydraulic manifold [18] introduced in Fig. 1 was used for the real-world applica-
bility test.

Since the k-GNN of the CAFR framework is trained exclusively on cube-
shaped STL CAD data, it is necessary to adjust real components accordingly to
maintain consistent performance. For this purpose, a simple strategy based on
the boolean difference operation is used. A grid with individual 10mm cubes is
created, as shown in Fig. 7. The individual cubes are iterative differentiated from
the original component. This simple strategy allows components with various

A

A B C

Correct
False

B C

Fig. 7. A prototypical approach to analyze various components from different industrial
sectors using the CAFR framework.
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shapes and structures to be converted into the necessary basic geometry for the
CAFR framework.

In Fig. 7, the segmented cubes A, B, and C are presented as test results.
The CAFR framework can generally recognize the basic geometries. However,
two basic geometries were incorrectly identified in cubes B and C. In cube B,
a stepped blind hole was not included in training data due to the FeatureNet
specifications and, therefore, was wrongly associated with an o-ring feature. In
cube C, a triangular blind step was incorrectly identified. This can be explained
by cube C being an edge piece of the component, only 3mm wide, with slight
intersections in the middle that could be interpreted as the tip of a triangular
blind step. Additionally, a circular blind step and a horizontal circular end blind
slot were classified as false positives, likely due to the significant intersections
at the blind holes, similar to these false positive features. Despite the signif-
icant intersections, the remaining features were correctly identified, indicating
potential real-world applications.

5 Conclusion

In the context of this study, a comparative analysis between the GNNs and the
state-of-the-art framework MsvNet for the problem of intersecting machining fea-
tures in STL CAD data was conducted. The objective was to determine whether
GNNs, particularly the unique k-GNN architecture, could effectively classify
machining feature patterns in STL CAD models. This study also involved the
development of a customized k-GNN architecture and a configurable data gener-
ation strategy for STL CAD data in regard to the AFR problem, as exemplified
in Fig. 8.

Fig. 8. GNN based AFR for intersecting machining feature.

One of the particular strengths of state-of-the-art approaches like MsvNet is
their ability to correctly classify machining features despite significant intersec-
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tion with other machining features. The comparative study in Sect. 4.2 demon-
strates that the k-GNN of this work’s CAFR framework outperforms MsvNet in
all scenarios without the need to convert the CAD data into a simpler 3D for-
mat. It is particularly noteworthy that the k-GNN demonstrates a remarkable
advantage over the state-of-the-art framework in terms of runtime performance,
thereby highlighting its efficiency.

In addition to the AFR problem defined by FeatureNet, Sect. 4.3 demon-
strates the applicability of the CAFR framework to real-world data using an
industrial hydraulic manifold. The hydraulic manifold is divided into suitable
cube structures using a simple boolean difference strategy to match the specifica-
tions of the training data. The k-GNN of the CAFR framework can recognize all
known basic geometries despite significant machining feature intersections. Only
when machining features deviate significantly from the original training dataset
occasional false positives occur. Overall, the simple boolean difference strategy
for component segmentation and the fast runtime of the k-GNN, demonstrate
the potential of the CAFR framework for real-world applications in various sizes
and shapes.

However, it is important to note that further development is required for an
accurate and stable industrial application. Specifically, the integration of compo-
nent segmentation for applying real-world components in the CAFR framework
as an automated preprocessing step is a crucial area for future development. The
k-GNN architecture, built for graph classification, can only recognize machin-
ing features. Future work should also focus on node classification, allowing for
machining feature segmentation alongside feature recognition. Additionally, the
focus should shift from the machining features defined by FeatureNet to those
that represent more realistic industrial applications. This requires an application
study across various independent industrial fields. Also, the CAFR framework
should not only rely on synthetic data generation in the future but also incor-
porate data augmentation strategies such as graph rotation, scaling, and node
translation. This could enhance the robustness of the CAFR framework concern-
ing different vertice topologies, which can vary between different CAD software.
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Abstract. This work addresses how to efficiently classify challenging
histopathology images, such as gigapixel whole-slide images for cancer
diagnostics with image-level annotation. We use images with annotated
tumor regions to identify a set of tumor patches and a set of benign
patches in a cancerous slide. Due to the variable nature of region of
interest the tumor positive regions may refer to an extreme minority of
the pixels. This creates an important problem during patch-level classi-
fication, where the majority of patches from an image labeled as ‘can-
cerous’ are actually tumor-free. This problem is different from semantic
segmentation which associates a label to every pixel in an image, because
after patch extraction we are only dealing with patch-level labels. Most
existing approaches address the data imbalance issue by mitigating the
data shortage in minority classes in order to prevent the model from
being dominated by the majority classes. These methods include data
re-sampling, loss re-weighting, margin modification, and data augmenta-
tion. In this work, we mitigate the patch-level class imbalance problem by
taking a divide-and-conquer approach. First, we partition the data into
sub-groups, and define three separate classification sub-problems based
on these data partitions. Then, using an information-theoretic cluster-
based sampling of deep image patch features, we sample discriminative
patches from the sub-groups. Using these sampled patches, we build cor-
responding deep models to solve the new classification sub-problems.
Finally, we integrate information learned from the respective models to
make a final decision on the patches. Our result shows that the proposed
approach can perform competitively using a very low percentage of the
available patches in a given whole-slide image.

Keywords: histopathology image · data imbalance · patch
classification

1 Introduction

Whole-slide images (WSIs) are a rich source of information in digital histol-
ogy, where tissue sections are scanned at gigapixel scale at various microscopic
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magnification levels [20,41]. However, the size and number of these images pose
challenges for machine learning models. Firstly, the gigapixel resolution creates
memory constraints necessitating input fragmentation. Secondly, annotations of
the tumor regions may constitute a very tiny portion of the entire WSI which can
create a large class imbalance in the training data. In recent years, deep mod-
els like CNNs and Transformer-based weakly supervised learning methods such
as multiple-instance learning (MIL) have shown promising results in gigapixel
whole slide image classification with varied sizes. In this approach, WSIs are
divided into small image tiles or patches and then aggregated in later stages
to make prediction using a classifier [21,32,40]. MIL treats each WSI as a bag
containing multiple instances. If any instance of a WSI is disease-positive then
the whole bag (WSI) is labeled as disease-positive. An aggregator classifier is
used on the instance-level predictions to get the final image level prediction.

Real-world datasets often display long-tailed or imbalanced class distribu-
tions [7,10,12,39]. Common approaches to handling data imbalance work by mit-
igating the data shortage in minority class by data augmentation [6,17,25], mar-
gin modification [4], loss re-weighting [9,30,36], and data re-sampling [1,5,24,37].
Though these methods have performed well on imbalanced natural image data,
they may not be as effective for WSIs. This is because, in the MIL classifier, the
WSI is represented as a bag of image tiles of variable sizes [38]. However, since
the area of the image that actually contains tumor in a WSI can be very small,
it means that a majority of tiles in an image weakly labeled ’cancerous’ actually
do not contain tumor, effectively mislabeling (>80%) of the tiles [18].

To address these challenges, we propose a patch-level classification method
that utilizes cluster-based sampling strategy to solve the imbalance prob-
lem between tumor and benign class patches and also provides an efficient
histopathology image classification framework for resource-constrained scenar-
ios. The main contributions of this work are as follows:

– A group based training approach where we divide the data into three specific
sets which help us to decompose the original problem into three sub-problems.
Each sub-problem focuses on discriminating between specific binary classifica-
tion problems and, when combined, solves the original classification challenge
effectively.

– A z-score-based stratified sampling on clustered image patches of the three
focus data groups, which allows us to sample most of the patch texture vari-
ety by selecting patches from all the distance-based intervals from cluster
centroid.

– A learning based information integration from the three sub-problems to
obtain the final image level predictions.

2 Related Work

2.1 Multiple Instance Learning (MIL) for WSI Classification

A typical MIL method for WSI classification consists of two stages. First, fea-
tures are extracted from each instance, and then these instance features are
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aggregated to obtain a bag-level feature. Then, an image (bag) level classifier
is trained using the bag-level features and their corresponding labels. Lin et
al. [22] proposed a model-agnostic framework called CIMIL to improve exist-
ing MIL models by using a counterfactual inference-based subbag evaluation
method and a hierarchical instance searching strategy to help search reliable
instances and obtain their accurate pseudo-labels. Qu et al. [28] proposed a
feature distribution-guided MIL framework called DGMIL, for both WSI clas-
sification and positive patch localization. Shi et al. [35] proposed a loss based
attention mechanism, which simultaneously learns instance weights and predic-
tions, and bag predictions for deep MIL. Qu et al. [29] proposed an end-to-
end weakly supervised knowledge distillation framework called WENO for WSI
classification. Li et al. [21] proposed a deep MIL model, called DSMIL, which
jointly learns a patch (instance) and an image (bag) classifier, using a two-stream
architecture. Zhang et al. [40] proposed to virtually enlarge the number of bags
by introducing the concept of pseudobags, on which a double-tier MIL frame-
work, called DFTD-MIL, is built to effectively use the intrinsic feature. Kong et
al. [18] presented an end-to-end CNN model called the Zoom-In network that
uses hierarchical attention sampling to classify gigapixel pathology images with
minority-pixel cancer metastases from the CAMELYON16 dataset. Sharma et al.
[33] proposed an end-to-end framework named Cluster-to-Conquer (C2C) that
clusters the patches from a WSI into k-groups, samples k′ patches from each
group for training, and uses an adaptive attention mechanism for slide-level
prediction the patches. Campanella et al. [3] presented a deep learning system
based on multiple instances of learning that uses only the diagnoses reported
as labels for training, thereby avoiding expensive and time-consuming pixel-wise
manual annotations. Lu et al. [23] reported an interpretable weakly supervised
deep-learning method called CLAM that uses attention-based learning to iden-
tify sub-regions of high diagnostic value to accurately classify whole slide images.
Nouyed et al. [26] addressed the challenge of high resolution image classification
using a discriminative patch selection approach where they embeded their patch
selection approach inside a novel classification framework which can support the
use of different off-the-shelf deep models.

While all the works mentioned above focus on solving the problem of patch-
level label corruption from weakly assigned labels at the image level, they do not
address the frequent issue of patch class imbalance, where the region of interest
(ROI) that defines the label occupies a super minority of the image pixel space.
Pawlowski et al. [27] investigated the performance of CNNs for minority-pixel
image classification tasks and their results show that by using a training dataset
limited in size, CNNs fail to generalize well because of the low ROI-to-image
ratio. Usually, the object associated with the label occupies a dominant portion
of the image. However, in histopathology image classification such as gigapixel
whole-slide image classification, there could be datasets where only a very tiny
fraction of the image informs the positive label.
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2.2 Long-Tailed Histopathology Image Classification

Long-tailed classification is a well-known research topic in machine learning
where the objective is to solve the data imbalance problem [15,19]. Under-
sampling [1,11,24] and over-sampling [31,34] are common solutions with known
trade-offs between bias and accuracy. While over-sampling can lead to overfit-
ting of the minority class [5], under-sampling has the potential of information
loss about the majority class [24]. We can also apply data augmentation to
amplify the minority classes [6,17]. Another category of data balancing is called
loss re-weighting, in which the loss function is modified to increase weight on
the minority class samples and decrease weight on the majority class samples
[9,14,16]. But research has shown that loss re-weighting can be ineffective when
the datasets are separable [2].

3 Method

In MIL, a group of training samples is considered as a bag containing mul-
tiple instances. Each bag has a bag label that is positive if the bag contains
at least one positive instance and negative if it contains no positive instance.
The instance-level labels are unknown. In the case of binary classification, let
B = {(x1, y1), . . . , (xn, yn)} be a bag where xi ∈ X are instances with labels
yi ∈ {0, 1}, the label of B is given by

c(B) =

{
0, iff

∑
yi = 0

1, otherwise
(1)

First, the image is split into N × N instances of equal size. We consider
the instances from the same image as in the same bag. The main components of
our method can be divided into four parts, (1) A divide-and-conquer approach is
taken by splitting training data into 3 patch sets using pseudo-labeling and ROI;
(2) partitioning of the cancer classification problem into smaller sub-problems
based on tumor annotation and source of tissue sample; and (3) Integration of
the patch level results using patch level pooling at the feature and prediction
levels, followed by activation function and dimensionality reduction (if needed),
(4) A threshold percentage of tumor patch per WSI is used to determine the final
patch level prediction. Figure 1 provides an overview of the proposed framework,
while Fig. 2 shows a sample WSI with annotated tumor regions.

3.1 Partition-Based Approach to WSI Analysis

Based on the annotation provided in the dataset, we categorize the patches into
three different types: 1) Set of tumor patches, denoted as A, so A can be defined
as A = {(x, yp)|yp = 1, x ∈ W, yw = 1}, where x is an image patch, yp is patch
label, W is an image, and yw is image label; 2) Set of benign patches that belong
to WSIs labeled as cancerous, denoted as set B, so B = {(x, yp)|yp = 0, x ∈
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Fig. 1. Overview of the proposed framework. At the first stage, all patches of WSIs
are extracted using a pre-trained model E. Then based on available annotation train
set data is categorized into 3 data sub-sets. Feature set XA, XB , XC are extracted
from each corresponding set. On each set clustering K is performed and then z-score
based cluster sampling strategy is applied. Then 3 different models EAvB , EAvC and
EAv(B+C) are fine-tuned using the sampled patches {p′

1, p
′
2, . . . , p

′
N} to train the binary

classification models EAvB , EAvC , EAv(B+C). From these, the feature or aggregation
information is passed to the aggregation function ρ(.) for patch-level aggregation. And,
these aggregated information is used for final patch-level decision fusion using the final
R classifier.

Fig. 2. Sample WSI, with annotation. Zoomed in section includes annotated regions in
different colors, also, the ‘+’ signs indicate the boundaries of the extracted 256 × 256
size patches.
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W, yw = 1}; (Note that, set B does not indicate a misclassification, a doctor’s
misdiagnosis, nor a system’s misdetection. It is simply the set of patches that
are extracted outside the annotated tumor regions of the WSI.); and 3) Set of
benign patches that belong to WSIs labeled as benign, denoted as set C, so
C = {(x, yp)|yp = 0, x ∈ W, yw = 0}. The assumption is that the benign patches
belonging to a cancerous WSI may contain additional information that can help
the model learn to better discriminate between tumor and tumor-free patches.
Based on these three data partitions, we can now decompose the original problem
into three different binary classification sub-problems: 1) A versus B, 2) A versus
C and 3) A versus (B+C). We then train three different classification models of
the same architecture for each of the patch-level classification sub-problems.

3.2 Information Theoretic Cluster-Based Sampling

Algorithm 1. Information-theoretic cluster-based patch sampling algorithm
Require: X, K, |A|
Ensure: P
1: for K1, K2, . . . , Kk do
2: for x ∈ X do
3: d ← JSD(Kk, x);D(k) ← D(k) ∪ d
4: end for
5: Dσ(k) ← σ(D(k));Dμ(k) ← μ(D(k))
6: for d ∈ D(k) do
7: z ← d−Dμ(k)

Dσ(k)
;Z(k) ← Z(k) ∪ z

8: end for
9: end for

10: for K1, K2, . . . , Kk do
11: ST = |A| ∗ ||Dμ(k)||
12: for x ∈ X do
13: d ← JSD(Kk, x); z ← d−Dμ(k)

Dσ(k)
; i ← GetInterval(z);X ′(i) ← x

14: end for
15: si = �ST /|X ′|�
16: while true do
17: for i ∈ X ′ do
18: ρ ← RandomSample(X ′(i));P ← P ∪ ρ;ST ← ST − |ρ|
19: end for
20: Update(X ′); si = �ST /|X ′|�
21: if ST ≤ 0 or si ≤ 0 then
22: break
23: end if
24: end while
25: end for

Because of the partition of the patch sets, we now have a clearer understanding
of the class imbalance between the benign and tumor patches. Typically for a
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dataset |A| << |B|and A << |C|. For this reason, we apply a sampling approach
to reduce the class imbalance among set A, B and, C. First using a pre-trained
model, we extract features from all patches. Let X ← f(B, θ) or X ← f(C, θ),
where f(., θ) is a feature extractor using the trained parameters θ. We use a
parametric clustering method to cluster each of the sets into k different clus-
ters, such that, Kk is the k-th cluster centroid. Given a set of patch features
(x1, x2, . . . , xn), where each patch has been converted to a d-dimensional real
vector, parametric clustering such as k-means aims to partition the n patches
into k cluster sets (k ≤ n) S = {S1, S2, . . . , Sk} so as to iteratively minimize the
within-cluster sum of square errors to reach the local minima or optimum. The
objective can be defined as :

argmin
S

k∑
i=1

∑
x∈Si

||x − μi||2 (2)

where, μi is the mean or centroid of the points in Si, μi = 1
|Si|

∑
x∈Si

x. We use
these k clusters to perform a systematic sampling on the patches such that we can
create balanced sets that are not dominated by the minority class. Algorithm 1
shows our procedure for this information-theoretic cluster-based sampling to in
generating balanced patch sets. Based on the available tumor patches, we sample
equal number of patches from each of the k cluster sets, if B’ and C’ are the
new sampled sets such that B′ ⊂ B and C ′ ⊂ C then |B′| = |A|, |C ′| = |A|.
Denote P = B′ or C ′. During clustering we take a stratified random sampling
approach based on the Euclidean distance from the cluster centroid in order to
maximize the intra cluster variance among the clusters by sampling in such a
way that P contains samples from all z-score intervals X ′(i). For a given patch
in a cluster, we represent its computed features as a probability distribution.
The cluster centroid is also represented similarly. We then use an information-
theoretic divergence measure, namely the Jensen-Shannon divergence (JSD), to
evaluate the dispersion between the patch, and its cluster centroid. For two
probability distributions p1 and p2, the Jensen-Shannon divergence [8] is given
by:

JSD(p1, p2) =
1
2
D(p1||q) + 1

2
D(p2||q) (3)

where q = 1
2 (p1 + p2), and D(p1||q) is the Kullback-Leibler (KL) divergence [8]

between two distributions, given by:

D(p1||q) =
|C|∑
c=1

p1(c) log
(

p1(c)
q(c)

)
(4)

where C is the number of distinct intervals used in the representation. For each
cluster we divide the distribution into intervals based on the z-scores. Then for
each patch we calculate the z-score of its dispersion from the centroid z ←
d−Dμ(k)

Dσ(k)
. Based on this, we make sure we uniformly sample from each z-score

interval as much as possible so that we can have representation of all possible
patch texture variances as much as possible from each cluster, while keeping the
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total sample size within ST where ST = |A|∗||Dμ(k)||. Essentially, ST is the value
we get by multiplying the expected total size of the sampled set with normalized
mean of all centroid dispersions (or centroid distances). A pseudo-code based
description is provided in Algorithm 1.

3.3 Instance Level Learning

The instance-level models encode patches to a d-dimensional embedding,
f(x, θ) : x → h where θ is the set of training parameters. During the training,
we use the cross entropy loss on the instance-level labels and prediction of the
selected instance to update the classifier’s parameters. The loss function for the
classifier is define as follows:

L = −
∑

j

yj logŷj + (1 − yj)log(1 − ŷj), (5)

where yj is the instance-level label. Using the partitioned datasets A, B and C
we train three different binary classification models, that learns to discriminate
between A vs. B, A vs. C, and A vs. (B+C), respectively. The objective here is
to divide the problem space into sub-problems that discriminate between tumor
and benign regions within same tissue image (AvB); between tumor and benign
regions of other tissue images (AvC), and tumor and benign regions of both
same and other tissue image (Av(B+C). The assumption is that the aggregated
feature representations obtained from these expert binary classification models
will be more informative for the final prediction. See Fig. 1.

3.4 Integrating Information from Problem Decompositions

We investigate information integration from the sub-problems in 5 different
ways: (M0) Majority vote based on the fine-tuned deep model predictions:
Let, ŶAvB = {ŷi|fθ

AvB(xi, yi) → ŷi}, ŶAvC = {ŷi|fθ
AvC(xi, yi) → ŷi} and

ŶAv(B+C) = {ŷi|fθ
Av(B+C)(xi, yi) → ŷi}, are the set of instance-level predic-

tions obtained from models trained on the AvB, AvC, and Av(B+C) datasets.
Here fAvB , fAvC , fAv(B+C) are the binary classification models trained on some
parameters θ, and ŷi is the predicted label of the i-th instance. Then we per-
form a simple majority vote count based on the number of positive predictions
to obtain ŷF , the fused label; (M1) Learning-based fusion using Softmax: Let,
SAvB = {σi|S(fθ

AvB(xi, yi)) → σi}, SAvC = {σi|S(fθ
AvC(xi, yi)) → σi} and

SAv(B+C) = {σi|S(fθ
Av(B+C)(xi, yi)) → σi} be a set of instance-level proba-

bility distributions, where S(.) is the softmax function. These instance level
probability distributions are concatenated to x and passed to a classifier; (M2)
learning-based fusion using feature concatenation followed by dimensionality
reduction: Let, XAvB = {xi|Eθ

AvB(xi)}, XAvC = {xi|Eθ
AvC(xi) → xi} and

XAv(B+C) = {xi|Eθ
Av(B+C)(xi) → xi}, be the set of feature representations

obtained from the trained feature encoders Eθ
AvB , Eθ

AvC , Eθ
Av(B+C). These fea-

tures are concatenated to x and then passed to a dimensionality reduction func-
tion PCA(.) followed by a classifier; (M3) Learning-based fusion by applying
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dimensionality reduction on individual features and then concatenation. Similar
to (M2), but here first PCA(.) is applied on individual feature representation
and then the reduced features are concatenated; and (M4) Instance level pooling
of learned features followed by activation functions and then applying a classi-
fier. Average pooling method on the instance level features is applied to obtain
an aggregated patch level representation. This aggregated representation is then
passed to GeLU (G(z)) function followed by a classifier, where G(z) is defined
as follows.

G(z) = 0.5x(1 + tanh[
√

2/π(x + 0.044715x3)]) (6)

Algorithm 2 shows our proposed procedures for integrating information obtained
from solving the three sub-problems.

Algorithm 2. Information integration from the problem decomposition
Require: XAvB , XAvC , XAv(B+C), ŶAvB , ŶAvC , ŶAv(B+C), SAvB , SAvC , SAv(B+C), Y, m
Ensure: ŷF

1: if m = 0 then
2: for ŷ1 ∈ ŶAvB , ŷ2 ∈ ŶAvC , ŷ3 ∈ ŶAv(B+C) do
3: if ŷ1 + ŷ2 + ŷ3 ≥ 2 then return 1 else return 0 end if
4: end for
5: else if m = 1 then
6: for σ1 ∈ SAvB , σ2 ∈ SAvC , σ3 ∈ SAv(B+C), y ∈ Y do
7: x ← [σ1;σ2;σ3]; ŷF ← RandomForest(x, y); return ŷF

8: end for
9: else if m = 2 then

10: for x1 ∈ XAvB , x2 ∈ XAvC , x3 ∈ XAv(B+C), y ∈ Y do
11: x ← [x1;x2;x3];x

′ ← PCA(x); ŷF ← RandomForest(x′, y); return ŷF

12: end for
13: else if m = 3 then
14: for x1 ∈ XAvB , x2 ∈ XAvC , x3 ∈ XAv(B+C), y ∈ Y do
15: x′

1 ← PCA(x1), x
′
2 ← PCA(x2);x

′
3 ← PCA(x3)

16: x′ ← [x′
1;x

′
2;x

′
3]; ŷF ← RandomForest(x′, y); return ŷF

17: end for
18: else if m = 4 then
19: for x1 ∈ XAvB , x2 ∈ XAvC , x3 ∈ XAv(B+C), y ∈ Y do
20: x′

p ← AvgPool([x′
1;x

′
2;x

′
3]);x

′ ← GeLU(x′
p)

21: ŷF ← RandomForest(x′, y); return ŷF

22: end for
23: end if

4 Experiments and Results

4.1 Database

We use the publicly available CAMELYON16 dataset for breast cancer metas-
tasis detection. It has a total of 399 WSIs, with 270 WSIs in training and 129
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Table 1. CAMELYON16 dataset details with info on 256× 256 size patches extracted
at 10× magnification level.

Train Test

Image level (WSI) Total number 270 129
Positives (number, %) 111 (41%) 49 (31%)
Negatives (number, %) 159 (59%) 80 (62%)
Avg. area of ROI (pixels, %) 444,770 (0.003%) 653,670 (0.005%)
Max area of ROI (pixels, %) 91,418,800 (0.8%) 332,954,015 (2.8%)
Min area of ROI (pixels, %) 10 (0.000%) 0 (0.000%)

Patch level Total number 4,612,746 2,026,538
Positives (number, %) 38,052 (0.8%) 31,536 (1.56%)
Negatives (number, %) 4,574,694 (99%) 1,995,131(98%)

Patches/Image (PPI) Average 17083 15710
Max 22,787 20,906
Min 1,461 3,093

WSIs in test set. Out of the 270 training images, 111 are tumor WSIs, whose
tumor annotation is also provided. For our work, patches of size 256×256 at 10×
magnification were extracted. Table 1 provides both slide-level and patch-level
database details. Figure 2 shows a sample WSI with tumor annotation.

4.2 Architecture and Hardware

For all models, we used ResNet-18 [13] with a l = 512 feature representation
which was then clustered using k-means with l2-normalization. The model was
implemented with PyTorch and trained on a single RTX1080 GPU. The models
are trained using an SGD optimizer with a batch size of 512 and a learning rate
of 1e − 4 for 10 epochs.

4.3 Patch Labeling

To partition the patches into groups (A, B, and C), first we find the bounding box
around the tumor polygons provided by the CAMELYON16 dataset. After that,
for each patch of a WSI, we detect if there is any overlap between the polygon
bounding box and the patch coordinates, if there is an overlap we calculate the
area of overlapping rectangles using the following formula:

(min(x2, p2) − max(x1, p1)) ∗ (min(y2, q2) − max(y1, q1)) (7)

where (x1, y1), (x2, y2) are the polygon bounding box, and (p1, q1), (p2, q2) are
the patch coordinates. We use an overlap threshold to decide whether to assign
the patch of a tumor positive WSI in A set, or in the B set, and, if the WSI is
tumor negative we put the patches in C set.
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Table 2. Distribution of patches after partitioning into the 3 groups and after applying
the clustering based sampling algorithm to create balanced sets.

A B C Total

Unbalanced data Train 30,442 1,505,762 2,153,994 3,690,198
Val 7,610 376,440 538,498 922,548
Total 38,052 1,882,202 2,692,492 4,612,746

Balanced data Train (number, %) 30,442 (100%) 30,440 (2%) 30,440 (1.4%) 91,322 (2.4%)
Val (number, %) 7,610 (100%) 7,609 (2%) 7,609 (1.4%) 22,828 (2.4%)
Total (number, %) 38,052 (100%) 38,049 (2%) 38,049 (1.4%) 114,150 (2.4%)

4.4 Patch Sampling

We apply a K-means clustering algorithm, with k = 10, on the pre-trained
ResNet18 [13] features of the unbalanced training set. Now to sample from the
B set and C set patches, equal to the size of A set, we use the Euclidean dis-
tance from centroid feature to patch feature. The z-score intervals span from
-3 to 15, and patches are sampled from within these intervals. Table 2 provides
the details on both unbalanced and balanced training and validation datasets.
We can observe that for the training and validation set we tried to keep the A
set patches as much as possible so that we don’t lose any information regarding
tumor presence in the slides. The contributions of the cluster-based sampling
strategy or the z-score based sampling strategy were visible, when we compared
its performance with just random sampling once the sub-groups of patches are
formed. We have found due to the Gaussian nature of the random sampling
algorithm most of the patches were similar and does not represent all the vari-
able texture patches within the centroid. This motivated us to take the z-score
based sampling approach so that we can properly sample representations from
all ranges of variability within a cluster.

4.5 Efficiency

From Table 2, we can observe that we have used 100% of all A set patches for
the training and validation set construction, but reduced the majority classes
(namely, class B and class C) down to 2% and 1.4% of the original dataset,
respectively, in order to match with the minority class. Since during training
time these patches are processed sequentially, the time that can be saved can be
estimated as O (B/U), where B is the total size of the balanced data, and U is the
total size of the unbalanced data. Thus, from the table, the proposed method
will run about 50 times faster than working without the proposed sampling
approach. Note that, we are estimating the efficiency gain based on the presence
of the balancing step in the proposed framework. We also observe that, speed
of convergence is another aspect of measuring the efficiency of the balancing
approach which can further establish the efficacy of the balancing step.



Efficient Classification of Histopathology Images 171

Table 3. Cross validation result for the 3 models.

AvB AvC Av(B+C)
Top-1 Acc. Top-1 Acc. Top-1 Acc.

Avg. ± Std. 0.894 ± 0.023 0.902 ± 0.022 0.897 ± 0.011

Table 4. Patch-level classification performance using the proposed models for infor-
mation integrating from the problem decompositions.

Methods Accuracy AUC Precision Recall F1-score

M0 0.833 ± 0.001 0.833 ± 0.001 0.764 ± 0.001 0.963 ± 0.001 0.852 ± 0.001

M1 0.980 ± 0.001 0.980 ± 0.001 0.964 ± 0.002 0.997 ± 0.001 0.980 ± 0.001

M2 0.989 ± 0.000 0.989 ± 0.001 0.978 ± 0.001 0.999 ± 0.000 0.988 ± 0.001

M3 0.988 ± 0.001 0.989 ± 0.001 0.978 ± 0.001 0.999 ± 0.000 0.988 ± 0.000

M4 0.987 ± 0.001 0.987 ± 0.004 0.975 ± 0.001 0.999 ± 0.000 0.987 ± 0.001

4.6 Evaluation

Using the balanced A, B and C sets, we create 5-fold cross validation sets (80–20
partition). We evaluated performances of the models trained on AvB, AvC and
Av(B+C) models, individually and also using feature aggregated decision fusion
approaches. Table 3 shows the individual cross-validation performance of the 3
binary classification models on the balanced datasets. The average top-1 accu-
racies are 0.894 ± 0.023, 0.902 ± 0.022 and 0.897 ± 0.011 showing strong patch
level performance on the individual partitioned data sub-sets. This is using a
relatively weak ResNet backbone architecture (ResNet-18). Table 4 shows the
performance of different feature aggregation and decision fusion strategies using
the combined folds from the 3 partitioned datasets. This makes the folds harder
to predict because they include samples from all A, B, and C sets. Even after
that we can see that feature concatenation followed by PCA and RF classifi-
cation (M2) shows a strong performance of top-1 accuracy 0.989 along with
high precision (0.978± 0.001), recall (0.999) and F1-score (0.988± 0.0005). The
second best method utilizes PCA on deep features following by concatenation
of dimensionality reduced features before classification (M3), has almost the
same performance as M2. In fact, except for majority vote approach (M0), all 4
learning-based approaches show strong patch-level classification performance on
the validation set. We believe this is indicative of the efficacy of our partitioning,
sampling, and information integration from the three problem decompositions.
Still the work has to show good performance on the test set also, which is much
more challenging because we have to infer initial sub-divisions, followed by clus-
ter sampling on an unseen data.

In Table 5 we provide comparative instance-level classification performance
results with state-of-the-art methods. For our instance-level classification we
used Area Under the Curve(AUC) and Top-1 accuracy as evaluation metrics
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Table 5. Comparison of patch level classification performance with the state-of-the-art.

Methods Accuracy AUC

Loss-ABMIL [35] 0.803 0.848
CLAM-SB [23] 0.789 0.880
CLAM-MB [23] 0.799 0.878
DSMIL [21] 0.857 0.886
DSMIL+WENO [29] 0.901 0.930
DTFD-MIL [40] 0.870 0.893
DGMIL [28] 0.886 0.901
CLAM-SB+CIMIL [22] 0.921 0.943

M2 (Ours) a 0.989± 0 0.989± 0.001

M3 (Ours) a 0.988± 0.001 0.989± 0.001
a Reported accuracy and AUC is based on valida-
tion data.

to compare with other methods. We chose Loss-ABMIL [35], CLAM-SB [23],
CLAM-MB [23], DSMIL+WENO [29], CLAM-SB+CIMIL [22], DSMIL [21], and
DFTD-MIL [40]. ABMIL, CLAM, DSMIL models are equipped with specific
mechanisms that provide patch prediction, DGMIL is specifically tailored for
patch classification. WENO and CIMIL are frameworks for boosting existing
MIL models. It can be seen that even with a significantly reduced dataset we were
able to achieve the best instance-level performance both in terms of accuracy and
AUC. We note that, with very high data imbalance, AUC is a much more effective
performance metric than accuracy. However, since we handled the large class
imbalance problem as part of our proposed approach, we believe it is appropriate
to then include accuracy for performance measurement.

5 Conclusion

In this work, we propose a patch-level classification method that utilizes a group
based training approach. By compartmentalizing training into sub-groups, we
decompose the original classification problem into smaller classification sub-
problems. We then develop models to solve each smaller sub-problem. Infor-
mation from these models are later aggregated using feature and decision fusion
approaches leading to a superior classification result. Furthermore, the method
also incorporates a cluster-based sampling strategy to solve the significant data
imbalance problem between positive and negative classes while maintaining slide-
level representation of all WSIs. This allows our approach to efficiently handle
a large data source using limited computational resources. Strong patch-level
performance in our cross-validation and data fusion experiments validates our
claim. Future work should explore the transferable value of the patch level fea-
tures for slide-level predictions and verify on test set data. More ablation studies
is needed to further investigate the impact of various algorithmic parameters,
e.g., the initial clustering, number of clusters, complexity of tumor patches, etc.
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Abstract. Recent studies showcase the competitive accuracy of Vision
Transformers (ViTs) in relation to Convolutional Neural Networks
(CNNs), along with their remarkable robustness. However, ViTs demand
a large amount of data to achieve adequate performance, which makes
their application to small datasets challenging, falling behind CNNs.
To overcome this, we propose GenFormer, a data augmentation strat-
egy utilizing generated images, thereby improving transformer accuracy
and robustness on small-scale image classification tasks. In our compre-
hensive evaluation we propose Tiny ImageNetV2, -R, and -A as new
test set variants of Tiny ImageNet by transferring established Ima-
geNet generalization and robustness benchmarks to the small-scale data
domain. Similarly, we introduce MedMNIST-C and EuroSAT-C as cor-
rupted test set variants of established fine-grained datasets in the medical
and aerial domain. Through a series of experiments conducted on small
datasets of various domains, including Tiny ImageNet, CIFAR, EuroSAT
and MedMNIST datasets, we demonstrate the synergistic power of our
method, in particular when combined with common train and test time
augmentations, knowledge distillation, and architectural design choices.
Additionally, we prove the effectiveness of our approach under chal-
lenging conditions with limited training data, demonstrating significant
improvements in both accuracy and robustness, bridging the gap between
CNNs and ViTs in the small-scale dataset domain.

Keywords: Robustness · Transformer · Classification · Generative

1 Introduction

Deep learning models, whether based on convolution or self-attention, achieve
remarkable performances across a wide range of computer vision benchmarks.
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Fig. 1. Comparison of the error rate (left) and mean corruption error (right) of DeiT
[46] on CIFAR [28] and parts of the MedMNIST [52] collection with and without our
GenFormer. Lower error rates closer to the plot center are better.

Yet, numerous works demonstrate the vulnerability of modern architectures to
adversarial perturbations [33], common corruptions [19], and domain shifts [18],
a major challenge on the road to real-world applications. Recent research demon-
strates the intrinsic robustness and generalization superiority of the transformer
architecture compared to Convolutional Neural Networks (CNNs) [3,36,54].
However, a huge drawback of the Vision Transformer (ViT) [9] and its vari-
ants [10–12,48] remains the demand for large-scale training data, due to its lack
of an inductive bias which makes ViTs prone to overfitting when data is scarce.

Transfer learning is a commonly chosen approach to mitigate the problem of
data scarcity by pre-training the model on an out-of-domain medium- or large-
scale dataset [8] and subsequently fine-tuning on the target data. However, the
viability of this approach is limited since specific domains (e.g. medical imag-
ing [52]) lack large-scale datasets. Similar constraints apply to self-supervised
approaches, such as masked image modeling (MIM) [14] which has proven to
also rely on large amounts of data [50]. Thus, a plethora of works propose meth-
ods enabling ViTs to be trained on medium and small-sized datasets without
the use of extra data [30,32,46]. However, exploiting the inherent robustness of
transformers in data-limited scenarios remains a sparsely explored field.

In this work, we propose GenFormer, a data augmentation scheme enhancing
the applicability of ViTs to small-scale datasets, utilizing their inherent robust-
ness, by directly tackling data scarcity. We obtain additional information from
the training data by expanding the real dataset with images from a generative
model. Our GenFormer approach showcases accuracy and robustness improve-
ments for a variety of transformer networks on downstream classification tasks,
especially in domains with limited access to data (e.g. medical imaging [52]), as
demonstrated by the results of DeiT [46] in Fig. 1. Since this work aims for a
comprehensive investigation of our method’s impact on robustness in limited-
data scenarios, we propose Tiny ImageNetV2, -R, and -A as new test sets of
Tiny ImageNet by transferring established ImageNet [8] generalization [40] and
robustness [18,21] benchmarks to the small-scale data domain. Furthermore,
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we demonstrate the straightforward applicability and synergistic effectiveness of
our training scheme by combining it with existing approaches incorporating train
and test time augmentation, knowledge distillation and architectural adaptions.

Our code and models are available on GitHub at https://github.com/
CeMOS-IS/GenFormer. All test sets for evaluation can be found at https://
github.com/CeMOS-IS/Robust-Minisets.

2 Related Works

Vision Transformers for Small Datasets. Recent efforts enable the use
of Vision Transformers (ViTs) on small-scale datasets through novel training
approaches. Strategies include advanced data augmentation [30,46], knowledge
distillation from CNNs [31,46], and self-supervised objectives promoting spatial
understanding [32]. Further approaches introduce architectural adaptations, such
as adding convolutions to induce locality [34], or explicitly focusing on adapting
the self-attention module to encourage a stronger focus on local [30] and mean-
ingful [7,34] information to prevent performance degradation on scarce datasets.
Robustness of Vision Transformers. In response to the success of the trans-
former architecture in terms of clean accuracy, many works study the perfor-
mance of ViTs on robustness benchmarks [18,19]. It becomes evident that trans-
formers scale better with model size than CNNs and often surpass their convolu-
tional counterparts when faced with corruptions [38,45], adversarial attacks [33]
and distribution shifts [54]. Training [38] and test time [56] augmentation meth-
ods utilizing AugMix [20] as well as attention enhancement techniques [7] have
shown great improvement in robustness. Architectural changes such as position-
based attention scaling [35] and Fully Attentional Networks (FANs) [57] further
improve performance. Despite these advances, the use of robust transformers in
data-constrained domains remains an emerging area of research.
Data Augmentation with Synthetic Images. Driven by the data hunger
of modern deep learning models, exploiting information from synthetic data to
expand training data for downstream tasks is gaining attraction in the field of
computer vision. In the past, a plethora of works utilized synthetic datasets espe-
cially in domains requiring complex annotation such as human motion under-
standing [37] or semantic segmentation [42]. Early publications focusing on image
classification are tailored to specific domains, lacking investigations on general
applicability [22], partly not even deriving performance advantages [5].

Most general approaches focus on studying the effectiveness of substitut-
ing the real training set completely by generated data [39], thereby overlooking
the potential of expanding the real dataset with synthetic images. For some
approaches, this could be attributed to diminishing performance improvements
when combining real and generated data [5]. More recent works employ pre-
trained text-to-image models [41] to create synthetic classification datasets show-
ing potential of being capable to replace [16,43] and augment [2] general object-
level datasets. Though, these approaches lack applicability to domains that devi-
ate from common objects, such as medical imaging [52]. Some works apply gen-
erated images to modern transformer models [2,16], others consider the effect of

https://github.com/CeMOS-IS/GenFormer
https://github.com/CeMOS-IS/GenFormer
https://github.com/CeMOS-IS/Robust-Minisets
https://github.com/CeMOS-IS/Robust-Minisets
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Fig. 2. The proposed GenFormer approach involves training a downstream-aware
image generation model, GΘ, using real data Dreal, then augmenting this dataset with
generated data Dgen to create Dmix. Subsequently, CΘ is trained on Dmix for the clas-
sification task, with optional methods like data augmentation or knowledge distillation
during training. ⊕ denotes a concatenation.

synthetic images on domain shifts and adversarial robustness [13,43]. However,
to the best of our knowledge, no research explores the impact of data augmenta-
tion with generated images on the robustness of ViTs in limited-data scenarios.

In our work, we explore how generative data augmentation impacts trans-
former models’ robustness in small-scale data scenarios. Demonstrating that aug-
menting real datasets with images generated by a generative model improves
accuracy and robustness against corruptions and domain shifts, our GenFormer
approach proves to be versatile across domains. Additionally, we highlight its
synergy with conventional methods like augmentation, knowledge distillation,
and architectural adaptations, resulting in state-of-the-art performance across
models trained from scratch.

3 Method

The aim of this work is to utilize the inherent robustness of the transformer
architecture in limited-data scenarios. We therefore propose GenFormer, a gen-
erative data augmentation strategy, that alleviates the demand of transformers
for large-scale datasets by tackling data scarcity directly, before common train-
ing schemes are applied. We accomplish this by exploiting information from
generated images, which are created with knowledge about the label space of
the downstream task. We refer to this as downstream-aware image generation.
The exact procedure can be seen in Fig. 2.

Let Dreal = {xreal
i , yreal

i }Nreal
i=1 be a training dataset where Nreal denotes

the number of real image-label pairs consisting of an image xreal and its cor-
responding class label yreal. Instead of simply following a standard supervised
training strategy solely relying on the real training data, the proposed app-
roach leverages additional information from the real dataset. This is achieved by
a generative data augmentation utilizing a class-conditional downstream-aware
image generation model GΘ learning the parameters Θ to approximate the true
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Fig. 3. Real (left) and generated (right) sample pairs of corresponding classes (f.l.t.r):
CIFAR-100 [28], BreastMNIST, PneumoniaMNIST, OrganSMNIST [52] and EuroSAT
[17].

data distribution following the underlying objective pG(x|y) ≈ p∗(x|y). Here, x
and y denote a random image with its corresponding label of the underlying
data distribution whereas pG and p∗ denote the learned probability distribution
of the generator and the true distribution respectively. The generator is then
used to create Ngen images xgen = GΘ(z, ygen) given a random noise vector
z and a label ygen as input. This results in an additional generated training
dataset Dgen = {xgen

i , ygen
i }Ngen

i=1 . We then combine the real and generated data
to receive Dmix = {Dreal,Dgen} which then is used to train a classifier CΘ on the
downstream task. In the base setting we follow a standard supervised training.

As our GenFormer approach does not depend on a specific generator model,
it is compatible with a wide range of image generation models. Based on down-
stream performance, we employ the EDM [24] diffusion model, which is show-
cased in Sect. 4.6. Since the generator model is trained on the real dataset, the
amount of real training images also affects the generator model performance,
which may become apparent in lower diversity of the generated images. How-
ever, in Sect. 4.3 we study the impact of the number of real images available for
our method demonstrating consistent improvement through our approach. A big
advantage of the proposed GenFormer approach results from its implementation
before the standard downstream training. Thereby, our method allows the addi-
tional use of established techniques to increase accuracy and robustness, as can
be seen in Fig. 2. In Sect. 4.2 we demonstrate the synergy of our approach with
conventional data augmentation during train and test time as well as knowledge
distillation and architectural modifications.

4 Evaluation

For our evaluation, we conduct extensive experiments involving a range of state-
of-the-art Vision Transformers (ViTs) [10,46–48] and convolutional neural net-
works (CNNs) [15,49]. Unless otherwise mentioned, we employ EDM [24] as gen-
erator model GΘ to generate additional data, effectively expanding our datasets
(see Sect. 4.6). Most training runs are carried out with the Tiny ImageNet [29]
dataset. For robustness and generalization investigations, we also include our
novel Tiny ImageNet versions of various established ImageNet benchmarks, Tiny
ImageNetV2, -R, and -A, as well as Tiny ImageNet-C [19] in our studies.

In addition to Tiny ImageNet, we extend our investigation to the CIFAR-
10 and CIFAR-100 datasets [28], using CIFAR-10-C and CIFAR-100-C [19]. We
also consider the test set of CIFAR10.1 [40], which contains more challenging
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samples. We analyzed three datasets of MedMNIST [52] from the medical field,
which is known to have limited data. The aim of this study is to extend our
evaluation beyond the domain of natural images. In addition, we investigated
the impact of our method on the classification of aerial images using EuroSAT
[17]. Examples of generated data are shown in Fig. 3. To maintain consistency in
our evaluation, we report error rates rather than accuracy, with smaller values
indicating better performance.

4.1 Robustness and Generalization Benchmarks

The evaluation of the robustness of neural networks plays a major role in real-
world applications. More specifically, we focus on evaluating different types of
robustness of ViTs on small datasets, which has not received much attention in
research. To this end, we port the most common robustness and generalization
benchmarks [18,19,21,40] to Tiny ImageNet, MedMNIST [52] and EuroSAT [17].

We create Tiny ImageNetV2 to analyze the generalization ability by keeping
all images of joint classes of Tiny ImageNet and ImageNetV2 [40]. In the same
way, we introduce Tiny ImageNet-R to study the robustness of models when
confronted with domain shifts, such as changes in the type of images (e.g. paint-
ings, toys or graffiti). Lastly, we propose Tiny ImageNet-A. Based on ImageNet-
A [21], we use all images from the original Tiny ImageNet validation set only
keeping the images misclassified by ResNet-18 [15]. To further evaluate robust-
ness, we utilize Tiny ImageNet-C of Hendrycks et al. [19], where the validation
data from Tiny ImageNet is subjected to 15 different corruptions, each at five
severity levels. Analogous to Tiny ImageNet-C, we introduce novel corrupted
test set variants for established image classification benchmarks: EuroSAT-C,
which targets aerial imagery, and MedMNIST-C, which focuses on the medical
domain. To maintain the integrity of the medical data, we have excluded any
weather-dependent corruptions (Snow, Frost, Fog). For evaluation, we use the
Mean Corrupted Error (mCE). Further details on the test sets can be found in
the Appendix (Sect. E).

4.2 Comparisons on Tiny ImageNet

In our first experiment, we perform a comparative analysis of our GenFormer
approach in combination with established methods to improve the robustness
of neural networks. Two transformer-based classifiers, the tiny versions of DeiT
[46] (without distillation token) and PVT [47], are used for this comparison.

As shown in Table 1, our experiment demonstrates how our GenFormer app-
roach seamlessly complements various techniques, resulting in notable improve-
ments in both accuracy and robustness. As part of our comparative analysis, we
employ well-established methods, including CutMix [53], Mixup [55] and AugMix
[20] for data augmentation, Locality Guidance [31] for knowledge distillation,
and MEMO [56] for test time augmentation (TTA). All of these methods are
applied on top of our baseline, which is trained for 300 epochs on Tiny ImageNet.
A detailed description of the training can be found in the Appendix (Sect. A).
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Table 1. Analysis of our GenFormer in combination with established SOTA approaches
on two Vision Transformers [46,47] on Tiny ImageNet [29] and its robustness bench-
marks [19]. 100,000 generated images are added to the real data.

Model Train-Strategy
T-IN T-INv2 T-IN-R T-IN-C T-IN-A
err. err. err. mCE err.

Baseline
w/o ours 50.3 68.0 92.5 80.6 80.6
w/ ours 44.1 (-6.2)65.3 (-2.7) 89.6 (-2.9) 77.7 (-2.9)78.0 (-2.6)

CutMix [53]
+ Mixup [55]

w/o ours 44.4 65.0 89.7 74.5 78.3
w/ ours 38.5 (-5.9)58.7 (-6.3) 86.4 (-3.3) 71.8 (-2.7)74.4 (-3.9)

DeiT-Ti [46] AugMix [20] w/o ours 40.4 61.3 88.4 72.8 76.2
w/ ours 36.4 (-4.0)57.8 (-3.5) 85.6 (-2.8) 71.0 (-1.8)73.1 (-3.1)

Locality
Guidance [31]

w/o ours 36.7 59.4 83.6 72.0 74.7
w/ ours 36.2 (-0.5)59.4 (±0.0)84.8 (+1.2)70.7 (-1.3)72.8 (-1.3)

MEMO [56]
w/o ours 48.9 64.8 99.7* 78.1 99.7*
w/ ours 43.1 (-5.8)60.2 (-4.6) 99.7* 75.5 (-3.6)99.8*

Baseline
w/o ours 46.5 67.2 91.5 78.9 78.9
w/ ours 42.8 (-3.7)64.8 (-2.4) 87.4 (-4.1) 76.8 (-1.8)77.7 (-1.2)

CutMix [53]
+ Mixup [55]

w/o ours 41.9 64.6 87.8 74.1 76.8
w/ ours 37.5 (-4.4)60.1 (-4.5) 84.6 (-3.2) 70.1 (-4.0)74.1 (-2.7)

PVT-T [47] AugMix [20] w/o ours 39.9 62.1 87.9 73.0 75.9
w/ ours 36.4 (-3.5)58.3 (-3.8) 86.2 (-1.7) 71.0 (-2.0)73.6 (-2.3)

Locality
Guidance [31]

w/o ours 36.3 58.5 84.9 72.3 72.2
w/ ours 35.7 (-0.6)58.1 (-0.4) 84.2 (-0.7) 71.0 (-1.3)72.1 (-0.1)

MEMO [56]
w/o ours 45.1 64.5 99.8* 76.6 99.6*
w/ ours 42.3 (-2.8)61.4 (-3.1) 99.7* 75.1 (-1.5)99.6*

* leads to unstable results despite hyperparameter-tuning.

To expand the dataset with generated images, we use our method to create an
additional 100,000 images (corresponds to 100% of the original dataset).

The results in Table 1 demonstrate the substantial benefits of incorporating
additional generated data for both models. In the case of DeiT-Ti there is a sig-
nificant reduction in the base error of −6.2, which drops from the original 50.3 to
44.1. PVT-T initially shows a lower error even without additional data, but still
benefits from an additional reduction of −3.7 to 42.8. Considering all presented
robustness benchmarks, the errors of DeiT can be reduced by up to −2.9, while
the errors of PVT are reduced by up to −4.1. These outcomes underline the
significant potential of leveraging generated data. Combining our GenFormer
approach with various data augmentation techniques such as Mixup and Cut-
Mix as commonly used with transformer classifiers and proposed by Touvron
et al. [46], generated data is consistently shown to be beneficial for training.
Notably, the combination of generated data with CutMix and Mixup results in a
noteworthy improvement of −5.9 in Tiny ImageNet validation and an even more
substantial reduction of −6.3 in Tiny ImageNetV2 for DeiT.

In addition to training time augmentation, we also explore the option of
TTA, which is exemplified in our experiments through MEMO. When applied
to our baseline networks, MEMO yields a moderate improvement, even without
the inclusion of generated data. However, when we apply TTA to the baseline
with generated data, we observe a significant higher enhancement. Furthermore,
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Fig. 4. Analysis of the influence of different amounts of training data on the accuracy
and robustness of Vision Transformers [46,47]. The networks are trained with {5, 10, 20,
50, 100}% of Tiny ImageNet [29]. We add 100,000 generated images (from a diffusion
model trained on the same amount) to each train-set.

despite hyperparameter tuning, MEMO is not performing well on all benchmarks
and can have a negative impact on the robustness of the models, especially in the
case of Tiny ImageNet-R and -A. This emphasizes the advantages of generated
data, as they are comparatively easy to integrate into the training pipeline and
offer significant potential to increase accuracy and robustness.

When including Locality Guidance with a CNN teacher (ResNet-56) trained
on the same data as the transformers, our GenFormer approach reduces the
errors on clean data for both networks. However, we observe no improvement
for Tiny ImageNetV2 and a slight degradation of +1.2 on Tiny ImageNet-R
for DeiT. For all other benchmarks, we see an improvement in results. The
performance gains achieved through generated data are moderate compared to
training and test time augmentation, as our approach, like Locality Guidance,
contributes to a better focus on more localized features. This is shown in the
mean attention distances comparison presented in the Appendix (Sect. D).

4.3 Limited-Data Analysis on Tiny ImageNet

In our second experiment, we investigate the impact of limited data on the
training and robustness of ViTs and the diffusion model used to generate the
data. For this purpose, we divide the train set of Tiny ImageNet into four random
subsets of 5%, 10%, 20% and 50%. In addition, we also run the experiment on
the full set of data. In the first step, we trained the diffusion model for each of
these subsets and generated a total of 100,000 images. In the second step, we
carried out training sessions for PVT-T and DeiT-Ti, both with and without the
inclusion of generated data. The results, including error rates on the validation
set and robustness benchmarks, are presented in Fig. 4.

Congruent with previous findings, the accuracy of ViTs increases with the
amount of real data. For instance, the error rate of DeiT, which starts at 87.6
when no generated images are added to a subset of 5%, decreases to 75.2 with
20% of the real data, and further drops to 50.3 when all 100,000 real images are
utilized for training. Robustness across all benchmarks follows the same trend,
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Table 2. Analysis of GenFormer for training multiple Vision Transformer [10,35,46–
48,57] and Convolutional Neural Networks [15,49] on three datasets of the MedMNIST
[1,4,26,52] collection (medical domain) and on EuroSAT [17] (aerial domain) as well
as their corresponding robustness benchmarks [19].

Model
B-MNIST(-C) P-MNIST(-C) OS-MNIST(-C) EuroSAT(-C)
err. mCE err. mCE err. mCE err. mCE

Convolutional Neural Networks
ResNet-18 [15] w/o ours 17.9 19.8 4.2 8.6 17.4 30.4 1.5 24.6

w/ ours 8.3 (-9.6) 15.6 (-4.2) 3.7 (-0.5) 7.7 (-0.9) 16.8 (-0.6) 26.5 (-3.9) 1.1 (-0.4) 23.1 (-1.5)
Conv- w/o ours 19.2 21.5 4.5 7.0 17.5 25.7 1.4 22.7
NeXtv2-F [49] w/ ours 9.0 (-10.2) 12.9 (-8.6) 4.2 (-0.3) 7.7 (+0.7) 16.2 (-1.3) 23.2 (-2.5) 0.9 (-0.5) 21.9 (-0.8)

Pure Vision Transformer
DeiT-Ti [46] w/o ours 23.1 24.5 8.0 12.8 26.9 45.9 2.4 27.7

w/ ours 9.0 (-14.1) 14.7 (-9.8) 5.1 (-2.9) 10.5 (-2.3) 21.3 (-5.6) 32.5 (-13.4) 1.7 (-0.7) 26.9 (-0.8)
PVT-T [47] w/o ours 22.4 23.9 13.1 17.8 20.3 34.4 1.9 26.2

w/ ours 9.0 (-13.4) 13.9 (-10.0) 5.4 (-7.7) 10.0 (-7.8) 17.1 (-3.2) 24.7 (-9.7) 1.2 (-0.7) 25.4 (-0.8)
Hybrid Architectures

PVTv2-B0 [48] w/o ours 16.7 18.5 5.9 9.1 17.0 28.4 1.5 24.0
w/ ours 9.0 (-7.7) 13.3 (-5.2) 4.5 (-1.4) 8.9 (-0.2) 16.2 (-0.8) 22.6 (-5.8) 1.0 (-0.5) 22.9 (-1.1)

ConViT-Ti [10] w/o ours 16.0 22.2 6.3 11.8 19.6 35.3 2.6 28.0
w/ ours 7.7 (-8.3) 12.0 (-10.2) 3.5 (-2.8) 6.8 (-5.0) 15.5 (-4.1) 22.4 (-12.9) 1.4 (-1.2) 25.7 (-2.3)

Robust Architectures
RVT-Ti [35] w/o ours 10.9 16.6 3.2 7.8 15.7 24.0 1.3 22.3

w/ ours 7.7 (-3.2) 12.2 (-4.4) 3.7 (+0.5) 9.3 (+1.5) 16.0 (+0.3) 21.7 (-2.3) 1.0 (-0.3) 21.8 (-0.5)
FAN-T [57] w/o ours 12.8 16.5 4.6 8.1 16.0 25.1 1.5 22.6

w/ ours 8.3 (-4.5) 12.1 (-4.4) 3.4 (-1.2) 7.7 (-0.4) 15.2 (-0.8) 21.8 (-3.3) 1.2 (-0.3) 21.8 (-0.8)

showing consistent and steady improvement. When training with our method,
there is a substantial reduction of the error and an increase of robustness, for both
PVT and DeiT. Interestingly, even models with only 5% real data in conjunction
with generated data achieve higher accuracy than models trained with 10% real
images. This pattern is also evident when comparing models with 10% real data
paired with generated images to those with 20% real data but without generated
data. Nevertheless, using a small amount of real data (e.g. 5%, 10%, or 20%) in
conjunction with a large amount of generated data is not as effective as training
with a larger amount of real data (e.g. 50% or 100%).

4.4 Going Beyond Natural Images

In contrast to Tiny ImageNet and CIFAR, which consist mainly of natural
images, other domains such as medical imaging suffer from a lack of data.
It is not unusual for medical datasets to comprise only a few hundred to a
few thousand images. Therefore, we assessed the MedMNIST [52] collection,
which includes PneumoniaMNIST [26] with 5,856 images, OrganSMNIST [4]
with 25,211 images, and BreastMNIST [1] with only 780 images. Additionally,
we use EuroSAT [17] to classify aerial images, providing a more comprehensive
evaluation across various fine-grained domains. In order to evaluate the robust-
ness against common corruptions, the proposed MedMNIST-C and EuroSAT-C
test sets are utilized.

In addition to pure ViTs such as DeiT-Ti and PVT-T, we include hybrid
architectures [10,48] combining self-attention with convolutional operations. We
also investigate pure CNN architectures such as ConvNeXtv2-F [49] and ResNet-
18 [15]. Furthermore, we analyze transformer architectures such as RVT-Ti [35]
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Table 3. Analysis of GenFormer for training multiple Vision Transformers with
[10,35,46–48,57] and Convolutional Neural Networks [15,49] on CIFAR [28] and its
corresponding robustness benchmarks [19,40].

Model
C-10 C-10.1 C-10-C C-100 C-100-C
err. err. mCE err. mCE

Convolutional Neural Networks
ResNet-18 [15] w/o ours 4.6 11.2 15.1 20.5 37.9

w/ ours 4.1 (-0.5) 10.1 (-1.1) 14.6 (-0.5) 20.3 (-0.2) 38.0 (+0.1)
ConvNeXtv2-F [49] w/o ours 4.3 11.0 11.1 24.2 38.9

w/ ours 3.1 (-1.2) 7.9 (-3.1) 10.0 (-1.1) 19.1 (-5.1) 33.2 (-5.7)
Pure Vision Transformer

DeiT-Ti [46] w/o ours 10.5 22.2 23.0 35.3 51.8
w/ ours 4.0 (-6.5) 9.8 (-12.4) 12.0 (-11.0) 24.7 (-10.6) 39.4 (-12.4)

PVT-T [47] w/o ours 6.9 14.8 17.8 29.7 48.0
w/ ours 3.6 (-3.3) 9.7 (-5.1) 11.7 (-6.1) 21.1 (-8.6) 35.9 (-12.1)

Hybrid Architectures
PVTv2-B0 [48] w/o ours 5.0 11.1 14.2 23.1 41.2

w/ ours 3.5 (-1.5) 8.8 (-2.3) 12.6 (-1.6) 19.5 (-3.6) 34.2 (-7.0)
ConViT-Ti [10] w/o ours 5.6 13.2 14.0 25.5 40.6

w/ ours 3.2 (-2.4) 7.8 (-5.4) 9.6 (-4.4) 18.2 (-7.3) 31.5 (-9.1)
Robust Architectures

RVT-Ti [35] w/o ours 2.9 8.0 9.0 18.1 31.1
w/ ours 2.4 (-0.5) 5.8 (-2.2) 7.2 (-1.8) 15.3 (-2.8) 27.3 (-3.8)

FAN-T [57] w/o ours 3.4 9.1 10.0 19.8 34.3
w/ ours 2.8 (-0.6) 8.0 (-1.1) 9.1 (-0.9) 18.2 (-1.6) 31.7 (-2.6)

and FAN-T [57], which are specifically designed to improve robustness. All mod-
els are trained in the same way for 300 epochs on the respective datasets and, if
specified, extended by 50k generated images. The results are listed in Table 2.

Starting with BreastMNIST, the smallest dataset in our analysis, we observe
a significant improvement in terms of error on clean data as well as mCE on
corrupted data. The pure ViTs benefit the most from the additional data, low-
ering the error up to −14.1 on clean data and −10.0 on corrupted data. The
CNNs and other transformer architectures also benefit from the additional arti-
ficial data, with the robust architectures showing the smallest improvement of
about −4. A consistent improvement is also observed for the other two medical
datasets, with few exceptions. Similar to BreastMNIST, the pure transformers
demonstrate the highest gain in performance as a result of additional generated
images. When examining the result on EuroSAT, it can be seen that generated
data can lead to further improvement even for already low error rates.

4.5 Comparisons on CIFAR-10 and CIFAR-100

In our last experiment, we extend our investigations for natural benchmarks
beyond Tiny ImageNet to the smaller CIFAR-10 and CIFAR-100 datasets. In
addition, we utilize CIFAR-10.1, CIFAR-10-C, and CIFAR-100-C. The purpose
of this evaluation is to show the versatility of our GenFormer approach and
its positive impact on a variety of architectural models. For all experiments on
CIFAR, we use the same architectures as in Sect. 4.4. All models are trained in
the same way for 300 epochs on the respective dataset and, if specified, extended
by 100,000 generated images. The results are listed in Table 3.

The evaluation results show that pure ViTs benefit the most from the addi-
tional data. The error of DeiT-Ti on CIFAR-100 is reduced by more than 30%
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relatively compared to the error without additional training data. The mCE
on the corrupted data is also reduced by about 24%. In the case of PVT-T,
there is a relative improvement of almost 30% and 25%, respectively, on the
corrupted data. Significant improvements are also seen in the case of CIFAR-10.
The hybrid and robust architectures also show improvements. These are in the
relative range of about 10 to 30%. It should be noted that ResNet-18 as a CNN
is almost unaffected by the additional generated data. Neither the error, nor the
robustness improves significantly. In contrast to ResNet, ConvNeXtv2-F, which
adapts many of the transformer design decisions for CNNs, responds much better
to the generated data. There is a relative improvement of about 20% over CIFAR-
100 and 15% over CIFAR-100-C. Again, the experiment on CIFAR exhibits the
potential of using additional generated data to improve both the accuracy and
robustness of especially ViTs. It demonstrates that the additional generated data
helps transformers to learn more local features (see Appendix, Sect. D). Since
CNNs naturally inherit a local bias, the gain from additional data diminishes
for these networks. Furthermore, our GenFormer approach shows that for small
datasets we are able to close the gap between CNNs and ViTs. In addition to
experiments on small models (< 15M parameters), we present further results
on CIFAR-100, demonstrating scalability with models of up to 90M parameters
and achieving state-of-the-art accuracy and robustness by combining GenFormer
with established methods (included in the Appendix, Sect. C).

4.6 Ablation Study

In the subsequent ablation studies, we aim to investigate the influence of both the
data generation network and the quality of the generated data on the accuracy
and robustness of transformer classifiers. In addition, we investigate the effects
of a longer training duration compared to a larger dataset.

Comparison of Different Generative Models. To begin, our initial focus
revolves around assessing the impact of the data generation network on both the
accuracy and robustness of transformer networks. To achieve this, we conduct a
comparative analysis involving state-of-the-art Generative Adversarial Networks
(GANs) [6,23,25,44] and pixel-diffusion models [24,27,51]. We employ CIFAR-
10 and ensure fairness by utilizing the best performing weights provided by
the respective method’s developers. Since we focus on low-resolution datasets
(32 × 32 for CIFAR and 64 × 64 for Tiny ImageNet [29]), our investigation
is limited to pixel-diffusion models. For this comparative analysis between the
mentioned models, we employ DeiT-Ti as the classifier subjected to two different
training approaches. In the first scenario, the network undergoes an initial pre-
training phase of 200 epochs on 100,000 generated images from the generative
models, followed by a fine-tuning of 100 epochs on the real data. In the second
scenario, we combine real and generated data and perform a single training phase
of 300 epochs. Throughout the training process, we follow the training strategy
provided by Liu et al. [32]. The results are listed in Table 4.
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Table 4. Comparison of Generative Models [6,23–25,27,44,51] for generating 100,000
images to train a ViT [46] on CIFAR-10 [28].

Generative Models FID* ↓ Gen. + FT Mix
err. mCE err. mCE

Baseline (w/o gen. data) NA 10.5 23.0 10.5 23.0
Generative Adversarial Networks

StyleGAN-XL [44] 1.85 10.1 21.1 6.5 17.1
StyleGAN2-ADA [25] 2.42 8.2 19.7 6.4 15.4
ReACGAN [23] 3.87 8.1 19.3 6.0 15.5
StyleGAN2 [25] 6.96 7.8 19.3 6.0 15.1
BigGAN [6] 14.73 7.5 18.8 5.6 14.8

Diffusion Models
EDM-G++ [27] 1.64 6.4 17.2 4.0 12.1
PFGM++ [51] 1.74 6.5 17.4 4.1 12.5
EDM [24] 1.79 6.8 17.5 4.0 12.0
* FIDs are from the original publications.

Our results show that simply comparing FID scores is not sufficient when
generating additional data to train ViTs. These findings further support obser-
vations of an earlier study by Ravuri et al. [39]. In the case of GANs, there is
no discernible correlation between FID scores and accuracy. In both training
variants tested, StyleGAN-XL [44], despite having the best FID (1.85), leads to
the highest error on clean data (10.1/6.5) and on corrupted data (21.1/17.1).
Conversely, BigGAN [6], which has the highest FID, leads to the lowest error
(7.5/5.6). Nevertheless, the use of generated data consistently outperforms the
baseline in training, regardless of the quality of the generated data.

In contrast to GANs, we observe significantly lower variability between FID
values of diffusion models and the achieved error rates of the transformer net-
work on CIFAR-10. Notably, there are no discernible performance disparities
among the diffusion models. It is noteworthy that all diffusion models consis-
tently outperform the compared GANs, leading to significant improvements in
the classification network. For instance, the error of DeiT-Ti on clean data is
reduced from 10.5 to 4.0, and on corrupted data, the mCE drops from 23.0 to
12.0. Given the lack of significant differences between the diffusion models, we
consider the results of mixing real data with generated data when choosing our
generator model. Considering the results in Table 4, we choose EDM [24] due to
its competitive generation results and consequently use it alongside the mixing
strategy for all our experiments.

Iterations vs. Samples. To validate that the presented improvements are a
result of the proposed GenFormer approach and not by a longer training dura-
tion, the impact of the amount of training iterations is investigated. Figure 5
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Fig. 5. Analysis of the impact of the duration of training (blue line) versus the number
of data (red line) of DeiT-Ti [46] on CIFAR-10(-C) [19,28]. (Color figure online)

shows the comparison of training runs with and without generated images of
DeiT-Ti on CIFAR-10. The amount of iterations of the ViT training with gener-
ated images is controlled via the amount of additional generated images, whereas
the training iterations for the training without generated images is controlled by
the number of epochs. The graph starts at approximately 1.2 · 105 iterations,
which corresponds to 300 epochs. For the baseline without generated data, the
training time is gradually increased to 1,350 epochs (until beginning saturation)
in steps of 150 epochs, which corresponds to a maximum of about 5.3 · 105 iter-
ations. During this evolution, the error on clean data decreases from 10.5 to
5.5, and the mCE is reduced to 14.4. When using generated data, the size of
the total data set is gradually increased from 50,000 (w/o generated images) to
225,000 samples (50,000 real with 175,000 generated images) in steps of 25,000
additional images. This stepwise increase leads to a reduction of the error to 3.3
and to a reduction of the mCE to 10.6 at 300 training epochs. In fact, training
for more epochs slightly reduces the error and mCE. However, by comparing it
to the results of the training with generated images, it is evident that significant
improvements are induced by utilizing generated data.

5 Conclusion

We propose GenFormer, a generative data augmentation, in order to utilize the
inherent robustness of ViTs in the small-scale data domain. We prove the effec-
tiveness of data augmentation with generated images across various robustness
and generalization benchmarks of small datasets including our newly introduced
Tiny ImageNetV2, -R and -A test sets. By combining generative data augmenta-
tion with common data augmentation, knowledge distillation and architectural
techniques, we show the straightforward applicability and synergistic potential
of the proposed method. Furthermore, we showcase the consistent improvement
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under various settings of heavy data limitations by training ViTs on small subsets
of Tiny ImageNet. We conclude that GenFormer encourages a stronger focus on
local features in early self-attention layers. Through the course of this work, we
finally close the gap between ViTs and CNNs in terms of accuracy and robustness
for limited-data scenarios.
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Abstract. Neurodegenerative diseases (NDs), including Parkinson’s (PD) and
Alzheimer’s (AD) disease are devastating conditions that affect millions world-
wide, with the number of cases expected to rise significantly in the coming years.
Despite considerable advancements in understanding their pathophysiology, eti-
ology, and treatment, there is still a lack of effective disease-modifying inter-
ventions. Currently, no cure exists and there is an urgent need for modern tools
that allow precise detection and objective severity scoring for the development
of new therapeutic targets and approaches. Therefore, this study evaluates the
effectiveness of an online version of the Trail Making Test Part A and B (TMT
A and TMT B), incorporating time-based measures, to recognize cognitive and
motor manifestations of Parkinson’s disease severity. For validation, this research
was conducted with 15 Parkinson’s patients under care at UMass Chan Medical
School. This study applied the TMT sensitivity to executive function impairments
by measuring response and reaction times, to correlate these with stages of PD
severity. Machine learning models (Naïve Bayes, Logistic Regression, Support
Vector Machine, and Random Forest) were used to predict the disease severity
based on TMT performance. Among these, Random Forest was the most effec-
tive, achieving scores with an Area Under the Curve (AUC) of 0.92 (80% accu-
racy), indicating good performance in distinguishing between mild and advanced
stages of PD. Although limited by a small sample size, this preliminary study
highlights the role of digital tools in enhancing PD diagnostics and monitoring.
Future research with larger cohorts and longitudinal designs is essential to validate
these preliminary findings and further develop digital diagnostics as crucial in the
fight against neurodegenerative diseases.
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1 Introduction

Parkinson’s Disease (PD) is a neurodegenerative condition that affects millions globally
and it poses challenges in early detection and severity assessment. Traditional methods
for detection and monitoring PD, despite their strengths, hold many limitations, such as
invasiveness, high cost, or lack of accessibility [1, 2]. Recent advancements in digital
biomarkers and machine learning present promising potential in bridging these gaps
[3, 4].

However, research on online cognitive tests for Parkinson’s disease (PD) has shown
that current tools are underdeveloped and there is still an underexplored gap in using
online cognitive tests and analyzing response dynamics for PD.

For example, Sousa (2022) emphasizes the lack of a common cognitive assessment
battery for late-stage PD, and the need for tests that are quick, easy to use, and cover
all relevant cognitive domains [5]. Here, authors recommend a cognitive assessment
toolkit that considers the complex characteristics of PD, including being quick and easy
to use, with minimized motor demands, and covering all relevant cognitive domains.
Among the recommended instruments, the Trail Making Test corresponds well with
these requirements [5].

The Trail Making Test Part A (TMT A) is a neuropsychological assessment tool
primarily sensitive to processing speed and visual attention. It measures an individual’s
ability to rapidly connect a sequence of numbered circles in ascending order. TMT A
focuses on basic scanning, attention, and motor speed.

The Trail Making Test Part B (TMT B) is a cognitive test known for its sensitivity
to executive functions (involving attention, memory, visual search, motor function, and
sequencing abilities). Trail B is generally more sensitive to executive functioning than
TMT A since it requires multiple abilities to complete it.

But as Park et al. (2022) noted, the equivalency of paper-based and computerized
tests cannot be assumed [6]. However, their findings support the comparability of TMT in
computerized assessments and suggest this tool as a starting point for an early diagnostic
tool. This conclusion is further supported byMishra et al. (2022), who demonstrated that
the digitized version of the TMT can determine cognitive-motor abilities and distinguish
individuals with mild cognitive impairment and PD from healthy controls [7]. In their
study, they observed correlations between TMT completion time and gait speed mea-
sured by a wearable accelerometer (r = −0.4, p = 0.011) and the Montreal Cognitive
Assessment (MoCA) score (r = −0.56, p < 0.01).

Moreover, a study by Templeton et al. (2022) used fourteen tablet-based neurocog-
nitive functional tests and machine learning model (decision trees) [7]. It allowed for the
discrimination of PD from healthy controls (92.6% accuracy), and early and advanced
stages of PD (73.7% accuracy). These results compare with current gold standard tools,
such as standardized health questionnaires like the Unified Parkinson’s Disease Rating
Scale (UPDRS) with 78.3% accuracy and functional movement assessments with 70%
accuracy.

Collectively, these findings underscore that a digital approach is feasible and allows
for a comprehensive view of these conditions and their progression.
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Therefore, this study explores the potential of the online version of Trail Making
and machine learning models in identifying patterns indicative of Parkinson’s Disease
severity. By doing so, this research provides insights into quick, non-invasive, cost-
effective, and accessiblemeans of PD assessment andmonitoring, potentially facilitating
adapted interventions and earlier diagnosis.

2 Methods

We created an online version of Trail Making Test A and B [Fig. 1] [Fig. 2]. Then, we
invited people with Parkinson’s disease to solve this test. Our goal was to score their
disease severity level (MILD or ADVANCED). The test took participants around two
minutes to solve.

Fig. 1. The image presents an interactive cognitive task screen where the user is asked to pick
points in a specific sequence. In TMT A, there are circles labeled with numbers.

In addition to the (a) number of mistakes, and (b) total time taken [TTS- time to
submit, a standard measure in this test], we also recorded (c) instrumental reaction time
[IRT- time to first selection] [8, 9]. That allowed us to assess the psychomotor speed and
executive functions in two approaches.

In both approaches, reaction time was subtracted from the response time, to extract a
pure psychometric component. In the first approach, we subtracted the time to complete
TMT A from TMT B (TMT B− TMT A), that is a standard method in the clinical setup
[10]. However, in the clinical context, the distinction between reaction and response
times is not traditionally emphasized, and it’s introduced as a novel method for this test.

Furthermore, in the second approach, we added the pure response times together
(TMT A + TMT B) in order to evaluate machine learning models’ performance using
this variable and compare the results. In both approaches, longer times representedworse
cognitive function.

All participants had confirmedParkinson’s disease diagnosis, and theywere receiving
treatment and advice from neurologists at UMass Chan Medical School. Eight partici-
pants hadUPDRS III scores between 10 and 29 (indicative ofmild symptoms of PD), and
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Fig. 2. The image presents an interactive cognitive task screen where the user is asked to pick
points in a specific sequence. In TMT B, there are circles labeled with numbers together with
letters.

seven participants with UPDRS III scores above 30 (indicative of advanced symptoms
of PD). The sample size (n = 15) size makes available only preliminary comparisons
and insights. However, we plan a study with a larger group to confirm these findings and
explore other variables that may influence the results.

We analyzed aggregated data using IBM SPSS 29 software. We compared variables
between patients with mild and advanced Parkinson’s disease, with p-value significant
below 0.05.

Finally, we evaluated multiple ML models in a task of disease severity prediction.
We implemented four machine learning models in Python using the library scikit-learn
for modeling and metrics, together with pandas for data processing, and seaborn with
matplotlib for visualizations [11–14].

The size of a dataset (n= 15) produced a risk of overfitting. To mitigate this risk, we
considered simpler models rather than deep neural networks. Specifically, we selected
Naïve Bayes, Logistic Regression, Support VectorMachine (SVM), and RandomForest.
Moreover, before training, we extracted features importance to apply only the most
relevant ones using Random Forest classifier.

Furthermore, we note that models’ performance can vary based on the specific
characteristics of the dataset. Therefore, for a better overview of the performance, we
analyzed and compared them alongside.

To address the consideration of hyperparameter tuning, we used GridSearchCVwith
cross-validation, and we limited the range and number of hyperparameters. We used
Stratified K-Fold cross-validation method that ensured the same proportion of classes in
each fold. The dataset was balanced. Models were trained on random 10 samples from
the dataset and validated on 5 independent samples (train_test_split, allocating 1/3 of
the data for testing before modeling). The test data was separated before applying k-fold
CV.



Recognizing Patterns of Parkinson’s Disease 197

The flowchart of applied methodology is presented in Fig. 3. This report presents
outcomes, statistics, and ML models of this preliminary research.

TMT + IRT + TTS

Dataset 

Preprocessing 

Testing dataset Training dataset 

Machine learning 

Grid search 
Cross-validation 

Split
33.3% -- 66.6% 

Tuned models Predictions 

Fig. 3. Flowchart of applied methodology.

2.1 Features selection

In this study, the goal was to predict whether a participant belongs to MILD or
ADVANCED group. However, with a small dataset, having too many features can lead
to overfitting, where the model learns the noise in the training data instead of the actual
signal.

Here, the introduction of a new composite variable can provide additional insights,
especially when dealing with medical data sets and when optimizing for machine
learning models. Therefore we experimented with two new composite variables
(tmt_ba_medical_response_ms and tmt_ba_artificial_response_ms), that are designed
to capture different aspects of TMT performance and narrow down the number of
parameters.

Variable tmt_ba_medical_response_ms is calculated as the difference between the
TMT B response time and reaction time, minus the difference between the TMT A
response time and reaction time (Eq. 1).

TMT_BA_MEDICAL_RESPONSE_MS = (TMT_B_RESPONSE_MS− TMT_B_REACTION_MS)

− (TMT_A_RESPONSE_MS− TMT_A_REACTION_MS)
(1)

Conceptually, it isolates the pure response component of the TMT B task from the
TMT A task, attempting to adjust for basic reaction time to highlight more specific



198 A. Chudzik et al.

cognitive processing or motor execution times involved in the more complex TMT B
task compared to TMT A.

On the other hand, variable tmt_ba_artificial_response_ms sums the differences
between the response and reaction times for both TMT B and TMT A (Eq. 2).

TMT_BA_ARTIFICIAL_RESPONSE_MS =
(TMT_B_RESPONSE_MS− TMT_B_REACTION_MS)

+ (TMT_A_RESPONSE_MS− TMT_A_REACTION_MS)

(2)

This approach combines the total time that is required to complete both tasks, poten-
tially serving as a single measure of the cognitive and motor demands placed on the
individual by both tests.

Both approaches allowed us to conduct modeling using clinically relevant parame-
ters, such as error count for both tests, and singular timemeasurement in each experiment
(either tmt_ba_medical_response_ms or tmt_ba_artificial_response_ms, accordingly).

It’s important to note that in clinical settings, practitioners typically measure only
response time in seconds using a pen-and-paper method for the TMT, without registering
reaction timewith high precision. This traditional approach does not capture the nuanced
differences between reaction and response times that our composite variables do. Hence,
our methodology offers a more accurate and insightful analysis of TMT performance,
surpassing the conventional clinical setup’s capabilities.

3 Results

The study involved fifteen participants. All of them had a confirmed Parkinson’s disease
diagnosis, and they were receiving treatment and advice from neurologists at UMass
Chan Medical School. Eight participants had UPDRS III scores between 10 and 29
(indicative of mild symptoms of PD), and seven participants with UPDRS III scores
above 30 (indicative of advanced symptoms of PD). Accordingly, patients were divided
into two categories: MILD and ADVANCED.

3.1 Statistical Analysis

MILD had an average age of 70.75 years (Std. Error Mean [SE] = 1.306), with four
females and four males. ADVANCED had an average age of 70.86 (SE = 3.074), with
four females and three males [Table 1, Fig. 4].

Both groups have a similar age profile, with MILD at an average of 70.75 years
and ADVANCED at 70.86 years. The p-value of 0.974 suggests there is no significant
difference in age between the two groups. The gender distribution (represented as a
proportion, with 0 for males and 1 for females) is slightly higher for females in the
ADVANCED group (0.57) compared to the MILD group (0.50). However, the p-value
of 0.800 shows this difference is not statistically significant.

On average, MILD patients made more errors (1.50) on the TMT A than
ADVANCED patients (0.86). Despite this, the p-value of 0.599 indicates that the
difference is not statistically significant.
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Table 1. Comparison of the characteristics of patients in two groups – MILD and ADVANCED
(ADV).

Variable MILD (n = 8) Std. Err. ADV (n = 7) Std. Err. p-value

Age(y) 70.75 1.306 70.86 3.074 0.974

Gender(0 =M, 1 = F) 0.50 0.189 0.57 0.202 0.800

TMT A Errors 1.50 0.926 0.86 0.705 0.599

TMT A IRT(s) 5.408 1.956 8.199 4.951 0.591

TMT A TTS(s) 30.637 4.953 34.152 6.690 0.675

TMT B Errors 3.50 2.478 5.71 2.523 0.544

TMT B IRT(s) 3.399 0.377 3.282 0.452 0.844

TMT B TTS(s) 60.818 11.42 81.856 11.50 0.219

Fig. 4. Comparison of the characteristics of patients in two groups – MILD and ADVANCED
(ADV).

The reaction and response times for TMT A are higher for the ADVANCED group
compared to the MILD group, indicating slower performances. Specifically, reaction
times average 5.408 s for MILD and 8.199 s for ADVANCED, while response times
are 30.637 s for MILD and 34.152 s for ADVANCED. Neither difference is statistically
significant, with p-values of 0.591 and 0.675, respectively. Interestingly, the reaction
times in both groups were higher for TMT A than for TMT B, potentially due to the
novelty aspect. This is because TMT A was presented as the first test, making users less
familiar with it. As a result, they became more adjusted to TMT B, which may have
shortened their reaction times.

Furthermore, ADVANCED patients tend to make more errors (5.71) on the TMT
B than MILD patients (3.50), though this difference is not statistically significant (p-
value= 0.544). Finally, for TMT B, the reaction and response times do not significantly
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differ between groups, with MILD patients slightly faster in reaction times and slower
in response times compared to ADVANCED. The p-values of 0.844 for reaction times
and 0.219 for response times suggest these differences are not statistically significant.

3.2 Patterns in Variables

The connections between variables were explored using a heatmap form of Pearson
correlation coefficients [Fig. 5]. This matrix presented a strong positive correlation of
0.69 between the age during the test and the reaction time in TMT A, suggesting that as
age increases, the reaction time tends to increase as well.

Fig. 5. A heatmap representing Pearson correlation coefficients. The darker the blue, the stronger
the positive correlation; the closer to white or the presence of lighter blue indicates a weaker
correlation. It’s important to note that a correlation does not imply causation. These values simply
indicate the strength and direction of the linear relationship between the pairs of variables.

Moreover, there is a very strong positive correlation of 0.74 between the number of
errors made in TMT A and the TMT A response time, indicating that a higher number
of errors is associated with a longer response time to complete TMT A.

Likewise, there is a very strong positive correlation of 0.75 between TMT B errors
and TMTB response time, implying that as the number of errors increases, the total time
to respond in TMT B also increases.
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Additionally, there is a significant positive correlation of 0.47 between TMT B reac-
tion time and TMT B response time, suggesting that longer reaction times are somewhat
associated with longer total times to respond in TMT B.

Finally, a strong correlation exists between age during the test and TMT A reac-
tion time, with a coefficient of 0.69, indicating that older participants may have slower
reaction times in TMT A. The other correlations presented in the heatmap are weaker,
meaning they show less of a linear relationship between variables. For instance, there’s
a weak negative correlation between TMT A Errors and Age during Test (−0.31), sug-
gesting a slight tendency for older participants to make fewer errors on TMTA, although
this relationship is not strong.

3.3 Machine Learning Models

To analyze how models learn, we used the Area Under the Curve (AUC). This is a
measure of the overall performance of a classification model.

TMT Errors and Medical Response Dynamics
We incorporated the number of errors from TMT A and TMT B (tmt_a_errors,
tmt_b_errors), together with medical response time (tmt_ba_medical_response_time)
in order to predict UPDRS group (MILD or ADVANCED).

The Random Forest has the highest AUC of 0.92, indicating it has the best perfor-
mance among the four classifiers in terms of ROC-AUC [Fig. 6]. This presents that it
maximizes the true positive rate while minimizing the false positive rate better than the
other classifiers in this set of ML algorithms.

Random Forest model performed noticeably better than the Logistic Regression,
Support Vector Machine and Naïve Bayes. Random Forest correctly predicted 80% of
the outcomes (accuracy: 0.8, precision: 0.75, sensitivity: 1.0, specificity: 0.5), which
is significant when compared to other models [Table 2]. Random Forest predicted all
positive cases correctly (1 true negatives, 3 true positives, and 1 false positive, with no
false negatives).

The Logistic Regression and Support Vector Machine models both show a low accu-
racy of 0.4 (precision of 1.0 and sensitivity of 0.0), which means they were unable to
correctly identify positive cases in this scenario. However, their specificity is at 1.0,
indicating they could correctly identify all negative cases.

Furthermore, Naïve Bayes demonstrates the lowest accuracy among the compared
models (accuracy: 0.2, precision: 0.33, sensitivity: 0.33, specificity: 0.0).

TMT Errors and Artificial Response Dynamics
In the second experiment, we incorporated the number of errors from TMT A
and TMT B (tmt_a_errors, tmt_b_errors), together with artificial response time
(tmt_ba_artificial_response_time) in order to predict UPDRS group (MILD or
ADVANCED).
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Fig. 6. TheAreaUnder theCurve (AUC) is ameasure of the overall performance of a classification
model. Using Medical Response Time, Random Forest has the highest AUC of 0.92, indicating
it has the best performance among the four classifiers. The Logistic Regression curve (blue line)
is covered by the Support Version Machine (orange line) and Random Forest (green line) curve.
The random change line represents the baseline performance of a random classifier (purple dashed
line). (Color figure online)

Table 2. Comparison of models’ performance using tmt_a_errors, tmt_b_errors and
tmt_ba_medical_response_ms. The table presents Accuracy (Acc.), Precision (Prec.), Sensitivity
(Sens.), and Specificity (Spec.).

Model Name Hyper-tuned Params Acc. Prec. Sens. Spec.

Logistic Regression {‘C’: 1.0, ‘max_iter’: 100000,
‘penalty’: ‘l2’, ‘solver’:
‘lbfgs’}

0.40 1.00 0.00 1.00

Support Vector Machine {‘C’: 1.0, ‘kernel’: ‘linear’,
‘max_iter’: 100000}

0.40 1.00 0.00 1.00

Random Forest { bootstrap’: True, ‘criterion’:
‘gini’, ‘max_features’: ‘sqrt’,
‘n_estimators’: 100}

0.80 0.75 1.00 0.50

Naive Bayes {‘priors’: None,
‘var_smoothing’: 1e-09}

0.20 0.33 0.33 0.00

The Random Forest has the highest AUC of 0.92, achieving results compa-
rable to the first experiment Fig. 7. After the analysis of feature importance in
both models it seems that Random Forest scored tmt_ba_artificial_response_ms and
tmt_ba_medical_response_ms similarly (0.65), placing tmt_b_errors on second (0.23),
and tmt_a_errors on third place (0.11).
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Repeatedly, Random Forest model performed better than the Logistic Regression,
Support Vector Machine and Naïve Bayes. Random Forest correctly predicted 80% of
the outcomes (accuracy: 0.8, precision: 0.75, sensitivity: 1.0, specificity: 0.5), which
is significant when compared to other models Table 3. Random Forest predicted all
positive cases correctly (1 true negatives, 3 true positives, and 1 false positive, with no
false negatives).

The Logistic Regression and Support Vector Machine models both show a low accu-
racy of 0.4 (precision of 1.0 and sensitivity of 0.0), which means they were unable to
correctly identify positive cases in this scenario. However, their specificity is at 1.0,
indicating they could correctly identify all negative cases.

Furthermore, Naïve Bayes demonstrates the lowest accuracy among the compared
models (accuracy: 0.2, precision: 0.33, sensitivity: 0.33, specificity: 0.0).

In conclusion, Random Forest stands out with the highest accuracy (0.8), good pre-
cision (0.75), perfect sensitivity (1.0), and a specificity of 0.5. Despite the lower speci-
ficity compared to Logistic Regression and Support Vector Machine, the high sensitivity
and accuracy rates highlight its overall superior performance in predicting outcomes
correctly.

Fig. 7. TheAreaUnder theCurve (AUC) is ameasure of the overall performance of a classification
model. Using Artificial Response Time, Random Forest has the highest AUC of 0.92, indicating
it has the best performance among the four classifiers. The random change line represents the
baseline performance of a random classifier (purple dashed line). (Color figure online)
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Table 3. Comparison of models’ performance using tmt_a_errors, tmt_b_errors and
tmt_ba_artificial_response_ms. The table presents Accuracy (Acc.), Precision (Prec.), Sensitivity
(Sens.), and Specificity (Spec.).

Model Name Hyper-tuned Params Acc. Prec. Sens. Spec.

Logistic Regression {‘C’: 1.0, ‘max_iter’: 100000,
‘penalty’: ‘l2’, ‘solver’:
‘lbfgs’}

0.40 1.00 0.00 1.00

Support Vector Machine {‘C’: 1.0, ‘kernel’: ‘linear’,
‘max_iter’: 100000}

0.40 1.00 0.00 1.00

Random Forest { bootstrap’: True, ‘criterion’:
‘gini’, ‘max_features’: ‘sqrt’,
‘n_estimators’: 100}

0.80 0.75 1.00 0.50

Naive Bayes {‘priors’: None,
‘var_smoothing’: 1e-09}

0.20 0.33 0.33 0.00

4 Discussion

This study preliminarily demonstrates the utility of the Trail Making Test with temporal
measures in capturing the cognitive and motor impacts of bradykinesia in Parkinson’s
Disease.

Importantly, this study evaluates bothTMTA(processing speed andvisual attention),
and TMT B (cognitive functions) together with response dynamics (initial cognitive
processing and decision-making speed). This is because in Parkinson’s disease, cognitive
changes are independent from the motor symptoms development and thus have to be
assessed independently [15]. This separation allows for the nuanced detection of PD’s
impact. While TMT A focuses on motor speed and visual search abilities, requiring
participants to connect numbered dots in sequence, TMT B adds a cognitive layer by
alternating between numbers and letters. Incorporation of the reaction and response time
measurements refines this approach, making this test more sensitive to slowed voluntary
movement detection.

Therefore, there is the potential to approximate the real-time effects of dopamine
through TMT performance. Impaired patterns observed in the test could be indicative
of underlying disruptions in dopaminergic pathways, which are central to PD’s patho-
physiology. This is particularly valuable given the challenge of directly assessing neu-
rochemical changes in a clinical setting. By correlating TMT performance with known
dopaminergic deficits, clinicians gain insights into the disease’s neurobiological patterns.

Interestingly, integration of insights from computational models of the brain and
detailed studies on neuronal oscillations in PD patients provides a deeper understanding
of the disease’s neural basis [16]. Mathiopoulou et al. presented that subthalamic beta
oscillations are directly affected bybothmotor activity and therapeutic interventions such
as dopamine replacement and deep brain stimulation (DBS) [17]. These beta oscillations,
which are known to correlate withmotor symptom severity, suggest amechanism similar
to the asynchronous process integration in the retina [16].
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Just as the retina synchronizes processes to produce a coherent output from dis-
parate sensory inputs, the subthalamic nucleus is crucial in coordinating motor com-
mands disrupted by dopaminergic degeneration in PD. The TMT, by measuring reac-
tion and response times, essentially assesses the efficiency of these neural synchroniza-
tion patterns. Prolonged times might reflect the brain’s struggle to integrate and syn-
chronize neural processes efficiently, alike to the difficulties in processing and output
synchronization.

To recognize these disrupted patterns, this study presents that Random Forest can
be a helpful and accurate tool for this task. Random Forest are used because of their
simplicity, ease of implementation, and their ability to perform well on a wide range of
tasks with minimal hyperparameter tuning. Random Forest can capture interactions and
nonlinear relationships between features, giving a possibility to model dopaminergic
pathways disruptions through motor and cognitive data. It is worth noting that findings
of this study align with other research that presents good performance of Random Forest
in the disease severity classification task [9, 18, 19].

Here, it is important to note that this study has several limitations. In such a small
group, even individual variability could account for these findings. These include the
small size of the research groups, potentially limiting the generalizability. Therefore
further, more detailed research (larger sample size, longitudinal study) is crucial for
more detailed insights that help with the prevention of neurodegenerative diseases.

In light of this, the low performance of the Naïve Bayes model can be attributed to
the small sample size of our dataset. Naïve Bayes relies on the assumption of a normal
distribution of data and requires a sufficiently large dataset to accurately estimate the
priors and likelihoods. Given the limited number of participants (n = 15), the data may
not adequately capture the underlying distributions, leading to lower performance of
the Naïve Bayes model. This issue might also relate to the fact that this dataset may
not be representative of the broader population, further impacting the model’s ability to
generalize well.

Despite its limitations, this research shows the potential of a digital approach and
contributes to the understanding and management of PD, particularly in customized
interventions and early detection. TMT with temporal measures could be integrated into
clinical practice or remotemonitoring systems to better navigate andmitigate the impacts
of PD.

Implementation of web version of TMT tests in clinical practice could offer a
quick, non-invasive, and accessible method of assessing disease impact on cognitive
and motor functions. Clinicians could use these tests for regular monitoring, enabling
well-timed adjustments to treatment plans based on subtle changes in cognitive or motor
performance.

In practice, implementing this approach requires creating a website that presents a
TMT test with points labeled with letters and numbers, which participants must click in
the correct order. This application needs to count the number of mistakes and record the
start time of the first selection (IRT, e.g., calling performance.now()) and the time of the
last selection (TTS, with the same method call). These metrics, along with TMT results,
can provide valuable insights into delayed patterns in motor and cognitive responses.
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Importantly, this technique can be enhanced by incorporating trajectory analysis of
mouse movement. Moreover, there is an opportunity for further integration data going
from wearable devices using sensors such as accelerometers and gyroscopes [7].

Integrating these assessments into telehealth platforms could facilitate remote mon-
itoring, making it easier to track patient progress and intervene promptly. Such advance-
ments could significantly enhance personalized care strategies, improving outcomes for
PD patients.

To conclude, the results of this paper call upon the research community to explore
these tools further and clinicians to consider their practical applications, given the
significant diagnostic benefits that both they and their patients can gain.
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Abstract. Interpolation kernel machines belong to the class of interpo-
lating classifiers that interpolate all the training data and thus have zero
training error. Recent research shows that they do generalize well and
have competitive performance. Several recent works proposed various
ways of performance improvement for this decision model. In this work
we investigate the generalization of interpolation kernel machines, which
has not yet received enough attention. Our work is based on the popular
regularization formulation with a penalty to the original loss function in
order to constrain the model’s capacity. We concretize six regularization
methods. The experimental results clearly demonstrate the potential of
generalization for classification performance improvement.

Keywords: Interpolation Kernel Machine · Regularization ·
Performance Boosting

1 Introduction

In machine learning, kernel-based techniques have a solid mathematical foun-
dation and offer strong tools with applications in many domains. Apart from
classification and regression [5,14], they have also made significant contributions
to other tasks like dimensionality reduction (e.g. PCA [11]), clustering [23], con-
sensus learning [15], computer vision [12], and most recently, deep neural network
research [8,19].

In this work we study interpolation kernel machines. They are a class of
interpolating classifiers with zero training error, i.e. they exactly fit the training
set [2,3,7]. It is a common belief that such interpolating classifiers will result
in overfitting. However, recent work shows compelling reasons to investigate
these classifiers. For example, there is compelling evidence [24] that ensemble
approaches function best when they are based on interpolating classifiers. One
well-known instance is random forest. In order to comprehend the underpinnings
of deep learning, Belkin [2] has recently emphasized the significance of interpo-
lation (and its sibling over-parametrization). Interpolation kernel machines gen-
eralize effectively to unknown test data even if they have zero training error [3]
(a behavior also often encountered in over-parametrized deep learning models).
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Also from an application perspective there are good reasons to study inter-
polation kernel machines. They proved to be a viable alternative for deep neural
networks, matching or even outperforming them in terms of performance while
using less computational resources in training [7]. Recently, we have shown that
interpolation kernel machines are very competitive to the widely used support
vector machines [27]. In addition, interpolation kernel machines are also poten-
tially beneficial for deep learning. Generally, while deep neural networks are
powerful in feature learning, the de facto built-in neural network after feature
learning is not necessarily the best choice for the classification or regression task.
Thus, it is possible to replace this part by other decision models [20].

We have been working on further improving the performance of interpola-
tion kernel machines. In [28] we proposed not to use their inherent multiclass
classification capacity, but instead apply them for solving binary classification
instances based on a mutliclass-to-binary reduction. In [29] we studied multiple
kernel learning, in particular the use of polynomial combined kernel functions.
In [26] we presented a way of training set pruning, which turns out to boost
the classification performance in addition to the increased efficiency in the test
phase.

Regularization has been shown to be effective for neural networks [22]. In
this work, we delve into the generalization capabilities of interpolation kernel
machines, an area that has yet to receive adequate attention. Building upon
established regularization formulations, we introduce penalty terms to the orig-
inal objective function, thus effectively constraining the capacity of the model.

The remainder of the paper is organized as follows. We introduce the inter-
polation kernel machine in Sect. 2. Then, we present the regularization methods
in Sect. 3. The experimental results follow in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Interpolation Kernel Machines

Here we introduce a technique to fully interpolate the training data using kernel
functions, known as interpolation kernel machines [3,7]. Note that this term
has been often used in research papers (e.g. [6,25]), where variants of support
vector machines are effectively meant. For the sake of clarity we will use the
term “interpolation kernel machine” throughout the paper.

Let X = {x1,x2, . . . ,xm} ⊂ Xm be a set of m training samples from some
domain X with their corresponding targets Y = {y1, y2, . . . , ym} ⊂ T m in the
target space, (X,Y ) ∈ X × R. The sets are sorted so that the corresponding
training sample and target have the same index. Let k : X × X → R be a
positive semidefinite kernel for some domain X and F be its associated RKHS
(Reproducing Kernel Hilbert Space). A kernel-based learning method can be
generally formulated by the following regularized empirical risk functional on F :

f∗ = argmin
f∈F

1
m

m∑

i=1

L(f(xi), yi) + λR(f) (1)
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where L is the loss function of f . λ ≥ 0 and R is a regularization term. Since
F is possibly infinite dimensional, it is unclear if an efficient solution to this
optimization problem can be found. Fortunately, a special form of regularization
formulated in the following representer theorem reduces it to a finite dimensional
optimization problem in the original space, which results in the interpolation
kernel machine as a classification and regression tool.

2.1 Representer Theorem

Representer Theorem. Let Ω : [0,∞) → R a strictly monotonically increasing
function. We define E : (X ×R

2)m → R∪{∞} as an error function that calculates
the loss L of f on the whole sample set with:

E(X,Y) = E((x1, y1), ..., (xm, ym)) =
1
m

m∑

i=1

L(f(xi), yi) + Ω(‖f‖) (2)

Then, any function f∗ = argminf∈F{E(X,Y)} admits a representation of
the form:

f∗(z) =
m∑

i=1

αik(z,xi) with αi ∈ R (3)

The proof can be found in many textbooks, e.g. [5,17].
While this statement of the representer theorem gives sufficient conditions

on the regularizer, an interesting theoretical extension given in [1] shows that
an interpolation problem (2) admits solutions representable in the form (3) if
and only if the regularizer is a non-decreasing function of the Hilbert space
norm, thus providing a complete characterization of regularizers that give rise
to representer theorems. The recent work [16] studies the same problem in a
more general context where the regularizer does not have to be norm-based.

2.2 Optimization Problem

Considering X = R
d with the squared error loss, the kernel-based learning

method as defined in (1) is concretized to:

f∗ = argmin
f∈F

1
m

m∑

i=1

(f(xi) − yi)2 + λΩ(‖f‖) (4)

by using the special form of regularization assumed in the representer theorem.
By applying (3), we thus need to solve the equivalent problem:

min
α∈Rm

m∑

i=1

⎛

⎝
m∑

j=1

αjk(xi,xj) − yi

⎞

⎠
2

+ λΩ

⎛

⎝

∥∥∥∥∥∥

m∑

j=1

αjk(·,xj)

∥∥∥∥∥∥

⎞

⎠ (5)

where k(·,xj) = Φ(xj) is the mapping of xj to the feature space by the (typically
not explicitly known) transformation Φ related to kernel k. α = (α1, . . . , αm)
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are the only learnable parameters, a real-valued vector with the same length as
the number of training samples. Note that it is generally not easy to deal with
the optimization problem in (5) since the second term is still formulated in the
feature space and thus can only be explicitly computed for special cases of Ω
like those based on L2 norm. For this reason this term is usually ignored in the
literature and instead the reduced optimization problem:

min
α∈Rm

m∑

i=1

⎛

⎝
m∑

j=1

αjk(xi,xj) − yi

⎞

⎠
2

(6)

is studied, thus without any regularization [3,7,26,28].

2.3 Decision Model

The optimization in (6) can be easily done by solving the system of linear equa-
tions:

Gm(α1, ..., αm)T = (y1, ..., ym)T (7)

where Gm ∈ R
m×m is the kernel (Gram) matrix with the ij-th element gij =

k(xi, xj), i, j = 1, . . . , m. In case of a positive definite kernel k, the Gram matrix
Gm is invertible. Therefore, we can find the optimal α to construct f∗ by:

(α1, ..., αm)T = G−1
m (y1, ..., ym)T (8)

After learning, the interpolation kernel machine then uses the interpolating
function from (3) to make prediction for test samples. Note that the learned
function f∗ : X → T is an interpolating one and satisfies:

f(xi) = yi, ∀i ∈ 1, . . . , m (9)

In this work we focus on classification problems. In this case f(z) is encoded as
a one-hot vector f(z) = (f1(z), . . . fc(z)) with c ∈ N being the number of output
classes. This requires c times repeating the learning process above, one for each
component of the one-hot vector. This computation can be formulated as follows.
Let Al = (αl1, ..., αlm) be the parameters to be learned and Yl = (yl1, ..., ylm)
target values for each component l = 1, ..., c. The learning of interpolation kernel
machine becomes:

G
(
AT

1 , ...,AT
c

)
︸ ︷︷ ︸

A

=
(
YT

1 , ...,YT
c

)
︸ ︷︷ ︸

Y

(10)

with the unique solution:

A = G−1 · Y (11)

with a total of mc parameters to be learned. This is the extended version of
(8) for c classes and results in zero error on training data. When predicting a
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test sample z, the output vector f(z) is not a probability vector in general. The
class which gets the highest output value is considered as the predicted class. If
needed, the output vector (z) can also be converted into a probability vector by
applying the softmax function. Later, we will consider this option to enable the
use of cross entropy loss function.

3 Regularization

Finding a model based on training data that can be well applied to unseen
data is the main goal of machine learning. Regularization is one of the key
techniques for achieving this goal [13,21]. Technically, it can realized in different
ways, including arrangements made in terms of model architecture, learning
process, and inference. In this work we resort to the widely used regularization
formulation, which adds a penalty function to the original loss function in order
to constrain the model’s capacity.

3.1 Regularization Methods

We investigate the potential of regularization for interpolation kernel machines.
In the general form it can be formulated as:

min
α∈Rc×m

m∑

i=1

L

⎛

⎝f(xi) =
m∑

j=1

αjk(xi,xj),yi

⎞

⎠ + λR(f) (12)

where αj is the parameter vector of size c corresponding to training sample xj

for all c classes and yj is the related ground truth labeling (one-hot vector). The
optimization problem in (6) is a special form with quadratic loss function (and
without regularization).

In this work we use both square and cross entropy loss function for (12).
The use of cross entropy is justified due to its suitability for classification in
general, although the derivation of interpolation kernel machine is based on
square loss function. Indeed, the cross entropy variant turns out to achieve better
performance in our experiments.

In total six regularization methods are studied:

– Weight decay regularization [13]: This is related to the ridge regression.

R(f) =
m∑

i=1

‖αi‖2

– Double backpropagation regularization [4]: Penalty of the squared L2 norm
of the gradient of the original loss term with respect to the inputs.

R(f) =
∥∥∥∥

∂

∂x
L(f(x), y)

∥∥∥∥
2
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– Jacobian regularizer: Penalty of the squared Frobenius norm of the Jacobian
of the decision model output with respect to the input.

R(f) = ‖Jf‖2F
There are two subvariants of this regularization: apply it to the decision model
output directly (logits) [18] or the probability vector after softmax [9].

– Spectral regularization [22]: Use of a random projection to the Jacobian of
the decision model output and then penalty of its squared L2 norm.

R(f) = ‖Prnd(Jf )‖2F
where Prnd(Jf ) = JT

f r and r ∈ N (0, Ic) (matrix of size c × c with random
numbers on the diagonal and zero otherwise). This method multiplies the
elements of the Jabocian related to a particular class with a class-specific
random number. Similar to Jacobian regularization, there are also two sub-
variants here: apply it to the decision model output without or with softmax
(although only the first subvariant was considered in [22]).

Note that in all definitions above (except the weight decay regularization),
the regularization is evaluated over all training samples and their sum, which is
not explicitly shown for better conceptual clarity.

The regularization methods introduced above can be interpreted from dif-
ferent perspectives. Given a kernel k, the decision function f∗(z) defined in (3)
is a mapping from the original space X to a m-dimensional feature space: G:
X → R

m by: G(z) = (k(z,x1), . . . , k(z,xm)). These features are then lin-
early combined based on parameters αi. The weight decay regularization follows
the standard definition that operates in this space. The rationale for the dou-
ble backpropagation regularization is that if the input changes slightly the loss
function should not change. One way of measuring this change is the derivative
with respect to all the inputs. The four Jacobian-based regularization methods
all aim to constrain the derivatives of the decision function along the different
feature dimensions, which is geometrically helpful to reduce the probability of
overfitting.

The introduction of regularization leads to optimization problems that have
no analytic solution in contrast to the unregularized interpolation kernel machine
(see Sect. 2.3). We use the solution of the unregularized variant (with minor
random noise added) to initialize the iterative optimization.

3.2 Computation of Partial Derivatives

The computation of regularization terms requires a number of partial derivatives.
In particular, the computation of the Jacobian matrix depends on the concrete
kernel function. For the decision model output:

Decision model 1: f(x) =
m∑

j=1

αjk(x,xj) (13)
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Table 1. Overview of regularization methods.

Weight decay regularization (WDR)
Double backpropagation regularization (DBR)
Jacobian regularizer logits (JRL)

probabilities (softmax) (JRP)
Spectral regularizer logits (SRL)

probabilities (softmax) (SRP)

the elements of the Jacobian matrix are:

∂f(x)
∂xl

, l = 1, . . . , d (14)

When using a probability vector as decision model output:

Decision model 2: g(x) = (p1, . . . , pc) = softmax
m∑

j=1

αjk(x,xj) (15)

the elements of the Jacobian matrix can be shown to become:

∂g(x)
∂xl

= pl(1 − pl)
∂f(x)
∂xl

, l = 1, . . . , d (16)

We thus need the derivative (14) in order to compute the Jacobian matrix
for both decision models. We exemplarily give it for two kernels (see Sect. 4):
polynomial kernel (top) and Additive χ2 kernel (bottom):

∂f(x)
∂xl

= γd

m∑

j=1

αj(γ < x,xj > +c)d−1xjl (17)

∂f(x)
∂xl

= −
m∑

j=1

αj
(xl − xjl)(xl + 3xjl)

(xl + xjl)2
(18)

where l = 1, . . . , d. The derivatives for other kernel functions can be determined
similarly and are thus not presented here.

4 Experimental Results

4.1 Experimental Setting

We consider the following kernels for our experiments:

– Polynomial kernel: k(x,y) = (γ < x,y > +c)d

– RBF kernel: k(x,y) = exp(−γ||x − y||2)
– Laplacian kernel: k(x,y) = exp(−γ||x − y||)
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– Additive χ2 kernel: k(x,y) = −
d∑

i=1

(xi − yi)2

xi + yi

– χ2 kernel: k(x,y) = exp

(
−γ

d∑

i=1

(xi − yi)2

xi + yi

)

– Sigmoid kernel: k(x,y) = tanh(γ < x,y > +c)

where x and y are two samples with d features, xi means the ith feature of
sample x, and analog yi.

The regularization weight λ was determined to ensure a balanced order of
magnitude of the two terms in Eq. (12): loss value L(f) and regular value R(f).

Table 2. Description of UCI datasets.

dataset # instance# features# classes

Acoustic 400 50 4
Australian 690 14 2
Autism_Adult 704 20 2
Biodeg 1052 41 2
Breast 286 9 2
Car 1728 21 4
Diagnosis 160 6 2
Flare-solar 1066 10 2
HCV 615 13 5
Ionosphere 351 34 2
Liver 345 6 2
Maternal 1014 6 3
New-thyroid 215 5 3
Raisin 900 7 2
Statlog 4435 36 6
Titanic 2201 3 2
Transfusion 748 4 2

Experiments were conducted on 17 UCI datasets (see Table 2 for an
overview). These datasets are not of large size. In a recent work [26] it was
shown that training set pruning is very helpful way to deal with large datasets.
It reduces the efforts of training and in fact also testing in case of an instance-
based classifier like interpolation kernel machine. In addition, the classification
performance can even be boosted by using a small portion of the original training
data only.
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Table 3. Accuracy (%) of regularized interpolation kernel machine with square loss
function.

dataset
kernel

Polynomial RBF

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP
Acoustic 63.0 63.0 62.3 63.5 63.2 63.0 62.1 65.5 65.5 65.5 65.2 65.7 65.2 65.2

Australian 84.2 84.7 85.8 64.7 83.5 79.0 76.8 75.8 75.8 75.9 75.0 77.2 75.0 74.0
Autism_Adult 89.1 100.0 98.5 97.2 98.8 99.0 94.8 91.9 91.9 91.9 92.6 91.9 91.9 91.9

Biodeg 66.3 59.1 66.3 66.3 66.4 66.3 66.4 62.0 62.0 62.0 62.1 62.3 62.1 62.5
Breast 63.5 54.7 54.3 54.3 55.1 53.9 48.9 67.3 67.3 66.5 66.9 66.9 66.1 66.1
Car 70.0 70.0 70.6 70.7 70.8 70.5 70.5 83.3 73.1 82.9 83.2 83.3 82.5 83.5

Diagnosis 66.7 67.0 80.0 65.5 77.9 64.5 57.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Flare 70.9 70.2 44.0 70.1 70.9 77.9 70.9 36.2 36.2 35.0 35.4 35.4 36.2 36.2
HCV 89.3 87.6 91.0 80.7 89.3 81.9 89.3 91.9 91.9 91.7 90.2 93.4 90.3 93.9

Ionosphere 64.3 72.3 70.0 71.4 73.7 72.3 73.4 84.6 84.6 84.3 82.3 83.1 85.1 84.9
Liver 58.4 50.7 58.7 68.9 58.4 68.4 58.4 58.1 58.1 58.4 59.0 58.3 59.5 59.8

Maternal 41.3 44.1 60.8 54.1 53.4 65.9 46.9 29.1 58.1 61.0 49.9 53.5 49.4 53.3
New-thyroid 74.0 65.3 81.6 77.7 69.8 80.0 69.8 74.0 74.0 74.4 50.2 75.8 67.9 57.2

Raisin 76.3 74.9 72.0 74.8 65.6 54.4 77.4 51.7 56.7 73.2 63.6 62.8 56.2 60.7
Statlog 64.8 65.3 60.4 59.7 64.3 54.3 65.5 90.7 85.0 82.0 86.8 80.9 90.7 90.9
Titanic 63.0 75.8 52.3 73.2 73.5 75.8 73.5 62.6 47.4 41.2 52.6 40.7 44.2 47.7

Transfusion 60.8 63.9 56.9 53.0 73.9 53.0 73.9 54.4 72.6 68.8 72.9 72.5 68.6 64.9
average accuracy 68.6 68.7 68.6 68.6 71.1 69.4 69.2 69.3 70.6 71.5 69.9 70.8 70.1 70.2

superior percentage 52.9 58.8 52.9 64.7 52.9 64.7 41.2 58.8 41.2 70.6 58.8 70.6

dataset
kernel

Laplacian Additive χ2

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP
Acoustic 65.7 65.7 66.0 66.0 67.0 66.0 67.0 43.2 66.2 62.6 73.2 72.2 69.1 70.6

Australian 84.9 84.9 84.6 84.6 84.8 84.8 84.5 86.8 85.9 77.4 86.8 70.5 78.8 70.8
Autism_Adult 92.1 92.1 92.1 92.2 92.6 92.9 92.6 100.0 99.8 100.0 100.0 99.1 96.8 100.0

Biodeg 92.7 92.7 92.7 93.8 92.9 94.0 94.5 76.0 75.7 75.0 77.4 75.4 77.5 79.5
Breast 68.0 68.0 67.3 68.1 68.4 68.1 67.7 61.8 62.0 63.0 62.2 63.0 67.6 63.0
Car 83.3 83.2 87.5 86.5 84.7 86.3 87.5 77.4 70.0 68.5 70.5 65.7 65.7 71.4

Diagnosis 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 85.8 100.0 100.0 89.0 82.9 100.0
Flare 35.8 35.8 35.0 35.0 35.4 36.2 35.0 50.2 50.7 60.8 56.7 53.8 57.1 54.7
HCV 92.5 92.5 92.7 92.5 92.0 92.5 92.0 94.2 93.4 92.7 94.2 94.4 94.4 94.4

Ionosphere 86.0 86.0 86.0 85.7 85.7 86.0 86.3 86.6 85.0 86.0 86.6 89.3 89.1 85.1
Liver 61.0 61.0 61.6 58.1 58.1 62.2 61.0 73.9 68.1 61.8 73.9 71.6 73.2 74.2

Maternal 50.0 50.0 50.2 49.2 47.3 49.9 47.6 63.4 68.8 63.4 63.4 63.7 63.5 63.4
New-thyroid 91.6 91.6 91.2 91.6 91.2 90.2 86.5 88.4 88.2 88.4 88.4 85.3 89.3 88.40

Raisin 50.9 50.8 50.6 59.9 56.2 61.6 58.6 77.7 77.2 75.4 77.7 78.4 70.4 77.80
Statlog 90.2 90.2 89.1 89.1 89.9 90.3 90.2 85.4 86.9 79.4 84.3 78.8 78.8 78.9
Titanic 71.0 64.1 61.2 64.5 65.0 63.0 65.0 67.0 67.0 67.0 67.0 63.1 66.9 64.9

Transfusion 40.0 39.8 40.6 42.0 50.4 43.8 47.4 66.5 68.8 66.50 66.5 74.1 66.1 69.7
average accuracy 73.9 73.4 73.4 74.1 74.2 74.6 74.3 76.4 76.4 75.8 78.2 75.7 75.7 76.9

superior percentage 52.9 52.9 47.1 70.6 52.9 52.9 35.3 47.1 82.4 47.1 47.1 64.7

dataset
kernel

χ2 Sigmoid

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP
Acoustic 64.1 64.1 64.1 64.4 64.4 63.9 64.4 70.3 73.0 81.6 80.0 83.2 83.0 82.7

Australian 81.1 81.1 81.1 81.1 81.0 80.7 80.4 77.0 83.2 85.5 81.7 83.5 84.5 84.2
Autism_Adult 92.2 92.2 92.2 92.7 92.4 92.2 92.4 98.5 100.0 92.4 97.5 96.8 97.5 97.1

Biodeg 73.2 73.1 72.5 73.1 73.1 73.1 73.2 66.3 65.7 66.4 66.8 66.1 66.4 66.4
Breast 66.9 66.9 66.5 66.5 67.7 66.4 65.7 69.7 65.6 64.2 62.1 69.7 60.0 69.7
Car 83.3 83.1 83.4 83.0 83.4 83.0 83.3 74.6 73.0 74.8 74.7 74.7 75.2 74.3

Diagnosis 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Flare 36.2 36.2 35.4 35.8 35.8 35.0 36.3 81.2 81.0 80.9 86.2 80.9 80.9 80.9
HCV 95.1 95.1 85.3 70.0 89.0 87.5 87.0 89.3 88.9 89.3 90.8 89.3 89.3 89.3

Ionosphere 85.1 85.1 85.7 85.7 85.4 84.3 84.6 70.4 71.7 74.3 73.7 74.3 74.6 74.6
Liver 56.0 56.3 56.9 56.9 55.4 56.0 55.4 58.0 56.3 58.4 59.8 58.4 59.8 58.4

Maternal 44.9 33.3 51.8 47.3 55.0 51.6 59.1 60.9 52.4 53.4 61.7 53.4 59.1 53.4
New-thyroid 89.3 89.3 89.3 89.8 87.4 88.9 89.3 69.8 87.9 89.8 90.7 91.8 93.0 90.0

Raisin 37.4 42.6 72.2 57.4 71.8 71.1 70.8 85.0 80.2 70.0 81.30 76.4 76.4 74.7
Statlog 91.3 91.3 91.3 85.5 86.4 92.5 91.3 75.3 74.0 80.3 75.3 69.3 74.2 76.2
Titanic 49.3 49.8 61.2 61.2 67.7 46.9 62.4 77.0 75.4 73.5 78.8 78.1 78.3 77.3

Transfusion 51.6 62.9 59.4 67.7 60.2 56.0 65.7 76.2 71.0 73.9 76.2 73.9 77.5 78.7
average accuracy 70.4 70.7 73.4 71.7 73.9 72.3 74.2 76.4 76.4 77.0 78.7 77.6 78.2 78.1

superior percentage 58.8 58.8 64.7 58.8 29.4 64.7 35.3 58.8 82.4 58.8 64.7 70.6
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Table 4. Accuracy (%) of regularized interpolation kernel machine with cross entropy
loss function.

dataset
kernel

Polynomial RBF

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP
Acoustic 63.0 63.0 46.2 69.1 52.2 69.1 57.8 65.5 64.7 65.2 65.5 64.7 66.0 64.2

Australian 84.2 84.5 73.0 85.3 86.7 76.0 84.2 75.8 81.4 76.3 81.4 77.1 77.6 76.5
Autism_Adult 89.1 100.0 98.7 98.3 97.7 100.0 80.0 91.9 91.9 92.2 92.2 91.9 92.9 92.1

Biodeg 66.3 66.2 66.6 66.3 66.3 66.7 66.6 62.0 68.2 66.0 77.3 76.5 70.3 71.7
Breast 63.5 62.5 67.6 61.3 66.4 61.3 70.0 67.3 66.9 65.7 66.5 67.7 66.1 68.4
Car 70.0 69.6 77.1 71.7 77.1 70.0 70.1 83.3 82.4 80.3 93.5 94.7 94.7 94.5

Diagnosis 66.7 96.0 100.0 100.0 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Flare 70.9 51.7 46.1 57.9 51.8 51.6 63.7 36.2 36.6 35.4 35.4 34.9 35.8 34.9
HCV 89.3 83.6 91.2 89.3 83.3 82.8 89.3 91.9 91.5 77.7 90.7 79.5 84.0 73.5

Ionosphere 64.3 76.3 72.6 74.3 73.1 75.1 73.7 84.6 82.6 80.6 82.0 84.6 80.6 82.3
Liver 58.4 57.5 67.9 60.4 52.5 55.4 51.9 58.1 59.2 58.4 60.1 57.5 58.4 59.3

Maternal 41.3 42.4 44.9 64.7 54.6 44.7 49.0 29.1 36.4 60.0 31.3 57.4 57.8 61.0
New-thyroid 74.0 76.5 92.6 94.4 68.4 87.4 76.3 74.0 78.1 64.2 93.0 76.7 72.1 61.9

Raisin 76.3 73.2 62.9 71.1 69.0 84.8 68.9 51.7 41.4 60.1 52.1 65.8 65.0 65.3
Statlog 64.8 68.2 60.2 66.0 64.0 64.3 60.4 90.7 85.0 88.5 89.5 79.9 89.9 75.8
Titanic 63.0 61.8 59.4 78.0 67.7 60.6 60.4 62.6 61.2 50.4 63.4 59.8 50.2 49.7

Transfusion 60.8 49.3 51.5 72.4 70.3 71.3 54.7 54.4 55.2 65.9 55.4 67.7 70.0 74.3
average accuracy 68.6 69.6 69.3 75.3 70.6 71.8 69.2 69.3 69.6 69.8 72.3 72.7 72.4 70.9

superior percentage 47.1 58.8 82.4 58.8 58.8 52.9 52.9 47.1 70.6 64.7 58.8 58.8

dataset
kernel

Laplacian Additive χ2

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP
Acoustic 65.7 66.0 67.0 66.0 65.4 66.5 65.7 43.2 54.20 68.6 72.0 70.0 70.6 70.0

Australian 84.9 86.2 84.6 86.2 85.1 84.3 84.5 86.8 87.40 85.3 87.1 85.3 80.9 74.2
Autism_Adult 92.1 92.1 92.6 92.1 91.7 92.4 92.2 100.0 100 100.0 99.7 100.0 95.7 100.0

Biodeg 92.7 73.7 93.1 94.7 94.6 94.5 94.5 76.0 77.10 86.0 86.1 79.3 76.0 77.2
Breast 68.0 68.0 66.9 67.3 66.9 67.3 67.7 61.8 60.80 70.0 59.8 68.6 72.4 72.4
Car 83.3 73.2 80.3 86.7 84.9 87.6 97.6 77.4 77.4 77.50 77.4 78.9 78.6 79.1

Diagnosis 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100 100.0 100.0 100.0 100.0 100.0
Flare 35.8 35.8 36.6 35.4 35.4 35.0 35.0 50.2 51.6 56.3 53.0 50.6 47.2 62.7
HCV 92.5 91.0 92.0 91.5 92.0 92.5 92.5 94.2 84.9 92.7 94.2 93.8 89.8 89.3

Ionosphere 86.0 86.0 86.0 86.0 85.7 85.7 85.7 86.6 86.3 86.9 88.0 89.3 89.1 81.4
Liver 61.0 64.2 63.3 70.1 61.3 63.3 58.0 73.9 67.5 69.5 70.7 71.0 69.8 66.6

Maternal 50.0 61.9 53.0 60.2 60.4 49.3 48.3 63.4 67.0 59.1 67.4 66.9 66.4 64.5
New-thyroid 91.6 92.1 80.0 93.0 86.0 90.7 87.0 88.4 91.9 97.7 94.4 97.2 97.2 96.3

Raisin 50.9 66.2 53.1 53.2 56.6 55.7 51.7 77.7 78.6 77.3 79.8 76.4 76.1 78.0
Statlog 90.2 83.50 90.3 90.4 90.2 90.1 90.2 85.4 82.30 70.8 75.4 70.3 78.8 82.3
Titanic 71.0 61.2 55.4 78.2 70.7 75.6 70.9 67.0 75.9 67.0 71.5 77.6 70.0 77.6

Transfusion 40.0 55.6 57.2 64.4 62.2 53.6 64.0 66.5 66.3 72.0 72.7 73.7 72.5 73.3
average accuracy 73.9 73.9 73.6 77.4 75.8 75.5 75.6 76.4 77.0 78.6 79.4 79.3 78.3 79.1

superior percentage 70.6 64.7 82.4 52.9 52.9 41.2 64.7 64.7 76.5 70.6 58.8 70.6

dataset
kernel

χ2 Sigmoid

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP
Acoustic 64.1 63.9 64.9 64.4 64.1 64.4 64.1 70.3 63.7 63.0 70.4 70.3 69.3 72.3

Australian 81.1 84.6 81.1 84.6 81.3 80.4 80.7 77.0 83.2 85.5 81.4 81.0 78.6 82.6
Autism_Adult 92.2 92.2 92.4 92.2 92.4 92.1 92.5 98.5 94.0 94.1 97.5 95.5 96.5 98.5

Biodeg 73.2 76.2 74.6 84.0 82.3 83.0 82.9 66.3 63.4 66.6 66.3 66.3 66.3 61.3
Breast 66.9 66.1 66.9 64.9 65.7 64.9 65.3 69.7 69.1 73.5 69.7 70.0 72.3 72.3
Car 83.3 72.0 83.3 93.2 93.8 93.8 93.6 74.6 76.0 75.4 74.6 76.6 74.0 75.6

Diagnosis 100.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0 98.9 100.0 100.0 100.0 100.0 100.0
Flare 36.2 37.0 35.4 36.2 35.4 35.8 36.2 81.2 88.2 70.9 79.8 81.2 81.7 81.7
HCV 95.1 92.9 79.7 93.9 92.2 84.7 65.3 89.3 83.2 89.3 83.4 83.3 83.6 83.6

Ionosphere 85.1 84.6 84.0 84.6 83.7 80.9 86.0 70.4 74.0 74.3 81.4 81.4 81.4 81.4
Liver 56.0 57.8 57.2 60.7 56.6 56.0 58.4 58.0 56.3 58.4 58.9 60.0 59.8 57.8

Maternal 44.9 36.2 51.1 48.0 59.6 51.1 52.1 60.9 62.4 53.4 62.1 61.0 59.1 58.1
New-thyroid 89.3 93.0 86.0 96.3 85.1 85.6 85.1 69.8 87.9 89.8 95.8 91.2 93.0 92.3

Raisin 37.4 50.2 65.8 37.0 64.7 71.2 74.7 85.0 75.0 82.7 75.3 81.1 75.0 80.1
Statlog 91.3 88.4 88.3 90.6 76.4 90.8 88.4 75.3 76.4 68.1 74.7 74.2 74.2 70.7
Titanic 49.3 61.2 50.3 54.8 59.8 42.9 54.8 77.0 77.7 77.7 78.4 77.6 78.3 77.3

Transfusion 51.6 52.7 60.2 51.8 58.1 64.5 64.9 76.2 71.0 73.9 77.5 75.4 78.5 78.7
average accuracy 70.4 70.8 71.8 72.8 73.6 73.1 73.2 76.4 76.5 76.3 78.1 78.0 77.7 77.9

superior percentage 47.1 64.7 70.6 58.8 47.1 70.6 47.1 58.8 70.6 70.6 58.8 64.7
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4.2 Experimental Results and Discussions

The experiments were conducted by 5-fold cross validation. The results (top-
1 classification accuracy) are presented in Table 3 for the square loss function
and Table 4 for the cross entropy loss function, respectively. In column “IKM”
the performance of the unregularized version is shown for comparison purpose.
In addition to the accuracy for each dataset, the average over all datasets is
also given, with the best average accuracy marked bold. Note that there is no
difference in performance if not regularized, i.e. for a given kernel function the
column “IKM” in Table 3 and 4 are identical. That fact is due to the interpolating
nature of this decision model with zero training error.

It is not surprising that the kernel functions differ in their performance.
However, it is not the intention of this work to compare these kernel functions.
Instead, we compare the behavior of the different regularization methods relative
to each other and also relative to the unregularized version for a given kernel.

We focus on the average performance of all datasets for each method.
Undoubtedly, regularization methods are useful for all kernel methods. In most
cases, adding regularization terms is beneficial, but there are some exceptions,
which cannot negate the merits of regularization terms. One example is Polyno-
mial kernel with square loss, where DBR and JRL have the same accuracy as
unregularized version. Another example is Additive χ2 kernel with square loss,
where the performance of WDR and DBR is disappointing. When coming to the
details of each dataset, the results generally reveal the expected improvement by
using regularization in almost all cases. Not all methods give expected results
on all datasets for 6 kernels. Excepted examples are HCV data with RBF kernel
for square loss and Breast data with Laplacian kernel for cross entropy kernel.
In addition, the cross entropy loss function delivers superior results compared to
the square loss function.

Since the cross entropy loss function is the favorable choice, our subsequent
discussion will thus focus on this variant. In Fig. 1 we graphically show the aver-
age accuracy values for better clarity. While consistent improvement is observed
for all kernel functions in average, it differs among the datasets for a particular
kernel function. Thus, we also determined the percentage of datasets with per-
formance improvement compared to the unregularized version, which is named
“superior percentage” in Table 3, 4 and Fig. 1. It is computed within each column
and defined by the percentage of each regularizer outperforming the unregular-
ized version (the column “IKM”). Generally, there exists some positive correla-
tion between the superior percentage and the classification accuracy, although
not consistently.

To ease the comparison of the used regularization methods we plot the 36 (6
regularization methods × 6 kernel functions) pairs (average performance, supe-
rior percentage) in Fig. 2. The higher the two values the better and the absolute
optimum is the point (1, 1). Thus, looking at the point distribution of the regu-
larization methods gives us a good impression of their relative performance. For
instance, we observe four JRL points near the upper right corner that is highly
desired while in contrast most SRL points are far away from the upper right cor-
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Fig. 1. Average accuracy and superior percentage.

ner. We can also perform a quantitative comparison by computing the average
Euclidean distance of the 6 points from (1, 1) for each regularization method. In
sorted order we obtain: JRL (0.346), JRP (0.450), SRP (0.480), DBR (0.484),
SRL (0.509), WDR (0.528). Overall, we can thus conclude that JRL performs
best. This may be explained by the clear rationale behind it. The two spectral
regularization methods are variants of Jacobian regularizer with a stochastic
component. They were introduced in [22], but not well motivated. The worst
performance of WDR is not surprising. In the particular context of interpolation
kernel machine there is no good reason to constrain the parameters.

We selected the 6 most imbalanced datasets according to imbalance ratio
(IR, the ratio of the number of samples in the majority and minority classes)
[10] and evaluated the performance by F1 score. The sorted IR for the 6 datasets
is: HCV(75.0), New-thyroid(5.0), Transfusion(2.8), Breast(2.6), Maternal(2.5),
Flare(2.4).
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Fig. 2. Distribution of (average accuracy, superior percentage) pairs for relative per-
formance comparison of regularization methods.

Table 5. F1 score of regularized interpolation kernel machine with square loss function.

dataset

kernel
Polynomial RBF

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP

HCV 0.257 0.409 0.253 0.242 0.242 0.257 0.250 0.502 0.369 0.403 0.476 0.476 0.479 0.479

New-thyroid 0.665 0.792 0.816 0.770 0.770 0.562 0.774 0.364 0.805 0.522 0.462 0.462 0.473 0.400

Transfusion 0.445 0.541 0.457 0.481 0.481 0.442 0.481 0.401 0.561 0.482 0.517 0.517 0.489 0.491

Breast 0.482 0.675 0.558 0.519 0.519 0.536 0.516 0.565 0.635 0.611 0.613 0.613 0.632 0.627

Maternal 0.530 0.584 0.582 0.577 0.577 0.444 0.568 0.273 0.544 0.319 0.343 0.343 0.351 0.311

Flare 0.462 0.593 0.616 0.563 0.563 0.607 0.574 0.281 0.537 0.473 0.518 0.518 0.515 0.518

average 0.473 0.599 0.547 0.525 0.525 0.475 0.527 0.398 0.575 0.468 0.488 0.488 0.490 0.471

dataset

kernel
Laplacian Additive χ2

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP

HCV 0.404 0.557 0.398 0.479 0.479 0.479 0.479 0.557 0.565 0.574 0.578 0.578 0.536 0.536

New-thyroid 0.883 0.938 0.979 0.965 0.965 0.965 0.965 0.784 0.922 0.829 0.824 0.824 0.824 0.842

Transfusion 0.327 0.620 0.588 0.591 0.591 0.595 0.590 0.467 0.582 0.548 0.577 0.577 0.577 0.563

Breast 0.582 0.688 0.587 0.640 0.640 0.636 0.640 0.529 0.647 0.645 0.624 0.624 0.669 0.669

Maternal 0.441 0.677 0.631 0.650 0.650 0.650 0.650 0.488 0.618 0.563 0.567 0.567 0.545 0.559

Flare 0.275 0.573 0.494 0.515 0.515 0.515 0.515 0.367 0.579 0.579 0.595 0.599 0.560 0.559

average 0.485 0.676 0.613 0.640 0.640 0.640 0.640 0.532 0.652 0.623 0.628 0.628 0.618 0.621

dataset

kernel
χ2 Sigmoid

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP

HCV 0.592 0.628 0.646 0.684 0.684 0.684 0.684 0.189 0.325 0.189 0.211 0.189 0.189 0.189

New-thyroid 0.759 0.933 0.748 0.860 0.860 0.834 0.783 0.274 0.695 0.594 0.406 0.489 0.348 0.399

Transfusion 0.452 0.662 0.470 0.497 0.497 0.482 0.472 0.425 0.497 0.555 0.503 0.558 0.543 0.507

Breast 0.562 0.669 0.629 0.594 0.594 0.594 0.597 0.420 0.579 0.516 0.543 0.597 0.594 0.553

Maternal 0.336 0.636 0.355 0.349 0.349 0.371 0.323 0.232 0.486 0.391 0.432 0.349 0.444 0.413

Flare 0.281 0.534 0.523 0.476 0.476 0.470 0.470 0.415 0.633 0.491 0.613 0.616 0.564 0.599

average 0.497 0.677 0.562 0.576 0.576 0.572 0.555 0.326 0.536 0.456 0.451 0.466 0.447 0.443

Table 5 and Table 6 give the F1 score for square loss function and cross
entropy loss function, respectively. The higher values indicate more robust model.
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Table 6. F1 score of regularized interpolation kernel machine with cross entropy loss
function.

dataset

kernel
Polynomial RBF

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP

HCV 0.257 0.189 0.272 0.257 0.241 0.257 0.273 0.502 0.189 0.353 0.389 0.304 0.378 0.361

New-thyroid 0.665 0.628 0.547 0.664 0.716 0.562 0.659 0.364 0.556 0.687 0.764 0.670 0.637 0.677

Transfusion 0.445 0.425 0.428 0.437 0.440 0.442 0.446 0.401 0.469 0.522 0.518 0.526 0.501 0.511

Breast 0.482 0.630 0.441 0.567 0.592 0.536 0.482 0.565 0.602 0.562 0.614 0.605 0.624 0.601

Maternal 0.530 0.443 0.455 0.456 0.463 0.444 0.532 0.273 0.440 0.303 0.328 0.339 0.323 0.342

Flare 0.462 0.639 0.469 0.615 0.602 0.607 0.465 0.281 0.482 0.283 0.492 0.495 0.480 0.473

average 0.473 0.492 0.435 0.499 0.509 0.475 0.476 0.398 0.456 0.452 0.517 0.490 0.491 0.494

dataset

kernel
Laplacian Additive χ2

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP

HCV 0.404 0.189 0.392 0.366 0.449 0.430 0.430 0.557 0.225 0.189 0.576 0.076 0.377 0.220

New-thyroid 0.883 0.659 0.900 0.824 0.652 0.923 0.775 0.784 0.975 0.865 0.659 0.828 0.637 0.608

Transfusion 0.327 0.517 0.416 0.613 0.495 0.587 0.553 0.467 0.622 0.454 0.439 0.457 0.447 0.455

Breast 0.582 0.512 0.568 0.574 0.574 0.593 0.593 0.529 0.575 0.546 0.471 0.536 0.543 0.505

Maternal 0.441 0.534 0.517 0.630 0.626 0.608 0.616 0.488 0.543 0.448 0.520 0.321 0.442 0.474

Flare 0.275 0.535 0.267 0.513 0.505 0.504 0.496 0.367 0.611 0.360 0.440 0.431 0.473 0.494

average 0.485 0.491 0.510 0.587 0.550 0.608 0.577 0.532 0.592 0.477 0.517 0.441 0.487 0.459

dataset

kernel
χ2 Sigmoid

IKM WDR DBR JRL JRP SRL SRP KM WDR DBR JRL JRP SRL SRP

HCV 0.592 0.383 0.559 0.656 0.638 0.648 0.646 0.189 0.172 0.189 0.211 0.179 0.223 0.223

New-thyroid 0.759 0.938 0.913 0.916 0.896 0.730 0.767 0.274 0.294 0.374 0.334 0.414 0.397 0.324

Transfusion 0.452 0.615 0.430 0.485 0.496 0.485 0.495 0.425 0.455 0.342 0.306 0.415 0.409 0.440

Breast 0.562 0.530 0.568 0.604 0.606 0.642 0.621 0.420 0.416 0.506 0.495 0.539 0.495 0.420

Maternal 0.336 0.564 0.288 0.379 0.398 0.365 0.361 0.232 0.391 0.405 0.513 0.503 0.560 0.399

Flare 0.281 0.534 0.289 0.542 0.541 0.544 0.533 0.415 0.491 0.597 0.603 0.498 0.504 0.600

average 0.497 0.594 0.508 0.597 0.596 0.569 0.571 0.326 0.370 0.402 0.410 0.425 0.431 0.401

Almost all results show an improvement after applying regularization terms.
DBR techniques surpass the performance of other methods when using square
loss function. And there is no outstanding regularizer for cross entropy loss
function. The results for both loss functions indicate that regularized methods
perform better than the unregularized IKM, even for imbalanced datasets.

5 Conclusion

Despite the interpolating nature, interpolation kernel machines prove to gen-
eralize well and have competitive performance. Several recent works proposed
various ways of performance improvement for this decision model. In this work
we investigated the generalization of interpolation kernel machines and demon-
strated its potential for classification performance improvement.

The current work is limited to vectorial data only. In future we will extend it
to non-vectorial domains, e.g. graphs with applications in chemistry and other
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fields. In such domains, however, it is not trivial to define suitable realization of
derivatives and Jacobian matrix computation. Then, the optimization problem
in (5) becomes interesting. Despite some limitation (special cases of Ω like those
based on L2 norm) it enables a way of regularization in the feature space. It is
a valuable contribution to working with structural data like graphs.
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Abstract. We present a deep learning architecture designed to predict
the success or failure of a robot control plan. The architecture accom-
plishes this by classifying the final state output of a future predictor
using a recurrent neural network (RNN). In previous work, success or
failure has been classified based on the output states of a recurrent state-
space model (RSSM) and aggregated using the self-attention weights of
each state. The success-or-failure predictor can serve as a constraint for
enhancing robot control planning. However, it should be noted that the
label of success or failure depends solely on the condition following the
completion of the operation. As a result, classification should rely solely
on the final output state of the future predictor. Yet, to focus on the
final state in the classifier, it becomes necessary for the success-or-failure
classifier to implicitly estimate the relative time from the state, since the
state only represents a condition at a given time and lacks explicit time
information. The challenge of time estimation can lead to poor perfor-
mance. Considering this premise of success or failure, the proposed frame-
work is designed to predict success or failure based solely on the final
state of the RNN. This can be understood as a method that uses a fixed
weight for aggregation over time steps. To improve performance with final
state prediction, we propose the scheduling of classification loss weight.
These changes are easily applicable to some reasonable RNN-based archi-
tectures. Our experiments on multi-object stacking tasks demonstrate
that indeed effective for success-or-failure predictors.

Keywords: success-or-failure prediction · robot planning · recurrent
neural network

1 Introduction

With dramatically progress in pattern recognition with deep learning architec-
ture, the expectation of the use of pattern recognition manner for robot control
have been growing significantly. Task and motion planning (TAMP) has been
widely known as a practical approach for developing a control plan for execut-
ing long-term tasks such as the organization of multiple objects using a robotic
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arm [9,27,31,36,39]. The key to the success of TAMP-based control plan exe-
cution is suitable design constraints aimed at preventing failure factors such as
object grasp order, object collisions, object initial posture, and task termination
conditions. In general, however, although designing these suitable constraints
necessitates updating them based on the robot’s behavior, monitoring the robot
and its environment throughout the operation is challenging in actual situations.
Furthermore, the constraints become increasingly complex as the task duration
extends.

Future
Predictor

…

Unknown data

Ini�al State Final State

Success
or

Failure

Our Success-or-Failure Predictor

Predict 
Final State

Success-or-Failure
Classifier

Predict
TAMP

Robot Ac�ons 

Known data

Fig. 1. Overview of the proposed framework. The proposed framework is a novel net-
work architecture that can discriminates between success and failure based on the final
state of RNN, as well as a scheme to adjust loss function weights for model training.

To address this challenge for task planning, the Future-predictive Identifier
for Robot Planning (FIRP) [35] has been proposed as an effective framework to
predict task success or failure classification as an outcome of executing particular
plans prior to the enforcement of a control plan. The key of the existing frame-
work is that the success-or-failure prediction results can be incorporated into
control planning algorithms as supplemental key constraints, thereby improving
the task success rate.

The FIRP framework employs a Recurrent State-Space Model (RSSM) [5,11,
12,14,25,26,34] based on a Recurrent Neural Network (RNN) to predict future
states at each time point. In the FIRP framework, self-attention module is used
to estimate the weight for each state. Then, the weights of the calculated results
are used to aggregate them. Finally, success or failure is classified [12,35]. Since
the success or failure of a plan candidate is generally determined based on the
final state only, the classification module should rely exclusively on the out-
put state of the final time from future prediction module. However, given the
structure that estimates the weight of each state from the corresponding state,
implicit time estimation from the state is required to base predictions on the final
time. This implicit time estimation is a difficult task because the framework has
not given any explicit annotations and/or training cues; there is a challenge that
may have led to decreased accuracy.
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In this paper, we propose a novel network architecture that discriminates
between success and failure based on the final state of RNN, as well as a scheme
to adjust loss function weights for model training (Fig. 1). The key is to explicitly
incorporate the implicit assumption that “the final state is the critical cue” into
the network architecture. By using only the final state of future predictions for
classification, this proposed framework eliminates the need for weight estimation
to concentrate on the final period. Our approach is built on top of our new base
model that solves a domain gap problem in the classification part of FIRP.
Experiments show that our framework is not only generic but also effective in
improving accuracy for RNN-based success-or-failure predictors in multi-object
stacking tasks dataset with MujoCo simulated results [38]. The proposed manner
is versatile as it is easily applied to sequential model derivatives. For LSTM-based
networks, we further demonstrate that the proposed framework can significantly
reduce training costs relative to conventional methods.

The contributions of this paper are as follows:

– We propose a new base model, an end-to-end network that solves a domain
gap problem existing in FIRP.

– We propose a novel network architecture to discriminate success or failure
from the final state of RNN and a scheme to adjust the weights of the loss
function in model learning.

– We propose of a simple framework based on LSTM-based methods that can
significantly reduced training cost.

– We demonstrate the effectiveness of the proposed framework for RNN-based
success-or-failure prediction on MujoCo simulated dataset.

2 Related Work

This section overviews robotic tasks using success-or-failure classification, and
highlights our contributions.

2.1 Robotic Tasks Using Success-or-Failure Classification

The existing works for robotic tasks using success-or-failure classification can be
roughly summarized into three categories; 1) environmental status classification,
2) action outcome classification, and 3) future predictive classification.

Environmental Status Classification. Environmental status classification is
a task of identifying whether errors occur while observing the state of environ-
ment during robot operation [1,2,7,10,17,18,23,28,37,45]. These methods are
used to determine whether to carry out the recovery process. Typical information
used as an input to a classifier is image or sound.
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Action Outcome Classification. An action outcome classification is a task of
estimating whether a given action will succeed in the current situation. There are
two mainstream applications of an action outcome classification; 1) parameter
estimation [21,24,42,43], and 2) planning [4,8,20,22,29,44].

For the parameter estimation, a classifier is used to estimate the parameters
required to perform an action, such as a six degrees-of-freedom grasping pose.

For the planning, a classifier is used to determine the next actions to be
inputted to a robot. A representative approach is to combine a classifier with
the Cross-Entropy Method, a planning method [22,32]. This approach is typically
used for short-horizon tasks, such as object grasping. Recently, the combination
of a classifier and a TAMP-based planner has been proposed for long-horizon
tasks, such as object stacking and replacement [35].

Future Predictive Classification. Recently, Future-predictive Identifier for
Robot Planning (FIRP) [35] has been proposed as an effective framework for
success-or-failure identification for TAMP-based motion plans. The FIRP con-
sists of a future prediction part using RSSM [11,12,26] and a classification part
that predicts success or failure based on the prediction results.

In the training of the future prediction part of FIRP, two modules are trained
in parallel: a module that predicts the prior distribution of states in the next step
using the previous state and the planning sequence, and in addition to these, a
module that predicts the posterior distribution by inputting images. They are
optimized to predict the image features extracted by the image encoder from the
images at each time as the correct states. The classification part integrates the
actual image features at all times, weighted by self-attention [40], and outputs
a binary score by all the combined layers (see Fig. 2(a)).

On the other hand, during inference, the posterior distribution prediction
module using the initial state image is used at t = 0 to predict the state at each
time from the initial image and the action sequence, and the prior distribution
prediction module is used after the initial prediction. The classification part is
populated with the predicted states at all times (see Fig. 2(b)).

The difference means that in FIRP, there is a domain gap problem between
the inputs to the Classifier during training and inference.

2.2 Our Contributions

In contrast to the existing method [35], we propose a new base model to solve
the domain gap problem in FIRP’s Classifier by aligning the input domains of
Classifier during training and inference. Building on this model, we propose a
new network architecture that discriminates success or failure based on the final
state of the RNN and a scheme to adjust the weights of the loss function in
model learning. By explicitly using only the final state of future predictions for
classification, we eliminate the need for weight estimation focused on the final
period. Furthermore, the proposed framework is a versatile framework and can
be applied to LSTM-based architectures to reduce the training cost significantly
compared to conventional methods.
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(a) Inputs to the Classifier during training in FIRP

(b) Inputs to the Classifier during inference in FIRP

Fig. 2. The domain gap between the input to the Classifier during training and infer-
ence in FIRP [35]. (a) During training in FIRP, the inputs to the Classifier are image
features et. (b) Conversely, during inference, the inputs to the Classifier are image fea-
tures êt, which are predicted from the state of the RNN (using RSSM in FIRP). Thus,
there exists a domain gap between the inputs to the Classifier during training and
inference, depending on whether the input is based on actual observations or predicted
values derived from I0 and a sequence of actions at.

3 Method

The goal of the proposed framework is to improve the success-or-failure classi-
fication accuracy while improving the computational cost for both training and
inference by introducing the use of final state and an novel training protcols. In
the following of this section, we first explain the overview of the proposed frame-
work in Sect. 3.1. Next, we describe our key contribution, i.e. Success-or-failure
predictor, and training protocols in Sect. 3.2 and Sect. 3.3, respectively.

3.1 Overview of Our Framework

We propose a simple-yet-effective framework for success-or-failure prediction
based on the state vector that represents the RNN’s final state in light of the
observation that the success or failure of a robotic task is determined solely by
its final condition. Given that the success-or-failure classifier executes classifica-
tion founded on the predicted state vector, it becomes particularly challenging
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Fig. 3. The overview of our success-or-failure prediction framework with LSTM. Our
network comprises an Image Encoder, a Recurrent Neural Network (LSTM or RSSM),
an Image Decoder, and a Classifier. We adopt the same architecture during both train-
ing and inference.

to learn classification when the long-term prediction capability of the future pre-
diction is low. Consequently, the proposed framework first undertakes learning of
future prediction using the reconstruction loss between the ground truth image
at each time and the image obtained through future prediction, and this begins
prior to the learning phase with the success-or-failure classification loss.

As shown in Fig. 3, our success-or-failure prediction framework consists of an
image encoder module, a recurrent neural network (LSTM or RSSM), an image
decoder module, and a classifier module. In the following of this section, we will
first describe each component of the proposed framework, and then explain the
training algorithms for the proposed framework.

3.2 Success-Or-Failure Predictor

We describe the details of three key components of our success-or-failure predic-
tor framework: i) Future predictor, ii) image decoder, and iii) success-or-failure
classifier.

Future Predictor. We employ an RNN based on Long Short Term Memory
(LSTM) [16,33,41] or RSSM [11–14] as a future predictor in our framework
as shown in Fig. 3. Note that in Fig. 3, the proposed framework with LSTM is
shown. We can apply the proposed framework to the RSSM-based networks by
simply replacing the LSTM module with the RSSM module. When employing
LSTM [16,33], the state at each time can be written as:

h0 = fenc(I0) , (1)
c0 = 0 , (2)
(ht, ct) = g(ht−1, ct−1,at−1) , (3)

where the Image Encoder is denoted as fenc(·), the RNN as g(·), and the initial
state image as I0. at is a planned robotic action at time t, and ht and ct are
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the hidden state and cell state at t respectively. The initial state h0 employs
a feature vector that is extracted from an initial image by the Image Encoder.
Note that, in this paper, we use ResNet-50 [15] pre-trained on ImageNet [6] for
image encoder.

When employing RSSM [12], the state at each time during inference is written
as:

(h0, s0) = 0 , (4)
(h1, s1) = gpos(fenc(I0),h0, s0,a0) , (5)
(ht, st) = gpri(ht−1, st−1,at−1) , (6)

where gpos(·) represents a module predicting state posteriors using the image
as an input, and gpri(·) as the module predicting state priors without using the
image as an input. st is a stochastic state at t.

Image Decoder. In the training phase, our network reconstructs images which
represent the target condition at each time.

Ît = fdec(ht) , (7)

where fdec(·) is Image Decoder, and Ît is an image at t. In this paper, the Image
Decoder fdec(·) is one fully connected layer and three transposed convolutions
with rectified-linear-unit activation.

Success-Or-Failure Classifier. We employ the same classifier architecture as
in FIRP [35]. In FIRP, the Classifier used inputs from all the states. In contrast,
the proposed framework utilizes only the final state as the input. Formally, this
alteration can be also interpreted as fixing the weight of each state to 1 in the
final state and 0 for all other states. In this sense, the proposed method is natural
extension of the exisitng method FIRP; We can inherit the strengths of FIRP.
The network architecture of the Classifier is shown in Fig. 4. In the proposed
framework, the self-attention part shown in the green section can be skipped
because the resulting attention weight is always 1 when the number of input
states over time dimension is 1.

To obtain the label probabilities ŷ, we apply the Softmax function for the
output logits of the Classifier:

logits = fclass(hT−1) , (8)
ŷ = softmax(logits) , (9)

where fclass(·) is the Classifier, and T is the sequence length of a plan. In the
classification, the class labels are success and failure, hence logits and ŷ are
both 2-dimensional vectors, and the classification result is chosen as the class
with the maximum value in ŷ.
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Fig. 4. The network architecture of the Classifier. In L2 Norm Linear, the learnable
weight is normalized along the dimension corresponding to the input channels. The
results after the L2 Normalization and the following L2 Norm Linear are equivalent
to the cosine similarities between inputs and the learnable vectors. The b, t, and c
represent the batch size, number of input states, and number of channels, respectively.
In the proposed framework, since the input to the Classifier is only the final step, t is
1, and the green part, which calculates the weight of each time, is not necessarily used.

3.3 Training Protocols for Our Success-or-Failure Prediction
Framework

We describe training protocols for our success-or-failure prediction framework.
Specifically, we explain a loss function for training and classification weight
scheduling during our training.

Loss Function. The loss function for the proposed framework is composed
of two terms: 1) reconstruction loss and 2) classification loss. We calculate a
reconstruction loss using the images capturing the condition around the robot
at each time. We adopt the mean squared error (MSE) between the ground truth
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images and the predicted images:

Lrec =
1
T

T∑

t=1

W∑

w=1

H∑

h=1

C∑

c=1

(It(w, h, c)− Ît(w, h, c))2 , (10)

where W , H, and C represent the width, height, and number of channels of the
image, respectively. Here, T is the sequence length of a plan.

For the classification loss, we use the cross-entropy loss. Given N as the
number of classes, ŷi as the probability corresponding to the i-th class in the
Classifier output ŷ, and yi as the ground truth binary label of the i-th class, the
classification loss is defined as:

Lclass = −
N∑

i=1

yi log ŷi . (11)

Since the proposed method is a versatile framework, it can be used for var-
ious architectures such as LSTM and RSSM. In the proposed framework with
LSTM, the overall loss is defined as the summation of the reconstruction loss
and weighted classification loss, which is simply given by

L = Lrec + λclsLclass , (12)

where λcls is a weight constant for the classification loss.
For the proposed framework with RSSM, Kullback-Leibler divergence

between gpos(·) and gpri(·) are additionally calculated in the same manner as
in FIRP [35], which is formally given by

L = Lrec + λclsLclass + LKL. (13)

In addition, as in FIRP [35], the proposed framework uses the overshooting
loss [3,12] for accurate long-horizon prediction. In latent overshooting manner,
a stochastic features are computed from latent variables in RSSM framework.
Details of the implementation are described in [3,12].

Classification Weight Scheduling. To ensure that the final state approxi-
mates the prediction of the actual final condition at the start of the training with
the classification loss Lclass, the proposed framework starts the training solely
with Lrec before using both Lclass and Lrec. To this end, the λ in Eq. (12) is
defined as.

λcls =

{
0, if e < s,
1, otherwise ,

(14)

where e is the current epoch and the hyperparameter s is the epoch at which
Lclass is activated.
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4 Experiments

We demonstrate the effectiveness of the proposed framework based on success-
or-failure prediction experiments for the stacking task of multiple objects. In
the following of this section, we first describe the settings of our experiments in
Sect. 4.1. Then, experimental results and discussions are described in Sect. 4.2.

4.1 Settings

In the following, we explain the dataset for our experiments, evaluation protocols,
and implementation details.

Datasets. In order to compare the performance of the proposed framework with
the existing method [35], we construct a dataset for stacking tasks, utilizing a
Task and Motion Planning (TAMP) method [36]. Examples of images in our
dataset for this experiment are shown in Fig. 5. We set up a task of stacking
three cuboids placed randomly in order of the largest surface area. We collected
image sequences and plan sequences during the task execution by operating the
robot using the planner. The plan sequences include 1) the angular velocities
fed into every robot joint angle at each point in time, 2) the gripper velocity,
and 3) the type of actions such as gripping and placing. The image sequences
were gathered by operating the planner sequence in the MuJoCo simulator [38].
When generating the images, we rendered them from a viewpoint that shows
the objects from the robot’s front. In our dataset, the image resolution was set
at 420× 256 pixels.

Evaluation Protocols. We used our dataset to prepare 1381 scenes for training
(716 successful, 665 failed), 204 scenes for validation (128 successful, 76 failed),
and 816 scenes for testing (510 successful, 306 failed). About 90% of scenarios
where the planner failed the task are due to mistakes in the order of stacking
objects.

For evaluation metrics, we utilized the Balanced accuracy, AUC, and F1
score, which take into account class imbalances. We arranged for five different
seeds and carried the evaluation using the average from the results obtained from
each seed.

Implementation Details. We use Adam optimizer [19] for all experiments.
When using Adam, we set the learning rate at 0.1× 10−3 and the weight decay
at 0.1 × 10−5 as in [35]. The training epoch and scheduling hyperparameter s
(see Sect. 3.3) are set to 35 and 26 for the proposed framework with LSTM and
70 and 40 for the proposed framework with RSSM, respectively. The batch size
is set to 8 for all experiments.

We selected a model at the highest balanced accuracy on the validation data
for each seed. The input images were resized to 64 × 64 pixels. We used a
single NVIDIA GeForce GTX 1080 Ti for training and implemented it using
PyTorch [30].
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(a) An example of a success scene

(b) An example of a failure scene

Fig. 5. Example images of the stacking task dataset. Here, (a) and (b) show an example
of the success and failure scenes, respectively. In our experiments, we set up a task of
stacking three cuboids placed randomly in order of the largest surface area and collected
image sequences and plan sequences during the task execution, by operating the robot
using the planner.

4.2 Results

We first describe the comparisons with the existing method as the main results
of our experiments. Then, the ablation study and the evaluation results of the
computational efficiency are described.

Main Results. We evaluated the performance of the proposed framework with
RSSM and LSTM, using the image reconstruction loss described in Eq. 10, and
the conventional approach, FIRP [35]. Note that in FIRP [35], the input of Clas-
sifier is not outputs of the future predictor but outputs of the image encoder.
Hence, we do not apply classification weight scheduling to FIRP. The quantita-
tive evaluation results for success-or-failure prediction on the stacking task are
shown in Table 1. As shown this comparison result, applying the classification
from the final state mentioned in Sect. 3.2 to the three framework, e.g. FIRP [35],
RSSM, and LSTM, leads better performances than the baselines across all eval-
uation metrics. Furthermore, the comparisons show that the joint use of the
proposed framework with the final state is superior to the existing method.

Ablation Study. We evaluate the effectiveness of each components of our
framework, i.e., the new base model that solves the domain gap problem, the use
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Table 1. Quantitative results for the stacking task of multiple objects. The best/second
results are shown in bold/italic, respectively. By applying the classification from the
final state to the three framework, e.g., FIRP [35], RSSM, LSTM, leads better perfor-
mances than the baselines across all evaluation metrics.

Final state Balanced Acc.↑ AUC↑ F1↑
FIRP [35] 0.577 ± 0.047 0.594 ± 0.048 0.542 ± 0.100

� 0.658 ± 0.038 0.709 ± 0.053 0.631 ± 0.063
Ours w/RSSM � 0.918 ± 0.008 0.946 ± 0.006 0.914 ± 0.007
Ours w/LSTM � 0.913 ± 0.010 0.950 ± 0.004 0.906 ± 0.011

Table 2. Ablation study for the stacking task of multiple objects. The best/second
results are shown in bold/italic, respectively. By applying the use of the final state
to the proposed framework with RSSM or LSTM, we can see that the all evaluation
measures are improved.

(a) Result for the proposed framework with RSSM [12]
Final
state

Weight
scheduling

Balanced Acc.↑ AUC↑ F1↑

Ours w/ RSSM 0.897 ± 0.011 0.931 ± 0.007 0.895 ± 0.011
� 0.900 ± 0.012 0.940 ± 0.008 0.891 ± 0.015

� 0.904 ± 0.014 0.941 ± 0.003 0.898 ± 0.019
� � 0.918 ± 0.0080.946 ± 0.0060.914 ± 0.007

(b) Result for the proposed framework with LSTM [16]
Final
state

Weight
scheduling

Balanced Acc.↑ AUC↑ F1↑

Ours w/ LSTM 0.856 ± 0.015 0.913 ± 0.011 0.841 ± 0.016
� 0.867 ± 0.008 0.922 ± 0.004 0.851 ± 0.013

� 0.900 ± 0.011 0.936 ± 0.015 0.892 ± 0.018
� � 0.913 ± 0.0100.950 ± 0.0040.906 ± 0.011

of the final state and the weight scheduling. The results of our ablation studies
are shown in Table 2(a) and (b). Here, the evaluation results for the proposed
framework with RSSM and LSTM are shown in Table 2(a) and (b), respectively.
In the top row of each, our new base models show significant improvements com-
paring with the result of original FIRP in Table 1. By applying the use of the
final state to the proposed framework with RSSM or LSTM, we can see that the
all evaluation measures are improved.

Furthermore, by utilizing the classification weight scheduling mentioned in
Sect. 3.3, we confirmed improvements in performance in both frameworks of clas-
sifying from the final state and classifying from all states with LSTM and RSSM.
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These results clearly suggest that feeding meaningful states of future prediction
into the classifier from the beginning of training with classification loss is effective
for the training process of success-or-failure prediction.

Training and Inference Time and GPU Memory Usage. Finally, we eval-
uate the computational efficiency of the propose method in terms of the training
and inference time and GPU memory usage. The Table 3 shows the evaluation
results of the training and inference time, along with the GPU memory usage
for the conventional and the proposed frameworks. The proposed framework
with LSTM shortened the training time by approximately 83% from FIRP [35]
and lessened the GPU memory usage by around 72%. FIRP and the proposed
framework with RSSM calculate image features at each step during training
to predict posterior distribution. Conversely, our framework with LSTM com-
putes image features only for the initial image during training and doesn’t utilize
latent overshooting [12], making it feasible to reduce training time compared to
the RSSM-based methods significantly. These results show that the proposed
framework is effective in terms of computational efficiency while improving the
performance of classification accuracy.

Table 3. Measurement results of the total training time (hours), inference time (sec-
onds), and maximum GPU memory usage by tensors. The best/second results are
shown in bold/italic, respectively. The proposed framework with LSTM can reduce
training time and inference time compared to FIRP [35].

Training Inference
Time
[hours]

GPU mem.
[MB]

Time
[seconds]

GPU mem.
[MB]

FIRP [35] 2.00 4744 0.028 211
Ours w/ RSSM 5.36 5386 0.028 207
Ours w/ LSTM0.34 1318 0.027 200

5 Conclusion

We have proposed novel frameworks to predict success or failure of a task per-
formed by a robotic arm, from the results of the future predictor utilizing a recur-
rent neural network. The proposed frameworks enhance the accuracy of success-
or-failure prediction by deriving it from the predicted results of the final state and
scheduling weight for classification loss. In our experiments on the object stack-
ing tasks, we verified that the proposed frameworks outperform the conventional
approach in all evaluation metrics regarding the accuracy of success-or-failure
prediction. Compared to the conventional method, the proposed framework has
shown about 83% reduction in compute time during training and approximately
72% decrease in GPU memory usage.
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Abstract. Falls are significant and often fatal for vulnerable popula-
tions such as the elderly. Previous work has addressed the detection of
falls by relying on data captured by single sensors, images, or accelerome-
ters. Firstly, we collected and published a new dataset on which we assess
our proposed approach. We believe this to be the first public dataset of
its kind. The dataset comprises 10,948 video samples from 14 subjects.
Additionally, we relied on multimodal descriptors extracted from videos
captured by egocentric cameras. Our proposed method includes a late
decision fusion layer that builds on top of the extracted descriptors. We
conducted ablation experiments to assess the performance of individual
feature extractors, the fusion of visual information, and the fusion of both
visual and audio information. Moreover, we experimented with internal
and external cross-validation. Our results demonstrate that the fusion
of audio and visual information through late decision fusion improves
detection performance, making it a promising tool for fall prevention
and mitigation.

Keywords: Fall detection · Activity recognition · Multi-modality ·
Egocentric vision sensor fusion · Intermediate feature fusion · Late
decision fusion

1 Introduction

Falls represent a major source of morbidity and mortality among the elderly pop-
ulation, often leading to both physical injuries and psychological consequences
[1]. According to recent statistics reported by Haagsma et al. [2], approximately
14% of the adult population in Western countries have experienced fall-related
injuries. Alarmingly, the incidence of falls within this demographic has surged by
54% since 1990 [3]. Such trends not only place a considerable burden on families
caring for elderly individuals who have sustained injuries, but also have signif-
icant implications for the financial health of nations, as they strain healthcare
systems and associated resources.

In the domain of fall detection, research has explored various sensing modal-
ities, which can be categorized into four primary types: wearable sensors, fixed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15302, pp. 240–253, 2025.
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Fig. 1. Three streams of spatial, motion of vision, and audio by video clips.

visual sensors, ambient sensors, and sensor fusion [3]. Wearable sensors are a
popular choice due to their portability and capability to capture data without
spatial constraints. Furthermore, they offer the advantage of directly recording
physiological changes associated with the human body. Fixed visual sensors, on
the other hand, are valued for their simplified hardware, high-quality imaging,
and reliable performance. Various forms of visual sensors have been investigated,
including fixed RGB cameras and RGB-D depth cameras [4] and wearable cam-
eras [5,6]. The integration of wearable and visual sensors has given rise to wear-
able cameras as a promising technology for fall detection.

Huang et al. [7] proposed an innovative approach for egocentric visual-audio
object localization, addressing the challenges posed by ego-motion and out-of-
view auditory components. Their proposed method comprises a geometry-aware
temporal aggregation module, a cascaded feature enhancement module, and a
soft localization module. The EPIC-Fusion study by Kazakos et al. [8] intro-
duces a novel architecture for multi-modal temporal binding, integrating RGB,
Flow, and Audio modalities for the purpose of egocentric action recognition.
The method achieved state-of-the-art results on the largest egocentric dataset,
EPIC-Kitchens, and underscores the significance of auditory input in egocentric
cameras for identifying actions and interactive objects.

In a separate study, Xiao et al. [9] presented a novel architecture termed
Audiovisual SlowFast Networks (AVSlowFast) designed for integrated audiovi-
sual perception in video recognition. The AVSlowFast architecture fuses audio
and visual features at multiple levels to form a unified representation, incorpo-
rating a novel DropPathway technique to mitigate training difficulties. The study
establishes the effectiveness of the AVSlowFast architecture for both supervised
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and self-supervised learning of audiovisual features, offering promising prospects
for advancements in video analysis applications.

Despite extensive research in fall detection, previous studies have not offered
a solution tailored to low-illumination conditions. On the contrary, our study
employs egocentric cameras and fuses RGB, infrared visual, and audio data to
detect falls at varying illumination levels, addressing a gap that has remained
unexplored in prior research. The contributions of this paper are listed as follows:

– We have assembled an extensive multimodal dataset comprising RGB and
infrared videos, as well as audio recordings, for the purpose of investigating
fall detection. This dataset also holds potential for application in research
focused on fall-related activity recognition using egocentric cameras.

– We developed a late decision model that could detect falls successfully in both
low-light and high-light environments as the benchmark for this data set.

We organize the rest of the paper as follows. We introduce existing public
fall detection datasets and explain how to design data collection in Sect. 2. Then
we describe the methods in Sect. 3, show the experimental results, and conduct
a discussion in Sect. 4. We draw some conclusions in Sect. 5.

2 Review of Previous Dataset

2.1 Review of Previous Dataset and Research by Egocentric
Cameras

Initially, we undertook a systematic literature review to identify existing datasets
pertinent to fall detection research. We compiled a list of publicly used pub-
lic datasets derived from various sensors in Table 1. These data sets employ a
range of sensors, including wearable devices, ambient sensors, and fixed surveil-
lance cameras, to detect falls. However, a significant shortcoming of these earlier
datasets is their lack of critical elements that mimic real-world conditions, such
as diverse lighting settings, subject populations, environmental conditions, and
camera placements. Predominantly, these datasets were assembled in controlled
laboratory environments using young, healthy individuals. This practice has
resulted in pronounced homogeneity in the age, physical condition, and demo-
graphic background of the participants, which potentially limits the broader
applicability of the fall detection systems developed from these data sets. How-
ever, these devices exhibit certain limitations to varying degrees and wearable
cameras mitigate some of the limitations inherent in devices such as accelerom-
eters and fixed surveillance systems to a certain extent. Wearable cameras have
been the subject of extensive research across a diverse array of applications,
illustrating their adaptability and profound influence. Remarkably, none of these
datasets utilized egocentric cameras, which are vital for capturing a first-person
perspective of falls. These devices have garnered substantial attention in multiple
disciplines, reflecting their broad utility. The academic community has devoted
considerable effort to exploring everyday life and social interactions through the
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lens of egocentric vision. This research encompasses several key areas including
activity recognition [10], object recognition [11], egocentric 3D body pose estima-
tion [12], sentiment analysis [13], and action anticipation [14]. The significance
of these studies is underscored by their high frequency of citations and their
substantial contributions to various fields of research. In practical applications
ranging from healthcare, sports, and security, the utility of wearable cameras
in the capture of first-person visual data has been widely acknowledged. For
example, in the healthcare sector, wearable cameras are employed to monitor
patients with neurodegenerative diseases, evaluate rehabilitation outcomes, and
enhance the efficacy of telemedicine consultations. In the realm of sports, wear-
able cameras facilitate detailed analyses of athletic performance and contribute
to injury prevention strategies. More specifically, wearable cameras have been
assessed for their utility within the elderly population across several domains,
including memory assistance, support for independent living, and emergency
response mechanisms. These evaluations demonstrate the potential of wearable
technologies to improve the quality of life and safety of seniors. In this data
collection, we take them into account. We will use cameras, the age of subjects,
environments, and guidelines for data simulation to explain the specifics of data
collecting. Although attempts were made by researchers such as in studies by
[15,16] to create fall detection datasets using egocentric cameras, they did not
make these datasets publicly available. In contrast, our dataset, EGOFALLS,
stands out as the largest collection (10948) of fall incident data recorded from
egocentric cameras, featuring more instances than the 330 clips in [15] and 237
in [16]. A multimodal dataset that combines vision and audio data using ego-
centric vision for fall detection offers several advantages and addresses various
challenges inherent in fall detection systems. To our best knowledge, EGOFALLS
is the only public dataset by egocentric cameras which cover both young and
elder subjects, and also the largest including 10948 clips.

2.2 EGOFALLS Dataset

In this section, we will explain the methodology employed in constructing our
dataset, addressing various aspects of the data collection process and detailing
the specific approaches used to ensure comprehensive coverage and robustness
as follows:

Equipment: Data was collected using two types of wearable cameras: the
OnReal G1 and CAMMHD Bodycams. The OnReal G1 is a compact mini action
camera measuring 420 × 420 × 200 mm, capable of capturing high-resolution
videos up to 1080P at 30 fps. On the other hand, the CAMMHD Bodycam is
a larger body camera measuring 800 × 500 × 300 mm, equipped with infrared
sensors for night vision. These cameras were strategically attached to various
locations on the human body, such as the waist and neck, to gather comprehen-
sive visual, motion, and audio information from different environments as shown
in Fig. 1. For data collection, the chosen settings were 1080p video mode at 30
frames per second. Notably, the OnReal G1 frames include three distinct R, G, B
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Table 1. Previous datasets of fall detection (A: accelerometer, G: gyroscope, M: Mag-
netometer, EMG: Electromyography, P: Pressure sensor, RC: RGB cameras, TC: Ther-
mal camera)

Dataset of fall detection
Name/Year Egocentric public Sensors Type, Duration No. Subjects (age)

[15] (2012) Yes No RC 330 3 (N/A)
[16] (2013)Yes No RC 237 5 (N/A)
[17] (2014) No No A, G Sim, Short 3 (N/A)
[18] (2015) No No A, G, M Sim, Short 10 (22-29)
[19] (2015) No No A, G Sim, Short 2 (N/A)
[20] (2016) No No RC, TC Sim, Short 5 (27-81)
[21] (2016) No No A, G, M Sim, Short 5 (N/A)
[22] (2018) No No A, G, M Sim, Short 2 (N/A)
[23] (2019) No Yes A, G Sim, Short 30 (N/A)
[24] (2019) No Yes A, G, M Sim, Short 57 (20-47)
[25] (2019) No Yes RC Sim, Short 17 (18-24)
[26] (2019) No No RC, TC Sim, Short 14 (N/A)
[27] (2020) No No A, G Sim, Short 17 (N/A)
[28] (2020) No Yes EMG, P Sim, Short 12 (23-27)

channels, while CAMMHD Bodycam frames consist of three identical, repetitive
grayscale channels. The resulting dataset is valuable for this work, enabling a
comprehensive analysis of events and activities.

Subject: In this data collection study, 14 volunteers (19–61 years old) partici-
pated, consisting of 12 males and 2 females, with 12 young healthy individuals
and two elder subjects. All participants provided their consent, acknowledging
that their data would be used for research and potentially made public. The
majority of subjects (11 out of 14) successfully completed data collection for
four types of falls and nine types of non-falls, both indoors and outdoors. How-
ever, three subjects were unable to complete all data collection due to personal
reasons. This research offers valuable insights into falls and non-falls behavior
and highlights the commitment and dedication of the majority of participants
to the study.

Environment: We aim to comprehensively address both indoor and outdoor
environments by encompassing 14 distinct common outdoor settings and 15
diverse indoor spaces to gather data from all subjects. To enhance the variety of
environmental conditions, participants are encouraged to alter their positions or
directions after each activity. By incorporating this approach, we ensure a well-
rounded and encompassing dataset, enabling us to draw more robust conclusions
and insights for our research.
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Fig. 2. Visual and audio examples of 13 activities by egocentric cameras.

Data Collection: We explore data collection from two perspectives: vision and
audio. For visual information, we adhere to the guidelines provided in [29] [30].
According to [30], falls and other fall-related activities typically last 1–3 s, and
they proposed a comprehensive set of trials comprising 20 types of falls with var-
ious directions and interactions with different objects. In contrast, there are no
specific guidelines for audio data, as previous studies have predominantly focused
on visual information. Our audio dataset comprises three categories: subject
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audio, subject-object audio, and environment audio. To authentically recreate
the sensory experience of falls, we expose participants to online videos depict-
ing real-life incidents of individuals encountering genuine falls. These videos
faithfully capture both the visual and auditory elements of these occurrences,
allowing participants to immerse themselves in a true-to-life simulation of the
event. Manual inspection of all clips helped identify common audio patterns.
For falls, subject audio includes yelling, shouting, and moaning, subject-object
audio captures sounds like hitting the ground or mattress, while environment
audio encompasses ambient sounds such as traffic, wind, rain, animals, crowds
(outdoor environment), and television, music, and talking (indoor and out-
door environments). Not every clip contains all these sounds, with some having
none or a majority of them. Non-fall activities are categorized into two groups:
those with strong subject-object audio (stumbling, walking, sitting-down, ris-
ing, lying), weak subject-object audio (bending, squatting down), and others
without subject-object audio (sitting-static, standing). Notably, distinct sounds
on the ground accompany stumbling and walking, while sounds of interacting
with furniture accompany sitting down and rising. For bending and squatting,
only friction sounds from cameras and clothes are noticeable. These findings pro-
vide valuable insights into audio patterns in various activities and can enhance
future research in the field. The illustration of all thirteen types of activities is
presented in Fig. 2. The dataset is publicly available1 with more description in
the GitHub repo2. We will also publish the smaller version of the dataset either
in dataverseNL or in the GitHub repo because the current dataset is too big to
use and test (Table 2).

3 Methods

Visual Descriptors by Handcrafted Features. In the context of this study,
we employ three types of handcrafted feature descriptors, namely Histogram of
Oriented Gradients (HOG), Local Binary Patterns (LBP), and Optical Flow.
HOG, predominantly utilized in object detection tasks, quantifies the occur-
rences of varied gradient orientations within localized regions of a given image.
The LBP descriptor [31], conversely, characterizes the neighborhood of image
elements using binary codes. It captures diverse features including edges, lines,
spots, and flat areas, by leveraging two complementary measures: local spatial
patterns and grayscale contrast. Lastly, Optical Flow, our third handcrafted fea-
ture, measures the apparent motion between two consecutive video frames at
each position, thereby providing a detailed analysis of the temporal changes in
the video frames.

Truncating and Aligning Video Descriptors. We computed the similarity
for three types of handcrafted feature descriptors using two vectors of size k =
1152, extracted from consecutive frames, resulting in a vector of n− 1 elements
1 https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/HO5GE3.
2 https://github.com/Xueyi-Wang/EGOFALLS.

https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/HO5GE3
https://github.com/Xueyi-Wang/EGOFALLS
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Table 2. Quantity and type of video clips per participant, where C1 and C2 refer to
camera 1 and camera 2, and 0 means that no videos were collected for the corresponding
activities.

Data ID Camera/Time All Non-Falls Falls Indoor Outdoor Waist Neck

P1 S_H C1-RGB/daytime 1096 328 768 554 542 548 548
P2 S_M C1-RGB/daytime 938 426 512 562 376 469 469
P3 S_R C1-RGB/daytime 1630 680 950 812 818 815 815
P4 S_W C1-RGB/daytime 1298 536 762 586 712 649 649
P5 S_XL C1-RGB/daytime 896 444 452 374 522 448 448
P6 S_Q C1-RGB/daytime 658 498 160 346 312 329 329
P7 S_FI C1-RGB/daytime 208 136 72 116 92 104 104
P8 S_HB C1-RGB/daytime 490 316 174 278 212 245 245
P9 S_F C1-RGB/daytime 142 142 0 142 0 71 71
P10 S_JF C1-RGB/daytime 148 148 0 148 0 74 74
P11 S_L C1-RGB/daytime 380 217 163 248 132 190 190
P12 S_D_W C1-RGB/night 446 318 128 246 200 223 223
P13 S_D_WD C1-RGB/night 394 264 130 186 208 197 197
P14 S_I_R C2-Infra/night 500 500 0 196 304 250 250
P15 S_I_W C2-Infra/night 454 336 118 230 224 227 227
P16 S_I_ZJ C2-Infra/night 628 444 184 316 312 314 314
P17 S_I_CZ C2-Infra/night 642 478 164 322 320 321 321
All All All 10948 7177 3771 5628 5320 5474 5474

for each video, each representing the cosine similarity as shown in Eq. 1. In
our system, we process videos within a user-defined time window of at least 8 s,
adjustable for specific needs, and from our dataset of 8 to 40-second-long video
clips, we truncate each video’s descriptors to a uniform length of 238 elements,
centered around the maximum value within the time window.

cosine similarity =
A · B

‖A‖‖B‖ =
∑k

i=1 AiBi
√∑k

i=1 A
2
i

√∑k
i=1 B

2
i

, (1)

Visual Descriptors By Deep Features. In this study, we harness the power of
deep features extracted from video frames using the pre-trained ResNet-50 model
[32], renowned for its robustness against network degradation and vanishing
gradients due to its deep residual network architecture and skip connections.
We resize each video frame to 224 × 224 pixels, extract a 2048-element vector
from the network’s last fully connected layer as a global image descriptor, and,
for computational efficiency, represent each clip with a 20,480-element vector by
concatenating the feature descriptors from ten equally spaced frames.
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Audio Features. The Mel-frequency Cepstral Coefficients (MFCC) feature
extractor in the Librosa library is a widely used method for audio signal process-
ing, transforming audio signals into compact representations that consider the
characteristics of the human auditory system. This process involves converting
the audio signal to the frequency domain, applying a Mel filter bank that mimics
human ear perception, taking logarithms of the filter bank energies, and using
discrete cosine transform to decorrelate the energies and reduce feature vector
dimensionality, thus capturing perceptual content and yielding robust features
against noise, pitch, and amplitude variations.

3.1 Fusion Methods

Sensor fusion is categorized into two distinct groups: fusion by homogeneous
sensors and fusion by heterogeneous sensors. Homogeneous sensors are defined
as those belonging to the same category or possessing similar characteristics, pri-
marily measuring identical physical quantities. This uniformity often facilitates
ease in data processing and integration, as all sensors yield data in analogous for-
mats and scales. Conversely, heterogeneous sensors constitute a combination of
various sensor types. This diversity allows for the acquisition of a wider spectrum
of data, rendering these networks more adaptable for applications necessitating
the monitoring of multiple parameters. The specifics and applications of each
category will be elaborated upon in the subsequent subsections.

The classification of fusion strategies is primarily predicated on the condition
of the input at the fusion layers, and this classification typically comprises three
distinct categories: early fusion, intermediate fusion, and late fusion. In this work,
we introduce a novel classification, denoted as “hybrid fusion,” which signifies a
fusion strategy that exhibits characteristics of more than one of the aforemen-
tioned categories. These distinctions enable a structured analysis and evaluation
of various fusion approaches employed in sensor-based systems, facilitating a
comprehensive understanding of the evolving landscape of fusion techniques.

Intermediate Feature Fusion by Concatenation: A fundamental approach
to fusing homogeneous data involves the technique of concatenation. Given n
vectorised data input from different modalities x1,x2, . . . ,xn with xi ∈ R

xi , the
concatenation of these vectors in horizontal manner

xh-concat =
[
x1,x2 . . .xn

]

where xconcat ∈ R

∑n
i=1 di .

Late Decision Fusion: In this study, we tested various decision fusion and
applied meta-learning as follows:

DecisionFusion([pH1 , . . . , pHm], [pL1 , . . . , p
L
m], [pO1 , . . . , p

O
m],

[pD1 , . . . , pDm]) = [P1, . . . , Pm],
(2)
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We employ a decision fusion technique to integrate the classification results
of four independent models, each trained on distinct video descriptors encom-
passing handcrafted features (HOG, LBP, and optical flow), deep features
(ResNet50), and audio features. The output vectors from Models 1 through 5
are amalgamated according to Eq. 2. We applied RF, SVM, and MLP for hand-
craft visual features, deep visual features, audio features, and late decision fusion
separately in this work based on the features of each classifier and evaluation of
previous work [5,6,33].

4 Experiments

4.1 Implementation Details

Evaluation Metrics. We evaluated the generalization ability of our machine
learning models using both internal and external cross-validation techniques.
Experimental Setup. Internal cross-validation, implemented by dividing the
entire dataset into k subsets or folds, was used to assess model stability and
robustness within the dataset by training and validating the model k times, rotat-
ing the validation set each time, and calculating average performance metrics. In
contrast, external cross-validation employed a leave-one-subject-out approach,
simulating real-world situations where the model encounters unseen data, aiding
in model selection, hyper-parameter tuning, and identifying over-fitting issues
while also assessing predictive accuracy and adaptability to new instances, thus
verifying the model’s overall effectiveness. Data from some participants including
subjects of P9, P10, and P14 were excluded from the analysis due to incomplete
data collection.

4.2 Results and Discussion

Internal Cross-validation. The results of our internal cross-validation are
presented in Table 3. Our approach, fusing audio and vision, yielded the highest
performance for binary classification with an accuracy of 0.978, and for 12-class
classification with an accuracy of 0.850. Notably, fusing four types of individ-
ual visual feature extractors led to higher accuracy than using each visual fea-
ture descriptor independently. The performance of the audio feature extractor in
binary classification was comparable to that of the fused visual feature extrac-
tors, though it slightly underperformed in the 12-class classification scenario.

External Cross-validation. In this study, the generalization of our model
was evaluated using external cross-validation, where data from one subject was
designated as the test set while data from all other subjects served as the
training set. The late decision fusion model, which integrates vision and audio,
demonstrated better performance, consistent with the findings in internal cross-
validation. However, a decrease in performance relative to the internal cross-
validation was observed as shown in Table 4. Despite this, the model achieved
respectable accuracy scores of 0.875 for binary classification and 0.520 for 12-
class classification in external cross-validation. Moreover, as some data were
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Table 3. The results for six baseline models using internal cross-validation for both
the 2-class (fall detection) and 12-class (daily activity recognition) problems. B1 refers
to five kinds of individual features (HOG, LBP, optical flow, resnet50, audio), B2 refers
to the fusion of visual features, and the proposed fusion approach “Ours” includes all
features.

Fusion
features

Handcrafted
features

Deep
model

Accuracy

2 classes 12 classes

B1 HOG × 0.785 (± 0.01) 0.473 (± 0.03)
B1 LBP × 0.855 (± 0.02) 0.555 (± 0.00)
B1 Optical flow × 0.843 (± 0.01) 0.536 (± 0.01)
B1 Resnet50 � 0.955 (± 0.01) 0.594 (± 0.01)
B1 Audio × 0.952 (± 0.01) 0.730 (± 0.01)
B2 Vision � 0.952 (± 0.01) 0.742 (± 0.01)
Ours All � 0.978 (± 0.01) 0.850 (± 0.01)

Table 4. The results for six baseline models using external cross-validation for both
the 2-class (fall detection) and 12-class (daily activity recognition) problems. B1 refers
to five kinds of individual features (HOG, LBP, optical flow, resnet50, audio), B2 refers
to the fusion of visual features, and the proposed fusion approach “Ours" includes all
features.

Fusion
features

Handcrafted
features

Deep
model

Accuracy

2 classes 12 classes

B1 HOG × 0.746 (± 0.05) 0.389 (± 0.21)
B1 LBP × 0.804 (± 0.13) 0.427 (± 0.35)
B1 Optical flow × 0.801 (± 0.07) 0.437 (± 0.33)
B1 Resnet50 � 0.789 (± 0.14) 0.343 (± 0.26)
B1 Audio × 0.886 (± 0.10) 0.395 (± 0.15)
B2 Vision � 0.845 (± 0.12) 0.496 (± 0.35)
Ours All � 0.875 (± 0.15) 0.520 (± 0.33)

collected in a dark environment, results were reported separately for low and
high illumination using RGB and infrared cameras. Specifically, for RGB in
high illumination (daytime), an accuracy of 0.924 was achieved for the fusion
of all features. For low illumination, the RGB cameras achieved 0.746 accuracy,
while infrared cameras achieved 0.913 accuracy for fusion of vision and audio.
For vision fusion, the accuracies were 0.883 for RGB in high illumination, 0.751
for RGB in low illumination, and 0.805 for infrared in low illumination. For
audio, the accuracies were 0.902 for RGB in high illumination, 0.891 for RGB in
low illumination, and 0.827 for infrared in low illumination. While high accuracy
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was maintained across both low and high illumination for audio information, the
results indicate that the vision feature extractor exhibited reduced performance
in low illumination.

5 Conclusion

This work presents a new dataset and benchmark in the field of fall detection.
We proposed a multimodal learning approach to detect falls in first-person view
videos collected by egocentric cameras. The descriptors we explore are images,
motion, and audio. The obtained results indicate that the proposed late deci-
sion fusion model, which combines visual and auditory data, has the capability
for detecting falls under a wide range of lighting conditions, encompassing both
high and low illumination scenarios during both daytime and nighttime. We also
investigated the response times of our proposed method using NVIDIA Tesla K40
hardware. Feature extraction times per frame were recorded as follows: 0.069 s
for HOG, 0.190 s for LBP, and 1.07 s for Resnet50. In our experimental setup,
for a given 8-second window, feature extraction required 1.53 s for HOG, 4.56 s
for LBP, 3.59 s for optical flow, and 4.90 s for Resnet50. Notably, these features
can be extracted concurrently. Practically, continuous feature extraction from
every frame is infeasible. A more viable approach, similar to the two-layer sys-
tems described in [16,34], employs a low-energy sensor (such as an accelerometer
or IMU) to detect initial event triggers. Subsequently, our methodology would
analyze a defined time window surrounding the event to make a decision.
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Abstract. Categorical and numerical attributes occur frequently in
cluster analysis tasks. To bridge the information gap between the het-
erogeneous categorical and numerical attributes in cluster analysis, the
existing approaches usually adopt prior assumptions to distance defini-
tion and cluster distribution, which unavoidably introduce bias to the
clustering process. To address this issue, we propose to analyze mixed
data comprising both categorical and numerical attributes by forming
minimal clusters through neighborhood set theory. As the minimal clus-
ters are the smallest cluster units that can be obtained without relying
on prior assumptions, unbiased cluster analysis can be facilitated accord-
ingly. To avoid information loss, distance and density metrics that are
unified on both numerical and categorical attributes are also proposed
and utilized to merge the minimal clusters hierarchically. It turns out
that our proposed approach is highly interpretable, and is capable of
accurately and robustly clustering data sets composed of any combi-
nation of numerical and categorical attributes. Extensive experimental
evaluations demonstrate its efficacy.

Keywords: Cluster analysis · Categorical attribute · Neighborhood
rough set · Mixed data · Unsupervised learning

1 Introduction

Cluster analysis is a common data analytic technique to identify cluster patterns
from data sets. In real clustering tasks, numerical attributes with quantitative
values and categorical attributes [1] with qualitative values are very common,
where we call the data set composed of both numerical and categorical attributes
mixed data. However, as shown in Fig. 1, the distance space of mixed data cannot
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Fig. 1. Numerical attributes such as ‘Height’ can be effectively represented in Euclidean
space, while quantifying dissimilarity between possible values within categorical
attributes like ‘Itchiness’ and ‘Symptoms’ poses great challenges as the categorical
values cannot directly participate in arithmetic operations.

be well-defined like the Euclidean distance due to the qualitative categorical
data values. Additionally, the possible values of categorical attributes are usually
divergent concepts in different domains with distinct implicit distance structures,
which brings great challenges to the cluster analysis of mixed data.

Most existing attempts for mixed data clustering focus on the distance defin-
ing across heterogeneous attributes, and can be roughly divided into the fol-
lowing two streams: (i) k-ProtoType (KPT)-type methods: directly weight and
combine different dissimilarity measures, e.g., Euclidean and Hamming metrics
during clustering, and (ii) dedicated metric-based methods, which usually define
a metric unified on the numerical and categorical attributes for distance mea-
surement during clustering.

For KPT-type methods, the conventional KPT algorithm [11] combines
Euclidean and Hamming distances [3] to cluster mixed data sets. A recent
variant [17] improves the metric of categorical attributes by representing cat-
egorical values via inter-value and inter-attribute couplings, thus encoding rela-
tionships for better distance measurement. Context-based metric [13] considers
attribute interdependence to form an informative categorical attribute metric.
More advanced clustering methods like [16] measure the distance between possi-
ble values using Conditional Probability Distributions (CPDs) across attributes.
However, these methods focus solely on proposing more advanced categorical
attribute metrics and combine them with Euclidean distance for mixed data
clustering, neglecting the heterogeneity of categorical and numerical attributes.

For metric-based methods, the work proposed in [7] quantifies inter-object-
cluster similarity for numerical and categorical attributes within a unified prob-
ability framework, while an entropy-based approach [23] further considers the
value order in categorical attributes and measures the dissimilarity degrees
between different possible values from an information theory perspective. Never-
theless, these methods assume the independence of attributes, leading to infor-
mation loss when applied to real-world data sets with interdependent attributes.
Advanced distance definitions [14,21] take into account attribute interdepen-
dence and preserve the corresponding information by reflecting distances based
on more relevant attributes. However, they are not robust to various data sets as
their effectiveness highly relies on the consistency between inherent data char-
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acteristics and their assumptions, e.g., the existence of inter-value order, and
inter-attribute dependence, etc.

In general, almost all the existing mixed data clustering approaches rely on
certain prior knowledge or assumptions of data sets. Specifically, context-based
[13] methods adopt the prior knowledge that the similarities of their possible
values are reflected by the CPDs corresponding to the values obtained from
other attributes, while the information theory-based methods like [23] measure
dissimilarity between two possible values according to the degree of information
chaos jointly demonstrated by them. Moreover, the number of true clusters is
usually assumed to be known in advance. However, direct searching for oversized
clusters may hinder the exploration of locally compact smaller-sized clusters. The
above issues will inevitably lead to various clustering biases and thus influence
clustering accuracy.

To this end, this paper proposes a universal clustering algorithm robust
to various mixed data, addressing the challenges of considering heterogeneous
attributes and lifting the restriction of prior knowledge. It groups data objects
with distinct boundaries according to neighborhood set search, where only intra-
cluster objects are expected to be included in a compact group (also called
micro-cluster). Then the micro-clusters are merged to form larger “true” clus-
ters (macro-cluster), and thus the proposed algorithm is called Mic2Mac. More
specifically, a novel neighborhood relation is first proposed, forming rational and
compact micro-clusters by comprehensively considering the distance and density
of data objects. Subsequently, a hierarchical merging mechanism is designed to
merge the current most similar micro-clusters into macro-clusters progressively.
As the hierarchical merging is performed at the cluster level, the computation
cost is thus not obviously increased. Extensive experiments, including compara-
tive results, ablation studies, and visualization, affirm the superiority of Mic2Mac
across various clustering methods on real benchmark data sets. The main con-
tributions of this paper are three-fold:
1) A new clustering method is proposed based on neighborhood relationship to

accurately form clusters of arbitrary shapes, tackling the cluster distribution
bias of existing mixed data clustering methods.

2) An adaptive neighborhood relationship is defined based on both distance and
density, leading to the generation of compact and non-overlapping micro-
clusters, which has been proven to be universal and practical in the explo-
ration of complex real-world data distributions.

3) Clustering process of Mic2Mac conforms to the inference process from deter-
ministic micro-clusters to uncertain macro-clusters, providing interpretable
cluster nesting relationships for multi-granular distribution analysis.

2 Related Work

As our proposed mixed data clustering approach is based on the data object
partition technique, this section makes an overview of mixed data measures. It
focuses on mixed data clustering methods, and data object partition techniques
including k-means-type partition techniques, and neighborhood rough sets.
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2.1 Mixed Data Measures

Early mixed data clustering methods like k-prototypes [11], utilized one-hot
encoding to transform categorical attribute values [2] into binary vectors.
However, the Hamming distance has obvious limitations in discerning differ-
ences between various value pairs. Consequently, numerous advanced techniques
have emerged to efficiently address the heterogeneous attribute data, including
similarity-based and representation-based approaches.

For similarity-based measures, such as context-based distance measures [13],
they evaluate the distance between related attribute CPDs to highlight their dis-
similarity and identify attributes with weaker dependencies. Nonetheless, these
methods do not fully account for the heterogeneity of the complex categorical
attributes. Subsequently, the information theory-based metric [23] measures the
distances for categorical attributes by incorporating attribute weighting. Most
recently, a distance learning-based approach [19] has been proposed to learn
the ordinal structure of the qualitative attributes and then cluster them, while
AMPHM [24] is proposed to cluster mixed data based on the rough set theory.

For representation-based measures, an interpretable representation method
[16] encodes original data and further performs k-means clustering and PCA
for more accurate representation. However, it is designed for categorical data
only. Recently, a deep learning clustering method [5] transforms both numerical
and categorical attribute values into a unified space to enable more appropriate
clustering. Most recently, an approach [25] constructs minimal spanning trees
for possible values to tackle qualitative-attribute clustering tasks. Moreover, the
competitive theory has been utilized to handle the qualitative categorical data [4]
and clustering in a federated scenario [26]. Most existing methods for clustering
mixed data typically have one or both following restrictions: 1) they are tailored
to data sets with one specific attribute type, and 2) they often rely on prior
knowledge or assumptions.

2.2 Data Object Partition Techniques

The early k-means-type approach [12] was widely used for partitioning numer-
ical and categorical attributes data into k clusters, while it treats all categori-
cal variables equally during the clustering process. Recently, the representative
attribute weighting partition methods w-k-means [10] was proposed for reason-
ably selecting variables, thereby partitioning mixed data. Nevertheless, it unrea-
sonably assigns identical distances to different pairs of adjacent categories that
may have intrinsically unequal distances, thus showing unsatisfactory partition
results. Most recently, The clustering approach in [6] is proposed for incomplete
data, but designed for numerical data only.

Neighborhood rough set (also called neighborhood set interchangeably for
simplicity) is commonly used to partition categorical or mixed data sets. Specif-
ically, it lets each object xi find a micro-cluster based on the neighborhood
set, consisting of objects that are closer to xi. D(xi,xj) represents the distance
between xi and xj . The common neighborhood relations are the k-nearest
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Mk(xi) = {xj |Dk(xi,xj) < D(xi,xg)}, (1)

and the δ-radius
M δ(xi) = {xj |D(xi,xj) ≤ δ}, (2)

where j, g ∈ {1,2,...,n}, g �= j, and the k in Eq. (1) represents the first k objects
with the closest distance to xi. For simplification, we employ M(xi) to denote
the general neighborhood relation.

3 Proposed Method

In this section, we begin by formulating the problem in Sect. 3.1. Then, we
present the micro partition based on the neighborhood set and the mixed data
distance metric in Sect. 3.2. Finally, the hierarchical merging mechanism, and
the whole clustering algorithm Mic2Mac are proposed in Sect. 3.3.

3.1 Problem Formulation

Given a mixed data set S = {x1, x2,..., xn} comprising n data objects, each
data object xi = [x1

i , x2
i ,... ,xd

i ]� is a d-dimensional vector with values from the
d attributes, which can also be denoted as a set A = {a1, a2,..., ad}. The possible
value set V = {V 1, V 2,..., V d} stores the value domains corresponding to each
attribute. The goal of clustering is to assign the n objects to k suitable clusters
C = {C1, C2,..., Ck}, where Cl is the set of data objects in the l-th cluster, with
S =

⋃k
l=1 Cl. To represent each cluster, a representative objects set R = {r1,

r1,..., rk} is maintained during clustering, and each representative object rl of
R is a data object selected from S. A common way is to use an n × k matrix Q,
indicating which cluster is an object assigned to. The (i, l)-th entry qi,l of Q is
denoted as

qi,l =

{
1, if l = argmin

g
D(xi, rg),

0, if l �= g.
(3)

According to Eq. (3), we have

k∑

l=1

qi,l = 1, 1 ≤ i ≤ n, (4)

and qi,l ∈ {0, 1}. To appropriately cluster mixed data sets, we first need inter-
object distances to be prepared where a common form can be

D(xi,xj) =
√ ∑

ar∈A

Dr(xr
i , x

r
j)2. (5)

In Eq. (5), xr
i ∈ V r represents the value of xi on ar, while Dr(xr

i , x
r
j) quantifies

the distance between xi and xj w.r.t. ar. In the following subsection, we present
how to define Dr(xr

i , x
r
j) to form neighborhood sets.
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3.2 Micro Partition Based on Neighborhood Set

To unify the distance metric on heterogeneous attributes, we use transformation
cost that quantifies the effort required to transform one Conditional Probability
Distribution (CPD) into another. We begin by defining the CPD and establishing
the distance between possible values of a categorical attribute to explain the
principles of transformation cost quantification more clearly. Subsequently, we
illustrate how this approach unifies both categorical and numerical scenarios.
Finally, we derive the object-level distance and propose the micro partition based
on the neighborhood set. Given a possible value vr

h from attribute ar, the CPD
of at with vt possible values V t = {vt

1, v
t
2, ..., v

t
vt} is computed accordingly

Ψrt
h = [p(vt

1|vr
h), p(v

t
2|vr

h), ..., p(v
t
vt |vr

h)]
�, (6)

where p(vt
o|vr

h) is the conditional probability of vt
o as given vr

h. We represent the
CPD as Ψrt

h where the superscript rt signifies that this CPD characterizes the
h-th possible value of ar concerning the values of at. The distinction between
two CPDs, such as Ψrt

h and Ψrt
o , captures the dissimilarity between vr

h and vr
o ,

according to the possible values V t.
To quantitatively measure this dissimilarity between the CPDs describing two

possible values of a categorical attribute, we employ the Earth Mover’s Distance
(EMD) [20], which was designed to calculate the transformation costs between
two histogram descriptors. Thus, the dissimilarity between two possible values
vr

h and vr
o, reflected by at can be calculated using EMD by

Drt(vr
h, vr

o) = Γ (Ψrt
h − Ψrt

o ,O) · I, (7)

where Γ (·, ·) compares each pair of corresponding bits of two vectors and retains
the maximum value, while O and I represent a vt-dimensional vector with all
values equal to 0 and 1, respectively.

Different attributes ats can have varying contributions to the distance Drt(vr
h,

vr
o) due to variations in inter-attribute dependence. The overall Drt(vr

h, vr
o)

reflected by its respective weight wrt is computed by

Dr(vr
h, vr

o) =
∑

at∈A

Drt(vr
h, vr

o) · wrt. (8)

The Eq. (7) is further extended to quantify the inter-attribute dependence as
the weights wrt, which can be expressed as

wrt =

∑vr−1
h=1

∑vr

o=h+1 Dr(vr
h, vr

o)
vr(vr − 1)/2

, (9)

where vr represents the number of possible values contained within ar. More
specifically, wrt measures the average transformation cost of the vr(vr − 1)/2
pairs of possible values of attribute ar reflected by at. According to Eqs. (7)–(9),
the heterogeneous attributes are uniformly quantified as the transformation cost.
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According to the work proposed in [22], the possible values of a categorical
attribute are considered as concepts, so that the above process essentially quan-
tifies the average inter-concept distances of ar as influenced by at. To illustrate
the principle of Eq. (8), we examine an extreme scenario. Assuming attributes
ar and at are identical, they will exhibit perfect interdependence, and thus their
Drt(vr

h, vr
o) always reaches the maximal value, i.e., “1”, for any combinations of h

and o with h �= o, according to Eq. (7). Consequently, wrt also reaches the max-
imal value of “1”, representing 100% dependence of two attributes. By applying
Eqs. (7)–(9), we can obtain the distance between data objects xi and xj .

The defined dissimilarity measure applies to both categorical attributes and
numerical attributes, as Eq. (8) provides a uniform treatment of heterogeneous
attributes. Then we prove that our measure is a distance metric.

Theorem 1. D(xi,xj) is a distance metric.

Proof. As Eq. (7) satisfies the properties of a metric, it follows naturally Eq. (8),
which is derived from Eq. (7), is also a metric. Moreover, the calculation of Eq. (5)
involves finite arithmetic processes according to Eq. (8), guaranteeing that
D(xi,xj) adheres to all essential metric properties for any i, j, h ∈ {1, 2, ..., n},
which are listed as follows:

(1) D(xi,xj) ≥ 0 ; D(xi,xj) = 0 iff xi = xj ;
(2) D(xi,xj) = D(xj ,xi);
(3) D(xi,xj) ≤ D(xi,xh) + D(xh,xj). ��

The conventional neighborhood sets Mk(xi) and M δ(xi) (i.e., Eqs. (1)
and (2)) generate n neighborhood sets, which may partially overlap with sur-
rounded ones, causing laborious computation with a large n. Additionally, these
neighborhood relations may group dissimilar objects in the uneven distribution
of data objects. To better partition objects and reduce computational costs, we
have developed a new approach called micro partition based on the neighbor-
hood set, which considers both distance and density. This approach creates non-
overlapping neighborhood sets by selecting representative objects and grouping
their corresponding neighbors based on merging interval.

Definition 1. Merging interval: Given an object xi with a density ρi, the merg-
ing interval φi signifies the minimum distance between xi and xj with a higher
corresponding density ρj, which can be expressed as:

φi = minD(xi,xj), s.t.ρi < ρj and xj ∈ S\xi, (10)

where S\xi is the data set that excludes xi, while ρi and ρj denote the densities
of xi and xj , respectively. Furthermore, for the object with the maximum density,
its merging interval is defined as maxD(xi,xj), where xj ∈ S.

In Definition 1, the density ρi can be computed as

ρi =
D(xi,x〈i,qi〉)

qi
. (11)
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Equation (11) computes the distance corresponding to the ranking qi of the adja-
cent object x〈i,qi〉, which can be seen as the density of xi. Assuming the xi is
a center point, x〈i,qi〉 is the qi-th closest object to xi in n objects. Specifically,
we initially create the neighbor set AMi = {x〈i,0〉,x〈i,1〉,x〈i,2〉, ...,x〈i,n−1〉} in
ascending sequence relative to xi, where x〈i,0〉 ≡ xi and AMi(y) = x〈i,y〉. After-
wards, when we iterate through AMi from small to large, we choose the object
x〈i,g〉 that first satisfies the condition D(xi,x〈i,g〉)/g < D(x〈i,g−1〉)/(g−1), which
confirms the value of qi as qi = g − 2. The density calculation effectively selects
neighboring objects, ensuring that objects beyond a noticeable interval bound-
ary are not included in the neighborhood set corresponding to xi. Hence, it will
partition objects into compact clusters, which contain the most similar objects.

To select the most suitable representative object for a micro-cluster, we pri-
oritize objects with higher density than their neighbors and positioning far from
other representative objects. According to Definition 1, objects with greater
merging intervals are considered more suitable to be the representative objects.
Thus, we rank data objects based on their merging intervals in descending
sequence and form micro-clusters based on neighborhood set by

Mφ(xi) =

⎧
⎨

⎩

qi⋃

j=1

AMi(j)

⎫
⎬

⎭
\

⎧
⎨

⎩

⋃

φp>φi

Mφ(xp)

⎫
⎬

⎭
, (12)

where qi is the qi-th closeness to xi among all the n objects, as mentioned in
Eq. (11), while the objects xp with larger merging intervals than the xi will be
excluded from Mφ(xi) corresponding to xi. The process of forming micro-clusters
will continue until all objects are contained by these micro-clusters. All the
representative objects in each micro-cluster are stored in the micro representative
objects set MR = {b1, b1,..., bm}, where m is the number of representative
objects.

To illustrate our calculation and merging processes more clearly, Fig. 2 pro-
vides a toy example shown in processes 1–4. The proposed micro partition based
on the neighborhood set is outlined in Algorithm 1. The mechanism for merging
Mφ(xi) is crucial and will be discussed in the next subsection.

3.3 Merge Micro-Clusters Into Macro-Clusters

Based on our proposed micro partition, a hierarchical merging mechanism is
presented to merge micro-clusters.

Given the data set S and the number of clusters k, we iteratively compute
micro-clusters Mφ(xi) and update data set S at each layer in the following
two steps: 1) fix S, compute Mφ(xi) and micro representative object set MR
by Algorithm 1 according to dissimilarity matrices D, and 2) fix MR, update
S based on MR. Specifically, the hierarchical merging mechanism utilizes MR
from the previous layer as the new local data set in the next layer. This process
enables multiple partitioning and merging of objects while preserving the local
micro-clusters. These two steps iterate until m = k, where m is the number of
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Fig. 2. A toy example illustrates the calculation processes. In processes 1 and
2, we compute the sub-distances in attribute ar. Then, we compute the con-
tribution of at to ar. In processes 3 and 4, we confirm qi, where AM1 =
{x〈1,0〉,x〈1,1〉,x〈1,2〉,x〈1,3〉,x〈1,4〉}. After obtaining the merging intervals correspond-
ing to each object, we then merge data objects into micro-clusters according to the
descending order of the merging intervals.

Algorithm 1. MPNS: Micro Partition based on Neighborhood Set
Input: S, D.
Output: Mφ(xi), MR.
1: for i = 1 to n do
2: Update the density ρi of xi based on Eq. (11);
3: end for
4: for i = 1 to n do
5: Update the merging interval φi of xi based on Eq. (10);
6: end for
7: for i = 1 to n do
8: if ρi > 0 then
9: Select xi as representative object bi to MR;

10: end if
11: Update Mφ(xi) based on Eq. (12);
12: end for

representative objects. The overall Mic2Mac clustering algorithm is outlined in
Algorithm 2.

Theorem 2. The time complexity of Mic2Mac is O(d2n+n log n) for each iter-
ation.

Proof. In the worst-case scenario, all attributes are categorical, and V is equal
to the maximum number of possible values across all the categorical attributes.
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Algorithm 2. Mic2Mac: Merge Micro-Clusters into Macro-Clusters
Input: S, k.
Output: Q.
1: Initialize the iteration counter by τ = 0; Set each object as a micro-cluster;
2: while |MR(τ)|> k do
3: Update D based on Eq. (5);
4: Update Mφ,(τ)(xi) and MR(τ) by Algorithm 1;
5: Update S(τ+1) by S(τ+1) = MR(τ);
6: Update the iteration counter by τ = τ + 1;
7: end while
8: Update R = MR(τ);
9: Compute Q(τ) according to Eq. (3).

To analyze the overall complexity, we compute the complexity of D(τ), Mφ,(τ),
and hierarchical merging once, respectively.

To compute the dissimilarity matrices D(τ), we need to derive d × d pairs of
CPDs by scanning n data objects in data set S. This results in a O(d2n) com-
plexity. For computing the distances between a pair of intra-attribute possible
values, it takes O(V ) complexity for every attribute. Thus, obtaining D(τ) incurs
a complexity of O(nd2 + V ).

Given D(τ) obtained from Algorithm 2, to compute Mφ,(τ), we need to sort
an n × n matrix, taking O(n + n log n) complexity. Subsequently, we sort n
merging intervals in O(n log n) complexity. Therefore, computing Mφ,(τ) takes
O(n + 2n log n).

To implement hierarchical merging, we need to update S in each iteration
according to the micro representative objects set MR, which takes O(n).

Therefore, the overall complexity of Mic2Mac at a given iteration τ can be
simplified to O(d2n + n log n). ��

4 Experiments

4.1 Experimental Settings

This section presents three types of experiments to comprehensively evaluate the
clustering performance of our proposed Mic2Mac: (1) Clustering performance
evaluation, (2) Ablation study, and (3) Visualization of cluster discrimination
ability. Counterparts, validity indices, and data sets are introduced below.

Ten counterparts are compared, including Jia’s Distance Metric (JDM)
[14], Coupled Similarity Metric (CSM) [15], Entropy-based Distance Metric
(EDM) [23], and Zhang’s Distance Metric (ZDM) [21] incorporated with the con-
ventional k-modes (KMD) [12] and k-prototypes (KPT) [11] approaches based
on the attribute composition of data sets. Cheung’s Iterative Learning (CIL) [7],
designed for data sets with numerical and categorical attributes, is also selected.
JDM, CSM, EDM, and ZDM represent state-of-the-art methods. Additionally,
three conventional clustering algorithms, namely Attribute Weighting k-means
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Table 1. Summary of nine utilized data sets. The columns “Categorical”, “Numer-
ical”, “Objects”, and “Clusters” are the numbers of categorical attributes, numerical
attributes, data objects, and clusters, respectively.

No. Data Set Abbrev. Categorical Numerical Objects Clusters

1 Dermatology Derm 33 1 366 6
2 Autism-Adolescent Autism 2 7 104 2
3 Common Toad Toad 12 2 189 2
4 Hayes-Roth Hayes 4 0 132 3
5 Breast Cancer Cancer 9 0 286 2
6 Lymphography Lym 18 0 148 4
7 Congressional Voting Vote 16 0 435 2
8 Employee Selection Employee 4 0 488 9
9 Social Workers Workers 10 0 1000 4

Table 2. Clustering performance evaluated by CA, where the best results are high-
lighted in bold and the second-best results are underlined.

Methods Derm Autism Toad Hayes Cancer Lym Vote Employee Workers

KMD 0.554±0.10 0.545±0.11 0.548±0.03 0.364±0.01 0.519±0.02 0.453±0.04 0.864±0.00 0.367±0.03 0.392±0.03
KPT 0.554±0.10 0.530±0.03 0.530±0.02 0.364±0.01 0.519±0.02 0.453±0.04 0.864±0.00 0.367±0.03 0.392±0.03
WKM 0.623±0.09 0.525±0.02 0.523±0.03 0.408±0.05 0.584±0.09 0.439±0.05 0.857±0.07 0.368±0.03 0.375±0.03
CIL 0.675±0.10 0.519±0.03 0.506±0.00 0.376±0.04 0.541±0.06 0.500±0.04 0.881±0.00 0.384±0.04 0.373±0.03
JDM 0.665±0.10 0.579±0.05 0.522±0.02 0.375±0.02 0.582±0.10 0.473±0.04 0.868±0.00 0.351±0.03 0.334±0.03
CSM 0.602±0.14 0.524±0.03 0.526±0.02 0.405±0.04 0.528±0.04 0.419±0.05 0.865±0.01 0.402±0.04 0.331±0.03
EDM 0.587±0.10 0.558±0.03 0.537±0.03 0.407±0.03 0.530±0.02 0.452±0.04 0.832±0.10 0.366±0.02 0.332±0.01
ZDM 0.685±0.11 0.558±0.02 0.578±0.02 0.404±0.03 0.569±0.19 0.470±0.04 0.872±0.00 0.368±0.03 0.374±0.03
Mic2Mac0.768±0.00 0.596±0.00 0.545±0.00 0.417±0.00 0.766±0.00 0.561±0.00 0.874±0.00 0.393±0.00 0.435±0.00

(WKM) clustering algorithm [10], the original KMD, and KPT adopting Ham-
ming and Euclidean distance metrics, are also included in the comparison. Fur-
thermore, two variations of Mic2Mac, named Mic2-MacI and Mic2MacII, are
introduced for ablation studies, and additional details about these two Mic2Mac
variants are provided in Sect. 4.3.

Two validity indices have been chosen for comprehensively verifying the
clustering performance, including CA [9] with a value range of [0, 1], and ARI
[8] with a value range of [-1, 1]. A higher value for both these indices indicates
better clustering performance.

Nine real-world data sets from various domains, including medicine, biol-
ogy, sociology, etc., have been selected, which are shown in Table 1. Data sets
1–7 are public data sets collected from the UCI machine learning library1. Data
sets 8 and 9 are obtained from the Weka website2. All data sets are pre-processed
by removing objects with missing values.

1 https://archive.ics.uci.edu/
2 https://waikato.github.io/weka-wiki/datasets/

https://archive.ics.uci.edu/
https://waikato.github.io/weka-wiki/datasets/
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Table 3. Clustering performance evaluated by ARI, where the best results are high-
lighted in bold and the second-best results are underlined.

Methods Derm Autism Toad Hayes Cancer Lym Vote Employee Workers

KMD 0.396±0.15 −0.003±0.01 −0.002±0.02 −0.012±0.00 −0.004±0.00 0.113±0.04 0.530±0.00 0.162±0.02 0.057±0.02
KPT 0.422±0.12 −0.003±0.01 −0.008±0.01 −0.012±0.00 −0.004±0.00 0.113±0.04 0.530±0.00 0.162±0.02 0.057±0.02
WKM 0.509±0.09 −0.006±0.01 −0.008±0.01 0.007±0.02 0.040±0.07 0.085±0.04 0.527±0.11 0.172±0.03 0.046±0.02
CIL 0.606±0.10 −0.007±0.01 −0.021±0.00 −0.004±0.02 0.011±0.04 0.182±0.05 0.579±0.00 0.193±0.02 0.052±0.02
JDM 0.614±0.13 0.018±0.03 −0.014±0.01 −0.006±0.01 0.041±0.07 0.123±0.04 0.541±0.01 0.167±0.02 0.052±0.01
CSM 0.518±0.17 −0.009±0.01 −0.008±0.01 0.008±0.02 0.003±0.02 0.089±0.04 0.532±0.03 0.212±0.03 0.051±0.02
EDM 0.439±0.12 0.006±0.01 0.002±0.01 0.008±0.02 0.007±0.01 0.089±0.03 0.478±0.17 0.163±0.04 0.059±0.01
ZDM 0.627±0.15 −0.015±0.01 0.013±0.02 0.007±0.02 0.062±0.02 0.132±0.05 0.553±0.01 0.211±0.02 0.076±0.01
Mic2Mac 0.678±0.00 0.019±0.00 −0.001±0.00 0.009±0.00 0.109±0.00 0.129±0.00 0.557±0.00 0.173±0.00 0.085±0.00

Table 4. Ave. Rank of CA and ARI rows report the average performance ranks, where
the best results are highlighted in bold, while the second-best results are underline.

Ave. Rank KMD KPT WKM CIL JDM CSM EDM ZDM Mic2Mac

Ave. Rank @ CA 5.944 6.389 5.278 4.889 5.222 6.111 6.167 3.556 1.444
Ave. Rank @ ARI 6.611 6.722 6.389 4.722 4.833 5.556 5.222 3.056 1.889

4.2 Clustering Performance Evaluation

The clustering performance is reported in Tables 2 and 3, which are accessed by
CA and ARI, respectively. The average ranks of the CA and ARI performances
across all data sets for the compared methods are presented in Table 4, based on
the results in Tables 2 and 3.

The key observations are as follows: (1) Mic2Mac consistently performs the
best on most data sets in terms of CA index. (2) On certain data sets, such
as Toad, Vote, and Employee, Mic2Mac does not achieve the best result, but
the performance gaps between Mic2Mac and the best-performing counterparts
are tiny, also highlighting the superiority of Mic2Mac. (3) While Mic2Mac does
not yield the best results in terms of the ARI on some data sets, e.g., Lym and
Employee, it consistently performs the best and the second-best on most data
sets, which still verifies its effectiveness. Intuitively, if a data set contains only
numerical attributes, the performance of Mic2Mac downgrades to traditional
k-means. The more categorical attributes a data set contains, the better the
Mic2Mac can perform. Meanwhile, Mic2Mac also performs well on mixed data.

4.3 Ablation Study

In ablation studies, we focus on the clustering performance assessed by the ARI.
Firstly, to assess the effectiveness of the dissimilarity metric proposed for hetero-
geneous attributes, we restrict Mic2Mac to utilize the combination of Hamming
distance and Euclidean distance to tackle mixed data, forming Mic2MacI. Sec-
ondly, to evaluate the effectiveness of our proposed hierarchical merging mecha-
nism, we compare Mic2Mac and Mic2MacI with their variation Mic2MacII, which
incorporates the partitioning strategy of KPT by partitioning the representative
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Fig. 3. Comparison of clustering performance among Mic2Mac, Mic2MacI, and
Mic2MacII on all the 9 data sets. A better measure has a higher value. The Ave. Rank
@ ARI of Mic2Mac, Mic2MacI, and Mic2MacII are 1.111, 2.333, and 2.556, respectively.

objects after the first formation of the micro-clusters. The clustering performance
and the average rank of Mic2Mac with its two variations are illustrated in Fig. 3.

The overall result reveals that Mic2Mac consistently outperforms its two
variations, demonstrating the effectiveness of Mic2Mac. Specifically, Mic2Mac
surpasses Mic2MacI on nine data sets, indicating that Mic2Mac can effectively
measure the original heterogeneous attribute data information. Furthermore,
Mic2Mac outperforms Mic2MacII on eight data sets, and Mic2MacI performs
better than Mic2MacII on six data sets. This emphasizes the effectiveness of
the proposed merging mechanism. The reason why Mic2MacI perform worse
than Mic2MacII on certain data sets (i.e. Toad, Lym, and Vote) would be that
Mic2MacI employs the simplest Euclidean and Hamming distance measures,
which makes it hard to handle the complex issues in real-world data distribution,
e.g., overlapping, and coupling categorical attributes.
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Fig. 4. t-SNE visualization of the Derm data sets, where data points marked in “C1”
to “C6” indicate their “true” cluster labels, while objects marked in red indicate they
were incorrectly clustered.

4.4 Visualization

In Fig. 4, t-SNE [18] is employed to showcase the cluster discrimination abil-
ity of Mic2Mac. The Derm data set is first clustered using KPT, WKM, JDM,
CSM, ZDM, and Mic2Mac. Subsequently, the data is encoded according to the
distance matrix of objects created by the distance metrics of the corresponding
approaches, respectively. These distance matrices are treated as the representa-
tions of the data and are then projected into two-dimensional space using t-SNE
for visualization. Data points are marked with different markers to indicate their
“true” cluster labels. The red markers are utilized to indicate the objects that
are incorrectly clustered. Intuitively, fewer red markers indicate a more accurate
clustering performance and a more separable distribution of different markers
indicates a more powerful cluster discrimination ability.

The visualization in Fig. 4 clearly shows that Mic2Mac exhibits fewer red
markers and a more separable distribution of different markers, signifying its
stronger cluster discrimination ability than the conventional and state-of-the-
art methods.

5 Concluding Remarks

In this paper, a novel approach called Mic2Mac has been proposed for mixed data
clustering, which simultaneously tackles two challenges inherent in clustering
real-world mixed data sets, i.e., the information gap of heterogeneous attributes
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and the bias brought by prior knowledge. To address these challenges, we have
proposed: (1) A heterogeneous attribute metric for preserving and leveraging
original data information; (2) A micro partition approach based on neighbor-
hood set theory for forming unbiased micro-clusters; and (3) A merging mech-
anism for hierarchically merging micro-clusters into sought number of clusters.
The superiority of Mic2Mac is evidenced through extensive experiments. More-
over, the clustering process of Mic2Mac is highly interpretable due to the nested
relationship among multi-granular clusters extracted during the merging phase.

In the future, this research will be extended to address more challenging
clustering analysis tasks, e.g., federated mixed data clustering, and exploring
cluster patterns for unstructured multi-modal data. Moreover, the potential of
the dendrogram formed by merging the micro-clusters will also be explored for
understanding complex data sets.
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Abstract. We aim to classify terrain into different ground covers, such
as urban, crops, forests, water, etc., from polarimetric SAR (PolSAR)
images. State-of-the-art classification approaches relish the advantage of
deep learning techniques. However, conventional techniques, such as con-
volutional neural networks (CNN), developed for optical images are not
quite suitable for complex-valued PolSAR images. Further, CNN focuses
mainly on the spatial relationship within local receptive fields. However,
the process entangles the channel correlation with spatial information.
To address this issue, we propose a complex-valued squeeze-excitation
network (CV-SENet), where the complex-valued CNN encodes the spa-
tial relationship, and the SENet considers channel-wise important infor-
mation. Thus, we utilize spatial as well as channel relationships in our
work. This, in turn, helps in reducing the speckle noise in the images.
The experimental results on several datasets justify the importance of
spatial information and inter-channel correlation in classifying PolSAR
images.

Keywords: Polarimetric Synthetic Aperture Radar · Convolutional
Neural Networks · Complex Value · Squeeze-Excitation · Classification

1 Introduction

Synthetic Aperture Radar (SAR) has become a well-explored remote sensing
technique that provides large-scale two-dimensional images with high spatial
resolution. These images are mainly that of the Earth’s surface reflectivity. This
reflectivity is active as the SAR imaging system is a radar system that illu-
minates the surface with microwave pulses. Radar receives the back-scattered
electromagnetic signal from the terrain [4]. The active nature of radar forms the
basis of image capturing, which is independent of a light source or an illumination
source, making it ideal for day and night imaging. Due to longer wavelengths, the
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microwave spectral range makes the SAR system capable of capturing images
through atmospheric barriers such as clouds, rain, dust, mist, fog, etc. [22].

Data collection and image formation are significant parts of a SAR imaging
system. A SAR image is a two-dimensional array of complex-valued pixels con-
taining amplitude and phase information. Polarimetric SAR (PolSAR) is a type
of SAR system that uses different polarization channels to characterize targets.
These polarization channels are horizontal transmitting and horizontal receiving
(HH), horizontal transmitting and vertical receiving (HV), vertical transmitting
and horizontal receiving (VH), and vertical transmitting and vertical receiving
(VV). Any PolSAR system operates in one of the three modes: Single polariza-
tion (HH or VV), Dual polarization (HH and HV or VH and VV), and Quad/Full
polarization (HH, HV, VH, and VV).

Classification of PolSAR images is critical for land cover analysis. Information
about various aspects such as urban planning, agricultural planning, forest map-
ping after some natural calamity [27], mapping of glacier melting [28], etc., can
be effectively obtained from such an analysis. Deep learning-based methods such
as convolutional neural networks (CNN) enjoy stat-of-the-art accuracies in the
image classification task. However, these methods produce sub-optimal results
for complex-valued PolSAR images. Further, the CNN exploits the spatial rela-
tionship within local receptive fields. It cannot extract the channel-wise depen-
dencies that play an essential role in the classification task. In order to address
this issue, we propose a complex-valued squeeze-excitation network (CV-SENet)
on the backbone of complex-valued CNN (CV-CNN) [37] and squeeze-excitation
network (SENet) [13]. The proposed CV-SENet adaptively selects channel-wise
important features by suppressing others. The combination of SENet and CV-
CNN focuses on both spatial as well as channel wise important features by
reducing speckle noise. The significant features of our paper can be summarized
as:

– We propose a complex-valued squeeze and excitation network (CV-SENet)
that combines CV-CNN and SE-Net to extract spatial as well as channel-
wise important features for PolSAR image classification.

– Proposed light weight network architecture is robust to speckle noise.
– The network is evaluated on diverse sets of data.

2 Related Work

PolSAR provides terrain information under day and night conditions and all
weather conditions. Considering the nature of the data, many unsupervised sta-
tistical approaches have been proposed for the classification task. For extracting
the polarimetric characteristics of the Entropy-Alpha classes, analysis of the
polarimetric signatures using H/α decomposition has been examined [25]. For
fitting simple back-scatterer mechanisms to polarimetric SAR data, a scatter-
ing model employing three components has been proposed where single bounce,
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double bounce, and volume scattering mechanisms have been explored [11]. Var-
ious Eigenvector-Eigenvalue-based decomposition techniques are used, and the
classification is then done using a Wishart-supervised classifier.

Since the coherency and covariance matrix of PolSAR data follows Wishart
distribution, the Wishart mixture model has also been implemented for terrain
classification where the model parameters are estimated using the Expectation-
Maximization algorithm [5]. When it comes to pattern recognition tasks, clas-
sification performance hugely depends on the feature extraction part. These
extracted features include back-scattering elements [6], target decomposition-
based features [2], and other statistic features [8]. Statistical methods designed
to extract such features are usually class-specific and involve manual trial and
error. These methods may provide better performance, but these methods require
deep domain knowledge, and also, knowledge about specific radar configurations
is required for performing feature extraction [3]. This is where multistage deep
learning models have scope for automation [39].

CNNs have demonstrated superior performance with their hierarchical fea-
ture extraction capabilities [1]. The fundamental task of ship detection for SAR-
based surveillance has been carried out using CNNs [7] on Sentinel-1 data. Fur-
thermore, automatic target recognition for SAR has also been efficiently imple-
mented by using a combination of CNNs with support vector machines [30]. In
PolSAR images, the data is in the form of complex-valued pixels, and conven-
tional CNNs accept only real numbers. Usually, a polarimetric coherency matrix
(T3) or a polarimetric covariance matrix (C3) is used for the image classifica-
tion task. These matrices contain six channels of complex-valued arrays. Using
T3 matrix, real-valued CNN has been implemented where a new 6-D real vector
representation has been specifically tailored for the classification of PolSAR data
[38]. The edges can play an important role in data representation. Hence, edge-
aware methods [12,24] perform quite well for classification. Dual branch fully
convolutional neural network method [12] has considered edge-related features
for classification purposes. In one of the works, the Haar wavelet-based feature
has been incorporated in CNN framework [17].

In some works, the real part and imaginary part of the data are fed sepa-
rately as a 9-D feature vector [37]. A 6-D complex feature vector is also fed into
Complex-Valued CNN, where the entire CNN architecture handles complex num-
bers [37,38]. Experiments are also performed with only the real-valued coherency
matrix elements (T11, T22, T33), where a newly tailored 6-D feature vector repre-
sentation has been proposed [31]. Backpropagation in the complex-valued CNN
domain has been implemented using Complex Generalized Derivative and Com-
plex Conjugate Derivative, and it has shown improvement over real-valued MLPs
[15].

The small image patch often contains a single class, whereas large patches
consist of multiple classes. Hence, complex-valued multi-scale CNN [36] has
been proposed to learn local to global information. However, the method does
not explicitly consider the significance of different channels. A work similar
to complex-valued CNN and multiple-scale has been proposed with residual
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attention enhanced U-Net [26]. The UNet reduces the semantic gap between
the encoder and the decoder, along with pixel and channel attention mecha-
nisms. The importance of channel-wise information has been emphasized in [34],
where the PolSAR image has been decomposed into three channels according to
the scattering mechanism before sending them to CNN channels. Each channel’s
output is fused together and fed into fully connected layers for classification.
The correlation among different feature maps has been explored by considering
long short-term memory (LSTM) in complex-valued convolutional network [10].
The LSTM works well for sequential data, but the PolSAR data are generally
represented by covariance or coherence matrix. The elements of these matrices
may not be sequential in nature. Moreover, training an LSTM network requires
a lot of data, which is seldom available for PolSAR data. In our work, we pro-
pose a complex-valued squeeze and excitation network to deal with channel-wise
significant information along with spatial information.

3 Proposed Method

First we discuss about the representation of the data followed by description of
the architecture.

3.1 PolSAR Data Representation

Horizontally polarized wave can create a back-scattered wave with horizontal
or vertical polarization. Similarly, vertical wave can also produce both kind of
polarization. This set of backscattering properties is contained in 2 × 2 Sinclair
matrix as

S =
[
SHH SHV

SV H SV V

]
. (1)

Here, scattering element SHH signifies horizontal transmission and horizontal
reception of polarization channel. The other three terms in S are to be inter-
preted in the same manner. For monostatic back-scattering, SHV = SV H [5].
Hence, S for our case becomes the associated target vector Ω, that can be writ-
ten as

Ω =
1√
2

[
SHH

√
2SHV SV V

]T
(2)

Using Eq. 2, the 3 × 3 Covariance matrix C3 is obtained as

C3 = 〈Ω.Ω∗T 〉 =
〈⎡

⎣ |Ω1|2 Ω1Ω
∗
2 Ω1Ω

∗
3

Ω2Ω
∗
1 |Ω2|2 Ω2Ω

∗
3

Ω3Ω
∗
1 Ω3Ω

∗
2 |Ω3|2

⎤
⎦

〉
(3)

Here, 〈·〉 represents spatial averaging operation that forms multi-looking data.
Putting values of Eq. 2 in Eq. 3,

C3 =

⎡
⎣〈SHHS∗

HH〉 〈SHHS∗
HV 〉 〈SHHS∗

V V 〉
〈SHV S∗

HH〉 〈SHV S∗
HV 〉 〈SHV S∗

V V 〉
〈SV V S∗

HH〉 〈SV V S∗
HV 〉 〈SV V S∗

V V 〉

⎤
⎦ . (4)
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3.2 Network Architecture

Fig. 1. Network Architecture

The input PolSAR image is first divided into 12 × 12 patches. We compute
the covariance matrix C3 from these patches. The C3 matrix of Eq. 3 or 4 is
Hermitian. The off-diagonal elements are complex-valued, which are conjugate
symmetric about the main diagonal real-valued elements. Thus the six elements
of the upper triangle of C3 matrix are sufficient for representation. The data in
C3 matrix is distributed over 6 channels as follows,

C3 = (C11, C12, C13, C22, C23, C33) (5)

The C3 matrices are passed through the proposed architecture (Shown in Fig. 1)
based on complex-valued SE-Net (CV-SENet). The CV-SENet is developed
based on CV-CNN layers with complex-valued CV-SE block. Moreover, batch
normalization, complex ReLU, pooling, fully connected layers are used along
with softmax for classification.

Complex-Valued Convolution. The complex-valued convolution takes care
of the complex values of the PolSAR image. The complex-valued feature output
of lth layer M

(l)
k ∈ CF×F×K×I is convolved with complex-valued kernel w

(l+1)
ik ∈

CB1×H1×K along with an addition of bias to produce a feature F
(l+1)
i at (l+1)th

layer.

F
(l+1)
i =

K∑
k=1

w
(l+1)
ik ∗ M

(l)
k + b

(l+1)
i

=
K∑

k=1

(�{w
(l+1)
ik } · �{M

(l)
k }) − �{w

(l+1)
ik } · �{M

(l)
k }

+ j

K∑
k=1

(�{w
(l+1)
ik } · �{M

(l)
k }) + �{w

(l+1)
ik } · �{M

(l)
k }

+ bl+1
i

(6)

The produced feature is passed through complex-valued batch normalization,
followed by non-linear activation.
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Complex-Valued Batch Normalization with Complex ReLU. The main
steps of batch normalization [16] is subtraction by the expected values and divi-
sion by standard deviation. Two associated learnable parameters α and β are
present to scale and shift the feature.

F̂
(l+1)
i = �{α}

�{F
(l+1)
i } − E

[
�{F

(l+1)
i }

]
√

V ar
(
�{F

(l+1)
i }

)
+ ε

+ �{β}

+ �{α}
�{F

(l+1)
i } − E

[
�{F

(l+1)
i }

]
√

V ar
(
�{F

(l+1)
i }

)
+ ε

+ �{β}, (7)

Scaling and shifting the features helps in accelerating the training process. The
reason is that the method eliminates the issues of change in feature distribution
among the layers by enforcing β mean and α variance. The normalized features
with controlled mean and variance behave better in subsequent layers for faster
convergence [29].

The batch-normalized feature are passed through complex-ReLU activation
unit.

M l+1
i = ReLU(�{F l+1

i }) + jReLU(�{F l+1
i }), (8)

where ReLU(x) = max(0, x) is the non-linear excitation. M l+1
i is passed through

squeeze-excitation network to produce a feature that is enriched with inter-
channel correlation.

Complex-Valued Squeeze-Excitation Network. The main component of
Complex-valued Squeeze-Excitation Network (CV-SENet) is the complex SE
block [13]. The input to our CV-SENet is a volume consisting of different chan-
nels, where each channel represents each element of the C3 matrix as discussed
in Eq. 5. The diagonal elements C11, C22, C33 depict the power of different polar-
ization channels, whereas the off-diagonal elements C12, C13, C23 represent the
correlation between different polarization channel. SE-Net can model the chan-
nel inter-correlation to improve convolutional features. Hence, SE-Net is quite
suitable for exploring the inter-dependencies among the different polarization
channels of Pol-SAR data. As a result, SE-Net assists in effectively combining
polarimetric-domain features with spatial-domain features. It enables significant
information propagation towards the next layer. SE block performs squeeze and
excitation operation. We extend the conventional SE block to deal with complex
values. The squeeze operation is performed by

Fsq(Mi) =
1

n × d

n∑
x=1

d∑
y=1

(�{Mi(x, y)} + j�{Mi(x, y)}) . (9)
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This is equivalent to average pooling per channel, which represents the channel-
wise statistics. The dependencies among the channel is exploited by excitation
operation by a gating mechanism with sigmoid activation as

ei = Fex(si) =
1

1 + e−�{W ′
1s̃i}

+ j
1

1 + e−�{W ′
1s̃i}

(10)

where si = Fsq(Mi), s̃i = max(W1si, 0). ei is then multiplied channel-wise with
Mi to produce the output feature oi.

The advantage of using SENet for PolSAR images is that it captures channel-
wise dependencies that are learned by extracting non-mutually exclusive and
nonlinear relationships between the individual channels. This is achieved by the
excitation module, which follows the squeeze model. The main advantage of using
a squeeze network is to interpret the local descriptors that capture the statistics
for the whole image. Another reason for exploring the efficiency of SE blocks for
SAR image classification is that the speckle noise is spread across channels. The
SE block helps reduce noise by suppressing unwanted information.

Pooling and Fully Connected Layer. We use adaptive average pooling,
where an average value of 2× 2 window is computed in the first iteration. How-
ever, the window size and stride gets updated according to the performance of the
network. After pooling, the feature map M

(l)
k goes through the fully connected

layer as

M
(l+1)
i = fc

(
�{F

(l+1)
i }

)
+ jfc

(
�{F

(l+1)
i }

)
, (11)

where F l+1
i =

∑K
k=1 w

(l+1)
ik · M

(l)
k + bl+1

i .

Loss Function. We use the categorical cross-entropy loss for optimizing the
model. The loss function is given by

L = − 1
n

n∑
i=1

C∑
j=1

yi,j log (σ(Mi,j)) (12)

where yi,j = 1 if Mi belongs to class j, otherwise yi,j = 0. i indices the train-
ing sample, whereas j denotes the class. σ(Mi,j) is the output of the softmax
function. Hence, σ(Mi,j) denotes the probability of ith sample belongs to the jth

class.

σ(Mi,j) =
exp{Mi,j}∑C
k=1 exp{Mi,k}

(13)

4 Experimental Results

4.1 Datasets and Experimental Setting

We consider four datasets of different geographic regions to demonstrate the
effectiveness of our architecture. Out of four datasets, three are publicly avail-
able [9], namely Flevoland15, Flevoland7, and Landes. The fourth dataset is
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Table 1. Datasets Details

Sl. No. Name Region Sensor Date Resolution Class

1 Flevoland15 Flevoland, Netherlands AIRSAR 16-Aug-1989 750× 1024 15
2 Flevoland7 Flevoland, Netherlands AIRSAR 16-Jun-1991 750× 700 7
3 Landes Landes, France AIRSAR 19-Jun-1991 1050× 1000 6
4 Mysore Mysore, India RADAR SAT-2 29-Aug-2017 3489× 3352 11

(a) (b) (c)

Fig. 2. Mysore dataset: (a) Pseudo-color Freeman-Durden RGB image in slant-range
resolution, (b) Pseudo-color Freeman-Durden RGB image in ground-range resolution
(c) Sentinel-2 optical image

provided by the Space Application Centre-Indian Space Research Organization
(SAC-ISRO). The details of the datasets are given in Table 1. All the datasets
are full-polarimetric L-band data. Flevoland15 and Felvoland7 datasets are con-
structed with the polSAR data of agricultural land in the Flevoland region con-
taining different types of crops. The Landes dataset is of pine forests in the
Landes region. It includes trees of different ages. The Mysore dataset (shown in
Fig. 2) is captured from the area between 11.97–12.284N latitude and 76.371–
76.561 E longitude. The original dataset is in the slant-range resolution. The
data is pre-processed by Range-Doppler terrain correction using the SNAP tool.
The tool helps us to convert images in ground-range resolution, to remove the
topographic effect, and to rectify the geoid. The ground truth mask is manually
constructed with the help of ESRI shapefile containing the placemark points of
different crop fields. The shapefile is constructed at the same time when the data
was originally captured using a hand-held GPS receiver. Furthermore, we select
Sentinel-2 optical image of the nearest duration having low cloud coverage. The
placemark points are inlaid on the optical image, and the ground truth polygon
mask is built using the QGIS tool.

The entire image of the dataset is divided into 12 × 12 patches. All the
experiments are carried out using the PyTorch framework. The datasets are
divided into training and testing data, where 30% patches are chosen for testing.
Tesla P100-PCIE with 16GB graphics RAM is used to train the models. For
training, the Adam optimizer is used on the categorical cross-entropy loss.

4.2 Data Augmentation for Training

The datasets are heterogeneous in nature. Different classes of a dataset have
a different number of training patches. A few classes have very few classes for
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training, so those classes are misclassified into other classes. Hence, we per-
form data augmentation during training. For this purpose, we create a train-
ing set using the help of different speckle-noise filters, namely Boxcar [23], Lee
refined [21] and Mean shift [20]. Hence, the original unfiltered training data is
augmented with the output of the mentioned filters.

Boxcar filter considers a square window of fixed size and replaces the center
pixel with the average number of pixels within the window. The nature of the
boxcar filter is such that it disregards the edges. Hence, it works quite well for
homogeneous regions but produces sub-optimal results for heterogeneous regions.
The Lee-refined filter behaves better for edges because it considers only similar
pixels for averaging within edge-aligned windows. In comparison, the mean-shift
method considers a moving window instead of a fixed static window. It considers
both spatial and spectral information along with weighted averaging of pixels.
Mean-shift works quite well to reduce speckle noise. Thus, the selected filters
complement each other in terms of removing noise and preserving edge details.

4.3 Results

Here, we show the experimental results for different datasets. We compare our
results with some classical and deep learning-based methods. Since the covari-
ance matrix of the homogeneous PolSAR data follows the Wishart distribu-
tion and the heterogeneous data can be modeled better using Wishart mixture
models, we first compare our results with the methods based on these distribu-
tions. Our model has two variations based on the training data: CV-SENet is
trained without the data-augmentation method, and CV-SENET+ is boosted
with augmented data. Further, the classical techniques are trained and tested
with speckle-filtered data, whereas our CV-SENet is trained and tested with the
raw data without any filtering.

Table 2 shows the comparison between the results obtained using classical
methods (columns 2–5) and our model. One can observe that our CV-SENets
produce better or similar results as compared to the classical methods. The
overall accuracy (OA) for WMM-CRF is the same as CV-SENet+. Hence, one
may doubt the requirements of our model. Note that CV-SENets takes unfil-
tered data as input, whereas the WMM and its different versions take filtered
data as input. For the unfiltered data, the classical techniques produce sub-
optimal results. The accuracies of the Wishart and the WMM classifiers go down
to 46.58% and 50.04%, respectively. Considering these accuracies for unfiltered
data, our CV-SENets improve the results by a large margin. This is because the
employed convolution layers and the SE block suppress the noise across different
channels. Hence, the effect of noise is relatively less for our classification results.
Another important point to observe from the table is that for some classes, the
performance of the proposed CV-SENet is a bit inferior as compared to the
other methods. This is because those classes have very few patches for training.
For example, the Building class has only two patches for training, whereas the
Wheat3 has 116 patches. This makes the training difficult for CV-SENet. Here,
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Table 2. Classification results of Flevoland15 dataset

Class Label Wishart [5] WMM [5] WMM-MRF [24] WMM-CRF [24] CV-SENet CV-SENet+

Water 64.77 99.21 99.99 99.33 100 99.21
Forest 90.05 91.95 99.99 99.93 100 100
Lucerne 92.28 96.82 99.70 99.37 100 97.56
Grasses 77.00 92.50 99.54 99.26 77.78 98.59
Peas 91.77 97.61 99.77 99.73 100 100
Barley 90.80 97.18 99.94 99.90 66.67 100
BareSoil 48.45 96.66 99.79 97.08 100 100
Beet 92.16 94.73 94.18 98.17 100 100
Wheat2 76.19 87.20 99.78 99.71 100 96.74
Wheat3 91.11 95.45 99.90 99.82 100 99.49
Stembeans 95.11 97.19 97.76 99.64 100 100
Rapeseed 75.28 87.46 98.21 98.96 95.83 100
Wheat 88.58 93.58 99.53 99.74 97.44 99.35
Buildings 89.29 80.80 90.57 91.86 0 100
Potatoes 88.88 90.61 96.17 97.87 100 100
OA 84.56 93.72 98.80 99.18 97.12 99.18

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 3. Results on Flevoland15 (a) Wishart Classifier, (b) WMM Classifier (c) WMM-
MRF (d) WMM-CRF, (e) CV-SENet+, (f) Ground truth, and (g) Ground-truth labels

the proposed CV-SENet+ performs quite well as it is trained with augmented
data. The quantitative results can verified visually from Fig. 3.

Table 3 shows the results of our method on Flevoland7 dataset. One can
note that the proposed CV-SENets perform better than the exising classical
techniques even with unfiltered PolSAR data, whereas the classical techniques
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Table 3. Classification results of Flevoland7 dataset

Class Label Wishart [5] WMM [5] WMM-MRF [24] WMM-CRF [24] CV-SENet CV-SENet+

Wheat 95.59 98.98 98.80 98.98 99.12 100
Rapeseed 96.41 99.91 99.94 99.94 100 100
Barley 98.29 99.39 99.11 99.26 100 100
Lucerne 57.53 94.97 99.04 96.25 85.71 100
Potatoes 95.98 99.15 95.54 99.71 98.18 100
Beet 33.00 96.99 94.20 98.63 93.94 97.93
Peas 50.74 92.87 100 93.45 100 100
OA 89.61 98.88 98.33 99.09 98.48 99.81

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4. Results on Flevoland7 (a) Wishart Classifier, (b) WMM Classifier (c) WMM-
MRF (d) WMM-CRF, (e) CV-SENet+, (f) Ground truth, and (g) Ground-truth labels

use the speckle-filtered data. The results can be compared visually in Fig. 4. One
can observe that our method is able to group pixels quite well as compared to
the existing methods.

Table 4 depicts the results and comparisons with other approaches for Landes
dataset. One can see that even for difficult classes such as C1 and C6, where the
Wishart classifier produces 44.54 and 30% accuracies, our CV-SENet+ classifies
the data with 98.33 and 96.39% accuracies. These results are reflected in Fig. 5,
where the classification maps are shown.
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Table 4. Classification results of Landes dataset

Class Label Wishart [5] WMM [5] WMM-MRF [24] WMM-CRF [24] CV-SENet CV-SENet+

C1 44.54 84.41 95.40 95.54 91.71 98.33
C2 65.71 79.98 95.35 98.32 100 94.20
C3 69.92 97.62 99.94 100 100 100
C4 88.40 97.31 99.85 99.69 99.33 100
C5 56.93 95.41 99.98 100 100 100
C6 30.00 78.17 92.39 91.87 81.16 96.39
OA 66.42 90.73 97.64 97.67 95.40 98.85

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5. Results on Landes:(a) Wishart Classifier, (b) WMM Classifier (c) WMM-MRF
(d) WMM-CRF, (e) CV-SENet+, (f) Ground truth, and (g) Ground-truth labels

Table 5 contains the results and comparisons with other approaches for
Mysore dataset. The dataset is a bit complex as compared to other datasets,
as the class regions are scattered all over the image. Moreover, a few classes
has a very few patches (as less as 5). Hence, training and testing is difficult for
these classes using CV-SENet. Thus, we perform augmentation on the data as
discussed earlier, and show the results for CV-SENet+ only. The CV-SENet+ is
able to outperform the existing approaches quite well.

Table 6 shows the comparison with existing neural network based methods
using the Flevoland15 dataset. Here, the efficiency of the proposed method is
compared with thirteen existing neural network based models, including the
complex valued-CNN and transformer based models. One can observe that the
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Table 5. Classification results of Mysore dataset

Class Label Wishart [5] WMM [5] WMM-MRF [24] WMM-CRF [24] CV-SENet+

Ragi 61.98 85.99 95.84 95.73 100
Ginger 58.37 69.35 93.01 92.54 100
Rice 93.00 96.50 98.35 98.13 100
Urban 91.93 96.53 99.51 96.86 100
Water 94.27 96.34 99.68 97.89 100
Arecanut 59.03 75.07 90.47 90.32 100
Banana 28.09 61.25 73.87 66.51 100
Sugarcane 65.78 76.70 81.23 89.05 100
Coconut 59.13 94.13 87.68 89.84 100
Fallow 41.18 51.61 84.74 80.97 100
Magnesite Mine 52.70 82.75 92.23 91.15 81.82
OA 85.64 92.63 97.22 96.77 99.20

Table 6. Performance (OA) comparisons using Flevoland15 dataset

WCAE [35] SPCNN [18] Tc-CNN [14] MCFCNN [34] RV-CNN [37] CV-CNN [37] CVMS [36]

93.31 96.90 96.63 95.83 95.30 96.20 97.74
DBFCN [12] CV-RAU [26] Conv-LSTM [10] CV-SANP [19] MCPT [32] [33]MHCV CV-SENet+
98.76 98.83 98.58 95.80 97.00 98.92 99.18

Table 7. Ablation Study (OA)

Experiment Datasets

Data Augmentation SE-Net Flevoland15 Flevoland7 Landes
Boxcar Lee refinedMean shift

✗ ✗ ✗ ✗ 82.42 96.95 94.88

✗ ✗ ✗ ✓ 97.12 98.48 95.40

✓ ✓ ✗ ✓ 98.17 99.66 98.72

✓ ✓ ✓ ✓ 99.18 99.81 98.85

proposed method is able to produce best results as compared to the existing
approaches.

4.4 Ablation Study

In order to analyse the effectiveness of the main components of CV-SENet, we
perform ablation experiments on three datasets. Here, we study the effective-
ness of the SE-Net and Data augmentation techniques through overall accuracy
in Table 7. For data augmentation, we consider three techniques namely Box-
car [23], Lee refined [21] and Mean shift [20]. First, we check the results without
proposed SE-Net and data-augmentation (first row of the results). Here, we use
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CV-CNN architecture of Fig. 1 without SE-Net. One can observe that the results
are inferior as compared to the proposed method (the last row). The results have
improved when we employ proposed SE-Net into the architecture (the second
row) as compared to the first experiment. When the data-augmentation tech-
niques are used along with the CV-SENet, the results are even better. Hence,
the combination of data augmentation (Boxcar, Lee refined, and Mean Shift)
and the CV-SENet produces the best results.

5 Conclusion

In this paper, we proposed a complex-valued SENet architecture to classify land
covers from PolSAR images. In the classification task, channel-wise important
information plays an essential role along with its spatial content. Convolutional
layers take care of the spatial correlation, whereas the inter-channel dependen-
cies are exploited by squeeze and excitation network (SE-Net). The proposed
models have produced promising results on unfiltered data, confirming that the
squeeze-excitation, when configured with complex-valued deep learning meth-
ods appropriately, can suppress the effect of speckle noise while classifying the
PolSAR image. The method is shown to perform exceptionally well on the four
datasets.
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Abstract. Image classification - or semantic segmentation - from input
multiresolution imagery is a demanding task. In particular, when dealing
with images of the same scene collected at the same time by very differ-
ent acquisition systems, for example multispectral sensors onboard satel-
lites and unmanned aerial vehicles (UAVs), the difference between the
involved spatial resolutions can be very large and multiresolution infor-
mation fusion is particularly challenging. This work proposes two novel
multiresolution fusion approaches, based on deep convolutional networks,
Bayesian modeling, and probabilistic graphical models, addressing the
challenging case of input imagery with very diverse spatial resolutions.
The first method aims to fuse the multimodal multiresolution imagery
via a posterior probability decision fusion framework, after computing
posteriors on the multiresolution data separately through deep neural
networks or decision tree ensembles. The optimization of the parame-
ters of the model is fully automated by also developing an approximate
formulation of the expectation maximization (EM) algorithm. The sec-
ond method aims to perform the fusion of the multimodal multiresolu-
tion information through a pyramidal tree structure, where the imagery
can be inserted, modeled, and analyzed at its native resolutions. The
application is to the semantic segmentation of areas affected by wild-
fires for burnt area mapping and management. The experimental val-
idation is conducted with UAV and satellite data of the area of Mar-
seille, France. The code is available at https://github.com/Ayana-Inria/
BAS UAV satellite fusion.

Keywords: graphical models · deep learning · probabilistic fusion ·
multiresolution imagery · semantic segmentation · wildfires · UAVs

1 Introduction

In the framework of pattern recognition, a semantic segmentation problem,
whose goal is to assign a class label to each individual pixel in an image, can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15302, pp. 287–303, 2025.
https://doi.org/10.1007/978-3-031-78166-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78166-7_19&domain=pdf
https://github.com/Ayana-Inria/BAS_UAV_satellite_fusion
https://github.com/Ayana-Inria/BAS_UAV_satellite_fusion
https://doi.org/10.1007/978-3-031-78166-7_19


288 M. Pastorino et al.

be formalized as a supervised image-classification problem [33]. Within seman-
tic segmentation tasks, the use of multimodal data has been shown to favor
accuracy and spatial precision of the classification results [10]. From a computer
vision perspective, the development of processing methods that can benefit from
multimodal information (e.g., synoptic and detailed views from multiresolution
data, different band information from multisensor imagery) and take advantage
of the complementary information therein contained presents huge potentials.

Thanks to the advent of deep learning, the performances of semantic seg-
mentation algorithms have significantly improved. However, there are still some
challenges. For example, when dealing with remote sensing images, one of the
main issues is the variability of features within the same category in the image,
leading to confusion in segmentation. Moreover, the availability of training data
is a key requirement for deep learning architectures, not always feasible for com-
puter vision applications related to remote sensing. To address these challenges,
one way is to leverage contextual and multiscale information for accurate seg-
mentation [29,30].

For example, focusing on land-cover mapping applications, on the one hand
there are satellite imaging sensors, which provide an efficient and large-scale
coverage of the Earth surface, thanks to their wide range and short revisit time.
Optical satellite imagery with spatial resolution as fine as 10 m is made available
by space missions with open data policies (e.g., the ESA Copernicus program).
However, optical satellite sensors are sensitive to weather conditions and Sun
illumination. On the other hand, in recent years, unmanned aerial vehicles (UAV)
– or drones - have also sparked a lot of interest thanks to their high flexibility,
low-cost, and ability to cover wide areas during the day or night [43]. UAV
monitoring is undertaken at low-to-medium altitudes, thus effectively avoiding
the cloud interference, and allowing for very high spatial resolution up to few
centimeters. However, the imagery captured by UAVs is typically characterized
by a small area coverage, irregular contours, susceptibility to forest cover, making
land-cover mapping from UAV imagery a challenging task [1].

The joint availability of satellite and UAV acquisitions of the same geo-
graphical zones, with their complementary features, presents a huge potential
for semantic segmentation applications and, simultaneously, a big challenge for
the development of a method capable to fully take advantage of this multimodal
information. The resulting multiresolution fusion task is quite extreme, and cur-
rently under-exploited, since the resolution ratio between the input image sources
is of the order of the hundreds – a situation that is normally not addressed by
traditional multiresolution schemes [6,13,29–32,35–39,42].

In this paper, two approaches based on deep learning, Bayesian fusion, and
probabilistic graphical fusion are proposed for the semantic segmentation of
multiresolution imagery with a huge ratio between resolutions. The focus is on
binary classification problems, which have many applications in natural disas-
ter management, such as the detection of areas affected by floods, wildfires, or
earthquakes [24], the mapping of urban areas and human settlements [8], of
snow covers [22], and cloud masking [23]. The first method proposes a pixelwise
probabilistic fusion of the multiresolution information after computing the pos-
terior probabilities with separate classifiers – neural networks and decision tree
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ensembles – on the multimodal images separately. The parameters of the method
are automatically optimized by developing a case-specific formulation of the EM
algorithm, based on a pseudo-likelihood-type approximation. The second con-
siders multiresolution fusion in a pyramidal tree graph topology through the
marginal posterior mode (MPM) criterion, an extension to the case of great
spatial resolution ratio of the approach proposed in [29,30] for multimodal and
multiresolution images.

The main novel contributions of this paper are twofold: (i) the development
of two semantic segmentation methods for input multiresolution imagery with
great mismatch in spatial resolution; (ii) the combination, within the two novel
methods, of deep learning, stochastic modeling, decision fusion, and an EM-based
automatic parameter optimization.

2 Related Work

Here, we briefly review the literature on semantic segmentation from input mul-
tiresolution imagery. Models for multimodal data, in particular multiscale and
multiresolution methods, are gaining importance in order to face the require-
ments of several applications, for example remote sensing [10] and medical image
processing [32,37]. The idea is to jointly use multiple images associated with dis-
tinct spatial resolutions to benefit from their complementary perspectives.

Wavelet-based methods [25] are often employed to perform multiresolution
image processing. In [13] an image segmentation method for human face detec-
tion based on multiresolution wavelet transforms and watershed segmentation
algorithm is presented. In [6] a wavelet-based multiresolution pyramid applied to
multitemporal or multisensor satellite data is combined with a stochastic gradi-
ent based on two similarity measures, correlation and mutual information. In [42]
several wavelet pyramids aimed at performing invariant feature extraction and
accelerating image fusion through multiple spatial resolutions are evaluated.

Deep learning methods are state-of-the-art techniques for computer vision
tasks [26]. Fully convolutional networks (FCNs) structurally involve several mul-
tiscale processing stages, through their encoder-decoder architecture and their
convolutional and pooling layers. In [37], a semantic segmentation model for
histopathology whole-slide images, which combines multiresolution context and
details via multiple branches of encoder-decoder neural networks, is proposed.
A multi-scale representation learning network integrating CNNs and Transform-
ers was proposed in [20] to exploit multi-scale local detailed feature and global
contextual information for the segmentation of lesions in lung CT images. The
joint potential of CNNs and Transformers for the analysis of local and multiscale
information was explored in [35], as well, for the semantic segmentation of urban
remote sensing images.

The literature on multiresolution fusion in remote sensing is vast and dates
back a few decades [33], with approaches rooted in several methodological areas,
such as statistical pattern recognition [15,31], neural networks [17,39], decision
fusion [40], kernel-based approaches [36], and Markov random fields [3,38].
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Furthermore, with the advent and diffusion of UAV platforms, images with
extremely high spatial resolution have become available at a relatively low
cost [19]. UAVs are often equipped with simple, lightweight sensors, such as
RGB cameras [36] that capture small portions of land. In [36] classification of
a high spatial resolution RGB image and a lower spatial resolution hyperspec-
tral image of the same scene is addressed. Contextual information is obtained
from the RGB image through color attribute profiles, and spectral information
is extracted from the hyperspectral image; a composite decision fusion strategy
exploiting kernel-based techniques is proposed.

3 Methodology

The aim of the proposed techniques is to perform the fusion of multiresolu-
tion imagery – with big mismatch in spatial resolution – for binary semantic
segmentation tasks without the need of resampling techniques. The two pro-
posed approaches integrate stochastic modeling, decision fusion, deep learning,
ensemble learning, and the EM algorithm. The overall diagrams of the proposed
approaches are shown in Fig. 1.

In this framework, neural networks and decision tree ensembles act as non-
parametric estimators of posterior probability, thus allowing multimodal data
fusion. Specifically, fully convolutional networks (FCN) [21] are employed to
estimate the posterior probabilities on the image with the finest spatial resolution
(i.e., the UAV acquisition), and random forest (RF) [4] on the image with the
coarsest spatial resolution (i.e., the resolution of the satellite acquisition). Indeed,
the ratio between the two spatial resolutions is very high. Therefore, even though
the pixel lattice of the UAV image can be quite large, the corresponding satellite
image is expected to be composed of relatively few pixels, hence generally unfit
for deep learning methods. That is the rationale of the use of a decision tree
ensemble to predict pixelwise posteriors on the pixel grid of the satellite image.

In general, the proposed approaches can be combined with an arbitrary FCN
model. In particular, U-Net [34] is used as the reference model on the UAV
lattice, since it is widely employed and has been found to be effective in applica-
tions to remote sensing imagery. Likewise, for the ensemble learning technique,
RF was selected for its well-known computational efficiency and flexibility to
model heterogeneous data.

After the computation of the pixelwise posterior probabilities of the mul-
tiresolution image pixel lattices by the FCN and RF, the first proposed method
(see Sect. 3.1 and Fig. 1(a)) performs a pixelwise probabilistic fusion to obtain
the final classification results exploiting the information carried by the UAV and
the satellite imagery. A formulation of the EM algorithm allows to automati-
cally estimate the transition probabilities that determine the chance of having a
certain label at the finer spatial resolution given the label at the coarser spatial
resolution.

For the second method (see Sect. 3.3 and Fig. 1(b)), on the other hand, the
pixelwise posterior probabilities computed on the multiresolution image lattices
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(a)

(b)

Fig. 1. Architecture of the two proposed methods: (a) pixelwise probabilistic fusion
and (b) multiresolution fusion through hierarchical PGM.

at the native resolutions are fused through a hierarchical probabilistic graphi-
cal framework based on a hierarchical Markov random field, which models the
multiresolution transition probabilities over a quadtree structure.

3.1 Pixelwise Probabilistic Fusion

The first proposed method introduces a pixelwise probabilistic decision fusion
framework to combine the information contained at different resolutions [2,5].
With the assumption that the two images are well registered, let us consider a
patch of size D ×D of the image at the finer resolution, with size corresponding
exactly to one pixel in the lattice associated with the image at the coarser spatial
resolution. Accordingly, D represents the resolution ratio associated with the
input multiresolution dataset. The idea of the proposed method is to separately
extract the thematic information contained in the two acquisitions collected at
very different spatial resolutions and with generally different spectral bands, and
perform a posterior probability pixelwise decision fusion.

As the ultimate task is to perform supervised binary image classification,
the method requires a training map at both considered spatial resolutions. We
assume that a training (ground truth, GT) map for two classes ω1 and ω2 is
available for the acquisition at the finer spatial resolution. It is necessary to also
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define classes and their training information on the coarser lattice. Focusing on
the aforementioned D ×D patch, this is determined through the following rules:

1. If all D × D finer-resolution pixels are training samples for ω1, then the
corresponding coarser-resolution pixel is a training sample for class ψ1;

2. If all D × D finer-resolution pixels are training samples for ω2, then the
corresponding coarser-resolution pixel is a training sample for class ψ2;

3. Else, the coarser resolution pixel is a training sample for class ψ3.

Accordingly, the two resolution levels correspond to distinct sets of classes: Ω =
{ω1, ω2} on the finer resolution lattice and Ω̃ = {ψ1, ψ2, ψ3} on the coarser
resolution grid. Semantically, ψ1 and ω1 represent the same land-cover class,
but observed at the two very diverse resolutions – and the same comment holds
about ψ2 and ω2 as well. On the contrary, ψ3 represents a “mixed” class on the
coarser-resolution lattice. The presence of this class is consistent with the fact
that this pixel in the satellite image is necessarily a mixed pixel, corresponding
to a ground area that is covered by partly ω1 and partly ω2.

Let xi ∈ R
n and yi ∈ Ω be the feature vector and the class label, respectively,

of the ith pixel of the D ×D patch in the finer-resolution image, and let x̃ ∈ R
m

and ỹ ∈ Ω̃ be the feature vector and the class label, respectively, of the corre-
sponding coarser-resolution pixel. We collect all finer-resolution feature vectors
xi within the patch in a tensor X ∈ R

D×D×n. The first proposed method is
formalized as follows in terms of a decision fusion approach from suitable input
posteriors. Specifically, the posterior distribution of yi, given all available input
observations at both resolutions, i.e., given both X and x̃, can be expressed as:

P (yi|X, x̃) =
∑

ỹ∈Ω̃
P (yi, ỹ|X, x̃). (1)

Applying the Bayes theorem:

∑

ỹ∈Ω̃

P (yi, ỹ|X, x̃) =
∑

ỹ∈Ω̃

p(X, x̃|yi, ỹ)
P (yi, ỹ)
p(X, x̃)

∝
∑

ỹ∈Ω̃

p(X, x̃|yi, ỹ)P (yi, ỹ), (2)

where P (yi, ỹ) is the pixelwise joint probability of the labels of the images at the
two resolutions. The proportionality constant in (2) depends only on the features
and not on the labels, hence it does not affect the decision. In the first proposed
approach, we state the following conditional independence assumption:

p(X, x̃|yi, ỹ) = p(X|yi)p(x̃|ỹ). (3)

Similar conditional independence assumptions are widely accepted in the
development of Bayesian and Markovian approaches (e.g., in [12,16,18]). Under
this assumption and considering again the Bayes theorem, plugging (3) into (2)
implies:

P (yi|X, x̃) ∝
∑

ỹ∈Ω̃

P (yi|X)
p(X)

P (yi)
P (ỹ|x̃)

p(x̃)

P (ỹ)
P (yi, ỹ) ∝

∑

ỹ∈Ω̃

P (yi|X)P (ỹ|x̃)
P (yi|ỹ)
P (yi)

,

(4)
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where P (yi|X) is the posterior probability of the acquisition at finer spatial
resolution conditioned on all feature vectors in the D × D patch, P (ỹ|x̃) is the
posterior probability computed for the acquisition at coarser spatial resolution
on the individual pixel corresponding to the patch, P (yi) is the prior probability
at the finer resolution, and P (yi|ỹ) is the conditional probability of the labels at
the finer resolution given those at the coarser resolution.

Given the size of the input multiscale data, as mentioned in the previous
section, P (yi|X) is estimated as the prediction P̂ (fcn)(yi|X) at the output of
the softmax layer of the FCN and P (ỹ|x̃) is predicted by the RF classifier in a
pixelwise manner as P̂ (rf)(ỹ|x̃).

Concerning the conditional probability P (yi|ỹ), first, stationarity is assumed.
Specifically, for each pair (ωk, ψh) of classes at the two resolutions, the joint
probability P{yi = ωk, ỹ = ψh} (k = 1, 2;h = 1, 2, 3) is assumed independent on
the pixel location i. Therefore, the conditional probability P{yi = ωk|ỹ = ψh}
is independent of the location as well. Denoting θk,h = P{yi = ωk, ỹ = ψh},
the joint probability matrix Θ = [θk,h] ∈ R

2×3 collects the parameters of the
proposed method. Θ is estimated through an approximate formulation of the
EM algorithm [7,27], as explained in the next section.

3.2 EM-Based Estimation of the Transition Probabilities

EM is a well-known iterative method to address maximum-likelihood parameter
estimation when the observations can be viewed as incomplete data [7,27]. EM
has been proved to converge (under mild assumptions) to a stationary point of
the log-likelihood function [7,41], although it does not converge, in general, to a
global maximum point.

Let S be the coarser-resolution lattice. If j ∈ S is a coarser-resolution pixel,
x̃j , ỹj , and Xj are its feature vector, its label, and the corresponding finer-
resolution tensor, respectively. The related D × D subset of the finer-resolution
lattice is denoted as Dj . Let X be the tensor collecting all feature vectors xi at
the finer resolution and Y be the matrix collecting all corresponding labels yi

(∀i ∈ Dj ,∀j ∈ S). Similarly, let X̃ and Ỹ be the tensor of all feature vectors x̃j

and the matrix of all label ỹj at the coarser resolution, respectively (∀j ∈ S).
EM iteratively maximizes the following function with respect to the matrix Θ
of the parameters [7,41]:

Q(Θ|Θt) = E

{
ln p(X , X̃ ,Y, Ỹ|Θ)

∣∣∣X , X̃ , Θt
}

, (5)

where the superscript t is the iteration index (t = 0, 1, 2, . . .) and p(X , X̃ ,Y, Ỹ|Θ)
is the joint distribution of all feature vectors and labels, in which the dependence
on Θ is explicitly emphasized. Equivalently:

Q(Θ|Θt) = E

{
ln p(X , X̃ |Y, Ỹ) + lnP (Y, Ỹ|Θ)

∣∣∣X , X̃ , Θt
}

. (6)

Here, Θ determines the joint distribution P (Y, Ỹ|Θ) of all labels, whereas the
probability density function p(X , X̃ |Y, Ỹ) of all observations, given all labels, is
not parameterized on Θ and does not depend on it.
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Specifically, in the proposed method, the function Q(Θ|Θt) is replaced by an
approximate formulation, in which we accept the following conditions:

1. The joint label distribution can be factored out as:

P (Y, Ỹ|Θ) =
∏

j∈S

∏

i∈Dj

P (yi, ỹj |Θ); (7)

2. For each coarser-resolution pixel j ∈ S, the label ỹj and all labels yi of the
related finer-resolution pixels i ∈ Dj are independent on the observations
associated with all other coarser-resolution samples x̃s, s �= j and all the
related finer-resolution samples xr, r ∈ Ds.

We recall that approximate formulations, based for instance on pseudo-likelihood
or mean-field concepts, have been widely used in the application of EM-type
algorithms to favor analytical feasibility or computational efficiency [14,28,44].
Here, conditions 1 and 2 are used precisely for this purpose, in the estimation of
the parameters Θ. However, it is worth noting that such approximation is not
involved at all in the training or prediction of the FCN and the RF classifiers.

Plugging (7) into (6), dropping the terms of (6) that do not depend on Θ,
and applying condition 2 lead to the following approximate formulation:

Q̄(Θ|Θt) =
∑

j∈S

∑

i∈Dj

E

{
ln P (yi, ỹj |Θ)

∣∣∣X , X̃ , Θt
}

=
∑

j∈S

∑

i∈Dj

E
{
ln P (yi, ỹj |Θ)

∣∣Xj , x̃j , Θ
t
}

. (8)

Since θk,h = P{yi = ωk, ỹj = ψh} (i ∈ Dj), we can write explicitly:

Q̄(Θ|Θt) =
∑

j∈S

∑

i∈Dj

2∑

k=1

3∑

h=1

αt
i,k,h ln θk,h, (9)

where αt
i,k,h = P{yi = ωk, ỹj = ψh|Xj , x̃j , Θ

t} (i ∈ Dj ; j ∈ S; k = 1, 2;h =
1, 2, 3; t = 0, 1, 2, . . .) and where:

2∑

k=1

3∑

h=1

θk,h = 1. (10)

The updated parameter matrix Θt+1 is obtained by maximizing the function
Q̄(Θ|Θt) in (9) with respect to Θ under the constraint in (10). Solving the max-
imization through the Lagrangian multipliers, we obtain, after straightforward
algebraic calculations (k = 1, 2;h = 1, 2, 3; t = 0, 1, 2, . . .):

θt+1
k,h =

1
|S|D2

∑

j∈S

∑

i∈Dj

αt
i,k,h, (11)
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where |S| is the total number of pixels in the coarser-resolution lattice (i.e., the
cardinality of S). Owing to the conditional-independence assumption in (3), one
can also prove that (i ∈ Dj ; j ∈ S; t = 0, 1, 2, . . .):

αt
i,k,h = At

i

θt
k,hP{yi = ωk|Xj , Θ

t}P{ỹj = ψh|x̃j , Θ
t}

(∑2
�=1 θt

�,h

)(∑3
�=1 θt

k,�

) , (12)

where At
i is a normalization constant that ensures that

∑2
k=1

∑3
h=1 αt

i,k,h = 1.
In the proposed method, we evaluate αt

i,k,h by estimating the posteriors in the
numerator of (12) as in the previous section, i.e., through their predictions
P̂ (fcn)(yi|Xs) and P̂ (rf)(ỹs|x̃s) computed by the FCN on the finer-resolution lat-
tice and by RF on the coarser-resolution one, respectively:

αt
i,k,h = At

i

θt
k,hP̂ (fcn){yi = ωk|Xj}P̂ (rf){ỹj = ψh|x̃j}(∑2

�=1 θt
�,h

)(∑3
�=1 θt

k,�

) , (13)

The approximate EM algorithm, integrated in the proposed method for the
estimation of the joint pixelwise probabilities Θ of the labels at the two resolu-
tions, is initialized with a uniform distribution Θ0 (i.e., θ0k,h = 1/6 for k = 1, 2
and h = 1, 2, 3). Then, it iteratively alternates (13) and (11) until convergence.

3.3 Multiresolution Fusion Through Hierarchical Probabilistic
Graphical Model

The second proposed method aims to perform the fusion of the multimodal mul-
tiresolution information through a pyramidal tree structure, where the imagery
can be inserted, modeled, and analyzed at its native resolution (see Fig. 2).

In this case, the root level (level 0) of the tree contains the coarse-resolution
image and the leaf level (level L) contains the fine-resolution image. Accordingly,
each root pixel corresponds to D × D leaf pixels. Starting from the leaf level,
intermediate levels (L − 1), . . . , 2, 1 are constructed as in a traditional quadtree,
by progressively halving the spatial resolution, and by associating the interme-
diate activations of the neural network at the corresponding resolution. Then,
the root, i.e., level 0 of the tree, is linked directly to level 1. Differently from a
conventional quadtree, where each consecutive level has a power-of-two relation-
ship with the previous one, here, many more connections are present between
the root and level 1. In particular, each pixel at the root corresponds to a patch
of (21−LD) × (21−LD) pixels on level 1.

A hierarchical probabilistic graphical model (PGM) is defined over this pyra-
midal tree. As compared to PGMs on hierarchical quadtrees, this partially irreg-
ular topology affects the formulation of the inference criterion and the top-down
and bottom-up flow of information across the levels.

Specifically, let S� be the pixel lattice of level � of the tree (� = 0, 1, . . . , L)1.
We focus again, like in Sect. 3.1, on a single individual coarse-resolution pixel
1 In Sect. 3.2, the pixel lattice of the input coarser-resolution image was indicated S.

Here, it is denoted S0 to distinguish it from the other lattices in the tree.
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Fig. 2. Architecture of the MPM information fusion based on a quadtree.

(i.e., a single root pixel) and on the corresponding D × D patch at the fine
resolution (i.e., at the leaves), and we use the same notations x̃, ỹ, xi, yi, and X
for the observations and labels at the root and at the leaves (i ∈ SL). Here, we
extend the notation xi and yi to the feature vector and the label of a pixel i ∈ S�

also in an intermediate level of the tree (� = 1, 2, . . . , L − 1).
The inference is performed through the marginal posterior mode (MPM) cri-

terion [12]. Similar to [30], under suitable conditional independence assumptions
MPM can be formulated on the proposed pyramidal tree as follows (the proof is
omitted for brevity). Firstly, a top-down pass to compute the prior probability
of the class label, starting from the root to the leaves is performed. From the
root to level 1, this implies:

P (yi) =
∑

ỹ∈Ω̃

P (yi|ỹ)P (ỹ) ∀i ∈ S1. (14)

Then, from level 1 to the leaves:

P (yi) =
∑

y−
i ∈Ω

P (yi|y−
i )P (y−

i ) ∀i ∈ S�, � = 2, 3, . . . , L, (15)

where i− ∈ S�−1 denotes the parent of a pixel i ∈ S� not on the root (� > 0).
Secondly, a bottom-up pass is performed from the leaves to the root to com-

pute the distribution of the label yi of each pixel i, given all observations of the
descendants of i in the tree (collected in a vector xd

i ) [30]:

P (yi|xd
i ) ∝ P (yi|xi)

∏

r∈i+

∑

yr∈Ω

P (yr|xd
r)P (yr|yi)

P (yr)
, (16)

P (yi|yc
i , x

d
i ) ∝ P (yi|xd

i )P (yi|yi−)P (yi−)
P (yi)ni

∀i ∈ S�, � = L − 1, L − 2, . . . , 0
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where i+ ⊂ S�+1 is the set of the children of a pixel i ∈ S� not on the leaves
(� < L), yc

i collects the labels of all pixels connected to i in the tree, and ni

is the number of such pixels. Finally, a second top-down pass is performed to
compute P (yi|X, x̃) on all pixels i in the tree [30]:

P (yi|X, x̃) =
∑

yc
i ∈Ωni

P (yc
i |yi, x

d
i )P (ỹ|X, x̃) ∀i ∈ S1, (17)

P (yi|X, x̃) =
∑

yc
i ∈Ωni

P (yc
i |yi, x

d
i )P (yi− |X, x̃) ∀i ∈ S�, � = 2, 3, . . . , L. (18)

Accordingly, a pixel i ∈ SL is assigned the label that maximizes P (yi|X, x̃).
More details can be found in [30]. On the leaf level the predictions P̂ (fcn)(yi|X)

of the FCN on the finer-resolution image are used and incorporated in the PGM
through (16). On the root, the predictions P̂ (rf)(ỹ|x̃) from RF on the coarser-
resolution image are used. On the intermediate levels, the pixelwise posteriors
are computed through a softmax over the intermediate activations of the FCN,
after a pass through a convolutional layer whose number of filters is equal to |Ω|.
Accordingly, in the proposed approach, the hierarchical PGM on the pyramidal
tree addresses multiresolution fusion, merging the predictions from the deep
neural and ensemble components.

4 Experimental Results

The proposed methods were tested on a multiresolution dataset for burnt area
mapping in case of wildfires. The dataset consists of an RGB image acquired
by an UAV with a spatial resolution of about 2 cm and the NIR channels of a
Sentinel-2 image with a spatial resolution of 10 m (Fig. 3(a)-(b)). In particular,
the UAV image has size of 16904× 20324 pixels. Given the relationship between
resolutions, D = 480. To maintain a reasonable number of levels and, simultane-
ously, model multiscale information, the drone imagery was resized to 4 cm and
8 cm of resolution (i.e., L = 3). Hence, each Sentinel-2 pixel is the parent of the
14400 pixels of the layer at 8 cm of resolution (with size 120 × 120 pixels).

The study area is La Destrousse, Provence-Alpes-Côte d’Azur, France. The
drone image was acquired by INRAE (Institut National de Recherche pour
l’Agriculture, l’Alimentation et l’Environnement) Provence-Alpes-Côte d’Azur
research centre, Aix-en-Provence, shortly after the fire of 11 July 2018. The first
available Sentinel-2 image of the same zone is dated 14 July 2018.

The GT boundaries of the burnt area, provided by the experts, were found
with the canopy height model (CHM), measuring the height of trees, build-
ings, and other structures above the ground topography [11] (see Fig. 3(c)). This
dataset was properly split in separate zones for training and testing the two
proposed methods (see Fig. 4(a)).

To our knowledge, the proposed approaches are the first ones combining mul-
tiresolution UAV and satellite images at their - very different - native resolutions,
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(a) (b) (c)

Fig. 3. Input images and GT: (a) drone image at 2 cm resolution, (b) Sentinel-2
image at 10 m resolution (the normalized difference vegetation index, NDVI, is dis-
played), (c) the GT with the same resolution as of the drone image.

(a) (b) (c) (d) (e) (f)

Fig. 4. GT and classification results on the UAV image: (a) GT used for testing
(crop of Fig. 3(c)), and the classification results from (b) U-Net trained on UAV data,
(c) the first and (d) the second proposed methods, (e) deep learning multiresolution
fusion used for comparison, and (f) DBINet [9] trained on UAV data. Class legend:
burnt (red) and non-burnt (white). (Color figure online)

for the mapping of burnt areas, therefore comparisons with state-of-the-art meth-
ods developed for this specific task were not possible. Nevertheless, the results
of the proposed approaches were compared with those of the baseline U-Net,
trained on the drone image at fine resolution, with those of RF trained on the
satellite data at coarse resolution, and with a deep learning multiresolution fusion
architecture where the satellite data at coarse resolution are included in the first
convolutional layer as a bias scalar term given by the spectral information of the
pixel x̃ multiplied by a learnable weighting vector.

The method was also compared with a recent state-of-the-art approach for
burnt area segmentation combining CNNs and transformers, DBINet [9]. Since
the methodology does not involve a multiresolution input, it was trained either
with the UAV very-high-resolution data or with the satellite imagery.

The quantitative results obtained by the proposed methods and the two
approaches used for comparison are reported in Table 1 in terms of false and
missed alarm rates, and overall error rate with respect to the GT test tile. The
classification maps are shown in Fig. 4(b)-(f). On the one hand, the baseline U-
Net directly applied to the UAV image is quite effective in the discrimination of
burnt and non-burnt areas, as suggested by the results shown in Fig. 4(b) with
an overall error rate equal to 1.61%. The same can be said for DBINet [9], which
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Table 1. Classification accuracies of the proposed methods and of the comparison
techniques.

Architecture False alarm rate Missed alarm rate Overall error rate

U-Net on UAV [34] 0.28 10.81 1.61

RF on Sentinel-2 [4] 0.27 20.34 3.17

DL multires. fusion 0.19 27.08 3.51

First proposed method 0.48 8.55 1.47

Second proposed method 0.19 7.43 1.17

DBINet on UAV [9] 1.01 6.29 1.66

DBINet on Sentinel-2 [9] 0.69 12.45 2.15

attains similar results in terms of overall error rate, 1.66%. However, despite
the output classification maps following the silhouette of the original GT map,
there are several missed alarms inside the burnt zone for U-Net. On the other
hand, the proposed pixelwise probabilistic fusion combining a few centimeters
very high resolution RGB drone image and a multispectral satellite image with
ten-meter resolution shows more accurate results in terms of overall error rate,
alas with a small loss in terms of false alarm rate with respect to U-Net, and a
small loss in terms of missed alarm rate with respect to DBINet. On the contrary,
DBINet presents the highest false alarm rate, 1.01%, thus several false positives,
consistently with low missed alarm rate (see Fig. 4(f)). The classification map of
the first proposed method (Fig. 4(c)) is more visually smooth and accurate than
the result of U-Net and DBINet, thanks to the integration of the multispectral
Sentinel-2 data through the proposed approach.

The second proposed method, the multiresolution fusion through the hierar-
chical PGM, outputs the classification map after considering all the information
of the observation of the descendant pixels and the labels of all the connected pix-
els. Thanks to this multiresolution multispectral information fusion, the method
attains the best performances for the experimental validation with the UAV and
satellite images processed at their native resolutions, in terms of all the accuracy
metrics considered, except missed alarm rate. The overall error rate is slightly
higher than 1% and the false alarm rate is about 0.2%. As compared to DBI-
Net, it attains a slightly higher missed alarm rate, yet maintaining low values for
both false positives and false negatives. The classification map shown in Fig. 4(d)
confirms the potential of this proposed model, as it is visually smooth and accu-
rate, especially in comparison with the original GT, outperforming not only the
baseline but also the previous fusion method.

The results of the deep learning multiresolution fusion (see Table 1 and
Fig. 4(e)) suggest its potential in mapping burnt areas, reaching the lowest false
alarm rate of 0.19%, same as the second proposed method. However, the clas-
sification map and the performances in terms of missed alarm rate and overall
error rate are poorer than those obtained by the two proposed techniques and
U-Net.
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The performances of the two methodologies trained on the satellite imagery,
RF and DBINet (on Sentinel-2) appear to be suboptimal with respect to the ones
obtained by the methodologies trained on the UAV imagery (U-Net and DBINet
on UAV), or on the fusion of the two multiresolution inputs (the two proposed
methods and the deep learning multiresolution fusion). This can be explained
by the lower number of training samples and the coarser spatial resolution of
the satellite imagery.

In general, the results in terms of missed alarm rate are worse than those
of false alarm rate, due to the imbalance of the classes in the dataset, where
“non-burnt” is clearly a majority class, thus prompting this behavior.

5 Conclusion

This paper introduced two probabilistic fusion methods for the joint use of mul-
tiresolution imagery with a big mismatch in spatial resolution in the framework
of semantic segmentation tasks. In particular, the focus was on RGB images
collected by UAV and multispectral satellite data, thus bringing to a resolution
ratio between the input image sources of the order of the hundreds.

The methods were applied to a case study of wildfire burnt zones seman-
tic segmentation and experimentally validated with a real dataset consisting of
drone and Sentinel-2 image data collected over the South of France. The exper-
iments show the effectiveness of the two proposed methods for the detection
and mapping of zones affected by fires. The two developed techniques obtain
accurate classification results and maps, in particular for the approach fusing
multiresolution information through an irregular quadtree topology, a hierarchi-
cal PGM, and an FCN. This confirms the potential of the combination of FCN
architectures with PGMs on appropriate graphs.

Perspectives for future developments will involve the integration of the pro-
posed methodologies with transfer learning techniques to test it with image data
acquired by different sensors, thus characterized by different features, and asso-
ciated with different geographical areas. Furthermore, it would be interesting to
apply the method to different case studies related to other applications involv-
ing multiresolution input imagery with great mismatch in spatial, and possibly
spectral, resolution.
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16. Laferté, J.M., Pérez, P., Heitz, F.: Discrete Markov image modeling and inference
on the quadtree. IEEE Trans. Image Process. 9(3), 390–404 (2000)

17. Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans.
Pattern Anal. Mach. Intell. 15(11), 1186–1191 (1993)

18. Li, S.Z.: Markov random field modeling in image analysis. Springer, 3rd edn. (2009)
19. Liu, H., et al.: Clusterformer for pine tree disease identification based on UAV

remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 62, 1–15
(2024)

20. Liu, S., Cai, T., Tang, X., Wang, C.: MRL-Net: multi-scale representation learning
network for COVID-19 lung CT image segmentation. IEEE J. Biomed. Health
Inform. 27(9), 4317–4328 (2023)

21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3431–3440 (2015)

22. Luan, W., Zhang, X., Xiao, P., Wang, H., Chen, S.: Binary and fractional MODIS
snow cover mapping boosted by machine learning and big Landsat data. IEEE
Trans. Geosci. Remote Sens. 60, 1–14 (2022)
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Abstract. Automatic diagnosis techniques have evolved to identify age-
related macular degeneration (AMD) by employing single modality Fun-
dus images or optical coherence tomography (OCT). To classify ocular
diseases, Fundus and OCT images are the most crucial imaging modal-
ities used in the clinical setting. Most deep learning-based techniques
are established on a single imaging modality, which contemplates the
ocular disorders to a specific extent and disregards other modality that
comprises exhaustive information among distinct imaging modalities.
This paper proposes a modality-specific multiscale color space embed-
ding integrated with the attention mechanism based on transfer learning
for classification (MCGAEc), which can efficiently extract the distinct
modality information at various scales using the distinct color spaces. In
this work, we first introduce the modality-specific multiscale color space
encoder model, which includes diverse feature representations by inte-
grating distinct characteristic color spaces on a multiscale into a unified
framework. The extracted features from the prior encoder module are
incorporated with the attention mechanism to extract the global features
representation, which is integrated with the prior extracted features and
transferred to the random forest classifier for the classification of AMD.
To analyze the performance of the proposed MCGAEc method, a pub-
licly available multi-modality dataset from Project Macula for AMD is
utilized and compared with the existing models.
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1 Introduction

Diagnosing retinal disorders plays a vital role in guiding treatment decisions and
improving outcomes for individuals with retinal conditions. Age-related macu-
lopathy is a degenerative condition of the central region of the retina that is
correlated with the cause of visual impairment that is recurring after 65 years of
age [3]. The diagnosis of AMD was first described in [30]. In the earlier phases
of AMD, the patients have drusen and RPE abnormalities, whereas geographic
atrophy and neovascularization of the retina may be interconnected with vision
loss during the progression of the disorder. AMD can be characterized as dry or
wet according to the pathogenesis. Choroidal neovascularization (CNV) [14] is
a manifestation of wet AMD and is diagnosed by analyzing the uncharacteristic
expansion of blood vessels from the choroid into the retina. DME [16] is a serious
condition that can be attributed to hyperglycemia, which is a form of diabetic
retinopathy (DR). It occurs due to prolonged exposure to high blood sugar, par-
ticularly in diabetic patients, which causes fluid leakage into the macula region,
swelling, and thickening. Drusen [2] is a condition of dry AMD where tiny yellow
or white deposits accumulate under the retina. If not characterized immediately,
these ocular disorders can impair the retinal layer, especially the macular area,
and perhaps end up with vision loss. Traditional diagnostic and grading systems
for AMD are conducted by analyzing the color Fundus images [12]. Over the
years, significant advancements have been made in medical diagnostics, offering
new tools and techniques that enable precise and early detection of retinal disor-
ders, especially the evolution of imaging techniques using Fundus images. OCT
is one of the widely exploited diagnostic tools that will provide 3D structural
information associated with the demonstration of cross-sectional images. OCT
provides constructive information in investigating retinal disorders in challeng-
ing diagnostic cases and acquiring cross-sectional lesions of neovascularization
associated with neighborhood tissue information. Clinical practitioners utilize
OCT to examine the activity of AMD nowadays [41]. These techniques are effec-
tive; however, they suffer from intrinsic constraints, including specialized clinical
practitioners and time-consuming, which induce variation in the ocular diagno-
sis, and hindered intervention can emerge. Recent advancements in deep learning
techniques have presented enormous possibilities for automated diagnosis tasks
of retinal disorders at the expert level, decreasing the dependency on human
experts in diverse fields [44]. There is a rapidly growing interest in implementing
deep learning models for classification using imaging modalities such as color
Fundus [29] or OCT images [9,17]. Morano et al. [27] proposed an explainable
weakly-supervised technique for AMD diagnosis by operating on color Fundus
images. Philippe et al. [4] proposed to utilize Generative Adversarial Networks
to obtain the synthetic image dataset for AMD classification. Tak et al. [38]
proposed a classification model based on a convolutional neural network (CNN)
to categorize exudative and non-exudative classes. Researchers have introduced
diverse types of deep learning models by extracting the distinct kind of feature
characterization for distinguishing the abnormalities emerging in the Fundus
images for identifying the distinct stages of the AMD [1,10]. However, the diag-
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nosis of AMD by analyzing the Fundus images and ignoring additional kinds
of investigation is restricted due to the 2D representation of the Fundus image.
The Fundus image is independent of slight changes in the macular breakage,
thickness, and detachment of the retinal layers [31]. On the other hand, OCT
acquires a cross-sectional representation of biological tissues at microscopic spa-
tial resolution [39], and it is a non-invasive technique. Liu et al. [24] proposed
global feature image descriptors constructed based on machine learning for clas-
sifying four categories of AMD using OCT images. Karri et al. [17] introduced
a classification technique based on transfer learning using OCT images. Sun et
al. [37] employed automatically align and crop of retina area followed by global
illustrations by utilizing sparse coding, and finally, a multiscale support vector
machine is executed for AMD classification. Although various automatic tech-
niques have been introduced for the diagnosis of AMD and their different classes
for examining the severity level based on OCT or Fundus images. However, it is
difficult to interpret intricate oculopathy with several lesions in the retina using
a single imaging modality. Clinical practitioners generally consider two imaging
modalities, as shown in Fig. 1, including color Fundus and OCT, in analyzing
and diagnosing retinal disorders. Further, they simultaneously assess OCT and
Fundus images and incorporate their specific feature representation details to
provide accurate diagnoses. In this regard, several methods are introduced for
the classification of ocular disorders using multi-modality imaging techniques
[20]. Yoo et al. [43] employed a random forest classifier with a VGG model for
the classification of AMD using multi-modality OCT and Fundus images. Yin
et al. [7] proposed a TransMed method using multi-modality medical images for
the classification tasks. Li et al. [23] used multi-modal evidence and introduced
a multi-instance deep learning model for the diagnosis of retinal disorders. Wang
et al. [40] proposed a two-stream CNN model for the classification of ocular dis-
eases using Fundus and OCT images. Fang et al. [11] proposed a technique by
integrating the regression approach to the deep learning models for the diagno-
sis of glaucoma grading. Xing et al. [42] proposed a transformer-based model
using mult-modality images. These introduced deep learning models based on
multi-modality Fundus and OCT images improve the performance of diagno-
sis of retinal disorders compared to the utilization of single modality imaging
methods. Notably, relying on the single color channel and scale space of the
multi-modality images employed for the deep learning models often ignores cap-
turing the global and local feature representation in distinct multi-scale space.
Moreover, the feature information in the distinct color spaces provides diverse
characteristic feature information that is not attainable by employing a single
color space.

In this work, we propose modality-specific multiscale color space embed-
ding based on the attention mechanism for the classification of different stages
of the AMD. The proposed framework includes the utilization of YCbCr and
HSV color space for Fundus images on different scale spaces, followed by OCT
images at multiscale to capture the crucial features by exploiting the different
characteristic feature representations in distinct color spaces and fed to three
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(a) (b)

Fig. 1. (a) The Original Fundus image and (b) the corresponding OCT image.

different pre-trained VGG16 model for the feature extraction. It enhances the
generalization ability of the proposed model and also considers the different fea-
ture attributes of the color spaces by considering distinct scales into a unified
framework. An attention mechanism is incorporated to extract the most repre-
sentative feature from each considered path, followed by a concatenation of the
extracted features from each pre-trained model, and the attention mechanism
is transferred to a random forest classifier (RFC) model for the classification of
AMD. To experimentally analyze the interpretation of the proposed MCGAEc
method, a publicly available multi-modality dataset is utilized, which is provided
at Project Macula [32] for AMD and compared with the existing method to show
the significance of the proposed framework. In summary, the key contributions
to this study are mentioned below:

– We propose a modality-specific multiscale color space embedding integrated
with the attention mechanism, which adaptively specifies the most represen-
tative features and is fed to the RFC model for the classification of AMD.

– To analyze the efficacy of the proposed MCGAEc model, experiments are
performed over a publicly available dataset of the color Fundus and OCT
images (Project Macula) and compared with the single modality (Fundus or
OCT) images on different color spaces at distinct scales.

– The proposed method is compared with the state-of-the-art (SOTA) method
to demonstrate the efficacy of the proposed MCGAEc model using the eval-
uation measures.

The remainder of the manuscript is systematized as follows: Sect. 2 demonstrates
the proposed framework, followed by experimental analysis in Sect. 3. Section 4
includes the concluding observations.

2 Proposed Model

This section introduces the proposed MCGAEc framework illustrated in Fig. 2.
MCGAEc comprises a modality-specific multiscale color space encoder module
in which a Fundus image is transformed into distinct color spaces, say, YCbCr
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and HSV, which are transferred to two encoder paths. For OCT images, one
encoder path named gray-scale is constituted. In each path, the transformed
Fundus images are forwarded to multiscale space conversion, followed by input
for the pre-trained VGG16 model to acquire vital features from each consid-
ered color space at various scales. The extracted features from each path from
the Fundus images are transferred to the self-attention module. Simultaneously,
we extract the features from the gray-scale path for the OCT images. Then,
features extracted from the pre-trained VGG16 and self-attention module are
concatenated. Finally, we fused all the extracted features from each path and
fed them to the RFC for the classification of AMD. Modality-Specific Mul-
tiscale Color Space Encoder Model: The color variations of Fundus images
enclose exhaustive ranges, and heterogeneity in color casts restricts the classi-
cal models [6]. Motivated by traditional enhancement techniques that function
over different color spaces [15,25,28], we extract distinct characteristic features
from two color spaces (HSV, YCbCr) where the identical Fundus image has
distinct pictorial representation in diverse color spaces demonstrated in Fig. 3.
The Fundus image is explicitly to visualize in RGB color space because of its
intense physical significance in color. However, the color segments R, G, and B
are positively associated and are easy to be influenced by the variation of lumi-
nance, occlusion, and other factors. On the other hand, YCbCr color space can
intuitively reminisce the luminance (Y) and two chroma components (Cb and
Cr). YCbCr is crucial in digital images and video to separate luminance from
its chrominance. This fragmentation is beneficial because the human eye is more
susceptible to luminance than chrominance, and it entitles more efficiency in
compression that aligns with the visual perception of humans. HSV color space
characterizes the hue, saturation, contrast, and brightness of the Fundus image.
The considered color space has diverse characteristics and benefits. To integrate
their properties in the Fundus image feature enhancement, we assimilate the
characteristics of distinct color spaces into a unified deep characteristic model.
Furthermore, the color variations of two considered points with a diminutive
variation in one color space can be enormous in another color space. Thus, the
distinct color space integration can facilitate the measure of the color divergence
of Fundus images.

To extract the necessary features from distinct color spaces, which is required
for the classification of AMD, multi-scaling is incorporated. When the scale is
augmented, most of the noise is eliminated. If the features are available in more
than one coarse scale, which indicates it should be available at different scales
as well [36]. Therefore, this strategy is implemented over each color space by
considering different scales for Fundus and OCT images, respectively. After-
ward, we executed the pre-trained VGG16 [35], which includes 16 deep layers
for extracting the features from considered multiscale color space for Fundus
and OCT images. VGG16 is an adequate model for the image classification task,
and the pre-trained model enables to extraction of features from an extensive
corpus of images when utilizing a small dataset. VGG16 model provides the bal-
ance between the performance and computational efficiency compared to other
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Fig. 2. The proposed framework for the combination of the Fundus and OCT images
for the classification of AMD

(a) (b) (c)

Fig. 3. Representation of the Fundus image in (a) RGB color space (original), (b)
YCbCr color space, and (c) HSV color space.

complex models. Additionally, it allows the experiments without requiring com-
prehensive computational resources, which provides an advancement to integrate
the attention layer with that. A transfer learning mechanism is utilized, and
extracted features from each are fed to the distinct attention module.

Self-Attention: The self-attention mechanism was first introduced in the
domain of image processing [33], which is integrated into the attention layer.
It enables to concentrate on salient or global features of the datasets. It pro-
vides an adequate correlation towards global feature information within each
single image. The primary notion behind the self-attention mechanism is to asso-
ciate weighted average values evaluated from the prior layers, and the attention
weights are assessed as follows:

Attenttion(Q,K, V ) = softmax
( QKT

√
dhead

)
V (1)

where Q is a query, K is the key, and V is the value. In the assertion of the
precise characterization of each multiscale color space feature, the extracted
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features from the pre-trained model through each path have dissimilar con-
tributions. Consequently, we utilize a self-attention mechanism to exploit the
inter-variability between the extracted features obtained through each path. In
the proposed framework, the extracted features from each path through the
pre-trained VGG16 model are used as input for the self-attention module. The
extracted features through the pre-trained VGG16 model are confined by struc-
ture to concentrate primarily on local features of Fundus and OCT images while
incompetent to acquire the global feature information. Self-attention focuses on
specific global features of the images. Therefore, the extracted features from
the pre-trained deep network model are fed into the self-attention model corre-
sponding to each path. The attention features and extracted prior features from
the pre-trained model from each path are fused together by concatenation for
a better representation of each feature acquired through the Fundus and OCT
images, which are used as input for the classification model.

Classification Model: The computed features through the modality-specific
multiscale color space encoder model with self-attention are transferred into the
supervised machine learning RFC [19]. The RFC comprises an amalgamation of
tree classifiers where a particular classifier is acquired through a random vector,
which is sampled individually from the input data, and the respective tree pro-
vides a unit vote for the most prevalent class to categorize input data. The RFC
is utilized for the classification of the input data, which relies on the utilization
of randomly chosen features at each node to expand a tree. In RFC, features are
illustrated on the inner nodes, which are called decision nodes, and enable to
generate the predictions from a sequence of feature-based fragmentation. RFC
employs a collection of random decision trees and integrates them concurrently
to construct a robust model that is less acute to the training data. The RFC
algorithm is capable of handling higher dimensional data and utilizing an enor-
mous number of trees in the combination. The output of the RFC is computed
by a majority counting of votes obtained through trees. Here, RFC is used,
which includes considerably lower computational complexity as each particular
tree exclusively utilizes a part of the input vector in a Random Forest.

3 Experimental Framework

In this section, the description of the multi-modality OCT and Fundus image
datasets for diagnosis of AMD is provided, followed by evaluation measures to
check the performance of the proposed MCGAEc model. Finally, a compre-
hensive empirical study, including the ablation analysis, is given to show the
significance of the proposed MCGAEc model for the classification using the
multi-modality dataset.

3.1 Dataset and Evaluation Measures

The experimental analysis of the MCGAEc model is assessed over the pub-
licly open multi-modality OCT and Fundus images dataset at the Project
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Macula [32] for AMD classification (https://projectmacula.cs.uab.edu). The
publicly available dataset aimed to investigate AMD in patients and their sever-
ity level. The diagnosis of AMD over the provided dataset is endorsed by patho-
histological examination. The dataset is categorized into three classes: normal,
non-neovascular, and neovascular. The normal class includes 50 OCT and Fun-
dus images each, followed by 19 and 40 in non-neovascular and neovascular,
respectively.

The spatial resolution of Fundus and OCT images in each class is of dif-
ferent variation, and data is not enough to train the model. Therefore, data
augmentation is applied with rotations, translations, and contrast changes for
increments in the number of images. Data augmentation [34] is extensively
applied to enhance the generalization of the proposed method. We erratically
retrieved 500 Fundus images for each class and 500 OCT images for each class
that matched with the Fundus images. We have performed the rotation in a
range [−25◦,+25◦], with translation [−10%,+10%] of the width of the image,
and contrast change with ranges of [−50%,+50%]. All the generated OCT and
Fundus images are resized 224 × 224 for the input of the pre-trained model.
The experiments are performed in the selection of an optimal number of trees
from the set {100, 300, 500, 700, 1000} and estimators from the range 3–25 for
the RFC classifier. The optimal number of trees for the proposed framework for
the RFC is to obtain 1000 trees and 10 estimators for each node for the AMD
dataset. The five-fold cross-validation is employed for multi-classification, which
is illustrated in Sect. 3.2

To examine the performance of the MCGAEc method on the above-
considered dataset, commonly used performance evaluation measures, including
AUC (area under the receiver operating characteristic), Accuracy, Sensitivity,
Specificity, F1, and Matthews Correlation Coefficient (MCC) score is consid-
ered, which are described as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
Sensitivity =

TP

TP + FN
(2)

Specificity =
TN

TN + FP
F1 =

2TP

2TP + FP + FN
(3)

MCC =
TN × TP − FN × FP√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

where TP denotes true positive counts, FN denotes false negative counts, TN
denotes true negative counts, and FP denotes false positive counts. For all the
evaluation measures, higher values indicate better classification performance.

3.2 Effectiveness of the Proposed MCGAEc Model

We first illustrate the comparison between the proposed MCGAEc model over
the single modality by considering different color spaces with various scales. We
have performed 5-fold cross-validation, and the experimental results are reported

https://projectmacula.cs.uab.edu
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Table 1. Experimental performance over the test set of the single modality model over
the multi-modality model by considering different color spaces and scale space based
on 5-fold cross-validation of the training set

Methods AUC Accuracy Sensitivity Specificity F1 MCC

HSV+Fundus+RFC(σ = 1) 0.970 0.870 0.870 0.935 0.869 0.810
YCbCr+Fundus+RFC(σ = 1) 0.986 0.907 0.906 0.953 0.906 0.860
HSV+Fundus+multiscale+RFC 0.968 0.857 0.856 0.928 0.855 0.803
YCbCr+Fundus+multiscale+RFC 0.986 0.910 0.913 0.955 0.909 0.860
OCT+RFC(σ = 1) 0.979 0.887 0.886 0.943 0.888 0.833
OCT+RFC(σ = 4) 0.980 0.890 0.890 0.945 0.891 0.848
OCT+multiscale+RFC 0.980 0.893 0.894 0.947 0.894 0.847
YCbCr+HSV+Fundus+RFC(σ = 1) 0.988 0.910 0.910 0.955 0.909 0.865
YCbCr+HSV+Fundus+RFC(σ = 4) 0.987 0.907 0.907 0.953 0.906 0.879
YCbCr+Fundus+OCT+RFC(σ = 1) 0.989 0.927 0.927 0.963 0.927 0.886
YCbCr+Fundus+OCT+RFC(σ = 4) 0.990 0.930 0.932 0.965 0.930 0.895
HSV+Fundus+OCT+RFC(σ = 1) 0.986 0.923 0.920 0.962 0.923 0.880
HSV+Fundus+OCT+RFC(σ = 4) 0.987 0.916 0.917 0.958 0.916 0.861
HSV+YCbCr+Fundus+OCT+RFC(σ = 1) 0.993 0.943 0.943 0.972 0.943 0.896
HSV+YCbCr+Fundus+OCT+RFC(σ = 4) 0.992 0.937 0.932 0.968 0.937 0.892
Proposed (MCGAEc) 0.994 0.947 0.948 0.973 0.947 0.907

in Table 1. When considering a single modality Fundus image, we have per-
formed the experiments on YCbCr and HSV color spaces by taking the lower
and higher regularization levels to capture the features at different scales, as
shown in Table 1. For OCT images, we have considered different scales for com-
parison with the proposed framework and other considered cases. The pre-trained
VGG16 model is the backbone for the feature extraction from single modality
and multi-modality with respect to different multi-scale color spaces.

Figure 4 demonstrates ROC curves for each considered case over the proposed
framework for the AMD dataset. It can be observed from the ROC curve the
proposed modality-specific multiscale color space embedding based on attention
mechanism (MCGAEc model) for AMD classification is more adequate com-
pared to other single modalities based on single color spaces. The proposed
method achieves a higher AUC value of 0.994 compared to other single modal-
ities with single color spaces, as demonstrated in Fig. 4. Table 1 signifies that
the proposed MCGAEc model can improve the capability of AMD classification
compared to the utilization of a single modality model. In the single modality,
the Fundus image, when transformed to YCbCr color space with regularization
level σ = 4, has achieved a higher AUC of 0.990 compared to other single modal-
ity cases. Further, it achieves a higher F1-score of 0.930 among the other single
modality for classification. However, when the Fundus image is transformed into
HSV color space with multiscale, it achieves the lowest F1 score compared with
others. The proposed model has higher Accuracy, Sensitivity, Specificity, F1,
and MCC score compared to others demonstrated in Table 1. It indicates that
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(a)
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(c)

Fig. 4. ROC (Receiver operating characteristic) curves for the proposed method, (a)
multiscale color space with single modality comparison, (b) fusion of the multiscale
color spaces, (c) combination of multi-modality Fundus and OCT images for the multi-
class classification of AMD.
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Table 2. Experimental performance of the proposed MCGAEc model compared with
the state-of-the-art method [43] over the training set using five-fold cross-validation for
the AMD dataset

Methods AUC Accuracy Sensitivity Specificity F1

RF - OCT image alone 0.906 0.826 0.833 0.816 –
RF - Fundus image alone 0.914 0.835 0.834 0.836 –
RF - OCT+Fundus image 0.969 0.905 0.910 0.896 –
RBM - OCT+Fundus image 0.940 0.865 0.860 0.875 –
DBN - OCT+Fundus image 0.956 0.889 0.880 0.905 –
Proposed (MCGAEc) 0.994 0.944 0.943 0.972 0.943

when different color spaces are considered in multiscale and incorporated with
the multi-modality Fundus and OCT images, the performance of the classifier
is enhanced significantly, and it enables to capture of essential local and global
discriminative features at different scales using attention mechanism.

3.3 Quantitative Comparison with Existing Approaches

In this section, we have compared the proposed model with the existing method
over the considered AMD dataset, and the empirical study is demonstrated in
Table 2–3. For comparison purposes with the AMD dataset, the implementation
of the SOTA methods is conducted. The training results over the AMD dataset
of the proposed framework are presented in Table 2 and compared with the Yoo
et al. [43], which indicates that the proposed model is competent to extract the
most discriminative features, which is essential for the classification of AMD
in comparison to [43]. The proposed MCGAEc model enables to distinguish
between false positive and true positive at distinct threshold levels indicated by
the higher AUC value acquired by the proposed framework. Table 3 represents
the test result over the multi-modality Fundus and OCT image dataset and is
compared with the SOTA methods. The proposed model attained a higher AUC
of 0.994 compared to other methods, which indicates the consistency of the pro-
posed classification framework at different threshold levels except [11], and it can
be observed from the ROC curve illustrated in Fig. 4. The presented method [11]
acquires lower Specificity compared to our proposed method, which indicates the
diagnosis of AMD in the false positive category. MCGAEc model performance is
adequate in terms of quantitative comparison for the considered AMD dataset.
The empirical analysis of the proposed MCGAEc model is adequate compared
to the SOTA approaches illustrated in Table 3 over the test set.

3.4 Discussion

This is the first experimental study, best to the knowledge of the authors to
consider a multiscale color space for fusing distinct imaging modalities for the
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classification of AMD disorder. In this study, we proposed an MCGAEc model
that considers the Fundus and OCT images at multiscale color spaces simul-
taneously for the diagnosis of AMD. Fundus imaging modality characterizes
information on the region of the drusen (AMD). OCT provides subsurface cross-
section imaging, providing information about the different layers of the retina.
Such information is complimentary to the structural information of the vascu-
lature on the surface as obtained from Fundus images. OCT imaging modality
is correlated with the subsurface of retinal layers and intra-retinal fluid lesions.
The thickness of retinal layers, which is influenced by choroidal neovasculariza-
tion, is investigated through the OCT, and the Fundus image is competent to
apprehend the evolution in the size of the drusen. However, the Fundus image is
insufficient in identifying choroidal neovascularization rigorously [26]. Whereas
OCT is not able to identify the transitions in the drusen and retinal pigment
epithelium [5]. The Fundus and OCT imaging modalities provide complementary
information on the retina. Early stages-based techniques utilized Fundus or OCT
for diagnosis of AMD based on deep learning models [8,13,18,21,22]. This work
focuses on investigating the crucial feature information extracted from Fundus
and OCT images, which are integrated with the proposed MCGAEc method to
capture the surface and subsurface retinal information for the diagnosis of AMD
and glaucoma. We have assimilated multiscale color space to diagnose complex
retinal diseases, which helps to capture dissimilar features from OCT and Fun-
dus simultaneously at distinct color spaces with multiple scales. In the proposed
approach, we attempt to combine distinct feature properties preserved in the
various color spaces and if it is captured at a finer scale so there is a possibility
of the presence of that particular feature at multiple scales. Therefore, we have
considered YCbCr and HSV color spaces at different scales and integrated them
with the pre-trained VGG16 model to extract the crucial feature for diagnosis

Table 3. Experimental performance of the proposed MCGAEc model compared with
the state-of-the-art method over the test set for the AMD dataset

Methods AUC Accuracy Sensitivity Specificity F1

RF - OCT image alone [43] 0.914 0.833 0.808 0.883 –
RF - Fundus image alone [43] 0.954 0.892 0.900 0.877 –
RF - OCT+Fundus image [43] 0.981 0.946 0.955 0.927 –
RBM - OCT+Fundus image [43] 0.976 0.931 0.942 0.910 –
DBN - OCT+Fundus image [43] 0.961 0.892 0.888 0.913 –
Inception-v3 - Fundus image alone [43] 0.958 0.892 0.900 0.877 –
LASSO Regression - OCT+Fundus image [43] 0.950 0.885 0.887 0.882 –
ANN-Fundus segmentation [43] 0.911 0.841 0.852 0.820 –
Yin et al. [7] 0.998 0.938 0.937 0.969 0.936
Xin et al. [42] 0.991 0.925 0.925 0.963 0.924
Fang et al. [11] 0.996 0.945 0.941 0.951 0.946
Aiyub et al. [1] 0.989 0.945 0.939 0.952 0.946
Proposed (MCGAEc) 0.994 0.947 0.948 0.973 0.947
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purposes. On the other hand, OCT images are considered on different scales to
capture the subsurface retinal layer information for the diagnosis of choroidal
neovascularization. The attention mechanism is incorporated to extract global
feature representation and integrated with the local feature information, followed
by the ensembling of each classifier at the feature fusion module, and a random
forest classifier is utilized for the classification of various stages of AMD. To show
the significance of the modality-specific multiscale color space embedding, the
experiments are also performed over a single modality based on different scales
of color spaces, and results are illustrated in Table 1. It can be observed from
Table 1 that when the Fundus image is utilized and transformed into YCbCr color
space at multiscale, it achieves 0.910 Accuracy for the AMD dataset compared to
other single modalities with one color space transformation. However, the exper-
imental performance is similar for single modality Fundus images when distinct
color spaces are fused together. On the other hand, when modality-specific mul-
tiscale color space embedding strategy is assessed, then the performance of the
MCGAEc model is elevated and achieved 0.947 Accuracy for the AMD dataset.
Further, we have performed a comparative study demonstrated in Table 2 and
3, which shows the efficacy of the proposed MCGAEc method over the SOTA
methods. The proposed study can be integrated into the clinical setting to help
ophthalmologists with the diagnosis of the retinal disorder and, based on the
observation, can predict the retinal disease.

4 Conclusion

We have presented a multi-modality MCGAEc deep learning model that assimi-
lates the feature representations in various color spaces and emphasizes the vital
discriminative features by multiscale mechanism. Besides, the global feature rep-
resentation is incorporated into the proposed model by employing the attention
mechanism at each path of the ensemble classifier. To analyze the behavior of
the proposed model, extensive experiments were accomplished over the publicly
available multi-modality AMD dataset and compared with the existing approach,
which indicates the effectiveness of the proposed model. Additionally, the signif-
icance of the proposed method has been verified by performing experiments on
a single modality with distinct color spaces, and the proposed MCGAEc model
achieves higher evaluation measures compared to the considered cases. Moreover,
we successfully incorporated ROI-specific mechanisms to learn essential features
from the multi-modality imaging techniques used to diagnose retinal disorders
and localize the affected region.
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Abstract. In recent years, Convolutional Neural Network (CNN) based
frameworks are being applied to polarimetric synthetic aperture radar
(PolSAR) image classifications and achieved improved results. How-
ever, the performance of CNN for PolSAR image classification is greatly
dependent upon the selection of polarimetric features. Although CNN
automatically extracts abstract high level features from the data, it is
still beneficial to incorporate additional hand-crafted features to enhance
the classification results. In this research, to incorporate spatial infor-
mation of the pixels in classification process, first, a profile of the Pol-
SAR image is constructed by using superpixel algorithm. Then, the con-
structed superpixel profile is fed into a CNN model for classification. The
experiment conducted on three real PolSAR datasets highlights the util-
ity of superpixel profiles. For all the three datasets, our proposed method
demonstrates a consistent improvement of at least 3% in classification
accuracy in comparison to the state-of-the-art CNN model.

Keywords: PolSAR Images · Superpixel Profile · Convolutional
Neural Network (CNN)

1 Introduction

Recently, polarimetric synthetic aperture radar (PolSAR) imagery has become
an increasingly important component in the process of monitoring the surface
of the earth due to its application in a variety of fields, including classification
of land cover and crops, monitoring of snow and glaciers, identification of ships
etc.. This is possible because of its ability to monitor the earth’s surface in all
weather conditions and work both during day as well as night.

The advancement of PolSAR image classification led to the introduction of
a number of polarimetric-based feature extraction techniques, such as Cloude-
Pottier decomposition [3], Freeman and Durden method [5], as well as the Yam-
aguchi four-component decomposition [20]. In addition to polarimetric features,
traditional features like colour features, morphological profiles, textural features,
as well as spatial and semantic object-oriented features are also utilized for Pol-
SAR image classification [4,15,16,18,25]. In the literature, classifiers such as
Wishart classifier, maximum likelihood classifier, decision tree and support vec-
tor machine are used for PolSAR image classification. Recently, deep learning
algorithms have shown promising result.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Lin et al. [11] used simpleCNNfor landcover classification.Yanget al. [21] intro-
duced a feature selection technique for classification of PolSAR image by using 1-D
CNN. Si-Wei Chen and Chen-Song Tao [2] leveraged expert knowledge of target
scattering and polarimetric features to improve CNN training and classification.
Han et al. [6] performed PolSAR image classification using optimal feature selec-
tion and convolutional neural network (CNN).Hua et al. [7] introduced amultiscale
sequential network with an attention mechanism for PolSAR image classification.
Jamali et al. [8] used deep CNNs incorporated with the Haar wavelet transform for
efficient featureextractiontoenhance theclassificationaccuracyofPolSARimages.
The success of all these CNN models are dependent upon the quality of the polari-
metric features they extract during the learning process.

Superpixel algorithms have been extensively used within the domain of com-
puter vision to improve the performance of image segmentation and classification
tasks. One of the advantages of using superpixels is that it can provide a more
compact and efficient representation of the image data while preserving impor-
tant spatial information. Thus, it can be useful to incorporate better spatial
information for the classification of the PolSAR images. Liu et al. [12] utilized
superpixels for the very first time and developed a superpixel-based classifica-
tion framework for PolSAR images. Wang and Liu [19] used superpixel-level
scattering mechanism (SM) for ship detection from the PolSAR images. Qin et
al. [17] applied SLIC superpixel algorithm for PolSAR image segmentation. Most
of the techniques in the literature exploit superpixel as a post-processing tool
for improving the classification accuracy.

In this paper, a superpixel profile (SP) for the PolSAR image is constructed
by applying the existing superpixel algorithm. The profile is constructed in such
a way that it incorporates sufficient spatial information of the PolSAR image.
Then, the constructed SP is utilized by a deep CNN model for classification.
While CNNs are primarily designed for feature extraction and hierarchical rep-
resentation learning from local patches, superpixel algorithm aims to capture
global spatial information. Superpixel algorithm group pixels with similar char-
acteristics into compact regions, preserving spatial context. Combining SP with
CNNs allows us to leverage both local features extracted by CNNs and global
spatial information from SP, resulting in improved classification accuracy for Pol-
SAR images. The experiment conducted on three real PolSAR datasets shows
the potentiality of the proposed superpixel profile. The remaining sections are
organized as follows. Section 2 presents the proposed method. Section 3 provides
the description of the datasets that are used for the experiment. The analysis
of the experimental results is provided in Sect. 4. Finally, Sect. 5 wraps up the
paper with conclusion.

2 Proposed Method

In this paper, we proposed a method by combining CNN with superpixels that
utilises spatial information present in the PolSAR image. CNN was chosen for
its established effectiveness in handling patch-based features. Its capability to
learn hierarchical representations of local features aligns well with the output of
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Fig. 1. Complete framework of the proposed method. Stage 1: Construction of SP from
the PolSAR data utilizing T3db and SPAN. Stage 2: Classification using Deep CNN
incorporating the constructed SP.

superpixel segmentation. Our method is implemented in two stages: In the first
stage, superpixel profile is constructed by incorporating polarimetric features,
and in the second stage, this handcrafted superpixel profile is fed into the CNN
model for training and classification. By providing additional spatial information
with the superpixel profile, our CNN model shows better ability to learn and
classify the PolSAR images. The complete framework of our proposed method
is shown in Fig. 1. The detailed explanation of the proposed method is given in
the following sections.

2.1 Stage 1: Construction of the Superpixel Profile

In this stage, the spatial information present in the PolSAR image is utilized by
exploiting superpixel algorithms. Although there are numerous superpixel algo-
rithms available in the literature, in this work, three superpixel algorithms such
as Simple Linear Iterative Clustering (SLIC) [1], Improved SLIC (iSLIC) [22],
and Entropy Rate Superpixel (ERS) [13] are explored. These three algorithms
are chosen based on their popularity, previous success in image processing tasks,
and potential applicability to PolSAR images. SLIC is a widely used popular
superpixel segmentation method that aims to generate superpixels with com-
pact shapes and approximately uniform sizes. SLIC combines clustering and
distance measures in a compact optimization framework to achieve efficient and
accurate segmentation results. iSLIC is an improved version of SLIC, which uses
the entire bands of the image, instead of few principal components. ERS is a
graph-based superpixel segmentation method widely used in computer vision.
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It creates superpixels by dividing the image into compact, homogeneous, and
size-balanced sub-graphs.

In our proposed approach we use superpixel algorithm as a feature extrac-
tion technique to extract homogeneous regions of the image to feed into the
CNN model. In superpixel algorithm the neighbour pixels that provides similar
information are grouped together called superpixels. Thus, superpixels represent
the image in term of some homogeneous regions that provides spatial informa-
tion of the image. In detail, by applying a superpixel algorithm considering a
threshold value t, it partitions the pixels on the image into multiple superpixels,
each containing similar neighbour pixels of the input image. After obtaining the
superpixels, the intensity value of each superpixel is computed by taking the
average intensity value of the pixels that belong to it. Then a Mean Superpixel
Image (MSI) associated to the threshold value t is created by representing each
pixel of the input image using its superpixel intensity value. Since superpixels
formed by considering a single threshold value are not sufficient to provide ade-
quate spatial information of the input image. In order to provide sufficient spatial
information, in this work, multiple MSI are generated by varying the threshold
value in a wide range. Then a superpixel profile (SP) is constructed by concate-
nating all the generated MSI along with SPAN and T3db features of the original
image. In more detail, suppose I be the original input image and t1, t2, . . . , tk
are the considered threshold values, then the SP of image I is constructed as:

ISP = {ISPAN , IT3db, I
t1
SPAN_MSI , . . . , I

tk
SPAN_MSI ,

It1T3db_MSI , . . . , I
tk
T3db_MSI} (1)

where,
ISPAN and IT3db represents the SPAN feature and six T3db features of the Pol-
SAR image I, respectively.
It1SPAN_MSI , . . . , I

tk
SPAN_MSI and It1T3db_MSI , . . . , I

tk
T3db_MSI are the MSI gener-

ated from the SPAN and T3db features respectively by the superpixel algorithm
considering thresholds t1, t2, . . . , tk.

The constructed SP can be represented as a h x w x d cube, where h stands
for height of the cube, w stands for width and d is the dimension of the cube.
The Stage 1 of Fig. 1 illustrates the construction of SP.

2.2 Stage 2: Classification with Deep CNN

After the superpixel profile (SP) is constructed, patches are created for the
PolSAR image which include sufficient spatial information and these patches are
then used as input for the CNN. The CNN model is then trained to classify each
patch based on the features represented in the superpixel profile. The model is
trained using a supervised learning approach, in which it is provided with labeled
samples of the patches and the desired output class for each patch [2].

Architecture of the CNN Model. The architecture of the CNN model used
in this work is shown in Fig. 2. The model consists of three convolutional layers,
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Fig. 2. CNN model architecture.

two max pooling layers, two fully connected layers, and a final softmax layer for
classification. In greater detail, the three convolutional layers contains 30, 60,
and 120 filters, with kernel size of 2 × 2 and stride of 1. The two max-pooling
layers has size of 2× 2 and stride of 2. Rectified linear units(ReLu) is used as
the activation function for all the three convolutional layers as well as for the
first fully connected layer. Furthermore, to reduce the problem of over-fitting,
dropout with 0.5 ratio is applied to the second fully connected layer. From the
Fig. 1 it can be seen that the initial input to the CNN model is the constructed
SP. To leverage the spatial information by the CNN model, the constructed SP
is fragmented into smaller patches of size p × p × d.

Finally, the frequently utilized stochastic gradient descent (SGD) coupled
with back-propagation algorithms are employed to learn different weights and
biases during the model’s training process [10].

3 Description of Datasets

To validate the performance of our proposed method, we conduct experiments
on three real-world PolSAR datasets commonly used in the field. For a compre-
hensive understanding of these datasets, their descriptions are provided below.

Flevoland AIRSAR Dataset. The Flevoland image, a fully polarimetric L-
band SAR image with 10m spatial resolution, was acquired by NASA/JPL-
Caltech AIRSAR. The image size is 750× 1024 pixels, and its Pauli RGB rep-
resentation is shown in Fig. 3(a). The ground truth map (Fig. 3(b)) contains 15
classes, including stembeans, peas, forest, lucerne, three types of wheat, beet,
potatoes, bare soil, grass, rapeseed, barley, water, and buildings. The ground
truth data is sourced from [23]. Table 1 lists the training and testing sample
sizes.
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Table 1. Train and Test Samples for Flevoland AIRSAR dataset

Sl. No. Land Class Training samples Testing samples

1 Stem Beans 1000 6103
2 Peas 1000 9111
3 Forest 1000 14944
4 Lucerne 1000 9477
5 Wheat1 1000 17283
6 Beet 1000 10050
7 Potato 1000 15292
8 Bare Soil 1000 3078
9 Grass 1000 6269
10 Rapeseed 1000 12690
11 Barely 1000 7156
12 Wheat2 1000 10591
13 Wheat3 1000 21300
14 Water 1000 13476
15 Building 200 476

San-Francisco AIRSAR Dataset. The San Francisco image, a fully polari-
metric L-band SAR image with 10m spatial resolution, was acquired by
NASA/JPL-Caltech AIRSAR. The image size is 900× 1024 pixels, and its Pauli
RGB representation is shown in Fig. 4(a). The ground truth map (Fig. 4(b)) con-

(a) Pauli RGB (b) Ground truth

(c) Color Code

Fig. 3. Pauli RGB, ground truth and color code of Flevoland AIRSAR
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(a) Pauli RGB (b) Ground truth

(c) Color Code

Fig. 4. Pauli RGB, ground truth and color code of San-Francisco AIRSAR

(a) Pauli RGB (b) Ground truth

(c) Color Code

Fig. 5. Pauli RGB, ground truth and color code of San-Francisco RADARSAT-2

Table 2. Train and Test Samples for San-Francisco AIRSAR dataset

Sl. No. Land Class Training samples Testing samples

1 Mountain 1000 13701
2 Ocean 1000 62731
3 Urban 1000 329566
4 Vegetation 1000 342795
5 Bare soil 1000 53509
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Table 3. Train and Test Samples for San-Francisco RADARSAT-2 dataset

Sl. No. Land Class Training samples Testing samples

1 Water 1000 852078
2 Vegetation 1000 237237
3 High-Density Urban 1000 351181
4 Low-Density Urban 1000 282975
5 Developed 1000 80616

Table 4. Classification accuracy on Flevoland AIRSAR dataset

Class CNNWavelet-CNNPolSARFormer Proposed
ERS iSLIC SLIC

Stem beans 90.46 100 99.30 95.17 99.75 99.71
Peas 86.99 99.30 99.34 91.70 97.86 98.99
Forest 91.19 100 98.74 97.61 98.43 99.09
Lucerne 89.05 99.87 99.51 99.27 98.81 99.70
Wheat1 63.85 99.16 92.74 86.91 78.31 88.67
Beet 93.04 99.48 99.20 94.43 97.44 87.34
Potato 76.26 95.59 96.97 91.43 94.21 99.35
Bare Soil 99.90 98.64 100 99.90 99.94 99.87
Grass 73.58 90.83 96.84 93.19 95.65 84.67
Rapeseed 84.73 53.15 97.41 96.78 93.81 95.97
Barley 91.69 94.41 99.94 99.55 98.66 99.48
Wheat2 91.79 95.48 95.14 85.71 96.61 89.88
Wheat3 86.13 71.01 95.20 87.40 91.46 95.49
Water 99.69 0 0 99.94 99.95 99.87
Buildings 97.90 0 0 99.79 99.16 100
OA 85.53 81.87 88.46 93.21 94.41 95.44
AA 87.75 79.79 84.69 94.59 96.00 95.87
kappa 84.25 80.31 87.48 92.60 93.91 95.03

tains 5 classes: mountain, ocean, urban, vegetation, and bare soil. The ground
truth data is sourced from [14]. The number of training and testing samples is
provided in Table 2.

San-Francisco RADARSAT-2 Dataset. The second San Francisco image, a
fully polarimetric C-band SAR image with 8m spatial resolution, was acquired
by Canadian Space Agency RADARSAT-2. The image size is 1380× 1800 pix-
els, and its Pauli RGB representation is shown in Fig. 5(a). The ground truth
map (Fig. 5(b)) contains 5 classes: Water, Vegetation, High-Density Urban, Low-
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Table 5. Classification accuracy on San-Francisco AIRSAR dataset

Class CNNWavelet-CNNPolSARFormer Proposed
ERS iSLIC SLIC

Mountain 95.85 89.35 99.61 96.95 96.20 97.50
Water 94.57 54.95 93.68 96.58 96.91 92.73
Urban 97.23 77.99 97.85 97.95 97.32 96.95
Vegetation 85.69 92.03 96.78 89.17 90.83 92.62
Bare Soil 85.61 87.71 80.20 86.05 92.50 93.93
OA 91.29 84.50 94.39 93.28 94.17 94.58
AA 91.79 80.27 94.18 93.34 94.75 94.75
kappa 86.88 77.01 91.39 89.77 91.11 91.70

Table 6. Classification accuracy on San-Francisco RADARSAT-2 dataset

Class CNNWavelet-CNNPolSARFormer Proposed
ERS iSLIC SLIC

Water 98.78 99.72 98.16 99.42 99.43 99.43
Vegetation 83.29 97.16 77.26 91.07 95.30 91.20
High Density Urban 81.63 82.07 89.38 80.18 90.39 89.78
Low Density Urban 82.72 98.02 92.02 94.07 85.32 95.34
Developed 89.02 85.02 94.79 93.81 87.44 93.28
OA 90.45 95.02 92.59 93.49 94.38 95.55
AA 87.09 92.40 90.32 91.71 91.58 93.81
kappa 86.32 92.86 89.40 90.67 91.92 93.61

Density Urban, and Developed. The ground truth data is sourced from [14]. For
a detailed breakdown of the training and testing sets, please refer to Table 3.

4 Experimental Results

This section outlines the experimental setup and discusses the results and find-
ings of the experiments.

4.1 Experimental Setting

To assess the effectiveness of the proposed method, we ran our experimental
analysis on the three datasets as discussed above. In the experiment, the pro-
posed method is compared with three models including a CNN model [24] and
two state-of-the-art models, namely wavelet-CNN [8] and a ViT based PolSAR-
Former [9]. To show the potentiality of the proposed method irrespective of
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(a) CNN (b) Wavelet-CNN (c) PolSARFormer

(d) Proposed

Fig. 6. Classification map of Flevoland AIRSAR data. (a) CNN (b) Wavelet-CNN (c)
PolSARFormer (d) Proposed method using SLIC superpixel algorithm

the superpixel algorithms, Simple Linear Iterative Clustering (SLIC), Improved
SLIC (iSLIC) and Entropy Rate Superpixel (ERS) are used.

The traditional polarimetric features are constructed from Lee-Speckle fil-
tered T3db and SPAN Image, generated from the PolSAR data. We took four
different threshold values for constructing four mean superpixel images(MSI)
for each input image. The threshold values used are 20, 50, 100 and 200. Since
T3db contains six features and SPAN contains a single feature which make it a
sum of 7 original features. Hence, a total of 28(7× 4) superpixel feature images
are obtained which are then stacked together with the original T3db and SPAN
which finally makes it a total of 35 features. The extracted feature set is then
utilized to create patches which are then fed into the proposed CNN model for
classification. The patch size p for the proposed CNN model is taken as 7 for all
the three datasets. Hence, the size of the input SP patches becomes 7× 7× 35.
In the experiments, the model is trained for 300 epochs with learning rate of
0.0001 via SGD with 64 mini-batch.

PolSAR image preprocessing, T3 matrix generation, SPAN image creation,
and T3-to-T3db conversion were performed using PolSARpro v6.0.2. Superpixel
(SP) construction was done in MATLAB, and the CNN model was implemented
in Python using TensorFlow.
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(a) CNN (b) Wavelet-CNN (c) PolSARFormer

(d) Proposed

Fig. 7. Classification map of San-Francisco AIRSAR data. (a) CNN (b) Wavelet-CNN
(c) PolSARFormer (d) Proposed method using SLIC superpixel algorithm

4.2 Results

The classification accuracy of all methods is measured using class-wise accuracy,
overall accuracy (OA), average accuracy (AA), and the kappa coefficient (kappa),
which provide a robust assessment of the performance. The classification results
over the Flevoland AIRSAR dataset, San-Francisco AIRSAR dataset and San-
Francisco RADARSAT-2 dataset, are shown in Table 4, 5 and 6 respectively. The
reported results show that the proposed method with SLIC algorithm performed
significantly better than other methods, including that of the Wavelet-CNN and
PolSARFormer which are considered state-of-the-art methods for PolSAR Image
classification. For the Flevoland AIRSAR dataset, it is seen from Table 4 that the
OA achieved without using SP i.e. for the existing literature based CNN model
was 85.53% and the OA improved to a high of 95.44% which is an increase of
almost 10% when integrating with SP i.e. our proposed method. Similarly, for
the San-Francisco AIRSAR dataset, the OA improved to a maximum of 94.58%
from 91.29%, as shown in Table 5. Also, for the San-Francisco RADARSAT-
2 dataset, the highest OA achieved by our proposed method is 95.55% whereas
OA produced by CNN without SP is 90.45% as shown in Table 6. Hence, from the
results obtained it is evident that our proposed method is able to provide better
results than other methods, including CNN, Wavelet-CNN and PolSARFormer
for all the three PolSAR datasets. For qualitative analysis Fig. 6, 7 and 8 show
the classification maps produced by our proposed method in comparison with
the CNN, Wavelet-CNN and PolSARFormer models for all the three considered
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(a) CNN (b) Wavelet-CNN (c) PolSARFormer

(d) Proposed

Fig. 8. Classification map of San-Francisco RADARSAT-2 data. (a) CNN (b) Wavelet-
CNN (c) PolSARFormer (d) Proposed method using SLIC superpixel algorithm

dataset. It is seen that the proposed method can produce smoother classification
maps with few misclassifications for all the three datasets.

4.3 Discussion

Based on the results of the experiments, it is clear that our approach of com-
bining superpixel profile with deep CNN model is able to effectively incorpo-
rate spatial information for improving the classification performance of PolSAR
images. It is evident that without the superpixel profile, the accuracy is signifi-
cantly lower. This is because the superpixel profile is able to provide additional
spatial information into the CNN model for better discrimination. This high-
lights the importance of incorporating spatial information in the classification
process, which can be achieved through the use of superpixels. Furthermore, the
results also show that among the three superpixel algorithms (SLIC, iSLIC, and
ERS), SLIC provides the best OA for all three datasets. This further supports
the effectiveness of the proposed approach in incorporating spatial information
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to improve the classification performance of PolSAR images. It is noteworthy
that in certain class instances, the CNN approach achieves better performance
compared to at least one of the proposed methods. However, it still fails to pro-
vide consistent performance across all the classes. Similar inconsistencies were
observed for the two other state-of-the-art methods, where it can be seen that
in few classes, it performed exceptionally well but failed drastically for other
classes. But, our proposed approach, while exhibiting slightly lower accuracy for
few classes, has produced consistent performance across all the class instances.
This consistency translates to a superior OA, which constitutes a key strength of
our method. This desirable outcome of our proposed approach can be attributed
to the combining of SP with CNN, which allows us to leverage both local fea-
tures extracted by the CNN and global spatial information from SP, resulting in
improved classification accuracy for PolSAR images.

5 Conclusion

This paper proposed a novel approach to improve the accuracy and efficiency of
PolSAR image classification by combining a convolutional neural network with
superpixels. The proposed method divided into two stages, where the first stage
constructs the superpixel profile by incorporating spatial information extracted
from the polarimetric features, and in the second stage, the CNN model is trained
to classify each patch based on the features represented in the superpixel pro-
file along with polarimetric features. The results clearly show that incorporating
superpixel profile consistently achieves the highest overall accuracy (OA), aver-
age accuracy (AA), and kappa coefficient for all three datasets. This research
highlights the potential of using superpixels as a feature extraction technique to
extract spatial information by constructing superpixel profile, which can be fed
into the CNN model to improve classification performance. This approach can
be extended to other remote sensing data.
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Abstract. For the performance evaluation of the clustering algorithm,
evaluation metrics are used. For this purpose, the obtained set of clusters
are compared with the actual set of clusters (or gold standard). Various
evaluation metrics have been proposed in the past. One important ques-
tion regarding these evaluation metrics is – how good are these metrics
for evaluating the performance of the clustering algorithm? Wagner et
al. have proposed some of the properties of these evaluation metrics. The
evaluation metric should also have a high sensitivity value to capture the
change in the clustering result/gold standard along with these proper-
ties. In this paper, we compute the sensitivity of two commonly used
evaluation metrics – Precision and Recall. We also show that the sensi-
tivity of Precision and Recall is polynomial with respect to the number
of data-points.

Keywords: Sensitivity · Contingency table · Hasse diagram

1 Introduction

In the clustering domain, the evaluation metrics are used to evaluate the per-
formance of the clustering algorithm. These metrics judge the quality of the
obtained set of clusters against the actual set of clusters. Various evaluation
metrics are used for evaluating the performance of the clustering results, like
F-measure, Rand Index, Adjusted Rand Index, etc. One important question
regarding these evaluation metrics is – how good are these metrics for evalu-
ating the performance of the clustering algorithm? One algorithm’s importance
over the other is decided based on the value obtained by these evaluation metrics,
so it is very important to be sure about our judging criteria (i.e., evaluation met-
rics). Recently, a detailed review of F-measure has been discussed in [7]. Various
important properties of these evaluation metrics have been suggested by Wagner

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15302, pp. 335–350, 2025.
https://doi.org/10.1007/978-3-031-78166-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78166-7_22&domain=pdf
https://doi.org/10.1007/978-3-031-78166-7_22


336 S. Mishra et al.

et al. [16]. Recently, some authors have explored one important property of the
evaluation metrics [13,17], which is the Sensitivity1 and is defined as follows:

Definition 1. Given an evaluation metric EM, the sensitivity of an evaluation
metric EM is the possible number of unique values which EM can provide for all
the possible clustering results.

Consider the elevation metric Precision. Let us consider 3 data-points. The
possible values of Precision considering all the clustering results obtained from
3 data-points is {0, 1, 1/3, 0/0}. Thus, the sensitivity of Precision is 4.

Along with satisfying the other properties, the evaluation metric should also
have a high value of sensitivity. Now, the question is how to obtain the value
of sensitivity for an evaluation metric. In this work, we are focusing on two
popular validity measures – Precision and Recall. In our work, we will first
discuss a naive approach to obtain sensitivity. Using this naive approach, we can
obtain the sensitivity of all the validity measures. However, this approach is not
practical as it explores all the possible clustering results (Bn for n data-points)
and their combinations (B2

n for n data-points) to obtain the sensitivity, where
Bn is the nth Bell Number [1,4,10,12]. We will discuss the number of possible
clustering results and their combinations in detail in the next section. Next, some
theoretical results are established, which helps in computing the sensitivity. We
have also proved that the sensitivity of Precision and Recall is bounded by
O(n4) for n data-points. At the end, an approach to compute the sensitivity for
Precision and Recall is presented using Hasse diagram2. This approach is also
exponential, but better than the naive approach. The bound on the sensitivity
of Precision and Recall (i.e., O(n4)) gives us hope that some better algorithms
can be developed in the future.

2 Preliminaries

Let D = {p1, p2, . . . , pn} be the set of n data-points which can be grouped in
different ways. Let C = {C1, C2, . . . , CK} and C′ = {C ′

1, C
′
2, . . . , C

′
L} be two

such ways such that ∪K
k=1Ck = ∪L

l=1C
′
l = D and Ck ∩ Ck′ = C ′

l ∩ C ′
l′ = φ for

1 ≤ k �= k′ ≤ K and 1 ≤ l �= l′ ≤ L.
The cardinality of cluster Ck is nk∗, and the cardinality of cluster C ′

l is n∗l.
The number of data-points that are in both the clusters Ck and C ′

l is nkl. Let
C be the gold standard and C′ be the obtained clustering result. Two clustering
results are compared using the notion of contingency table. The contingency table
M = (nkl) of the two clustering results C and C′ is a K × L matrix. The klth

entry of this matrix is obtained by the common number of data-points in Ck

and C ′
l . The contingency table for C and C′ is shown in Table 1.

1 Do not be confused with Precision, as some authors use the word sensitivity and
Precision interchangeably.

2 The readers are encouraged to read about the hasse diagram in [6].
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Table 1. Contingency table for comparing two clustering result.

C C′ Sums
C′
1 C′

2 . . .C′
L

C1 n11 n12 . . . n1L n1∗
C2 n21 n22 . . . n2L n2∗
...

...
...

. . .
...

...
CK nK1 nK2 . . . nKL nK ∗
Sumsn∗1 n∗2 . . . n∗L n∗∗ = n

The total number of clustering results for n data-points is obtained using nth

Bell number [4], Bn which satisfies the recurrence relation in Eq. (1) [4].

Bn+1 =
∑n

k=0

(
n

k

)
Bk, B0 = B1 = 1 (1)

The total number of clustering results is Bn. When two clustering results
are compared, then one clustering result is the gold standard, and another is
obtained by some clustering algorithm. Any of the Bn clustering results can be
the gold standard as well as the obtained clustering result. Thus, there are a
total of Bn × Bn ways in which two clustering results can be compared. Hence,
the total number of contingency tables is also Bn × Bn. The growth rate of
the number of clustering results and their combinations w.r.t. the number of
data-points is shown in Fig. 1. From this figure, it is clear that the number of
clustering results and their combinations grows exponentially w.r.t. the number
of data-points.
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Fig. 1. Clustering results and their combinations.

True Positive (TP) is the number of pairs of data-points that are present in
both C and C′. False Positive (FP) is the number of pairs of data-points that
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are present in C′ but not in C, whereas, False Negative (FN) is the number of
pairs of data-points that are present in C but not in C′. The number of pairs of
data-points that are not present in either C or C′ is basically True Negative (TN).
Let the total number of pairs be S which is equal to

(
n
2

)
so S = TP+FP+FN+TN.

As the maximum number of pair of data-points be
(
n
2

)
, thus, the maximum value

of TP, FP, FN and TN is
(
n
2

)
. The values of TP, FP, FN and TN are computed from

the contingency table using Eqs. (2), (3), (4) and (5) respectively.

TP =
∑

k,l

(
nkl

2

)
(2)

FP =
∑

l

(
n∗l

2

)
− TP (3)

FN =
∑

k

(
nk∗
2

)
− TP (4)

TN =
(

n

2

)
− (TP+ FP+ FN) (5)

The values of Precision and Recall from the contingency table is calculated
using Eqs. (6) and (7) respectively.

Precision = P =
TP

TP+ FP
(6)

Recall = R =
TP

TP+ FN
(7)

3 Approach

In this section, we first discuss the naive approach and then the proposed app-
roach. In the naive approach, we do the following –

– Explore all possible clustering results that can be obtained from n points.
There are Bn number of such clustering results where Bn represents the Bell
number [1,4,10,12].

– Obtain all the possible contingency tables by comparing all the combina-
tions of Bn clustering results. There are B2

n such comparisons between the
clustering results.

– For each contingency table, compute the value of Precision.
– Obtain the unique value of Precision/Recall to get the value of sensitivity for

Precision/Recall.

As we have seen in Fig. 1, B2
n grows exponentially, so this approach is not

feasible even for a small value of n (for n = 10, the value of B2
n is more than

1010). Thus, a better approach is required.
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Theorem 1. Given a contingency table T and its transpose T ′. The value of
Precision for T is the same as the value of Recall for T ′, and the value of Recall
for T is the same as the value of Precision for T ′.

Proof. The contingency table T is shown in Table 1. The transpose of T is shown
in Table 2. The values of True Positive, False Positive and False Negative for
contingency table T ′ is calculated using Eqs. (8), (9) and (10) respectively.

Table 2. Transpose of the contingency table shown in Table 1.

C′ C Sums
C1 C2 . . .CK

C′
1 n11 n21 . . . nK1 n∗1

C′
2 n12 n22 . . . nK2 n∗2

...
...

...
. . .

...
...

C′
L n1L n2L . . . nKL n∗L

Sumsn1∗ n2∗ . . . nK ∗ n∗∗ = n

TP′ =
∑

l,k

(
nlk

2

)
(8)

FP′ =
∑

k

(
nk∗
2

)
− TP′ (9)

FN′ =
∑

l

(
n∗l

2

)
− TP′ (10)

True positive for T and T ′ is the same (see Eqs. (2) and (8)), i.e., TP = TP′.
False Positive for T is same as the False Negative for T ′ (see Eqs. (3) and (10)),
i.e., FP = FN′. Similarly, False Negative for T is same as the False Positive for T ′

(see Eqs. (4) and (9)), i.e., FN = FP′. The values of Precision and Recall from
the contingency table T ′ is calculated using Eqs. (11) and (12) respectively.

P′ =
TP′

TP′ + FP′ =
TP

TP+ FN
(11)

R′ =
TP′

TP’+ FN′ =
TP

TP+ FP
(12)

From Eqs. (6) and (12), it is clear that the value of Precision for T is the
value of Recall for T ′. Similarly, From Eqs. (7) and (11), it is clear that the value
of Recall for T is the value of Precision for T ′.

Corollary 1. The value of sensitivity for Precision and Recall is the same.
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Proof. The value of Precision for T is same as the value of Recall for T ′ and vice
versa. So, all the possible values of Precision and Recall for a particular value
of n is same. Hence, the value of sensitivity for Precision and Recall is same.

Theorem 2. For n data-points, the value of sensitivity for Precision and Recall
is bounded by O(n4).

Proof. Precision is of the form p
q , p ≤ q where p and q are non-negative integers.

p = TP and the maximum value of TP can be n(n−1)
2 as the maximum number of

pairs of data-points is n(n−1)
2 . q = TP + FP and the maximum value of TP + FP

can also be n(n−1)
2 . Thus, there is an upper bound on the values of p and q

which is n(n−1)
2 = O(n2). Thus, the value of sensitivity for Precision and Recall

is bounded by O(n4).

An upper bound on the sensitivity of various validity measures can easily be
obtained using their definitions. This paper mainly focuses on Precision and
Recall, so we have only obtained the bound for these two measures.

3.1 Motivating Example

Precision is the ratio of TP to the sum of TP and FP. The values of TP and
FP are calculated from the contingency table. The contingency table of size
R×C, 1 ≤ R, C ≤ n for n data-points is filled with one of the partitions of an integer
n. The maximum cardinality of a partition is n, and the maximum number of
elements in the contingency table can be n2. So actually, the contingency table is
filled by the partitions of an integer n and zeros. From Eq. (2), it is clear that the
value of TP is calculated by the elements in the contingency table. The value of
TP+FP is calculated by the column sum of the contingency table. Similar to the
elements in the contingency table, the column-sum is also one of the partitions
of an integer n. However, unlike the elements in the contingency table, which
can contain zeros, the column-sum does not have zeros (as there is no row with
all elements equal to 0). So the partitions of an integer have an important role in
calculating TP and FP, and we exploit this role to compute the sensitivity. The
integer partition have been widely used in other works also [3,5,9].

TP is calculated considering all the elements in a partition, which is used to
fill the contingency table using Eq. (2). Similarly TP+ FP is computed from the
column-sum of the contingency table using Eq. (3). We can obtain the value of
sensitivity if we can answer the following question –

“for a given column-sum, what are the possible partitions that can fill
the contingency table?”

The answer to this question enables us to find all the values of Precision
for a given column-sum, and we can ask this question for all the column-sum.
Our work is motivated by providing an answer to this question. To answer this
question, we are creating a graph considering all the partitions of n. This graph
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is termed as Hasse Diagram [6] or Poset of Integer Partitions [14]. Each node
in this graph is considered as column-sum, and all the reachable nodes from a
particular node will give the partitions used to fill the contingency table with
the given column-sum. Next, this graph is discussed.

3.2 Hasse Diagram

Here we discuss the hasse diagram in detail. In particular we focus on the defini-
tion, the process to generate the hasse diagram and the complexity of generating
this hasse diagram.

Definition 2 (Hasse Diagram). Let Pn be the set of all partitions of a pos-
itive integer n. We can organize Pn using a graphical representation called a
Hasse diagram Gn in the following way. We create the graph Gn with ver-
tices V = {u : u ∈ Pn} arranged in rows, according to rank. We then add edges
E = {(u, v) : u, v ∈ Pn and two summands of v can be added to form u}

We represent a node in a Hasse diagram Gn as Node = 〈nodeId, partition〉.
– nodeId: It corresponds to the unique id assigned to each node. It is repre-

sented as Node.nodeId.
– partition: It represents the partition of an integer n corresponding to the

node. It is denoted as Node.partition.

Let p(n) be the number of partitions of n and p(n, K) be the number of partitions
of rank K, so p(n) =

∑n
K=1 p(n, K). The number of nodes in Hasse diagram Gn

is p(n). The Hasse diagram G7 is shown in Fig. 2. The process to generate the
Hasse diagram for an integer n is summarized in Algorithm 1.

Each partition gives the value of TP and TP+FP. When the partition is treated
as the column-sum in the contingency table, then the value of TP+FP is obtained
(From Eq. (3)). When the partition is used to fill the contingency table, then
the value of TP is obtained (From Eq. (2)). Thus, Eqs. (2) and (3) need to be
executed several times. To efficiently compute the value of TP and TP+FP during
the course of our approach, we are performing K(K-1)

2 for each 1 ≤ K ≤ n in line
1 − 4 of Algorithm 1 and storing it for further use.

Adjacency list representation is used to store the graph. We have computed
the size of the adjacency list p(n) using Hardy-Ramanujan asymptotic partition
formula [2] defined in Eq. (13).

p(n) ∼ 1/4n
√
3 exp

(
π
√

2n/3
)

(13)

The error rate between the exact number of partitions and the obtained
number of partitions using Eq. (13) decreases as n increases [11]. Thus, there
will be some space wastage. However, this formula’s error rate is low, so space
wastage will not be significant.

The Hasse diagram is generated in a rank-wise manner, starting from the
nodes corresponding to partitions of rank 1 to rank n. There is only one partition
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Algorithm 1. Hasse Diagram
Input: n: An integer
Output: Gn: Hasse diagram from partitions of n
1: combAr[ ] ← ∅ � An array of size n to store the combinatorial
2: for k ← 1 to n do
3: combAr[k] ← (k

2

)

4: L[ ] ← ∅ � An array of size p(n) to store the adjacency list of each node in the
Hasse diagram

5: id ← 1
6: partition ← 〈n〉 � Initial partition of rank 1
7: comb ← (

n
2

)
� Obtain TP (when n is used to fill the contingency table) and TP+ FP

(when n is the column-sum in the contingency table) corresponding to n
8: Node ← 〈id, partition〉 � Create initial node
9: L[id].node ← Node

10: Add nodeId to the Queue Q
11: Kprev ← 0 � Rank of previously generated partition
12: while Q is not empty do
13: currNodeId ← Dequeue from Q
14: currNode ← L[currNodeId] � Get the node corresponding to currNodeId
15: P ← currNode.partition � Partition corresponding to currNode of the form

P = 〈λ1, λ2, . . . , λK〉
16: K ← |P| � Rank of partition P
17: if K = n then � Rank of current partition is n
18: Break � Hasse diagram is generated
19: if K �= Kprev then � All the partitions of rank Kprev have been processed
20: Re-initialize the Trie
21: for k ← 1 to K do � Process each element of P
22: if λk �= λk-1 then � Two consecutive elements of P are different
23: P′[1, . . . , K+1] ← ∅ � Initialize the partition of rank K+1 which can be

obtained from P
24: Copy the elements from P to P′ except λk

25: for i ← 1 to
⌊

λk
2

⌋
do

26: P′[K] ← i, P′[K+1] ← λk − i � Last two elements of P′

27: Sort P′ in non-increasing order of their elements
28: if P′ has already been generated using Trie then
29: nodeId ← Id of the node corresponding to partition P′

30: L[currNodeId].adjList ∪ nodeId
31: else � P′ is newly generated
32: id ← id+ 1 � Increment id for the next node
33: comb ← Find-Combinatorial(P′, combAr[ ]) � Obtain TP

(when P′ is used to fill the contingency table) and TP+ FP (when
P′ is the column-sum in the contingency table) corresponding to
P′

34: Node ← 〈id, P′, comb〉 � Create new node
35: L[currNodeId].adjList ∪ id
36: Insert P′ and id into the Trie
37: Enqueue id to Q

38: Kprev ← K
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Fig. 2. Hasse Diagram for P7

of rank 1 which is 〈n〉. Initially, the node is created corresponding to this partition
(Line 5− 8). This node is inserted into the queue. In the process of inserting the
node into the queue, we only insert its id to save space. With the help of id of
a node, we can get the partition corresponding to this id in constant time by
looking up in the adjacency-list (given in Line 4).

Now the ids of the nodes are dequeued from the queue to generate the new
nodes. Once we have the id, we can get the partition corresponding to this id. If
the rank of the partition corresponding to the dequeued id is equal to n, i.e., all
the partitions are generated, then the process to generate the Hasse diagram is
terminated. Otherwise, the process of generating the Hasse diagram continues.

A partition P = 〈λ1, λ2, . . . , λK〉 of rank K can generate multiple partitions
of rank K+1. Initially, the partition of rank K+1 (say P′) is initialized to ∅ (Line
23). The partition of rank K+1 is generated from each element λk, 1 ≤ k ≤ K of
P. For this, all the elements of P except λk, are copied to P′. These elements are
copied in initial K-1 positions in P′ (Line 24). The last two elements of P′ are
obtained by dividing λk in two parts (Line 26). An element λk generates

⌊
λk
2

⌋

partitions of rank 2. In this algorithm, a partition element is divided iff the same
partition element is not already divided into two parts. This is because if two
partition elements are the same, their division into two parts yields the same
new partitions.

Lemma 1. Maximum number of partitions of rank K+1 generated from a parti-
tion P of rank K is O(n).

Proof. Consider a partition P = 〈λ1, λ2, . . . , λK〉 of rank K. λ1+λ2+ . . .+λK = n.
The partitions of rank K+1 is generated from each element λk of P by dividing it
into two parts. Thus, the total number of partitions of rank K+1 obtained from
P is λ1

2 + λ2
2 + · · · + λK

2 = n
2 = O(n).
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When the partitions are generated, it may be possible that the same partition
of rank K+1 is generated from more than one partition of rank K. However, the
same partition can be considered as a node only once. So when a partition
is generated, we have to check whether it has already been generated or not.
This can be performed using the Trie data structure [8,15], which stores all
the partitions of a particular rank at a time. The generated partition is sorted
in non-increasing order of their elements, which in-turn helps in obtaining the
partitions of rank K+1 from a partition of rank K and also check whether it has
already been generated or not using Trie, efficiently. In Algorithm 1, when we
obtain a partition P′ of rank K+1, we perform the following –

– If the partition P′ is already generated (Line 28), then we get the nodeId
corresponding to P′ (Line 29). Now the nodeId of P′ is added to the adjacency-
list of P as partition P′ has been generated from P (Line 30).

– If the partition P′ is not generated previously (Line 31), then a new node
corresponding to this partition is created (Lines 32 − 34) and the nodeId
of this newly created node is added to the adjacency-list of P (Line 35).
The partition is also added to the Trie (Line 36). The nodeId of this newly
generated node is added to the queue (Line 37).

Algorithm 2. Find-Combinatorial(P, combAr[ ])
Input: A partition P = 〈λ1, λ2, . . . , λK〉 of rank K
Output: Combinatorial of partition P
1: combinatorial ← 0
2: for k ← 1 to K do
3: if λk ≥ 2 then
4: combinatorial ← combinatorial+ combAr[λk]
5: return combinatorial

When all the partitions of rank K are processed (i.e., all the partitions of rank
K+1 are generated), we re-initialize the Trie (Line 19−20) to store the partitions
of rank K+2. In this way, we do not need to store all the partitions in the Trie.
Thus, the space requirement reduces. When the partitions of rank K are stored
in the form of a trie, then the time complexity to check whether a partition of
rank K has been generated or not is O(K).

Complexity Analysis: We are performing K(K-1)
2 for each 1 ≤ K ≤ n in line 1−4

of Algorithm 1. An integer K is represented using O(log K) bits. So performing
K(K-1)

2 requires O(log2 K) time using grad school multiplication. Thus, the time
complexity of lines 1−4 of Algorithm 1 is given as follows:

∑n
K=1 log

2 K = n log2 n.
The maximum number of partitions of rank K+1 obtained from a partition P of
rank K is O(n) (from Lemma 1). The time complexity to generate a partition of
rank K+1 from a partition of rank K is O(K+1). The generated partitions of rank
K+1 are sorted in non-increasing order of their elements, which takes O(n) time
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using counting sort. Each of these partitions is checked to see whether they have
already been generated or not using Trie, which requires O(K+1) time. In case
the partition has not already been generated, we need to add it to the Trie which
requires O(K+1) time. For each generated partition of rank K+1, we obtain the
possible value of TP or TP+ FP in Line 33 using Algorithm 2. This step requires
O(K+1) time. So the overall time complexity of Algorithm 1 is given by Eq. (14).

THasse = n log2 n +
∑K

k=1
p(n, k) · (n(K+1+ n + K+1+ K+1)) = n2p(n) (14)

From a partition of rank K, we can get O(n) partitions of rank K+1 (From
Lemma 1). Thus, there are O(n) outgoing edges from a node. Hence, the total
number of edges in the Hasse Diagram is bounded by O(n · p(n)). As we are
using adjacency list representation, the space required to store Hasse Diagram
is O(p(n) + n · p(n)) = O(np(n)). In our approach, the partitions are generated
in a rank-wise manner. So there is no need to store all the partitions in the form
of a Trie together. The Trie only stores the partitions of a particular rank K+1
when the partitions of rank K are processed. When all the partitions of rank K+1
are stored, then it requires (K+1) · p(n, K+1) space. Thus, the space required to
store Trie is max1≤K≤n (K · p(n, K)).

4 Sensitivity Computation

The process to obtain the sensitivity of Precision is summarized in Algorithm 3.
The importance of partitions in sensitivity computation is discussed in Sect. 3.1.
We aim to obtain the list of all the nodes that are reachable from a given node
in the Hasse Diagram, and this can be obtained by BFS, considering the given
node as a source node. Any partition can be the column-sum, so this process
must be repeated, considering each node as a source node while applying BFS
traversal. The value obtained from the partition corresponding to the source
node of BFS is the value of the denominator. In contrast, the value obtained
from the partition corresponding to all the reachable nodes from the source
node (including the source node itself) is the numerator’s value. After obtaining
all the possible values of the Precision, we compute the unique values and thus
the sensitivity.

When we apply BFS to a node y (considering it as a source) and there is
an edge (x, y), then all the nodes reachable from y will also be reachable from
x. It means when we have the list of reachable nodes from y, we can use that
information while considering node x as a source. Thus, all the possible values of
TP when BFS is applied to node y considering it as a source, will also be the value
of TP for node x along with some other values. Now the question is how to use
the already obtained TP values efficiently? The value of TP varies between 0 and
n(n−1)

2 and we use this range to use the already obtained TP values efficiently.
To exploit this range information efficiently, we start applying BFS to the

nodes at the last level (nth level), then the nodes at the n − 1th level, n − 2th

level, and so on. As TP varies between 0 and n(n−1)
2 , so we create a boolean array
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Algorithm 3. Obtain Sensitivity
Input: Gn: Hasse Diagram for an integer integer n
Output: sen: Sensitivity of Precision for n points
1: S ← (

n
2

)

2: sen_matrix[0, . . . , S][0, . . . , S] ← False � Initialize a 2D boolean matrix of size
(S+ 1) × (S+ 1)

3: |V | ← Number of vertices in Hasse Diagram Gn

4: Node ← Last node in Gn

5: Node.TPAr[0, . . . , S] ← False � Boolean array of size S+ 1 for the last node
6: comb ← Node.comb � combinatorial for the last node is 0
7: Node.TPAr[comb] ← True � True Positive value when BFS is applied to last node

is 0
8: denom ← Node.comb � The value of denominator when Node.partition is the

column-sum of the contingency table
9: sen_matrix[numer][denom] ← True

10: for i ← |V | − 1 to 1 do
11: Node ← L[i] � ith node in the Hasse diagram
12: Node.TPAr[0, . . . , S] ← False � Boolean array of size S+ 1 for Node
13: comb ← Node.comb
14: Node.TPAr[comb] ← True � The value of True Positive when Node.partition

is used to fill contingency table
15: for each node ∈ Node.adjList do
16: Node.TPAr[ ] ← Node.TPAr[ ] || node.TPAr[ ] � Logical OR operation

between the TPAr[ ] array of Node and its child node

17: denom ← Node.comb � The value of denominator when Node.partition is the
column-sum of the contingency table

18: for j ← 0 to S do
19: if Node.TPAr[j] = True then
20: numer ← j
21: Precision ← numer

denom
22: Reduce Precision to its lowest form
23: sen_matrix[numer][denom] ← True
24: sen ← Number of True in sen_matrix[ ][ ]
25: return sen

of size n(n−1)
2 + 1 associated with each node of the Hasse diagram. This array

stores the possible values of TP when BFS is applied to the associated node,
considering that node as a source. The ith entry in this array is True if the TP
value is i, otherwise, it is False.

Let there be a node x at K-1th level and there be {α1, α2, . . . , αl} nodes in
the adjacency list of x. The possible values of TP when BFS is applied to node
x is obtained by performing the OR operation among the boolean arrays (which
stores TP values) of nodes {α1, α2, . . . , αl}. Along with all these obtained True
Positive values, one more value obtained from the partition for node x is also
considered.

Consider a node Id6 from G7 shown in Fig. 2. The adjacency list of this node
is Id6.adjList = {Id9, Id10, Id11}. When BFS is applied, considering node Id9
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Fig. 3. Illustration of OR operation among the arrays of a node.

as a source, then the possible values of TP is {0, 1, 2, 3, 6}. The boolean array for
the node Id9, i.e., Id9.TPAr[ ] is shown in Fig. 3. Similarly, the boolean array
for the nodes Id10 and Id11 is shown in Fig. 3.

The possible values of TP for node Id6 is obtained by performing OR operation
among the three boolean arrays Id9.TPAr[ ], Id10.TPAr[ ] and Id11.TPAr[ ].
Along with the obtained values of TP from OR operation, one more TP value
obtained from the partition for node Id6 is also considered.
Complexity Analysis: The maximum number of nodes in the adjacency list
of any node at Kth level is O(n) (From Lemma 1). To obtain all the possible
values of TP when BFS is applied to a node considering it as a source node, we
need to perform OR operation among the TP boolean array of all the nodes in the
adjacency list. As the size of the TP boolean array for each node is n(n−1)

2 +1, so
one OR operation takes O(n2) time. We need to perform O(n) such OR operations
to obtain the TP values for a node at Kth level. Thus, the time complexity to
obtain all the TP values for a node at Kth level is given by Eq. (15).

TOR = n︸︷︷︸
Size of adjacency list

× n2
︸︷︷︸

OR operation

= O(n3) (15)

The size of the TP array associated with each node is O(n2). So after BFS
traversal considering a particular node as a source, we need to compute the value
of Precision. There can be at-most O(n2) such values. The value of Precision is
of the form p

q , p ≤ q where p, q are non-negative integers and their maximum

value is n(n−1)
2 . To reduce the Precision to its lowest form, we first compute the

gcd of p and q and then divide p and q by the gcd. The time complexity to find
the gcd of p and q is O(logmin(p, q)) = O(log n2). The time to divide p and q
by gcd is O(log2 q) = O(log2 n2). Thus, we can say that the time to reduce p

q to
its lowest form is no more than O(n). Hence, the time complexity to reduce all
the Precision values obtained after applying BFS to a node is given by Eq. (16).

TPre = n2
︸︷︷︸

Size of TP array

× n︸︷︷︸
Lowest form convert

= O(n3) (16)
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There are p(n, K) number of nodes at the Kth level, and BFS is applied to all
the nodes, considering them as the source. Thus, the time complexity to obtain
the possible values of TP and TP+FP, and thus Precision, is obtained by Eq. (17).

Tsen =
∑1

K=n
p(n, K) · (TOR + TPre) = 2n3

∑1

K=n
p(n, K) = n3p(n) (17)

The values of p and q vary between 0 and n(n−1)
2 . So to obtain sensitivity,

we create a boolean matrix of size (S + 1) × (S + 1) initialized by False. For
each p/q value of the Precision, the qth column of the pth row is set to True.
At the end, the count of True in the matrix is the value of sensitivity. The
time complexity of this technique is O(n4). Thus, the overall time complexity
to obtain the sensitivity is O(n3p(n)). The sensitivity of Precision/Recall for
2 ≤ n ≤ 60 data-points is shown in Fig. 4.
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Fig. 4. The value of sensitivity.

An array of size O(n2) is associated with each node, which requires O(n2p(n))
space. To store all unique values of Precision, we create a 2D array of size (S+
1) × (S + 1) which requires O(n4) space. The space complexity of Algorithm 1
is O(np(n)). Thus, the overall space complexity of our approach is O(n2p(n)).

The runtime of the proposed approach along with the naive approach is shown
in Fig. 5. From this figure, it is clear that the time taken by our approach is less
than the naive approach. As the time taken by the naive approach grows in the
order of B2

n, we are unable to record the running time to calculate the sensitivity
for n ≥ 10, whereas using our approach one can record the running time. The
reason for this is that the naive approach would explore all combinations of the
clustering results which is O(B2

n) and this is much bigger than the number of
partitions p(n) used in our approach. This shows the practical importance of our
approach.
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Fig. 5. The runtime of naive approach and the proposed approach to compute the
sensitivity.

5 Conclusion and Future Work

In this paper, an approach based on the Hasse Diagram of an integer partition
has been proposed, which requires O(n3p(n)) time. There is an improvement
in the time complexity compared to the naive approach, which requires us to
compute B2

n Precision values. However, p(n) still grows exponentially, so further
improvement is needed. The sensitivity of Precision and Recall is bounded by
O(n4), so the improvement looks (not sure) realistic. It will be interesting to
see whether the Hasse diagram can determine the sensitivity of other validity
measures.
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Abstract. In the complex world of software systems, understanding and
maintaining system stability and performance is of utmost significance.
Finding anomalies in log data has become increasingly difficult due to
these systems’ growing complexity. Motivated by the need to improve
software release management and ensure system reliability, this study
exploits Generative Pretrained Transformer (GPT)-3’s advanced word
embedding and tokenizer functionalities to convert log data to adept at
identifying atypical patterns and anomalies, delineated in a two-layered
structure: offline and online layers. In the offline layer, historical log data
undergoes processing through the GPT model, where it is divided into
sentence and word embeddings. Sentence embeddings are clustered to
generate labels and taggers for subsequent stages, while word embed-
dings directly create taggers for the online layer’s sequence labeling. The
online layer involves collecting real-time data, processing it through GPT
to generate embeddings, and subjecting these embeddings to a sequence
labeling process. This process yields templates and variables expedit-
ing the formation of train-test data splits for a classifier that detects
anomalies. Different classifiers, namely Random Forest (RF), Light Gra-
dient Boosting Machine (LightGBM), and Categorical Boosting (Cat-
Boost), are evaluated. Experimental analysis on four distinct real-world
datasets, namely Apache, BlueGene/L (BGL), Hadoop Distributed File
System (HDFS), and Thunderbird, where CatBoost achieved remark-
able accuracy rates of 99.75%, 99.00%, 98.75%, and 99.33%, respec-
tively. The study also demonstrates that GPT-based embeddings provide
a more effective anomaly detection solution than Bidirectional Encoder
Representations from Transformers (BERT)-based embeddings. The pro-
posed methodology is particularly designed to be integrated into software
release management processes which enables automatic anomaly detec-
tion to augment quality control measures, thereby, expediting timely
intervention.
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1 Introduction

Log anomaly detection is a crucial process in identifying and resolving issues in
software systems. It involves analyzing log files generated by the components of
the system to identify anomalies or patterns that may indicate errors, faults,
or security threats [3]. In recent years, log anomaly detection has gained sig-
nificant attention due to the increasing complexity of software systems and the
growing number of security breaches [1]. Machine learning algorithms, including
Support Vector Machine (SVM), Decision Tree, and Neural Networks, are pop-
ular for log anomaly detection due to their ability to learn from data and detect
complex patterns [2]. Deep learning techniques, e.g., Convolutional Neural Net-
work (CNN) and Recurrent Neural Network (RNN) have also shown potential
in this domain [4] along with Natural Language Processing (NLP) techniques,
e.g., word embeddings and language models, such as, BERT and GPT-2 [6].
Challenges in log anomaly detection include high dimensionality, sparsity, and
imbalanced data, which have been addressed with feature selection, dimension-
ality reduction, and data balancing techniques [7].

Log anomaly detection has various applications in software systems, includ-
ing fault detection, security monitoring, and performance analysis. This study
[8] is focused on the application of release management which includes release
planning, configuration management, build and deployment, validation, distri-
bution, and monitoring. Configuration management requires logging to track
changes made to the software and ensure that all components of the release
are configured correctly [9]. During build and deployment, logs are necessary
to monitor progress and identify any errors or issues [10]. Logs are also critical
during release validation to track testing results, including functional and non-
functional testing, user acceptance testing, and system integration testing [10].
Finally, release monitoring requires log management to track the performance of
the software after deployment and quickly resolve any anomalies or issues that
may arise [11].

The followings are the major challenges associated with using release logs
and log data anomaly detection techniques in the industry:

– One challenge is the sheer volume of log data generated during the release
process [12]. Managing and analyzing this data can be a daunting task, espe-
cially for organizations that lack the necessary resources and expertise.

– Another challenge is the need to integrate different tools and systems used
during the release process. For example, release management logs may be
stored in one system, while build logs may be stored in another system. Inte-
grating these logs and analyzing them together can be challenging [13].

Despite these challenges, many businesses are implementing release manage-
ment and log data anomaly detection modules. For instance, Amazon employs log
data anomaly detection techniques in its Amazon Web Services (AWS) infras-
tructure to detect security threats and anomalies [14]. In this study, a novel
methodology for optimizing software release management using GPT-3 enabled
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log anomaly detection is proposed. The proposed methodology accelerates release
management by automatically spotting anomalies in log files, enabling early
intervention to stop issues before they start.

The research evaluates the effectiveness of various classifiers, including Ran-
dom Forest (RF), Light Gradient Boosting Machine (LightGBM), and Cate-
gorical Boosting (CatBoost), on four real-world datasets: Apache, BlueGene/L
(BGL), Hadoop Distributed File System (HDFS), and Thunderbird. Remark-
able accuracy rates achieved by CatBoost, reaching 99.75%, 99.00%, 98.75%,
and 99.33%, respectively, underscore its efficacy in anomaly detection.

Furthermore, the methodology emphasizes the crucial role of K-means
clustering in the offline layer of the proposed approach. Here, historical log
data undergoes processing through the GPT model, generating both sentence
and word embeddings. The sentence embeddings are then clustered using the
K-means algorithm to generate labels and taggers for subsequent stages of
the pipeline. This labeling process facilitates sequence labeling in the online
layer, where real-time data is processed to detect anomalies. Additionally, the
study demonstrates the superiority of GPT-based embeddings over Bidirectional
Encoder Representations from Transformers (BERT) for anomaly detection. The
proposed methodology offers an automated solution for detecting anomalies in
log data, thereby enhancing software release management processes (Fig. 1).

Fig. 1. GPT-based log anomaly detector in the release management pipeline

2 Literature Review

In this section, the state-of-the-art methods of detecting log anomalies are dis-
cussed and analyzed. These anomaly detection techniques are based on different
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components, e.g., log parser, feature extraction, and classification models. The
performance of these techniques is measured using different evaluation metrics,
e.g., accuracy, precision, recall, and F1-measure. Additionally, the limitations of
the log parsers from previous studies are presented in Table 1.

Table 1. Limitations of the log parsers from previous studies.

Log Parser Research Gap

Drain [15] - No runtime analysis
- Works well for fixed-dimension semantic vectors
(Poor performance on Microsoft Service X)

Tokenization [16] - No runtime analysis
- Log parser technique is not adaptive
which led to biases and eventually poor performance
for Blue Gene/L & Spirit dataget

Not Specified [17] - No runtime analysis
- Log parser technique is not adaptive
which led to poor performance for HDFS & BGL dataset

Log Mining [18] - The training of the model was focused on achieving
optimal performance across all aspects
- Authors considered simple architecture for TCN which
led to a generalization problem

Log Sequence [19] - No runtime analysis
- Very poor performance
- Used single-sourced dataset
- LQgUAD is suffering from a generalization problem

Zhang et al. [15] proposed a log anomaly detection method based on Drain,
a popular log parser tool. They utilized Semantic Vectorization as a feature
extractor and a Bidrectional-Long Short Term Memory (Bi-LSTM) classifier
to detect anomalies in logs from HDFS and Microsoft Service X. Their results
showed that the proposed method achieved a precision of 69%, recall of 99%,
and an F1-measure of 81% for Microsoft Service X and a precision of 98%, recall
of 100%, and an F1-measure of 99% for HDFS. However, the proposed method
lacked a runtime analysis, and it performed poorly on Microsoft Service X due
to the fixed-dimension semantic vector. This research gap highlights the need to
improve the scalability of LAD methods.

Nedelkoski et al. [16] put forward a log anomaly detection framework based
on tokenization as a log parser, Multi-Head Self-Attention Transformer as a
feature extractor, and classification of logs from BGL, Thunderbird, and Spirit
datasets. Their results showed that the proposed method achieved high accuracy,
precision, recall, and F1-measure for the Thunderbird dataset, with 100% accu-
racy, 99% precision, 100% recall, and 99% F1-measure, and for Blue Gene/L,
with 95% accuracy, 52% precision, 87% recall, and 65% F1-measure.

Guo et al. [17] proposed LogBERT; a LAD method based on BERT; as
a feature extractor and classifier of logs from HDFS, BGL, and Thunderbird
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datasets. Their results showed that the proposed method achieved high precision,
recall, and F1-measure for all three datasets, with the highest F1-measure of
0.9664 for the Thunderbird dataset. Both [16,17] found that their proposed
LAD methods achieved lower performance for certain datasets due to the non-
adaptive log parser technique used. Nedelkoski et al. observed lower performance
for the Spirit dataset, while [17] observed lower F1-measure for HDFS and BGL
datasets. Furthermore, both studies identified a research gap related to the lack
of runtime analysis, highlighting the need for future research in this area.

Wang et al. [18] developed LightLog, a log anomaly detection technique that
utilizes log mining as a log parser, Word2Vec and a Post Processing Algorithm
(PPA) for feature extraction, and a Temporal Convolutional Network (TCN)
for classification. One advantage of this technique is its high precision and
recall rates, achieving an F1-measure of 97% for both HDFS and BGL datasets.
Another advantage is its relatively fast detection time, taking only 4.3min for
100 samples in the HDFS dataset and 0.45min for 100 samples in the BGL
dataset. However, the authors also noted that the model was trained to achieve
the best overall performance and the simple architecture used for TCN may
result in a generalization problem, which could impact its performance on other
datasets.

Wang et al. [19] presented another log anomaly detection approach called Log
Unsupervised Anomaly Detection (LogUAD), which uses log sequence data and
the Word2Vec feature extraction method followed by the K-Means clustering
algorithm. However, the study had several limitations, including the lack of
runtime analysis and very poor performance with an F1-measure of only 67.25%
on the BGL dataset. Additionally, the authors only used a single-source dataset,
limiting the generalizability of the LogUAD approach.

This highlights the research gap in log anomaly detection where more
advanced techniques need to be developed to handle the large-scale and diverse
log data generated by modern computer systems.

3 Materials and Methodology

The proposed methodology in Fig. 2 consists of two layers: offline and online. In
the offline layer, historical log data is given to the GPT model, which separates
the data into sentence and word embeddings. The sentence embeddings pass
through a clustering process based on K-Means algorithm which generates labels
and create taggers for the next layer. Word embeddings, on the other hand, create
taggers directly and these taggers are connected to the sequence labeling stage
of the online layer. The taggers trained on clustered data assist in labeling new
data points during the sequence labeling stage, where patterns and structures
are identified and assigned labels. This labeling process is pivotal as it enables
subsequent classification of anomalies based on the identified patterns.

In the online layer, real-time data is collected from the database, and pro-
cessed by GPT, which generates embeddings for the data. The embeddings pass
through the sequence labeling process that produces templates and variables,
used to make train-test data splits fed into the classifier to detect anomalies.
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Fig. 2. Proposed GPT-based log anomaly detection framework

This approach combines machine learning methods, such as classification and
clustering with NLP methods, e.g., word and sentence embeddings and sequence
labeling to find anomalies in log data. To label new data points, taggers are
trained on the clustered data. Sequence labeling uses patterns and structures to
assign labels to each element in a sequence of data, whereas classifiers are used
to predict the class or label of new data points. Utilizing the strength of GPT to
generate embeddings with clustering, sequence labeling, and classification tech-
niques for anomaly detection, this methodology offers a comprehensive solution
for log anomaly detection.

3.1 Dataset

The log datasets used in this study encompass a diverse range of environments
and applications. Each dataset offers unique insights into system behavior and
operational patterns. The Apache dataset consists of logs generated by the
Apache web server. It contains client requests, server responses, errors, and
other operational metrics essential for web server management and analysis [25].
The BGL dataset originates from the Blue Gene/L supercomputer system. It
contains system events, errors, and performance metrics critical for understand-
ing and optimizing high-performance computing environments [25]. The HDFS
dataset includes records of system events, file operations, and cluster interac-
tions within distributed computing clusters [25]. The Thunderbird Logs Dataset
consists of logs from the Thunderbird email client, documenting user interac-
tions, email processing events, errors, and application performance metrics. All
these datasets are publicly available [25]. Table 2 presents detailed information
of the four datasets used in this study. Each dataset varies in size, attributes,
and data source, all of which have specific implications for their application in
data analysis and machine learning tasks.
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Table 2. Finding gaps from previous studies

Dataset Name Instance Size Total data attributes Data source Implication

Apache 2000 6 Web server access logs Anomaly detection,
classification

BGL 2000 13 Supercomputer system
log

Anomaly detection,
log parsing

HDFS 2000 14 Hadoop Distributed
File System logs

Anomaly detection,
log analysis

Thunderbird 2000 14 Email client
application logs

Log parsing, anomaly
detection

3.2 Generating Word and Sentence Embedding from GPT-3

This approach employs a technique that splits the textual information into
smaller portions or batches. Each batch is processed independently for compu-
tational efficiency. Embedding generation is applied to each batch of data which
utilizes the GPT-‘ENGINE’ [5] to transform the textual content of the dataset
into embeddings. These embeddings are vector representations of words and sen-
tences, capturing the semantic meaning and context of the text. Two types of
embeddings are generated in parallel - word embeddings and sentence embed-
dings. Word embeddings represent individual words within the text and cap-
ture their semantic relationships with other words. On the other hand, sentence
embeddings represent the overall meaning or context of entire sentences. After
processing all batches, the generated word embeddings and sentence embeddings
are concatenated into two separate arrays. This consolidation allows for a uni-
fied representation of the entire dataset. Time taken to complete this process
depends on the size of the dataset and the efficiency of the embedding method.
By splitting the data into manageable chunks and processing them in parallel,
it helps streamline the embedding [20] generation process, making it suitable for
various NLP applications. The time required for completion depends on dataset
size and processing efficiency.

3.3 Clustering with K-Means and Labeling

The application of the K-Means clustering algorithm to a set of data points is
represented as sentence embedding [21]. The K-Means algorithm is initialized
with a predefined number of clusters, which, in this case, is set to two. This
means that the algorithm will aim to partition the data into two distinct groups
or clusters. In the data fitting step, the algorithm proceeds to fit the sentence
embedding data to the K-Means model. During this step, K-Means attempts
to find two centroids in the feature space that will act as representative points
for each of the two clusters. These centroids are initially placed randomly. After
fitting the data, K-Means iteratively refines the positions of the centroids to
minimize the sum of squared distances between data points and their assigned
centroids. This process involves assigning each data point to the nearest centroid,
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which effectively divides the data into two clusters. The algorithm repeats this
assignment and centroid adjustment until convergence, aiming to find centroids
that minimize the intra-cluster distance. By the end of the K-Means process,
each data point has been assigned to one of the two clusters. The assignment
is based on the nearest centroid. In this way, K-Means effectively labels each
data point as belonging to one of the two identified clusters. The centroids are
obtained using the K-means cluster centres attribute [22].

3.4 Tagging and Sequence Labeling

Parts Of Speech (POS) tagging is a NLP technique that assigns grammatical
labels or tags to individual words within a text. These tags represent the part of
speech of each word, such as nouns, verbs, adjectives, etc. [23]. This technique
utilizes a predefined model to assign POS tags to each word in the dataset. The
result is a list of word-POS tag pairs, where each word in the embedding dataset
is associated with its corresponding part-of-speech tag. Sequence labeling is a
broader technique that involves assigning labels to elements within a sequence
of data. In this case, it appears that we are performing sequence labelling on a
combination of word embeddings and sentence embeddings where the sequence
label variable is created by concatenating the word and sentence embeddings.
This operation combines the embeddings of individual words and entire sen-
tences into a single sequence. Subsequently, it seems that the sequence label is
concatenated with itself, which might be intended to create a larger sequence
for sequence labelling [24].

3.5 Training and Evaluation

The test size was set to 0.2 which means that 20% of the data will be allocated to
the test set leaving 80% for the training set. This division ensures that a portion
of the data is reserved for evaluating the model’s performance on unseen data.
Three different classifiers, e.g., RF, LightGBM, and CatBoost, were utilized and
these classifiers were trained on a subset of the data and then evaluated on data
it has never seen before to determine its generalization ability. The evaluation
metrics used for analysis are recall (macro average), precision (macro average),
accuracy, F1-measure (macro average), Area Under Curve (AUC) score, and
classification time (seconds). Recall measures the proportion of actual positive
samples that are correctly classified as positive by the model. Precision, on the
other hand, measures the proportion of positive predictions that are actually
positive. Accuracy is the proportion of total correct predictions made by the
model. F1-measure is the harmonic mean of Recall and Precision. AUC score
measures the performance of the model in distinguishing between positive and
negative samples, while Classification Time (s) measures the time taken by the
model to classify the data.
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3.6 Experimental Setup

For the experimental setup, a specific workstation configuration and a range of
software packages and libraries were utilized to ensure optimal performance and
compatibility. The detailed specifications of the hardware and software used in
the experiments are summarized in Table 3.

Table 3. Summary of workstation configuration and software packages used in the
experimental setup

Workstation Cofiguration OS MacOS X El Captain 10.11.6
CPU Intel Core i5 @1.6GHz
Memory 4 GB 1600MHz DDR3
SecondaryStorage SSD 128GB
GPU Intel HD Graphics 6000 1536 MB

Software packages and librariesGoogle Colab
Python 3.10
KERAS 2.4.3
TensorFlow 2.3.0
Hugging Face Transformers

3.7 Threads to Validity

The validity of the experimental findings is subject to several potential limita-
tions. Firstly, the utilization of publicly available datasets may not fully encap-
sulate the intricacies and scale of real-world data scenarios. Consequently, the
diversity and richness of data patterns and anomalies present in actual envi-
ronments may not be fully represented. Moreover, the datasets employed in the
experiment might lack diversity, potentially overlooking certain data patterns
and anomalies prevalent in real-life situations. This limitation could impact the
generalizability of the results across different domains and industries.

Additionally, variability in data quality and characteristics across various
real-world datasets may introduce biases and confounding factors that were not
fully accounted for in the experimental setup. Consequently, the generalizability
of the findings to broader contexts may be limited. Furthermore, the experi-
mental pipeline’s performance may vary when applied to different domains or
industries, underscoring the necessity for further investigation and adaptation
to specific use cases.

Moreover, external factors such as technological advancements and shifts in
data distribution over time could influence the effectiveness and applicability of
the experimental findings in real-world scenarios. Lastly, despite efforts to design
a robust experimental setup and methodology, certain nuances or intricacies
specific to particular datasets or use cases may have been overlooked, potentially
constraining insights into the pipeline’s capabilities in real-world settings.
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4 Result Analysis and Discussion

Table 4 provides the performance evaluation of GPT. The evaluation of the
classifiers on both the Apache and BGL datasets revealed the high accuracy of
all three classifiers, as well as the superior performance of the CatBoost classi-
fier in terms of recall, precision, accuracy, F1-measure, and AUC score. Despite
the longer classification time of the CatBoost classifier compared to LightGBM
and RF, the latter demonstrated superior performance in achieving the fastest
classification time while maintaining good performance in all evaluation met-
rics, including a high AUC score. When evaluating the classifiers on the HDFS
and Thunderbird datasets, it was found that their performance was exceptional
as evidenced by their high accuracy, recall, precision, F1-measure, and AUC
scores. RF stood out as the best performer in terms of recall and precision on
both datasets. However, CatBoost demonstrated the fastest classification time on
both datasets, while all three classifiers maintained their excellent performance
across all evaluation metrics.

Table 4. Performance evaluation based on GPT embeddings

Dataset Classifier Recall (%) Precision (%) Accuracy (%) F1- Measure (%) AUC Score (%) Classification Time (s)

Apache RF 97.94 98.03 98.00 97.98 99.50 0.024524
LightGBM 98.47 98.52 98.50 98.49 98.80 0.007038
CatBoost 99.74 99.76 99.75 99.75 99.80 0.010937

BGL RF 98.77 98.73 98.75 98.75 99.30 0.019798
LightGBM 97.76 97.74 97.75 97.75 99.50 0.025235
CatBoost 98.99 98.99 99.00 98.99 99.90 0.005348

HDFS RF 98.72 98.78 98.75 98.75 98.90 0.027765
LightGBM 96.79 97.21 97.00 96.96 98.90 0.035475
CatBoost 97.38 97.52 98.75 97.45 98.40 0.007264

Thunderbird RF 99.31 99.35 99.33 99.33 99.40 0.024687
LightGBM 98.97 99.02 99.00 98.99 99.40 0.022166
CatBoost 99.13 99.19 99.33 99.16 99.60 0.005213

The findings demonstrate that CatBoost outperforms the other two classi-
fiers, exhibiting exceptional performance in terms of recall, precision, accuracy,
F1-measure, and AUC score. Despite a negligible difference in classification time
compared to LightGBM and RF (Apache dataset), the superiority of CatBoost
in identifying both positive and negative instances correctly and with high pre-
cision, combined with its overall excellent performance of testing presented in
Fig. 3 and overall model performance in Fig. 4, makes it the most favourable
choice. These results indicate that CatBoost is a highly efficient and effective
classifier that can be deployed for log anomaly detection.

On the other hand, Table 5 shows the performance of the classifiers trained
on the same datasets but using BERT-based embeddings. It can be seen that
the performance of the classifiers is generally lower compared to the results
obtained using GPT-based embeddings. CatBoost still performs the best in most
of the datasets, with LightGBM following closely behind. RF, however, performs



Optimizing Software Release Management 361

(a) Confusion Matrix Using CatBoost
Algorithm on Apache Dataset

(b) Confusion Matrix Using CatBoost
Algorithm on BGL Dataset

(c) Confusion Matrix Using CatBoost
Algorithm on HDFS Dataset

(d) Confusion Matrix Using CatBoost
Algorithm on Thunderbird Dataset

Fig. 3. Confusion matrices for CatBoost algorithm on different datasets

Table 5. Performance evaluation based on BERT embeddings

Dataset Classifier Recall (%) Precision (%) Accuracy (%) F1- Measure (%) AUC Score (%) Classification Time (s)

Apache RF 93.76 92.06 93.39 92.91 92.12 0.076543
LightGBM 94.81 92.28 94.35 93.545 92.19 0.021876
CatBoost 95.26 94.56 95.44 94.91 92.91 0.019702

BGL RF 94.89 94.52 94.80 94.705 94.35 0.098656
LightGBM 94.11 94.76 94.98 94.435 94.63 0.065540
CatBoost 95.00 94.98 95.33 94.99 94.99 0.012765

HDFS RF 93.45 94.65 94.44 94.05 92.26 0.045776
LightGBM 95.88 94.97 93.21 95.425 95.62 0.039908
CatBoost 95.78 96.45 95.55 96.115 95.97 0.009876

Thunderbird RF 95.44 94.77 95.66 95.105 95.98 0.067750
LightGBM 95.90 94.56 95.11 95.23 95.23 0.053012
CatBoost 95.87 96.23 96.75 96.05 99.69 0.010087

poorly in all the datasets. The classification time is relatively higher compared
to Table 4, with RF taking the longest time.
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(a) ROC Curve Using CatBoost Algo-
rithm on Apache Dataset

(b) ROC Curve Using CatBoost Algo-
rithm on BGL Dataset

(c) ROC Curve Using CatBoost Algo-
rithm on HDFS Dataset

(d) ROC Curve Using CatBoost Algo-
rithm on Thunderbird Dataset

Fig. 4. ROC curves for CatBoost algorithm on different datasets

The results discussed above indicate that GPT-based embeddings are more
effective than BERT-based embeddings for the datasets used in the study. This
can be attributed to the fact that GPT is a more recent and advanced language
model architecture than BERT. Furthermore, the performance of the classifiers
varied significantly across the different datasets. For instance, in Apache dataset,
GPT embeddings improved CatBoost’s accuracy by 4.31% compared to BERT,
whereas in BGL dataset, the improvement was 2.77%. These variations suggest
that the characteristics of the datasets play an important role in determining
the effectiveness of the embeddings and classifiers used.

5 Conclusion and Future Works

In this study, a comprehensive evaluation of various classifiers using both GPT-
based and BERT-based embeddings for log anomaly detection in the software
release pipeline was conducted across multiple datasets. The analysis yielded sig-
nificant findings, including the superior performance of the CatBoost classifier
in terms of recall, precision, accuracy, F1-measure, and AUC score when using
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GPT-based embeddings. This consistent excellence across datasets underscores
CatBoost as the preferred choice for log anomaly detection. Furthermore, the
study highlighted the influence of pre-trained language model architectures on
the effectiveness of embeddings. GPT-based embeddings generally outperformed
their BERT-based counterparts, emphasizing the importance of the choice of
language model. Additionally, the variability in classifier performance across
datasets emphasized the significance of dataset characteristics in shaping classi-
fier and embedding choices. Each dataset’s unique patterns and anomalies can
impact model performance, and such considerations are crucial when design-
ing log anomaly detection systems. However, it is essential to note that while
CatBoost demonstrated superior performance, it also incurred slightly longer
classification times in certain scenarios. This prompts practitioners to make a
thoughtful trade-off between classification speed and performance, depending on
specific use cases and resource constraints.

It is essential to acknowledge a potential challenge that may arise in the
future, particularly in the context of software release management. As software
release management processes evolve, the volume of log data generated during
each batch of releases is expected to increase significantly. This expansion can
lead to longer processing times during the embedding stage, as new embed-
dings must be generated for the additional data. Also, to address the complexity
and scalability of advanced machine learning and NLP techniques, we propose
several strategies. These include using pre-trained models and cloud-based ser-
vices to simplify deployment and reduce technical expertise requirements. We
emphasize modular architecture and distributed computing for scalability, with
examples, e.g., AWS and Google Cloud for managing data and dynamic changes.
Our approach can be integrated into existing software release management sys-
tems through Application Programming Intefaces (APIs) or middleware etc. This
integration allows for seamless monitoring and anomaly detection during the
software release cycle which provides real-time feedback and prompt responses
to potential issues. Future research may focus on optimizing the efficiency of
embedding generation processes or exploring strategies for handling large vol-
umes of log data without compromising the overall performance of log anomaly
detection systems. This adaptive approach will be crucial in ensuring that log
anomaly detection remains a valuable tool in the ever-growing landscape of soft-
ware release management. Future work will also certainly benefit from broader
access to diverse log datasets to further validate and extend the findings of our
study.
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Abstract. Anomaly detection and localization play crucial roles in
industrial manufacturing to help maintain product quality and mini-
mize defects. However, anomalies are rare and challenging to collect,
leading to imbalance data that cause a biased model to be trained and
sensitive to noisy or irrelevant features. In addition, anomalies are often
subtle, diverse, and change over time, making them difficult to differenti-
ate, further complicating the detection and localization tasks. To address
these challenges, we propose a new Patch-based Protopical Cross-Scale
Attention Network (PPCA-Net) to effectively identify anomaly regions
by learning residual features across different scales and sizes, distinguish-
ing abnormal from normal patterns. It consists of two key components:
the Scale-Aware Channel Attention Module (SACAM) and the Patch-
based Cross-Scale Attention Module (PCSAM). These modules facilitate
interactive feature inferences across multiple scales, significantly enhanc-
ing the ability to capture abnormal features of various sizes in various
environments. Furthermore, we incorporate diverse anomaly generation
strategies, including multi-scale prototypes to better represent feature
disparities between abnormal and normal patterns, thereby enhancing
overall effectiveness. Through extensive experimentation on the chal-
lenging MVTec AD [1] benchmark, PPCA-Net demonstrates superior
performance in both unsupervised and supervised methods, highlighting
its effectiveness in anomaly identification.

Keywords: Anomaly Detection · Anomaly segmentation · defect
inspection

1 Introduction

Industrial defects have the potential to wreak havoc on production processes,
leading to compromised product quality, decreased productivity, and even equip-
ment damage or stoppages. As a result, there is a heightened emphasis on lever-
aging anomaly detection (binary classification of images) and localization (binary
classification of pixels) technologies to promptly identify and rectify these issues,
ultimately aiming to enhance both product quality and manufacturing efficiency.
They can not only aid in defect detection within industrial environments, but
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also show remarkable progress in areas such as medical image analysis and video
surveillance.

Given the profound impact of industrial defects on product quality and pro-
duction efficiency, considerable research efforts have been dedicated to address-
ing anomaly detection and anomaly localization. However, effectively tackling
both of these challenges simultaneously remains a formidable task for many
researchers in the field. A primary hurdle encountered by researchers is the
excessively low scrap rate prevalent in industrial settings. This low occurrence of
defective samples poses a significant challenge when it comes to utilizing them
to train deep neural networks. In contrast, non-defective samples are often abun-
dant in practical industrial production environments, significantly outnumbering
their defective counterparts. This stark contrast in sample availability further
complicates the training process for anomaly detection models.

This challenge is compounded by the labor-intensive and costly process of
labeling defect samples. In supervised learning approaches, where accurate anno-
tations are vital for model training, detection networks require precise bounding
box labels, while classification networks rely on comprehensive image-level anno-
tations. Achieving high-quality labeling is crucial, as the performance of defect
detection models is heavily dependent on the quality of annotated data. Con-
sequently, specialized professionals are often needed to meticulously annotate
defects, especially in specialized industrial domains with unique defect charac-
teristics. In real-world industrial settings, defects exhibit a wide range of types
and characteristics that are often unpredictable. This unpredictability makes
pre-labeling of defects impractical, as it’s impossible to anticipate every pos-
sible manifestation of defects. Consequently, traditional approaches relying on
pre-labeled datasets may not fully capture the diverse spectrum of real-world
defect scenarios. Even the random generation of anomalies, intended to diversify
datasets, may not consistently improve overall model performance. The inher-
ent variability and complexity of real-world defects cannot always be accurately
replicated through random generation techniques. Therefore, there’s a critical
need to develop robust detection systems capable of accurately identifying sur-
face defects, especially in situations where diverse defect samples are limited.

Recently, several supervised methods have been introduced. DeepSAD [17]
adjusts the boundary between anomalies and the single-class center in latent
space to restrict known anomalies and obtain more compact single-class descrip-
tors. On the other hand, DRA [5] and DevNet [13] formulate anomaly detection
as a Multiple Instance Learning (MIL) problem, considering an image as anoma-
lous if any region contains a defect. Through MIL learning at the patch level,
these methods effectively reduce interference from normal patches in images.
However, supervised methods may face challenges when dealing with anomalies
that occupy only a small portion of the image. Due to insufficient availability of
anomaly samples for training, unsupervised models have gained prominence in
current research. These models primarily address data imbalance by learning the
feature distribution of normal samples or generating synthetic anomaly samples.
However, they often exhibit poor performance when confronted with real-world
anomalies, leading to a high rate of false positives and false negatives, thus com-
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promising recognition accuracy. Furthermore, these erroneous predictions can
result in costly false alarms or missed detections in industrial and manufactur-
ing settings, where even minor anomalies can significantly affect product quality
and production efficiency.

This paper presents a novel framework, named Patch-Based Prototypical
Cross-Scale Attention Network (PPCA-Net) designed to tackle the challenges
inherent in anomaly detection and localization. Firstly, we introduce multi-scale
prototypes into PPCA-Net to represent normal patterns. Unlike previous meth-
ods, which often construct normal patterns from concatenated feature maps
or randomly sampled feature maps, PPCA-Net constructs these patterns using
prototypes derived from intermediate feature maps of different scales. This app-
roach preserves spatial details and offers more precise and representative normal
patterns. Furthermore, we compute feature map residuals by assessing the devi-
ation between anomalous images and the closest prototype at each scale. We also
integrate multi-scale fusion blocks to facilitate information exchange across dif-
ferent scales. Recognizing the significant variability in the appearance of anomaly
regions, two new modules are introduced in this paper: the Scale-Aware Channel
Attention Module (SACAM) and the Patch-based Cross-Scale Attention Module
(PCSAM). These modules enable effective detection of patch-level inconsisten-
cies between feature maps across various scales. In contrast to previous methods
relying on image-level supervision, our model learns to segment anomaly maps
with pixel-level supervision, emphasizing anomalous regions and enhancing gen-
eralization. In addition, we propose several anomaly generation strategies to
address data imbalance issues and improve anomaly diversity. With these inno-
vations, our method achieves more accurate localization compared to previous
unsupervised and supervised approaches.

The main contributions of this paper are summarized as follows:

– We propose a new Patch-based Protopical Cross-Scale Attention Network
(PPCA-Net) for effective anomaly detection and localization by learning
residual features across different scales and sizes.

– SACAM supports cross-scale channel weight calculation, enabling global high-
lighting of significant channels.

– PCSAM divides the feature map into patches with narrower fields of view,
facilitating the extraction of smaller and finer-grained features. This atten-
tion mechanism helps to better differentiate between anomalous and normal
patches, thereby enhancing performance.

– Extensive experiments conducted on the MVTec AD dataset demonstrate the
excellent performance of our method in anomaly detection.

2 Relative Work

2.1 Supervised Approaches

Supervised anomaly detection hinges on leveraging known anomaly data to
refine the relationship between anomalies and normal samples, thus increas-
ing detection accuracy and efficiency. Unlike traditional unsupervised methods,
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supervised approaches benefit from labeled anomaly samples during training,
enabling models to better discern and generalize. Some studies have employed
single-class classification techniques [18], focusing on learning from a limited set
of anomaly instances. For example, methodologies such as DevNet [13] utilize
the distribution of normal samples to recalibrate samples containing anoma-
lies, thereby enhancing anomaly detection capabilities. Furthermore, certain
approaches employ multi-head models [5] to decipher complex anomaly repre-
sentations, with each head specializing in specific anomaly types, thus enhancing
model diversity and generalization performance. However, supervised methods
face challenges and limitations. Imbalanced data distributions can lead to over-
fitting on a small subset of anomaly instances, reducing performance in detect-
ing unseen anomalies. Additionally, when dealing with subtle anomalies, mod-
els struggle with the abundance of normal sample information, hindering their
ability to accurately identify anomalies of varying sizes and shapes, thereby
diminishing detection accuracy and reliability. Therefore, advancing supervised
methods requires addressing these challenges through improved sample balanc-
ing strategies and more representative feature representations, with the aim of
strengthening the resilience and generalization of the model. Continuous tech-
nological progress and deeper research efforts are expected to elevate supervised
methods to a more prominent role in the anomaly detection domain, yielding
more satisfactory results.

2.2 Unsupervised Approaches

Unsupervised methods rely exclusively on normal data during training. For
example, autoencoder-based techniques [3] continuously train on normal sam-
ples to reconstruct them, aiming to detect anomalies by identifying discrep-
ancies between input and reconstructed images, thus highlighting anomalous
regions. Despite efforts to enhance performance by introducing generative mod-
els such as Variational Autoencoders (VAE) [10] and Generative Adversarial
Networks (GAN) [8], they often struggle to accurately generate normal regions
in images, resulting in rough reconstructions and false anomaly detections. Other
approaches, like those based on normalizing flows [16], incur significant compu-
tational costs.

Knowledge distillation-based methods [2] compare features between teacher
and student networks to detect anomalies, while deep feature modeling methods
identify anomalies by comparing features extracted from images. Self-supervised
learning methods [14] devise proxy tasks to predict or recover hidden regions
or attributes in images. One-class classification methods [18] aim to map train-
ing data to a small hypersphere in the feature space, making anomaly sam-
ples more challenging to identify. However, they demonstrate suboptimal perfor-
mance when confronted with subtle and challenging anomalies.

3 Method

We present a novel framework named Patch-based Prototypical Cross-Scale
Attention Network (PPCA-Net) to tackle the challenges inherent in anomaly
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Fig. 1. The proposed Patch-based Prototypical Cross-Scale Attention Network (PPCA-
Net) consists of two main modules. SACAM strengthens the global channel importance
by examining multi-scale feature maps. PCSAM improves the detection and segmen-
tation of small anomalous regions by leveraging cross-scale attention among patches.

detection and localization. In order to overcome the limitations of current super-
vised anomaly detection methods, we introduce two innovative approaches for
handling multi-scale features, resulting in the creation of two new modules: (1)
The Scale-Aware Channel Attention Module (SACAM) focuses on computing
scale-aware attention within feature channels, enabling the effective detection
of anomalies across a range of sizes. (2) The Patch-based Cross-Scale Attention
Module (PCSAM) calculates attention from deep features among patches, facili-
tating improved detection accuracy for small anomalies. The integration of these
two modules forms the Patch-based Cross-Scale Attention Network (PPCA-Net),
which combines the SACAM and PCSAM modules into a unified pipeline and
can significantly improve the accuracy of anomaly detection and localization.
The main architecture, depicted in Fig. 1, utilizes ResNet-18 [7] as the encoder
and incorporates multiscale prototypes, in addition to our proposed SACAM and
PCSAM modules for anomaly classification. Subsequently, we will delve into the
specifics of the design.

3.1 Multiscale Prototypes

Given a set of training samples {Xi} for anomaly detection, only two classes
are used to classify them, i.e, normal or abnormal. However, there are various
normal and abnormal types. To obtain better classification results, multiple nor-
mal and abnormal prototypes must be constructed to classify {Xi}. Given a
CNN backbone, we convert each training sample Xi to a set of feature maps
{F i

n}, where F i
n denotes the feature map of Xi on the nth scale. For a class Cy (

y = 0 for normal and y = 1 for abnormal), we use the ISO-data method [11] to
classify all training samples in Cy into different prototypes {Py

j,n}, where Py
j,n

denotes the jth prototype at the nth scale for Cy. Due to the nature of the
ISO-data method, we do not need to consider setting the number of prototypes
to classify the samples in Cy. Furthermore, we employ four scales of prototypes
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Fig. 2. The CHannel Attention Block (CHAB). Un is obtained by a GAP (Global
Average Pooling) operation followed by a Sigmoid function. All {Bm} are resized and
convoluted to have the same size and number of channels as Bn. For each resized Bn,
their channels are weighted by Un to form a new feature map En

m.

(n ∈ {1, 2, 3, 4}). After clustering, each scale’s prototype Py
j,n is fixed during the

subsequent model training process. Given a training sample Xi ∈ Cy and its
feature map F i

n at the nth scale, we can find the closest prototype Pi,y
n to F i

n

with the L2 distance between F i
n and P y

j,n as follows:

Pi,y
n = arg min

j
||F i

n − Py
j,n||2. (1)

After obtaining the prototypes at the nth scale, in spirited by [21], we calcu-
late the residuals between F i

n and Pi,y
n to help the model learn better anomalous

features by the equation:
Di

n = F i
n − Pi,y

n . (2)

Additionally, to maintain the richness of anomalous features, we incorporate
the original feature map F i

n and the residual feature map Di
n together at the

respective scales to achieve better anomaly detection and localization as follows:

Bi
n = F i

n ⊕ Di
n. (3)

3.2 Scale-Aware Channel Attention Module (SACAM)

We obtain feature maps of different scales from the backbone network and uti-
lize multiscale prototypes and multiscale fusion technologies to obtain the resid-
ual feature maps associated with the normal sample distribution at different
scales. These residual feature maps serve as inputs for SACAM, thereby pro-
viding crucial information for subsequent anomaly detection and localization.
In this process, we categorize the feature maps into scales, forming a feature
pyramid B = {Bn}, where the index i used in Eq. (3) is eliminated if the fea-
ture pyramid is extracted from a general input X. Furthermore, we use Cn to
denote the number of channels in the feature map Bn at the scale n. To capture
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Fig. 3. Detailed operations of the Cross-Attention Block (CAB). The feature map of
the n-th scale generates query Q, key K, and value V to interact with the key K and
value V of the other three scales (a, b, and c) resulting in cross-scale attention results.

the importance of each channel, we apply a Channel Attention Block (CHAB)
to each feature map Bn. As shown in Fig. 2, CHAB utilizes a Global Average
Pooling (GAP) operation to capture global information for each channel in Bn,
followed by applying the sigmoid activation function to generate a channel atten-
tion vector Un. The dimension of Un is 1 × 1 × Cn. Subsequently, we adjust
all feature maps {Bm} to have the same size as Bn, achieved through bilinear
interpolation. Then, we perform a 1×1 convolution operation on each adjusted
feature map Bm to further extract feature information. Importantly, for each
adjusted feature map Bm, its channels are weighted by the previously computed
channel attention vector Un, resulting in a new feature map En

m. Thus, we obtain
a set of scale-sensitive features {En

m}, which serve as inputs for the subsequent
PCSAM module to generate predictions for anomaly detection. This entire pro-
cess aims to enhance the model’s accuracy and robustness in anomaly detection
across different scales.

3.3 Patch-Based Cross-Scale Attention Module(PCSAM)

This section introduces a pioneering patch-based cross-scale attention module
(PCSAM) to achieve more precise detection of boundaries between anomalies
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and normal regions. This module segments the feature map En
m into distinct

patches, labeled as {Pn,m
k }, k=1,..., Ω, where Ω denotes the total patch count,

thus enriching the model’s ability to understand intricate scenarios. Within this
module’s architecture, each scale incorporates Ω independent Cross-Attention
Blocks (CAB) to facilitate the exchange of information across scales, thereby
bolstering anomaly detection performance. As shown in Fig. 3, CAB is designed
to enhance the features, ensuring their representatives and reliability. To main-
tain the spatial relationship of patches on different scale feature maps, CAB
employs the same relative positions of Pn,m

k for attention calculation, effectively
preserving contextual cues across scales. During cross-scale operations, CAB
takes inputs Pn,n

k , Pn,a
k , Pn,b

k ,and Pn,c
k , where a, b, and c denote various scales

different from the target scale n. This approach fosters an effective interaction
between features at diverse scales, consequently enhancing both the accuracy
and the resilience of anomaly detection.

Effective feature extraction is paramount when performing cross-scale atten-
tion computation. To achieve this, we rely on three matrices-query, key, and
value-as the cornerstone of attention calculation. These matrices are tailored to
meet the demands of cross-scale attention computation. The computational pro-
cedure of each Cross-Attention Block (CAB) is depicted in Fig. 3. Converting
Pn,n
k to query Qn

k , key Kn
k , and value V n

k involves training three matrices: Wn,k
Q ,

Wn,k
K , and Wn,k

V . Similarly, for Pn,a
k , Pn,b

k , and Pn,c
k , we train linear matrices

W a,k
K , W a,k

V , W b,k
K , W b,k

V , W c,k
K , and W c,k

V to derive Ka
k , V a

k , Kb
k, V b

k , Kc
k, and

V c
k , correspondingly. Leveraging the query Qn

k , we calculate patch-based cross-
scale attention βn,m

k between Qn
k and all keys Km

k , where m = n, a, b, c. The
computation process can be summarized as follows:

βn,m
k =

Qn
k ⊗ Km

k∑

m=n,a,b,c

Qn
k ⊗ Km

k

, (4)

where ⊗ denotes element-wise multiplication and summation. By utilizing the
attention mechanism βn,m

k , we aggregate the values V m
k to create a novel feature

vector Zn
k through the following procedure. Furthermore, to tackle the problem

of gradient vanishing, we incorporate the original patch feature map Pn,n
k via a

skip connection.
Zn
k = Pn,n

k +
∑

m=n,a,b,c

βn,m
k V m

k . (5)

After acquiring Ω new feature vectors across scales, we merge the patch
feature map. This procedure leads to the creation of the feature map Y n in the
following manner:

Y n = Merge(Zn
1 , . . . , Zn

k , . . . , Zn
Ω), (6)

where Merge() is specifically designed to combine and integrate all the feature
vectors Zn

k together to construct the ultimate feature map Y n. Subsequently,
each Y n undergoes normalization via bilinear interpolation to ensure uniform size
alignment with Y 1. These normalized feature maps are then concatenated and
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processed through a 3 × 3 convolution operation to create the spill detector, G :
RH×W×4C → RH×W×2, where one channel corresponds to background detection
and the other to foreground detection. Finally, the ultimate predicted anomaly
probability map M is generated through additional processing as follows:

M = G
(
Concatenate

(
Y 1, Y 2, Y 3, Y 4

))
. (7)

A pixel in M is considered part of the foreground if its value in the foreground
channel exceeds that of the background channel.

3.4 Loss Function

During the training phase, we optimize our network by utilizing a combination
of three different loss functions: cross-entropy loss, dice loss [12], and SSIM loss
[19]. The cross-entropy loss measures the negative log-likelihood of the predicted
probability distribution across the target labels. It encourages the network to
assign higher probabilities to the correct class labels for each pixel in the seg-
mentation mask and is defined as

LCE = − 1
T

×
T∑

t=1

(
Xt log(X̂t) + (1 − Xt) log(1 − X̂t)

)
, (8)

where Xt represents the ground truth class value for a pixel, which is either 1 or
0, indicating whether the corresponding pixel is anomaly or not, T denotes the
total number of pixels, and X̂t represents the predicted value generated by our
network. The dice loss evaluates how closely the predicted segmentation mask
aligns with the ground truth mask, emphasizing the agreement between them.
It effectively penalizes discrepancies, such as false negatives and false positives,
thereby capturing fine details in the segmentation output and is given by

LDice = 1 −

T∑

t=1
X̂2

t × X2
t

T∑

t=1
X̂2

t + X2
t

. (9)

Furthermore, SSIM loss assesses local similarity by comparing small image
patches, which complements the global similarity emphasized by the other loss
functions. SSIM loss helps preserve intricate features and enhances segmentation
accuracy and is mathematically formulated as follows:

LSSIM = 1 −
(
2μXμX̂ + C1

) (
2σXX̂ + C2

)

(
μ2
X + μ2

X̂
+ C1

) (
σ2
X + σ2

X̂
+ C2

) , (10)

where μ(·) and σ(·) denote the mean and standard deviation operations respec-
tively. C1 and C2 are very small constants included in the denominator to prevent
division by zero. Specifically, we set C1 = 0.0001 and C2 = 0.0009. Finally, by
integrating Eq. (8)–Eq. (10), we train our PPCA-Net with the following inte-
grated loss function:

Loss = LCE + LDice + LSSIM . (11)



Patch-Based Prototypical Cross-Scale Attention Network 375

3.5 Backbone Details

To ensure effective feature extraction and efficient GPU utilization, we use
ResNet18 [7] as the backbone of our PPCA-Net. We optimize computational
resources while retaining important features by configuring the channel dimen-
sions of the four-scale feature maps in ResNet18 to 64, 128, 256, and 512, respec-
tively. Furthermore, we adjust the convolutional layers in the last two stages of
ResNet18, replacing those with a stride of 2 with convolutions having a stride
of 1. This adjustment strikes a balance between computational efficiency and
the accuracy of feature extraction. Consequently, we derive four distinct feature
maps from the final four stages of ResNet18.

4 Experiments

4.1 Experimental Details

Datasets: To assess the effectiveness of our approach in anomaly detection
and localization, we conducted experiments on the MVTec Anomaly Detection
(MVTec AD [1]) dataset as a standard benchmark for evaluation. This dataset
comprises 10 object sub-datasets and 5 texture sub-datasets, each containing
diverse anomalies, facilitating a comprehensive evaluation of surface anomaly
detection techniques. Our experiments followed a standard supervised setting
[5], where each training set for the subdatasets consists of only 10 abnormal
samples. This configuration not only ensures effective model training but also
allows for a more accurate assessment of the model’s performance under limited
data conditions. By evaluating our method on this dataset, we can thoroughly
analyze its performance in industrial defect detection tasks and confirm its suit-
ability and resilience across various types of anomaly.

Evaluation Metrics: Our research methodology involves evaluating outcomes
using two metrics: Image-AUROC and Pixel-AUROC. Image-AUROC calculates
the average anomaly score from the top 100 scores obtained for each pixel in the
output image, compared against the corresponding image label. Pixel-AUROC
correlates output scores of each pixel with the labels of the original position
pixels. However, Pixel-AUROC will not accurately reflect localization accuracy
due to the small fraction of anomalous regions in the entire image, resulting in
a significantly higher number of non-anomalous pixels and a consistently low
false-positive detection rate. To provide a comprehensive evaluation, we intro-
duced two additional metrics: the Per Region Overlap (PRO) [2] score, treating
anomalous regions equally regardless of size, and pixel-level Average Precision
(AP) [20], particularly suitable for highly imbalanced classes, such as those in
industrial anomaly localization tasks where precision is crucial.
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Implementation Details: All images in the experimental datasets are resized
to a size of 256 × 256. We utilize layer1, layer2, layer3, and layer4 of ResNet-
18 pretrained on ImageNet to obtain feature maps of sizes 64 × 128× 128,
128×64× 64, 256× 64× 64, and 512× 64× 64, respectively. These sizes are
frozen during training. During the training phase, we employ two NVIDIA
Tesla V100 GPUs and use the Adam optimizer for parameter optimization.
The momentum and weight decay are set to 0.9 and 0.0005, respectively. We
initialize the learning rate to 0.005 and decay it by 0.1 every 50 epochs. Each
component is trained for 200 epochs with a batch size of 8. Additionally, we
apply data augmentation to address the imbalance of abnormal samples during
training and better assess the effectiveness of our model. We compute the image-
level anomaly score as the average of the top 100 abnormal pixels. PPCA-Net is
compared with seven non-supervised SOTA methods and two supervised SOTA
methods. The reported results are based on the implementations provided by
these methods. The backbones of PatchCore [15], RD4AD [4], CFLOW [6], and
CFA [9] are WideResNet50. SSPCAB [14] replaces the second last convolutional
layer of the reconstructive encoder in DRAEM [20]. DevNet [13] proposes that
the anomaly score output by the network can be further back-propagated to the
original image pixels to infer which pixels are classified as the anomaly, used for
anomaly localization.

4.2 Anomaly Detection and Localization on MVTec

The outcomes of anomaly detection and localization on MVTec, as shown in
Table 1 and Table 2, indicate that our approach achieves comparable or superior
performance in both image AUROC (detection) and pixel AUROC (localization)
compared to the majority of previous methods. The cross-scale attention mecha-
nism effectively preserves visual features for anomaly detection and localization,
spanning from coarse to fine details, regardless of their size. This capability
enables better discrimination of anomaly pixels from normal ones, resulting in
better detection performance. This suggests that our method effectively detects
anomalies and accurately locates them. Thus, in Table 1 and Table 2, our PPCA-
Net outperforms other methods in most categories in the “Pixel AUROC” met-
ric. Moreover, our method achieves the best average scores in both both image
AUROC (detection) and pixel AUROC (localization).

The Per Region Overlap (PRO) score [2] offers a fair treatment of anoma-
lous regions, irrespective of their size. On the other hand, the pixel-level Aver-
age Precision (AP) [20] proves particularly effective in scenarios with highly
imbalanced classes, such as those encountered in industrial anomaly localiza-
tion tasks. To provide a comprehensive evaluation of our anomaly localization
capabilities, we have incorporated two additional metrics, PRO and AP, which
are presented in Tables 3 and 4. The PRO metric demonstrates that our PPCA-
Net outperforms previous unsupervised state-of-the-art (SOTA) models by 4.8%
in localizing abnormal regions and surpasses supervised SOTA by 2.6%. This
underscores the effectiveness of PPCA-Net in simultaneously identifying abnor-
mal regions of varying sizes. Furthermore, we showcase exceptional anomaly
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Table 1. Compared with Unsupervised Anomaly Detection and Localization on
MVTec. Best results on Image AUROC or Pixel AUROC are highlighted in bold.
(Image AUROC/Pixel AUROC)

Category Unsupervised
CFLOW [6] DRAEM [20] SSPCAB [14] CFA [9] RD4AD [4] PatchCore [15] Ours

Carpet 97.6/99.2 96.9/97.5 93.1/92.6 99.9/98.6 98.7/98.9 99.1/99.0 99.2/99.2
Grid 98.1/98.9 99.9/99.7 99.7/99.5 98.6/97.6 100/98.3 97.3/98.7 100/99.4
Leather 99.9/99.7 100/99.0 98.7/96.3 100/99.1 100/99.4 100/99.3 100/99.5
Tile 97.1/96.2 100/99.2 100/99.4 99.2/95.1 99.7/95.7 99.3/95.8 100/99.7
Wood 98.7/86.0 99.5/95.5 98.4/96.5 100/94.7 99.5/95.8 99.6/95.1 99.9/98.1
Bottle 99.9/97.2 98.0/99.1 95.6/99.2 100/98.6 100/98.8 100/98.6 100/99.6
Hazelnut 100/98.8 100/99.7 100/99.7 100/98.6 100/99.0 100/98.7 100/99.3
Metal Nut 98.5/98.6 100/99.6 100/99.4 100/98.7 100/97.3 99.9/98.3 100/99.8
Pill 96.2/98.9 97.1/97.3 97.4/97.2 97.7/98.0 98.7/98.1 97.5/97.6 96.5/99.1
Toothbrush 98.8/99.0 100/97.3 97.9/97.3 100/98.8 100/99.1 100/98.6 99.4/97.5
Transistor 92.9/98.2 91.7/85.2 88.0/84.8 100/98.1 95.5/92.3 99.9/96.5 98.4/98.9
Zipper 97.1/99.1 100/99.1 100/98.4 99.5/98.6 97.9/98.3 99.5/98.9 100/99.2
Average 97.5/97.7 97.6/96.7 97.1/96.3 99.1/98.0 98.7/97.8 99.2/98.1 99.5/99.1

Table 2. Compared with Supervised Anomaly Detection and Localization on MVTec.
Best results on Image AUROC or Pixel AUROC are highlighted in bold. (Image
AUROC/Pixel AUROC)

Category Supervised
DevNet [13] DRA [5] PRN [21] Ours

Carpet 82.5/97.2 92.5/98.299.7/99.0 99.2/99.2
Grid 90.6/87.9 98.6/86.0 99.4/98.4 100/99.4
Leather 92.2/94.2 98.9/93.8100/99.7 100/99.5
Tile 99.9/92.7 100/92.3 100/99.6 100/99.7
Wood 97.9/86.4 99.1/82.9100/97.8 99.9/98.1
Bottle 99.7/93.9 100/91.3 100/99.4 100/99.6
Hazelnut 99.7/91.1 100/89.6 100/99.7 100/99.3
Metal Nut 98.8/77.8 99.1/79.5100/99.7 100/99.8
Pill 87.1/82.6 88.3/84.599.3/99.5 96.5/99.1
Toothbrush 79.2/84.6 87.5/75.5100/99.6 99.4/97.5
Transistor 89.1/56.0 88.3/79.199.7/98.4 98.4/98.9
Zipper 99.1/93.7 99.7/96.9 99.7/98.8 100/99.2
Average 92.2/85.3 96.1/85.3 99.4/99.0 99.5/99.1

localization performance through the more challenging AP metric. Compared to
the unsupervised SOTA models, our PPCA-Net outperforms it by 16.6%. As to
the supervised SOTA models, it exhibits commendable performance, exceeding
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other supervised models by 6.1%. This highlights the exceptional anomaly local-
ization capabilities of our approach. All the compared methods perform poorly
in the “Toothbrush” category.

Table 3. Results of the PRO and AP metrics for compared with Unsupervised anomaly
localization performance on MVTec. (PRO/AP)

Category Unsupervised
CFLOW [6] DRAEM [20] SSPCAB [14] CFA [9] RD4AD [4] PatchCore [15] Ours

Carpet 97.6/68.3 92.9/65.1 86.4/48.6 93.6/57.2 95.4/56.5 95.5/62.2 99.3/85.2
Grid 96.0/41.2 98.3/62.8 98.0/57.9 92.9/25.8 94.2/15.8 94.0/24.5 99.4/68.8
Leather 99.2/64.5 97.4/72.9 94.0/60.7 95.4/48.5 98.2/47.6 96.9/45.3 99.6/81.7
Tile 89.1/60.1 98.2/95.2 98.1/96.1 83.3/55.9 85.6/54.1 91.3/56.2 99.3/97.5
Wood 82.8/29.0 90.3/74.6 92.8/78.9 85.9/49.0 91.4/48.3 87.1/49.3 98.5/85.9
Bottle 94.0/68.1 96.8/88.9 96.3/89.4 94.6/80.3 96.3/78.0 95.4/76.8 98.7/94.9
Hazelnut 97.1/59.9 98.5/92.6 98.2/93.4 95.2/60.0 96.9/60.7 90.9/53.2 99.4/87.6
Metal Nut 91.5/88.0 97.0/97.0 97.7/94.7 91.4/92.2 94.9/78.6 92.6/86.6 98.2/98.9
Pill 95.2/82.0 88.4/47.6 89.6/48.3 95.4/81.9 96.7/76.5 94.5/75.7 98.5/88.4
Toothbrush 95.3/46.3 85.6/45.5 85.5/39.3 86.8/55.7 92.3/51.1 94.0/37.9 97.3/51.0
Transistor 82.5/67.5 70.4/39.0 62.5/38.1 95.1/76.2 83.3/54.1 92.3/66.9 98.1/91.4
Zipper 96.6/65.2 96.8/77.6 95.2/76.4 94.3/65.2 95.3/57.5 96.1/62.3 98.5/85.9
Average 93.4/59.6 91.3/68.1 90.8/65.5 92.1/60.0 93.9/55.4 93.9/56.3 98.7/84.7

Table 4. Results of the PRO and AP metrics for compared with Supervised anomaly
localization performance on MVTec. (PRO/AP)

Category Supervised
DevNet [13] DRA [5] PRN [21] Ours

Carpet 85.8/45.7 92.2/52.3 97.0/82.0 99.3/85.2
Grid 79.8/25.5 71.5/26.8 95.9/45.7 99.4/68.8
Leather 88.5/8.1 84.0/5.6 99.2/69.7 99.6/81.7
Tile 78.9/52.3 81.5/57.6 98.2/96.5 99.3/97.5
Wood 75.4/25.1 69.7/22.7 95.9/82.6 98.5/85.9
Bottle 83.5/51.5 77.6/41.2 97.0/92.3 98.7/94.9
Hazelnut 83.6/22.1 86.9/22.5 97.4/93.8 99.4/87.6
Metal Nut 76.9/35.6 76.7/29.9 95.8/98.0 98.2/98.9
Pill 69.2/14.6 77.0/21.6 97.2/91.3 98.5/88.4
Toothbrush 33.5/6.7 56.1/4.5 95.6/78.1 97.3/51.0
Transistor 39.1/6.4 49.0/11.0 94.8/85.6 98.1/91.4
Zipper 81.3/19.6 91.0/42.9 95.5/77.6 98.5/85.9
Average 71.4/24.4 73.3/26.0 96.1/78.6 98.7/84.7
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4.3 Ablation Study

We proceeded to assess the effectiveness of SACAM and PCSAM separately
by integrating them into PPCA-Net and comparing their respective perfor-
mance outcomes, as outlined in Table 5. Notably, when SACAM is applied in
isolation, PPCA-Net already outperforms some previous approaches, underscor-
ing SACAM’s efficacy in improving detection performance. Furthermore, when
PCSAM is utilized alone, there are significant enhancements in Image-AUROC,
PRO, and AP, further confirming PCSAM’s role in refining subtle detection.
The culmination of detection performance occurs when both modules are amal-
gamated within PPCA-Net, illustrating how SACAM and PCSAM synergize to
bolster detection accuracy.

Table 5. Ablation study of PPCA-Net with or w/o SACAM and PCSAM (%).

SACAM PCSAM Image-AUROC Pixel-AUROC PRO AP

� 96.7 97.5 96.5 72.3
� 98.1 97.2 97.0 72.8

� � 97.8 98.0 97.5 79.7

4.4 Conclusion

We introduce PPCA-Net as a novel top-performing approach for detecting and
locating industrial anomalies. With SACAM, the model can assess channel signif-
icance not just within its scale but also across different scales, resulting in a com-
prehensive and globally attentive feature map. Moreover, PCSAM enables cross-
scale analysis, enabling the model to capture information from both large and
small anomaly regions simultaneously, thus improving the accuracy of detect-
ing subtle anomalies through a small-patch attention mechanism. Experimental
findings validate the efficacy of PPCA-Net in industrial anomaly detection.
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Abstract. Deep neural networks (DNNs) are nowadays witnessing
a major success in solving many pattern recognition tasks including
skeleton-based classification. The deployment of DNNs on edge-devices,
endowed with limited time and memory resources, requires designing
lightweight and efficient variants of these networks. Pruning is one of the
lightweight network design techniques that operate by removing unneces-
sary network parts, in a structured or an unstructured manner, including
individual weights, neurons or even entire channels. Nonetheless, struc-
tured and unstructured pruning methods, when applied separately, may
either be inefficient or ineffective.

In this paper, we devise a novel semi-structured method that discards
the downsides of structured and unstructured pruning while gathering
their upsides to some extent. The proposed solution is based on a differ-
entiable cascaded parametrization which combines (i) a band-stop mech-
anism that prunes weights depending on their magnitudes, (ii) a weight-
sharing parametrization that prunes connections either individually or
group-wise, and (iii) a gating mechanism which arbitrates between differ-
ent group-wise and entry-wise pruning. All these cascaded parametriza-
tions are built upon a common latent tensor which is trained end-to-end
by minimizing a classification loss and a surrogate tensor rank regularizer.
Extensive experiments, conducted on the challenging tasks of action and
hand-gesture recognition, show the clear advantage of our proposed semi-
structured pruning approach against both structured and unstructured
pruning, when taken separately, as well as the related work.

Keywords: Structured and unstructured pruning · Semi-structured
pruning · Graph-convolutional networks · Skeleton-based recognition

1 Introduction

Deep neural networks (DNNs) are nowadays becoming a hotspot in machine
learning with increasingly performant models used to approach eclectic pat-
tern recognition tasks [1,35,67]. These models are also steadily oversized and
this makes their deployment on cheap devices, endowed with limited hard-
ware resources, very challenging. In particular, hand-gesture recognition and
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human computer interaction tasks require fast and lightweight DNNs with high
recognition performances. However, DNNs are currently showing some satu-
rated improvement in accuracy while their computational efficiency remains a
major issue. Among these DNN models, graph convolutional networks (GCNs)
are deemed effective especially on non-euclidean domains including skeleton-
data [48]. Two families of GCNs exist in the literature: spectral and spatial.
Spectral methods project graph signals from the input to the Fourier domain,
achieve convolution, prior to back-project the convolved signals in the input
domain [3,4,23,71]. Spatial methods proceed differently by aggregating signals
through neighboring nodes, using multi-head attention, prior to achieve convo-
lutions (as inner products) on the resulting node aggregates [6,7,13,39,42]. Spa-
tial GCNs are known to be more effective compared to spectral ones. Nonethe-
less, with multi-head attention, spatial GCNs become oversized, computation-
ally overwhelming, and their deployment of cheap devices requires making them
lightweight and still effective [2,51].

Several existing works address the issue of lightweight network design, includ-
ing tensor decomposition [17], quantization [24], distillation [8,64], neural archi-
tecture search [70] and pruning [25–27,32]. Pruning methods are particularly
effective, and their general recipe consists in removing connections in order to
enable reduced storage and faster inference with a minimal impact on classifica-
tion performances. One of the mainstream methods is magnitude pruning (MP)
[24] which removes the smallest weight connections before retraining the pruned
networks. Two categories of MP techniques exist in the literature: unstructured
[24,25] and structured [15,41]. Unstructured methods remove weights individu-
ally by ranking them according to the importance of their magnitudes whilst
structured approaches zero-out groups of weights (belonging to entire rows,
columns, filters or channels) according to the importance of their aggregated
magnitudes. Unstructured MP results into more flexible, accurate networks, and
allows reaching any fine-grained targeted pruning rate but requires dedicated
hardware to actually achieve efficient computation. In contrast, structured MP
offers a more practical advantage by making the resulting DNNs compatible
with standard hardware for efficient computation. However, this comes at the
expense of a reduced classification performance and coarse-grained pruning rates.
In order to fully exhibit the potential of these two pruning categories, a more
suitable framework should gather the upsides of both structured and unstructured
pruning while discarding their downsides to some extent.

In this paper, we introduce a novel variational MP approach that lever-
ages both structured and unstructured pruning. This method dubbed as semi-
structured is based on a differentiable cascaded weight parametrization composed
of (i) a band-stop mechanism enforcing the prior that the smallest weights should
be removed, (ii) a weight-sharing that groups mask entries belonging to the
same rows, columns, or channels in a given tensor, and (iii) a gating mechanism
which arbitrates between different mask group assignments while maximizing
the accuracy of the trained lightweight networks. We also consider a budget loss
that allows implementing any targeted fine-grained pruning rate and reducing
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further the rank of the pruned tensors, resulting into more efficient networks
while being closely accurate as shown later in experiments.

2 Related Work

The following review discusses the related work in variational pruning and
skeleton-based recognition, highlighting the limitations that motivate our contri-
butions.

Variational Pruning. The general concept behind variational pruning is to
learn weights and binary masks that capture the topology of pruned networks.
This is achieved by minimizing a global loss that combines a classification error
and a regularizer that controls the sparsity (or the cost) of the resulting net-
works [14–16]. However, these approaches are powerless to implement any given
targeted pruning rate without overtrying multiple weighting of the regularizers.
Alternative methods explicitly model the network cost using �0-based criteria
[16,53] in order to minimize the discrepancy between the observed and the tar-
geted costs. Existing solutions rely on sampling heuristics or relaxation, which
promote sparsity—using different regularizers (�1/�2-based, entropy, etc. ) [9–
12]—but are powerless to implement any given targeted cost exactly and result
in overpruning effects leading to disconnected subnetworks. Furthermore, most of
the existing solutions, including magnitude pruning [24], decouple the training of
network topology from weights, making the learning of pruned networks subop-
timal. On another hand, existing pruning methods are either structured [15,41]
or unstructured [24,25] so their benefit is not fully explored. In contrast to the
aforementioned related work, our contribution in this paper seeks to leverage
the advantage of both structured and unstructured pruning where the training
of masks and weights are coupled on top of shared latent parameters.

Skeleton-Based Recognition. This task has gained increasing interest due to
the emergence of sensors like Intel RealSense and Microsoft Kinect. Early meth-
ods for hand-gesture and action recognition used RGB [5,18,28,59], depth [52],
shape / normals [47,57,60–63,65,66], and skeleton-based techniques [50]. These
methods were based on modeling human motions using handcrafted features
[58], dynamic time warping [55], temporal information [20,68], and temporal
pyramids [48]. However, with the resurgence of deep learning, these meth-
ods have been quickly overtaken by 2D/3D Convolutional Neural Networks
(CNNs) [19,22,69], Recurrent Neural Networks (RNNs) [43–46,48,49], mani-
fold learning [34,36–38], attention-based networks [54], and GCNs [29–31,33].
The recent emergence of GCNs, in particular, has led to their increased use in
skeleton-based recognition [4]. These models capture spatial and temporal atten-
tion among skeleton joints with better interpretability. However, when tasks
involve relatively large input graphs, GCNs (particularly with multi-head atten-
tion) become computationally inefficient and require lightweight design tech-
niques. In this paper, we design efficient GCNs that make skeleton-based recog-
nition highly efficient while also being effective.
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3 A Glimpse on Graph Convolutional Networks

Let S = {Gi = (Vi, Ei)}i denote a collection of graphs with Vi, Ei being respec-
tively the nodes and the edges of Gi. Each graph Gi (denoted for short as
G = (V, E)) is endowed with a signal {φ(u) ∈ R

s : u ∈ V} and associated with
an adjacency matrix A. GCNs aim at learning a set of C filters F that define
convolution on n nodes of G (with n = |V|) as (G � F)V = f

(
A U� W

)
, here �

stands for transpose, U ∈ R
s×n is the graph signal, W ∈ R

s×C is the matrix of
convolutional parameters corresponding to the C filters and f(.) is a nonlinear
activation applied entry-wise. In (G � F)V , the input signal U is projected using
A and this provides for each node u, the aggregate set of its neighbors. Entries
of A could be handcrafted or learned so (G �F)V corresponds to a convolutional
block with two layers; the first one aggregates signals in N (V) (sets of node neigh-
bors) by multiplying U with A while the second layer achieves convolution by
multiplying the resulting aggregates with the C filters in W. Learning multiple
adjacency (also referred to as attention) matrices (denoted as {Ak}K

k=1) allows
us to capture different contexts and graph topologies when achieving aggregation
and convolution. With multiple matrices {Ak}k (and associated convolutional
filter parameters {Wk}k), (G � F)V is updated as f

( ∑K
k=1 A

kU�Wk
)
. Stack-

ing aggregation and convolutional layers, with multiple matrices {Ak}k, makes
GCNs accurate but heavy. We propose, in what follows, a method that makes
our networks lightweight and still effective.

4 Proposed Method: Semi-structured Magnitude Pruning

In what follows, we formally subsume a given GCN as a multi-layered neural
network gθ whose weights are defined as θ =

{
W1, . . . ,WL

}
, being L its depth,

W� ∈ R
d�−1×d� its �th layer weight tensor, and d� the dimension of �. The output

of a given layer � is defined as φ� = f�(W��
φ�−1), � ∈ {2, . . . , L}, with f� an

activation function; without a loss of generality, we omit the bias in the definition
of φ�.

Pruning consists in zeroing-out a subset of weights in θ by multiplying
W� with a binary mask M� ∈ {0, 1}d�−1×d� . The binary entries of M� are
set depending on whether the underlying layer connections are pruned, so
φ� = f�((M� �W�)� φ�−1), here � stands for the element-wise matrix product.
In our definition of semi-structured pruning, entries of the tensor {M�}� are set
depending on the prominence and also on how the underlying connections in
gθ are grouped; pruning that removes the entire connections individually (resp.
jointly) is referred to as unstructured (resp. structured) whereas pruning that
removes some connections independently and others jointly is dubbed as semi-
structured. However, such pruning (with {M�}�) suffers from several drawbacks.
In the one hand, optimizing the discrete set of variables {M�}� is deemed highly
combinatorial and intractable especially on large networks. In the other hand, the
total number of parameters {M�}�, {W�}� is twice the number of connections
in gθ and this increases training complexity and may also lead to overfitting.
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4.1 Semi-structured Weight Parametrization

In order to overcome the aforementioned issues, we consider an alternative
parametrization that allows finding both the topology of the pruned networks
together with their weights, without doubling the size of the training parame-
ters, while making magnitude pruning semi-structured and learning still effective.
This parametrization corresponds to the Hadamard product involving a weight
tensor and a cascaded function applied to the same tensor as

W� = Ŵ� � [
ψ3 ◦ ψ2 ◦ ψ1(Ŵ�)

]
, (1)

being Ŵ� a latent tensor and ψ(Ŵ�) (with ψ = ψ3 ◦ ψ2 ◦ ψ1) a continuous
relaxation of M� which enforces the prior that (i) smallest weights Ŵ� should
be removed from the network, (ii) the underlying mask entries ψ(Ŵ�) are shared
(across tensor rows, columns, channels, etc.) when pruning is structured, and (iii)
any given mask entry in ψ(Ŵ�) is either unstructurally or structurally pruned.
In what follows, we detail the different parametrizations used to define ψ(Ŵ�);
unless explicitly mentioned, we omit � in the definition of Ŵ� and we rewrite it
simply as Ŵ.

Band-stop Parametrization (ψ1). This parametrization ψ1 is entry-wise
applied to the tensor Ŵ and enforces the prior that smallest weights should
be removed from the network. In order to achieve this goal, ψ1 must be (i)
bounded in [0, 1], (ii) differentiable, (iii) symmetric, and (iv) ψ1(ω) � 1 when
|ω| is sufficiently large and ψ1(ω) � 0 otherwise. The first and the fourth proper-
ties ensure that the parametrization is neither acting as a scaling factor greater
than one nor changing the sign of the latent weight, and also acts as the identity
for sufficiently large weights, and as a contraction factor for small ones. The
second property is necessary to ensure that ψ1 has computable gradient while
the third condition guarantees that only the magnitudes of the latent weights
matter. A choice, used in practice, that satisfies these four conditions is

ψ1(ω) = 2
(
1 + exp(−σω2)

)−1 − 1, (2)

being σ a scaling factor that controls the crispness (binarization) of mask entries
in ψ1(Ŵ). According to Eq. 2, σ controls the smoothness of ψ1 around the sup-
port of the latent weights. This allows implementing an annealed (soft) thresh-
olding function that cuts-off all the connections in smooth and differentiable
manner as training of the latent parameters evolves. The asymptotic behavior of
ψ1—that allows selecting the topology of the pruned subnetworks—is obtained
as training reaches the latest epochs, and this makes mask entries, in ψ1(Ŵ),
crisp and (almost) binary. This mask ψ1(Ŵ) (rewritten for short as ψ1) is used
as input to the subsequent parameterizations ψ2 and ψ3 as shown below.

Weight-sharing Parametrization (ψ2). This parametrization ψ2 implements
semi-structured pruning by tying mask entries belonging to the same rows,
columns or channels in the tensor ψ1. More precisely, each mask entry in ψ2(ψ1)
will either be (i) entry-wise evaluated (dependent only on its underlying weight),
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or (ii) shared through multiple latent weights belonging to the same row, col-
umn or channel of ψ1 resulting into the following multi-head parametrization
(see Fig. 1)

ψ2(ψ1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψu
2 (ψ1) = ψ1 unstructured (entry-wise)

ψr
2(ψ1) = vec−1(Pr vec(ψ1)) structured (row-wise)

ψc
2(ψ1) = vec−1(vec(ψ1)

� Pc) structured (column-wise)
ψb

2(ψ1) = vec−1(PrP
�
c vec(ψ1)) structured (block/channel-wise),

(3)
here vec (resp. vec−1) reshapes a matrix into a vector (resp. vice-versa),
and Pr ∈ {0, 1}(d�−1×d�)

2
, Pc ∈ {0, 1}(d�−1×d�)

2
are two adjacency matri-

ces that model the neighborhood system across respectively the rows and the
columns of ψ1 whilst PrP�

c ∈ {0, 1}(d�−1×d�)
2

models this neighborhood through
blocks/channels of ψ1. When composed (with ψ1), the mask ψ2 inherits all the
aforementioned fourth properties: mask entries in ψ2(ψ1) remain bounded in
[0, 1], differentiable, symmetric, and close to 1 when entries of the latent tensor
Ŵ (i.e., inputs of ψ1) are sufficiently large and 0 otherwise.

Gating Parametrization (ψ3). As each connection in gθ is endowed with a
multi-head parametrization ψ2, we define ψ3 as a gating mechanism that selects
only one of them. More precisely, each mask entry can either be (i) entry-wise
pruned, i.e., untied, or (ii) tied to its row, column or block/channel. Again with
ψ3, the composed parametrization ψ3(ψ2) is bounded in [0, 1], differentiable,
symmetric and reaches 1 if the entries of the latent tensor Ŵ are sufficiently
large, and 0 otherwise. Formally, the gating mechanism ψ3 is defined as

ψ3(ψ2) = ψb
2

︸︷︷︸
block-wise

+ (ψ̄b
2) � ψc

2
︸ ︷︷ ︸
column-wise

+ (ψ̄b
2 � ψ̄c

2) � ψr
2

︸ ︷︷ ︸
row-wise

+ (ψ̄b
2 � ψ̄c

2 � ψ̄r
2) � ψu

2
︸ ︷︷ ︸

entry-wise

, (4)

being ψ̄b
2 = U−ψb

2, and U a tensor of ones with the same dimensions as ψb
2 (and

ψ̄r
2, ψ̄c

2, ψ̄u
2 are similarly defined). It is easy to see that when entries in ψ1 (and

hence ψ2) are crisp, at most one of these four terms is activated (i.e., equal to
one) for each connection in gθ. From Eq. 4, block-wise pruning has the highest
priority, followed by column-wise, row-wise and then entry-wise pruning respec-
tively. This priority allows designing highly efficient lightweight networks with
a coarse-granularity budget implementation for block/column/row-wise (struc-
tured) pruning, while entry-wise (unstructured) pruning is less computationally
efficient but allows reaching any targeted budget with a finer granularity, and
thereby with a better accuracy. Note that this parametrization acts a weight reg-
ularizer which not only improves the lightweightness of the pruned networks but
also their generalization performances (as shown later in experiments). Note also
that ψ1 and ψ2 are commutable in the cascaded parameterization ψ = ψ3◦ψ2◦ψ1

but ψ3 should be applied at the end of the cascade.
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Fig. 1. This figure shows the three stages of the cascaded parametrization including (i)
band-stop, (ii) weight-sharing and (iii) gating. Cyan stands for shared connections, and
the triangle for the “not gate” operator. For ease of visualization, only 4 connections
are shown during the whole evaluation of the parameterization, and only the outcome
(1 or 0) of wi,j is shown in the final mask tensor. (Color figure online)

4.2 Budget-Aware Variational Pruning

By considering Eq. 1, we define our semi-structured pruning loss as

Le

({ψ3 ◦ ψ2 ◦ ψ1(Ŵ
�) � Ŵ�}�

)
+ λ

( L−1∑

�=1

1�
d�
[ψ3 ◦ ψ2 ◦ ψ1(Ŵ

�)]1d�+1 − c

)2

, (5)

being 1d�
a vector of d� ones and the left-hand side term is the cross entropy loss

that measures the discrepancy between predicted and ground-truth labels. The
right-hand side term is a budget loss that allows reaching any targeted pruning
cost c. Nonetheless, it’s worth noticing that actual efficiency is not only related to
the pruning rate but also to the actual dimensionality of the tensors. In order to
take full advantage of the semi-structured setting of our method, we complement
the aforementioned budget function with another one that minimizes the rank of
the pruned tensors {ψ3◦ψ2◦ψ1(Ŵ�)}�. However, as the rank is not differentiable,
we consider a surrogate function (as an upper bound) of the rank. Hence, Eq. 5
becomes

Le

(
ψ3 ◦ ψ2 ◦ ψ1(Ŵ

�) � {Ŵ�}�) +λ

( L−1∑

�=1

1�
d�
[ψ3 ◦ ψ2 ◦ ψ1(Ŵ

�)]1d�+1 − c

)2

+β

L−1∑

�=1

r[(ψ3 ◦ ψ2 ◦ ψ1(Ŵ
�)],

(6)

here r[W] is a surrogate differentiable rank function set in practice to

r[W] =
[
1�

d�+1
− exp(−γ1�

d�
W)

]
1d�+1 + 1�

d�

[
1d�

− exp(−γW1d�+1)
]
, (7)

being γ an annealed temperature and exp(.) is entry-wise applied. Equation 7
seeks to minimize the number of non-null rows/colums in a given tensor W, and
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this allows achieving higher speedup compared to when only the budget loss is
minimized (see experiments). In Eq. 6, β controls the “structureness” of pruning;
large β favors stringent tensors first through blocks, columns and then through
rows, while smaller β leads to mixed structured and unstructured pruning. Once
the above loss optimized, actual rank minimization requires reordering dimen-
sions layer-wise in order to fully benefit from compact tensors and eliminate
fragmentation; this is achievable as only outward connections, from unpruned
neurons in each layer, are actually pruned during optimization.

Table 1. Jacobians of different parametrizations w.r.t. different settings; here
[J1]ij,pq = [∂ψ1/∂Ŵ]ij,pq, [Jx

2 ]ij,pq = [∂ψx
2 /∂ψ1]ij,pq and [Jx

3 ]ij,pq = [∂ψ3/∂ψx
2 ]ij,pq

with x ∈ {u, r, c, b}; here u, r, c and b stand for entry-wise, row-wise, column-wise and
block-wise respectively. It is easy to see that all these Jacobians are extremely sparse
and their evaluation is highly efficient. In this table, NA stands for not applicable as
the parametrization ψ1 is necessarily entry-wise.

Entry-wise Row-wise Column-wise Block-wise

[J1]ij,pq = 1{ij=pq}ψ′
1(Ŵpq) NA NA NA

[Ju
2 ]ij,pq = 1{ij=pq} [Jr

2]ij,pq = [Pr]ij,pq [Jc
2]ij,pq = [P′

c]ij,pq [Jb
2]ij,pq = [PrP

′
c]ij,pq

[Ju
3 ]ij,pq = 1{ij=pq} [Jr

3]ij,pq = 1{ij=pq} [Jc
3]ij,pq = 1{ij=pq} [Jb

3]ij,pq = 1{ij=pq}
×[ψ̄b

2 � ψ̄c
2 � ψ̄r

2 ]pq ×[ψ̄b
2 � ψ̄c

2 � ψ̄u
2 ]pq ×[ψ̄b

2 � ψ̄r
2 � ψ̄u

2 ]pq ×[ψ̄c
2 � ψ̄r

2 � ψ̄u
2 ]pq

4.3 Optimization

Let L denote the global loss in Eq. 6, the update of {Ŵ�}� is achieved using the
gradient of L obtained by propagating the gradients through gθ. More precisely,
considering the parametrization in Eq. 1, the gradient of the global loss w.r.t.
Ŵ� is obtained as

∂L
∂Ŵ�

=
∂L

∂ψ(Ŵ�)

∂ψ(Ŵ�)

∂ψ2 ◦ ψ1(Ŵ�)

∂ψ2 ◦ ψ1(Ŵ
�)

∂ψ1(Ŵ�)

∂ψ1(Ŵ
�)

∂Ŵ�
, (8)

here the original gradient ∂L/∂ψ(Ŵ�) is obtained from layer-wise backpropa-
gation, and ∂L

∂Ŵ�
is obtained by multiplying the original gradient by the three

rightmost Jacobians (whose matrix forms are shown in Table 1).
In the above objective function (Eq. 6), β = 0.1 and λ is overestimated (to

1000 in practice) in order to make Eq. 6 focusing on the implementation of the
budget. As training reaches its final epochs, the budget loss reaches its minimum
and the gradient of the global objective function will be dominated by the gra-
dient of Le (and to some extent by the gradient of the surrogate rank function);
this allows improving both classification performances and efficiency as shown
subsequently.
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5 Experiments

This section assesses baseline and pruned GCNs’ performance in skeleton-based
recognition using SBU Interaction [65] and the First Person Hand Action
(FPHA) [21] datasets, comparing our lightweight GCNs against related pruning
techniques. SBU is an interaction dataset acquired using the Microsoft Kinect
sensor, it contains 282 moving skeleton sequences performed by two interacting
individuals and belonging to 8 categories. Each pair of interacting individuals
corresponds to two 15 joint skeletons, each one encoded with a sequence of its
3D coordinates across video frames. The evaluation protocol follows the train-
test split as in the original dataset release [65]. The FPHA dataset includes 1175
skeletons belonging to 45 action categories performed by 6 different individuals
in 3 scenarios. Action categories are highly variable, including various styles,
speed, scale, and viewpoint. Each skeleton includes 21 hand joints, each one
again encoded with a sequence of its 3D coordinates across video frames. The
performances of different methods are evaluated using the 1:1 setting proposed
in [21] with 600 action sequences for training and 575 for testing. The average
accuracy over all classes of actions is reported in all experiments.

Table 2. Comparison of our baseline
GCN against related work on the SBU
database. Results shown in Bold stand for
the best performances while those under-
lined correspond to the second best per-
formances.

Method Accuracy (%)
Raw Position [65] 49.7
Joint feature [60] 86.9
CHARM [61] 86.9
H-RNN [43] 80.4
ST-LSTM [44] 88.6
Co-occurrence-LSTM [48] 90.4
STA-LSTM [54] 91.5
ST-LSTM + Trust Gate [44] 93.3
VA-LSTM [46] 97.6
GCA-LSTM [45] 94.9
Riemannian manifold. traj [36] 93.7
DeepGRU [49] 95.7
RHCN + ACSC + STUFE [30] 98.7
Our baseline GCN 98.4

Table 3. Comparison of our baseline
GCN against related work on the FPHA
database.

Method Color Depth Pose Accuracy (%)
2-stream-color [19] ✓ ✗ ✗ 61.56
2-stream-flow [19] ✓ ✗ ✗ 69.91
2-stream-all [19] ✓ ✗ ✗ 75.30
HOG2-dep [52] ✗ ✓ ✗ 59.83
HOG2-dep+pose [52] ✗ ✓ ✓ 66.78
HON4D [62] ✗ ✓ ✗ 70.61
Novel View [63] ✗ ✓ ✗ 69.21
1-layer LSTM [48] ✗ ✗ ✓ 78.73
2-layer LSTM [48] ✗ ✗ ✓ 80.14
Moving Pose [66] ✗ ✗ ✓ 56.34
Lie Group [55] ✗ ✗ ✓ 82.69
HBRNN [43] ✗ ✗ ✓ 77.40
Gram Matrix [68] ✗ ✗ ✓ 85.39
TF [20] ✗ ✗ ✓ 80.69
JOULE-color [28] ✓ ✗ ✗ 66.78
JOULE-depth [28] ✗ ✓ ✗ 60.17
JOULE-pose [28] ✗ ✗ ✓ 74.60
JOULE-all [28] ✓ ✓ ✓ 78.78
Huang et al. [34] ✗ ✗ ✓ 84.35
Huang et al. [38] ✗ ✗ ✓ 77.57
HAN [37] ✗ ✗ ✓ 85.74
Our baseline GCN ✗ ✗ ✓ 86.43

Input Graphs. Let’s consider a sequence of skeletons {St}t with St =
{p̂t

1, . . . , p̂
t
n} being the 3D skeleton coordinates at frame t, and {p̂t

j}t a joint
trajectory through successive frames. We define an input graph G = (V, E) as
a finite collection of trajectories, with each node vj ∈ V in G being a trajec-
tory {p̂t

j}t, and an edge (vj , vi) ∈ E exists between two nodes if the underlying
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Table 4. This table shows detailed performances and ablation study on SBU for differ-
ent pruning rates. “none” stands for no-actual speedup is observed as the underlying ten-
sors/architecture remain shaped identically to the unpruned network (despite having
pruned connections). For structured, unstructured and semi-structured settings, when
“rank optimization” is not used, only pruning rate is considered in the loss together
with cross entropy. When “rank optimization” is used, all the three terms are combined
in the loss.

Pruning rates Accuracy (%) SpeedUp Observation

0% 98.40 none Baseline GCN
70% 93.84 none Band-stop Weight Param.
90% 87.69 426× Structured

89.23 487× Structured (+ rank optimization)
93.84 none Unstructured
93.84 16× Unstructured (+ rank optimization)
90.76 40× Semi-structured
89.23 52× Semi-structured (+ rank optimization)

95% 87.69 678× Structured
87.69 787× Structured (+ rank optimization)
92.30 none Unstructured
92.30 16× Unstructured (+ rank optimization)
92.30 109× Semi-structured
93.84 106× Semi-structured (+ rank optimization)

98% 81.53 797× Structured
81.53 2195× Structured (+ rank optimization)
89.23 none Unstructured
89.23 106× Unstructured (+ rank optimization)
83.07 135× Semi-structured
86.15 607× Semi-structured (+ rank optimization)

Comparative (regularization-based) pruning
98% 55.38 none MP+�0-reg.

73.84 none MP+�1-reg.
61.53 none MP+Entropy-reg.
75.38 none MP+Cost-aware-reg.

trajectories are spatially neighbors. Each trajectory is processed using tempo-
ral chunking, which splits the total duration of a sequence into M evenly-sized
temporal chunks (with M = 4 in practice). Then, joint coordinates {p̂t

j}t of the
trajectory are assigned to these chunks, based on their time stamps. The averages
of these chunks are concatenated in order to create the raw description of the
trajectory (denoted as φ(vj) ∈ R

s with s = 3 × M). This process preserves the
temporal structure of trajectories while being frame-rate and duration agnostic.

Implementation Details and Baseline GCNs. All the GCNs have been
trained using the Adam optimizer for 2, 700 epochs with a batch size of 200 for
SBU and 600 for FPHA, a momentum of 0.9, and a global learning rate (denoted
as ν(t)) inversely proportional to the speed of change of the loss used to train
the networks; with ν(t) decreasing as ν(t) ← ν(t − 1)× 0.99 (resp. increasing as
ν(t) ← ν(t−1)/0.99) when the speed of change of the loss in Eq. 6 increases (resp.
decreases). Experiments were run on a GeForce GTX 1070 GPU device with 8
GB memory, without dropout or data augmentation. The baseline GCN archi-
tecture for SBU includes an attention layer of 8 heads, a convolutional layer of
16 filters, a dense fully connected layer, and a softmax layer. The baseline GCN
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Table 5. This table shows detailed performances and ablation study on FPHA for
different pruning rates. “none” stands for no-actual speedup is observed as the under-
lying tensors/architecture remain shaped identically to the unpruned network (despite
having pruned connections).

Pruning rates Accuracy (%) SpeedUp Observation

0% 86.43 none Baseline GCN
50% 85.56 none Band-stop Weight Param.
90% 68.00 274× Structured

71.30 547× Structured (+ rank optimization)
83.82 none Unstructured
84.17 16× Unstructured (+ rank optimization)
78.60 33× Semi-structured
80.52 38× Semi-structured (+ rank optimization)

95% 56.69 759× Structured
62.60 931× Structured (+ rank optimization)
78.78 none Unstructured
80.17 29× Unstructured (+ rank optimization)
72.17 197× Semi-structured
74.60 214× Semi-structured (+ rank optimization)

98% 47.47 1479× Structured
49.04 1399× Structured (+ rank optimization)
78.08 none Unstructured
77.56 126× Unstructured (+ rank optimization)
75.13 33× Semi-structured
73.91 278× Semi-structured (+ rank optimization)

Comparative (regularization-based) pruning
98% 64.69 none MP+�0-reg.

70.78 none MP+�1-reg.
67.47 none MP+Entropy-reg.
69.91 none MP+Cost-aware-reg.

architecture for FPHA is heavier and includes 16 heads, a convolutional layer of
32 filters, a dense fully connected layer, and a softmax layer. Both the baseline
GCN architectures, on the SBU and the FPHA benchmarks, are accurate (see
Tables 2 and 3), and our goal is to make them lightweight while maintaining
their high accuracy.

Performances, Comparison and Ablation. Tables 4 and 5 show a compar-
ison and an ablation study of our method both on the SBU and the FPHA
datasets. First, according to the observed results, when only the cross entropy
loss is used without budget (i.e., λ = β = 0 in Eq. 6), performances are close
to the initial heavy GCNs (particularly on FPHA), with less parameters1 as
this produces a regularization effect similar to [56]. Then, when pruning is struc-
tured, the accuracy is relatively low but the speedup is important particularly
for high pruning regimes. When pruning is unstructured, the accuracy reaches
its highest value, but no actual speedup is observed as the architecture of the
pruned networks remains unchanged (i.e., not compact). When pruning is semi-
structured, we observe the best trade-off between accuracy and speedup; in other
words, coarsely pruned parts of the network (related to entire block/column/row

1 Pruning rate does not exceed 70% and no control on this rate is achievable when
λ = 0.
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Fig. 2. This figure shows a crop of the mask tensor obtained after the gating
parametrization when trained on the FPHA dataset. Top-left corresponds to the origi-
nal mask (without pruning) while the others correspond to masks obtained with struc-
tured, unstructured and semi-structured pruning respectively. In all these masks, each
diagonal block corresponds to a channel. Better to zoom the PDF.

connections) lead to high speedup and efficient computation, whereas finely
pruned parts (related to individual connections) lead to a better accuracy with a
contained marginal impact on computation, so speedup is still globally observed
with a significant amount.

Extra comparison of our method against other regularizers shows a substan-
tial gain. Indeed, our method is compared against different variational pruning
with regularizers plugged in Eq. 6 (instead of our proposed budget and rank reg-
ularizers), namely �0 [16], �1 [11], entropy [12] and �2-based cost [40], all without
our parametrization. From the observed results, the impact of our method is
substantial for different settings and for equivalent pruning rate (namely 98%).
Note that when alternative regularizers are used, multiple settings (trials) of the
underlying mixing hyperparameters (in Eq. 6) are considered prior to reach the
targeted pruning rate, and this makes the whole training and pruning process
overwhelming. While cost-aware regularization makes training more affordable,
its downside resides in the observed collapse of trained masks; this is a well known
effect that affects performances at high pruning rates. Finally, Fig. 2 shows exam-
ples of obtained mask tensors taken from the second (attention) layer of the
pruned GCN. For semi-structured pruning, we observe a compact tensor layer
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with some individually pruned connections whereas structured and unstructured
pruning—when applied separately—either produce compact or spread tensors,
with a negative impact on respectively accuracy or speed. In sum, semi-structured
pruning gathers the advantages of both while discarding their inconveniences.

6 Conclusion

This paper introduces a novel magnitude pruning approach that combines both
the strengths of structured and unstructured pruning methods while discarding
their drawbacks. The proposed method, dubbed as semi-structured, is based on a
novel cascaded weight parametrization including band-stop, weight-sharing, and
gating mechanisms. Our pruning method also relies on a budget loss that allows
implementing fine-grained targeted pruning rates while also reducing the rank of
the pruned tensors resulting in more efficient and still effective networks. Exten-
sive experiments, conducted on the challenging task of skeleton-based recogni-
tion, corroborate all these findings.
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Abstract. This paper improves upon existing data pruning methods for
image classification by introducing a novel pruning metric and pruning
procedure based on importance sampling. The proposed pruning metric
explicitly accounts for data separability, data integrity, and model uncer-
tainty, while the sampling procedure is adaptive to the pruning ratio and
considers both intra-class and inter-class separation to further enhance
the effectiveness of pruning. Furthermore, the sampling method can read-
ily be applied to other pruning metrics to improve their performance.
Overall, the proposed approach scales well to high pruning ratio and
generalizes better across different classification models, as demonstrated
by experiments on four benchmark datasets, including the fine-grained
classification scenario.

Keyword: Machine Learning, Data Pruning, Coreset Selection.

1 Introduction

The escalating size of models and datasets has led to an increase in the cost
of training deep models. To address the challenges in maintaining high accu-
racy and scalability in the training process, various data reduction strategies
have been proposed. These strategies aim to curate a smaller set of data that
maximally retains information of the original dataset, facilitating more efficient
learning of feature representations. Two overarching categories encapsulate most
data reduction techniques: data pruning and data distillation. Data pruning
involves identifying a subset of existing data for retention, whereas data distilla-
tion focuses on synthesizing a small number of new samples that lead to similar
model accuracy as the original dataset [27].
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While many data pruning methods are effective, there are remaining chal-
lenges that hinder the practical application of these techniques. One limitation
of the existing pruning methods is the lack of robustness to data noise. For exam-
ple, one proposed method utilizes the l2 error of the predictions [16] as a pruning
metric, which is unable to accurately discriminate between difficult but useful
samples and noisy, unusable samples [9]. This is due to the absence of a measure
of sample quality, in addition to sample difficulty. Another drawback lies in the
potential exacerbation of class imbalances by existing pruning strategies. The
strict sampling approach, based on an increasing order of sample difficulty, may
inadvertently lead to or intensify existing disparities between classes [17]. While
some prior methods suggest pruning an uneven number of samples per majority
and minority classes to balance the number of samples [23], such approaches
overlook the inherent variations in difficulty among different classes. Moreover,
the adaptability of existing methods is questionable, particularly concerning the
decision of whether to prune difficult or easy samples. This decision hinges on
factors such as the initial data volume and the chosen pruning ratio. The pre-
vailing observation, as highlighted in [20], underscores the optimal strategy of
retaining hard samples when the dataset is large and easy samples when it is
small. To the best of our knowledge, few prior methods have embraced this
insight in their pruning procedures.

In this paper, we aim to design a scalable data pruning metric which improves
upon the state-of-the-art by overcoming the previously mentioned limitations.
Concretely, our contributions towards this goal are the following:

1. A novel data pruning metric that intuitively captures multiple factors of data
utility, including Separability, Integrity, and Model uncertainty (SIM).

2. An importance sampling procedure to prune data, which can be used with
commonly used pruning metrics to improve the effectiveness of pruned data.

3. Evaluation on four benchmark datasets ranging from small to large number
of classes show our method, which combines SIM with Sampling i.e., SIMS,
has better scalability when the pruning ratios is high, better cross-model
generalization, and reduced time needed to calculate pruning metrics than
other approaches.

2 Related Work

2.1 Data Pruning

One of the first pruning approaches proposed was Forgetting Scores [25], where
samples were pruned based on the number of times they transitioned from being
correctly to incorrectly classified throughout the training process of an expert
model trained on the full dataset. Although performing well across many different
classification datasets, Forgetting Scores suffer from high computational costs
due to training the expert models to convergence on the full training dataset.
To reduce this time spent computing pruning scores, Paul et al. [16] proposed a
new metric, EL2N, based on the magnitude of the error norm averaged across
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multiple expert models trained on the full dataset. Importantly, the authors
showed that good performance could be achieved through training the expert
models for only 20 epochs on the original datasets. However, a limitation present
in both EL2N and Forgetting Scores is that they do not explicitly consider the
recognizability of those samples in relation to their class centers in the embedding
space. Similarly, other approaches have proposed using other techniques e.g.,
gradient of the loss [7,8], generalization influence [29], label noise [15], moving-
one-sample-out [24], etc. But these methods also do not consider the inherent
separability of different classes.

To address this limitation, Sorscher et al. [20] proposed Prototype and Self-
Prototype scores for pruning. Here, the distance of each data sample from its
corresponding class center is used as a pruning score, where samples farther from
the class center are considered more challenging and are likely to be retained.
With these simple metrics, the authors obtained similar pruning performance as
the baseline EL2N and Forgetting Scores. However, two important limitations
remain. First, neither of the previously mentioned pruning metrics explicitly
models the quality of each data sample. This is important as without a measure
of sample quality, the distinction between difficult, recognizable samples, and
difficult, unrecognizable samples is missed. Secondly, even though Prototype
scores consider the recognizability of each data sample in relation to it’s own
class center, they do not utilize the separability of samples compared to other
class samples. Thus, information regarding the inherent separability of classes
is overlooked. Our proposed metric aims to address each of the aforementioned
challenges by explicitly measuring indications of data integrity, model uncer-
tainty, and class separability in computing scores for pruning.

Another importance consideration in data pruning is not only the metric
used to obtain pruning scores, but in how those scores are used to sample the
original data for pruning. Many approaches sort the scores from low to high
and retain the percentage of samples based on the highest scores. However, as
noted in [20], the optimal sampling strategy depends on the amount of data
retained. With a similar motivation, Xia et al. [28] proposed to sample scores in
proximity to the median of each data class’s distribution and showed improved
results compared to using a strict sorting, especially at higher pruning ratios.
Zheng et al. [30] also demonstrated the benefit of maintaining the coverage of
data across different classes, which mitigates performance degradation at high
pruning ratio. In our work, we build upon these observations and propose an
importance sampling procedure which depends on the given pruning ratio and
allows us to vary the importance of in addition to the difficulty of the samples
retained.

Finally, there is a line of work aimed at online pruning, where a certain
percentage of the data is pruned away continually at some specified interval (e.g.,
every epoch, time elapsed, etc.) [2,5,6,14]. These approaches are not directly
comparable to ours since the pruning is applied continuously throughout the
training process, rather than once at the start of training.



Data Pruning via Separability, Integrity, and Model Uncertainty-Aware 401

2.2 Data Distillation

Related to data pruning is the concept of data distillation. Rather than selecting
a subset of images to retain, distillation aims to synthesize a set of representative
samples to replace the original dataset. The idea was originally introduced in [27]
and showcased promising results in distilling small image datasets (e.g., MNIST,
CIFAR-10) into just a single image per class. Subsequent works expanded on
this by introducing label distillation, demonstrating the possibility of distilling
datasets to less than one image per class [21]. Ongoing research has focused on
refining both data and label distillation through enhanced optimization functions
for learning the distilled data. A major limitation of data distillation methods is
that they suffer from computational issues and do not scale well to synthesizing
a larger number of images per class in order to be useful in practice. Sundar
et al. [22] proposed to alleviate the computational burden by first pruning the
original dataset and then performing data distillation on the remaining samples.
For an in-depth review of data distillation, refer to the recent survey [18] and
more recent methods such as [4].

3 Methods

Fig. 1. Scatter plot of SIM scores for the CIFAR-100 dataset. The example images
shown are from the “sweet pepper” class and are provided to give a visualization of
the typical samples falling in those respective regions of the graph.

3.1 Problem Statement

Consider learning a classification model fθ(·) parameterized by θ using dataset
D = {(xi, yi)}i=1,...,|D|, which consists of a collection of samples xi and corre-
sponding class label yi ∈ {1, ..., C} with C being the number of classes. Denote
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|D| as the number of samples in the original dataset. We aim to develop a method
that can identify a subset D′ ⊆ D, such that fθ′(·) learned from D′ yields com-
parable accuracy with fθ(·). The reduction of data can be quantified through a
pruning ratio defined as α = 1 − D′/D. Given 0 ≤ |D′| ≤ |D|, we have α ∈ [0, 1].

3.2 Data Separability

Data separability or discriminability describes the inherent and unchangeable
properties of a given data sample due to noise and strength of the information
portrayed [3]. Many previous pruning metrics measure the difficulty of each data
sample as the pruning score. These scores are then used to rank the samples in
order to determine which ones should be removed from the dataset. In the case of
EL2N, the sample difficulty is measured as the l2 norm of the error: ‖ŷi−yi‖. For
Prototype scores, the difficulty is measured as the distance of each data sample
to its mean class embedding: ‖fθ(xi) − 1

n

∑n
j=1 fθ(xj)‖, where n is the number

of samples of corresponding class. However, neither of the measure considers
the inter-class distance as an additional measure of sample difficulty. In case
where all of the classes are well separated in the embedding space, this would
not be an issue. However, when two or more classes are clustered together in
the embedding space, then samples belonging to overlapping classes should be
considered as more difficult than samples belonging to a perfectly separated class.
For this reason, we choose to measure data separability using a modified version
of the Recognizability Index (RI) [1]. Specifically, we define dP

θ (xi) = 1−cos(φyi
)

as the positive distance of a sample xi to its actual class center under model θ,
where φyi

is the absolute angle between fθ(xi) and center embedding of class yi.
We then define dN

θ (xi) = 1 − maxj∈{1,...,C}\{yi} cos(φj) as the negative distance
of a sample to its nearest imposter class under model θ, where φj is the absolute
angle between fθ(xi) and center embedding of class j. For both dP

θ and dN
θ ,

the center embedding is calculated as the average embeddings of class samples.
Finally, data separability is computed as follows:

sθ(xi) =
dN

θ (xi)
dP

θ (xi) + ε
(1)

where ε = 1e−7 is a small constant to avoid division by 0. Intuitively speaking,
s(xi) reflects the difficulty to classify the data sample. An easily recognizable
sample has small positive distance and large negative distance, thus a high value
of s(xi). Otherwise s(xi) is low.

3.3 Data Integrity

A significant shortcoming of existing data pruning metrics is the failure to con-
sider the integrity (i.e., quality) of data samples. For a challenging sample, with-
out capturing sample quality, the important distinction between recognizable
and unrecognizable sample is missed. This oversight may lead to discarding
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hard but useful samples (e.g., profile-view of an object), instead of difficult sam-
ples due to low quality (e.g., blurred image). To capture quality, we use the
embedding norm as it has been previously shown to be correlated with sample
quality [9] and is inexpensive to compute. In particular, given a classification
model fθ(·), the embedding norm is defined as the l2-norm of the embedding
vector.

eθ(xi) = ||fθ(xi)||2 (2)

Empirically, it is observed that higher quality xi often yields higher value of
eθ(xi) and vice versa for a given model θ.

3.4 Model Uncertainty

So far, we have been focusing on deriving pruning metrics based on information
possessed by the data itself. In practice, whether a model can utilize such infor-
mation also impacts the effectiveness of pruned data. Therefore, we incorporate
model uncertainty in our pruning metric, which is computed by Jensen-Shannon
Divergence (JSD) of a set of expert models predictions f(xi) on a given data
sample xi. Similar approach was also adopted in prior work such as [12,19].
As defined in Eq. (3), low uncertainty estimates are achieved when the entropy
between individual model probabilistic distributions is low, meaning that all the
models assign a similar probability distribution to different classes for given xi.
On the other hand, high entropy between probabilistic distributions on xi indi-
cates less agreement between the expert models on how to classify a given image
example.

JSD({hj}K
j=1 | xi) = H(M) − 1

K

K∑

j=1

H(hj(xi)) (3)

where M = 1
K

∑K
j=1 hj(xi) is the average probability distribution of xi and K is

the number of expert models. H(h) is the Shannon entropy for distribution h. In
practice, the expert models can be obtained by training different models using
the entire dataset. h can be estimated as the softmax output of classification
model. Intuitively speaking, more noisy and lower quality samples lead to higher
uncertainty. Notice that JSD(·) is bounded between 0 and 1. For consistency
with separability and integrity, we denote the compliment of the uncertainty as
c(xi), such that higher value of c(xi) represents higher certainty and vice versa.
c(xi) is computed as follows, which is also bounded between 0 and 1.

c(xi) = 1 − JSD({hj}K
j=1 | xi) (4)
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Fig. 2. Illustration of the sampling distribution mean at different pruning ratio α.

Fig. 3. Illustration of varying sampling distributions for Tiny-ImageNet dataset as
pruning ratio α increases.

3.5 Derivation of SIM

We now discuss how to combine these three metrics together as the proposed SIM
metric. First, we leverage the same set of K expert models used in uncertainty
estimation to obtain aggregated separability and integrity defined as follows.

s(xi) =
1
K

K∑

j=1

sθj
(xi) (5)

e(xi) =
1
K

K∑

j=1

eθj
(xi) (6)

Then we normalize each metric s(xi), e(xi), and c(xi) separately by subtract-
ing the minimum followed by dividing by the range so that each metric is spread
between 0 and 1. Finally, we combine the three metrics in the following way:

g(xi) =
√

(1 − s(xi))2 + c(xi)2 −
√

(1 − s(xi))2 + (1 − c(xi))2 (7)

SIM(xi) =
√

g(xi)2 + e(xi)2 (8)

The motivation for this formulation can be explained by the geometric inter-
pretation of the two terms in Eq. (7). The first term,

√
(1 − s(xi))2 + c(xi)2 can

be seen as the distance to the top-right corner of the normalized separability-
uncertainty plane. This term is high for low data separability and low uncer-
tainty samples. Samples falling in this region are assumed to be hard to recog-
nize but potentially useful given that the uncertainty is low. The second term,



Data Pruning via Separability, Integrity, and Model Uncertainty-Aware 405

√
(1 − s(xi))2 + (1 − c(xi))2 can be viewed as the distance to the bottom-right

corner of the normalized separability-uncertainty plane. This term is penaliz-
ing samples with low separability and high uncertainty. Thus, the first term is
trying to give a positive weighting towards retaining those difficult, but rec-
ognizable samples and the second term is giving a negative weighting towards
low separability and high uncertainty samples. The distribution of SIM scores is
illustrated for the CIFAR-100 dataset in Fig. 1. We also tried the formulation of
g′(xi) =

√
s(xi)2 + c(xi)2 but the performance is worse compared to g(xi).

An intuition as to why we combine each of these three metrics is shown in
Fig. 6, which shows some example images from CIFAR-100 that have poor quality
aspects that are captured by either g(xi), e(xi), or both. For example, according
to the embedding norm e(xi), the images in subfigure (a) should have low scores
due to the presence of blurry, low contrast images. Similarly, according to g(xi),
the images in subfigure (b) should also have low scores due to the presence of
multiple classes in the image. However, in all of these images, it seems reasonable
to expect the classifier to learn to correctly identify the main objects. Indeed,
if we had just used either g(xi) or e(xi) alone, then each of the images would
have been likely pruned away early on from the training dataset. In contrast, by
combining both g(xi) and e(xi), the resulting SIM scores actually fall towards
the median and are retained for moderate values of α. Finally, we also retain
the ability to reject cases of unrecognizable samples that exhibit degradations
captured by both g(xi) and e(xi), like those in subfigure (c) of Fig. 6, which are
likely not contributing positively towards the learning task.

3.6 SIM with Importance Sampling (SIMS)

Existing pruning methods usually sort samples by the pruning metric and retain
the samples that meet a pre-defined threshold. Despite its simplicity, retaining
the most difficult samples according to the pruning metric may lead to under-
fitting for large pruning ratios and datasets with more challenging classes. To
address this limitation, we propose an adaptive sampling strategy based on the
pruning ratio. It can be combined seamlessly with SIM and any other scalar-
based pruning metric. We name our approach as SIMS, which consists of two
key designs: i) varying the sample difficulty of pruned samples based on the
pruning ratio and ii) sampling via a combination of class dependent and class
independent distributions in order to avoid exacerbating bias in class-imbalanced
data distributions.

Importance Sampling Based on Pruning Ratio. Our sampling strategy
employs importance sampling [10] to emphasize the desired difficulty of samples
during pruning. Rather than ranking the SIM scores from lowest to highest and
retaining a percentage of the highest scoring samples based on the pruning ratio
(α), the data to retain is selected via a sampling procedure. We construct a
sampling distribution q(x|α), that is dependent on α, to assign an importance
weight w(x|α) to each data sample x in the original data distribution p(x) to
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bias the sampling based on their importance. The importance is defined as the
ratio between q(x|α) and p(x) (i.e., w(x|α) = q(x|α)

p(x) ). Our intuition is that for
small α, a large percentage of difficult samples can be retained because we have
a lot of data samples remaining, whereas for large α, we have very few data
samples retained so we need to retain the easy, representative examples.

In our implementation, both the original distribution p(x) and sampling dis-
tribution q(x|α) assume the form of Normal distributions i.e., p(x) ∼ N (μ0, σ2

0)
and q(x|α) ∼ N (μ, σ2), where μ0 and σ0 are estimated from the training data
directly. μ and σ are estimated based on α, μ0, and σ0. Specifically, μ is deter-
mined by Eq. (10), where F−1 is the inverse cumulative distribution function of
p(x) and t is the quantile function defined by Eq. (9). Notice t is a sinusoidal
function of α, which increases monotonically with α. As illustrated in Fig. 2,
smaller α reduces μ further so that w(x|α) is larger for x with smaller pruning
score i.e. more difficult samples and vice versa.

t =
1
2

(
sin(απ − π

2
) + 1

)
(9)

μ = F−1 (t;μ0, σ0) (10)

For σ, we simply use a scaled version of σ0 as defined in Eq. (11). This is
based off the observation that most of the high SIM scores for each class (see
Fig. 2 in supplementary) contain similar, redundant samples. Therefore, as α
increases, σ also increases so that we allow for extra diversity in the sampled
images as the number of samples to retain becomes small.

σ = ασ0 (11)

An illustration of the importance sampling procedure is given in Fig. 3 for
Tiny-ImageNet [13] using SIM scores and sampling at various pruning ratios.

Combination of Class-Dependent and Class-Independent Sampling.
Our decision to include both class-dependent and class-independent sampling
is motivated from the following two observations. First, we observed that the
performance of pruning using the Prototype score can be improved by reserving
a percentage of the pruned dataset for samples at the center of each cluster. In
particular, CIFAR-10 has the best performance when 10% of the data is sampled
from the class centers and 90% from the boundary (see Table 1 in the supplemen-
tary). Second, previous research has shown that data pruning via an overall score
distribution for the entire dataset may exacerbate class imbalances [20]. Moti-
vated by these observations, we adapt our importance sampling strategy to first
sample a percentage of samples within each class (class-dependent sampling) and
then sample the remaining percentage from the overall data distribution (class-
independent sampling). Through an empirical analysis, the optimal performance
was achieved by first sampling 5% of samples from each individual class and the
remaining 95% from the overall data distribution.
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4 Experimental Results

In this section, we provide a comparison of the proposed SIMS approach with
various benchmark methods. We report the comparison considering both fac-
tors of classification accuracy and training time on the pruned datasets. We also
explore the generalization performance of SIMS when models used for deriv-
ing pruning metric and performing classification are different. More qualitative
analysis of pruning results is provided in the supplementary.

4.1 Datasets

We conducted our experiments using four image classification datasets. CIFAR-
10 [11], CIFAR-100 [11], and Tiny-ImageNet [13] are well-known selections uti-
lized in prior studies. CIFAR 10 and CIFAR 100 have 50,000 images with 10
and 100 classes, respectively, and Tiny-ImageNet has 100,000 images distributed
equally among 200 classes. Finally, the large-scale, fine-grained dataset iNatu-
ralist [26] has 675,170 images with a long-tailed distribution across 5,089 classes.

Table 1. Classification accuracy on CIFAR-10, CIFAR-100, Tiny-ImageNet, and iNat-
uralist datasets. Results are averaged across 3 repeated experiments. Best result in each
column for each dataset is in bold.

Dataset Pruning Methodα = 0.1α = 0.3α = 0.5α = 0.7α = 0.9Avg. α = 0.1-0.5Avg. α = 0.5-0.9Avg. α = 0.1-0.9

C
IF

A
R

-1
0

Random 93.14 92.23 90.52 87.45 72.17 92.05 84.88 88.24

EL2N 93.50 93.35 92.57 83.12 27.88 93.23 69.25 79.98

Prototype 93.31 93.19 92.43 87.68 48.28 93.10 79.25 85.48

Forgetting 93.46 93.40 93.04 85.56 46.46 93.40 75.92 83.73

SIM 93.50 93.33 92.46 88.42 42.26 93.22 77.84 84.76

SIMS 93.42 93.20 91.18 85.34 69.35 92.83 83.01 87.56

Full Dataset 93.57 ± 0.18

C
IF

A
R

-1
0
0

Random 71.39 68.85 64.48 55.96 28.49 68.26 51.28 59.25

EL2N 72.25 69.04 51.79 23.42 6.37 65.50 26.31 45.25

Prototype 72.45 68.96 58.40 35.96 7.52 67.09 33.97 49.66

Forgetting 72.43 70.80 63.62 50.1 21.72 69.53 46.27 57.27

SIM 72.66 69.91 61.21 40.64 11.77 68.47 38.37 52.55

SIMS 72.24 70.70 66.00 58.11 33.83 69.83 53.88 61.39

Full Dataset 72.57 ± 0.06

T
in

y
-I

m
a
g
eN

et

Random 58.34 55.36 50.77 43.90 25.51 54.93 41.43 47.89

EL2N 59.30 54.14 40.58 21.15 7.65 52.04 22.78 37.06

Prototype 58.84 54.69 44.26 24.90 3.98 52.96 24.19 37.95

Forgetting 59.21 58.04 53.47 44.23 25.11 57.30 42.18 49.33

SIM 59.24 54.72 45.12 29.22 6.39 53.62 27.27 39.92

SIMS 59.79 55.49 51.72 45.53 27.60 55.91 42.99 49.20

Full Dataset 59.52 ± 0.41

iN
a
tu

ra
li
st

Random 42.16 39.58 35.42 29.21 17.61 39.16 27.93 33.33

Forgetting 43.61 40.99 32.33 17.78 4.57 39.61 18.19 28.52

SIM 38.61 26.99 17.89 8.27 2.10 27.60 9.15 18.43

SIMS 39.33 30.78 36.72 34.53 22.42 34.81 32.27 33.19

Full Dataset 42.90 ± 0.10
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4.2 Classification Accuracy

We assessed various baseline pruning metrics: Random, EL2N [16], Prototype
[20], and Forgetting Scores [25] against the proposed SIMS on datasets mentioned
in Sect. 4.1. We vary α from 0.1 to 0.9 with 0.1 increments for each experiment.
For fair comparison across different methods, we used ResNet18 models for both
calculating pruning metrics and classification for all methods. Furthermore, all
experiments are conducted three times and the average results are reported.
From the results in Table 1 and Table 2, we make the following observations.

First, SIMS outperforms the next best method, Forgetting Scores, on CIFAR-
10, CIFAR-100, and iNaturalist datasets and is comparable on Tiny-ImageNet.
Next, the biggest difference in performance is observed in the high α regime i.e.,
α ∈ {0.5, ..., 0.9}, where SIMS outperforms Forgetting Scores across all datasets
by a large margin. For example, the models trained on SIMS pruned datasets
achieved, on average, a 22.1% increase in test classification accuracy over those
trained on Forgetting Scores pruned datasets. Lastly, the incorporation of impor-
tance sampling substantially elevated the performance of both SIM (i.e. SIMS
without importance sampling) and Forgetting Scores, increasing the average per-
formance across the four datasets for α ∈ {0.1, ..., 0.9} by 30.87% and 8.57% for
SIM and Forgetting Scores, respectively. Thus, importance sampling is proved
to be a useful strategy to pair with a general pruning metric in order to improve
its performance.

Interesting to note is the high performance of random pruning averaged across
all values of α for the iNaturalist dataset, although SIMS still performs signif-
icantly better for high pruning ratios (α ∈ {0.5, ..., 0.9}). We posit that given
the relatively low performance and difficulty of this fine-grained classification
dataset, the performance at low pruning ratios actually degrades rapidly when
biasing the selection to retain low SIM score samples. This is because the clas-
sification problem is already difficult enough, that focusing on the boundary
samples for each class (low SIM scores), rather than the representative samples
(high SIM scores), is hurting the performance significantly. Thus, it seems that
biasing the original focus to easier or more challenging samples depending on
the initial full dataset performance may prove as a useful exploration for future
work, especially on more challenging long-tailed and fine-grained datasets.

Table 2. Accuracy of Forgetting vs. Forgetting plus importance sampling across
CIFAR-10, CIFAR-100, Tiny-ImageNet, and iNaturalist datasets, averaged across α
from 0.1-0.9.

Metric CIFAR-10 CIFAR-100 Tiny iNaturalist

Forgetting 83.73 57.27 49.33 28.52

Forgetting + Sampling 87.82 61.23 47.12 36.04



Data Pruning via Separability, Integrity, and Model Uncertainty-Aware 409

Fig. 4. Classification accuracy vs. training time of different pruning methods (Best
viewed in color).

4.3 Training Time vs. Accuracy

One benefit of data pruning is reducing the training time compared to the full
dataset, which is beneficial for tasks like hyper-parameter tuning and neural
architecture search. Figure 4 presents a plot of training time vs. testing accuracy
for different dataset using different pruning metrics at different pruning ratios.
Comparing SIMS to the next best benchmark method, Forgetting Scores, we
see a clear separation in terms of accuracy at higher pruning ratios (left half
of the curve) with comparable training time. Where the efficiency advantage of
different pruning metrics becomes evident is in the time required to compute
the metrics, where we only train each expert model for 20 epochs for computing
SIM scores, compared to Forgetting Scores which requires at least 75 epochs
for each expert model [25]). Similarly, EL2N scores only require training for 20
epochs [16], but their accuracy is much lower across all of the datasets used in
our evaluations.

Table 3. Accuracy of all possible combinations of metrics and sampling procedures.
The best result in each column is in bold.

Methods Ablation CIFAR-10 CIFAR-100 Tiny Avg.

S 87.53 60.12 45.40 64.35

I 86.57 60.33 46.22 64.37

M 88.04 58.83 46.51 64.46

S + I 86.40 56.93 43.53 62.29

S + M 87.83 60.44 46.21 64.83

I + M 86.30 60.41 42.55 63.09

S + I + M (proposed) 87.56 61.39 49.20 66.05

No sampling 84.76 52.55 39.92 59.08

0% class sampling 87.82 61.23 47.12 65.39

1% class sampling 87.31 61.20 49.21 65.91

5% class sampling (proposed) 87.56 61.39 49.20 66.05

100% class sampling 87.26 61.02 49.22 65.83
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Table 4. Cross-model generalization. Each column represents different classification
models and datasets. Each row represents different pruning metric and pruning model
is ResNet18.

Pruning metric ResNet18 ResNet50

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Forgetting Scores 87.82 61.23 91.72 73.76

SIMS 87.31 61.20 92.09 74.17

4.4 Ablation Analysis

An in-depth ablation study was conducted on the individual components of
SIMS. For all studies in this section, we used K = 10 expert ResNet18 models
for pruning and used a different ResNet18 model trained on the pruned datasets
for classification. Same as Sect. 4.2, we vary α from 0.1 to 0.9 with 0.1 incre-
ments and report average accuracy on different datasets. First, we ablated on
the various combinations of the three metric components of SIM scores, including
separability (S), integrity (I), and model uncertainty (M). The results presented
in Table 3 upper subsection show that the best average performance of 66.05%
is obtained in the last row from the combination of all three metrics i.e. SIM.
We also notice the best performing individual metric is model uncertainty. And
combining two metrics does not necessarily improve overall performance e.g. S+I
perform worse than S or I used separately.

The second ablation study was performed on the various components of the
importance sampling procedure employed by SIMS. The results are given in
Table 3 lower subsection. First, we observe a drastic decrease in performance
without sampling (row 1) compared to any one of remaining four sampling pro-
cedures (row 2–5). Next, we analyze the effect of different variants of sampling by
changing the within-class ratio, where 0% means performing sampling on entire
dataset, and 100% means each class is equally pruned. From rows 2–5, we can see
that as the difficulty and number of classes in the dataset increases, the benefit
of sampling a percentage of the data within classes becomes more significant.
In particular, we see about 2.1% decrease in performance on Tiny-ImageNet
when sampling strictly from the overall distribution compared to first sampling
within each class and then sampling the remaining amount from the overall dis-
tribution (row 2 vs. row 3–5). The best overall performance across the three
datasets is obtained with an initial 5% sampling within class and remaining 95%
sampling from the overall distribution. To gain further insight into the benefit
of importance sampling, we plotted pruned vs. retained samples on CIFAR-10
in the t-SNE space in Fig. 5. Notice that importance sampling results in bet-
ter coverage of each class distribution. Additional results are in supplementary
Fig. 1.
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Fig. 5. T-SNE visualization for CIFAR-10 comparing SIM to SIMS.

Fig. 6. Example images from CIFAR-100 with poor qualities such as blurriness, low
contrast, and multiple classes. The advantage of computing SIM scores is evident in the
different quality aspects captured by e(xi) and g(xi), where many difficult but useful
samples would be rejected if either metric was used alone.

4.5 Cross-Model Generalization

Finally, we conducted generalization experiments to test whether SIMS per-
forms well when training downstream classification models on pruned datasets
obtained via a different model architecture. From Table 4, SIMS performs better
than Forgetting Scores with a ResNet50 model trained on the pruned datasets
derived with a ResNet18 model. This suggests that some of the upfront costs of
computing SIMS scores can be reduced by training expert models with a smaller
architecture and subsequently training larger, downstream models on the pruned
datasets.

5 Conclusion

We proposed a data pruning approach (a.k.a. SIMS) which improves upon state-
of-the-art pruning methods in terms of scalability and generalizability, as demon-
strated on various datasets including the large-scale and long-tailed distribution
dataset, iNaturalist. We showed that our method performs especially well at high
pruning ratios and challenging fine-grained dataset compared to state-of-the-art.
We showed that a key component of our proposed pruning procedure, impor-
tance sampling, was not only instrumental in improving the performance of the
proposed SIM metric, but also can boost performance of other pruning metrics
e.g., Forgetting Scores. Furthermore, we showed that SIMS can generalize better
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across unseen model architectures, which is desirable from practical perspective.
Our future direction is reducing the cost of training expert models required for
achieving best results, integrating the full dataset performance as a prior in
the importance sampling, and extending the metric to unsupervised learning of
pruning models. Furthermore, even though we focused on the classification task
in this paper, the idea of using SIM to characterize the data separability, data
integrity, and model uncertainty is generic. The importance sampling process
can also be extended to other tasks, such as detection and segmentation, since
it is based on model uncertainty. Therefore, we believe the proposed SIMS is
applicable to other tasks.
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Abstract. Multi-label classification deals with the problem where each
instance is associated with multiple labels. To discriminate the label dif-
ference, each label can be modeled in its specific feature subset derived
from the original feature space. In these label-specific methods, the main-
stream is to generate new features by analyzing the distance relationship
between data points and the clusters they aggregate into. However, it
is difficult to determine how many clusters are required, and clustering
algorithms are often unstable. In this paper, we take entropy to measure
clustering quality and establish a novel model to quantitatively determine
the number of clusters. Besides, a novel conception of entropy similarity
is proposed to pairwise measure label correlation and enable clustering
ensemble to improve model robustness. Experiments on 12 benchmark
datasets validate the effectiveness of the proposed method.

Keywords: Multi-label classification · Label-specific feature ·
Entropy · Clustering

1 Introduction

In traditional supervised learning, each instance is associated with one label.
Differently, multi-label classification deals with the problem that each instance
can be associated with a set of labels. For example, in scene classification, an
image consisting of 1080*1920 pixels can contain many labels simultaneously,
such as buildings, plants, animals, etc. Nowadays, multi-label classification has
been applied in many fields, such as scene classification [2,32], text categorization
[20,24] and bioinfomatics [23,33].

Over the past decades, lots of algorithms have been proposed to address
multi-label classification tasks. Typically, problem transformation methods [1,
15,19] convert the multi-label problem to single-label ones, and then binary
classification algorithms can be employed, while algorithm adaptation methods
[3,5,30] directly expend single-label algorithms to their multi-label versions.

In all the aforementioned methods, multi-label model is constructed on the
feature space and then employed to make predictions for all labels. However,
a feature may only be closely associated with a part of labels. For the scene
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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classification example, features related to green pixels tend to be more useful
in predicting whether a picture contains plants, while blue pixels for sky or
sea. Accordingly, some researchers propose the concept of label-specific features
[10,29], that is, for each label, only the most pertinent and discriminative features
should be taken for model induction.

LIFT [29] firstly proposes to generate label-specific features for multi-label
classification. It employs clustering analysis to obtain positive and negative clus-
ters respectively for every label class, and the distances between all instances
and cluster centers are formed as new features. LIFT effectively extracts differ-
ent features for different labels, but it still has some drawbacks, such as unstable
clustering and the deficiency of label correlation. Next, researchers extend LIFT
from various aspects, e.g. taking spectral clustering instead of k-means [28], guid-
ing clustering by entropy [27] or spatial topological information [7], incorporating
deep learning approach [9], enhancing model stability by base leaner ensemble
[22] or clustering ensemble [21,25].

Overall, above improvements fail to determine how many clusters are wanted
given a multi-label dataset, which heavily limits the effectiveness of clustering
analysis. To cope with this issue, a novel method named ECL (Entropy guided
Clustering for Label-specific learning) is proposed in this paper, using entropy
to measure the uncertainty degree of clusters, and on the top of this definition,
an objective function is established to quantitatively determine the number of
clusters. Besides, for the issue of unstable clustering, clustering ensemble is valid
to improve the performance of a cluster with other clusters [25]. In this paper,
a conception of entropy similarity is proposed to guide clustering ensemble and
improve the quality of label-specific features by considering label correlation.

To summarize, ECL systematically improves the clustering-based label-
specific features generation method through the definition and application of
entropy in multi-label classification. The contributions of ECL can be highlighted
as follows:

– A novel paradigm of multi-label entropy is presented, considering the distri-
bution of both labels and instances.

– An objective function is established to provide a concrete number of clusters
for distinct label, guaranteeing the clustering quality.

– A novel entropy-based label similarity is designed, which effectively guides
clustering ensemble to improve clustering robustness and label correlation
exploration.

2 Preliminaries

To benefit the analysis on related work and the introduction to the proposed
method, the steps of clustering-based label-specific features generation [29] will
be introduced. Formally, the main notations are listed in Table 1.

LIFT [29] extracts new features from the distribution of training instances.
Firstly, label independence methodology is taken to transform the original multi-
label dataset D = {X , Y1, · · · , Yq} to q individual single-label datasets {Dj =
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Table 1. Main Notations

Notation Description
X = {X1,X2, · · · ,Xd} ∈ R

d The d-dimensional feature space
Y = {Y1, Y2, · · · , Yq} ∈ {0, 1}q The label space with q labels
D = {(xi,yi) | 1 ≤ i ≤ n} The training dataset
xi,yi = {yi1, · · · , yiq} The i-th instance and its corresponding label vector
Yj ,λj = {y1j , · · · , ynj} The j-th label and its corresponding label column

(X , Yj) | 1 ≤ j ≤ q}. Since the label space is disjointly partitioned and label-
specific features are independently generated, only Yj is taken as an example in
the following.

Secondly, Dj is further divided to positive and negative subsets based on the
label value:

Pj = {xi | (xi,yi) ∈ D, yij = 1}
Nj = {xi | (xi,yi) ∈ D, yij = 0}

(1)

Thirdly, Pj is partitioned into several disjoint clusters with k-means clus-
tering algorithm and so do Nj . Tj = {p1

j ,p
2
j , · · · ,p

kj

j ;n1
j ,n

2
j , · · · ,n

kj

j } are the
cluster centers with the number of clusters is:

kj = ratio · min {|Pj | , |Nj |} (2)

where ratio is a predefined parameter.
Lastly, the distances between instances in Dj and 2kj cluster centers are seen

as new features specific to Yj . Here, a mapping φj : X → Zj from the original
d-dimensional feature space to newly generated 2kj-dimensional feature space is
constructed as follow:

φj(x) =
{

d(x,p1
j ), · · · , d(x,p

kj

j ), d(x,n1
j ), · · · , d(x,n

kj

j )
}

(3)

where d(·, ·) represents the Euclidean distance between two instances.

3 Related Work

There are two categories of methods fo find discriminate features for distinct
label from the original feature set, namely selection and generation.

The selection methods recommend the most suitable features specific to
distinct label. LLSF [10] first proposes this paradigm and build a multi-label
regression model with �1-norm regularizer. As the �1-norm regularizer makes
the weights for features sparse, each label obtains its own distinct feature sub-
set. Then, many strategies are presented to enhance the label correlation learning
ability, e.g. updating the prediction outputs according to the label interrelations
[11], applying instance similarity consideration into the objective function [8],
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and employing manifold regularization [14] in terms of label-wise and instance-
wise at the same time [13]. However, these regression-based methods in practical
applications rarely provide the specific features for each label, as the �1-norm
regularizer cannot ensure an absolute sparsity under the realistic optimization
methods. More commonly, some features are assigned with larger weights, and
instead, some features obtain smaller weights.

LIFT [29] is the first method of generating label-specific features. It indepen-
dently treats each label, and for each label class, the instances are first parti-
tioned into k clusters with k-means clustering. Subsequently, distances between
cluster centers and instances are viewed as label-specific features, with the
assumption that a cluster center can represent the instances in this cluster. The
defects of LIFT derive from the instability of k-means clustering, i.e., 1) how
large should k be set, and 2) how to avoid its sensitivity to initial cluster cen-
ter setting. For the first issue, ML-LEC [27] takes label entropy to measure the
uncertainty of training set, and creates more clusters for label classes with larger
uncertainty. Some scholars have also proposed improvements in other ways, e.g.
guiding clustering process with spatial topological information [7], and replacing
k-means clustering with other clustering approach [28]. However, the existing
methods can only qualitatively analyze the shortcomings of clustering and do
some modifications, but fail to provide a number of clusters quantitatively.

For the second issue, LIFTACE [25] enable clustering ensemble with label
similarity to eliminate the randomness in each clustering process. Besides, ELIFT
[22] takes a weighted ensemble of LIFT to improve model robustness, LETTER
[6] reconstructs two subsets of new label-specific features on the top of instance
level and feature level, respectively, LF-LELC [26] further builds the label corre-
lation learning mechanism after label-specific features generation. Nonetheless,
the aforementioned methods generally consider label similarity, e.g. cosine sim-
ilarities between label columns, to learn label correlation and enhance model
robustness. While in the real-world multi-label classification, the label space is
sparse, resulting in the difficulty in label similarity measurement.

4 The Proposed Method

In previous clustering-based label-specific features methods, two issues have not
been fully addressed: 1) the number of clusters; 2) the stability of clustering. In
this section, the solution to these two issues by ECL will be described in Sect. 4.1
and Sect. 4.2, respectively. In Sect. 4.3, the whole process of model induction is
summarized.

4.1 Determining the Number of Clusters with Entropy

Cluster Entropy. Before discussing how many clusters are wanted, we first
define the conception of cluster entropy in this subsection.
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In information theory, entropy is taken to measure the uncertainty degree of
a variable. For example, the entropy of label Yj is:

E(Yj) = −
∑

y∈{0,1}
P (Yj = y) log P (Yj = y) (4)

Furthermore, considering that feature Xj may contain mj ,mj ≥ 2 values, we
define the frequency of its i-th value is Pij , and the entropy of this feature is:

E(Xj) = −
mj∑
i=1

Pij log Pij (5)

where mj will be a hyper-parameter if Xj is continuous-valued. In this paper, we
discretize continuous variables using the manner of quantiles, that is, for each
continuous-valued feature, its values are divided into mj folds according to value
ranking and each part has n/mj values.

For a multi-label dataset D containing d features and q labels, we can define
its entropy as:

E(D) =
1

d + q

⎛
⎝

d∑
j=1

E(Xj) +
q∑

j=1

E(Yj)

⎞
⎠ (6)

In clustering-based label-specific features generation, the labels are indepen-
dently treated and the clustering analysis is performed in the single-label formed
datasets Pj ,Nj . To balance positive and negative classes, we set the same number
of clusters for positive and negative instances, and perform clustering analysis
in the instances with majority class:

Mj =

{
Pj , if |Pj | > |Nj |
Nj , if |Pj | ≤ |Nj |

(7)

where | · | denotes the number of instances in a dataset.
Suppose that C is a cluster in Mj , C is essentially a subset of Mj , and its

corresponding cluster entropy can be formulated as:

E(C) =
1

d + q − 1

⎛
⎝

d∑
i=1

E(Xi) +
q∑

i=1,i �=j

E(Yi)

⎞
⎠ (8)

where E(Xi) and E(Yi) are the entropies of the i-th feature and i-th label in
terms of the instances in C.

Objective Function. Theoretically, in clustering-based label-specific methods,
each cluster center is regarded as the representative instance of all instances in
this cluster. To ensure the representative performance, two principles related to
the entropy of each partitioned cluster should be observed:
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– Principle 1: The entropy of each cluster should not be too large. Otherwise,
each cluster would contain too many instances to make a cluster center to
represent them. Such risk is shown as Fig. 1(a), where clusters corresponding
to different classes are overlapped and a cluster center will be unable to
represent the instances in the cluster.

– Principle 2: The entropy of each cluster should not be too small. If each
cluster center represents only a few instances, it would be meaningless to
extract features via clustering, and such phenomenon can be seen in Fig. 1(b).
Besides, as the number of label-specific features is proportional to the number
of clusters, too many clusters denote a complex label-specific feature space in
high-dimension. Even, in the extreme case, if each instance is considered as a
cluster, instances between any instance pairs would be viewed as label-specific
features.

(a) Too few clusters (b) Too many clusters

Fig. 1. An example of the number of clusters.

To cover these two principles, ECL establishes an objective function for each
label class to obtain an optimal relation between the number of clusters and the
entropy of partitioned clusters.

Firstly, the Principle 1 can be realized by minimizing the cluster entropy
of each cluster. So, the objective function can be established to minimize the
weighted sum of the entropies of all clusters:

min
kj

kj∑
i=1

|Cij |
|Mj |

E(Cij) (9)

where kj is the number of clusters, and Cij is the i-th cluster in Mj .
Secondly, following the Principle 2, the number of clusters should be as small

as possible. Such requirement can be summarized as a �1-norm regularization
and the objective function can be defined as:

min
kj

kj∑
i=1

|Cij |
|Mj |

E(Cij) + β · kj (10)

where β is a trade-off parameter.
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Optimization. In entropy calculation, a fundamental assumption is that the
fewer clusters, the lower the entropy of each of them. As the number of clusters
increasing, instances in same cluster will located in a narrow local. So, the first
item in Eq. 10 are approximately monotonic decreasing and the second item will
undoubtedly increase. Eventually, a conclusion can be obtained the objective
function is decreasing first and then increasing.

To cope with the integer optimization problem, ECL takes the trisection
method to find the minimum value of the objective function f(kj) in Eq. 10.
Firstly, an initial search region R = (a, b) should be predefined. Secondly, the
function value in the two trisection points c1 = (2a+b)/3, c2 = (a+2b)/3 should
be calculated. Thirdly, repeatedly update the search region:

R =

{
(a, c2), if f(c1) ≤ f(c2)
(c1, b), if f(c1) > f(c2)

(11)

Repeat the last two steps, until get the minimum point.
ECL initiates different search intervals for different labels. For Yj , the initial

search interval is set as [1,min {|Pj | , |Nj |}], as the number of clusters should be
less than the number of instances.

4.2 Incorporating Clustering Ensemble with Entropy-Based Label
Similarity

Inspired by LIFTACE [25], we take clustering ensemble to enhance model sta-
bility and label correlation learning ability, where the clustering result of each
label can be updated due to those of other labels. The core idea is that the
more related two labels are, the more similar the clustering results correspond-
ing to them. To represent clustering result, let I(xi) denote the index of cluster
where xi is located, so the instance similarity matrix of Yj can be written as
Wj ∈ {0, 1}n×n:

[Wj ]ab =

{
1, if I(xa) = I(xb)
0, if I(xa) �= I(xb)

(12)

Then, Wj can be updated according to {Wi | i = 1, · · · , q, i �= j}:

W ′
j =

∑q
i=1 SijWi∑q
i=1 Sij

(13)

where Sij is the similarity between i-th label and j-th label. Such pairwise sim-
ilarity can be measured in various ways, e.g. Cosine, Jaccard, Euclidean, and
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Hamming. Among them, Cosine similarity is one of the most popular in multi-
label classification [25].

However, these measures only consider the difference in the label space, but
neglects the distribution of instances corresponding to the label. Therefore, we
design a new entropy-based label similarity measure. Specifically, for labels Yi

and Yj , corresponding instances can be divided into four subsets, i.e., D11 ←
Yi ∩ Yj ,D01 ← Ȳi ∩ Yj ,D10 ← Yi ∩ Ȳj ,D00 ← Ȳi ∩ Ȳj where Yi represents the set
of instances with label Yi , while Ȳi denotes the opposite.

Therefore, the D01,D10 contain the instances that have different label values
for Yi, Yj , and we call these instances as difference instances. Apparently, the
distribution of difference instances implies the dissimilarity between labels. For
example, the instances of D01,D10 in narrow region can be caused by imbalanced
data distribution, while the dissimilarity cannot be ignored if these instances are
scattered. Such problem can be shown in Fig. 2, where gray pixels are instances
of D11,D00 and red big pixels come from D01,D10. Both two distributions in
Fig. 2(a) and Fig. 2(b) have 7 difference instances, but the latter one has greater
distribution difference than the former one.

(a) Difference instances in concentrated
distribution

(b) Difference instances in scatterred dis-
tribution

Fig. 2. Different distributions of instances lead to different degrees of similarity.

To address this issue, a novel entropy-based label similarity measure is defined
as:

Sij = 1 − |D01|E(D01) + |D10|E(D10)∑
l∈{00,01,10,11} |Dl|E(Dl)

(14)

Lastly, the clustering results can be updated with Eq. 13, following the graph-
based clustering ensemble methods [18]. In this paper, SPEC algorithm [17] is
employed due to its effectiveness and simplicity.
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4.3 Model Induction

In this subsection, we will introduce all the steps of ECL, from label-specific
features generation to model construction and unknown instances inference. The
whole process of ECL is shown in Algorithm 1.

Algorithm 1. The framework of ECL
Input: Multi-label training dataset D, Hyperparameter: β,mj .
Output: The prediction ynew given an unknown instance xnew.
I Generating label-specific features.

1: for j in q do
2: Nj ,Pj ← D, j: partition D into two parts with respect to Yj with Eq. 1
3: Mj ← Nj ,Pj : get the majority class instances of Dj with Eq. 7
4: kj ← Mj : optimize to get the number of clusters with Eq. 10.
5: Tj = {n1

j , · · · ,n
kj

j ,p1
j , · · · ,p

kj

j } ← Nj ,Pj , kj : obtain 2kj cluster centers.
6: end for
7: S ← D: calculate the label similarity matrix with Eq. 14.
8: for j in q do
9: Wj ← Tj ,Pj ,Nj : calculate instance similarity matrix with Eq. 12.

10: end for
11: for j in q do
12: W ′

j ← W,S: update the instance similarity matrix with Eq. 13
13: T ′

j ← W ′
j : update the cluster centers with SPEC algorithm

14: end for
15: for j in q do
16: φj ← D, T ′

j : generate a mapping for label-specific features with Eq. 3.
17: end for

II Training the model.
18: for j in q do
19: Lj ← (φj , Yj): induce the j-th single-label learner.
20: end for
21: L = {Lj}: the multi-label learner.

III Predicting unknown instance.
22: x′

new ← xnew,Φ: convert the features of xnew to label-specific features.
23: ynew ← L,x′

new: make prediction For xnew.

5 Experimental Study

5.1 Experimental Setup

Benchmark Datasets. In the experiments, 12 datasets from 7 different
domains are considered. All these datasets can be downloaded from the web-
site of KDIS1. Details about the used datasets are shown in Table 2, including
1 All datasets are available at http://www.uco.es/kdis/mllresources/.

http://www.uco.es/kdis/mllresources/
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names and domains of the datasets, number of instances (n), features (d) and
labels (q) of the datasets.

Table 2. Characteristics of the Experimental Data Sets.

DataIDDataset Domain n d q
#1 Guardian Text 302 1000 6
#2 CHD_49 Medicine 555 49 6
#3 Emotions Music 593 72 6
#4 Foodtruck Recommend 407 21 12
#5 Image Image 2000 294 5
#6 Scene Image 2407 294 6
#7 WaterQualityChemistry 1060 16 14
#8 Yeast Biology 2417 103 14
#9 EukaryotePA Biology 7766 440 22
#10 HumanPA Biology 3106 440 14
#11 CAL500 Music 502 68 174
#12 Langlog Text 1460 1004 75

In the experiments, the original dataset is divided into training and testing
datasets using Iterative Stratified method [16] in the partition of 67% and 33%,
respectively. To obtain more reliable results, all algorithms are repeated 5 times
and then averaged.

Comparison Methods. To report reliable comparison results, ECL is com-
pared with 7 baseline algorithms. The 7 comparison methods can be divided
into 3 categories, according to their relationship with label-specific (LS) app-
roach,

– Non-LS methods: LRDG [31] and SRLG [4], selecting a set of features for all
labels rather than specific features for different labels;

– Selection-LS methods: LLSF [10] and CLML [13];
– Generation-LS methods: ML-LEC [27], LF-LELC [26] and LETTER [6].

For simplicity, we use N1, N2, S1, S2, G1, G2, G3 to represent these algorithms.
For a fair comparison, SVM with RBF kernel is taken as the basic learner

to tackle each single-label classification problem. All the hyperparameters of
baseline methods are set to the defaults in the corresponding papers, and the
hyperparameters of ECL are mj = 16, β = 0.001.
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5.2 Experimental Results

In this subsection, experimental results will be reported. We take 4 well-
established multi-label classification metrics to measure the performance, includ-
ing One Error, Coverage, Ranking Loss and Average Precision [12,30]. The com-
parison results between ECL and 7 baseline algorithms are shown in following
tables, where the Rank represents the average ranking of an algorithm on 12
datasets.

Table 3. Comparison results on One Error ↓.

DataId N1 N2 S1 S2 G1 G2 G3 ECL

#1 0.694 0.694 0.786 0.796 0.704 0.765 0.694 0.676
#2 0.339 0.339 0.240 0.240 0.230 0.263 0.224 0.223
#3 0.369 0.379 0.379 0.561 0.379 0.368 0.313 0.337
#4 0.265 0.265 0.265 0.265 0.258 0.277 0.280 0.264
#5 0.457 0.443 0.349 0.375 0.313 0.305 0.291 0.296
#6 0.318 0.331 0.257 0.256 0.199 0.197 0.199 0.196
#7 0.417 0.423 0.277 0.297 0.289 0.280 0.263 0.287
#8 0.298 0.305 0.359 0.349 0.241 0.221 0.211 0.214
#9 0.874 0.871 0.584 0.587 0.569 0.521 0.534 0.534
#10 0.582 0.569 0.569 0.583 0.627 0.537 0.554 0.556
#11 0.246 0.257 0.183 0.183 0.194 0.385 0.183 0.180
#12 0.306 0.302 0.286 0.201 0.187 0.234 0.222 0.208

Average 0.430 0.431 0.378 0.391 0.349 0.363 0.331 0.331
Rank 6.17 6.33 5.08 5.58 4.13 4.00 2.63 2.08

From Tables 3, 4, 5 and 6, it can be seen that:

– LS methods generally achieve better performances comparing to Non-LS
methods, implying the effectiveness of modeling on label-specific features;

– In the 4 metrics, ECL obtains the best average ranks, demonstrating its strong
abilities in multi-label classification and label correlation exploiting;

– Among the total 48 cases over 12 benchmark datasets and 4 evaluation met-
rics, ECL ranks first in 15 cases, which outperforms other baselines.

5.3 Ablation Study

In previous work, LIFT [29] employs clustering to generate label-specific features,
and LIFTACE [25] incorporates clustering ensemble with cosine label similarity
for label correlation exploiting. In this paper, two tips are presented for further
improvement, i.e. guiding clustering with entropy and incorporating clustering
ensemble with entropy-based label similarity. To verify the effectiveness of these
two contributions, an ablation study is conducted by comparing ECL and the
following baseline methods:
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Table 4. Comparison results on Coverage ↓.

DataId N1 N2 S1 S2 G1 G2 G3 ECL

#1 0.583 0.583 0.566 0.532 0.532 0.591 0.548 0.522
#2 0.676 0.679 0.626 0.630 0.625 0.658 0.624 0.628
#3 0.506 0.533 0.552 0.698 0.517 0.501 0.509 0.511
#4 0.546 0.521 0.383 0.379 0.386 0.440 0.399 0.384
#5 0.499 0.497 0.400 0.412 0.379 0.378 0.381 0.380
#6 0.271 0.276 0.263 0.262 0.236 0.234 0.236 0.235
#7 0.815 0.823 0.710 0.733 0.696 0.695 0.692 0.698
#8 0.529 0.530 0.698 0.698 0.540 0.578 0.528 0.523
#9 0.275 0.275 0.169 0.156 0.160 0.298 0.155 0.149
#10 0.370 0.362 0.250 0.233 0.245 0.326 0.226 0.228
#11 0.888 0.888 0.840 0.851 0.861 0.914 0.856 0.853
#12 0.763 0.764 0.720 0.648 0.642 0.701 0.650 0.680

Average 0.560 0.561 0.515 0.519 0.485 0.526 0.484 0.483
Rank 6.29 6.96 4.83 4.17 3.50 4.83 2.75 2.67

Table 5. Comparison results on Ranking Loss ↓.

DataId N1 N2 S1 S2 G1 G2 G3 ECL

#1 0.482 0.439 0.446 0.417 0.401 0.475 0.417 0.393
#2 0.244 0.237 0.212 0.214 0.212 0.249 0.215 0.214
#3 0.364 0.333 0.257 0.418 0.225 0.221 0.215 0.218
#4 0.225 0.208 0.147 0.153 0.160 0.190 0.163 0.156
#5 0.225 0.209 0.182 0.195 0.157 0.155 0.156 0.158
#6 0.120 0.131 0.096 0.095 0.065 0.063 0.066 0.063
#7 0.298 0.307 0.264 0.299 0.250 0.244 0.249 0.250
#8 0.267 0.361 0.345 0.344 0.178 0.191 0.165 0.164
#9 0.181 0.277 0.117 0.106 0.109 0.240 0.104 0.098
#10 0.178 0.176 0.170 0.156 0.167 0.244 0.147 0.148
#11 0.295 0.296 0.209 0.217 0.216 0.309 0.215 0.215
#12 0.241 0.254 0.237 0.177 0.178 0.219 0.189 0.195

Average 0.260 0.269 0.223 0.232 0.193 0.233 0.192 0.189
Rank 6.83 7.00 4.42 4.42 3.17 4.92 2.83 2.42

– Base1: LIFT, determining the number of clusters according to Eq. 2;
– Base2: on the basis of LIFT, determining the number of clusters according to

Eq. 10;
– Base3: on the basis of Base2, incorporating clustering ensemble with Cosine

similarity; (i.e., on the basis of LIFTACE, determining the number of clusters
according to Eq. 10)

The ablation study results are depicted in Fig. 3. Each subbox describes the
maximum, upper quartile, median, lower quartile and minimum of the values of
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Table 6. Comparison results on Average Precision ↑.

DataId N1 N2 S1 S2 G1 G2 G3 ECL
#1 0.487 0.487 0.455 0.472 0.505 0.450 0.503 0.522
#2 0.759 0.760 0.793 0.790 0.792 0.780 0.792 0.795
#3 0.742 0.727 0.716 0.566 0.736 0.743 0.754 0.748
#4 0.675 0.6840.752 0.744 0.746 0.721 0.745 0.747
#5 0.782 0.789 0.776 0.756 0.799 0.804 0.805 0.804
#6 0.861 0.853 0.842 0.842 0.882 0.885 0.882 0.885
#7 0.686 0.681 0.680 0.648 0.6950.704 0.700 0.696
#8 0.736 0.736 0.615 0.616 0.748 0.759 0.772 0.772
#9 0.438 0.467 0.593 0.589 0.599 0.579 0.624 0.629
#10 0.473 0.484 0.599 0.591 0.562 0.585 0.617 0.614
#11 0.389 0.3870.476 0.461 0.460 0.427 0.465 0.464
#12 0.578 0.581 0.586 0.653 0.645 0.613 0.625 0.632
Average 0.634 0.636 0.657 0.644 0.681 0.671 0.691 0.692
Rank 6.38 6.38 5.00 5.75 3.67 4.50 2.50 1.83

the corresponding metric in 12 datasets. And the circles represet outliers. From
the comparison results, we can draw the following conclusion:

– Comparing Base1 and Base2, the ranking of performances of Base2 in four
metrics is better than Base1, illustrating the effectiveness of entropy guided
clustering.

– ECL significantly outperforms Base3 on all the evaluation metrics, illustrating
the effectiveness of entropy-based label similarity guided clustering ensemble.

– Obviously, among the 4 evaluation metrics, the ranking of the performance
of ECL and 3 baselines is ECL 	 Base3 	 Base2 	 Base1. That is, both
entropy guided clustering and entropy similarity guided clustering ensemble
have made positive contributions, which is in line with our expectation.

5.4 Cluster Entropy Analysis

As analyzed in Sect. 4.1, the first item in the objective function Eq. 10, i.e.
weighted sum of cluster entropy (E) is approximately monotonic decreasing with
the increasing of cluster number (k).

We perform clustering on all benchmark datasets with k varying from 1 to
100, and obtain the changing values of E. For each dataset, the entropy values
for q labels are averaged for a succinct illustration. The relation between E and
k is shown in Fig. 4. It can be seen that in every dataset, E keeps a decreasing
trend, which is in line with our analysis.
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Fig. 3. Ablation study results.

Fig. 4. The relation between E and k.

6 Conclusion

In this paper, a novel label-specific multi-label classification method named ECL
is proposed. In ECL, information theory is systematically taken to guide the
clustering and clustering ensemble processes. First, a novel definition of cluster
entropy is presented to measure the effect of instances distribution on entropy.
Second, objective function is established for distinct label to make a quantita-
tive study on the relation between cluster entropy and the number of clusters.
Finally, an entropy-based label similarity measurement is designed to consider
the distribution information of instances and effectively guides the clustering
ensemble. Experimental results on 12 datasets demonstrate that ECL achieves
superior performance compared to the 7 baseline methods.

In the future, it is interesting to consider the problem of label-specific features
in the deep learning scenarios. Furthermore, class-imbalance problems are com-
mon in multi-label classification. It is also meaningful to study class-imbalance
problems in label-specific features.
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Abstract. The remarkable success of machine learning models has
sparked considerable interest in multimodal data fusion techniques.
Addressing the challenge of integrating diverse data modalities while
enhancing classification performance remains a key focus. In this paper,
we introduce FAT-LSTM, a novel framework designed to fuse multimodal
data for classification tasks. Leveraging advanced Gating and Attention-
based Long Short-Term Memory (LSTM) mechanisms, FAT-LSTM rep-
resents a significant improvement in multimodal learning field. Through
extensive comparative analysis against established baseline models, our
study shows the superior performance achieved by FAT-LSTM. Addition-
ally, thorough ablation analysis provides insights into the inner workings
of the model, shedding light on its effectiveness. Empirical validation
across multiple space weather datasets further confirms FAT-LSTM’s
efficacy across various scenarios. This research highlights the crucial role
of multimodal data fusion in effectively addressing real-world challenges.

Keywords: Multimodal Classification · Time Series Analysis · Data
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1 Introduction

In today’s data-driven landscape, the exponential growth of data across diverse
domains has given rise to innovative research directions in data analysis and
classification. A particularly intriguing advancement is the emergence of multi-
modal data fusion for time series classification. Unlike conventional approaches
that focus on a single data source, multimodal data fusion integrates insights
from multiple sources or modalities, offering the potential to enhance classifica-
tion accuracy and provide a comprehensive understanding of underlying patterns
within time series data [1,4,5].

Time series data, characterized by sequential observations over time, plays
a pivotal role in various domains such as finance, healthcare, environmental
monitoring, and industrial processes. Accurate analysis and classification of time
series data are critical for tasks ranging from anomaly detection to predictive
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maintenance. However, traditional time series classification methods often rely
solely on the temporal information present in a single modality, which might be
limiting when dealing with complex, heterogeneous, and noisy data.

The concept of multimodal data fusion revolves around the notion that dis-
tinct modalities-ranging from visual and textual to temporal-can offer comple-
mentary and diverse insights into the same phenomenon [9,24]. Integrating infor-
mation from multiple modalities aims to achieve a more comprehensive and
accurate data representation. This approach not only helps capture intricate
patterns that could elude single-modal methods but also enhances robustness
against noise and uncertainties inherent in individual modalities.

In the realm of space weather forecasting, the fusion of multimodal data is
offering new horizons for predicting Solar Energetic Particle (SEP) events. These
rare but impactful solar events, triggered by solar flares and coronal mass ejec-
tions, pose significant threats to space-based technologies [6–8]. By integrating
data from diverse sources—ranging from solar observations to magnetic field
measurements—multimodal fusion provides a comprehensive view of the intri-
cate solar dynamics that precede SEP events. This approach capitalizes on both
temporal and spatial patterns, resulting in improved event prediction accuracy.
The ongoing challenges in data integration, formulating effective fusion strate-
gies, and achieving interpretability reflect the dynamic nature of this field. By
leveraging multimodal data fusion, we aim to enhance space weather predic-
tion and improve our ability to manage the unpredictable effects of the space
environment.

As we explore the data fusion field, various techniques merge informa-
tion from multiple sources to extract comprehensive insights. These techniques
include early fusion, late fusion, and decision-level fusion, each with distinct
strengths and applications. In this context, our paper introduces an innovative
approach—a novel attention-based model—for multimodal data classification,
known as FAT-LSTM. This novel model uses attention mechanisms to effectively
combine modalities, enhancing classification accuracy while unveiling intricate
relationships within the data. By proposing this method, we contribute to the
evolution of data fusion methodologies, striving for more effective and insightful
multimodal data analysis.

To show the superiority of our proposed method, we conduct experiments
comparing our model with baseline methods. The evaluation is performed on
three benchmark datasets of SEP rare events from the solar weather prediction
domain. The contribution of this work is twofold. Firstly, we present a novel
multimodal data fusion technique that advances the field of time series classifi-
cation. Secondly, our work significantly contributes to the improvement of SEP
event prediction. By utilizing the power of multimodal data fusion, we enhance
the accuracy and reliability of SEP event forecasts.

While this study primarily focuses on space weather prediction to rigor-
ously validate the FAT-LSTM model under controlled conditions, we recognize
the importance of showing the model’s resilience and usefulness across various
domains. Future research will explore the application of FAT-LSTM in diverse
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fields such as healthcare, finance, and environmental monitoring, showcasing its
broad relevance and impact.

The rest of this paper is organized as follows: Sect. 2 outlines background and
related works. Section 3 gives a thorough outline of the methodology utilized
in this research. In Sect. 4, we detail the experimental arrangement, and the
resulting discoveries. Lastly, Sect. 5 encapsulates our findings and deliberates on
potential paths for future research endeavors.

2 Related Works

Early multimodal classification studies focused on combining features from dif-
ferent sources using traditional techniques to enhance accuracy in tasks like
sentiment analysis, image captioning, and speech recognition. These methods
faced challenges in capturing complex relationships between modalities due to
heterogeneous data characteristics and high computational complexity. Common
approaches included early fusion, which concatenates raw feature vectors from
various modalities, and late fusion, which aggregates classification results from
individual classifiers. [2,3]. These methods, although effective to some extent,
often faced difficulties in maintaining the balance between computational effi-
ciency and the richness of the integrated features and effectively capturing com-
plex relationships between modalities. We benchmarked our results by compar-
ing them with those presented in a relevant review paper that comprehensively
summarizes data fusion techniques by Sleeman et al. [10].

The advent of deep learning introduced novel paradigms for multimodal
data fusion, offering capabilities to model intricate interactions between dif-
ferent modalities. Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) were adapted to process modalities such as images and
text, respectively [11,12,15]. Researchers also proposed architectures specifically
designed for fusing information from different sources. For instance, attention
mechanisms emerged as a powerful tool for selectively attending to relevant fea-
tures across modalities. These mechanisms allowed for dynamic fusion, enabling
models to focus on pertinent information for improved classification performance
[13,14].

To address challenges associated with heterogeneous modalities, cross-modal
embeddings gained traction. These embeddings aimed to project data from dif-
ferent sources into a shared latent space, facilitating more effective fusion. Varia-
tional Autoencoders (VAEs) and Generative Adversarial Networks (GANs) were
also employed to generate missing modalities, aiding in scenarios where certain
data sources were incomplete or unavailable. These generative models not only
enhanced the completeness of data but also improved the robustness of classifi-
cation systems [16].

In addition to the aforementioned techniques, recent developments in mul-
timodal data fusion have expanded the horizons of this field. One notable area
of research is the integration of multimodal data for healthcare applications.
In medical diagnosis and treatment planning, combining data from sources like
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medical images, patient records, and textual reports has become crucial. Multi-
modal fusion approaches in healthcare aim to improve disease prediction, treat-
ment selection, and patient care by harnessing the complementary information
available in various modalities [17–19].

In addition to these techniques, another significant approach in multimodal
data fusion is Graph-based Fusion. Graph-based methods model the relation-
ships between different modalities as a graph, where nodes represent modali-
ties, and edges denote the relationships between them. By leveraging graph-
based techniques, researchers can capture intricate dependencies and correlations
between modalities, leading to more accurate and robust multimodal classifica-
tion [21].

Another compelling avenue in multimodal data fusion is its application in
autonomous systems and robotics. Robots equipped with sensors that capture
data from visual, auditory, and tactile modalities can benefit greatly from mul-
timodal fusion. Combining information from these sensors enables robots to
make more informed decisions in navigation, object recognition, and human-
robot interaction. This field presents unique challenges in aligning data streams
from disparate sensors, and researchers have been exploring innovative tech-
niques to tackle these challenges effectively [21].

3 Methodology

In this section, we explain the data preprocessing, and then we present the
proposed FAT-LSTM method for multimodal data fusion in classification tasks.
We describe the architecture and components of FAT-LSTM in detail and outline
the steps involved in its operation. Furthermore, we discuss the baseline methods
that we selected for comparison and detail how we conducted the comparative
evaluation. Detailed information about data preprocessing and the source code
for our experiments can be accessed on our project website: https://sites.google.
com/view/mtsf-cpf/home.

3.1 Data Preprocessing

In this research, we employed fusion-based multimodal classifiers, which were
trained using two distinct types of data: time series data and image data.
The purpose of the image data was to represent rare solar energetic particle
events. These datasets were divided into three subsets, namely SolEnergiNet-
100 for 100 MeV data, SolEnergiNet-60 for 60 MeV data, and SolEnergiNet-
30 for 30 MeV data. For detailed dataset information, refer to Table 1, which
provides the relevant metadata. In our research, modality M1 corresponds to
the time series 5-hour proton flux data from the Sun, gathered from the Geo-
stationary Operational Environmental Satellite (GOES) satellite, and is pub-
licly accessible at: https://www.ncei.noaa.gov/data/goes-space-environment-
monitor/access/avg/. The second modality, M2, consists of single-shot images of
the Sun captured by SOHO spacecraft, available at https://helioviewer.org/. To

https://sites.google.com/view/mtsf-cpf/home
https://sites.google.com/view/mtsf-cpf/home
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convert the images from modality M2 into a vector representation, we employed
an autoencoder, a neural network architecture composed of two main compo-
nents: an encoder and a decoder.

Table 1. Datasets Metadata

Dataset Name Labels Time Series Length Image Vector Length Dataset Size

SolEnergiNet-100 2 60 (5h) 60 96

SolEnergiNet-60 2 60 (5h) 60 40

SolEnergiNet-30 2 60 (5h) 60 44

During the training phase, the encoder takes the input images and pro-
cesses them through a series of hidden layers, reducing the images to a lower-
dimensional representation often referred to as the “latent space” or “encoded
space”. This latent space captures essential features and patterns from the origi-
nal images. Subsequently, the decoder takes these lower-dimensional representa-
tions and enlarges them, reconstructing the images to match the original input
size. The primary objective of the autoencoder is to minimize the difference
between the original images and their reconstructed counterparts, effectively
learning to compress and then reconstruct the data. Once the autoencoder is
trained on a substantial set of images, we can utilize the output of the encoder
component (the hidden layer) as the vector representation (X2) for each image
[22,23]. This encoder output provides a concise and meaningful representation
of the image, capturing its significant features in a reduced-dimensional space.
It is important to note that all three datasets in this study include binary labels
indicating the presence or absence of a solar event. The first time series modal-
ity, M1, has a fixed length consisting of 60 time steps. In contrast, the sec-
ond modality (M2), which is a single-shot image, was transformed into a low-
dimensional vector comprising 60 dimensions. It is worth emphasizing that solar
events are infrequent occurrences. Consequently, the dataset sizes reflect this rar-
ity, with SolEnergiNet-100 containing 96 instances, SolEnergiNet-60 comprising
40 instances, and SolEnergiNet-30 consisting of 44 instances.

3.2 FAT-LSTM

The FAT-LSTM architecture consists of several key components, each contribut-
ing to the process of multimodal data fusion. Refer to Algorithm 1 for a detailed
step-by-step representation of the FAT-LSTM process. In addition, Fig. 1 dis-
plays the FAT-LSTM network architecture for multimodal time series classifi-
cation. The process involves taking a number of multimodal data as input and
then feeding them to the network layers. Furthermore, the following part delves
into the mathematical framework underpinning the FAT-LSTM methodology,
clarifying the equations that define its distinct components. These equations
present a structured account of how FAT-LSTM adeptly integrates multimodal
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data. It is important to note that we define the input data modalities as X
instead of M , representing the outcome of preprocessing on input data, such as
the transformation of images into new feature vectors.

Algorithm 1. FAT-LSTM
Require: X = {(X1, y1), (X2, y2), . . . , (Xn, yn)} � Input time-series data and labels
Require: R

T � Feature space
1: function FAT LSTM(X)
2: Initialize empty arrays: LSTM gated, Att
3: for i = 1 to n do
4: LSTMi ← LSTM(Xi) � Apply LSTM to the i-th input
5: Gatingi ← σ(Dense(LSTMi)) � Calculate gating factor for i-th input
6: LSTMgated,i ← LSTMi � Gatingi � Apply gating to LSTM output
7: LSTM gated.append(LSTMgated,i)
8: end for
9: for i = 1 to n do

10: Atti ← Self-Attention(LSTMgated,i) � Apply self-attention to gated LSTM
output

11: Att.append(Atti)
12: end for
13: Concatenated ← Concatenate(Att1, Att2, . . . , Attn) � Concatenate attended

representations
14: Fusion ← ReLU(Dense(Concatenated)) � Apply ReLU to fused

representation
15: Output ← Softmax(Fusion) � Apply softmax for classification
16: return Output
17: end function

1. LSTM Blocks: For each modality i, the input data X is passed through
an LSTM [25] block, producing an intermediate output LSTMi. The LSTM
cell’s operations are as follows:
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The weights W
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(i)
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(i)
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(i)
o are specific to

each modality i and are not shared among different modalities.
2. Gating Mechanism: The output of each modality-specific LSTM block is

fed into a dense layer with a sigmoid activation function, denoted as Gatingi.
This gating mechanism controls the relevance of each modality’s information:

Gatingi = σ(W (i)
gate · h(i) + b

(i)
gate) (7)

3. Element-wise Multiplication: The output of the LSTM block is multiplied
element-wise with its corresponding gating factor:

LSTM
(i)
gated = h(i) � Gatingi (8)

4. Self-Attention Mechanism: The gated LSTM outputs for all modalities
are passed through a self-attention mechanism, resulting in a set of attended
representations Atti. The attention mechanism’s operations are as follows:

q(i) = W (i)
q · LSTM

(i)
gated (9)

k(i) = W
(i)
k · LSTM

(i)
gated (10)

v(i) = W (i)
v · LSTM

(i)
gated (11)

Attention(i) = softmax

(
q(i) · k(i)�

√
dk

)
· v(i) (12)

Att(i)h = Attention(i) + LSTM
(i)
gated (13)

The weights W
(i)
q ,W

(i)
k ,W

(i)
v are specific to each modality i, ensuring that

the attention mechanism can focus on modality-specific features.
5. Concatenation: The attended representations from all modalities are con-

catenated together:

Concatenated = concat(Att1, Att2, . . . , Attn) (14)

6. Fusion Layer: The concatenated representation is passed through a dense
layer with ReLU activation, denoted as Fusion:

Fusion = ReLU(Wfusion · Concatenated + bfusion) (15)

7. Classification: The fused representation is further processed by a softmax
layer for classification:

Output = Softmax(Wsoftmax · Fusion + bsoftmax) (16)
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Fig. 1. FAT-LSTM network architecture for multimodal time series classification.

3.3 Baseline Methods

We compared our proposed FAT-LSTM multimodal model with four other base-
lines within the fusion category as outlined in [10], as well as with two state-of-
the-art approaches using VAE and CNN models.

– Feature Concatenation (FC): concatenates the features from different
modalities into a single vector representation [26,27]. The concatenated fea-
ture vector is then used as input to a classification model.

– Deep Concatenation (DC): also known as Deep Feature Concatenation,
combines features from different modalities at a deep representation level. The
latter involves feeding the data from different modalities into separate deep
neural networks and concatenating the high-level representations learned by
the networks before making a final prediction [28]. DC allows the model to
capture complex interactions and dependencies between modalities.

– Deep Merge (DM): combines features from different modalities at a lower
level in the network, typically through element-wise operations like summa-
tion or multiplication [29]. This approach aims to capture both shared and
unique information from each modality.

– Score Concatenation (SC): involves training separate models for each
modality. The prediction scores of the individual models are concatenated and
used as input to a final classification model [17]. This approach leverages the
strengths of each modality-specific model while combining their predictions



438 P. Hosseinzadeh et al.

to make a final decision. An example of the Score Concatenation technique
is ensemble learning.

– Variational Autoencoder (VAE): uses an encoder-decoder architecture
where the encoder compresses the input data into a probabilistic latent space,
and the decoder reconstructs the input from this latent space. The encoded
representations are used as features for classification.

– Convolutional Neural Network (CNN): applies convolutional layers to
extract spatial features from the input data. The extracted features are then
used for classification.

Figure 2 illustrates the four fusion baselines (FC, DC, DM, SC) used to
compare our method with. The additional models (VAE, CNN) were included
to further evaluate the robustness of our approach with other deep learning
models.

Fig. 2. Architecture of (a) Feature Concatenation, (b) Deep Concatenation, (c) Deep
Merge, and (d) Score concatenation data fusion methods within the fusion category as
outlined in [10].

4 Experiments

Within this section, we first lay the ground for our experimental setup and
present the experimental results obtained after training FAT-LSTM and the
other multimodal fusion techniques discussed in Sect. 3.3.

4.1 Experimental Setup

The following parameters represent the optimal hyper-parameters for
SolEnergiNet-100 dataset: 5-fold stratified cross-validation to ensure robust eval-
uation, standard scaling for feature normalization, utilization of two LSTM lay-
ers with 128 units for each input modality, integration of a gating mechanism
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with sigmoid activation within the LSTM layers, incorporation of self-attention
mechanisms to capture intra-modality relationships, computation of weighted
sums through attention-weighted outputs, inclusion of a fusion layer (Dense, 256
units, ReLU activation) for cross-modality integration, utilization of an output
layer (Dense, 2 units, softmax activation) for binary classification, optimization
through the Adam optimizer with default learning rate, and training conducted
over 15 epochs with a batch size of 16. The other two datasets were trained and
evaluated using nearly identical hyper-parameters.

4.2 Performance Measures

To evaluate the performance of our model, we conducted several experiments.
We used standard evaluation metrics, including Accuracy, F1-score, Precision,
Recall, True Skill Statistics (TSS), and updated Heidke skill score (HSS2) [30].
TSS and HSS2 metrics are used to assess the skill of categorical predictions
or forecasts, particularly in meteorology and climatology. Equations 17 and 18
define TSS and HSS2, respectively.

TSS =
TP

TP + FN
− FP

FP + TN
(17)

HSS2 =
2 ∗ ((TP ∗ TN) − (FN ∗ FP ))

(TP + FN) ∗ (FN + TN) + (FP + TN) ∗ (TP + FP )
(18)

where, TP, FP, TN, and FN represent True Positive, False Positive, True Nega-
tive, and False Negative, respectively.

We used the average of a 5-fold cross-validation technique to report our
results. This approach allowed us to assess the performance of all the baseline
data fusion techniques using different subsets of the data.

4.3 Experimental Results

In this section, we present the comprehensive performance evaluation of our
novel model, FAT-LSTM, in comparison to other models, utilizing a 5-fold
cross-validation strategy. Our analysis encompasses standard evaluation met-
rics to provide a holistic perspective on the model’s performance across different
datasets, as presented in Table 2.

FAT-LSTM consistently demonstrates remarkable performance in all mea-
sured aspects, emphasizing its effectiveness as a classification model. Regardless
of the dataset, it consistently outperforms other models across all evaluation
metrics.

On the SolEnergiNet-100 dataset, FAT-LSTM stands out with an impres-
sive accuracy of 87%, underscoring its capability to make accurate predictions.
This level of precision is mirrored in its F1-score, where FAT-LSTM achieves a
matching 87%, showcasing its balance between precision and recall.
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Moreover, FAT-LSTM excels in terms of precision, especially highlighted on
the SolEnergiNet-60 dataset with an exceptional precision score of 87%. This
precision signifies FAT-LSTM’s proficiency in making precise positive classifica-
tions. In evaluating recall, FAT-LSTM consistently maintains high recall rates,
indicating its ability to effectively capture positive instances in the dataset. On
SolEnergiNet-60, FAT-LSTM shares the highest recall rate of 86%. Even on
the challenging SolEnergiNet-30 dataset, FAT-LSTM stands out with a recall of
70%.

Furthermore, FAT-LSTM shows its strong ability to differentiate between
classes with a high TSS on all datasets. For SolEnergiNet-100, it achieves a TSS
of 74%, signifying its strong ability to discriminate between classes. Similarly,
on SolEnergiNet-60, FAT-LSTM maintains a TSS of 76%, reflecting its capacity
to distinguish between data points effectively. On SolEnergiNet-30, FAT-LSTM
exhibits a competitive TSS of 41%. However, FC has the same TSS score. HSS2
also highlights FAT-LSTM’s overall classification skill. Across all datasets, it
maintains a lead in HSS2. On SolEnergiNet-100, FAT-LSTM achieves an HSS2 of
74%, showcasing its overall skill in classifying data. In the case of SolEnergiNet-
60, FAT-LSTM maintains a high HSS2 of 75%, further confirming its strong
classification performance. While excelling in various metrics, FAT-LSTM does
not outperform FC in terms of HSS2 on SolEnergiNet-30 dataset.

In summary, FAT-LSTM consistently outperforms other models across var-
ious datasets and evaluation metrics, demonstrating its effectiveness as a clas-
sification model. These results underscore FAT-LSTM’s potential as a valuable
tool in a wide range of applications where precise and reliable classification is
paramount. Additionally, the poor performance of the VAE and CNN models
indicates that these approaches may not be well-suited for space weather data,
especially when the dataset is limited in size. Further investigations and fine-
tuning may be explored to maximize FAT-LSTM’s impact in specific domains.

4.4 Ablation Study

We conducted an ablation analysis to investigate the individual contributions
of different components within our model, FAT-LSTM, towards its outstanding
performance. This analysis involved the creation of two distinct models by selec-
tively removing specific components from FAT-LSTM, resulting in AT-LSTM
(Attention-based LSTM without gating component and dense fusion layer) and
LSTM models. Therefore, our multimodal LSTM model does not include gating
or self-attention layers, while the AT-LSTM model lacks a gating layer. In con-
trast, the FAT-LSTM model incorporates both gating and self-attention layers,
as shown in Fig. 1. The ablation analysis aimed to dissect the contributions of
each component in FAT-LSTM and understand how these elements collectively
influence its classification process.

As Fig. 3 displays, these percentages signify the extent of performance vari-
ations between FAT-LSTM and the alternative models, AT-LSTM and LSTM.
For instance, the notable 10.1% difference in F1-score underscores FAT-LSTM’s
substantial improvement in achieving a balanced trade-off between precision and
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Table 2. Average performance results of 5-fold cross-validation. Values for winning
models are shown in bold, while runner-up models are indicated by underscores.

Dataset Model Metric

Accuracy F1-score Precision Recall TSS HSS2

SolEnergiNet-100 FC 82 82 83 82 65 65

DC 75 75 75 75 50 50

DM 76 76 76 76 52 52

SC 77 77 77 77 54 54

VAE 67 67 67 67 35 35

CNN 70 69 73 70 41 41

FAT-LSTM87 87 88 87 74 74

SolEnergiNet-60 FC 85 85 86 86 71 71

DC 80 79 81 80 59 59

DM 86 86 87 86 71 70

SC 80 78 84 80 59 59

VAE 80 79 82 80 61 60

CNN 65 63 67 64 29 29

FAT-LSTM87 87 90 88 76 75

SolEnergiNet-30 FC 69 69 66 70 41 41

DC 59 59 59 59 18 18

DM 66 66 72 67 34 34

SC 62 62 65 62 21 22

VAE 59 49 47 58 17 16

CNN 57 53 65 58 16 17

FAT-LSTM70 70 74 70 41 40

recall compared to the other models. These percentages provide a quantitative
perspective on the performance gaps. Precision percentages indicate that FAT-
LSTM consistently maintained significantly higher precision in its predictions,
highlighting the role of the gating and fusion layer’s in accurate positive clas-
sifications. Recall percentages emphasize FAT-LSTM’s excellence in capturing
positive instances in the dataset, with the presence of gating, fusion, and self-
attention layers contributing to this achievement. Moreover, the percentages for
HSS2 underscore that FAT-LSTM exhibited superior overall classification skill,
largely driven by the combined effects of gating, fusion, and self-attention layers.
These percentage differences not only quantify the performance disparities but
also reaffirm the critical role of the gating, fusion, and self-attention mechanisms
in enhancing the model’s classification capabilities.

In our pursuit of a comprehensive understanding of model performance and
efficiency, we conducted another ablation analysis with a focus on sequence anal-
ysis and runtimes. This analysis aimed to shed light on the impact of varying
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Fig. 3. Connected scatter plot with difference percentage obtained from ablation study
performed on FAT-LSTM using SolEnergiNet-100 dataset.

observation windows (15h, 12h, 9h, 6h, and 3h) of the time series proton flux
data modality on the performance of three distinct models: FAT-LSTM, AT-
LSTM, and LSTM. By thoroughly exploring these different observation window
sizes, we gained valuable insights into how the temporal context influences the
models’ classification performance and computational efficiency. The observation
window captures the critical period leading up to the onset of a solar flare event,
which is important as a solar flare event may lead to an SEP event.

The performance evaluation, as shown in the bar plots of Fig. 4, centered
around the HSS2. Each observation window’s HSS2 values for the three mod-
els were carefully scrutinized. These HSS2 scores provide an insightful perspec-
tive on the models’ classification skills under different time constraints. Across
varying observation windows, FAT-LSTM consistently shows competitive HSS2
scores. This consistency in performance underscores the model’s robustness in
handling diverse temporal contexts. Notably, FAT-LSTM outperformed both
AT-LSTM and LSTM in several instances, reaffirming its superiority in main-
taining high classification skills. Complementing the performance assessment,
our analysis delved into runtime considerations. The line plots in Fig. 4 portray
the runtime data associated with each model across different observation win-
dows. The runtimes for FAT-LSTM, AT-LSTM, and LSTM were tracked and
plotted, providing valuable insights into the computational efficiency of these
models. Intriguingly, the runtime analysis revealed that FAT-LSTM maintained
a favorable balance between classification performance and computational effi-
ciency. Despite its impressive performance, FAT-LSTM exhibited runtimes com-
parable to or even more efficient than the alternative models. This observation
is particularly notable when considering the shorter 3-hour observation window,
where computational efficiency becomes essential.
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Fig. 4. Evaluation of different variants of LSTM including FAT-LSTM for
SolEnergiNet-100 dataset.

5 Conclusion

In this study, we introduced FAT-LSTM (A Multimodal Data Fusion Model
with Gating and Attention-Based LSTM for Classification), a novel approach
designed to enhance classification performance by effectively fusing information
from diverse modalities. By integrating gating and attention mechanisms into the
LSTM architecture, FAT-LSTM exhibited significant improvements over estab-
lished baseline models. We also conducted ablation analysis to gain insights
into the specific contributions of gating and attention mechanisms, further elu-
cidating the model’s behavior. The empirical validation of FAT-LSTM on space
weather datasets showcased its efficacy and versatility, yet its generalizability
to other domains remains a topic for future research. Additionally, interpret-
ing how FAT-LSTM combines information from various sources and addressing
potential scalability challenges are areas of ongoing investigation. In conclusion,
FAT-LSTM represents a promising advancement in multimodal data fusion for
classification tasks, but its broader applicability, interpretability, and scalability
deserve further exploration. This work underscores the potential of such models
to address real-world challenges effectively and encourages continued research in
this direction.
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Abstract. Developing a real-time sentiment analysis application that
relies solely on features extracted from images or textual content falls
short of capturing human emotions’ nuanced and multifaceted nature.
The unlabeled dataset, though useful, has limitations for sentiment anal-
ysis due to its general image descriptions, which lack emotional depth
and do not include direct sentiment labels. Finding scene sentiment is
a challenging task. To address this, combining textual descriptions with
visual features is crucial. Important parameters include entropy, bag of
words, and parts of speech (nouns, adjectives, and verbs) for textual anal-
ysis, alongside visual features like SIFT, SURF, and color histograms.
These features are integrated to capture a comprehensive range of sen-
timent cues, enhancing the accuracy and depth of sentiment insights.
This paper proposes an optimized adaptive neuro-fuzzy inference system
for a compelling feature enhancement using the Whale-Honey Badger
Optimization Algorithm (WHBOA). The proposed method identifies the
most relevant and effective features from both textual and visual data. It
captures visual-specific attributes to provide a richer and more detailed
representation of visual content, addressing the limitations of general
image descriptions and paving the way for the development of predic-
tive models. Additionally, text pre-processing cleans and normalizes the
textual data. We conducted an extensive comparative performance evalu-
ation to assess the effectiveness and accuracy of the proposed model. The
model is compared with the Nearest Neighbor, Support Vector Machine
(SVM), and Decision Tree classification algorithms for the performance
assessments.The results demonstrate that the optimized model performs
better, achieving an accuracy of approximately 91.2%, compared to the
other models.
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1 Introduction

In contemporary times, there is a growing trend of individuals embracing social
media hubs as avenues to share images and textual content and express sen-
timents and emotions across various events and topics. Sentiment analysis is
extracting and understanding sentiments and feelings expressed in textual data.
It has become progressively crucial across multiple sectors, including social media
surveillance, customer sentiment analysis, and product evaluation. Tradition-
ally, sentiment analysis has primarily focused on textual data. However, with
the proliferation of multimedia content on the internet, there is a growing need
to analyze sentiments in multimodal data, particularly in scenes where textual
descriptions or captions accompany images. Scene sentiment analysis involves
extracting sentiments and emotions from visual scenes, often accompanied by
textual descriptions or captions. One of the critical challenges in this domain
is the effective fusion of image and text features to capture the nuanced senti-
ments expressed within the scenes. Feature selection techniques play a crucial
role in identifying the most discriminative features from both modalities, thereby
improving the performance of sentiment analysis models. Sentiment recognition
(SR) is a fundamental job in computer vision with applications ranging from
human-computer interaction to affective computing and mental health assess-
ment [1]. An effective analysis of facial expressions is crucial for understanding
human emotions, intentions, and behaviors. Figure 1 visually demonstrates how
the correlation between scenes and text enhances sentiment analysis compared
to using only facial images. However, it is very challenging to recognize the sen-
timent of the view exactly. By incorporating both scene and text information,
we can access the diverse features that contribute significantly to the accuracy
and depth of sentiment analysis.

Face feature extraction is carried out in two ways: i)using geometric charac-
teristics, and ii) using appearance [2]. The measurements utilized to generate the
organ movement points are the source of structural geometric characteristics [3].
Using a model to analyze and predict emotions from unidentified data requires
creating algorithms to identify patterns in the data already available [4]. Image-
text pair multi-model sentiment recognition consists of three steps: i) feature
extraction based on face tracking and identification, ii) textual features and iii)
feature classification [5]. We have taken the publicly available flicker8k dataset
and crafted a scene-oriented dataset by proposing a new procedure to perform
the first two steps. We also investigated the proposed ANFIS-WHBO classifi-
cation model to improve classification performance. Decision Tree [6],SVM [7],
and k-NN [8] are models used to evaluate sentiments. The Adaptive Neuro-Fuzzy
Inference System (ANFIS) is a potent computational technique that blends the
human-like reasoning style of fuzzy inference systems with the learning capa-
bilities of ANN [9]. Due to its hybrid methodology, ANFIS can handle compli-
cated data with a high degree of generalization and precise learning capabili-
ties. Traditional ANFIS models, however, face overfitting issues and problems
with parameter optimization problems. Integrating the Whale and Honey Badger
Optimization Algorithm and ANFIS resolves these problems and improves fore-
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Fig. 1. a) Face-based images tell the direct expression but are not sufficient to define
complete scenarios, while b) facial-based images are richer but are challenging to pro-
duce effective sentiments in real-time.

cast accuracy. Utilizing WHBOA’s capacity to balance exploration and exploita-
tion in intricate search environments enhances the ANFIS model’s resilience and
functionality. Traditional optimization methods may confront issues like conver-
gence to unsatisfactory solutions or local minima. The Proposed hybrid opti-
mization strategy, WHBOA, adopts the combined benefits of the Whale opti-
mization Algorithm [10] (WOA) and Honey Badger Optimization Algorithm [11]
(HBOA) to optimize scene sentiment analysis parameters. The WOA efficiently
explores the search space inspired by humpback whale hunting behavior. In
contrast, HBOA, inspired by the tenacity of honey badgers, exhibits adaptabil-
ity and resilience in overcoming the optimization challenges. By integrating the
face-influenced concepts with meta-heuristic optimization, our approach aims to
achieve higher accuracy in sentiment analysis by effectively capturing emotional
cues embedded in facial expressions [12].

Our key contributions in this paper are summarized as follows:

• Propose a hybrid algorithm for the optimized feature extraction by integrating
the whale and honey badger optimization algorithms.

• We crafted faces containing scenes with their text description. This correlation
allows the finding of visual and textual aspects usable in sentiment findings.

• Presented a novel framework considering the handcraft features of image-text
pairs to predict the sentiment of the scene.

• Furthermore, we conducted an intensive performance analysis of the proposed
model with other approaches to demonstrate its effectiveness.
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We organized the rest of the paper as follows: Section 2 presents an overview
of the related research on feature optimization techniques, nature-inspired opti-
mization, and sentiment recognition. Section 3 describes the WHBOA method
for sentiment recognition. Section 4 discusses the performance evaluation and
results discussion. Finally, Section 5 concludes the paper with the future research
directions.

2 Related Work

In recent years, there has been a surge in sentiment analysis interest in online
social media, driven by the exponential growth of platforms and the influx of
opinions shared by anonymous users. Siersdorfer et al. [13] pioneered the field
of image sentiment analysis by proposing a machine-learning approach to pre-
dict sentiment conveyed by images on the social web, utilizing detailed pixel-
level information. In [14], Rasiwasia N. et al., presented an approach to classify
images as positive or negative, representing a noticeable advancement in senti-
ment analysis within visual content analysis. Traditionally, sentiment analysis
heavily relied on lexicon-based methods and rule-based systems for classifying
text sentiments [15]. Taboada et al. presented lexicon-based approaches that
utilized predefined sentiment dictionaries to assign polarity scores to the words,
facilitating straightforward sentiment classification [16]. Furthermore, Wilson
et al. [17] presented a rule-based system, alternatively employing predefined lin-
guistic rules to infer sentiment from textual patterns and syntactic structures. In
[18], Liu et al. undertook text mining on tourist reviews, examining the percep-
tion and attention dimensions of tourists visiting Fuzhou. The authors employed
topic modeling and sentiment analysis techniques such as Latent Dirichlet Allo-
cation (LDA) and Support Vector Machines (SVM) to analyze the data. Kim et
al. [19] presented an innovative method to forecast essential interest rate voting
outcomes and achieved a high accuracy rate in predicting sentence sentiment
using Support Vector Machines.

Islam et al. [20] considered a feature selection model coupled with word2vec
and random forests to analyze the sentiment in real-time Twitter data from the
2019 election. This work is valuable for researchers and practitioners interested
in understanding the current landscape and potential advancements in deep
learning-based sentiment analysis. Furthermore, Jadhav et al. [21] employed a
random forest (RF) machine learning algorithm and integrated demographic
information for sentiment analysis. Habbat et al. proposed a multi-model com-
bination strategy that incorporates different recurrent neural network (RNN)
architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM,
and Gated Recurrent Unit (GRU). They employed various word embedding
techniques to enhance the performance of sentiment analysis on unstructured
tweet data [22]. A soft sensor transfer approach for Long Short-Term Memory
Recurrent Neural Networks (LSTM-R) presented in [23] to estimate ventilation
openings by leveraging measurements of indoor and outdoor climate variables.
Researchers investigated numerous strategies for combining picture and text
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modalities for sentiment analysis. Jin et al. [24] introduced a multimodal senti-
ment analysis framework that combines picture data derived from convolutional
neural networks (CNNs) with language characteristics extracted from recurrent
neural networks. A graph-based fusion approach was proposed in [25] that con-
structs a multimodal graph to model the relationships between image regions
and textual tokens for sentiment analysis.

Optimization strategies play a pivotal role in feature selection and feature
weighting for sentiment analysis, minimizing classification errors and enhanc-
ing generalization. Traditional optimization methods, such as stochastic gradi-
ent descent (SGD) and its derivatives, Adam and RMSProp, are often used
to improve the parameters of deep neural networks [26,27]. However, these
approaches may face difficulties such as delayed convergence or being stuck
in local minima, mainly when dealing with complicated optimization land-
scapes [28]. Genetic Algorithms (GA) [29], Particle Swarm Optimization (PSO)
[30], and Differential Evolution (DE) [31], etc., have all demonstrated suc-
cess in optimizing neural network parameters, leading to notable enhance-
ments in expression recognition performance. However, these algorithms may
encounter challenges in balancing exploration and exploitation, particularly in
high-dimensional and non-convex optimization scenarios. Our work provides
an approach for sentiment analysis that addresses the constraints of exist-
ing optimization algorithms while also using their complementary exploration-
exploitation capabilities. The proposed approach combines the properties of the
WOA and HBOA to overcome the concerns mentioned above. WOA exploits
the exploratory skills inspired by whale hunting behavior to efficiently explore
the solution space, whereas HBOA exploits promising regions for fine-tuning.
The proposed WHBOA optimization method presents a promising approach to
addressing these challenges and advancing sentiment analysis research.

3 Proposed Methodology

In this section, we elaborate on the crafted database and the proposed WHOBA
optimization algorithm for effective optimization of feature selection in sentiment
analysis. Our optimization of the classifier model, influenced by face images
within a scene, categorizes the characteristics used in the sentiment estimation
system. Additionally, the performance metrics have been evaluated to assess the
performance of the classifiers.

3.1 Proposed Procedure of Visual and Linguistic Features

Combining images and text in sentiment analysis creates a more impactful solu-
tion by leveraging the complementary nature of visual and textual information.
By analyzing both modalities simultaneously, the model gains a deeper under-
standing of the sentiment expressed from the data. Figure 2 demonstrates the
various steps involved in organizing the features and labels of the crafted dataset.
Several visual features are used in emotion recognition. The proposed method
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uses SIFT (scale-invariant feature transform), SURF (speeded-up robust fea-
tures), entropy, and color histogram to identify and detect image features. NLP
is applied to preprocess the text part, tokenize it, and then find features based
on parameters like nouns, entropy, adjectives, verbs, and bag of words. Table 1
shows all these handcrafted visual and textual features.

Fig. 2. Proposed procedure for crafting dataset

We used haar cascading to detect face-on images, collected 2754 face-related
images and their respective captions, and applied a pre-trained face emotion
detector to recognize seven emotions (happy, surprise, sad, angry, contempt,
fear, and disgust), further transformed into positive and negative sentiments.

Table 1. Handcrafted Visual and Textual Features

Extracted Visual Features Extracted Textual Features

Entropy Complexity or randomness of
textures or patterns present in the
image

Entropy To assess the diversity of sentiments
within text

Color Histogram Frequency of occurrence of each
color used to present emotional tone

Noun Context of sentiments. Determine
the subject of the text

SURF Key points in the image based on
their local intensity patterns

Adjectives Expressing sentiment by indicating
whether something is positive or
negative

SIFT Key points, scale invariance and
robustness to changes in viewpoint
and illumination

Verbs Action verbs may indicate positive
or negative experiences.
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Text labels are classified as positive, negative, or neutral using VADER (Valence
Aware Dictionary and sEntiment Reasoner), and weighted voting is applied to
create the final labeling.The overall schematic framework of the proposed sen-
timent analysis model is shown in Fig. 3. It takes the visual and textual pairs
and pre-processes the curated data. We explore the desired compelling optimal
features using the WHBOA algorithm.

Finally, the sentiment label is predicted by the optimization model by inte-
grating the handcrafted features of visual images and textual data. Each phase
is depicted in Fig. 3.

Fig. 3. A framework of the proposed model of sentiment detection enhanced by the
integration of hand-crafted features of visual and textual.

3.2 Hybrid Approach of WOA and HBOA

This section presents the basics of the WOA and HBOA optimization algorithms
and the proposed hybrid optimization algorithm. Optimization algorithms play
a crucial role in feature selection by helping to identify the most relevant and
informative subset of features from a larger pool. For feature selection, WOA and
HBOA optimization approaches are promising. To enhance accuracy and identi-
fication, an integrated hybrid “Whale-Honey Badger Optimization Algorithm”
(WHBOA) is proposed for an optimal subset of feature selection to improve
sentiment prediction. By exploiting the behavioral orchestration of whales and
honey badgers and balancing exploration with exploitation, the algorithm effi-
ciently identifies relevant optimal features, thereby enhancing the performance
of the sentiment prediction model.
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3.2.1 Whale Optimization Algorithm (WOA)
The WOA algorithm [10] solves the optimization problems by simulating whales’
social behavior and hunting strategies. The three actions that WOA performs
include encircling prey, a bubble net attack (exploitation), and searching for prey
(exploration). The fitness of each search whale is evaluated using the objective
function fobj(Xi) of each whale position Xi.

Fitness = fobj(Xi) (1)

The best solution found so far is updated accordingly. During each iteration
of the WOA algorithm, the positions of the whales are updated based on the
exploration and exploitation phases.

Encircling Prey

The current best candidate solution is assumed to be closest to the target prey,
and other solutions update their positions toward the best search agent. The
above behavior is indicated as follows:

�X(t + 1) = �Xrand − �A · �D (2)

where, �A = 2·�a ·�r−a, �D = |�C · �Xrand− �X(t)|, �C = 2·�r. In this ’a’ decreases
linearly from 2 to 0 over iterations, and �r is a random vector in the range [0, 1].

Bubble-Net Attacking(exploitation)

The humpback whales swim continuously in a spiral-shaped channel and inside
a constricting circle as they move from one location to another. This shrinking
and spiral behavior is mathematically represented below.
Shrinking Encircling approach:

�X(t + 1) = �X∗ − �A · �D (3)

where �X∗ is the best solution found so far, and �D = |�C · �X∗ − �X(t)|.
Spiral Updating Position:

�X(t + 1) = �D′ · ebl · cos(2πl) + �X∗ (4)

where �D′ = | �X∗ − �X(t)|, b is a constant defining the shape of the logarithmic
spiral, and l is a random number in the range [−1, 1].

Prey Searching(exploration)

Apart from using bubble-net, humpback whales also hunt for random prey.

�X(t + 1) = �Xrand − �A · �D (5)

�D = |�C · �Xrand − �X(t)| (6)
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3.2.2 Honey Badger Optimization Algorithm (HBOA)
The HBO algorithm [11] is inspired by the adaptability and resilience of honey
badgers. It involves a dynamic adjustment between the exploration and exploita-
tion phases to solve optimization problems efficiently. The algorithm initializes
the positions (X) of N honey badgers randomly within the lower and upper
bounds (lb and ub). Fitness is related to the best solution of search score for
each honey badger agent. It follows exploitation and exploration phases until the
best solution is calculated.

Density Factor and Intensity

Density factor and intensity play roles in shaping the algorithm’s behavior. Inten-
sity is correlated with the prey’s degree of concentration and the honey badger’s
distance from it. Ii is the prey’s smell intensity; a high smell indicates a quick
motion and vice versa. It is denoted as:

Ii = r0 × S

4πd2i
(7)

here r0 is a random number between 0 and 1, concentration strength S = (xi −
xi+1),2 and di = xprey − xi denotes the directional coefficient specific to the
agent.

The density factor (α) represents the concentration of potential solutions in
the search space, influencing the algorithm’s exploration and exploitation phases.

α = C ∗ exp(
-iteration

max iteration
) (8)

where C is a constant.

Digging Phase

It intensifies the search around the best-known solutions, focusing on refining
and exploiting promising regions of the solution space.

Xn = Bsp + F · β · I · Bsp + F · r1 · α · (d) · (cos(2πr2) · (1 − cos(2πr3))) (9)

A new candidate solution Xn is generated by perturbing a base point Bsp
using random or directional components r1, r2 and r3, α, d, and scaling factor
F .

Honey Phase

It Diversifies the search, potentially exploring new and less-explored regions of
the solution space to discover better solutions. This perturbation helps diversify
the search and explore potentially better solutions in the solution space. Here
r4 is a random number between 0 to 1.

Xn = Bsp + F · r4 · α · d; (10)
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3.2.3 Proposed Whale-Honey Badger Optimization Algorithm
The WHBOA combines the principle behaviors of WOA and HBO for enhanced
performance in solving the feature selection as an optimization problem
described in Algorithm 1. Integrating the Wale and Honey Badger Optimiza-
tion strategies in WHBOA facilitates robust sentiment analysis by dynami-
cally adjusting between global exploration and local exploitation. This balance
enhances the algorithm’s ability to converge towards optimal sentiment scores
over the course of iterations. The steps involved in the algorithm are described
as follows:

Initialization

The algorithm begins by initializing the positions (Agent Positions) of N search
agents randomly within the specified bounds (lb and ub).

Fitness Function

The fitness function, fobj, evaluates the fitness of each search agent based on its
position.

Fitness = fobj(Xj) (11)

The purpose is to maximize the fitness function, i.e., classification accuracy
metric.

Algorithm 1. WHBOA Algorithm for feature selection
1: Input: (N,Max Iteration, lb, ub, dim, fobj,Dataset with features)
2: Initialization: Initialize positions of search agents randomly within bounds (lb,

ub), Representation of features set
3: Output: Optimal solution (Agent Best score), best features
4: Begin
5: Calculate and Evaluate Fitness of search
6: for Iter = 1 to Max Iteration do
7: WHBOA Fitness evaluation
8: Calculate intensity and density factor using Eq. (7) & Eq. (8)
9: Evaluate Agent score = fobj(Agent Positions)

10: for j = 1 to dim do
11: Calculate distance and update positions using Eq. (12) & Eq. (13)
12: Calculate direction and update positions using Eq. (14)
13: end for
14: end for
15: end
16: Return: Set of Selected features



456 P. S. Yadav et al.

Intensity and Density Factor

The density factor, α, influences the selection and movement of solutions within
the search space. It dynamically adjusts exploitation and exploration phases
based on the current iteration. Equation (7) and Eq. (8) are used to calculate
intensity and density factor.

Exploitation

During periods of high density (indicative of local convergence), the algorithm
exploits known solutions to refine them further. This phase involves intensively
exploring the immediate vicinity of promising solutions to potentially converge
toward the global optimum.

�DB =
∣
∣
∣ �C · �BP − �AP

∣
∣
∣ (12)

�AP = �BP − �A · �DB (13)

where, �C and �A are specified in Eq. (2).

Exploration

During the exploration, agents broaden their scope to explore new regions of the
solution space, inspired by curiosity and randomness.

�AP = �BP + F · r4 · α · I · k · �DB + F · r1 · α · (1− k) · �DB · |cos (2πr2) · (1− cos (2πr3))|
(14)

where, k is 0 or 1.

3.3 Adaptive Neuro-Fuzzy Inference System-ANFIS

It is a hybrid intelligent system that combines the interpretability of fuzzy logic
systems with the adaptive capabilities of artificial neural networks (ANNs) [12].
By learning from data and producing language rules, it seeks to represent com-
plicated interactions between inputs and outputs. This makes it appropriate for
situations where it is challenging to express explicit rules or when the inter-
pretability of the model’s conclusions is crucial. ANFIS comprises nodes and
routed pathways as shown in Fig. 4, and all input-output values are modifiable
by changing the network design’s parameters. This ANFIS is used to evaluate
the efficacy of sentiment prediction through the extracted features using the
WHBOA algorithm.
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Fig. 4. ANFIS structure

4 Experiment and Evaluation

A link between many variables can be established, and a related variable can be
predicted based on one or more independent elements using different method-
ologies such as Linear regression, neural networks, fuzzy inference systems, and
a mixture of fuzzy inference systems and neural networks. Based on the hybrid
optimization algorithm and adaptive neuro-fuzzy inference system (ANFIS) for
prediction, the performance of the combined technique is investigated in this
paper. The method uses various machine learning algorithms to investigate
whether the scene sentiment is properly classified.

4.1 Dataset

We evaluated our work on the dataset crafted from flicker8k. This is unlabeled
data for sentiment analysis but gives a long range of general scenes or views.
Flickr8k comprises a collection of images gathered from the popular photo-
sharing platform Flickr8k, along with human-annotated descriptions for each
image. The dataset contains approximately 8,000 images, each paired with five
unique captions, resulting in a total of around 40,000 caption-image pairs. For
analysis, the data is prepared and cleaned. The handcrafted method extracts
features meticulously tailored from visual and textual data to ensure that it
effectively captures nuanced aspects. We constructed a robust representation
poised to facilitate accurate sentiment analysis across varied data modalities
using distinct features extracted from both the visual and textual data.

4.2 Performance Evaluation

In our experiments, the datasets are divided into training and testing sets, using a
split ratio of 7:3. Our framework is implemented using MATLAB. We considered
widely used metrics- accuracy, precision, recall, and F1-score to evaluate the
efficacy of the proposed work.
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Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1-score = 2 · Precision · Recall

Precision + Recall

4.3 Results

This section evaluates and compares the performance of the WHBOA-based
ANFIS classifier with Nearest Neighbor, SVM, and Decision Tree classifiers.
Accuracy, precision, recall, and F1-score statistics in sentiment recognition are
used to systematically assess the efficacy of the proposed method. The perfor-
mance results are shown in Table 2.

Table 2. ANFIS Performance Comparison with KNN, SVM, and DT

Method Accuracy (%) Precision Recall F1 Score

Nearest Neighbor Classifier 88.50 90.02 90.58 90.29

Support Vector Machines 90.57 90.39 90.92 90.85

Decision Tree 89.32 90.17 90.74 90.45

WHBOA-based ANFIS 91.21 90.62 91.28 90.94

The results show that our optimization approach outperformed compared
to the considered baseline models. Table 3 shows the comparison outcome with
the existing optimization algorithms, the Lion Optimization Algorithm (LOA),
Whale Optimization Algorithm (WOA), Honey Badger Optimization Algorithm
(HBOA), Particle Swarm Optimization (PSO), and Ant Colony Optimization
(ACO).

Table 3. Performance with other existing Optimization Algorithms

LOA WOA HBOA PSO ACO WHBOA

Accuracy 90.3766 90.7950 90.3766 90.3766 90.7950 91.2134

Precision 89.7626 90.3911 89.7151 89.9038 90.5141 90.6223

Recall 90.4020 90.3911 90.7602 90.0439 90.2120 91.2756

F-Score 90.0812 90.3911 90.2346 89.9738 90.3628 90.9478

Error 9.6234 9.2050 9.6234 9.6234 9.2050 8.7866

The efficacy of the method is evident and can be clearly visualized in Fig. 5.
The results show that this approach outperforms existing models in sentiment
classification.
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(a) Accuracy (b) Precision

(c) Recall (d) F1-measure

(e) Error

Fig. 5. Comparative results of a) accuracy, b) precision, c) recall, d) F1 score and e)
error.

4.4 Ablation Study

We have designed and executed ablation studies using various combinations,
including KNN with LOA, WOA, HBOA, PSO, ACO, and WHBOA, as well
as SVM, DT, and ANFIS with LOA, WOA, HBOA, PSO, ACO, and WHBOA
optimizers. Our findings indicate that the classifiers KNN, SVM, DT, and ANFIS
when optimized with WHBOA, achieve the highest performance. Therefore, we
have included only the results with WHBOA optimization in Table 2.
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5 Conclusion and Future Work

This paper presents WHBOA, a hybrid optimization algorithm inspired by
whales and honey badgers, enhancing sentiment analysis by extracting key visual
and textual features from datasets. This method helps to improve the effec-
tiveness of the sentiment finding in sentiment analysis. We developed a robust
dataset of face-influenced scene images along with their text descriptions, anno-
tated with positive or negative sentiments, to rigorously test our approach. We
evaluated the performance efficiency of the WHBOA algorithm with the ANFIS
classifier. The results demonstrate that this method outperforms Nearest Neigh-
bor, SVM, and Decision Tree in terms of accuracy, precision, recall, and F1-
score.The proposed WHBOA-based ANFIS classifier achieves an accuracy of
91.21%. It also shows better performance efficacy than the LOA, WOA, HBOA,
PSO, and ACO meta-heuristic optimization algorithms.Future work will address
facial occlusions, image region alignment, and semi-supervised approaches in
image retrieval.
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Abstract. Image classification is a fundamental task in computer
vision, and the quest to enhance DNN accuracy without inflating model
size or latency remains a pressing concern. We make a couple of advances
in this regard, leading to a novel EncodeNet design and training frame-
work. The first advancement involves Converting Autoencoders, a novel
approach that transforms images into an easy-to-classify image of its
class. Our prior work that applied the Converting Autoencoder and
a simple classifier in tandem achieved moderate accuracy over simple
datasets, such as MNIST and FMNIST. However, on more complex
datasets like CIFAR-10, the Converting Autoencoder has a large recon-
struction loss, making it unsuitable for enhancing DNN accuracy. To
address these limitations, we generalize the design of Converting Autoen-
coders by leveraging a larger class of DNNs, those with architectures
comprising feature extraction layers followed by classification layers. We
incorporate a generalized algorithmic design of the Converting Autoen-
coder and intraclass clustering to identify representative images, leading
to optimized image feature learning. Next, we demonstrate the effective-
ness of our EncodeNet design and training framework, improving the
accuracy of well-trained baseline DNNs while maintaining the overall
model size. EncodeNet’s building blocks comprise the trained encoder
from our Generalized Converting Autoencoders transferring knowledge
to a lightweight classifier network - also extracted from the baseline
DNN. Our experimental results demonstrate that EncodeNet improves
the accuracy of VGG16 from 92.64% to 94.05% on CIFAR-10, and Rest-
Net20 from 74.56% to 76.04% on CIFAR-100. It outperforms state-of-the-
art techniques that rely on knowledge distillation and attention mecha-
nisms, delivering higher accuracy for models of comparable size.
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1 Introduction

In recent years, deep learning models have gained tremendous success in many
computer vision tasks such as image classification [1,2], object detection [3,4],
and semantic segmentation [5,6]. However, this also brings the challenge of cre-
ating models that strike a balance between accuracy and efficiency. Although
larger DNN models exhibit high accuracy in computer vision tasks, they are
computationally expensive. Therefore, there is a growing interest in designing
efficient DNNs to achieve high accuracy while maintaining low computational
cost. One of the approaches to achieve this goal is model compression, which
involves pruning and quantization of large models while preserving their accu-
racy to some extent [7–13]. Alternatively, techniques like knowledge distillation
[14–17], and attention mechanism [18–20] focus on improving the accuracy of
baseline models with either minimal or no increase in the model size. Our work
is in line with the latter approach.

In our prior work [21], we introduced a Converting Autoencoder (CAE)
that transforms input images into easy-to-classify images of its class and sub-
sequently processed the transformed images with a simple classifier. The CAE
model, which was based on the U-Net architecture relied on early-exiting DNN
framework for its training and achieved moderate accuracy over simple datasets
such as MNIST, FMNIST, etc. However, its accuracy on more complex datasets
like CIFAR-10 was limited to 78–80% when passed to AlexNet or ResNet50 for
inference. In this paper, we generalize the design of our Converting Autoen-
coder by systematically deriving its structure from given baseline DNN, making
it applicable to a large class of DNNs and more complex datasets. Leveraging
the Generalized Converting Autoencoder (GCAE), we developed EncodeNet, a
novel integrative framework that enhances the accuracy of any baseline DNN
with a modular architecture of feature extraction layers followed by classifica-
tion layers, achieving performance on par with significantly larger models. Our
framework surpasses competing techniques, including state-of-the-art knowledge
distillation and attention mechanism-based methods.

EncodeNet involves two stages of model training. In the initial stage, a con-
verting autoencoder is trained to transform an image into a representative image
within the same class, thus extracting its salient features. To identify the most
representative images, each class of images is grouped into different clusters
based on their similarity. For each cluster, the image that can classified with the
lowest entropy using the baseline DNN is selected as the representative image. A
low entropy of a classification result indicates a high confidence in the prediction.
Intraclass clustering effectively reduces the reconstruction loss of the converting
autoencoder. In the second stage, we combine the encoder layers of the trained
converting autoencoder with additional layers and filters derived from the clas-
sification layers of the baseline DNN model. We train the new DNN by freezing
the pre-trained encoder layers and only training the remaining layers of the net-
work. By doing so, we leverage the learned representations from the autoencoder
and fine-tune them for image classification. To our knowledge, this is the first
integrative framework designed for entropy-driven representative feature extrac-
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tion with the help of a Generalized Converting Autoencoder. It synergizes its
capabilities with a thin subnetwork extracted from a baseline DNN, yielding an
equivalent DNN with significantly improved accuracy.

Our key contributions are as follows:

• We developed an algorithmic approach to generalize the design of our Con-
verting Autoencoder from U-Net architecture and early-exiting DNNs to a
larger class of DNNs and more complex datasets than previously possible.

• We designed EncodeNet, a new framework leveraging Generalized Convert-
ing Autoencoder for training lightweight DNNs that can achieve accuracy
comparable to significantly larger models without increasing model size. Our
approach competes well with state-of-the-art techniques, including Knowledge
Distillation and Attention Mechanism, due to its versatility. It can be imple-
mented even when large teacher models are unavailable, yet it still attains
comparable or greater accuracy.

• Experimental results using CIFAR-10 and CIFAR-100 datasets demonstrate
the remarkable effectiveness of our approach, outperforming competing tech-
niques. EncodeNet improves the accuracy of VGG16 from 92.64% to 94.05%
on CIFAR-10, and RestNet20 from 74.56% to 76.04% on CIFAR-100. It out-
performs KD (Knowledge Distillation) [14], RKD (Relational Knowledge Dis-
tillation) [22], FitNet [17], and FT (Factor Transfer) [16] for both ResNet and
VGG networks. EncodeNet enhances the accuracy of ResNet50 on CIFAR-100
from 77.23% to 80.1%, outperforming attention mechanims based techniques,
Squeeze-and-Excitation Networks (SE) [23] and Bottleneck Attention Mod-
ule (BAM) [18]. It achieves comparable accuracy with Convolutional block
attention module (CBAM) [19], and Global attention mechanism (GAM) [20]
while maintaining relatively small model size.

2 Related Work

In this section, we review some of the significant methods that focus on improving
DNN accuracy with either minimal or no increase in the model size.

2.1 Autoencoders

An autoencoder is an artificial neural network that learns efficient encodings of
unlabeled data. It consists of an Encoder, which learns how to encode data into
a reduced representation efficiently, and a Decoder, which learns how to recon-
struct the data back to a representation that is as close to the original input as
possible [24]. There are several variations of autoencoders. The denoising autoen-
coders are trained to recover original input from intentionally perturbed or noisy
input [25], with the aim to learn a more robust representation of input data. A
variational autoencoder is a generative model that can produce different varia-
tions of existing data samples [26]. Converting autoencoders [27] has been used
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to improve the performance of the early-exiting framework. However, this app-
roach is limited to simple networks and datasets. In addition, it relies on early-
exiting frameworks, further limiting its capability. Autoencoders are also widely
used for dimensionality reduction, denoising, data augmentation, and anomaly
detection. What sets us apart is our synergistic system approach integrating
an autoencoder trained for representative image transformation, transferring its
knowledge to a thin subnetwork of a baseline network yielding lightweight DNNs
for resource-constrained devices.

2.2 Knowledge Distillation

Initially proposed by Hinton et al. [14], knowledge distillation is a model com-
pression method that distills the knowledge in a large network or ensemble of
networks into a small student network by forcing the student’s predictions to
match those of the teacher. The effectiveness of distillation has been demon-
strated in many studies, e.g. [28–30], using various student and teacher architec-
ture patterns with different depths and widths. More recently, Beyer et al. [15]
identified that aggressive data augmentation and a long training schedule can
drastically improve the effectiveness of the original knowledge distillation method
proposed in [14]. Our framework presents an alternative method that results in
a lightweight model, ideal for devices with limited resources. It does not depend
on large models, yet it surpasses state-of-the-art methods based on knowledge
distillation.

2.3 Streamlined DNN Architectures

Several works have proposed methods to streamline DNN architectures for
resource-constrained platforms. Adadeep [31] is a usage-driven, automated DNN
compression framework that systematically explores the trade-off between per-
formance and resource constraints. SubFlow [32] uses subnetwork pruning to
find the optimal subnetworks for each layer that can preserve the accuracy of
the original network, and fine-tunes them with a sparsity regularization term.
MobileNet [33] and MobileNetV2 [34] are DNN architectures designed for mobile
and embedded vision applications, which, respectively, use depth-wise separable
convolutions and inverted residual blocks with bottle-necking features to reduce
the number of parameters and computations. MobileNetV2 also introduces lin-
ear bottlenecks and shortcut connections to improve the model’s efficiency and
accuracy. Unlike these approaches, our work focuses on enhancing the accuracy
of existing DNN models without introducing new network architectures.

2.4 Attention Mechanisms

Several studies have focused on performance improvements using attention mech-
anisms for image classification tasks. The attention mechanism is a computa-
tional technique enabling neural networks to concentrate on pertinent input
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data segments during task execution. This mirrors the selective attention mech-
anism observed in human cognition, allowing models to assign varying levels of
significance to distinct segments of the input sequence. Squeeze-and-Excitation
Networks (SENet) [23] is the first to use channel attention and channel-wise-
feature-fusion to suppress the unimportant channels. The convolutional block
attention module (CBAM) [19] places the channel and spatial attention opera-
tion sequentially, while the bottleneck attention module (BAM) [18] did it in par-
allel. Global attention [20] mechanism was proposed that boosts the performance
of deep neural networks by reducing information reduction. Even though atten-
tion mechanisms have been successful in increasing DNN performance, additional
parameters are needed to learn how to weigh the importance of different parts
of the input sequences.

3 Method

In this section, we introduce the details of our proposed EncodeNet frame-
work, which comprises of three key aspects - (1) generalizing the Converting
Autoencoders for efficient training setup, (2) intraclass clustering and entropy-
based image selection to support representative feature learning with Convert-
ing Autoencoder, and (3) knowledge transfer from Converting Autoencoder for
image classification. Figure 1 provides the details of the framework, with more
details provided in the sections below.

Fig. 1. Overview of the EncodeNet Framework: Intraclass clustering of images, followed
by sorting them according to their classification entropy to pinpoint the most repre-
sentative image for each cluster. Subsequently, a converting autoencoder is trained to
transform input images into their corresponding representative images within the same
class and cluster. Finally, the trained encoder layers are detached from the autoencoder,
coupled with fully connected layers, and retrained to perform classification.
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3.1 Converting Autoencoder Design

Autoencoders are widely employed for various tasks such as image recon-
struction, image compression, denoising, dimensionality reduction, etc. In our
attempt, we crafted an autoencoder to transform images into easily classifiable
representations within their respective classes. Designing a lightweight autoen-
coder poses challenges, particularly when the encoder component can not suc-
cessfully extract features, potentially leading to miss-transformations. While the
UNet [35] model offers a built-in architecture for encoder and decoder blocks, it
fails to convert images into easy representations. Thus, our primary objective was
developing an encoder capable of accurately capturing features and designing the
decoder block for efficient transformation. In general, DNN architecture for the
image classification task consisted mainly of feature extraction and classifica-
tion layers. The DNN’s feature extraction stage plays a crucial role in capturing
vital features and reducing the size of feature maps. The classification layers
utilize these identified features to make predictions. Considering this, our frame-
work commences by selecting a baseline for autoencoder design using the feature
extraction layers as the encoder of the autoencoder, as depicted in Figure 1.
Specifically, our focus is on the feature extractor component of the Deep Neu-
ral Network (DNN), with the exclusion of classification layers. Next, we create
the corresponding decoder block, a meticulous process aimed at complementing
the feature extraction mechanism and efficiently reconstructing the input data.
Various architectures were employed to optimize the decoder block, aiming to
reduce the autoencoder’s reconstruction loss. Convolutional layers and Upsam-
pling layers were utilized to upscale the extracted feature maps to their original
dimensions. By discarding classification layers in this phase, our objective is to
design a customized autoencoder capable of capturing and representing crucial
features from the input data, thereby paving the way for subsequent improve-
ments in model performance.

3.2 Representative Feature Learning with Converting Autoencoder

3.2.1 Intraclass Clustering
Complex datasets such as CIFAR-10, CIFAR-100 can have high dissimilarity
among images of the same class, which poses a challenge for representative image
transformation with Converting Autoencoders. For example, Fig. 2 shows that
the airplane class in CIFAR-10 dataset contains various types of airplanes (e.g.,
fighter jet, commercial airplane, etc.) that differ significantly from each other. It
is more difficult and costly to transform a fighter jet into a representative image of
a commercial airplane than into a representative image of a fighter jet. To tackle
this problem, we introduce intraclass clustering that groups images of the same
class into different clusters based on their similarity. This facilitates effective
training for our Converting Autoencoder to perform the representative image
transformation within each cluster. Table 1 shows the effectiveness of intraclass
clustering in minimizing the reconstruction loss for the conversion of the images.
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Fig. 2. Intraclass clustering on airplane class of CIFAR-10.

Table 1. Impact of intraclass clustering in minimizing the reconstruction loss on
CIFAR-10 datasets after 500 epochs of training

Reconstruction loss of converting autoencoder

Models Without Clustering With Clustering

VGG8 0.019 0.008

VGG16 0.013 0.07

ResNet18 0.016 0.009

ResNet20 0.025 0.0107

For efficient clustering, we extracted important features of the input image
using a VGG-16 [36] model trained on ImageNet [37] data. The pre-trained
VGG16 model is a convolutional neural network (CNN) model that has already
been trained on a large dataset, typically for image recognition tasks. In this case,
the input image to the VGG16 model had a shape of (32,32,3), which means it
had a width and height of 32 pixels and 3 color channels (red, green, and blue).
When using VGG16 for feature extraction, it’s common to remove the last few
layers of the network, including the fully connected and classification layers, and
use the remaining layers as a feature extractor. We fed input images to VGG16
and used the 13th layer to extract a feature map with a shape of (1,1,512). This
reduced shape makes it more suitable for applying a clustering algorithm, which
aims to group similar data points together based on their features. We applied
three different clustering techniques to group similar images together within each
class: k-means clustering, HDBSCAN, and cosine similarity clustering. Among
these three techniques, k-means clustering provided the best results.
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Fig. 3. Finding the optimal number of clusters.

Fig. 4. Measuring the entropy of baseline DNN model.

To determine the optimal number of clusters for k-means clustering, we used
the Elbow method [38], which is a technique that plots the sum of squared
distances between data points and their assigned cluster centers for different
values of k (the number of clusters). The “elbow” point on this plot represents
the value of k where the decrease in sum of squared distances begins to level
off. As shown in Fig. 3, we found that the elbow point was at k=3. We aimed
to group similar images together into 3 distinct clusters within each class of the
CIFAR10 dataset.

3.2.2 Entropy-Based Representative Image Extraction

The level of difficulty in the image-classification task and the requirement
for complex DNN models depend on the complexity of the input. We measure
the confidence of a classification result produced by a baseline DNN model (e.g.,
VGG,ResNet) based on the entropy of the prediction. If an input image is pre-
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Fig. 5. A converting autoencoder transforming CIFAR10 images into the representative
images of their corresponding class and cluster.

dicted to belong to a single class with 100% probability, the entropy is zero,
as there is no uncertainty in the classification. If the prediction probability is
equally distributed across all classes, the entropy is at its maximum. As shown
in Fig. 4, we first sort the images in each cluster and class by their entropy.
The representative image is identified as the one that has the lowest entropy in
the corresponding class and cluster. The next stage of the framework trains a
Converting Autoencoder to transform any input image of a particular class and
cluster into the corresponding representative image.

3.2.3 Representative Feature Learning Through Image Transforma-
tion

We train our Converting Autoencoder to encode any given input image into
an efficient representation that can be decoded into the representative image
belonging to the same class and cluster. We evaluated the effectiveness of our
approach using the CIFAR-10 and CIFAR-100 datasets with and without intr-
aclass clustering. The Converting Autoencoder’s performance was evaluated in
terms of reconstruction loss, which measures the similarity between the output
and the target image. We set the mse (mean squared error) as the loss function
of the autoencoder. The target image is the easiest image within the cluster for
a given input image belonging to a cluster. As a result of the intraclass cluster-
ing, the reconstruction loss of our autoencoder dropped by 46%, from 0.0012 to
0.0065. Figure 5 illustrates the transformation of the given images to the corre-
sponding representative images using the autoencoder trained with CIFAR-10
dataset.

3.3 Knowledge Transfer from Converting Autoencoder for Image
Classification

In the EncodeNet framework, the encoder layers of an autoencoder captures the
essential features of the given input image and the representative image that
can aid in efficient image classification. Therefore, we employ transfer learning
to train a DNN model that consists of the pre-trained encoder layers and addi-
tional layers obtained through the classification part of a baseline DNN model.
By freezing the pre-trained encoder layers and only training the remaining lay-
ers of the network, we utilize the learned representations from the Converting
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Autoencoder and adapt them for the task of image classification. This approach
integrates the Converting Autoencoder’s representative image transformation
capability into an efficient DNN model with enhanced accuracy.

4 Experiments and Results

In this section, we discuss the experiments we conducted on the different datasets
to evaluate our proposed EncodeNet framework against other competing tech-
niques. We first provide the implementation details of our work and present
the datasets we have used in our experiments. Next, we provide results demon-
strating the enhanced performance achieved for the baseline DNNs as a result
of our EncodeNet framework. We also conduct ablation studies to evaluate the
importance of our proposed use of intraclass clustering and the auto-encoder
framework. Lastly, we compare our approach against widely used methods for
Knowledge Distillation and Attention mechanisms that aim at enhancing the
performance of the given DNN model.

4.1 Implementation Details

Our model is built on the TensorFlow framework [39] and trained on two
datasets: CIFAR-10 and CIFAR-100 as described in 4.2. For the sake of compar-
ison with Knowledge Distillation frameworks, we utilized the repository [40] that
was built on the PyTorch framework [41]. For training the baseline DNN models,
we set the learning rate 1e−1 and a weight decay of 1e−4. We conducted training
sessions for the baseline models over 300 epochs. For the autoencoder aimed at
converting images into simpler representations, an extended training period of
500 epochs was necessary to minimize loss effectively. The optimization objective
for the Converting Autoencoders centered on minimizing the reconstruction loss
measured in terms of mean squared error (MSE).

4.2 Datasets

We evaluated our proposed framework on two widely used image classification
datasets: CIFAR-10 [42], CIFAR-100 [43]. The CIFAR-10 dataset contains 60,000
color images of size 32x32, of which 50,000 are used for training and 10,000
for testing. The dataset includes 10 different classes of images, consisting of
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Whereas
the CIFAR-100 dataset has 100 classes containing 600 images each, of which 500
are used for training and 100 for testing.

4.3 Improvement of Baseline DNN

Table 2 presents results illustrating the improvement in accuracy for the base-
line network achieved through the robust training of our framework. For com-
parison, we evaluated various derivatives of two types of networks: VGG [36] and
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Table 2. Results of our EncodeNet framework used to improve the accuracy (in %) of
different baseline DNN models on the CIFAR-10 and CIFAR-100 datasets.

Architectures CIFAR-10 CIFAR-100

BaselineEncodeNetBaselineEncodeNet

VGG8 89.25 91.60 70.23 73.41

VGG16 92.64 94.06 73.37 75.11

ResNet18 91.12 92.87 74.22 75.29

ResNet20 92.56 93.64 74.56 76.04

ResNet [1]. For example, VGG8 exhibited an increase in accuracy of 1.89% and
3.2% for the CIFAR-10 and CIFAR-100 datasets, respectively. Whereas, VGG16
demonstrated an improvement of approximately 1.8% to 2.0% in accuracy over
the baseline due to EncodeNet.

4.4 Ablation Studies

Table 3. Ablation studies for the EncodeNet framework on the CIFAR-10 dataset
using ResNet18 as the baseline.

Architecture Setup Accuracy (%)

Baseline - ResNet18 without EncodeNet 91.12

ResNet 18 + no IC + AE-target is the same as input 89.26 (↓ 1.86%)

ResNet 18 + no IC + AE-lowest entropy image per class 92.11 (↑ 0.99%)

ResNet 18 + IC + AE-representative image for each sub-class 92.87 (↑ 1.75%)

To assess the impact of the different parts of our EncodeNet framework, we con-
ducted ablation studies on the CIFAR-10 dataset using ResNet18 as the base-
line DNN. Table 3 shows the said results. The baseline classification accuracy for
ResNet18, without using EncodeNet, on CIFAR-10 is 91.12%. EncodeNet relies
on an autoencoder for the approach to work. However, we can have different
target image for feature learning. In the first setup, we set the target image for
the AE as the same as the input image. By using this setup, the classification
accuracy reduces to 89.26% (decrease of 1.86%), indicating ineffective feature
learning for the entire dataset. In the second setup we perform entropy-based
sorting of the image of a given class and use the lowest entropy image as the
representative image for the entire class. EncodeNet provides improved learning
of the image features, thereby, increasing the accuracy to 92.11% (increase of
0.99%). We improve the feature learning and increase the accuracy even further
with the introduction of intraclass clustering. Here, instead of using one rep-
resentative image for the entire class, we derive different representative images
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for each of the sub-classes. Specifically, the last setup, which is the complete
EncodeNet framework, leads to the classification accuracy of 92.87% (increase
of 1.75%).

4.5 Comparison with Knowledge Distillation Techniques

Table 4. Comparison with various Knowledge Distillation techniques on the CIFAR-
100 dataset.

Frameworks Teacher:-
Student:-

ResNet110 (74.56)
ResNet 32 (71.09)

VGG16 (73.35)
VGG8 (70.21)

Baseline (student) 71.09 70.21

Knowledge Distillation (KD) [14]72.94 72.52

RKD (Relational KD) [22] 71.03 71.48

FitNet [17] 71.39 71.08

FT (Factor Transfer) [16] 73.47 71.76

EncodeNet 74.13 73.41

Knowledge Distillation approaches are known to increase the accuracy of a
given baseline DNN model (Student) using a larger DNN model (Teacher). This
relies on the availability of a larger Teacher model, which may not always be the
case. Nonetheless, we compare our EncodeNet framework against four differ-
ent knowledge techniques: KD (Knowledge Distillation) [14], RKD (Relational
Knowledge Distillation) [22], FitNet [17], and FT (Factor Transfer) [16]. Table 4
shows the results for these methods for two diferent student-teacher combinations
on the CIFAR-100 dataset. We employed two sets of teacher-student models: one
with ResNet-110 as the teacher and ResNet-32 as the student, and the other with
VGG16 as the teacher and VGG8 as the student. The results demonstrate that
our method outperforms other knowledge distillation techniques for both ResNet
and VGG networks.

4.6 Comparison with Attention Mechanism Based Techniques

Attention mechanism based techniques increase the performance of the DNN
models, but that usually leads to a substantial increase in the number of model
parameters. We compared EncodeNet with different attention mechanism tech-
niques, namely Squeeze-and-Excitation Networks (SE) [23], Bottleneck Atten-
tion Module (BAM) [18], Convolutional block attention module (CBAM) [19],
and Global attention mechanism (GAM) [20]. In Table 5, we observe that our
framework can increase the accuracy of baseline DNN at par with other atten-
tion mechanism, but without increasing the model parameter size. For example,
Global attention Mechanism (GAM) [20] shows higher improvement in classi-
fication accuracy (81.33%) compared to EncodeNet (80.10%), but significantly
increases the model parameter size (approx 5 times).
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Table 5. Comparison with Attention Mechanism based techniques on the CIFAR-100
dataset.

Architecture Parameters Accuracy (%)

ResNet 50 [1] 23.71M 77.23

ResNet 50 + SE [23] 26.22M 79.71

ResNet 50 + BAM [18] 24.06M 80.03

ResNet 50 + CBAM [19] 26.24M 80.56

ResNet 50 + GAM [20] 149.47M 81.33

ResNet 50 + GAM (gc*) [20] 57.05M 81.01

ResNet 50 + EncodeNet 23.71 M 80.10

5 Conclusion

This paper introduces a novel framework to improve the classification accuracy
of baseline deep neural network (DNN) models without introducing additional
parameters. Our proposed methodology outperforms recent knowledge distilla-
tion and attention mechanism approaches focused on enhancing DNN model
efficacy. For each given baseline DNN model, we utilize the feature extraction
layer as the encoder module of an autoencoder, design the decoder based on this
feature extractor, and subsequently retrain the autoencoder to convert the given
images into representative images (easy images). For robust training of autoen-
coder, we also implemented intraclass clustering that helped to minimize the
reconstruction loss. Furthermore, we integrate the concept of knowledge transfer
by employing the frozen encoder section, appending the baseline classifier, and
retraining it for classification tasks. Our methodology is validated using CIFAR-
10 and CIFAR-100 datasets, showcasing its capability to boost the performance
of any DNN model. Additionally, we conducted a comparative analysis with
existing techniques that concentrate on enhancing baseline DNN performance.
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