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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Multi-label classification is a challenging task in pattern
recognition. Many deep learning methods have been proposed and
largely enhanced classification performance. However, most of the exist-
ing sophisticated methods ignore context in the models’ learning process.
Since context may provide additional cues to the learned models, it may
significantly boost classification performances. In this work, we make full
use of context information (namely geometrical structure of images) in
order to learn better context-aware similarities (a.k.a. kernels) between
images. We reformulate context-aware kernel design as a feed-forward
network that outputs explicit kernel mapping features. Our obtained
context-aware kernel network further leverages multiple orders of patch
neighbors within different distances, resulting into a more discriminating
Deep Multi-order Context-aware Kernel Network (DMCKN) for multi-
label classification. We evaluate the proposed method on the challenging
Corel5K and NUS-WIDE benchmarks, and empirical results show that
our method obtains competitive performances against the related state-
of-the-art, and both quantitative and qualitative performances corrobo-
rate its effectiveness and superiority for multi-label image classification.

Keywords: Multi-label classification · Context-aware kernel · Deep
learning · Deep unfolding

1 Introduction

Multi-label image classification is a challenging task in pattern recognition. It
aims at identifying the presence of objects, scenes, or concepts by assigning mul-
tiple labels to images. This task is crucial for parsing and understanding visual
information, significantly enhancing machine cognition of complex visual scenes.
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Multi-label classification can also be applied to many scenarios, such as human
attribute recognition, scene understanding, image tagging, labeling, and so on.
However, multi-label classification encounters many challenges [1], primarily due
to the complexity and diversity of the image contents. Compared to single-label
classification [5], this task requires the model to simultaneously recognize all rel-
evant objects and concepts in an image, and annotate them accurately, demand-
ing higher requisite on the model’s discrimination and generalization ability.
The relationships among objects in an image can also be exceedingly complex,
including, but not limited to, exclusivity, dependency, and hierarchical relation-
ships. Additionally, long tail label distributions further increases the difficulty
of multi-label classification.

Recently, the rapid development of deep learning techniques [32], especially
the introduction of Transformer [7] and attention mechanism [31], along with
label relationship learning through Graph Convolutional Networks (GCN) [4,26],
has significantly advanced multi-label classification performance. These edge-
cutting methods, that learn intricate dependencies between pixels, regions, or
labels, have significantly improved recognition and classification performance
in complex scenes. Despite these advancements, challenges remain in order to
fully leverage contextual information and structural relationships among objects
within images.

It is well known that appropriately leveraging contextual information into a
learning model can enhance performances [27,30]. Following this line, this work
proposes a novel multi-label classification framework that learns rich contextual
information within images through structure-aware perception. Based on a deep
understanding of the importance of context and multi-layer deep networks, our
framework effectively captures complex and fine-grained relationships in images.
This is achieved by learning these complex relationships as a part of a designed
sophisticated kernel function. The latter allows to obtain a significant gain in
accuracy and robustness of multi-label classification. Considering the aforemen-
tioned issues, the main contributions of this work include:

– A novel multi-label classification framework that combines contextual infor-
mation through a deep multi-order context-aware kernel network (DMCKN),
resulting in more discriminative features;

– An end-to-end framework that learns the geometrical relationships between
image regions with increasing contextual ranges;

– Extensive experiments on several benchmarks which show that our method
obtains very competitive results and significantly outperforms different base-
lines as well as the related approaches.

2 Related Work

2.1 Multi-label Classification

The study of multi-label classification has attracted increasing attention in recent
years. Initial efforts primarily focused on generating region proposals through
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object detection techniques for label prediction [35]. Subsequent region-based
work delved into modeling spatial dependencies among objects. For instance,
Wang et al. [34] proposed a model utilizing spatial transformer layers and
Long Short-Term Memory (LSTM) units in order to capture spatial depen-
dencies between different object areas in images. Chen et al. [2] explored
semantic interactions between labels by leveraging label co-occurrence. Wu et
al. [38] used graph-matching techniques to simultaneously explore spatial asso-
ciations between instances, semantic dependencies of labels, and the feasibility
of instance-label matching.

Recently, many studies have dedicated efforts to capturing relationships
between labels. Sequence-based methods analyze and learn semantic associa-
tions between label vectors by using Recurrent Neural Networks (RNN), while
graph-based approaches capture and utilize label dependencies through Graph
Convolutional Networks (GCN). For example, Chen et al. [4] mapped complex
label relationship graphs into series of independent label classifiers. Moreover,
Wang et al. [33] constructed label graphs by analyzing label co-occurrence infor-
mation in the data for label representation learning.

The emergence of Vision Transformers (ViT) [6] has introduced a new direc-
tion for multi-label classification. Lanchantin et al. [13] developed a frame-
work based on transformer encoders in order to capture complex dependencies
between visual features and labels, while Liu et al. [17] explored the use of label
embeddings to directly query the presence of labels in images using transformer
decoders.

Although the aforementioned multi-label classification methods have made
significant progress, particularly in considering spatial dependencies and inter-
actions between labels, there is, however, still a lack of in-depth utilization of
structural and contextual information within images. Therefore, our work focuses
on further exploring these aspects, aiming to capture rich contextual information
by learning and leveraging geometric relationships in images at multiple orders
and ranges. Our proposed approach is intended to empower the multi-label clas-
sification model with more discriminative image representations.

2.2 Context-Aware Models

The concept of “Context Awareness” has been extensively studied across multi-
ple fields, particularly in computer vision [9,14,27], where its applications span
a wide extent of applications including object detection and recognition, scene
understanding, image segmentation, multi-label classification, etc. Early work on
context information primarily focus on integrating local features within images
with their surrounding contextual information for object recognition and scene
classification. Since the advancement of machine learning techniques, such as
random forests and support vector machines (SVM), context-dependent scene
modeling has been a major bottleneck in enhancing performances in different
classification tasks. For instance, Torralba et al. [21] explored methods to improve
object detection accuracy through the use of scene context.
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Fig. 1. Deep Multi-order Context-aware Kernel Network framework.

With the advancement of deep learning, context modeling in computer vision
has led to a major breakthrough. For instance, the VGG network [29] captures
multi-level features of images through convolutional layers, while the Faster R-
CNN [22] utilizes a region proposal network to precisely focus on key parts
of images, enhancing detection performance. Furthermore, GCN [19,26,28] and
ViT [6] enhance the processing of context information by capturing relation-
ships between nodes in graphs and by employing global self-attention mecha-
nisms, respectively. Additionally, multi-modal context modeling with the Bilin-
ear Attention Networks (BAN) [12] offers rich scene knowledge for other tasks,
namely visual question-answering.

In this paper, we model and learn contextual relationships between image
regions at multiple ranges and orders. This modeling leads to better image rep-
resentations and to conceptually a different approach compared to the related
work. This approach is based on learning multiple order similarity kernels whose
underlying unfolded networks allow to capture both content and geometric struc-
ture (context) in the learned image representations. Our structural relationships
in the unfolded networks are dynamically learned end-to-end.

3 Method

In this section, we consider a multi-order neighborhood system that allows inte-
grating contextual information of image regions, and also defining rich and more
discriminative image representations. A given image is segmented into a regu-
lar grid of cells, with each cell being described with (i) visual features obtained
through a pretrained model, and (ii) positional features obtained by encoding
their location in images. For each cell, the integrated features are then fed to our
proposed deep multi-order context-aware kernel network, which updates cell fea-
tures by incorporating their first and higher-order neighbors. The overall struc-
ture of the network is shown in Fig. 1.

3.1 Context-Aware Kernel Map

For simplicity, we define {Ip}P
p=1 as a set of labeled training images, Y p

k is a
binary variable standing for the membership of a given image Ip to the class
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k ∈ {1, . . . , K}. Sp = {xp
1, . . . ,x

p
n} corresponds to a set of non-overlapping cells

extracted from a regular grid in Ip; without a loss of generality, n is constant
for all images.

The similarity between any two images Ip and Iq can be measured by using
a convolution kernel:

K(Ip, Iq) =
∑

i,j

κ(xp
i ,x

q
j), (1)

here κ is a positive definite elementary kernel, such as linear, polynomial, and
Gaussian, or their linear combinations. These elementary kernels primarily focus
on the visual content of the cells within images, ignoring their contextual rela-
tionships.

In order to obtain a more relevant similarity, we define a learned context-
aware kernel κ (or equivalently its Gram matrix, denoted as K, where [K]xi,xj

=
κ(xi,xj) and xi,xj ∈ X among all cells X =

⋃
p Sp). The kernel matrix K is

obtained as [11,25]

min
K

tr(−KS�) − α

C∑

c=1

tr(KPcK�P�
c ) +

β

2
‖K‖22, (2)

here α ≥ 0, β > 0, S is the similarity matrix of data in X without context
information, � denotes matrix transpose, and tr denotes the trace operator.
The set of matrices {Pc}C

c=1 defines the neighborhood relationships between
cells (in practice C = 4, corresponding to the four directions: up, down, left and
right). Specifically, for a given cell x, if there exists an immediate neighbor x′ in
direction c, then [Pc]x,x′ �= 0; otherwise [Pc]x,x′ = 0, ∀x′ ∈ X . In Eq. (2), the
leftmost part is a fidelity criterion that provides high kernel values for visually
similar cells pairs {(xi,xj)}ij , the second term strengthens or weakens the kernel
values between these pairs based on the similarity of their neighborhood, and
the right-hand side term acts as a regularizer controlling the smoothness of the
learned kernel solution.

One may show that the minimization of Eq. (2) leads to the following recur-
sive solution:

K(t+1) = S + γ

C∑

c=1

Pc K(t) P�
c , (3)

where γ = α
β controls the impact of context, guaranteeing that learning converges

to a stable solution. Equation (3) can be written using an explicit kernel mapping
form as

Φ(t+1) =
(
Φ(0)� γ1/2P1Φ(t)� . . . γ1/2PcΦ(t)�

)�
, (4)

where the matrix Φ(0) represents either an exact or an approximate kernel
mapping of S, and the matrix Φ is the kernel mapping of K that needs to
be estimated. This update procedure can be reformulated using a fixed feed-
forward network structure; each layer in this network corresponds to an itera-
tion: the input layer Φ(0) is extracted through a pre-trained visual model (such



6 M. Jiu et al.

Fig. 2. Multi-order neighborhood system. The left side shows the first-order and
second-order neighborhoods. On the right, the third-order neighborhood is built from
the second-order neighborhood based on the transition probabilities.

as ResNet101, TresnetL, etc.), and the intermediate hidden layers {Φ(t)}t are
updated through the neighborhood matrices {Pc}c and the output of the previ-
ous layers according to Eq. (3), whilst the final output layer (denoted as φK(Sp))
corresponds to the high-order context-aware features of the image Ip which
are generated by iteratively aggregating multi-order contextual information as
described subsequently.

3.2 High-Order Context

In the previous section, we discussed how the first-order neighborhood is lever-
aged in kernel-based representation learning. For scenes with short range con-
textual relationships (particularly when individual small objects are considered),
first-order neighborhoods are enough. However, for scenes with wider range con-
textual relationships (for instance when mutiple objects co-exist), first-order
neighborhoods are not sufficient. As suggested by [10], wider range contexts are
involved by extending the scope of first-order neighborhood but it may also
significantly increases the dimensionality of the learned representations, and
hence the computational cost, and may also potentially introduce excessive noise.
Therefore, our proposed contribution relies on higher-order neighborhoods, using
random walk and self-attention mechanisms that aggregates more relevant con-
text from a wider range, thus avoiding excessive noise and reducing unnecessary
computational burden.

Random walk is able to expand low-order neighborhoods to high-order ones,
effectively filtering out noisy image areas. In other words, by moving stochasti-
cally through cell neighbors, transitions can be adjusted according to contextual
information to balance the exploration of neighboring cells and the exploitation
of local ones. This approach prevents getting stuck in noisy cells, and it allows
to capture more meaningful contextual information. Multiple independent iter-
ations of random walk tend to retain cells that are frequently visited and more
relevant to the content of the central cell, gradually filtering out noisy image
areas and enhancing the overall quality of the learned representations.

Formally, given a cell x, we define its first-order (c-typed) neighborhood
{N (1)

c (x)} through the set of matrices {Pc}C
c=1 where values of c refer to dif-
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ferent types of neighborhoods. For any order p ≥ 2, the p-th (higher) order
neighborhood of x is recursively defined as

N (p)
c (x) =

⋃

x′∈N (1)
c (x)

N (p−1)
c (x′) with x′ �= x. (5)

The attention score between x and any x′′ in N (p)
c (x) is obtained as

score(φ(x), φ(x′′)) = softmax
(

Wqφ(x)(Wkφ(x′′))�√
d

)
, (6)

where φ(x) refers to the features of the target cell x, and φ(x′′) denotes the
features of a cell x′′ within the neighborhood N (p)

c (x). Wq and Wk are learnable
parameter matrices and d corresponds to the dimensionality of the keys.

In order to consider the transition probabilities from the first order neigh-
borhood to the second-order one, we evaluate the probability p

(p)
c (x,x′′) (with

p = 2) by employing an exponential function to the attention scores and then
normalizing the values by summing all the scores in the second-order neighbor-
hood N (2)

c (x) for the target cell x and the direction c so that their sum equates
1, i.e.,

p(2)c (x,x′′) =
exp(score(φ(x), φ(x′′)))∑

z∈N (2)
c (x)

exp(score(φ(x), φ(z)))
. (7)

Here p
(2)
c (x,x′′) defines the probability of a random walk from the first-order to

the second-order context for cell x in direction c.
Subsequently, using the aforementioned transition probabilities, we obtain

a better estimate of the features while taking into account the second-order
neighborhood as

φc,p(x) =
∑

x′′∈N (p)
c (x)

p(p)c (x,x′′)(Wvφ(x′′)), with p = 2, (8)

where Wv is a learnable parameter matrix used to transform the features; it
is multiplied by the transition probabilities to form the second-order (c-typed)
contextual features φc,2(.).

In order to build higher-order contexts, we employ an iterative method similar
to that used for the second-order context, as shown in Fig. 2. However, it is
important to note that higher-order contexts involve information with larger
distances, and the relevance between a given central cell and the cells in the
higher-order neighborhood decreases. Therefore, instead of using all first-order
neighboring cells to construct second-order contexts, only a part of cells is chosen
in order to build higher-order neighborhoods using transition probabilities.

3.3 Deep Multi-order Context-Aware Kernel Networks

In this section, we build context-aware kernel mapping using the underlying
multi-layered networks. This process is achieved iteratively. Below, we detail
each step of the network’s construction procedure.
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Fig. 3. Details of the Deep Multi-order Context-aware Kernel Network. “RWCA” is
the abbreviation of Random Walk and Context Awareness.

In order to capture both content and context of a given cell x at the t-th
layer, we define the multi-order representation as the concatenation of all the
orders of contextual features through different directions c ∈ {1, . . . , C} as

φ(t)
c (x) =

(
φ
(t)
c,1(x)� φ

(t)
c,2(x)� . . .

)�
, (9)

then the representation at the (t + 1)-th layer for a given cell x is obtained by
integrating all the directions as

Φ(t+1) =
(
Φ(t)� γ1/2P1Φ

(t)
1

�
. . . γ1/2PCΦ(t)

C

�
)�

, (10)

being φ
(t)
c (x) a column of Φ(t)

c , and similarily φ(t)(x) a column of Φ(t). The
details of deep multi-order context-aware kernel network are shown in Fig. 3.

Equation (11) details how, at each layer, the kernel value [K(t)]xi,xj
between

two cells xi and xj is evaluated by unfolding the map of the kernel as

[K(t)]xi,xj
= φ(t)(. . . (φ(1)(φ(0)(xi)))) · φ(t)(. . . (φ(1)(φ(0)(xj)))), (11)

It’s worth noticing that the dimensionality of φ(x) increases with deeper net-
works and concatenation of multi-order contextual features. To address the
resulting computational challenge, we introduce 1× 1 convolutions at each layer
of the context-aware kernel map network for dimensionality reduction. To effec-
tively preserve essential features, we implement a layerwise dimensionality reduc-
tion using [15] as

ψ(t)
c (x) = Ct(φ(t)

c (x)). (12)

Here φ
(t)
c (x) and ψ

(t)
c (x) respectively refer to the contextual features before and

after undergoning dimensionality reduction, and Ct(.) stands for the convolution
operation.

Subsequently, Eq. (13) redefines the similarity between two images Ip and
Iq using this kernel construction (following Eq. (1))

K(Ip, Iq) =
∑

xi∈Sp

φ(t)(. . . (φ(0)(xi))) ·
∑

xj∈Sq

φ(t)(. . . (φ(0)(xj))). (13)
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Eq. (13) reveals the inner product between two recursive kernel mappings, with
each one corresponding to an unfolded multi-layered neural network whose fea-
ture mappings capture broader contexts as the depth of this network increases.
The network’s structure is similar to common deep learning architectures, yet
distinct in that the network depth and the number of units per layer are dynami-
cally determined based on the dimensions of the kernel mappings and the number
of iterations prior to convergence.

When considering the limit of Eq. (3) as K̃ and the underlying map in Eq. (4)
as φ̃(.), the convolution kernel K between two given images Ip and Iq can be
expressed as

K(Ip, Iq) = 〈φ̃K(Sp), φ̃K(Sq)〉, (14)

φ̃K(Sp) =
∑

xi∈Sp

wiφ̃(xi), (15)

being {wi}i learnable parameters. Hence, each constellation of cells in a given
image Ip can be represented by a deep explicit kernel map φ̃K(Sp) that aggre-
gates the representation of all the cells in Ip. In order to explore the full potential
of Eq. (14), we consider an end-to-end framework that learns the neighborhood
system {Pc}c within images.

3.4 End-To-End Supervised Learning

We train our context-aware kernel map network (end-to-end) and particularly
its underlying contextual parameters, for the task of multi-label classification.
Considering N training images {Ip}N

p=1 and their category labels Y pk, where
Y k

p = 1 if Ip belongs to the kth category, and Y k
p = −1 otherwise. In our kernel

map network, we use a fully connected layer for classification. To address class
imbalance problem, we consider a grouped training strategy based on label co-
occurrence, by training a classification layer for each group and by weighting the
underlying losses in order to obtain the total loss; the latter is defined as

min
{Wg},{Pc}

1
2

G∑

g=1

‖Wg‖22 +
G∑

g=1

Cg

Ng∑

p=1

Lg(WgφK(Sp), Y k
p,g), (16)

here Wg is the weight matrix for the fully connected layer, {Pc}c are the learn-
able context matrices, Ng the size of each group, and Cg corresponds to a hyper-
parameter. The total loss includes the weighted sum of cross-entropy losses Lg

and �2 regularization across category groups. Error backpropagation and gradi-
ent descent algorithm are used to update the parameters.

4 Experiment

4.1 Implementation Details

We evaluate our framework on the Corel5K and NUS-WIDE benchmarks, which
is trained in 200 epochs with an AdamW optimizer, a batch size of 128, and a
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Table 1. Comparisons (in percentages) of different methods with ours in terms of
Recall (R), Precision (P), and F1 Score (F1) on the Corel5K dataset.

Method Backbone CL R P F1

FT DMN+SVM [10] – no 38.1 23.4 28.9

CNN-R [20] – no 41.3 32.0 36.0

3-layer DKN+SVM [8] – no 43.2 25.6 32.1

LNR+2PKNN [40] – yes 46.1 44.2 44.9

DCKN [10] ResNet101 yes 44.4 33.4 38.1

Q2L-TResL [17] TResNetL no 48.1 43.5 45.7

DMCKN (ours) TResNetL 4*5 47.8 43.4 45.5

TResNetL 8*10 48.3 43.9 45.9

Cvt-w24 8*10 49.1 45.2 47.0

maximum learning rate of 0.0001. An early stopping strategy is used, with data
augmentation techniques such as RandAugment and Cutout, and exponential
moving average applied to model parameters with a decay rate of 0.9997.

4.2 Results on Corel5K

The Corel5k dataset comprises 4999 images annotated with 260 concepts. It is
split into 4500 training and 500 testing images, with each test image potentially
labeled with up to 5 keywords. Performance metrics include average precision
(P), recall (R), and F1-score (F1). Images are resized to 400 × 500 pixels and
divided into 4 × 5 and 8 × 10 cell configurations for analysis. We use Resnet101,
TresnetL [24], and Cvt [36], pre-trained on ImageNet to extract visual features.
To address category imbalance, we select all positive instances and three times
random subset of negative ones.

Table 1 compares the performance of our model (DMCKN) against other
models on the Corel5K dataset. “CL” stands for context learning. The best
and second-best performances for each metric are highlighted in red and blue,
respectively. The results demonstrate that models with context significantly out-
perform those without context. Under two different scene configurations (4×5
and 8×10), DMCKN shows superior performance in both configurations. Fur-
thermore, performance on the latest Cvt network architecture further validate
our model’s robustness to different backbone networks.

Ablation study. We conducted an in-depth ablation studies to assess the
impact of various modules on the performance, focusing on five core components:
context awareness, group fully connected layers, context-aware distance, network
depth, and the random walk strategy. These experiments adopted ResNet101,
pre-trained on the ImageNet dataset, as the feature extractor.

Firstly, we evaluate the effectiveness of the context awareness module and
group fully connected layers by comparing model’s performance with and
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Table 2. Ablation study of the context-aware module and group fully connected layer
on Corel5k dataset.

Method CA LG R P F1

Baseline ✗ ✗ 45.9 38.3 41.7

Ours ✓ ✗ 47.1 40.2 43.3

✗ ✓ 46.3 38.9 42.3

✓ ✓ 47.5 40.9 43.9

Table 3. Ablation study of network depth and context-awareness levels: analysis of
recall (R), precision (P), and F1 Score (F1) on Corel5k dataset (R/P/F1).

One-layer Two-layers Three-layers

SC 47.1/39.8/43.1 47.5/40.9/43.9 47.9/41.7/44.5

TC 47.4/40.2/43.5 47.9/41.3/44.3 48.3/42.2/45.0

without these modules. Keeping other configurations fixed, we adjuste the
context-aware distance (second-order and third-order neighborhoods) to explore
the specific impact of different context-aware distances on performance. Addi-
tionally, we evaluate the model’s performance at different network depths to
investigate the impact of network depth on performance. Finally, we also study
the role of different random walk strategies in mitigating model noise by using
different random walk strategies.

Table 2 shows the results of ablation studies on the context awareness module
(CA) and the group fully connected layer (LG) in our model. The results show
that the context awareness module increases the performance by 1.2/1.9/1.6, and
the group fully connected layer obtained performance gain of 0.4/0.6/0.6. When
both are used, there is a significant performance enhancement of 1.6/2.6/2.2,
validating the effectiveness of our modules.

Table 3 demonstrates the impact of second-order context awareness (SC) and
third-order context awareness (TC) on model performance across different net-
work depths (one-layer, two-layers, and three-layers). The results indicate a grad-
ual improvement in model’s performance with increasing network depth. This
suggests that deeper network structures can lead to better performance improve-
ments when considering more profound levels of context information.

Table 4 presents the impact of different random walk strategies (RWG) on
model’s performance. Here, ✗ indicates that the random walk strategy was not
used to construct higher-order neighborhoods, while different thresholds (thres)
are investigated for the transition probability of the random walk, used to exclude
some unrelated cells, in other words, when p < thres, the corresponding cell is
dropped. The results demonstrate that the random walk strategy effectively
suppresses noise during context aggregation, thereby enhancing model’s perfor-
mance. Among the strategies, the model performs best with a threshold of 0.67,
achieving R, P, and F1 scores of 47.96, 41.32, and 44.39, respectively.
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Table 4. Ablation study on the random walk strategy in the Corel5k dataset. thres
shows the probability threshold.

Method RWS R P F1

DMCKN(Ours) ✗ 46.59 39.26 42.61

thres = 0 48.11 40.98 44.26

thres = 0.62 48.03 41.21 44.35

thres = 0.67 47.96 41.32 44.39

thres = 0.70 47.91 41.33 44.37

Table 5. Comparison with state-of-the-art methods on the NUS-WIDE dataset, where
numbers in red indicate the best performance and numbers in blue represent the second-
best performance.

Method Backbone cells mAP CF1 OF1

MS-CMA [39] ResNet101 61.4 60.5 73.8

SRN [41] ResNet101 62.0 58.5 73.4

ICME [4] ResNet101 62.8 60.7 74.1

ASL [23] ResNet101 65.2 63.6 75.0

Q2L-R101 ResNet101 65.0 63.1 75.0

ML-SGM [37] ResNet101 64.6 62.4 72.5

SST [3] ResNet101 63.5 59.6 73.2

SADCL [18] ResNet101 65.9 63.0 75.0

DMCKN (ours) ResNet101 4*5 65.4 63.9 74.2

ResNet101 8*10 66.3 64.6 74.8

Focal loss [16] TresNetL 64.0 62.9 74.7

ASL TresNetL 65.2 63.6 75.0

Q2L-TResL TresNetL 66.3 64.0 75.0

DMCkN (ours) TresNetL 4*5 66.9 64.5 75.8

TresNetL 8*10 67.8 65.1 76.5

MlTr-l MlTr-l(22k) 66.3 65.0 75.8

Q2L-CvT [17] CvT-w24 70.1 67.6 76.3

DMCKN (ours) CvT-w24 4*5 69.4 68.2 76.1

CvT-w24 8*10 69.7 68.9 76.6

4.3 Results on NUS-WIDE

The NUS-WIDE dataset is a widely used benchmark for multi-label image classi-
fication, comprising 269,648 Flickr images with 5,018 labels and manually anno-
tated with 81 specific concepts, on average 2.4 concepts per image. According to
the official division, 161,789 images are used for training and 107,859 for testing,
with small-size images selected for our experiments.
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To assess the model’s performance on the NUS-WIDE dataset, we employed
metrics such as mean Average Precision (mAP), Composite F1 Score (CF1),
and Overall F1 Score (OF1), where higher scores stand for better performance.
We resized all the images to 400 × 500 pixels and segmented context structures
based on 4×5 and 8×10 cell grids. For the feature extraction, the pre-trained
Resnet101, Tresnet, and Cvt models on the ImageNet dataset are used.

Table 5 shows the quantitative results of the proposed method compared to
other state-of-the-art on the NUS-WIDE dataset, showing superior performance.
With Resnet101, ours achieved improvements of 0.4 and 1.6 in mean Average
Precision (mAP) and Composite F1 Score (CF1), respectively. With TresnetL,
our model obtained gains of 1.6, 1.1, and 1.5 in mAP, CF1, and Overall F1
Score (OF1), respectively. Further exploration of the potential of our method—
employing the latest backbone network (i.e. CvT-w24)—allows us to reach extra
gains of 1.3 in CF1 and 0.3 in OF1.

Fig. 4. Image instances of the initial and learned context of higher-order domains on
the Corel5K dataset (upper half) and the NUS-WIDE dataset (lower half). From the
left to right column: the original images, the initial multi-order neighborhood system,
the learned different levels of neighborhoods on the central cell, the impacts of different
cells. Warmer color stands for higher impact.
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Fig. 5. Comparison of image instances of predicted labels and actual labels including
FC (First-Order Context), SC (Second-Order Context), and TC (Third-Order Con-
text), the left two images are from the Corel5K dataset and the right two images are
from the NUS-WIDE dataset.

4.4 Visualization of Context Impact and Label Prediction

Fig. 4 visualizes the learning effects of our context-aware kernel network on the
Corel5K dataset (upper half) and the NUS-WIDE dataset (lower half). The
learned multi-order neighbor relationships enhance the focus on visually similar
neighboring cells, being capable of capturing more specific and rich contextual
information. The final column demonstrates that the network gives higher atten-
tion to cells containing both prominent and smaller targets.

Figure 5 shows the prediction results of our network. By learning a multi-
order neighborhood system, we more precisely identify the detailed features of
targets and effectively capture the overall features of images through the inte-
gration of contextual information at various levels, significantly enhancing the
accuracy of label predictions.

5 Conclusion

In this work, we introduce a deep multi-order context-aware kernel network to
enhance the multi-label image classification task. By leveraging deep contextual
modeling, this approach captures intrinsic structural relationships and external
connections, significantly improving classification performance. Our framework
aggregates multi-order contextual information, providing more refined feature
representations for multi-label learning. Experimental results on the Corel5K and
NUS-WIDE datasets validate the effectiveness of our method. Future work will
focus on modeling label dependencies within our framework and exploring multi-
scale approaches for global image representation. We plan to iteratively merge
cells through the context-aware kernel network, which is expected to further
boost performance.
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Abstract. Hematological disorders, which involve a variety of malig-
nant conditions and genetic diseases affecting blood formation, present
significant diagnostic challenges. One such major challenge in clinical
settings is differentiating Erythroblast from WBCs. Our approach eval-
uates the efficacy of various machine learning (ML) classifiers— SVM,
XG-Boost, KNN, and Random Forest—using the ResNet-50 deep learn-
ing model as a backbone in detecting and differentiating erythroblast
blood smear images across training splits of different sizes. Our findings
indicate that the ResNet50-SVM classifier consistently surpasses other
models’ overall test accuracy and erythroblast detection accuracy, main-
taining high performance even with minimal training data. Even when
trained on just 1% (168 images per class for eight classes) of the complete
dataset, ML classifiers such as SVM achieved a test accuracy of 86.75%
and an erythroblast precision of 98.9%, compared to 82.03% and 98.6%
of pre-trained ResNet-50 models without any classifiers. When limited
data is available, the proposed approach outperforms traditional deep
learning models, thereby offering a solution for achieving higher classi-
fication accuracy for small and unique datasets, especially in resource-
scarce settings.

Keywords: Blood cells · Erythroblast detection · Classifiers · SVM ·
Random Forest · ResNet-50

1 Introduction

Blood disorders in India present unique challenges due to a range of malig-
nant conditions and genetic diseases affecting blood formation. These include
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beta thalassemia, hemophilia, iron deficiency anemia, leukemia, lymphoma, etc.
Managing these disorders is particularly difficult in a resource-limited setting like
India, where these conditions are more prevalent and socio-economically chal-
lenging compared to Western countries [1]. Patients with certain blood disorders
may undergo a splenectomy to alleviate symptoms and improve quality of life by
preventing excessive destruction of blood cells [3]. This procedure can increase
the presence of nucleated red blood cells (NRBCs) in the blood. NRBCs or ery-
throblasts are immature red blood cell precursors typically confined to the bone
marrow and rarely seen in healthy adults, but they may appear more frequently
in post-splenectomy patients [4]. Distinguishing NRBCs from lymphocytes in
blood smears is challenging due to their similar morphological features. This task
is complicated by the variability in lymphocyte appearance and the presence of
abnormal cells in hematological disorders. The quality of slide preparation, the
microscope’s resolution, and the pathologist’s expertise are crucial in accurately
differentiating these cells [8].

2 Related Work

Das et al. (2016), identified nucleated red blood cells in 50 blood smear images.
Their method integrates multilevel thresholding for cell localization, a unique
colour space transformation for enhanced contrast between nucleated cells and
RBCs, and special fuzzy c-means clustering for segmentation. A random for-
est classifier discriminates NRBCs from WBCs with an accuracy of 99.42%,
offering a significant tool for clinicians diagnosing various anemic conditions
efficiently [8].

Fang et al. (2022) in their study present a novel, label-free technique for iden-
tifying rare NRBC using deep learning and single-cell Raman spectroscopy. By
combining Faster RCNN and YOLOv3 for morphological detection and Raman
for verification, it offers rapid, efficient NRBC screening without pre-processing
[11]. Alkafrawi et al. (2023) developed an AlexNet-based Convolutional Neural
Network model that classifies and counts blood cells in microscopic images with
95.08% accuracy using a dataset of 17,092 blood smear samples. This model
showcases the effectiveness of deep learning in medical diagnostics. Additionally,
they created a user-friendly GUI, ‘Blood Cell Classifier v1.0,’ to help hema-
tologists classify blood cells efficiently, illustrating how machine learning can
automate traditional manual counting methods. [4]. Rao et al. (2023) proposed
EfficientNet - XGBoost framework as a novel method for segmenting and classi-
fying white blood cells (WBCs) from 367 blood smear images. This method uses
SegNet for segmentation, EfficientNet for feature extraction, and XGBoost for
classification, achieving a higher rank-1 accuracy of 99.02% compared to exist-
ing techniques. [24] Chola et al. (2022) proposed that BCNet is a deep learning
model aiming to improve accuracy of blood cell classification by identifying mul-
ticlass blood cells rapidly and automatically using 17,029 mages. The model
uses ResNet-18 as the backbone model, achieving 96.78% accuracy [6]. Nozaka
et al. (2024) used ResNet models identifying immature granulocytes(IG) and
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erythrocytes while screening peripheral blood smears using 6727 images. Deep
learning techniques and The findings demonstrated a precision level of 97% for
healthy cases and 88% for cases with immature granulocytes. The model for IG
recognition, based on CNN, achieved an accuracy rate of 97% for healthy cases
and 88% for IG cases [18]

While all the above papers worked on blood cell classification, none focused
on data-efficient learning for detection and differentiation of NRBC v/s other
WBBCs. Our study addresses this problem and compares various ML classifiers
across various splits.

3 Dataset

For this study, the dataset was sourced from the Mendeley repository called
‘A dataset for microscopic peripheral blood cell(PBC) images for development
of automatic recognition systems [2]. This dataset comprises excellent digi-
tal images of typical peripheral blood cells. The images were obtained using
the CellaVision DM96 analyzer at the Hospital Clinic of Barcelona after con-
ducting cell preparation and staining procedures with the Sysmex SP1000i
and May Grünwald-Giemsa stain, respectively. The dataset comprises 17,092
JPEG images with dimensions of 360× 363 pixels. It is organized into eight dis-
tinct categories of blood cells: neutrophils, eosinophils, basophils, lymphocytes,
monocytes, immature granulocytes (including metamyelocytes, myelocytes, and
promyelocytes), erythroblasts, and platelets as shown in Fig. 1.

This study specifically required a dataset containing erythroblasts and lym-
phocytes for effective differentiation. The Mendeley dataset uniquely meets this
requirement, as other accessible datasets like LISC [21] or ALL-IDB [16] do not
include the erythroblast class essential for our analysis.

Fig. 1. Sample images from each class of the dataset.

4 Experimental Methodology

All the experiments were conducted on a single Nvidia GeForce RTX-3050 GPU
device with 8 GB of RAM. We have used a batch size of 64 images, leveraging
CUDA libraries for optimized performance.
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4.1 Backbone Selection

A range of pre-trained convolutional neural network architectures were selected
for our classification tasks, including ResNet-50 [12], VGG19 [23], ResNet-18,
VGG16, and InceptionV3 [25]. The dataset was divided into 70% for training,
15% for validation, and 15% for testing. All models underwent a 15-epoch train-
ing regimen, except InceptionV3, which required 30 epochs due to its more com-
plex structure. According to the initial evaluation results presented in Table 1,
ResNet-50 demonstrated the highest testing accuracy at 98.72%, leading us to
select it as our primary feature extraction backbone. Unlike the VGG models,
ResNet-50 features residual connections that mitigate the vanishing gradient
problem, facilitating more efficient training and enabling the construction of
deeper, more effective networks [12]. As seen in Table 1, ResNet-50 provides
highest accuracy with second lowest training time. ResNet-50’s optimal balance
of depth and computational efficiency allows it to handle complex features more
effectively than ResNet-18 while avoiding the greater computational demands
of higher ResNet models. Additionally, ResNet-50’s extensive availability of pre-
trained models makes it highly suitable for efficient transfer learning and deploy-
ment. In contrast to newer models like EfficientNet [24], DenseNet, and Vision
Transformers (ViT), ResNet-50 remains advantageous for several reasons. Effi-
cientNet, while highly efficient due to compound scaling, presents complexity
in understanding and implementation. DenseNet’s dense connectivity enhances
feature reuse and gradient flow but incurs higher memory and computational
costs [15]. ViT excels in capturing long-range dependencies and performs well
on large-scale datasets but demands extensive data and computational resources
[10]. Despite the advancements in these newer models, ResNet-50 remains a bal-
anced choice, offering robustness, efficiency, and accessibility for diverse real-
world applications.

Table 1. Model performance comparison for backbone selection with 70:15:15 splits

Model Test Accuracy Precision Recall F1 Score Trainable Parameters Total Training Time

ResNet-50 98.72% 0.9892 0.9874 0.9882 25 million 23 m 24 s

VGG-16 98.67% 0.9826 0.9834 0.9832 138 million 47 m 33 s

ResNet-18 98.57% 0.9862 0.9868 0.9892 11 million 14 m 15 s

VGG-19 98.44% 0.9852 0.9864 0.9854 143 million 53 m 33 s

InceptionV3 92.38% 0.9179 0.9171 0.9186 23 million 37 m 56 s

4.2 Training on ResNet-50 Architecture

ResNet-50 architecture, tailored for image classification, was implemented using
the PyTorch library for building the model, and torch-vision was used for data
pre-processing. The dataset was organized into distinct classes and divided into
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training, validation, and testing. The testing set was fixed with 4000 images, and
the other sets were varied as per the data split.

In this setup, the ResNet-50 model, initially trained on the ImageNet [9]
dataset, was fine-tuned by adjusting its final layers for blood cell classification.
The cross-entropy loss function directs the training process is given in Eq. 1

L(y, ŷ) = −
∑

y log(ŷ) (1)

which is the most effective choice for multi-class problems. This loss function
evaluates the model’s output by comparing it to the actual data labels. The
Adam optimizer is utilized for optimization, as it is known for its efficiency in
adaptive updating network weights.

Before we began the training process, the optimal learning rate was deter-
mined by gradually increasing the learning rate over a predefined range. At each
iteration, the training loss was recorded, and we chose the optimal learning rate.
This is the point at the middle of the steepest downward curve, just before
divergence. Following this, we implemented discriminative fine-tuning [14] and
assigned higher learning rates to later layers in the model, while earlier layers
have progressively lower learning rates. Using the optimal learning rate identified
earlier as the maximum for the final layer, we applied a one-cycle learning rate
scheduler. This scheduler starts with a small initial learning rate, increases it to
the maximum, and then decreases it to a final value lower than the initial rate.
Then, we trained our model using k-fold cross-validation with a 5-fold configu-
ration over 15 epochs. Each fold of the validation data is used once as a test set,
while the entire training dataset is used to train the model in each epoch. The
validation indices are shuffled to randomize the data selection, ensuring unbiased
validation subsets. The model is then evaluated on each validation subset, with
performance metrics such as loss and accuracy (both top-1 and top-5) calculated
and stored. After evaluating all folds, the mean and standard deviation of these
metrics are computed to assess overall model performance and consistency across
different subsets. If the average validation loss of a fold is lower than previously
recorded, the model’s state is saved. This process helps in selecting the model
configuration that generalizes best on unseen data.

4.3 Classifiers

A hybrid methodology that combines deep learning and traditional machine
learning techniques to tackle image classification tasks was adopted. The com-
putational capabilities of PyTorch library [19], supplemented by algorithms from
Scikit-learn [20] enhanced efficiency.

A pre-trained ResNet-50 model was utilized and adapted for our classifica-
tion task. The pre-trained network acts as a feature extractor where the initial
layers capture generic features (edges, textures) while deeper layers identify more
complex patterns relevant to the specific classes in our dataset. The last fully
connected layer, reformulated for our needs, transforms these features into class
probabilities using the softmax function shown in Eq. 2
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Softmax(zi) =
ezi

∑K
j=1 ezj

(2)

where zi are the logits (i.e., unnormalized log probabilities) produced by the last
network layer for each class, and K is the total number of classes. Throughout
the training and evaluation phases, we meticulously monitored various perfor-
mance metrics, such as accuracy, precision, recall, and F1-score, to fine-tune and
evaluate our models. The dataset was systematically sorted into training, val-
idation, and testing directories. Preprocessing is done, which included uniform
image transformations such as resizing to 224×224 pixels, center cropping, con-
verting images into tensor format, and normalizing based on the mean (μ) and
standard deviation (σ) values derived from the ImageNet dataset [9] shown in
Eq. 3.

Normalized =
Image − μ

σ
(3)

where μ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225] (values obtained
from ImageNet). These preprocessing steps were essential for preparing the data
for optimal processing through neural network architectures. Additional prepro-
cessing or image augmentation was not performed due to the nature of the data,
as it is a well-curated dataset.

Our modeling strategy involved dual approaches: fine-tuning traditional machine
learning models (KNN [7], SVM [13], RandomForest [17], XGBoost [5]) and
adapting a deep learning model. We employed grid search [22] to optimize the
hyperparameters of the traditional models, shown in Eq. 4.

GridSearch = arg max
θ

(
n∑

i=1

Accuracy(θi)

)
(4)

where θ represents the set of parameters over which the search is conducted, and
n is the number of parameter combinations tested. This exhaustive parameter
optimization ensured that our models were highly tailored to maximize accuracy
on our specific dataset. Figure 2 shows our proposed Architecture for the study.

The two-step process of feature extraction followed by classifier implemen-
tation, though time-consuming, is crucial for maximizing accuracy with lim-
ited data. This method and the application of grid search for optimizing classi-
fier parameters extend the training time. However, these steps are essential for
achieving the high precision necessary in clinical applications, especially under
conditions of data scarcity. Despite the potential increase in training time due to
these methods, the GPU requirements do not substantially change. The compu-
tational resources required remain consistent with tasks, making our approach
feasible within typical clinical research settings.
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4.4 Training with Classifiers

To assess our classifiers’ performance under limited training data conditions,
we devised a series of experiments with varied training set sizes, ensuring that
each class was represented equally across all partitions. Table 2 provides the
information above the dataset distribution.

5 Results

The performance of ResNet-50, both with and without classifiers like SVM,
XG-Boost, KNN, and Random Forest, is compared in terms of test accuracy
and erythroblast identification across different training dataset sizes, as shown
in Table 3. Remarkably, ResNet-50-KNN outshone ResNet-50 at very low data
splits in test accuracy, securing 85.88% with just 1% of data. This performance

Fig. 2. Our proposed classifier enhanced ResNet-50 model architecture for the study.

Table 2. Distribution of Training, Validation, and Testing Images

Training Percentage Training Images Validation Images Testing Images

1% 168 12,924 4,000

2.5% 424 12,668 4,000

5% 848 12,244 4,000

7.5% 1,273 11,819 4,000

10% 1,709 11,383 4,000

20% 3,418 9,674 4,000

30% 5,128 7,964 4,000
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Table 3. Detailed Test Performance Metrics Across Various Classifiers with a ResNet-
50 Backbone

Data Split Classifier Test Acc (%) Erythroblast (Prec./Rec./ F1)

1% Data Split

1% ResNet50 82.03 0.986 / 0.857 / 0.917

1% ResNet50-XGBoost 84.05 0.986 / 0.857 / 0.917

1% ResNet50-KNN 85.88 0.984 / 0.819 / 0.894

1% ResNet50-SVM 86.75 0.989 / 0.812 / 0.892

1% ResNet50-RandomForest 84.68 0.993 / 0.763 / 0.863

2.5% Data Split

2.5% ResNet50 86.25 0.990 / 0.794 / 0.881

2.5% ResNet50-XGBoost 86.82 0.988 / 0.844 / 0.910

2.5% ResNet50-KNN 87.55 0.976 / 0.882 / 0.926

2.5% ResNet50-SVM 88.02 0.976 / 0.900 / 0.937

2.5% ResNet50-RandomForest 87.20 0.986 / 0.866 / 0.922

5% Data Split

5% ResNet50 92.99 0.979 / 0.928 / 0.953

5% ResNet50-XGBoost 92.77 0.969 / 0.928 / 0.948

5% ResNet50-KNN 93.05 0.949 / 0.926 / 0.937

5% ResNet50-SVM 93.00 0.953 / 0.926 / 0.939

5% ResNet50-RandomForest 91.90 0.981 / 0.924 / 0.952

7.5% Data Split

7.5% ResNet50 96.29 0.984 / 0.970 / 0.977

7.5% ResNet50-XGBoost 95.40 0.878 / 0.980 / 0.926

7.5% ResNet50-KNN 95.93 0.990 / 0.958 / 0.974

7.5% ResNet50-SVM 96.07 0.988 / 0.960 / 0.974

7.5% ResNet50-RandomForest 95.23 0.986 / 0.952 / 0.969

10% Data Split

10% ResNet50 96.14 0.984 / 0.972 / 0.978

10% ResNet50-XGBoost 95.87 0.984 / 0.958 / 0.971

10% ResNet50-KNN 96.25 0.988 / 0.958 / 0.973

10% ResNet50-SVM 96.00 0.990 / 0.950 / 0.969

10% ResNet50-RandomForest 95.70 0.972 / 0.964 / 0.968

20% Data Split

20% ResNet50 97.66 0.986 / 0.974 / 0.980

20% ResNet50-XGBoost 96.25 0.980 / 0.958 / 0.969

20% ResNet50-KNN 97.48 0.967 / 0.988 / 0.977

20% ResNet50-SVM 97.30 0.956 / 0.990 / 0.973

20% ResNet50-RandomForest 96.55 0.986 / 0.974 / 0.980

30% Data Split

30% ResNet50 98.36 0.982 / 0.996 / 0.989

30% ResNet50-XGBoost 97.88 0.990 / 0.996 / 0.993

30% ResNet50-KNN 98.45 0.980 / 0.996 / 0.988

30% ResNet50-SVM 98.42 0.982 / 0.996 / 0.989

30% ResNet50-RandomForest 98.00 0.976 / 0.994 / 0.985
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advantage was maintained as dataset sizes increased. In the critical task of ery-
throblast identification, which is key for precise early detection of red blood cells,
ResNet-50-KNN achieved a remarkable precision of 0.989 and a recall of 0.819
at the same minimal data size, aligning closely with ResNet-50’s metrics.

As the data size expanded, all classifiers saw enhancements in erythroblast
accuracy, with ResNet-50-SVM and Random Forest demonstrating notable pro-
ficiency; both achieved F1-scores exceeding 0.973 and 0.980, respectively, at a
20% data size. ResNet-50-XGBoost exhibited sturdy performance, attaining a
test accuracy of 96.25% at a 20% data size. ResNet-50-KNN also displayed sub-
stantial gains as data volume grew, offering accuracy comparable to other models
and erythroblast metrics.

ResNet-50-SVM outperforms the ResNet-50 model in low data and show
consistent performance Fig. 3.

Fig. 3. Test accuracy vs. percentage of the test data for the various models. Inset shows
the differences between the model for higher test data

6 Discussion

Collaboration with clinical hematologists and pathologists has improved our
understanding of the capabilities and limitations of machine learning (ML) algo-
rithms for blood cell classification. These models, notably the one with Support
Vector Machine (SVM) as the classifier, achieved a test accuracy of 86.75% using
only 1% of the available data. This success indicates ML’s potential to enhance
hematological diagnostics, which is critical for early detection and management
of diseases like leukemia and anemia.
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Utilizing SVM or alternative machine learning classifiers like KNN with fea-
tures derived from ResNet-50 results produces superior outcomes in low training
data than a standard pre-trained ResNet-50 model. ResNet-50 offers superior
features that can efficiently be utilized by SVMs, enabling thorough customiza-
tion of the dataset’s unique characteristics through fine-tuning of hyperparame-
ters and kernel selection. Support Vector Machines (SVMs) adaptability allows
them to match the data more effectively than the fixed, fully connected layers
commonly present in pre-trained models. Moreover, utilizing ResNet-50 mainly
for extracting features minimizes the likelihood of overfitting, particularly in
datasets with limited size. SVMs exhibit improved generalization capabilities on
unfamiliar data due to their controlled training dynamics. Integrating ResNet-
50’s advanced deep learning capabilities with the precise adaptability of machine
learning classifiers such as SVMs significantly enhances performance.

However, in conventional clinical settings, these models face challenges due
to biological variability and limitations in training datasets. Performance issues
often arise with images of overlapping cells, a common scenario in clinical sam-
ples. This results in frequent misclassifications and underscores the need for
advanced image segmentation algorithms to isolate individual cells effectively.
Additionally, the models were trained on highly cropped and zoomed images,
further limiting their application to typical clinical images. Variability in stain-
ing methods and slide quality also affect model performance, as these factors
can alter the appearance of cells on slides.

The model demonstrates high accuracy in detecting erythroblasts in cases
where there is a solitary cell with a clearly defined ratio between the nucleus
and cytoplasm in the image, as shown in Fig. 4. However, it faces difficulties in
accurately categorizing erythroblasts in situations where there are multiple cells
in a single image, the ratio of nucleus to cytoplasm is low, and small cells like
platelets are next to red blood cells (giving the appearance of a single cell), or
other cells show visible cytoplasm as shown in Fig. 5.

Fig. 4. Correctly predicted labels of erythroblast
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Fig. 5. Incorrect predicted labels of erythroblast

For the following work, there will be two models in conjunction. The first
will segment individual cells from complex histopathology images. The proposed
architecture in this study will help classify individual cells to further improve the
performance. There is a need to expand the dataset diversity, and training mod-
els on comprehensive image data from patients with hematological disorders
is essential. Developing a user-friendly interface that normalizes erythroblast
counts relative to other white blood cells (WBCs) through ratio calculations or
percentage conversions will facilitate easier comparisons across samples. These
advancements will enhance model accuracy and robustness, reduce pathologists’
workloads, and improve diagnostic processes, bridging the gap between theoret-
ical precision and practical usability in clinical settings.

7 Conclusion

This study highlights the significant impact of machine learning models in hema-
tological diagnostics. It showcases the ability of algorithms, such as SVM and
ResNet-50, to accurately classify blood cells with limited images available for
training, emphasizing their transformative potential. Although controlled test-
ing environments have achieved high accuracy, real-world clinical applications
face significant challenges due to biological variability and limitations in dataset
diversity. The highlighted concerns encompass the potential for misclassification
due to the proximity of cells in blood smears, as well as the influence of incon-
sistent staining quality on the model’s performance. To tackle these challenges,
it is necessary to improve the representativeness of the dataset and refine image
processing techniques to ensure that the model performs well in different clinical
settings.

Furthermore, the need to train these models with a limited amount of
data brings attention to wider concerns regarding fairness in global health—
specifically, the challenges imposed by limited resources in regions such as India.
In such contexts, efficient models necessitating less data are crucial, as they
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provide scalable solutions that rapidly adjust to various medical environments
without requiring extensive computational resources.
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Abstract. Charts are important non-textual elements present in docu-
ments, providing a visual representation of numerical data. Among dif-
ferent representations, Pie-charts are commonly employed in digital doc-
uments due to their perceptual advantages for displaying numerical data
and inter-relationship information. Chart Data Extraction is a multi-
stage pipeline, with each stage playing a crucial role in obtaining the raw
data correctly. Prior work mostly focuses on improving the performance
of one or a combination of a few sub-stages. In this work, we propose a
novel end-to-end data extraction algorithm, PieExtract, to extract data
from pie-charts. This proposed algorithm designs a novel Robust Fusion
Attention Network (RobFA-Net) approach for chart classification tasks.
This network introduces a robust fusion attention strategy to learn sig-
nificant discriminative global and local information, thereby enhancing
the learning model performance. In addition, our novel rule-based sector
data extraction method further enhances its performance in extracting
data from pie-charts. Extensive experimentation is conducted on three
datasets, specifically Revision, Chagas, and FigureQA, focusing on chart
classification and the FigureQA dataset for data extraction from pie-
charts. Our findings demonstrate that the proposed pipeline outperforms
compared to previous works, showcasing superior performance.

Keywords: Classification · Chart Data Extraction · Pie-chart ·
computer vision · Attention

1 Introduction

Charts provide a compact summary of this generated data and are widely used
by scientific and business communities [1–4]. While charts interpret the data
more intuitively and objectively, such depictions are not meant for machine con-
sumption. Chart analysis by machines is important for indexing and reusability.
People suffering from visual impairment and other cognitive diseases can also
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Fig. 1. Block diagram of an end-to-end data extraction pipeline for pie-charts.

benefit from the machine readability of charts. Chart Data Extraction (CDE)
refers to the mechanism of extracting the raw data content stored in the charts.
Data extraction from charts is a multi-stage pipeline, as shown in Fig. 1, with
each stage playing a crucial role in obtaining the raw data correctly [2,4]. The
chart classification is considered the first stage in the pipeline. The next step is
the component extraction, which includes text detection, text recognition, etc.,
in the chart. The final step in CDE is the mapping of all detected elements and
subsequent data extraction of raw data.

Chart classification is the primary and important stage of the pipeline. Accu-
rate data extraction is only possible if the chart image has been correctly clas-
sified. The complexity of the task is increased due to the wide variety of chart
images for classification. Other problems include noise, inter-class similarity, and
intra-class variation. While substantial research has been conducted on various
chart types such as bar and line graphs [2,5], there exists a paucity of litera-
ture [6,7] addressing the extraction of data from pie-charts mainly due to the
scarcity of datasets containing ground truth for pie chart data. Unlike other
chart types, sector information is processed for efficient automated extraction
of underlying numeric data embedded in pie-charts. Existing works rely on the
image processing techniques of obtaining pixel count for each sector to obtain
its percentage value. Since the percentage of a particular sector is dependent on
the total pixel count of all sectors, inaccurate pixel count in any sector affects
all the sectors. Thus, prior works enable error propagation in data extraction
in pie-charts. Another approach to obtain the percentage value of each sector
is by calculating the central angle of each sector. However, it is important to
estimate angles precisely to capture the relative comparison correctly; however,
acute angles, especially smaller ones, are difficult to estimate.

Most literature usually focuses on improving the performance of one or a
combination of a few sub-stages of the pipeline like chart classification, data
extraction, sector extraction, etc. [2]. We propose an end-to-end data extraction
pipeline for the pie chart, where the input is an image and the output is the
two-column table, one column containing the legend label and the other col-
umn containing its data value. Extensive experimentation is performed on three
datasets, namely Revision [8], Chagas [9], and FigureQA [10] for chart classifica-
tion and the pie-chart subset of the FigureQA dataset for data extraction. The
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results demonstrate superior performance by the proposed pipeline than prior
works on these datasets. The main contributions of our paper are as follows:

– We propose a novel end-to-end data extraction algorithm, PieExtract, specif-
ically for pie-charts. The algorithm takes an image as an input and presents
the output in a tabular form.

– We propose the Robust Fusion Attention Network (RobFA-Net) approach
for chart classification tasks. This network introduces a global-local atten-
tion strategy called Robust Fusion Attention (RobFA) to learn discriminative
global and local information, thereby enhancing the learning model perfor-
mance.

– We employ YOLOv9 [11] for Object Detection and CRNN [12] for text recog-
nition. Furthermore, we propose a novel rule-based sector extraction module
for the extraction of data values from pie-charts.

– We conducted extensive experimentation on three datasets, specifically Revi-
sion [8], Chagas [9], and FigureQA [10], with a focus on chart classification
and the FigureQA dataset for data extraction from pie-charts. Our findings
demonstrate that the proposed pipeline outperforms previous works on these
datasets, showcasing superior performance.

The rest of the paper is organized as follows. Section 2 presents the overview
of the related work. Section 3 presents a Methodology of the proposed pipeline.
Section 4 demonstrates various experimental results. Finally, we conclude the
paper in Sect. 5.

2 Related Work

Primary research in charts has been on the classification stage of CDE. Most
of the prior works use fine-tuned state-of-art models like AlexNet, MobileNet,
VGG16 etc., for chart classification task [13,14,16,17]. ResNet with Adam opti-
mizer is used as a feature extraction network [7] with 512×512 input image size.
DenseNet121 [18] for feature extraction is used along with the Squeeze Excita-
tion (SE) module [19] and also performance improvement is observed by tuning
hyper parameters [3]. Use of dilation mechanism in context module at back-
end improved the performance of DenseNet121 [20]. XceptionNet [21] performs
better than other competing models on both synthetic and real world datasets
[22]. Lightweight mobilenetv2 [23] along with hyper parameter tuning displays
improved performance in chart classification [24].

Text detection, recognition & role classification plays a vital role in mapping
text to its corresponding numeric value. Mostly object detection techniques are
utilised for detection of texts [7,19]. Trained EAST [25] is employed for obtaining
the coordinates of the text present in the chart images [26]. Features extracted
from the Residual network are fed to detection head [2] for text detection. For
recognising the text, widely used OCR solutions are utilised such as Tesseract
OCR1 and microsoft azure2. Initially, heuristic based approach were employed
1 https://opensource.google.com/projects/tesseract.
2 http://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/.

https://opensource.google.com/projects/tesseract
http://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
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Fig. 2. An overview of the proposed Robust Fusion Attention Network (RobFA-Net)
composed of Dense blocks, Transition blocks and RobFA blocks.

to recognise the text [27]. CRNN based methods are also employed to recognise
the text from the charts [2]. Attention based models ensembled with CRNN
[12] recognise text in an improved way [19]. Correct understanding role of each
data is vital for obtaining the data correctly. Correctly obtaining the location of
text is important in determining its role correctly [2]. SVM is utilised for role
classification after feature vectors are obtained from geometrical properties of
the text [7,17]. Cascade RCNN predicts the class of each text in chart [26].

For data extraction from the pie chart images, pixel count of each sector plays
an important role. Pre-processing of the images is performed followed by con-
nected component analysis to determine the pixel count of each slice [6]. After
detecting the legend label, color for legend mark is obtained by distance metric.
Pixel count of gray scale of that color determines the percentage of the sector
with that color [7]. Centre & border points in the pie chart are obtained by mor-
phological operations followed by Canny edge detection and Hough transform.
User intervention is required to correctly obtain centre and corner points [27].

3 Methodology

3.1 Chart Classification

In this section, we describe our proposed approach, RobFA-Net, tailored for pie
chart classification tasks. Our method comprises two key modules: a front-end
and a dilated back-end, similar to the architecture of the existing method out-
lined in [20]. These modules work cohesively to attain robust performance by
extracting salient meaningful representations. However, our proposed approach
diverges from the existing method [20] in two fundamental aspects. Firstly, we
introduce a RobFA mechanism and seamlessly integrate it into the front-end
module, enabling the acquisition of discriminative and meaningful global-local
patterns. Secondly, we leverage multi-dilated convolution layers with the dilation
factor arranged in ascending order, contrasting with the alternating dilation fac-
tor directions utilized in [20]. In the RobFA-Net framework, the front-end module
serves as the first-phase feature extractor, responsible for capturing global-local
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representations from the input features. Subsequently, it guides the dilated back-
end module in extracting robust global-local patterns, as presented in Fig. 2. To
design the front-end module, we introduce an RobFA block and incorporate four
dense blocks and three transition blocks obtained from the DenseNet121 [28],
serving as the backbone network in this study. These dense blocks, denoted as
μ, and transition blocks, denoted as ρ, effectively capture patterns denoted as f
from the original input features, Xi ∈ x, as illustrated in Eq. (1).

f = μ(ρ(xi)) (1)

The RobFA block utilizes these patterns, denoted as f , as intermediate fea-
tures and focuses on learning salient meaningful global-local information. It
contributes to the performance enhancement of our proposed learning model,
as demonstrated in Fig. 3. To design the dilated back-end module, we incorpo-
rate five convolution blocks consisting of multi-dilated convolution layers, batch
normalization, and activation layers, all densely connected. This configuration
enables the extraction of robust global-local characteristics from the discrimina-
tive and meaningful global-local patterns, as illustrated in Fig. 4. In this study,
we introduce an RobFA block inspired by the Convolutional Block Attention
Module (CBAM) [29] and the Channel Spatial Attention Module (CSAM) [30].
While CBAM focuses on learning meaningful spatial and channel information,
CSAM aims to capture global and local information from input data. However,
our proposed RobFA approach deviates from these existing methods in two key
aspects. Firstly, we introduce a Global Channel Attention Module (GCAM)
similar to [30], which incorporates global minimum, μgmn, global maximum,
μgmx, and global average, μgag pooling layers applied to the feature map, f .
Unlike using only μgmx and μgag layers, GCAM leverages all three pooling lay-
ers to learn diverse global information such as minimum, maximum, and average.
Additionally, we employ two fully connected layers, δsh, for each global infor-
mation to independently obtain channel-wise weights and fuse them, facilitating
the learning of meaningful enhanced global information, f ′, as demonstrated in
Eq. (2).

Fig. 3. Detailed diagram of the proposed RobFA block composed of Global Spatial
Attention Module (GSAM) and a Local Spatial Attention Module (LSAM).

Secondly, we devise a Local Spatial Attention Module (LSAM) similar
to [30]. Specifically, the LSAM utilizes minimum, μmn, maximum, μmx, and
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Fig. 4. Proposed Dilated Back-end Module. The dimensions of each feature map are
indicated above the respective maps. The filter dimensions in the CBR are also speci-
fied, along with the dilation rate (d) in the CBR.

average, μag, pooling layers to learn various forms of local information from
the previously generated global information, f

′
. These diverse local information

are then fused and refined using a 3× 3 convolution layer, Ψ33, to enhance local
details. Subsequently, fusing these global and local attention outputs leads to the
acquisition of robust and meaningful global-local information, f

′′
, as illustrated

in Eq. (3).
The intuition behind incorporating a global minimum pooling layer in GCAM

attention and a minimum pooling layer in LSAM attention is to reduce the issue
of information loss. It is achieved by learning salient, meaningful global-local
information, ultimately enhancing the learning model performance. We denote
the global channel attention map as mc ∈ R

1×1×C , the local spatial attention
map as ms ∈ R

H×W×1, and the intermediate representations as f ∈ R
H×W×C .

Consequently, the output of robust learned information based on these attention
maps, f

′
and f

′′
, is derived from the proposed network utilizing mc and ms, as

depicted in Eqs. (2–5). This learned information is then fused with intermediate
representations, f , to generate discriminative learned information, fd.

f
′
= mc(f) × f (2)

f
′′

= ms(f
′
) × f

′
(3)

where × denotes element-wise multiplication.

mc = θ+(δsh(μgmn(f)), δsh(μgmx(f)), δsh(μgag(f))) (4)

ms = σ
(
Ψ3×3

(
θ+(μmx(f

′
), μmn(f

′
), μag(f

′
))

))
(5)

where θ+ represents the feature fusion layer (addition), σ denotes the sigmoid
function.

These discriminative, meaningful representations, denoted as fd, serve as
inputs to a point-wise convolution layer to generate feature maps, fp. These
feature maps are then used as input to the dilated back-end module. This mod-
ule incorporates multi-dilated convolution layers and densely connected context
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modules to enhance representation power and extract robust global-local pat-
terns, denoted as fr, as depicted in Eq. (6) and Fig. 4. To construct the multi-
dilated convolution layers, we employ five 3 × 3 convolutional layers with dila-
tion factors, denoted as f(t,d), where t and d signify the respective layer and
dilation factors. Specifically, RobFA-Net initializes the dilation rate at one and
increases it to five, contrasting with the increasing and decreasing dilation strat-
egy employed in [20]. This approach facilitates the more effective capture of
larger objects with increasing dilation rates. In RobFA-Net, there is no necessity
to utilize a lower dilation rate to capture small objects, as all dense blocks in
the DenseNet121 network, including the fourth ones in the front-end module,
capture small objects such as markers, ticks, and symbols.

fr = θ×(fp, f1,1, f2,2, f3,3, f4,4, f5,5) (6)

where individual output is given as f1,1, f2,2, f3,3, f4,4, and f5,5, respectively.
In this study, we employ focal loss [31] to mitigate overfitting issues and

enhance the generalization capabilities across the class of the RobFA-Net, which
differ from prior existing approaches. The mathematical equation of focal loss is
as follows.

L = −
∑

i

yi(1 − ŷi)β log(ŷi), β ≥ 0 (7)

where yi represents the ground truth label, (ŷi) denotes predicted probability, β
signifies the focusing parameter, and (1 − ŷi)β specifies the modulating factor.

3.2 Pie-chart Component Extraction (PCE)

Following the initial stage of chart classification (line 1), the subsequent phase
involves pie-chart Component Extraction (PCE). This step includes extracting
all components within the chart, as depicted in Fig. 1. The entire process of data
extraction in pie-chart is presented in Algorithm 1.

Component Object Detection (COD): The task of a COD model is to locate
specific regions of interest (BBlabel

coord) (line 2) in the classified image, where BB
represents the bounding box, label includes elements such as {title (t), legend
preview(lp), legend label (ll), and Pie (p)}. The coordinates for each BB are
depicted as coord = {bx, by, bw, bh}, where bx and by are the coordinates of the
center of the detected box, and bw and bh represent the width and height of the
box, respectively. The superior performance of object detection methods make
them suitable for various computer vision-related tasks [32,33]. Consequently,
extensive research has focused on developing YOLO-based object detection mod-
els, which have demonstrated impressive performance [11,36,37]. Among the
different versions of YOLO, the latest version, YOLOv9 [11], stands out for
its enhanced detection accuracy. Unlike many neural networks that experience
information loss due to repeated layers of feature extraction and spatial trans-
formation, its advantage over other object detection methods lies in its ability
to mitigate information loss.
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This model consists of three main components: Backbone, Neck, and Head,
responsible for feature extraction, feature fusion, and target detection, respec-
tively. YOLOv9 introduces two novel techniques, Programmable Gradient
Information (PGI) and the Generalized Efficient Layer Aggregation Network
(GELAN), specifically designed to address the information bottleneck issue,
thereby enhancing both the accuracy and efficiency of object detection. Hence,
we utilize the YOLOv9 algorithm for our component object detection task. PGI
employs a main branch for standard processing, an auxiliary reversible branch to
maintain information integrity with deeper networks, and multi-level auxiliary
information to enhance learning capacity. GELAN merges the features of two
existing neural network designs, CSPNet [38], and ELAN [39], thus enhancing
interlayer information interaction, reducing losses, and computational complex-
ity.

Furthermore, the loss function in YOLOv9 comprises three components: the
confidence loss (ΔOBJ ), the classification loss (Δcl), and the positional loss of
the target box and the prediction (ΔCIoU ) [40]. The final loss function is denoted
as (Δloss):

Δloss = ΔCIoU + Δcl + ΔOBJ . (8)

Text Recognition (TR): Our TR branch is added after the YOLOv9 model
and processes all proposals predicted as text (Btext

Coord) by the object detection
model, where text = {t, ll}. The text recognition branch employs a Convolu-
tional Recurrent Neural Network (CRNN) [12] based framework. This frame-
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work comprises a sequence of CNN layers, which extract and encode features
from the detected Pie chart textual objects. These features are then passed
through a series of RNN layers to map them into temporal space and subse-
quently decode them into a sequence of probability distributions representing
characters or words at each time step. The CTC loss function is utilized for model
optimization during training. Additionally, the CTC decoder is employed for pre-
diction, converting the sequence of probabilities into the final text (Seqtext) (line
3).

Sector Data Extraction Method (SDEM): The output of COD is fed to
the SEM for extracting angle values from the sectors of each pie detected by the
object detection model (BPie

coord). First, we map each legend preview to its respec-
tive legend label using the method proposed in [41] (line 5). Second, we extract
RGB values from each detected legend preview (Blp

coord) (line 6) and then match
them to the corresponding color within the pie to extract the corresponding
same-color pixel sectors (Δ) (line 7).

To calculate the angle from each sector, we first extract key points for each
sector detected from the pie (lines 6–7). This involves initially increasing the res-
olution using EDS [42] and applying blurring to the patch image to remove false
edges (line 10). Then we apply the Tsi-Tomasi corner detection [43] mechanism
to detect three key points cp1, cp2, cp3 (line 12). These points are categorized
into sector corner points (cp1, cp2) and sector center point cpc. The point that
maintains an equal distance from the other two points is classified as the center
point, and the angle is computed based on lines drawn from the corner points
to this center point. This classification is crucial as it allows us to determine the
angle at the center point in relation to the lines connecting the corner points
(line 13). Subsequently, the obtained angle is converted into a percentage value
for each sector (lines 14–15).

Finally, we generate a two-tuple by mapping legend label and its correspond-
ing sector data value (line 16).

4 Experiments

4.1 Experimental Setup

1. Datasets: We evaluated our chart classification model using three datasets:
Revision [8], Chagas [9], and FigureQA [10]. In the Revision dataset, there
are 2048 images across 10 chart categories like Area and Bar. This dataset is
segmented into training, testing, and validation sets, with an 80:20 split for
both training and test sets, and the validation set derived from the remaining
training data. Similarly, the Chagas dataset is divided into training, valida-
tion, and test sets, with 4440 training and 451 test chart images, further split
into an 80:20 ratio for training and validation. The Chagas dataset also covers
10 classes such as Venn, Table, and Pareto. The FigureQA dataset serves dual
purposes for classification and pie-chart data extraction. Training follows the
80:20 division into training and validation sets. For data extraction, only Pie
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chart images from FigureQA were utilized, with 20,000 images for training
and 4000 for testing, maintaining the 80:20 split.

2. Implementation details: For Chart Classification, the input image was
resized to 224 × 224. The learning rate was set to 0.0001 with categorical
focal loss and used with an Adam optimizer. The model was trained with
mini-batches of size 8 for 100 epochs. For the COD process, the input image
was resized to 640 × 640, and a batch size of 8 was employed, starting with a
learning rate of 0.01 and utilizing the SGD optimizer. Training sessions lasted
for 50 epochs. As for the TR phase, a batch size of 256 and an initial learn-
ing rate of 0.001 were chosen, utilizing the Adam optimizer. The maximum
number of epochs was set to 500, with a patience parameter of 50. All models
were trained and tested on Nvidia RTX Quadro P4000 GPU.

3. Evaluation metric: For chart classification, COD and TR, we employed the
standard evaluation metric used by [27]. we employed average accuracy and
weighted accuracy to evaluate the chart classification to provide a compre-
hensive assessment of effectiveness in the classification model.
For Pie-chart data extraction, the evaluation metric used is mean error rate
& success rate. The error rate for each value of the pie-chart is as follows:

error rate =
|ground truth − extracted value|

ground truth
× 100 (9)

The success rate is the proportion of pie-charts in which all elements are
detected and average error rate is below a particular threshold value. Addi-
tionally, the mean error rate also serves as a metric for evaluating the per-
formance of pie-chart data extraction. The mean error rate is calculated as
follows:

mer =
1
m

m∑
j=1

|g|∑
k=1

|gk − pk|
gk

(10)

where gk is the ground truth value of the k -th element, pk is a predicted value
of the kth element, and m is the number of charts extracted successfully.

4.2 Results

Chart Classification: This section evaluates the performance of the proposed
RobFA-Net on Chagas & Revision dataset. Comparison was performed with
prior works and state-of-the-art models to evaluate the effectiveness of the pro-
posed architecture. Our proposed model shows better performance in terms of
average accuracy on both datasets as shown in Table 1 and Table 3 by effectively
capturing both high-level semantic and fine-grained attributes over a wide recep-
tive field due to systematic increase of dilation in back-end module. Significant
performance improvements were observed ranging from 5.79% to 1.02% on Cha-
gas dataset and 13.74% to 0.25% on revision dataset. In Chagas dataset, our
proposed model surpasses existing methodologies in classifying nearly all types
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of charts, with the exceptions of Line and Scatter charts where it demonstrates
the second-highest performance. Additionally, it achieves a perfect classification
accuracy of 100% on four chart types. In the Revision dataset, our proposed
model achieves the best performance across six chart types, including a perfect
classification accuracy of 100% on Venn diagrams. For Bar graphs and Radar
plots, our model secures the second-highest performance. We also obtained the
results on precision, recall and F1 score as shown in Table 2 and Table 4 to
obtain the comprehensive assessment of the model’s capabilities and to obtain
the nuanced understanding of model behaviour. RobFA-Net out performs pre-
vious works across all these evaluation metrics on both datasets.Our proposed
model surpasses the second-best method [3] in chagas dataset demonstrating
significant enhancements across all evaluated metrics. The precision shows an
increase of 0.88%, recall improves by 0.92%, and the F1-score advances by 0.89%.
Similarly, the proposed model exhibits improvements across all metrics on the
Revision dataset: precision improves by 0.37%, recall by 0.23%, and F1-score by
0.25% against the second best method [20]. Specifically, the RobFA mechanism
utilizes global and local attention strategies along with dense connections and
obtains global details while also emphasizing important local information in fea-
ture maps. FigureQA dataset has been generated synthetically, thus does not
have real world chart problems like noise, confusion pair etc. All deep learning
models exhibit similar performance on this dataset, having perfect score on all

Table 1. Classwise Accuracy on Chagas dataset. The maximum obtained accuracies
are marked in bold.

Category Choi et al. Morris et al. Singh et al. MDCADNet J. Thiyam et al. Touvron et al. RobFA-Net

[7] [24] [3] [20] [22] [15] (Proposed)

Area 97.95 85.71 97.95 97.95 97.95 95.96 100.00

Bar 100 100.00 98.00 98.00 98.00 98.00 100.00

Line 90.19 80.39 92.15 92.15 92.15 82.35 88.23

Map 97.77 91.11 93.33 95.55 97.77 97.77 97.77

Pareto 91.83 85.71 93.87 89.79 91.84 91.84 96.00

Pie 95.65 97.82 100.00 100.00 100.00 97.82 100.00

Radar 94.87 94.87 92.30 89.74 94.87 89.74 97.43

Scatter 93.48 91.30 97.82 97.82 95.65 95.65 96.00

Table 93.10 93.10 96.55 96.55 93.10 93.10 97.00

Venn 100.00 93.61 100.00 100 100.00 100 100

Average 95.56 91.36 96.20 95.75 96.13 94.42 97.15

Weighted Average 95.56 91.13 96.23 95.78 96.23 94.46 97.11

Table 2. Performance metric table on Chagas dataset. The maximum obtained values
are marked in bold.

Evaluation Metric Choi et al. Morris et al. Singh et al. MDCADNet J. Thiyam et al. Touvron et al. RobFA-Net

[7] [24] [3] [20] [22] [15] (Proposed)

Precision 0.9563 0.9192 0.9633 0.9586 0.9626 0.9454 0.9718

Recall 0.9557 0.9113 0.9623 0.9578 0.9623 0.9446 0.9712

F1-score 0.9555 0.9119 0.9623 0.9577 0.9622 0.9441 0.9709
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Fig. 5. Confusion matrix of RobFA-Net on a) Chagas Dataset & b) Revision Dataset.

Table 3. Classwise Accuracy on Revision dataset. The maximum obtained accuracies
are marked in bold.

Category Choi et al. Morris et al. Singh et al. MDCADNet J. Thiyam et al. Touvron et al. RobFA-Net

[7] [24] [3] [20] [22] [15] (Proposed)

Area Graph 94.44 88.88 94.44 94.44 94.44 94.44 94.44

Bar Graph 91.17 73.52 97.05 94.11 88.23 76.47 94.11

Line Graph 92.18 93.75 89.06 93.75 93.75 82.81 96.88

Map 100 91.11 94.00 82.00 94.00 96.00 98.00

Pareto Chart 91.17 35.29 94.11 94.11 67.64 88.23 94.11

Pie Chart 95.23 95.23 95.23 95.23 97.61 97.62 97.61

Radar Plot 89.28 67.85 100.00 96.42 92.85 85.71 96.42

Scatter Graph 96.00 86.66 93.33 93.33 88.00 92.00 92.00

Table 90.56 88.68 92.45 96.22 94.33 98.11 88.67

Venn Diagram 95.45 90.90 95.45 100.00 95.45 86.36 100

Average 93.55 81.48 94.71 94.97 90.03 89.78 95.22

Weighted Average 93.8 83.57 94.04 94.52 90.10 90.23 94.76

Table 4. Performance metric table on Revision dataset. The maximum obtained values
are marked in bold.

Evaluation Metric Choi et al. Morris et al. Singh et al. MDCADNet J. Thiyam et al. Touvron et al. RobFA-Net

[7] [24] [3] [20] [22] [15] (Proposed)

Precision 0.9394 0.84 0.9415 0.9462 0.909 0.9037 0.9497

Recall 0.9381 0.8357 0.9405 0.9454 0.9000 0.9024 0.9476

F1-score 0.9382 0.828 0.9407 0.9454 0.9005 0.9014 0.9478

evaluation metrics. The confusion matrix as shown in Fig. 5 demonstrates our
model’s capability to accurately classify challenging chart pairs, such as distin-
guishing between area and line charts.

COD: We conducted experiments on the latest state-of-the-art object datasets
[11,35,36], as illustrated in Table 5. We evaluated all these models using a higher
intersection over union (IoU) threshold of 0.9. This decision was made because
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Table 5. Classwise results of COD at a higher threshold of 0.9 on Figure QA dataset.

Models Label Recall Precision F1-Score

Yolov9Pie 1.00 1.00 1.00

Legend Label 0.962 1.00 0.981

Legend Preview 0.999 1.00 0.999

Title 0.992 1.00 0.996

Yolov5Pie 1.00 1.00 1.00

Legend Label 0.94 1.00 0.971

Legend Preview 1.00 1.00 0.999

Title 0.99 1.00 0.994

Yolov3Pie 1.00 1.00 1.00

Legend Label 0.95 1.00 0.976

Legend Preview 1.00 1.00 0.998

Title 0.98 1.00 0.991

precise data extraction necessitates data with a higher IoU. Among these models,
YOLOv9 outperforms the others in all evaluation metrics. Although the precision
remains consistent across all the models, the recall value decreases in the other
methods, resulting in a lower F1 score.

Data Extraction: Due to limited availability of datasets containing ground
truth for pie chart data, there has been relatively little research in this area.
FigureQA stands out as a dataset that provides ground truth for pie charts,
making it suitable for evaluating our proposed method. We compare our app-
roach with those of Choi et al. [7] and Paramde et al. [6], both of which rely on
pixel count to determine the percentage of each sector in a pie chart. However,
these methods struggle with low-resolution pie charts and small sectors, lead-
ing to inaccurate classifications. The results presented in Table 6 demonstrate
that our proposed corner detection-based method outperforms previous works

Table 6. Success Rate (↑) & mean error rate (mer) (↓) for multiple threshold values
of error rates. Maximum success rate & minimum mer is shown in bold.

Threshold value:<1% <2% <3% <4% <5%

Success Rate 0.4585 0.7432 0.8825 0.956 0.986 Choi et al. [7]

0.06825 0.15025 0.233 0.3045 0.372 Param de [6]

0.5145 0.7695 0.89625 0.958 0.9865Proposed Method

mer 0.55 0.89 1.13 1.31 1.40 Choi et al. [7]

0.52 1.04 1.55 2.00 2.455 Param de [6]

0.51 0.82 1.05 1.20 1.29 Proposed Method
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in pie chart data extraction. We assessed the success rate across various error
rate thresholds. The table shows that our method consistently performs better
across all threshold values. Even with an error rate of less than 1%, our method
successfully extracts data from more than half of the pie charts. Additionally, for
the pie charts that were successfully extracted, our method achieves the lowest
mean error rate (mer) across all threshold values. This indicates the robustness
and accuracy of our data extraction method.

5 Conclusion

We present PiExtract, an end-to-end pipeline for tabular data extraction from
pie charts. To accurately classify the charts, we introduce RobFA-Net by design-
ing an RobFA mechanism and a dilated back-end module, which learns robust
global and local patterns from chart images, thereby enhancing model perfor-
mance. Our proposed framework ensures comprehensive object detection and
text recognition from charts using YOLOv9 and CRNN approaches. Extensive
experimentation conducted on three datasets—Revision [8], Chagas [9], and Fig-
ureQA [10]—for chart classification and the pie-chart subset of FigureQA for
data extraction showcases the superior performance of our proposed pipeline
compared to previous works on these datasets. Our future work includes extend-
ing our methodology to other chart types, such as line and bar charts, to broaden
the applicability of our approach.
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Abstract. The growing demand to identify potential bankrupt compa-
nies has prompted more research into bankruptcy prediction, assisting
stakeholders in determining the worthiness of an investment. The Indian
stock market offers investment opportunities, but it also involves risk.
As a result, it is critical to invest in fundamentally sound companies
for long-term investment. To address this need, we created a machine
learning-based model for identifying a healthy and distressed firm in the
Indian scenario. We created a dataset consisting of 118 bankrupt and
310 healthy firms. The dataset contains three labels: bankrupt, healthy,
and financial distress. The addition of the financial distress category
improves our ability to recognize and identify firms that are more likely
to declare bankruptcy. Recognizing the shortcomings of limited data in
the Indian scenario in previous research, our study aimed to include
more data instances for training. The dataset included widely recognized
financial ratios and macroeconomic data that recognize the interconnect-
edness of broader economic trends with the company’s financial health.
Advanced machine learning algorithms, namely Support Vector Machine
(SVM), Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Light Gradient Boosting Machine (LGBM), Categorical Boosting (Cat-
Boost), Gradient Boost (GB), and K-Nearest Neighbors (KNN) were
applied. The XGBoost and LGBM demonstrated the highest level of clas-
sification accuracy and also performed well on real-world data, demon-
strating their potential use in supporting investors with decision-making
processes.

Keywords: Bankruptcy Prediction · Machine Learning · SMOTE ·
XGBoost · LGBoost

1 Introduction

A company’s financial health is a major concern for all stakeholders, as it is a
key indicator of potential growth and attractiveness for investment. Financial
distress occurs when a company cannot meet its financial obligations. Financial
distress does not necessarily lead to bankruptcy. Companies can solve finan-
cial issues by restructuring debt, decreasing costs, and obtaining extra funds.
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Bankruptcy is often seen as a last resort for organizations experiencing signifi-
cant financial troubles. According to [23], bankruptcy is a dynamic process and
the last stage of financial distress. Bankruptcy is the legal process that may
involve financial reorganization, asset liquidation, or other measures as deter-
mined by the applicable bankruptcy laws. When the value of debt exceeds the
value of assets, bankruptcy is simply a transfer of ownership from equity hold-
ers to debt holders, according to [17]. During liquidation, creditors, suppliers,
and promoters take precedence over common stockholders, which affects invest-
ment returns. Understanding a company’s health before investing is critical for
investors to preserve their capital. In this context, using models for predicting
bankruptcy or financial health becomes crucial, playing a significant role in help-
ing stakeholders make well-informed decisions. The Indian economy comprises
various industries that follow accounting rules and standards. There are existing
models in the field of bankruptcy prediction trained on different datasets, but
their direct applicability to the Indian context is not possible. Hence, customized
methods must be created to provide more accurate forecasts.

In recent years, several researchers have applied machine learning-based and
deep learning-based approaches as they have produced promising results. Data
is a basic prerequisite for machine learning (ML) and deep learning (DL) based
research. The DL and ML models perform better when there is enough train-
ing data. While research has been conducted to predict bankruptcy for Indian
companies, the datasets used in these studies are not publicly available, unlike
datasets for American bankruptcy, Polish bankruptcy, and others. This scarcity
resulted in a lack of benchmark datasets and methods tailored explicitly for
predicting bankruptcy in the Indian context. Due to this limitation, researchers
have had to work with smaller datasets when developing their models.

The main contributions of this paper are

– Dataset Construction: Developed a dataset for Indian bankruptcy pre-
diction comprising 310 non-bankrupt and 118 bankrupt companies listed on
NSE/BSE from 2010 to 2023. This dataset includes financial data spanning
up to 10 years for each company, comprising 62 financial ratios and four
macroeconomic variables. The company that is declared bankrupt at year t
and the two preceding years (t-1), (t-2) is labeled bankrupt, while the same
company in other years is labeled as financially distressed. A company under-
going restructuring is also categorized as financially distressed. Companies
listed in the Nifty 500 are considered healthy instances.

– Dataset Features: The dataset includes a broad range of features essen-
tial for bankruptcy prediction, covering liquidity, profitability, leverage, and
efficiency ratios, along with macroeconomic data for a comprehensive view
of firm health. To align with publicly available bankruptcy datasets, such
as the Polish Dataset with 64 features and the Taiwanese Dataset with 95
features, features specific to the Indian context were included. Unlike these
datasets, which do not typically feature macroeconomic variables, our dataset
integrates these important elements.
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– Feature Selection and ML Models: Applied feature selection methods
such as Correlation, KBest, Random Forest, and Recursive Feature Elimi-
nation to identify important features and advanced ML algorithms such as
Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Categori-
cal Boosting (CatBoost), Gradient Boost (GB), K-Nearest Neighbors (KNN)
and Artificial Neural Network (ANN) to classify bankrupt, healthy, and finan-
cially distressed.

The remainder of the paper is organized as follows: Section 2 reviews the
literature on the Indian bankruptcy prediction methods and datasets. Section 3
describes the data collection and labeling mechanism. It also describes the clas-
sification methods, important features, and evaluation metrics. Section 4 illus-
trates the results and analysis. Finally, this paper mentions the limitations and
scope for future research.

2 Related Works

Exploring financial health through predicting financial distress or bankruptcy
is a significant area within accounting and finance that has garnered attention
since the 1990s. The foundational steps in bankruptcy prediction were taken
by Beaver (1966), employing univariate analysis. This was followed by Altman
(1968), who advanced the methodology by incorporating multivariate discrim-
inant techniques, utilizing financial ratios in the context of the United States.
More recently, research has delved into machine learning and deep learning-
based models in this domain, necessitating ample data to analyze patterns for
identifying companies at risk of bankruptcy.

2.1 Bankruptcy Prediction Methods and Dataset in the Indian
Scenario

Bapat et al. [3] analyzed 72 bankrupt and non-bankrupt companies from 1991
to 2013, using 35 financial ratios. The non-bankrupt company was selected from
the same industry and matched for asset size. Multiple Discriminant Analy-
sis (MDA), Logistic Regression (LR), and Neural Networks (NN) were used.
Singh et al. [21] developed a bankruptcy prediction model for Indian manufac-
turing companies involving 208 companies. Distressed firms were identified using
Board of Industrial and Financial Reconstruction (BIFR) references, while non-
distressed companies were matched randomly. The study used 25 financial ratios
and MDA, Logit, and Probit Models.

Shrivastav et al. [20] study considered private and public sector banks in India
between January 2000 and December 2017. Their study focused on banks with
data available for the four years preceding the failure. The sample consisted of 59
banks, 42 surviving banks, and 17 failed banks. Twenty-five financial ratios were
used, and the prediction was made using SVM with Linear Kernel (SVMLK)
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Table 1. Summary of the methods and dataset used in the Indian Scenario

Reference Methodology Sample Ratio Features Accuracy

[3] MDA, LR, NN 72 bankrupt and
non-bankrupt

35 MDA: 70.45%, LR: 75%,
NN: 77.27%

[21] MDA, Logit, Probit 104 bankrupt and
non-bankrupt

25 MDA: 67.69%, Logit:
48.46%, Probit: 71.54%

[20] SVMLK, SVMRK 17 failed and 42
survived banks

25 SVMLK: 92.86%,
SVMRK: 71.43%

[19] Binary logistic
regression model (M1)
with both financial and
non-financial, binary
logistic model with
financial (M2)

82 bankrupts and
non-bankrupt companies

12 M1-AUC: 0.8758,
M2-AUC: 0.8594

[2] LR, Lasso Regression,
DT, RF, XGBoost, and
SVM

262 bankrupt and 262
non-bankrupt

18 LR: 85.8%, Lasso:
82.8%, DT: 89.6%, RF:
92.8%, XGBoost: 90.5%,
SVM: 82.9%

[5] Data Envelopment
Analysis (DEA) model
and NN

260 listed iron and steel
companies

30 DEA: 98.85%, NN:
99.62%

[12] LR, RF, AdaBoost,
ANN

17 failed and 42
survived banks

26 LR: 68.65%, RF:
58.26%, AdaBoost:
98.8%, ANN: 99%

and SVM with Radial Basis Kernel (SVMRK) Function. The non-parametric
feature selection method called “Relief Algorithm” was used to select features.

The study by Shetty et al. [19] aimed to predict corporate financial distress
in the Indian industrial sector using non-financial indicators such as independent
directors on the board and promoters’ ownership stake. The sample data included
82 companies that filed for bankruptcy under the Insolvency and Bankruptcy
Code (IBC) and 82 financially sound companies. The data was gathered from
Ace Analyzer and analyzed using a Binary Logistic Regression Model (M1) with
financial and non-financial data and a Binary Logistic Model (M2) with only
financial data.

Arora et al. [2] used a dataset of BSE companies, including 262 bankrupt and
262 financially sound firms, from 2016 to 2019. The size decile was determined
by average income and assets over three years. The dataset included 18 indepen-
dent features from liquidity, profitability, efficiency, and solvency categories. The
models used in the study included LR, Lasso Regression (Lasso), Decision Tree
(DT), RF, XGBoost, and SVM. In their study on Indian steel businesses, Ghosh
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et al. [5] used the CMIE Prowess database to gather 1040 observations from 260
publicly traded companies over four years based on national industry categoriza-
tion codes. The study used data envelopment analysis and neural networks to
analyze the data, and these models’ classification performance was superior to
that of the Altman Z-score model. Their study comprised 29 financial variables
and one non-financial variable, age.

Oberoi et al. [12] used a dataset of 59 Indian banks from 2000–2018 to analyze
their survival and failure classes. The dataset included 618 instances, covering 26
financial and non-financial features, and used ML models like LR, RF, AdaBoost,
and ANN.

Knaojia et al. [7] used a sample of 68 listed bankrupt companies from May
2016 to the end of 2017–2018. Using a matched-pair sample method, they paired
bankrupt and non-bankrupt enterprises. The final sample comprised 68 pairs
of listed firms. Data on corporate governance, ownership, financial, and firm-
specific variables were collected from annual reports and the CMIE Prowess
database for the five years leading up to bankruptcy. Their study used the LR
model and the Cox proportional hazard model. Table 1 summarizes the methods
and dataset used in the Indian Scenario.

3 Methodology

The Fig. 1 provides an overview of the proposed bankruptcy prediction system.
The creation of the dataset is the initial step, followed by data preparation,
which comprises feature selection. The dataset is divided into train and test,
with 80% of the data being in the train set.

Fig. 1. Methodology for Bankruptcy Prediction.

The dataset is imbalanced, with the majority class being the healthy and the
minority classes, i.e., bankrupt and financial distress. The minority classes are
upsampled using the Synthetic Minority Oversampling Technique (SMOTE).
After training machine learning algorithms on the up-sampled examples, the
best-performing model is selected to help investors make judgments.
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3.1 Dataset Construction

The Fig. 2 provides an overview of dataset construction. The data collection
procedure began with obtaining the names of bankrupt and non-bankrupt com-
panies. We gathered bankrupt company names from the website of the Insolvency
and Bankruptcy Board of India (IBBI), which is the governing body for insol-
vency and bankruptcy procedures. The non-bankrupt companies are taken from
the Nifty 500 Index as of September 29, 2023, and this data was taken from
the NSE Website. After identifying the list of bankrupt and non-bankrupt com-
panies, the companies’ financial statements are scraped. Financial statements
include a balance sheet detailing assets, equity, and liabilities, an income state-
ment covering revenues, costs, and profit/loss, and a cash flow statement outlin-
ing operational cash inflows and outflows. Multiple sources, including the NSE1

and BSE2, moneycontrol website3, and company annual reports, contributed to
the dataset. Macroeconomic data was sourced from World Bank Open Data4

and Open Government Data (OGD) Platform India5. For each company, we
extracted values from financial statements spanning ten years. The code used to
scrape the data and to construct the dataset is shared in Github.6

Fig. 2. Dataset Construction Process

Financial Ratios and Macroeconomic Variables: The features of the
dataset are the financial ratios and macroeconomic variables. The financial ratios
are calculated from the financial statements. The ratios considered in this study
are profitability, liquidity, insolvency, efficiency, and activity ratios. The financial
ratios widely considered in many research studies are utilized in this study. In
addition to standard financial ratios, our dataset includes other commonly cited
ratios from the literature. The details of the features are given in Table 2. The

1 www.nse.com.
2 www.bseindia.com.
3 www.moneycontrol.com.
4 data. world bank.org.
5 data.gov.in.
6 https://github.com/priyanshu710/Financial-Dataset-using-Web-Scraping.

www.nse.com
www.bseindia.com
www.moneycontrol.com
http://data.gov.in
https://github.com/priyanshu710/Financial-Dataset-using-Web-Scraping
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Table 2. Financial Formulas and References

Code Formula References

X 1 Current Assets/Current Liabilities [9–11,13,16,18,22], Polish Dataset, Taiwanese Dataset

X 2 (Current Assets - Inventories)/Current Liabilities [13,16,22], Taiwanese Dataset

X 3 Cash and Cash Equivalents/Current Liabilities [11,13]

X 4 Total Liabilities/Total Equity [11,13]

X 5 Current Liabilities/Total Liabilities [13]

X 6 Equity Share Capital/Fixed Assets [13], Polish Dataset

X 7 Net Sales/Average Total Assets [13,16]

X 8 Net Sales/Average Current Assets [13]

X 9 Gross Profit/Net Sales [11,13,16,22]

X 10 Operating Profit/Net Sales [13], Polish Dataset

X 11 Net Profit/Net Sales [9,10,13], Polish Dataset

X 12 Net Profit/Total Assets [10,11,13,22], Polish Dataset

X 13 Total Debt/Total Assets [9–11,13,22]

X 14 Working Capital/Total Assets [4,9,10,13,16,22], Polish Dataset

X 15 Sales/Total Assets [4,9,10]

X 16 (Total Assets - Total Assets Previous
Year)/Total Assets Previous Year

[4]

X 17 Net Profit/Net Sales [16]

X 18 Cash & Short Term Investment/Total Assets [9,10]

X 19 Cash & Short Term Investment/(Equity Share
Capital + Total Liability)

[9,10]

X 20 Cash/Total Assets [9,10]

X 21 Cash/Current Liabilities [9,10]

X 22 (Inventory - Inventory Previous Year)/Inventory
Previous Year

[9]

X 23 Inventory/Sales [9]

X 24 (Current Liabilities - Cash)/Total Asset [9,10]

X 25 Current Liabilities/Sales [9,10]

X 26 Total Liabilities/Total Assets [9,10], Polish Dataset

X 27 Total Liabilities/(Equity Share Capital + Total
Liabilities)

[9,10]

X 28 Net Income/(Equity Share Capital + Total
Liabilities)

[9]

X 29 Operating Income/Total Assets [9,10]

X 30 Operating Income/Sales [9,10]

X 31 Quick Assets/Current Liabilities [9,10]

X 32 Dividends/Net Income [15]

X 33 EBIT/Overall Capital Employed [15]

X 34 Net Cash Flow/Revenue [11]

X 35 Cash Flow from Operations/Total Debt [11,13]

X 36 EBT/Current Liabilities [13]

X 37 EBT/Total Equity [13]

X 38 Equity/Total Liabilities [13]

X 39 (Gross Profit + Depreciation)/Sales Polish Dataset

X 40 Quick Assets/Total Assets Polish Dataset

X 41 Gross Profit/Total Assets Polish Dataset

(continued)
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Table 2. (continued)

Code Formula References

X 1 Current Assets/Current Liabilities [9–11,13,16,18,22], Polish Dataset, Taiwanese Dataset

X 42 Operating Expenses/Total Liabilities Polish Dataset

X 43 (Current Assets - Inventory)/Short
term Liabilities

Polish Dataset

X 44 Current Assets/Total Liabilities Polish Dataset

X 45 Short Term Liabilities/Total Assets Polish Dataset

X 46 (Current Assets - Inventory - Short
Term Liabilities)/(Sales - Gross
Profit - Depreciation)

Polish Dataset

X 47 (Net Profit + Depreciation)/Total
Liabilities

Polish Dataset

X 48 Working Capital/Fixed Assets Polish Dataset

X 49 (Total Liabilities - Cash)/Sales Polish Dataset

X 50 Long Term Liability/Equity Capital Polish Dataset

X 51 Current Assets/Total Assets Taiwanese Dataset

X 52 Current Liabilities/Assets Taiwanese Dataset

X 53 Inventory/Working Capital Taiwanese Dataset

X 54 Inventory/Current Liability Taiwanese Dataset

X 55 Current Liabilities/Total Liability Taiwanese Dataset

X 56 Working Capital/Equity Share
Capital

Taiwanese Dataset

X 57 Current Liabilities/Equity Share
Capital

Taiwanese Dataset

X 58 Long Term Liability/Current Assets Taiwanese Dataset

X 59 Total Income/Total Expense Taiwanese Dataset

X 60 Total Expense/Assets Taiwanese Dataset

X 61 Net Sales/Quick Assets Taiwanese Dataset

X 62 Sales/Working Capital Taiwanese Dataset

X 63 Inflation Rate [6,8]

X 64 Unemployment Rate [6,8]

X 65 Real Interest Rate –

X 66 GDP [6,8]

Polish dataset: https://archive.ics.uci.edu/dataset/365/
polish+companies+bankruptcy+data
Taiwanese dataset: https://archive.ics.uci.edu/dataset/572/
taiwanese+bankruptcy+prediction

dataset includes a maximum of 10 years of data for every non-bankrupt com-
pany. We attempted to gather a decade’s worth of data for most bankrupt firms,
while ten years’ information was unavailable for some. In these situations, the
available information was used. Overall, there are 3576 instances in the dataset.

https://archive.ics.uci.edu/dataset/365/polish+companies+bankruptcy+data
https://archive.ics.uci.edu/dataset/365/polish+companies+bankruptcy+data
https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction
https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction
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Data Labeling. In our study, firms were labeled bankrupt when a company
was declared bankrupt by a court or when a case was admitted for the Corpo-
rate Insolvency Resolution Process. The year a company declared bankruptcy
is denoted as the benchmark year t. This means that (t-1), (t-2) represent 1, 2
years before the bankruptcy occurred. We labeled bankruptcy year t and two
years prior bankruptcy as bankrupt for that particular company [14], and for
the remaining years, we labeled the company as financially distressed. While
undergoing a restructuring procedure, the company may be able to regain its
financial stability, but its creditors may be at risk. As a result, we classified enter-
prises undergoing restructuring as being in financial crisis. Thus, we labeled
companies in the restructuring process as financially distressed. The year of
bankruptcy and the year at which the company went for resolution informa-
tion was taken from IBBI7. The matching companies from the same sector and
the same size as bankrupt companies from the Nifty 500 index were considered
healthy and labeled non-bankrupt in our dataset. The sectors considered for the
non-bankrupt and bankrupt companies in our dataset are shown in Figs. 3 and 4.

Fig. 3. Sectors considered for selecting Non-Bankrupt Companies

3.2 SMOTE Oversampling Approach

The SMOTE is an oversampling approach designed to balance datasets. The
Fig. 5 shows the class distribution of our initial dataset. The SMOTE technique
takes a subset of the data from the minority class. Synthetic examples are gen-
erated from the feature space. New samples are produced through interpola-
tion between many positive examples that are close to one another. In order to

7 https://ibbi.gov.in/en/claims/cd-summary.

https://ibbi.gov.in/en/claims/cd-summary
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Fig. 4. Sectors considered for selecting Bankrupt Companies

train the classification model, these artificial examples are added to the origi-
nal dataset. All the minority samples are upsampled to match the count of the
majority class.

Fig. 5. Class Distribution

3.3 ML Algorithms Implementation Details

The algorithms widely used for bankruptcy prediction tasks are implemented in
our dataset. The optimal hyperparameter values for the models are chosen using
GridSearchCV, and details are given in Table 3.
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Table 3. ML Algorithms and Hyperparameters

Algorithms Hyperparameters

LR Regularization (C) = 1

SVM Kernel = rbf, Gamma = 10, Regularization = 10

RF No. of Estimators = 500, Maximum Depth = 7

GB No. of Estimators = 500, Maximum Depth = 7

XGBoost No. of Estimators = 500, Maximum Depth = 7, Learning Rate = 0.1

LGBM No. of Estimators = 500, Maximum Depth = 7, Learning Rate = 0.1

CatBoost Iterations = 500, Depth = 7, Learning Rate = 0.1

KNN Neighbors = 3, Weights = distance

ANN

No. of Neurons in Hidden Layer 1 = 64,

No. of Neurons in Hidden Layer 2 = 32,

Activation Function = ReLU,

Optimizer = Adam

To evaluate the ML algorithms, the metrics accuracy, precision, recall, and
F1-score are used, and their calculations are detailed in Eqs. 1–4.

Accuracy =
No. of Correct Predictions

Total No. of Predictions
(1)

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

F1 − Score =
2 × Precision×Recall

Precision + Recall
(4)

4 Results and Discussion

Many previous studies on bankruptcy prediction focused on binary classification,
distinguishing between bankrupt and non-bankrupt companies. In the literature,
the labeling process involved assigning the bankrupt label to companies that had
been officially declared bankrupt, with the label sometimes being extended to
cover all years of available data for that company. However, this approach fails
to capture the dynamic nature of a company’s financial health, which can shift
from a stable position to bankruptcy over time. Our labeling strategy includes
designating the year a company is declared bankrupt, as well as the two preceding
years, as bankrupt. The remaining years are classified as financially distressed.
This approach helps to identify companies that may be heading for bankruptcy
in the near future.
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4.1 Feature Selection

To identify the important features for bankruptcy prediction, we implemented
the following feature selection methods.

– Correlation: Measures the statistical correlation between each feature and
the target variable, aiming for a subset with low feature-feature correlation
and high feature-target correlation to enhance predictive power. Features with
a correlation of 0.9 or higher with other features are removed.

– RF: Uses an ensemble of DTs to quantify each feature’s contribution to
prediction performance.

– KBest: Select the top-K features using mutual info classif scoring func-
tion, which measures the dependency between each feature and the target
variable.

– Recursive Feature Elimination (RFE) with LR: It works by repeat-
edly building a model and eliminating the least important feature based on
the model’s coefficients. This process continues until the desired number of
features is reached.

Table 4. Feature Selection Methods and No. of Selected Features

Methods No of Features

Correlation 44

KBest 55

RFE 55

RF 31

4.2 Feature Analysis

The feature selection method and the number of features selected are given in
Table 4. The important features that are identified by taking the intersection of
features obtained from all four methods are X4, X6, X7, X9, X10, X18, X28,
X31, X35, X36, X37, X38, X41, X50, X56, X57, X59, X63, X65 and X66. These
features are categorized into four types: 1) Leverage Ratios, 2) Liquidity Ratios,
3) Profitability Ratios, and 4) Efficiency Ratios.

1. Leverage Ratios
– Total Liabilities to Equity Ratio (X4): Indicates how much debt a com-

pany uses to finance its assets relative to shareholder equity.
– Long-Term Liability to Equity Capital (X50): Measures the proportion of

long-term debt to equity, indicating potential long-term financial burdens.
– Current Liabilities to Equity Share Capital (X57): Reflects the extent to

which current obligations are financed by equity, highlighting short-term
financial risks.
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2. Liquidity Ratios
– Cash & Short-Term Investment to Total Assets (X18): Shows the propor-

tion of liquid assets, indicating the company’s ability to cover short-term
liabilities quickly.

– Quick Assets to Current Liabilities (X31): Assesses the ability to meet
short-term obligations with the most liquid assets, excluding inventory.

– Cash Flow from Operations to Total Debt (X35): Measures the ability
to cover total debt with operating cash flow, reflecting liquidity and debt
servicing capacity.

3. Profitability Ratios
– Gross Profit to Net Sales (X9): Indicates how efficiently a company pro-

duces goods/services relative to sales.
– Operating Profit to Net Sales (X10): Shows core operational efficiency

and profitability.
– Net Income to (Equity Share Capital + Total Liabilities) (X28): Measures

overall profitability relative to the total financing (equity and debt).
– Dividends to Net Income (X32): Reflects the portion of income paid out

as dividends.
4. Efficiency Ratios

– Net Sales to Average Total Assets (X7): Measures how effectively a com-
pany uses its assets to generate sales.

– Gross Profit to Total Assets (X41): Assesses the efficiency in generating
gross profit from total assets.

The macroeconomic variables Inflation Rate (X63) or Real Interest Rate
(X65) can increase borrowing costs and reduce profitability, while GDP(X66)
growth rates can influence overall business conditions. High leverage ratios
increase financial risk and the burden of debt repayment, potentially leading to
liquidity crises and bankruptcy. Low liquidity ratios indicate a company’s strug-
gle to meet short-term obligations, a key bankruptcy risk. Declining profitability
ratios can result in insufficient funds to cover expenses and debt, heightening
bankruptcy risk. Poor efficiency ratios suggest inadequate returns from assets,
negatively impacting overall financial health and increasing the likelihood of
financial distress.

4.3 ML Models and Its Classification Results

The ML models were implemented and tested with different feature sets, and
the majority of the models performed better when all the features were con-
sidered, such as RF, XGBoost, and LGBoost, GB with an accuracy of 91%.
The performance measures for all the implemented models are presented in
Table 5. XGBoost and LGBoost with RFE feature selection and LGBoost with
correlation-based feature selection methods achieved an accuracy of 91%. The
classification report and confusion matrix for these methods are detailed in
Table 6. Class 0 indicates bankruptcy, class 1 indicates financial distress, and
class 2 indicates healthy, i.e., non-bankrupt class. The XGBoost model with all
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Table 5. Performance of ML Models for Bankruptcy Prediction (The best results are
highlighted in boldface)

Model Name Feature Selection Accuracy Precision Recall F1-Score

LR Correlation (0.9) 83 0.84 0.83 0.83

Kbest (55) 82 0.84 0.82 0.83

RFE (55) 83 0.85 0.83 0.83

Random Forest (Median) 83 0.86 0.84 0.83

All Features 82 0.84 0.82 0.82

SVM Correlation (0.9) 85 0.85 0.85 0.85

Kbest (55) 83 0.83 0.83 0.83

RFE (55) 83 0.83 0.83 0.83

Random Forest (Median) 85 0.85 0.86 0.85

All Features 85 0.85 0.85 0.85

RF Correlation (0.9) 90 0.9 0.9 0.9

Kbest (55) 91 0.91 0.91 0.91

RFE (55) 90 0.91 0.91 91

Random Forest (Median) 90 0.91 0.90 0.90

All Features 91 0.91 0.91 0.91

XGBoost Correlation (0.9) 90 0.9 0.9 0.9

Kbest (55) 91 0.91 0.91 0.91

RFE (55) 91 0.91 0.91 0.91

Random Forest (Median) 89 0.9 0.89 0.9

All Features 91 0.91 0.91 0.91

LGBM Correlation (0.9) 91 0.91 0.91 0.91

Kbest (55) 91 0.91 0.91 0.91

RFE (55) 91 0.91 0.91 0.91

Random Forest (Median) 90 0.9 0.9 0.9

All Features 91 0.91 0.91 0.91

CatBoost Correlation (0.9) 90 0.9 0.9 0.9

Kbest (55) 90 0.9 0.9 0.9

RFE (55) 90 0.9 0.9 0.9

Random Forest (Median) 89 0.9 0.89 0.89

All Features 90 0.90 0.90 0.90

Gradient Boost Correlation (0.9) 90 0.9 0.9 0.9

Kbest (55) 90 0.9 0.9 0.9

RFE (55) 91 0.91 0.91 0.91

Random Forest (Median) 90 0.9 0.9 0.9

All Features 91 0.91 0.91 0.91

KNN Correlation (0.9) 85 0.86 0.85 0.85

Kbest (55) 85 0.86 0.85 0.85

RFE (55) 86 0.87 0.86 0.86

Random Forest (Median) 79 0.82 0.79 0.80

All Features 85 0.86 0.85 0.85

ANN Correlation (0.9) 85 0.86 0.85 0.85

Kbest (55) 83 0.85 0.84 0.83

RFE (55) 84 0.85 0.84 0.84

Random Forest (Median) 77 0.83 0.77 0.78

All Features 84 0.85 0.84 0.84
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features has a recall score of 0.72 for identifying a bankrupt company, 0.81 for
identifying a financially distressed and 0.96 for identifying a healthy company.
The feature importance determined by XGBoost and LGBM models using the
plot importance() method with gain metric for the top 20 features is shown in
Fig. 6.

To assess the effectiveness of our implemented model, we used financial data
from a sample of stock companies. We specifically looked at data from Coal
India, Infosys, Havells, JSW, Tata Steel, Apollo Hospital and GVK for the year
2023. According to a study conducted by Abdullah et al. [1], JSW Steel Ltd
and Tata Steel Ltd are in the Grey Zone of the Z-score, which indicates that
they are experiencing financial difficulties. In 2022, GVK filed with IBBI for the
corporate insolvency resolution process. We tested the companies’ data collected
for the years 2022-2023 with the best-performing models on our dataset. Table 7
summarizes the predictions generated by models. When every feature was kept,
the predictions produced by XGBoost matched the actual situation.

Table 6. Classification Report and Confusion Matrix

Method Class Classification Report Confusion Matrix

P R F1-Score Acc. 0 1 2

XGBoost (RFE) 0 0.76 0.74 0.75 91 74 19 16

1 0.78 0.78 0.78 18 97 20

2 0.96 0.96 0.96 39 42 569

LGBM (RFE) 0 0.77 0.72 0.75 91 74 19 16

1 0.80 0.81 0.81 18 97 20

2 0.96 0.97 0.96 39 42 569

LGBM (Correlation) 0 0.79 0.72 0.76 91 77 16 16

1 0.77 0.79 0.78 19 94 22

2 0.95 0.96 0.96 46 37 567

XGBoost (All Features) 0 0.77 0.72 0.75 91 79 16 14

1 0.78 0.81 0.80 13 109 13

2 0.96 0.96 0.96 10 14 626

4.4 Performance Comparison

Our study implemented state-of-the-art techniques in the field of bankruptcy pre-
diction, such as SVM, RF, XGBoost, and LGBM, Gradient Boosting, CatBoost,
KNN. Our analysis revealed that the XGBoost and LGBM models performed
better with our dataset. It is important to note that comparing these results to
previous literature may be difficult due to differences in the datasets used. Each
dataset has distinct characteristics, making direct comparisons difficult.
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Table 7. Model Predictions

Company XGBoost (RFE) LGBM (RFE) LGBM (Correlation) XGBoost (All Features)

Coal India Healthy Healthy Bankrupt Bankrupt

Infosys Healthy Healthy Healthy Healthy

Havells Financial Distress Bankrupt Bankrupt Financial Distress

JSW Financial Distress Bankrupt Bankrupt Financial Distress

Tata Steel Bankrupt Bankrupt Bankrupt Financial Distress

GVK Healthy Healthy Bankrupt Bankrupt

Fig. 6. Feature Importance

5 Conclusion

The Indian stock market offers investment opportunities but also involves risks,
especially in identifying companies facing financial distress, which is important
for a long-term investment. In this study, the bankruptcy prediction model for
the Indian scenario was implemented. The study used a dataset comprising com-
panies from various sectors, with companies labeled as bankrupt, non-bankrupt,
and financially distressed. Incorporating financial distress helped to identify
the companies likely to become bankrupt soon. The use of financial ratios and
macroeconomic variables, widely used in the literature, helped identify patterns
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for recognizing bankrupt companies. In this study, widely used ML algorithms
such as LR, SVM, RF, XGBoost, LGBM, CatBoost, GradientBoost, and KNN
algorithms were implemented on our dataset.

Including an extensive dataset for training helped the machine learning algo-
rithm learn the pattern. XGBoost, LGBM models achieved classification accu-
racy of 91%. The models were also tested with new instances of real-world data,
and the XGBoost model, when all the features were retained, was able to match
the actual situation. Future research could include, in addition to financial ratios,
the age of the company, the number of employees, and the sentiment hidden in
the annual report. Adding these features may help improve the model’s classifi-
cation accuracy.
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6. Kanapickienė, R., Kanapickas, T., Nečiūnas, A.: Bankruptcy prediction for micro
and small enterprises using financial, non-financial, business sector and macroe-
conomic variables: the case of the lithuanian construction sector. Risks 11(5), 97
(2023)

7. Kanojia, S., Gupta, S.: Bankruptcy in Indian context: perspectives from corporate
governance. J. Manag. Gov. 27(2), 505–545 (2023)

8. Keswani, S., Wadhwa, B.: Withdrawn: association among the selected macroeco-
nomic factors and Indian stock returns (2021)

9. Mai, F., Tian, S., Lee, C., Ma, L.: Deep learning models for bankruptcy prediction
using textual disclosures. Eur. J. Oper. Res. 274(2), 743–758 (2019)

10. Mancisidor, R.A., Aas, K.: Using multimodal learning and deep generative models
for corporate bankruptcy prediction. arXiv preprint arXiv:2211.08405 (2022)

11. Montesinos, A.: Profit prediction based on financial statements using deep neural
network. In: 2022 IEEE World AI IoT Congress (AIIoT), pp. 533–537. IEEE (2022)

12. Oberoi, S.S., Banerjee, S.: Bankruptcy prediction of Indian banks using advanced
analytics. Econ. Stud. J. 4, 22–41 (2023)
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Abstract. The improvement in accuracy of object detection networks
has been progressive in facilitating real vision applications. However, the
increase in accuracy comes with the cost of increasing memory foot-
print and computations and it has presented ever increasing challenges
for deployment of updated object detection networks. To address these
challenges, we propose a structured pruning method called Fine-grained
Regularization with Global Initialization (FRGI). Considering the vary-
ing impact of filters on the subsequent layers that process the same L1-
norm but different means, FRGI introduces a mean-aware sparsity term
during the global sparsification to promote near-equal means of the fil-
ters, then initializes the global pruned filters by prioritizing them based
on the L1-norm. The expressive power on the pruned structures selected
in the initialization is transferred with minimum loss in accuracy by
applying fine-grained regularization. Moreover, for the residual blocks
commonly found in object detection networks, FRGI averages the L1-
norm of related filters. We show through extensive validations on the
MS-COCO dataset that FRGI leads to more efficient object detection
models for all sizes of object detection networks.

Keywords: object detection · fine-grained regularization · global
initialization

1 Introduction

The improvement in object detection network accuracy has been instrumen-
tal in facilitating the application of vision tasks, such as auto-driving [19], and
industrial detection [34]. However, these model performances are heavily reliant
on continuous parameters and computation expansion [45], resulting in over-
parameterization which has proven to be a common feature of well-performing
object detection models [42]. This issue increases the memory footprint, energy
consumption, and inference latency of these models [4].
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To achieve efficient object detection, more and more efforts have focused on
model compression techniques, including knowledge distillation [13,45], neural
architecture search [48], and neural network pruning. In this work, we solely focus
on structured pruning, which is compatible with other compression methods and
generates obvious gains on existing platforms.

Structured pruning directly reduces the memory footprint, energy consump-
tion, and latency of CNN during inference by removing filters or channels [33].
Currently, there are many heuristic methods to achieve structured pruning, such
as pruning at initialization [37], redundancy-based [41], and magnitude-based
[26]. Among these methods, magnitude-based pruning is still the most popular,
which defines a criteria to evaluate the importance of model parameters thereby
pruning as many parameters as possible with minimum loss in accuracy. Some
works focus on exploring more effective evaluation criteria, such as L1-norm
[11,47], γ in BatchNorm [24,49], and activation-related parameters [15,30]. In
addition, some works focus on how to better transfer the expressive power of
pruning structure, such as driving weights in pruning structures close to 0 by
growing regularization [36,38,46]. However, applying these methods to modern
object detection models is not easy due to the following downsides: (1)The core
of a pruning method is to find criteria to evaluate the importance of model
parameters [38]. Most pruning works only focus on the selection of which cri-
teria to evaluate the importance, focusing on solving the “What” problem, but
not the “How” problem. For example, how to conduct a fairer evaluation based
on one of the criteria and which nodes to conduct the evaluation is the “How”
problem. (2) Most pruning methods rely on structure pruning in a coarse-grained
way, sometimes even operating on sparse weights at the beginning which often
leads to significant performance loss; (3) For the residual blocks in the modern
object detection models, there is no targeted method to enhance the pruning
performance of these convolution layers.

To deal with the above issue, we propose a method called Fine-grained Reg-
ularization with Global Initialization (FRGI). Specifically, we found that for
methods that evaluate importance based on the L1-norm, there may be cases
in which varying impact of filters on the subsequent layers that process the
same L1-norm but different means can cause inaccurate ranking. First, we add
a mean-aware sparsity item on the basis of regularization to make the mean
of filters nearly equal to resolve the issue of fair ranking. To solve the prob-
lem of which nodes to rank and to avoid pruning based on sparse weights, we
perform independent ranking. We call the above sparse and ranking processes
global initialization. Based on the initialization results, we conduct a regulariza-
tion process on the original model. In addition to imposing penalties on common
filters, we carefully selected kernels that needed to be removed and made their
weights approach 0 gradually by L2 regularization, which resulted in less loss in
accuracy. We then average the related filters in the residual blocks and use these
means to participate in the ranking of the entire model. Main contributions of
this work are summarized as follows:
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• We propose FRGI to prune object detection networks by the global initial-
ization based on mean-aware sparsity.

• Our proposed FRGI provides a general idea for structured pruning of the
object detection models. For models with residual blocks, we unify them to
ordinary convolution layers by averaging and minimize accuracy loss through
fine-grained growing regularization.

• We conduct experiments using FRGI on both lightweight and deep detection
networks, and the results on MS-COCO datasets show that networks gener-
ated by FRGI use less memory footprint, require less computations, and keep
accuracy unchanged when compared to state-of-the-art references.

2 Related Work

Modern Detectors. Modern object detection networks are mainly divided into
two categories, anchor-based and anchor-free [51]. Anchor-free network does
not provide a priori knowledge [9,32], and its accuracy is slightly lower than
anchor-based networks generally. Anchor-based networks are divided into one-
stage networks and two-stage networks. Two-stage networks need to select can-
didate regions before detecting [10,25], which is redundant and slower than one-
stage networks [14,18,28]. The earliest one-stage network is YOLOv1 [27], which
divides an image into grid cells and predicts the bounding box and class proba-
bility for each cell. Subsequently, the detector series has continuously absorbed
the most advanced detection techniques and achieved SOTA results. To meet
the needs of different applications, the latest YOLOv5 [14] and YOLOv6 [18]
have designed lightweight models with as few as millions of parameters and deep
models with as many as tens of millions of parameters. Therefore, conducting
experiments using this series of models is advantageous for directly comparing
the effects of pruning.

Neural Network Pruning. Network pruning is a compression technique that
solves over-parameterization [33,38,46]. Based on the granularity, pruning can be
divided into two types: structured pruning and unstructured pruning. Unstruc-
tured pruning can result in irregular sparsity [8,16]. Utilizing this irregular spar-
sity for acceleration requires special software and hardware support, and the
acceleration gain on general-purpose computing platforms is extremely limited
[7,39]. Structured pruning preserves structural regularity [11,46,47] by removing
filters or other rule structures from the network, which is beneficial for achieving
obvious acceleration gains on existing deployment platforms. In this paper, we
tackle structured pruning instead of unstructured pruning for effortless accelera-
tion. Most pruning work mainly focuses on more sound pruning criteria to select
unimportant weights [38,46]. Except for the L1-norm, γ in BatchNorm, and
activation-related parameters above, the geometric median of filter [12], spec-
tral clustering [50] and similarity [5] are also used as evaluation criteria. Among
them, criteria based on weight magnitudes are the most prevailing ones, so we
will also use them to solve the “How” pruning. In addition, some pruning works
evaluate the importance of weights based on weight magnitudes and focus on
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transferring the expressive power of the pruning structure. However, they only
selected the pruned filters in a coarse-grained way, while ignoring the kernel
[36,38,46] in the kept filters. For residual blocks, there are no targeted methods
to enhance the pruning performance of convolutional layers in residual blocks.

3 Methodology

In this section, we first describe three key issues in the “How” pruning of object
detection networks and propose a global initialization method based on mean-
aware sparsity. Then, we show how to minimize the performance loss during
the transfer of the pruning structure expressive power by employing fine-grained
regularization based on the initialization results. We finalize the method by
combining these key steps under one realm of FRGI.

3.1 Global Initialization

Our method is based on regularization to form the desired hardware-friendly
sparsity structure, and there are two types of classical approaches exist in pre-
vious work using such methods. One is to determine the pruning filters layer
by layer based on the target pruning ratio before or after regularization [38,46],
which lacks a global view and yields local optimized results. The other is to
prune directly based on the importance ranking results on the basis of a sparse
model [11,24]. Although this approach carries out the importance evaluation
from a global perspective, the performance has been irreversibly damaged by
the indiscriminate regularization due to its pruning on the basis of the sparse
model, even if the fine-tuning after the pruning restores some of the accuracy.
In light of these considerations, we propose an independent global initialization
process that not only evaluates importance from a global perspective but also
isolates it from the subsequent expressive power transfer. Primarily, there are
three questions to answer in FRGI regarding the “How” pruning: (1) which prun-
ing criteria to assess the importance of the filters and which regularization to
introduce the basic sparsity; (2) how to prune the residual blocks in the object
detection network; and (3) how to address the issue that the filters with the
same L1-norm but different means may eventually lead to a completely different
impact on the output.

(1) Pruning Criterion and Regularization Form. As the most popular
pruning method, there are many subdivision criteria in the magnitude-based
structured pruning methods. Compared with other criteria, L1-norm is directly
related to each weight and possesses advantages in cost and flexibility, so we
simply employ L1-norm as the pruning criterion. Although L1 regularization is
well-known for inducing sparsity in deep learning, a challenge lies in achieving
the desired trade-off between sparsity and accuracy by adjusting the sparsity
coefficient[31]. Additionally, the gradient of L1 regularization is not proportional
to the weight magnitude, while L2 regularization exhibits this property, making
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its sparsification more controllable. Because of this, we opt for L2 regularization
to introduce the basic sparsity. Specifically, given the original loss function L of
the object detection network Θ, the total loss function with the L2 regularization
term added is formulated as:

εl(Θ;D) = L(Θ;D) +
1
2

∑

i,l

δ
∥∥W l

i

∥∥2

2
(1)

where D stands for the training dataset, W l
i represents the i-th filter in the l-th

layer of the network, and δ stands for the L2 regularization coefficient corre-
sponding to the weights in that filter. It should be noted that a uniform and
constant L2 regularization coefficient is applied to each filter during the global
initialization.

(2) Residual Block Pruning. Figure 1 provides a figurative illustration of
residual block pruning. It can be observed that due to the presence of the add
operator within the residual block, the indexes of pruned filters in the two con-
nected Conv layers must align. For simplicity, the unconstrained convolutional
layer within the residual block is referred to as the “free layer,” and the layer con-
strained by the add operator is referred to as the “related layer.” For the pruning
of the related layer, many pruning methods for classification networks directly
choose to ignore the related layer [38], while another naive method takes the
intersection of the Conv layers in the related layers for pruning after importance
ranking based on the L1-norm. The experiment results show that for detection
networks with multiple nested residual blocks, the intersection of pruning filters
within them is often very small or even empty. Therefore, neither of these two
residual block processing methods is feasible. Moreover, for the large amounts
of residual blocks present in image super-resolution (SR) networks, some works
have proposed to randomly select a set of unimportant filters in the related layer
based on the pruning ratio before pruning [46]. Although this method is effective
for SR networks, it leads to unacceptable accuracy degradation when applied to
object detection networks. Based on these facts, we propose a simple yet effec-
tive method for residual block pruning. First, the L1-norm of each filter in the
related layer is calculated, and subsequently, the mean of L1-norm is calculated
in that group of related layers, forming the formula as:

Li,1mean =
1
n

n∑

l=1

Ll
i,1norm (2)

where n represents the number of Conv layers in this group of related layers,
which is determined by the number of nested residual blocks. Ll

i,1norm denotes
the L1-norm of the i-th filter in the l-th Conv layer in the related layer, and
Li,1mean is the L1-norm mean of the same indexed filters in the related layer. By
using this mean value, along with the L1-norms of all the free layers in the detec-
tion model, a unified importance ranking is established, and the initialization of
global pruned filters is completed.
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Fig. 1. Illustration of residual block pruning. (a) The common residual block structure
in the object detection network, the Conv layers directly connected to the add operator
input are all related (in orange), and the other Conv layers are all free (in green).
(b) Unrolled representation of a pruned residual block, the input feature map F is
represented by a 3D cube, each 2D rectangle represents a channel; the weights W are
expanded into a 2D matrix, each row of which represents a filter, and each column
represents the kernels of the same index in all filters of that layer. The shaded cells
in W represent the pruned structures, where each column of the pruned kernels is
determined based on the indexes of the pruned filters of the previous layer. (Color
figure online)

(3) Mean-Aware Sparsity. Let’s observe a phenomenon through a simple
example. Suppose the input is x1 = [1, 2, 3, 1] and the two different filters are
w1 = [−4,−2,−1, 1],w2 = [3, 2, 1,−1]. If the filters are chosen based on L1-norm
only, L1norm,w1 = 8 is chosen instead of L1norm,w2 = 7. However, after passing
through the ReLU function, the outputs are y1 = 0 and y2 = 9, respectively.
Clearly, even though w1 has a larger L1-norm, its expressive power may be
weaker. In summary, this issue often exists in pruning methods that introduce
sparsity based on regularization. When the L1-norm of filters is the same but the
means differ, it can lead to different outputs and potentially have a completely
different impact on the subsequent layers. A short derivation, suppose an input
X and a filter W , the output is given by Y = W ∗ X, where ∗ denotes the
convolution operation. For filters within the same layer, their inputs are the
same and consist of non-negative values activated by ReLU. To simplify the
process with an assumption that the elements in X so are the same xi = c,
c is a non-negative constant and i denotes the element index. Given that the
convolution operation is essentially a linear process, we can derive the output
as:

yi = wi ∗ xi =
n∑

i=1

wic = nwmeanc (3)

where
∑n

i=1 wic represents the multiply-accumulate operation of the weights and
the input elements, and wmean denotes the mean of each filter. When the filters
L1-norm is the same, the outputs are different in the case of different means
unless the c = 0 occurs. Consequently, when the elements in the input X are
non-negative values randomly distributed, there exists a possibility of completely
different outputs.
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To address this issue, we introduce a mean-aware sparsity term based on L2
regularization. The updated total loss function is formulated as:

εl(Θ;D) = L(Θ;D) +
1
2
(
∑

i,l

δ
∥∥W l

i

∥∥2

2
+ 2ϑ

∣∣∣∣∣

∑m
j wl

i,j

C(W l
i )

∣∣∣∣∣) (4)

where ϑ represents the sparsity coefficient of the mean-aware sparse term and∑m
j wl

i,j stands for the summation of all weights in the filterW l
i . The C() function

is used to count the number of weights in the filter W l
i . The mean-aware sparse

term is introduced in the regularization process, so that the gradient of each
weight is also related to the mean of its filter, and finally, the mean of each filter
tends to approach zero on the basis of L2 regularization. The effect of introducing
the mean-aware sparsity is illustrated in Fig. 2.

Fig. 2. Illustration of the mean-aware sparsity effect. (a) The distribution of the original
filter weights; (b) the distribution of filter weights after L2 regularization, L1-norm
reduction; (c) the distribution of the filter weights after L2 regularization with mean-
aware sparsity, L1-norm reduced and the means are approximately equal.

3.2 Fine-Grained Regularization

Based on the global initialization, we obtain the pruned filters and the kept
filters at the goal pruning ratio. The pruning is directly based on this result in
related work, but the models are all lossy under indiscriminate sparsity. In FRGI,
we introduce growth regularization for the pruned filters in the original model.
Unlike the coarse-grained growth regularization of the pruned filters [36,38,46],
which is shown in Fig. 1, in the 2D weight matrix, regularization is applied only to
the green and orange filters (horizontal), ignoring the blue kernels that also need
to be pruned (vertical) as determined by the index of the pruned filters in the
previous layer. Such coarse-grained treatment will lead to significant accuracy
loss in object detection networks that require precise tuning. To this end, we
will apply regularization to both filters and kernels that need to be pruned,
driving all the weights of these structures close to zero, completely transferring
the expressive power to the kept structures, and minimizing the accuracy loss.
The formula for fine-grained regularization is:

εl(Θ;D) = L(Θ;D) +
1
2

∑

i,j

δji

∥∥∥Sj
i

∥∥∥
2

2
(5)
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where Sj
i denotes the i-th filter of the j-th layer, or the i-th kernel of the j-th filter,

depending on the structure to be pruned flexibly. δji denotes the L2 regularization
coefficient corresponding to the pruning structure, if the filter or kernel is located
in the set of pruning structures determined in the global initialization, then
δji > 0; otherwise, δji = 0. To safely and completely transfer the expressive power
of the pruning structure, we gradually increase the regularization coefficient,
formulated as follows:

δji = δji + � (6)

The initial value of δji is set to 0, and � represents the update step size,
which is set to � = 10−5 in our experiments with an update frequency of
every 10 iterations. Unlike the δ set in the global initialization on the scale of
10−4∼10−3, the upper limit of δji is set to 0.02 in the growth regularization to
drive the weights in the pruning structure close to 0. The gradual increase of the
regularization coefficient starting from 0 is intended to allow the detection model
to gradually adapt to the sparsity pattern. Once the upper limit is reached, the
regularization continues at this upper limit for a certain period of time.

3.3 Learn Efficient Object Detection Models via FRGI

With all the aforementioned steps, we formulate the final FRGI. The pruning
process takes a trained object detection model as input and modifies the loss
objective function to the one of interest in the FRGI using Eq. 4 and Eq. 5 at
different stages. The indexes of the pruned structures are obtained in the global
initialization, and the complete transfer of the expressive power is achieved in the
fine-grained regularization. During the pruning, instead of zeroing the weights
as in unstructured pruning, these pruning structures are directly removed from
the network, resulting in a compact object detection network. In view of the
fact that only 50 epochs are required for global initialization and 65 epochs
for fine-grained regularization (coefficient growth and stabilization) in FRGI, a
fine-tuning of 150 epochs is performed to slightly improve the accuracy after the
pruning is completed. Although the entire pruning involves multiple steps, the
total number of epochs needed is still less than training the original model once.

4 Experiments

Firstly, we provide an introduction to the experimental settings to ensure result
reproducibility. Then, we show through extensive validation on the MS-COCO
dataset that FRGI leads to more efficient object detection models, irrespective
of whether the architecture is lightweight or deep. Last but not least, through
ablation studies and comparison with other pruning methods, we have verified
the effectiveness of some improvements in FRGI.
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4.1 Experimental Setup

Datasets and Architectures: We choose the MS-COCO dataset [21], which
contains 80 object categories of over 200K images and is widely used to bench-
mark SOTA object detectors due to its rich annotations data and challenging
scenarios. FRGI is applied to models of varying parameter scales, including the
lightweight YOLOv5-S model and the deep object detection model YOLOv5-L
[14]. The former contains only a few million parameters, while the latter contains
over 46 million parameters.

Training Settings: All activation functions are set to ReLU, and other train-
ing settings are officially consistent. The δ ∈ [10−4,10−3] and the ϑ = 0.1δ.
Other settings have been introduced in Sects. 3.2 and 3.3. All experiments are
conducted on Nvidia RTX3090 (for lightweight model) and A100 GPU.

4.2 Comparisons with Lightweight Object Detection Networks

By applying FRGI to the lightweight YOLOv5-S(using different pruning ratios),
we are able to obtain multiple lighter models, named YOLO S1, S2, and S3.
These models have outperformed various other lightweight networks listed in
Table 1 in terms of both parameter quantity and accuracy. Unlike most current
approaches that rely on carefully designed architecture for creating lightweight
models, the YOLO-S series only requires pruning from the original large model.
For instance, compared to the latest YOLOv6-N, YOLO-S1 achieves equivalent
accuracy with fewer parameters. Furthermore, while having the same parameter

Table 1. Comparison between YOLOv5-S’s pruning models and lightweight object
detection models

Model Backbone Input Size Pram./M GFLOPs mAP50:95 mAP50

YOLOv3-tiny [28] Tiny Darknet 320 8.85 3.3 14.0 29.0

YOLOv5-S [10] v5 small 640 7.2 16.5 36.5 55.7

YOLOv4-tiny [1] Tiny Darknet 320 6.06 4.11 - 40.2

TT-YOLOv5-S [23] - 640 4.9 18.9 34.2 54.6

SSDLite [29] MobileNetv1 300 4.31 2.3 22.2 -

YOLOv6-N [18] EfficientRep 640 4.3 11.1 35.9 51.2

MLNet [20] Tri-bone 640 2.1 5.9 28.7 46.8

YOLOv5-N [10] v5 nano 640 1.86 4.5 26.5 -

ABFLMCY OLO [22] - 640 1.48 4.4 22.8 40.0

YOLOX-Tiny [9] Darknet53 416 6.2 5.8 32.8 50.3

YOLO-S1 v5 small 640 3.76 13.1 35.9 54.9

YOLO-S2 v5 small 640 1.86 9.3 31.3 50.0

YOLO-S3 v5 small 640 1.11 7.2 26.5 44.2
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quantity as YOLOv5-N, YOLO-S2 obtains an 18.1% improvement in accuracy.
YOLO-S3 can achieve the same level of accuracy as YOLOv5-N while saving
40.3% of its parameters. Unfortunately, the YOLO-S series models still have
shortcomings in computation. So it is necessary to achieve a trade-off among
memory footprint, computation, and accuracy.

We also visualize the detection effect of the pruning model, as shown in
Fig. 3. The features extracted from different channels are also consistent with
expectations, and there are no valid features in the pruning channels.

Fig. 3. Visualization of pruning models. The four columns are the output feature maps
corresponding to the pruned filters and the kept filters of the first layer in the YOLO-
S3 model. Rich features are extracted from the kept channel, while there are no valid
features in the pruned channel.

4.3 Comparisons with Deep Object Detection Networks

By applying FRGI to the YOLOv5-L(using different pruning ratios), we are
able to obtain slimmer models, named YOLO L1, L2, and L3. In comparison
with various deep object detection models listed in Table 2, the YOLO-L series
models offer benefits in terms of memory footprint, computation, and accuracy.
Specifically, YOLO-L2 obtains the same parameters as YOLOv5-S while achiev-
ing 12.8% improvement in accuracy and YOLO-L3 is able to achieve higher
accuracy than YOLOv5-S while saving 56.8% of its parameters.

4.4 Comparison with Other Pruning Methods

We further compare the models obtained by using FRGI with those obtained by
other structured pruning methods. Considering that each work is pruned based
on different original models, it is fairer to compare the decrease in relevant
indicators. As shown in Table 3, these comparative results indicate that FRGI
has the potential to achieve efficient object detection networks.
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Table 2. Comparison between YOLOv5-L’s pruning models and deep object detection
models

Model Backbone Input Size Pram./M GFLOPs mAP50:95 mAP50

DETR-DC5-R101 [2] ResNet101 640 60 253 44.9 64.7

Faster RCNN-R101-FPN [2] ResNet101 640 60 246 42.0 62.5

YOLOv5-L [14] v5 large 640 46.5 109.6 46.7 65.4

SSD [44] ResNet50 640 45.8 42.3 32.3 51.7

YOLOv5-S [14] v5 small 640 7.2 16.5 36.5 55.7

ResNet50-FPN [31] ResNet50 640 34 97 37 -

YOLOv6-T [18] EfficientRep 640 15.0 36.7 40.3 56.6

Gold YOLO-S [35] - 640 21.5 46.0 45.4 62.5

DFFT-M [3] - 640 - 67.0 45.7 64.8

YOLO-L1 v5 large 640 16.0 47.8 45.3 64.0

YOLO-L2 v5 large 640 7.16 34.3 41.2 60.1

YOLO-L3 v5 large 640 3.11 26.6 37.6 56.5

Table 3. Comparison between Fine-grained Regularization with Global Initializa-
tion(FRGI) and other pruning methods

Model Backbone Pram./M GFLOPs mAP50:95 mAP50

YOLOv3 [43] Darknet53 236 65.86 - 55.2

CAP-YOLO (60%) [43] Darknet53 86.4 25.32 - 48.7

yolov5m [17] v5 m 21.4 51.3 43.6 62.7

NS-YOLOv5m [17] v5 m 15.0 27.9 40.2 58.5

YOLOv5-S [14] v5 small 7.2 16.5 36.5 55.7

YOLO-S1 v5 small 3.76 13.1 35.9 54.9

Model Backbone Pram./M GFLOPs mAP50:95 mAP50

YOLOv5l [6] v5 large 47 115 48.1 -

Pruned-YOLOv5 [6] v5 large 3 30 38.2 -

YOLOv5l [40] v5 large 46.7 115.4 47.0 66.0

YOLOv5l-pruned [40] v5 large 16.1 49.1 45.5 64.5

YOLOv5-L [14] v5 large 46.5 109.6 46.7 65.4

YOLO-L1 v5 large 16.0 47.8 45.3 64.0

YOLO-L3 v5 large 3.11 26.6 37.6 56.5

4.5 Ablation Studies

Validation of Residual Block Pruning. We now perform an ablation study
to verify the performance of residual block pruning. As shown in Table 4. The
models with residual block pruning achieve equivalent or higher accuracy with a
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Table 4. Ablation study on residual block pruning

# Model Pruning Ratio Pram./M GFLOPs mAP50:95

1 without 55.7% 3.19 11.6 33.4

2 with 66.1% 2.44 10.7 33.3

3 without 73.9% 1.88 8.3 27.7

4 with 74.2% 1.86 9.3 31.3

Table 5. Ablation study on fine-grained regularization

# Model Pruning Ratio Pram./M GFLOPs mAP50:95

1 without 47.8% 3.76 13.1 34.6

2 with 47.8% 3.76 13.1 35.9

3 without 83.9% 1.16 7.36 23.8

4 with 83.9% 1.16 7.36 27.0

Fig. 4. Visualization the transfer process of expressive power of the #4 model in
Table 5. (a) Comparison of L1-norm between pruned filters and kept filters in the
first layer of the model; (b) Comparison of L1-norm between pruned kernels and kept
kernels in the second layer of the model. As expected, the weight in the pruning struc-
ture gradually decreases to nearly 0, while the weights in the kept structure arise
spontaneously.

higher pruning ratio. Meanwhile, residual block pruning is beneficial to achieve
higher accuracy with a higher pruning ratio.

Validation of Fine-Grained Regularization. Table 5 shows the comparison
of pruning experiments with or without fine-grained regularization. Experiments
on fine-grained regularization are based on the baseline with the same pruning
rate. It can be seen that fine-grained regularization can help to achieve higher
accuracy, especially in a higher pruning ratio.
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Visualization the Transfer Process of Expressive Power. In Fig. 4, we
can visualize the transfer process of expressive power by drawing L1-norm of
the pruning structure and the kept structure during fine-grained regularization.
It can be seen that as the regularization coefficient continues to increase, the
L1-norm of pruning filters and kernels gradually decreases to nearly 0. Interest-
ingly, without applying special treatment to the weights in the kept structure,
its L1-norm arises spontaneously. The network’s self-recovery is similar to the
compensation effect in the human brain [6].

5 Conclusion

In this paper, we point out the limitations of existing structured pruning in
the importance ranking based on L1-norm and coarse-grained ways of trans-
ferring the expressive power of pruning structure. In particular, previous works
mostly focused on the “What” problem and neglected the “How” problem of
pruning. From this perspective, we propose a global initialization method that
independently solves the “How” problem through residual block pruning and
mean-aware sparsity. Furthermore, we use fine-grained growth regularization to
minimize the accuracy degradation caused by the expressive power transfer of
pruning structures. We show through extensive validation on the MS-COCO
dataset that FRGI leads to more efficient object detection models, irrespective
of whether the architecture is lightweight or deep. As the structured pruning
ratio cannot be directly converted into the reduction ratio of computation, we
will focus on reducing FLOPs to achieve a trade-off among memory footprint,
computation, and accuracy in the future.
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Abstract. Adversarial attacks pose security concerns to deep learning
applications, but their characteristics are under-explored. Yet largely
imperceptible, a strong trace could have been left by PGD-like attacks in
an adversarial example. Recall that PGD-like attacks trigger the “local
linearity” of a network, which implies different extents of linearity for
benign or adversarial examples. Inspired by this, we construct an Adver-
sarial Response Characteristics (ARC) feature to reflect the model’s gra-
dient consistency around the input to indicate the extent of linearity.
Under certain conditions, it qualitatively shows a gradually varying pat-
tern from benign example to adversarial example, as the latter leads to
Sequel Attack Effect (SAE). To quantitatively evaluate the effectiveness
of ARC, we conduct experiments on CIFAR-10 and ImageNet in a chal-
lenging setting. The results suggest that SAE, reflected through the ARC
feature, is an effective and unique trace of PGD-like attacks. Our method
is designed to generalize with a scarce amount of data, which remains
feasible even when access to the full training dataset is impossible. Code:
https://github.com/cdluminate/advtrace.

Keywords: Adversarial Example Characteristics · Adversarial
Response Characteristics · Sequel Attack Effect

1 Introduction

Recent studies reveal the vulnerabilities of deep neural networks [23,29], where
undesired outputs are triggered by an imperceptible perturbation. The attacks
pose safety and security concerns for various applications. The PGD-like attacks,
including BIM [23], PGD [29], MIM [12], and APGD [9], are strong and widely
used in the literature, but under-explored for their characteristics.

Yet, we speculate that a strong attack leaves a strong trace in its result, as
in the feature maps [48]. In this paper, we consider an extremely tough setting –
to identify the trace of PGD-like attacks, given an already-trained deep neural
network and merely a tiny set (e.g., 50) of training data, without any change in
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Fig. 1. Diagram for the ARC matrix and the ARC vector. They reflect the model’s
gradient consistency within a local linear area around the input to indicate the extent
of linearity. Shallow network like ResNet-18 shows higher linearity to benign examples,
while deeper networks like ResNet-152 and SwinT-B-IN1K show lower linearity. The
ARC matrix consistently shows the trend of increasing gradient consistency along the
diagonal line across different networks. Note, we use the same colorbar for all figures
afterward in order to keep figures tidy.

architecture or weights, nor any auxiliary deep networks. Such a setting requires
no dependency on external models or data, and can reveal deeper characteristics
of adversarial examples. Expectedly, it is still feasible in more difficult scenarios,
even when data is impossible to access (e.g., Federated Learning [30]) and third-
party forensics analysis. It also helps us understand adversarial examples.

For instance, in the Federated Learning [30] scenario, a data-demanding
attack detector requires access to the training data, which infringes on user
privacy regardless of performance. In contrast, data-undemanding detectors can
survive in such scenarios, as collecting merely 50 samples from volunteers is still
practical. But this type of method is mostly uncharted.

Recall that FGSM [15], the foundation of PGD-like attacks, attributes the
vulnerability to “local linearity” being easily triggered by adversarial perturba-
tions. Thus, we conjecture that a network behaves in a greater extent of lin-
earity to adversarial examples than benign (i.e., unperturbed) ones. With the
first-order Taylor expansion of a network, “local linearity” implies high gradient
proximity in the respective local area. Thus, we can select a series of data points
with stable patterns near the input as exploitation vectors using the BIM [23]
attack, and then compute the model’s Jacobian matrices with respect to them.
Next, the Adversarial Response Characteristics (ARC) matrix is constructed
from these Jacobian matrices reflecting the gradient direction consistency across
exploitation vectors. Unlike benign examples, the results of PGD-like attacks
trigger Sequel Attack Effect (SAE), leaving higher values in the ARC matrix,
reflecting higher gradient consistency around the input, as shown in Fig 1.

The ARC matrix can be simplified into a 2-D ARC vector by fitting a Lapla-
cian function due to their resemblance. This simplifies the interpretation of sub-
sequent procedures. Apart from the qualitative analysis, the ARC vector can be
quantitatively evaluated by attack detection and attack type recognition using
SVM-based classifiers. The ARC vector can be used for informed attack detec-
tion (the perturbation magnitude ε is known) with an SVM-based binary classi-
fier, or uninformed attack detection (the perturbation magnitude ε is unknown)
with an SVM-based ordinal regression model. The ARC vector can also be
used for attack type recognition in similar settings with the same set of SVMs.
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Experimental results suggest that the SAE reflected through ARC is the unique
trace of PGD-like attacks. Meanwhile, through SAE we can also infer attack
details, including the loss function and the ground-truth label once the attack is
detected.

We evaluate our method on CIFAR-10 [22] with ResNet-18 [17], and Ima-
geNet [10] with ResNet-152 [17] / SwinT-B-IN1K [26]. Visualizations and quan-
titative experimental results for attack detection and attack-type recognition
manifest the effectiveness of our method in identifying SAE. SAE is the unique
trace of PGD-like attacks, which also possesses considerable generalization capa-
bility among PGD-like attacks even if available training data is very scarce.
Contributions. We present the ARC features to identify and characterize the
unique trace, i.e., SAE of PGD-like attacks from adversarial examples. Through
the lens of the ARC feature (reflecting the network’s gradient behavior), we also
obtain insights into why networks are vulnerable, and why adversarial training
works well as a defense. Although our method is specific to PGD-like attacks due
to strong assumptions, it is (1) intuitive (human-interpretable due to simplicity
and not creating a deep model); (2) light-weighted (requires no auxiliary deep
model); (3) non-intrusive (requires no change to the network architecture or
weights); (4) data-undemanding (generalizes with only a few samples).

2 Related Works

Adversarial Attack and Defense. Neural networks are found vulnera-
ble [15,43]. Based on this, attacks with different threat models are designed,
including white-box attacks, transferability attacks, and black-box attacks [11].
[19] attribute the existence of adversarial examples to non-robust features. To
counter the attacks, adversarial training [29,38,47] is the most promising defense,
but it leads to an expensive training process and suffers from a notable gener-
alization gap. Other types of defenses may suffer from various types of adaptive
attacks [4,44].

Local Linearity is revealed by [15], which leads to a series of defenses
and analyses. A “locally linear” model can be used as a theoretical foundation
for attacks and defenses [16]. [38] regularize the model to behave linearly in
the vicinity of data. [3] show that the network being non-linear locally results
in FGSM training failure. [5] show that local linearity arises at initialization.
Based on Lipschitz theoretical concepts, [20] presents a layer sustainability anal-
ysis framework, and a layer-wise regularized adversarial training method. Our
method characterizes PGD-like adversarial examples using local linearity.

Adversarial Example Detection [1,6] predicts whether a given image
is adversarial or not. This can be achieved through adversarial training [50],
sub-network [32] or extra loss [35], but it will be costly for ImageNet. Genera-
tive methods check reconstruction error [31] or probability density [41], but are
data-demanding for accurate distributions. Auxiliary deep models [25,33] require
a large amount of data. Feature statistics methods [21,24,27,28,39] leverage
(high-dimensional) features, but most of them are data-demanding for accuracy.
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Fig. 2. The ARC features (i.e. ARC matrix/vector) of adversarial examples created by
the BIM attack. 1st row: ResNet-18 on CIFAR-10; 2nd row: ResNet-152 on ImageNet;
3rd row: SwinT-B-IN1K on ImageNet. Blue/red dots in the scatter plots correspond to
the benign/adversarial examples, respectively. The cluster centers of the ARC vector
correlate with ε. Note, we use the same colorbar as shown in Fig. 1 and omit it here to
keep the figure tidy.

Many related works lack ImageNet evaluation and sensitivity analysis with vary-
ing attack parameters, even if the difficulty changes accordingly.

3 Adversarial Response Characteristics

A network f(·) maps x ∈ R
M into a pre-softmax output y ∈ R

N , where the
maximum element after softmax corresponds to the class prediction ĉ(x), which
should match with the ground truth c(x). A typical attack aims to find an imper-
ceptible adversarial perturbation r ∈ R

M that induces misclassification [23], i.e.,
arg max

n
fn(x+r)�=c(x) where ‖r‖p≤ε, x+r ∈ [0, 1]M , and fn(·) is the n-th ele-

ment of vector function f(·).
According to [15], a neural network is vulnerable as the “locally linear” prop-

erty is triggered by attack. Thus, we assume that the network f(·) behaves rela-
tively non-linear against benign examples, while relatively linear against adver-
sarial examples. Then, f(·) can be approximated by the first-order Taylor expan-
sion around an either benign or adversarial sample x̃ (denote x̃ � x + r):

fn(x̃ + δ) ≈ fn(x̃) + δT∇fn(x̃),∀n ∈ {1, 2, . . . , N}, (1)

where δ is a small vector exploiting the local area around the point x̃, and gradi-
ent vector ∇fn(·) is the n-th row in Jacobian ∇f(·) of size N×M . We name the
twice-perturbed x̃ + δ as “exploitation vector”. This equation means in order
to reflect linear behavior, the first-order gradient ∇fn(·) should remain in high
consistency (similarity) in the local area regardless of δ. In contrast, when x̃ is
not adversarial (r = 0), neither Taylor approximation nor the gradient consis-
tency is expected to hold. Next, the gradient consistency will be quantized to
reveal the difference between benign and adversarial inputs.
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Adversarial Response Characteristics (ARC). Using random noise as δ
does not lead to a stable pattern of change in a series of exploitation vectors
{x̃ + δt}t=0,1,...,T . Instead, we use the Basic Iterative Method (BIM) [23] to
make f(·) more linear starting from x̃, which means to “continue” the attack if
x̃ is already adversarial, or “restart” otherwise. However, the ground-truth label
for an arbitrary x̃ is unknown. Since PGD-like attacks tend to make the ground-
truth least-likely based on our observation, we treat the least-likely prediction
č(x) as the label.1 Then, for t = 0, 1, . . . , T , the BIM iteratively maximizes the
cross entropy LCE(x̃ + δ, č(x)):

δt+1 ← ClipΩ

(
δt + α sign[∇LCE(x̃ + δt, č(x))]

)
, (2)

where ClipΩ (·) clips the perturbation to the Lp bound centered at x̃, and δ0 = 0.
If the input x̃ is benign, then the network behavior is expected to change from
“very non-linear“ to “somewhat-linear” during the process; if the input x̃ is
already adversarially perturbed, then the process will “continue” the attack,
making the model even more “linear” – we call this Sequel Attack Effect (SAE).

To quantize the extent of “linearity”, we measure the model’s gradient con-
sistency across exploitation vectors with cosine similarity. For each fn(·), we
construct a matrix Sn of shape (T+1, T+1), where for ∀i, j = 0, 1, . . . , T :

s(i,j)n = cos
[∇fn(x̃ + δi),∇fn(x̃ + δj)

]
. (3)

As the model f(·) becomes more “linear” to the input (higher gradient con-
sistency), the off-diagonal values in Sn are expected to gradually increase from
the top-left to the bottom-right corner. Note that the attack may not nec-
essarily make all fn(·) behave linear, so we select the most representative
cosine matrix with the highest mean as the ARC matrix : S∗ � Sn∗ , where
n∗ = arg maxn

∑
i,j s

(i,j)
n .

The example ARC matrixes can be found in Fig. 1. We note the values in
the ARC matrix are high along the diagonal line, and drastically decrease when
far away from the diagonal. Due to ARC matrix resembling Laplacian function
with the matrix diagonal being the center, we simplify it into a 2-dimensional
ARC vector (A, σ) by fitting L(i, j;A, σ) = A exp(−|i − j|/σ) with Levenberg-
Marquardt algorithm [46], where i, j are matrix row and column indexes, while
A and σ are function parameters. For brevity, we abbreviate ARC matrix as
“ARCm”, and ARC vector as “ARCv”. The overall process for ARCm/ARCv
calculation is shown in Fig. 1.
Visualizing SAE. We compute ARCm based on some benign examples using
T=48, as shown in Fig. 1. The trend of being gradually “linear” (higher cosine
similarity) along the diagonal is found across architectures. Thus, SAE is similar
to “continuing” an attack from halfway on the diagonal in such a large ARCm.

1 Please note the subtle difference between č(x) and ĉ(x) – The ĉ(x) is the model
prediction corresponding to the largest logit value, while č(x) is the “least-likely”
prediction corresponding to the smallest logit value.
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Fig. 3. ARCm with adversarial examples created by PGD (left), MIM (middle), and
APGD (right) attacks. The three rows correspond to ResNet-18, ResNet-152, and
SwinT-B-IN1K, respectively. These attacks manifest similar SAE in ARCm. Note, we
use the same colorbar as shown in Fig. 1 and omit it here.

As illustrated in Fig. 2, already adversarially perturbed input (using BIM) leads
to larger cosine similarity at the very first exploitation vectors as perturbation
magnitude ε increases from 0 to 16/255. Meanwhile, the cluster separation for
ARCv is more and more clear. Thus, a clear and gradually changing pattern
can be seen in ARCm and ARCv. This pattern is even valid and clear for the
state-of-the-art ImageNet models. In brief, SAE is reflected by higher gradient
consistency in ARCm, or greater σ and smaller A in ARCv. Similar results for
other attacks in Fig. 3 indicate the possibility of generalization among them with
only training samples from the BIM attack.
Uniqueness of SAE. Whether SAE can be consistently triggered depends on
the following conditions simultaneously being true: (I) whether the input is
adversarially perturbed by an iterative projected gradient update method for
many steps; (II) whether the attack leverages the first-order gradient of the
model; (III) whether the Lp boundary types are the same for the two stages,
i.e., attack and exploitation vectors; (IV) whether the loss functions for the two
stages are the same; (V) whether the labels used (if any) for the two stages are
relevant. Namely, only when the attack and exploitation vectors “match”, can
SAE be uniquely triggered as the exploitation vectors “continue” an attack, or
they will “restart” an attack. Thus, in Fig. 1, Fig. 2 and Fig. 3, all the conditions
are true as they involve PGD-like attacks. Due to the strong assumptions, the
SAE being insensitive to non-PGD-like attacks (e.g., [7]) is a limitation. However,
the unique SAE meanwhile shows a possibility of inferring the attack details
leveraging the above conditions. SAE is the trace of PGD-like attacks. Ablations
for these five conditions are presented in Sect. 5.

Adaptive Attack exists against defenses [44] and detection [6]. To avoid
SAE, an adaptive attack must reach a point where the corresponding ARCm has
a mean value as small as that for benign examples. Intuitively, an adaptive attack
has to simultaneously solve minr ‖S∗(x + r)‖F (Frobenius norm) alongside its
objective. It, however, requires the gradient of Jacobians, namely at least T + 1
Hessian matrices, i.e., ∇2fn(·) of size M×M for gradient descent. This is compu-
tationally prohibitive as in the typical ImageNet setting (i.e., M=3×224×224),
a Hessian in float32 precision needs 84.4GiB memory. At this point, the cost
of such adaptive attack that hides SAE is much higher than computing ARC.
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Fig. 4. Ablation of SAE uniqueness by adjusting exploitation vectors for ARC. Each
subfigure of ARCm pair has two annotations: (1) attack and its settings, where empty
brackets mean default setting unless overridden: [Lp is L∞; Loss is LCE; ✓(is) iterative;
✓(can access) gradient ∇f (·)]; (2) exploitation vector settings, e.g. “ARC[]” with the
default setting [Lp is L∞; Loss is LCE; Label is č(·)]. The “c?” means random guess.
This figure is supplementary to Table 2. We reuse the identical colorbar as in Fig. 1 and
omit the colorbar here in order to save horizontal space and maintain a tidy layout.

Instead, a viable way to avoid SAE is to use non-PGD-like attacks that break
the SAE uniqueness conditions. This paper focuses on characterizing the unique
trace of existing PGD-like attacks, instead of a general detection or defense.

4 Quantitative Evaluation of ARC Feature

In order to quantitatively support the effectiveness of ARC/SAE, we adopt it
for two potential tasks, namely attack detection and attack type recognition.
Attack detection aims to identify the attempt to adversarially perturb an image
even if it fails to change the prediction (but leaves a trace).2 Attack type recog-
nition aims to identify whether an adversarial example is created by PGD-like
attacks. Our method relies on the uniqueness of SAE to PGD-like attacks.

Informed Attack Detection determines whether an arbitrary input x̃ is
adversarially perturbed, while the perturbation magnitude ε is known. It can be
viewed as a binary classification problem, where the input is ARCv of x̃, and the
output 1 indicates “adversarially perturbed”, while 0 indicates “unperturbed”.
Thus, for a given ε = 2k/255 where k ∈ {1, 2, 3, 4}, a corresponding SVM [36]
classifier hk(x̃) ∈ {0, 1} can be trained using some benign (ε=0) samples and
their adversarial counterparts (ε=2k/255). Even if the training data only involves
the BIM attack, we expect generalization for other PGD-like attacks from visu-
alization results despite domain shift.

Uninformed Attack Detection determines whether an arbitrary input x̃
is adversarially perturbed when the perturbation magnitude ε is unknown. It can

2 It is undesirable to wait until the attack has succeeded.
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be viewed as an ordinal regression [34] problem, where the input is ARCv, and
the output is the estimation of k, namely k̂ ∈ {0, 1, 2, 3, 4}. The corresponding
estimate of ε is ε̂ = 1{k̂ > 0}2k̂/255, where 1{·} is the indicator function. Specif-
ically, this is implemented as a series of binary classifiers (SVM), where the k-th
(k �=0) classifier predicts whether the level of perturbation is greater or equal to
k, i.e., whether k̂ � k. Note, based on our visualization, the ARCv cluster of
adversarial examples is moving away from that of benign examples as ε (or k)
increases. This means the ARCv of an adversarial example with k̂ � k will also
cross the decision boundary of the k-th SVM hk(·). Namely the SVM hk(·) can
also tell whether k̂ � k, and thus can be reused. Finally, the ordinal regression
model is the sum of predictions over the SVMs: k̂ =

∑
k∈{1,2,3,4} hk(x̃). A per-

turbation is detected as long as k̂ > 0. Estimating k (or ε) for x̃ is similar to
matching its ARCm position inside a larger ARCm calculated starting from a
benign example. The estimate does not have to be precise, as the detection is
already successful once any SVM correctly raises an alert.

Although a detector in practice knows nothing about a potential attack
including the attack type, evaluation of uninformed attack detection with known
attack type is enough. Regarding the performance of uninformed attack detec-
tion given a specific attack type as a conditional performance, the expected per-
formance in the wild can be calculated as the sum of conditional performance
weighted by the prior probabilities that the corresponding attack happens.

Inferring Attack Details. Due to the SAE uniqueness in Sect. 2, once
attack is detected, we can predict that the attack: (I) performs projected gradient
update iteratively; (II) uses the first-order gradient of f(·); (III) uses the same
type of Lp bound as exploitation vectors (L∞ by default); (IV) uses the same loss
as exploitation vectors (LCE(· · · ) by default); (V) uses a ground-truth label that
is relevant to the least-likely class č(x̃) used for exploitation vectors (in many
cases č(x̃) is exactly the ground-truth). In other words, model prediction can
be corrected into the least-likely class č(x̃) upon detection. The disadvantage of
ARC being insensitive to non-PGD-like attacks is meanwhile the advantage of
being able to infer attack details of PGD-like attacks.

Attack Type Recognition determines whether an adversarial input is cre-
ated by PGD-like attacks in the uninformed setting for forensics purposes. The
corresponding binary classifier can be built upon the previously discussed detec-
tors, because SAE only responds to PGD-like attacks.

5 Experiments

In this section, we quantitatively verify the effectiveness of the ARC features
in two applications under an extremely tough setting. The MNIST evaluation
is omitted, as the corresponding conclusions may not hold [6] on CIFAR-10,
let alone ImageNet. We evaluate ResNet-18 [17] on CIFAR-10 [22]; ResNet-
152 [17] and SwinT-B-IN1K [26] on ImageNet [10] with their official pre-trained
weights (this reflects the advantage of our method for being non-intrusive). Our
code is publically available at https://github.com/cdluminate/advtrace.

https://github.com/cdluminate/advtrace
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ARC Feature Parameter. For the BIM attack for exploitation vectors,
we set step number T = 6, and step size α = 2/255 under the L∞ bound with
ε = 8/255. Note, the mean value of ARCm will tend to 1 with a larger T , making
ARCv less separatable. We choose T = 6 to clearly visualize the value changes
within ARCm, but this does not necessarily lead to the best performance.

Training. We train SVMs hk(·) with RBF kernel. We randomly select 50
training samples from CIFAR-10, and perturb them using only BIM with mag-
nitude ε = 2/255, 4/255, 8/255, 16/255, respectively. Then each of the four hk(·) is
trained with ARCv of the benign (ε = 0) samples and perturbed (ε = 2k/255)
samples. Likewise, for ImageNet we randomly select 50 training samples and
train SVM in a similar setting separately for ResNet-152 and SwinT-B-IN1K.
The weight for benign examples can be adjusted for training to control the False
Positive Rate (FPR).

Testing. For CIFAR-10, all 10000 testing data and their perturbed ver-
sions with different ε are used to test our SVM. For ImageNet, we randomly
choose 1024 testing samples due to costly Jacobian computation. A wide range
of adversarial attacks are involved, including (1) PGD-like attacks: BIM [23],
PGD [29], MIM [12], APGD [9], AutoAttack (AA) [9]; (2) Non-PGD-like attacks:
(2.1) other white-box attacks: FGSM [15], C&W [7] (we use ε ∈ {0.5, 1.0, 2.0, 3.0}
in L2 case), FAB [8], FMN [37]; (2.2) transferability attacks: DI-FGSM [49], TI-
FGSM [13] (using ResNet-50 as proxy); (2.3) score-based black-box methods:
NES [18], SPSA [45], Square [2]. AutoAttack is regarded as PGD-like because
APGD is its most significant contributor for success rate.

Metrics. The SVMs are evaluated with Detection Rate (DR, a.k.a., True
Positive Rate) and False Positive Rate (FPR). For inferring the ground-truth
label, we report the original accuracy for perturbed examples (denoted as “Acc”)
and that after correction (denoted as “Acc*”). Mean Average Error (MAE) is
also reported for ordinal regression. Accuracy is reported for attack type recog-
nition.

5.1 ARC for Attack Detection

For each network, the corresponding SVMs are trained and evaluated as shown in
Table 1. Columns with a concrete ε value are informed attack detection, while the
“ε=?“ column is uninformed attack detection. As can be expected from visu-
alization results, the ARCv clusters are gradually becoming separatable with
ε increasing, hence the increase of DR. Notably, the large perturbations (i.e.,
ε = 16/255) are hard to defend [38], but can be consistently detected across archi-
tectures. The ARC feature is especially effective for Swin-Transformer, because
this model transitions faster from being non-linear to being linear than other
architectures. Such characteristics are beneficial for SAE.

Upon detection of an attack, our method can correct the prediction into the
least-likely class as a post-processing step. Its success rate depends on whether
the attack is efficient to make the ground-truth class least-likely, and whether
the network is easy for the attack to make a class least-likely. From Table 1,
both ResNet-18 and SwinTransformer have such a property and lead to high
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Table 1. Informed and Uninformed (the “ε=?” column) Attack Detection. All numbers
are percentages with the “%” sign omitted, except for MAE. Numbers greater than
50% are in bold font.

Dataset
Model

Attack
ε = 2/255 ε = 4/255 ε = 8/255 ε = 16/255 ε =?

DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* MAE DR FPR Acc Acc*

CIFAR-10
ResNet-18

BIM 0.0 0.0 33.5 33.5 0.0 0.0 6.4 6.4 32.3 1.5 0.4 17.8 79.2 1.1 0.0 62.4 1.55 30.9 1.5 10.1 30.7

PGD 0.0 0.0 33.7 33.7 0.0 0.0 6.4 6.4 33.0 1.5 0.4 18.6 81.2 1.1 0.0 64.8 1.54 31.5 1.5 10.1 31.5

MIM 0.0 0.0 30.4 30.4 0.0 0.0 6.5 6.5 37.5 1.5 0.4 22.3 84.5 1.1 0.0 67.4 1.50 33.6 1.5 9.3 32.4

APGD 0.0 0.0 29.3 29.3 0.0 0.0 5.1 5.1 36.9 1.5 0.2 20.7 78.8 1.1 0.0 55.8 1.53 31.5 1.5 8.7 28.0

AA 0.0 0.0 27.4 27.4 0.0 0.0 2.1 2.1 37.3 1.5 0.0 20.6 78.4 1.1 0.0 55.6 1.53 31.6 1.5 7.4 26.8

? 0.0 0.0 30.9 30.9 0.0 0.0 5.3 5.3 35.4 1.5 0.3 20.0 80.4 1.1 0.0 61.2 1.53 31.8 1.5 9.1 29.9

ImageNet
ResNet-152

BIM 0.0 0.0 0.0 0.0 4.7 1.4 0.0 0.0 20.5 1.4 0.0 0.0 91.6 1.4 0.0 0.4 1.36 30.6 1.6 0.0 0.1

PGD 0.0 0.0 0.0 0.0 4.7 1.4 0.0 0.0 18.8 1.4 0.0 0.0 85.9 1.4 0.0 0.0 1.44 28.9 1.6 0.0 0.0

MIM 0.0 0.0 0.0 0.0 2.3 1.4 0.0 0.0 4.7 1.4 0.0 0.0 81.2 1.4 0.0 0.0 1.52 23.8 1.6 0.0 0.2

APGD 0.0 0.0 0.0 0.0 2.0 1.4 0.0 0.0 11.3 1.4 0.0 0.0 61.7 1.4 0.0 0.4 1.59 19.7 1.6 0.0 0.1

AA 0.0 0.0 0.0 0.0 2.5 1.4 0.0 0.0 10.7 1.4 0.0 0.0 61.5 1.4 0.0 0.0 1.59 19.9 1.6 0.0 0.0

? 0.0 0.0 0.0 0.0 3.2 1.4 0.0 0.0 13.2 1.4 0.0 0.0 76.3 1.4 0.0 0.2 1.50 24.6 1.6 0.0 0.1

ImageNet
SwinT-B-IN1K

BIM 4.1 1.6 6.1 6.2 13.7 2.0 0.0 8.4 77.3 2.0 0.0 74.0 97.9 0.2 0.0 97.9 0.96 49.1 2.0 1.5 47.3

PGD 3.9 1.6 2.3 3.1 16.4 2.0 0.0 10.9 72.7 2.0 0.0 68.8 98.4 0.2 0.0 98.4 1.01 48.6 2.0 0.6 45.9

MIM 1.6 1.6 0.0 1.6 10.2 2.0 0.0 10.2 63.3 2.0 0.0 63.3 93.8 0.2 0.0 93.8 1.09 43.8 2.0 0.0 43.8

APGD 1.4 1.6 0.0 1.0 5.3 2.0 0.0 4.5 32.6 2.0 0.0 25.2 65.0 0.2 0.0 51.0 1.37 29.4 2.0 0.0 23.2

AA 1.8 1.6 0.0 1.0 5.7 2.0 0.0 4.3 31.6 2.0 0.0 25.0 68.4 0.2 0.0 54.1 1.37 29.5 2.0 0.0 23.2

? 2.6 1.6 1.7 2.6 10.2 2.0 0.0 7.7 55.5 2.0 0.0 51.2 84.7 0.2 0.0 79.0 1.16 40.1 2.0 0.4 36.7

Fig. 5. ROC of SVMs in Table 1 & Table 3.

classification accuracy after correction. For ResNet-152, the least-likely label is
merely relevant (not identical) to the ground truth due to network property dur-
ing attack, hence leading to effective detection but not correction (this will be
explained in the next subsection). In contrast, the correction method performs
best on Swin-Transformer, as it can restore classification accuracy from 0.4%
to 36.7% even if both the concrete type of PGD-like attack and ε are unknown
(“Attack=?” row and “ε=?” column in Table 1), assuming flat prior. By adjust-
ing the weights of benign examples, the decision boundary can be moved to
influence FPR, as shown in Fig. 5. In particular, the proposed method performs
very well for Swin Transformer, especially when FPR is required to be low.

5.2 Sequel Attack Effect as Unique Trace

The SAE is unique to PGD-like attacks, as it requires the conditions in Sect. 2
to hold for consistent effectiveness. To clarify this, we change the attack settings
(quantitatively in Table 2), or the exploitation vector for ARCm (qualitatively
on CIFAR10 in Fig. 4), and then review these conditions:
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Table 2. Ablation of SAE uniqueness by varying attacks. The row (t1) is regarded as a
baseline, and the notation “..” means “same as the baseline”. SAE will show consistent
effectiveness when the conditions in Sect. 2 are satisfied.

#
Attack ARC ResNet-18 w/ ε =? ResNet-152 w/ ε =? SwinT-B-IN1K w/ ε =?

Name Lp Loss Iter. ∇f (·) Lp Loss Label MAE DR FPR Acc Acc* MAE DR FPR Acc Acc* MAE DR FPR Acc Acc*

t1 BIM ∞ CE Yes Yes ∞ CE č(x) 1.55 30.9 1.5 10.1 30.7 1.36 30.6 1.6 0.0 0.1 0.96 49.1 2.0 1.5 47.3

t2 BIM 2 .. .. .. .. .. .. 1.27 49.9 1.5 2.6 39.0 1.98 3.5 1.6 0.2 0.2 2.02 1.0 2.0 1.4 1.8

t3 BIM .. DLR .. .. .. .. .. 1.98 2.1 1.5 10.5 10.6 1.63 18.9 1.6 0.0 0.6 1.44 27.5 2.0 1.8 6.6

t4 FGSM .. .. No .. .. .. .. 1.96 3.4 1.5 30.3 29.5 1.63 18.6 1.6 8.4 6.8 1.44 27.1 2.0 44.9 32.4

t5 C&W 2 C&W .. .. .. .. .. 1.99 1.2 1.5 0.0 0.0 2.02 2.3 1.6 0.0 0.0 2.03 1.6 2.0 0.0 0.0

t6 FAB .. FAB .. .. .. .. .. 1.99 1.0 1.5 10.6 10.5 2.00 2.5 1.6 9.2 9.2 2.03 0.8 2.0 9.4 9.4

t7 FMN .. FMN .. .. .. .. .. 1.99 1.4 1.5 8.8 8.6 2.02 2.1 1.6 0.0 0.0 2.03 0.8 2.0 0.0 0.0

t8 DI-FGSM .. DI-FGSM .. No .. .. .. 1.98 2.2 1.5 42.9 42.0 1.98 3.5 1.6 27.9 27.5 1.87 8.2 2.0 67.2 62.1

t9 TI-FGSM .. TI-FGSM .. No .. .. .. 1.98 1.9 1.5 59.4 58.3 2.00 2.9 1.6 40.0 39.1 2.02 1.6 2.0 72.3 70.9

t10 NES .. .. .. No .. .. .. 1.94 4.7 1.5 38.6 39.4 1.98 3.1 1.6 28.3 27.3 2.02 1.6 2.0 50.6 49.4

t11 SPSA .. .. .. No .. .. .. 1.97 3.0 1.5 39.2 39.1 2.00 3.1 1.6 29.9 28.9 2.00 2.7 2.0 52.7 50.6

t12 Square .. Square .. No .. .. .. 1.99 1.6 1.5 85.7 84.3 2.02 2.1 1.6 68.6 67.4 1.84 10.2 2.0 77.9 70.1

t13 Gaussian .. N/A No No .. .. .. 1.99 1.7 1.5 87.0 85.6 2.00 2.7 1.6 75.2 73.2 2.00 3.1 2.0 82.4 79.7

t14 Uniform .. N/A No No .. .. .. 1.99 1.8 1.5 86.6 85.0 1.97 4.1 1.6 73.6 70.9 1.84 10.2 2.0 81.8 73.2

I. Iterative attack (Iter.). The single-step version of PGD, i.e., FGSM (t4, f4)
does not effectively exploit the search space within the Lp bound, and hence will
not easily trigger linearity and SAE. Swin Transformer slightly reacts against
FGSM due to its own characteristics of being easy to turn linear. Thus, SAE
requires the attack to be iterative;

II. Gradient access (∇f(·)). Transferability attacks (t8, t9) use proxy model
gradients, and hence could not trigger SAE. NES (t10, f14) and SPSA (t11, f15)
can be seen as PGD using gradients estimated from only network logits, but can
still not trigger SAE as it cannot efficiently trigger linearity. Neither does Square
attack (t12). Thus, SAE requires that the attacks use the target model gradient;

III. Same Lp bound. When the attack is BIM in L2 bound (t2, f6), SAE is not
triggered for ImageNet models, because the change of Lp influences the pertur-
bation search process. However, SAE is still triggered for CIFAR-10 possibly due
to relatively low-dimensional search space. This means CIFAR-10 property does
not necessarily generalize to ImageNet. When ARC has been changed accord-
ingly (f7, f8), the feature clusters are still separatable. Thus, SAE requires the
same type of Lp bound for consistent effect;

IV. Same loss. If LCE is switched to, e.g., DLR [9] (t3, f11), the SAE is
significantly reduced. However, if exploitation vectors are also created using DLR
(f12, f13), SAE will be triggered again. Thus, SAE requires a consistent loss;

V. Relevant label. The most-likely label ĉ(x̃) for exploitation vectors leads
to the least significant SAE (f9). Besides, even a random label (c?) leads to
moderate SAE (f10), while the least-likely label č(x̃) (which is ground-truth label
in many cases) leads to distinct SAE (f1). The most significant SAE correspond
to č(x̃) = c(x). To maximize cross-entropy, the local linearity of a large portion
of output functions fn(·) has been triggered. Thus, SAE requires a relevant label
(if any) for exploitation vectors.

When the exploitation vectors are created using random noise (f2, f3), SAE is
not triggered. Neither does random noise as an attack trigger SAE (t13, t14, f5).
Other non-PGD-like attacks (t5, t6, t7) do not trigger SAE either. A special case
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Table 3. Comparison with existing methods that are compatible with our setting.
Since only have a tiny amount of data is allowed in the problem setting as discussed
in Sect. 1, only NSS [21] is compatible and able to properly generalize. Other existing
methods require a much larger amount of data to generalize.

Method Metric
BIM PGD MIM APGD AA

2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ?

CIFAR10 ResNet-18

DR 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.1 4.7 0.0 0.0 0.3 0.2 0.8 0.0 0.0 0.3 0.2 0.8
NSS [21]

FPR 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5

ARC
DR 0.0 0.0 32.3 79.2 30.9 0.0 0.0 33.0 81.2 31.5 0.0 0.0 37.5 84.5 33.6 0.0 0.0 36.9 78.8 31.5 0.0 0.0 37.3 78.4 31.6

FPR 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5

ImageNet ResNet-152

DR 2.9 19.1 39.6 47.2 41.6 2.9 19.9 39.6 46.5 41.1 4.2 31.2 41.4 9.1 32.9 1.1 12.6 28.3 35.7 29.1 1.0 11.9 29.8 33.3 28.7
NSS [21]

FPR 0.4 1.4 1.2 1.4 2.0 0.4 1.4 1.2 1.4 2.0 0.4 1.4 1.2 1.4 2.0 0.6 1.4 1.2 1.4 2.0 0.4 1.4 1.2 1.4 2.0

ARC
DR 0.0 4.7 20.5 91.6 30.6 0.0 4.7 18.8 85.9 28.9 0.0 2.3 4.7 81.2 23.8 0.0 2.0 11.3 61.7 19.7 0.0 2.5 10.7 61.5 19.9

FPR 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6

ImageNet SwinT-B-IN1K

DR 4.5 16.2 42.4 47.5 44.2 4.9 15.8 41.8 47.1 44.1 12.3 28.7 29.3 4.5 28.9 1.6 11.0 31.3 35.5 31.1 1.4 10.4 31.8 35.1 30.8
NSS [21]

FPR 0.6 1.0 1.2 1.6 2.3 0.6 1.0 1.2 1.6 2.3 0.6 1.0 1.2 1.5 2.3 0.6 1.0 1.2 1.6 2.3 0.6 1.0 1.2 1.6 2.3

ARC
DR 4.1 13.7 77.3 97.9 49.1 3.9 16.4 72.7 98.4 48.6 1.6 10.2 63.3 93.8 43.8 1.4 5.3 32.6 65.0 29.4 1.8 5.7 31.6 68.4 29.5

FPR 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0

is targeted PGD-like attack, where the creation of exploitation vectors needs to
use negative cross-entropy loss on the most-likely label to reach a similar level
of effectiveness. We focus on the untargeted attack to avoid complications.

The non-PGD attacks, or PGD variants do not meet all conditions do not con-
sistently trigger SAE across architectures, because they provide a less “match-
ing” starting point for exploitation vectors, and hence make the BIM for exploita-
tion vectors “restart” an attack, where the network behaves non-linear again.
Only when all the conditions are satisfied will SAE be consistently triggered
across different architectures, especially for ImageNet models. As for label correc-
tion, PGD-like attacks can effectively leak the ground-truth labels in adversarial
examples, as long as the attack can reduce the logit value to the lowest.

In summary, SAE is the unique trace of PGD-like attacks. Although insensi-
tive to non-PGD-like attacks, SAE is a specific signature [42] of PGD-like ones.

5.3 Comparison with Previous Detection Methods

As discussed in Sect. 2, due to our extremely tough problem setting – (1) light-
weighted (no additional deep model); (2) non-intrusive (does not change the
model architecture or weights); (3) data-undemanding (can generalize with a
tiny amount of data), the most relevant methods among related works that do
not lack ImageNet evaluation are [21,24,27,28,39]. But [24,27,28,39] still require
a considerable amount of data to build accurate (relatively) high-dimensional
statistics. The remaining NSS [21] method craft Natural Scene Statistics features,
which are fed into SVM for binary classification. Namely, only NSS [21] and ARC
can properly generalize with a very small amount of training samples (such as
50 images) among existing works for adversarial example detection.

In particular, the NSS [21] feature is a 18-dimensional vector, extracted from
an image with a set of manually designed rules, without any trained machine
learning model. Hence, it satisfies the requirements discussed previously and is
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compatible to our problem setting. After extracting the features from the images,
we can train standad SVMs based on these features, following Sect. 4.

We also adopt the trained SVMs in our ordinal regression framework, with
a reduced training set size to 100 (the combination of 50 benign samples and 50
BIM adversarial examples based on the same set of 50 images) for each SVM
for a fair comparison. All SVMs are tuned to control FPR to a very low range
(� 2%). The results and ROC curves for the uninformed attack detection task
(i.e., with “ε=?”) can be found Table 3 and Fig. 5.

It is noted that (1) SVM with the 18-D NSS feature may fail to generalize
due to insufficient sampling (hence the below-diagonal ROC); (2) NSS performs
better for small ε, but performance saturates with larger ε, because NSS does
not incorporate any cue from network gradient behavior; (3) small ε is difficult
for ARC, but its performance soars with larger ε towards 100%, which is con-
sistent and expected from our visualization; (4) SVM with ARCv can generalize
against all PGD-like attacks, while NSS failed for MIM; (5) SVM with NSS may
generalize against some non-PGD-like attacks [21], but not ARC due to SAE
uniqueness; (6) SVM with the 2-D NSS feature (“Method 2” in [21]) fails to
generalize.

Thus, ARC achieves competitive performance consistently across these set-
tings, because it is low-dimensional, and incorporates effective gradient cues.
Apart from these, ARC also provides a new perspective to understanding attack
and defense from model’s gradient behavior, as discussed in Sect. 6. The moti-
vation for the tough problem setting is also elaborated in the Appendix.

5.4 ARC for Attack Type Recognition

As discussed in Sect. 4, attack type recognition is a binary classification task to
identify whether a given adversarial example is created by PGD-like attacks or
not. By gathering the 14 sets (5 sets from Table 1 and 9 sets from Table 2 t4-t12)
of adversarial examples involved in Table 1 and Table 2, a test dataset for attack
type recognition can be constructed. As each set has the same number of samples,
the binary classification accuracy can be calculated as the average of the DR for
PGD-like attacks and (1−DR) for non-PGD-like attacks in the uninformed (i.e.,
“ε =?”) setting. The results are 74.2%, 70.2%, 74.7% for ResNet-18, ResNet-152,
SwinT-B-IN1K, respectively.

This means ARC is effective in distinguishing PGD-like adversarial examples
and non-PGD-like ones. It is effective because our proposed ARC is specific to
PGD-like attacks and does not respond to other types of attacks.

6 Discussions and Justifications

Ordinal Regression. Intuitively, the uninformed attack detection can be for-
mulated as a standard regression to estimate a continuous k value. However,
this introduces an undesired additional threshold hyper-parameter for deciding



94 M. Zhou and V. M. Patel

whether an input with e.g., 0.5 estimation is adversarial. Ordinal regression pro-
duces discrete k values and avoids such ambiguity and unnecessary parameter.

Training Set Size. Each SVM has only 100 training data (i.e., 50 benign +
50 adversarial). The 2-D ARCv distribution being so simple that can be described
by a small amount of data points (see Fig. 2), allows an SVM to generalize
with less than 100 data points. The performance gain becomes marginal with
200 training samples or more, as feature distribution is already well represented.

Fig. 6. ARCm from regular (1st row), and
robust ResNet-50 (2nd row w/ ε=4/255, 3rd

row w/ ε=8/255). Note, we use the same col-
orbar as shown in Fig. 1.

Combination with Adver-
sarial Training. From our exper-
iment and recent works [14,29,38],
its noted that (1) small perturba-
tions are hard to detect, but easy
to defend; while (2) large pertur-
bations are hard to defend, but
easy to detect. However, combin-
ing defense and our detection is not
effective on ImageNet. As shown in
Fig. 6, we compute ARCm based on
regular ResNet-50 (from PyTorch)
and adversarially trained ResNet-
50 on ImageNet (from [14]). Unlike
the regular ResNet-50, adversari-
ally trained one has a much higher
mean value in ARCm, resulting in
almost non-separatable ARCv. This means adversarial training makes the
model very linear around the data [40]. Namely, the network is trained to gen-
eralize while being already very linear to the input, and thus it will be hard to
make the model behave even more linear to manipulate the output by the attack
to achieve a specific goal.

Limitations. This paper focuses on characterizing a specific type of attacks,
instead of a general detection or defense method. The following are the limita-
tions of the ARC feature in potential applications: (1) The SAE is unique but
specific to only PGD-like attacks; (2) Jacobian computation is very slow for
ImageNet models because it requires 1000 iterations of backward pass. Thus, we
are unable to evaluate on all ImageNet data with 2 Nvidia Titan Xp GPUs.

7 Conclusions

We design the Adversarial Response Characteristics (ARC) feature with the
intuition that a model behaves “linearly” against adversarial examples, in which
PGD-like attacks will leave a unique trace. The ARC feature can characterize
PGD-like attacks, when the “unique trace”, namely the Sequel Attack Effect
(SAE) is observed. Extensive qualitative visualizations and quantitative exper-
iments demonstrate the effectiveness of the proposed ARC/SAE. In particular,
our method is effective across both CNN-based and Transformer-based architec-
tures, multiple perturbation levels, and different datasets.
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Abstract. This paper addresses the persistent challenge in Keyword
Spotting (KWS), a fundamental component in speech technology, regard-
ing the acquisition of substantial labeled data for training. Given the dif-
ficulty in obtaining large quantities of positive samples and the laborious
process of collecting new target samples when the keyword changes, we
introduce a novel approach combining unsupervised contrastive learn-
ing and a unique augmentation-based technique. Our method allows the
neural network to train on unlabeled data sets, potentially improving
performance in downstream tasks with limited labeled data sets. We
also propose that similar high-level feature representations should be
employed for speech utterances with the same keyword despite variations
in speed or volume. To achieve this, we present a speech augmentation-
based unsupervised learning method that utilizes the similarity between
the bottleneck layer feature and the audio reconstructing information
for auxiliary training. Furthermore, we propose a compressed convolu-
tional architecture to address potential redundancy and non-informative
information in KWS tasks, enabling the model to simultaneously learn
local features and focus on long-term information. This method achieves
strong performance on the Google Speech Commands V2 Dataset.
Inspired by recent advancements in sign spotting and spoken term detec-
tion, our method underlines the potential of our contrastive learning app-
roach in KWS and the advantages of Query-by-Example Spoken Term
Detection strategies. The presented CAB-KWS provide new perspectives in
the field of KWS, demonstrating effective ways to reduce data collection
efforts and increase the system’s robustness.
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1 Introduction

Keyword Spotting (KWS) is a fundamental application in the field of speech
technology, playing a pivotal role in real-world scenarios, particularly in the con-
text of interactive agents such as virtual assistants and voice-controlled devices.
KWS is designed to detect a small set of pre-defined keywords within an audio
stream. This capability is crucial for two primary reasons. First, it enables the
initiation of interactions through specific commands like “hey Siri” or “OK,
Google,” effectively serving as an explicit cue for the system to start processing
subsequent speech. Second, KWS can identify sensitive words within a conversa-
tion, thereby playing a vital role in protecting the privacy of the speaker. Given
these applications, it is crucial to develop accurate and reliable KWS systems
for effective real-world speech processing [9,11,18].

Despite the considerable advancements in KWS, a significant challenge that
persists is the acquisition of sufficient labeled data for training. This is especially
true for positive samples, which are often harder to obtain in large quantities.
This issue is further exacerbated when the keyword changes, as it necessitates
the collection of new target samples, a process that can be both time-consuming
and resource-intensive. To address these challenges, we propose a novel app-
roach that leverages the power of unsupervised contrastive learning and a unique
augmentation-based method. Additionally, another potential problem is redun-
dant information, speeches are noisy and complex, where only some key phrases
are highly related to the keywords. However, convolutional methods treat all
the word windows equally, ignoring that different words have different impor-
tance and should be weighted differently within word windows. Besides, the
sliding windows used in the convolutional methods produce a lot of redundant
information. Thus, it is important to reduce the non-informative and redundant
information and distinguish the contributions of different convolutional features.

Our method enables the neural network to be trained on unlabeled datasets,
reducing the reliance on extensive labeled data. This technique can greatly
enhance the performance of downstream tasks, even in scenarios where labeled
datasets are scarce. Additionally, we propose that speech utterances contain-
ing the same keyword, regardless of variations in speed or volume, should
exhibit similar high-level feature representations in KWS tasks. To achieve this,
we present a speech augmentation-based unsupervised learning approach. This
method leverages the similarity of bottleneck layer features, along with audio
reconstruction information, for auxiliary training to improve system robustness.

In addition to these innovations, we propose a compressed convolutional
architecture for the KWS task. This architecture, designed to tackle the issue
of redundant information, has demonstrated strong performance on the Google
Speech Commands V2 Dataset. By doing so, it enables the model to learn local
features and focus on long-term information simultaneously, thereby enhancing
its performance on the KWS task.
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Our approach is inspired by recent advancements in the field of sign spotting
and spoken term detection. For instance, Varol et al. [21] demonstrated the
effectiveness of Noise Contrastive Estimation and Multiple Instance Learning in
sign spotting, which could provide insights into the use of contrastive learning in
KWS. Similarly, the works of Tejedor et al. [19,20] on Query-by-Example Spoken
Term Detection (QbE STD) highlight the potential of QbE STD strategies in
outperforming text-based STD in unseen data domains, reinforcing the potential
advantages of our proposed method.

Our major contributions in this work are as follows:

– We introduce a compact convolutional architecture for the KWS task that
achieves strong results on the Google Speech Commands V2 Dataset.

– We develop an unsupervised loss and a contrastive loss to evaluate the simi-
larity between original and augmented speech, as well as the proximity within
each minibatch.

– We introduce a speech augmentation-based unsupervised learning approach,
utilizing the similarity between the bottleneck layer feature, as well as the
audio reconstructing information for auxiliary training.

Theremainder of this paper is structured as follows. Section 2 provides an
overview of related work in the areas of data augmentation, unsupervised learn-
ing, and other methodologies of KWS tasks. Section 3 offers a background on
contrastive learning. Section 4 details the proposed model architecture and our
augmentation-based unsupervised contrastive learning loss. Section 5 discusses
the configuration, research questions, and experimental setups. Section 6 presents
the experimental results and compares them with other pre-training methods.
We also discuss the relationship between pre-training steps and the performance
of downstream KWS tasks. Finally, Sect. 7 concludes the paper with a summary
of our findings and potential avenues for future work.

2 Related Work

Data augmentation is widely acknowledged as an effective technique for enriching
the training datasets in speech applications, such as Automatic Speech Recogni-
tion (ASR) and Keyword Spotting (KWS). Various methods have been explored,
such as vocal tract length perturbation [5], speed-perturbation [8], and the intro-
duction of noisy audio signals [4]. More recently, spectral-domain augmentation
techniques, such as SpecAugment [15] and WavAugment [7], have been devel-
oped to further improve the robustness of speech recognition systems. In this
work, we extend these efforts by applying speed and volume perturbation in our
speech augmentation method.

While supervised learning has been the primary approach in the KWS area, it
often requires large amounts of labeled data, which can be challenging to obtain,
especially for less frequently used languages. This has sparked growing interest
in weakly supervised and unsupervised approaches. For example, Noisy Student
Training, a semi-supervised learning technique, has been employed in ASR [16]
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and subsequently adapted for robust keyword spotting [17]. Additionally, unsu-
pervised methods for KWS have been investigated [3,10,25], yielding promising
outcomes. Building on these efforts, we propose an unsupervised learning frame-
work for the keyword spotting task in this paper.

The Google Speech Commands V2 Dataset is a widely used benchmark
for novel ideas in KWS. Numerous works have performed experiments on this
dataset, introducing various architectures and methods. For instance, a convo-
lutional recurrent network with attention was introduced by [2], and a deep
residual network, MatchboxNet, was proposed by [12]. More recently, an edge
computing-focused model called EdgeCRNN [24] was introduced, along with a
method that integrates triplet loss-based embeddings with a modified K-Nearest
Neighbor (KNN) for classification [22]. In this work, we also evaluate our speech
augmentation-based unsupervised learning method on this dataset and compare
it with other unsupervised approaches, including CPC [13], APC [1], and MPC
[6].

3 Preliminary Study of Contrastive Learning

In the context of a classification task involving K classes, we consider a dataset
{xi, yi}N

i=1 with N training samples. Each xi ∈ R
L represents an input sentence

of L words, and each yi ∈ 1, 2, · · · ,K is the corresponding label. We denote the
set of training sample indexes by I = 1, 2, · · · , N and the set of label indexes by
K = 1, 2, · · · ,K.

We explore the realm of self-supervised contrastive learning, a technique that
has demonstrated its effectiveness in numerous studies. Given N training samples
{xi}N

i=1 with a number of augmented samples, the standard contrastive loss is
defined as follows:

Lself =
1
N

∑
i ∈ I − log

exp (zi · zj(i)/τ)∑
a∈Ai exp (zi · za/τ)

(1)

Here, zi is the normalized representation of xi,Ai := I\i is the set of indexes
of the contrastive samples, the · symbol denotes the dot product, and τ ∈ R

+ is
the temperature factor.

However, self-supervised contrastive learning does not utilize supervised sig-
nals. A previous study [Khosla et al., 2020] incorporated supervision into con-
trastive learning in a straightforward manner. It simply treated samples from
the same class as positive samples and samples from different classes as negative
samples. The following contrastive loss is defined for supervised tasks:

Lsup =
1
N

∑
i ∈ I 1

|Pi|
∑

p ∈ Pi − log
exp (zi · zp/τ)∑

a ∈ Ai exp (zi · za/τ)
(2)

Despite its effectiveness, this approach still requires learning a linear classifier
using the cross-entropy loss apart from the contrastive term. This is because the
contrastive loss can only learn generic representations for the input examples.
Thus, we argue that the supervised contrastive learning developed so far appears
to be a naive adaptation of unsupervised contrastive learning to the classification.
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4 Proposed Method

The keyword spotting task can be framed as a sequence classification prob-
lem, where the keyword spotting network maps an input audio sequence X =
{x0, x1, . . . , xT } to a set of keyword classes Y ∈ y1:S . Here, T represents the
number of frames, and S denotes the number of classes. Our proposed keyword
spotting model, depicted in Fig. 1(A), consists of five key components: (1) Com-
pressed Convolutional Layer, (2) Transformer Block, (3) Feature Selection Layer,
(4) Bottleneck Layer, and (5) Projection Layer.

4.1 Compressed Convolutional Layer

The Compressed Convolutional Layer replaces the CNN block in the original
design. This layer learns dense and informative frame representations from the
input sequence X. Specifically, it utilizes convolutional neural networks (CNNs),
an attention-based soft-pooling approach, and residual convolution blocks for
feature extraction and compression.

Frame Convolution. Just as in the original CNN block, the convolution oper-
ation is applied to each frame. Given the input sequence X and the i-th filter,
the convolution for the j-th frame is expressed as

xi
j = conv

({xj ,xj+1, · · · ,xj+ki−1} ;Wi
x

)
, (3)

where Wi
x is the learned parameter of the i-th filter.

Attention-Based Soft-Pooling. To eliminate redundant information in the
speech dataset, we propose an attention-based soft-pooling operation on the
frame representations learned by the previous equation. Specifically, given a
frame xj , its neighboring frames {xj+1, · · · , xj+g−1}, and the corresponding filter
fi, we first learn the local-based attention scores αi

j = Wi
αx

i
j + b with softmax

function, and then conduct the soft-pooling operation to obtain the compressed
representation as in the following equation:

oi
p =

j+g−1∑

q=j

βi
qx

i
q (4)

Residual Convolution Block. We now have a denoised matrix{
oi
1,o

i
2, · · · ,oi

P

}
that represents the input sequence X. To avoid vanishing gra-

dients and facilitate model training, we introduce residual blocks on top of the
compressed features. In particular, we replace the batch norm layer with the
group norm layer. Let a denotes the number of residual blocks, we have

ri
p = ResidualBlcok

({
oi

p, · · · ,oi
p+a−1

})
, (5)

where ResidualBlock is the operation of the residual convolution block.
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4.2 ResLayer Block

Transformer Block. The output from the Compressed Convolutional Layer,
R =

{
ri
1, r

i
2, · · · , ri

P

}
, is then fed into the Transformer Block. This block cap-

tures long-term dependencies in the sequence via the self-attention mechanism:
Etran = Self-Attention ×M (R) , where M is the number of self-attention layers.

Feature Selecting Layer. Following the Transformer Block, the Feature
Selecting Layer is implemented to extract keyword information from the sequence
Etran.

Efeat = Concat (Etran [T − r, T ]) , (6)

Here, the last r frames of Etran are gathered, and all the collected frames are
concatenated together into one feature vector Efeat.

Bottleneck and Project Layers. After the Feature Selecting Layer, a Bot-
tleneck Layer and a Projection Layer are added. These layers map the hidden
states to the predicted classification classes Ỹ .

Ebn = FCbn (Efeat ) , (7)

Ỹ = FCproj (Ebn) , (8)

Finally, the cross-entropy (CE) loss for supervised learning and model fine-
tuning is computed based on the predicted classes Ỹ and ground truth classes
Y . Lce = CE(Y, Ỹ ).

Fig. 1. A: The architecture of our CAB-KWS for the keyword spotting task consists of
a compressed layer, ResLayer Block, and Decision Block. B: The proposed method
integrates speech augmentation with unsupervised and contrastive learning for audio
processing.
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4.3 Augmentation Method

Data augmentation is a widely utilized technique to enhance model performance
and robustness, particularly in speech-related tasks. In this study, we delve into
speed and volume-based augmentation in the context of unsupervised learning
for keyword detection. A specific audio sequence, represented as X = A(t), is
defined by its amplitude A and time index t.

Regarding speed augmentation, a speed ratio symbolized by λspeed is
established to modify the speed of X. The following formula describes this
process:Xaug = A (λspeed t). For volume augmentation, similarly, we set an
intensity ratio, λvolume, to alter the volume of X, as presented in the follow-
ing equation: Xaug = λvolumeA(t). By using various ratios λspeed and λvolume,
we can generate multiple pairs of speech sequences, (X,Xaug), to facilitate the
training of the audio representation network via unsupervised learning. The fun-
damental assumption is that speech utterances, regardless of speed or volume
variations, should exhibit similar high-level feature representations for keyword-
spotting tasks.

4.4 Contrastive Learning Loss

We aim to align the softmax transform of the dot product between the fea-
ture representation zi and the classifier θi of the input example Xi with its
corresponding label. Let θi∗ denote the column of θi that corresponds to the
ground-truth label of xi. We aim to maximize the dot product θi∗T zi. To achieve
this, we learn a better representation of θi and zi using supervised signals.

The Dual Contrastive Loss exploits the relation between different training
samples to maximize θi∗T zj if xj has the same label as xi, while minimizing
θi∗T zj if xj carries a different label from xi.

To define the contrastive loss, given an anchor zi originating from the input
example xi, we take

{
θ∗

j

}
j∈Pi

as positive samples and
{
θ∗

j

}
j∈Ai\Pi

as negative
samples. The contrastive loss is defined as follows:

Lz =
1
N

∑
i ∈ I 1

|Pi|
∑

p ∈ Pi − log
exp (θp · zi/τ)∑

a ∈ Ai exp (θa · zi/τ)
(9)

Here, τ ∈ R
+ is the temperature factor, Ai := I\i is the set of indexes of

the contrastive samples, Pi := {p ∈ Ai : yp = yi} is the set of indexes of positive
samples, and |Pi| is the cardinality of Pi. Similarly, given an anchor θi∗, we
take {zj}j∈Pi

as positive samples and {zj}j∈Ai\Pi
as negative samples. The

contrastive loss is defined as follows:

Lθ =
1
N

∑

i∈I

1
|Pi|

∑
p ∈ Pi − log

exp (θi · zp/τ)∑
a ∈ Ai exp (θi · za/τ)

(10)

Finally, Dual Contrastive Loss is the combination of the above two contrastive
loss terms:

LDual = Lz + Lθ (11)
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As illustrated in Fig. 1(B), the structure of the proposed unsupervised learn-
ing method rooted in augmentation, involves two primary steps akin to other
unsupervised strategies: (1) unsupervised data undergoes initial pre-training and
(2) supervised KWS data is then fine-tuned. The pre-training phase sees the
extraction of a bottleneck feature by training the unlabelled speech, which is
subsequently used for KWS prediction in the fine-tuning stage.

In pre-training, the paired speech data (X,Xaug) is fed into CNN-Attention
models with identical parameters. Since Xaug is derived from X, the unsuper-
vised method we’ve developed assumes that both X and Xaug will yield anal-
ogous high-level bottleneck features. This implies the speech content remains
identical regardless of the speaker’s speed or volume. The network’s optimiza-
tion, therefore, must highlight the similarity between X and Xaug. The Mean
Square Error (MSE) Lsim is utilized to determine the distance between X and
Xaug’s output.

Lsim =
1

Ubn

Ubn∑

u=0

|Ebn(u) − Eaug
bn (u)|2 (12)

In this context, Ubn represents the dimensions of the bottleneck feature vec-
tor, while Ebn and Eaug

bn correspond to the bottleneck layer outputs for the
original speech X and the augmented speech Xaug, respectively.

The network also includes an auxiliary training branch designed to predict
the average feature of the speech segment input, helping the network learn the
intrinsic characteristics of speech utterances. To achieve this, the average vector
of the input Fbank vector X is first calculated along the time axis t. A recon-
struction layer connected to the bottleneck layer is then used to reconstruct this
average Fbank vector X̃. The MSE loss Lx is applied to measure the similarity
between the original and reconstructed audio vectors along the feature dimension
Ux.

X =
1
T

∑

T

(X) X̃ = FCreconstruct (Ebn) Lx =
1

Ux

Ux∑

u=0

|X (u) − X̃(u)|2

(13)
In this context, Ux denotes the dimension of the Fbank feature vector, and X

represents the mean vector of X. The loss Laug
x between the augmented average

audio X aug and the reconstructed feature X̃aug can be similarly defined as:

Lxaug =
1

Ux

Ux∑

u=0

∣∣∣X aug(u) − X̃aug(u)
∣∣∣
2

(14)

Hence, the final unsupervised learning (UL) loss function Lul comprises of
the three aforementioned losses Lsim ,Lx, and Lxaug

Lul = λ1Lsim + λ2Lx + λ3Laug
x + λ4LDual (15)

where λ1, λ2, λ3, λ4 are the factor ratios of each loss component.
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In the fine-tuning stage, the average feature prediction branch is discarded,
and a projection layer, followed by a softmax layer, is added after the bottleneck
layer for KWS prediction. The original network’s parameters can either be kept
fixed or adjusted during fine-tuning. Our experiments indicate that adjusting all
parameters enhances performance, so we choose to update all parameters during
this phase.

5 Experiment Setup

In this section, we evaluated the proposed method on keyword spotting tasks by
implementing our CNN-Attention model with supervised training and comparing
it to Google’s model. An ablation study was conducted to examine the impact
of speed and volume augmentation on unsupervised learning. Additionally, we
compared our approach with other unsupervised learning methods, including
CPC, APC, and MPC, using their published networks and hyperparameters
without applying any additional experimental tricks [23]-[25]. We also analyzed
how varying pre-training steps influence the performance and convergence of the
downstream KWS task.

5.1 Datasets

We used Google’s Speech Commands V2 Dataset [23] for evaluating the proposed
models. The dataset contains more than 100k utterances. Total 30 short words
were recorded by thousands of different people, as well as background noise such
as pink noise, white noise, and human-made sounds. The KWS task is to discrim-
inate among 12 classes: “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”,
“stop”, “go”, unknown, or silence. The dataset was split into training, valida-
tion, and test sets, with 80% training, 10% validation, and 10% test. This results
in about 37000 samples for training, and 4600 each for validation and testing.
We applied the HuNonspeech 1 real noisy data to degrade the original speech.
In our experiments, this strategy was executed using the Aurora4 tools |2. Each
utterance was randomly corrupted by one of 100 different types of noise from the
HuNonspeech dataset. The Signal Noise Ratio (SNR) for each utterance ranged
from 0 to 20 dB, with an average SNR of 10 dB across all datasets (Table 1).

Table 1. Results comparison of KWS Model, Classification Accuracy (%)

Model Name Supervised Training Data Dev Eval

Sainath and Parada (Google) Speech Commands - 84.7

CAB-KWS (w/o volume) Speech Commands 86.4 85.3

CAB-KWS & speed augment Speech Commands 87.3 85.8
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Table 2. Ablation study, the effect of speed and volume augmentation, classification
accuracy (%)

Model Name Pre-training Data Fine-tuning Data Dev Eval

CAB-KWS + vo-pre. Speech Commands Speech Commands 86.1 85.9

CAB-KWS + sp-pre. Speech Commands Speech Commands 87.8 86.9

CAB-KWS + vo-sp-pre. Speech Commands Speech Commands 87.9 87.2

CAB-KWS + vo-sp-pre-contras. Speech Commands Speech Commands 88.1 88.3

CAB-KWS + vo-pre. Librispeech-100 Speech Commands 86.3 86.0

CAB-KWS + sp-pre. Librispeech-100 Speech Commands 87.9 87.9

CAB-KWS + vo-sp-pre. Librispeech-100 Speech Commands 88.2 88.1

CAB-KWS + vo-sp-pre-contras & Librispeech-100 Speech Commands 88.4 88.5

“vo-pre.” means volume pre-training; “sp-pre.” is speed pre-training; “vo-sp-
pre.” indicates volume & speed pre-training; “contras.” is contrastive learning.

As with other unsupervised approaches, a large unlabeled corpus, consist-
ing of 100 h of clean Librispeech [14] audio, was used for network pre-training
through unsupervised learning. Initially, the long utterances were divided into
1-second segments to align with the Speech Commands dataset. Following this,
the clean segments were mixed with noisy HuNonspeech data using Aurora 4
tools, employing the same corruption mechanism as the Speech Commands.

5.2 Model Setup

The model architecture consists of:

– CNN blocks with 2 layers, a 3x3 kernel size, 2x2 stride, and 32 channels.
– Transformer layer with 2 layers, a 320-dimensional embedding space, and 4

attention heads.
– Feature Selecting Layer retains the last 2 frames with a 2x320 dimension.
– Bottleneck Layer with a single fully connected (FC) layer of 800 dimensions.
– Project Layer with one FC layer outputting a 12-dimensional softmax.
– Reconstruct Layer with one FC layer outputting a 40-dimensional softmax.

The factor ratio is set to λ1 = 0.8, λ2 = 0.05, λ3 = 0.05, and λ4 = 0.1.
To demonstrate the effectiveness, we compared with other approaches:

– Supervised Learning: Used Google’s Sainath and Parada’s model as baseline.
– Unsupervised Learning:

• Contrastive Predictive Coding (CPC): Learns representations via next
step prediction.

• Autoregressive Predictive Coding (APC): Optimizes L1 loss between
input and output sequences.

• Masked Predictive Coding (MPC): Utilizes Transformer with Masked
Language Model (MLM) structure for predictive coding, incorporating
dynamic masking.
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6 Experimental Results

6.1 Comparision of KWS Model (RQ1)

The table compares the classification accuracy of three different KWS models:
(1) the model by Sainath and Parada (Google), (2) the CAB-KWS model without
volume augmentation, and (3) the CAB-KWS model with speed augment. It can
be observed that the CAB-KWS model with speed augment achieved the highest
classification accuracy on both the development (Dev) and evaluation (Eval)
datasets. This research question aims to investigate how the inclusion of data
augmentation techniques, specifically speed augment in this case, improves the
performance of KWS models compared to models without these techniques. The
results could be used to guide future development of KWS models and to opti-
mize their performance for various applications.

6.2 Ablation Study (RQ2)

The CAB-KWS keyword spotting model is an advanced solution designed to
improve the classification accuracy of speech recognition tasks. The ablation
study presented in the table focuses on evaluating the impact of different pre-
training techniques, such as volume pre-training, speed pre-training, combined
volume and speed pre-training, and combined volume, speed, and contrastive
learning pre-training, on the model’s performance. By comparing the classifica-
tion accuracy of CAB-KWS when fine-tuned on two datasets, Speech Commands
and Librispeech-100, we can better understand the effectiveness of these pre-
training techniques and their combinations.

Firstly, Table 2 shows that the CAB-KWS model with speed pre-training (sp-
pre.) outperforms the model with volume pre-training (vo-pre.) in both datasets.
This result indicates that speed pre-training is more effective in enhancing the
model’s classification accuracy than volume pre-training. However, the combina-
tion of volume and speed pre-training (vo-sp-pre.) further improves the model’s
performance, demonstrating that utilizing both techniques can lead to better
keyword spotting results.

Moreover, the inclusion of contrastive learning (contras.) in the pre-training
process yields the highest classification accuracy in both Speech Commands and
Librispeech-100 datasets. The CAB-KWS model with combined volume, speed,
and contrastive learning pre-training (vo-sp-pre-contras.) outperforms all other
models, highlighting the benefits of incorporating multiple pre-training methods.
This result emphasizes the goodness of the CAB-KWS model, as it demonstrates
its adaptability and capability to leverage various pre-training techniques to
enhance its performance.

The CAB-KWS model’s strength lies in its ability to capitalize on different
pre-training methods, which can be tailored to suit specific datasets and tasks.
By combining these techniques, the model can learn more robust and diverse
representations of the data, leading to improved classification accuracy. This
adaptability makes the CAB-KWS model particularly suitable for a wide range
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of applications in keyword spotting and speech recognition tasks, where perfor-
mance and generalizability are of utmost importance.

In conclusion, the goodness of the CAB-KWS keyword spotting model is show-
cased through its ability to integrate various pre-training techniques, such as
volume pre-training, speed pre-training, and contrastive learning, to improve
classification accuracy. The ablation study demonstrates that the combination
of these methods leads to the highest performance across different datasets,
highlighting the model’s adaptability and effectiveness in handling diverse key-
word spotting tasks. This advanced model, with its robust pre-training methods
and fine-tuning capabilities, offers a promising solution for speech recognition
applications and can contribute significantly to advancements in the field.

6.3 Comparison with Unsupervised Models (RQ3)

Table 3. Comparison results in accuracy (%)

Model Name Pre-training Data Fine-tuning Data Dev Eval

Contrastive Predictive Coding (CPC) Speech Commands Speech Commands 87.6 86.9

Autoregressive Predictive Coding (APC) Speech Commands Speech Commands 87.2 86.5

Masked Predictive Coding (MPC) Speech Commands Speech Commands 87.0 86.7

CAB-KWS (full) Speech Commands Speech Commands 88.1 88.3

Contrastive Predictive Coding (CPC) Librispeech-100 Speech Commands 87.8 87.4

Autoregressive Predictive Coding (APC) Librispeech-100 Speech Commands 87.7 87.5

Masked Predictive Coding (MPC) Librispeech- 100 Speech Commands 87.9 87.0

CAB-KWS(full) Librispeech-100 Speech Commands 88.4 88.5

The CAB-KWS model is a sophisticated keyword spotting solution that inte-
grates multiple pre-training techniques to improve classification accuracy in
speech recognition tasks. The Table 3 provided presents a comparison of the
CAB-KWS model with three other models that employ individual pre-training
methods, namely Contrastive Predictive Coding (CPC), Autoregressive Predic-
tive Coding (APC), and Masked Predictive Coding (MPC). By comparing the
performance of these models, we can gain insights into the effectiveness of the
CAB-KWS model and highlight its advantages over models based on single pre-
training techniques.

The comparison in the table reveals that the CAB-KWS model consistently
achieves the highest classification accuracy on both the development (Dev) and
evaluation (Eval) datasets when fine-tuned on Speech Commands, regardless of
the pre-training data source (Speech Commands or Librispeech-100). This result
underlines the goodness of the CAB-KWS model as it demonstrates its ability to
effectively utilize multiple pre-training techniques to outperform models that
rely on individual pre-training methods.
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The CAB-KWS model’s superior performance can be attributed to its ability
to integrate and capitalize on the strengths of various pre-training techniques.
By combining different methods, the model can learn more diverse and robust
representations of the data, which in turn leads to improved classification accu-
racy. This adaptability makes the CAB-KWS model particularly suitable for a wide
range of applications in keyword spotting and speech recognition tasks, where
performance and generalizability are crucial.

Furthermore, the CAB-KWS model’s consistent performance across different
pre-training data sources indicates its flexibility and robustness. It is not limited
by the choice of pre-training dataset, which is an essential aspect of its goodness.
This characteristic allows the model to be adaptable and versatile, enabling its
use in various speech recognition applications with different data sources.

In summary, the CAB-KWS keyword spotting model showcases its goodness by
effectively combining multiple pre-training techniques to achieve superior classi-
fication accuracy compared to models based on individual pre-training methods.
Its consistent performance across different pre-training data sources highlights its
adaptability, making it a promising solution for diverse speech recognition tasks.
The CAB-KWS model’s ability to harness the strengths of various pre-training
techniques and deliver enhanced performance demonstrates its potential to con-
tribute significantly to advancements in the field of speech recognition (Fig. 2).

Fig. 2. Comparison of results with different pre-training steps. The number of pre-
training steps in unsupervised learning significantly impacts accuracy and fine-tuning
convergence. In our experiments, pre-training for 30K steps achieved the best classifi-
cation accuracy and the quickest convergence.
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7 Conclusion

This paper presents a robust approach for the Keyword Spotting (KWS) task.
Our CNN-Attention architecture, in combination with our unsupervised con-
trastive learning method, CABKS, utilizes unlabeled data efficiently. This cir-
cumvents the challenge of acquiring ample labeled training data, particularly
beneficial when target keywords change or when positive samples are scarce.
Furthermore, our speech augmentation strategy enhances the model’s robust-
ness, adapting to variations in keyword utterances. By using contrastive loss
within mini-batches, we’ve improved training efficiency and overall performance.
Our method outperformed others such as CPC, APC, and MPC in experiments.
Future work could explore this approach’s application to other speech tasks and
investigate other augmentations or architectures to enhance performance. This
work marks a significant step towards more reliable voice-controlled systems and
interactive agents.
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Abstract. This study is concerned with computer vision technologies
applied in C. elegans (diminutive nematodes) mating behaviour analy-
sis, more specifically object detection and tracking to find contacts of
male and female worms in worm mating videos. Advanced deep learning
algorithms, such as YOLOv8 and DeepSORT, are adapted in the auto-
mated worm identification and tracking system. A modified DeepSORT
algorithm is developed to cope with appearance similarity of C. elegans
for improving the tracking accuracy. In addition, a male worm detection
and tracking algorithm, utilising the male worm’s mobility characteristic,
assists the modified DeepSORT in accurate male worm tracking. Finally,
worm contact detection is implemented by calculating the Euclidean dis-
tance between the male and female worms. The developed system, named
as M1 and M2, is trained and evaluated under two sets of data, bounding
boxes and segmented worms, respectively. Furthermore, we compared the
effectiveness of including SAM segmentation optional module in exper-
iments. The evaluation results have shown that YOLOv8 has excellent
performance in worm detection to cope with deformable worm shape,
and the modified DeepSORT significantly outperforms the default Deep-
SORT in worm tracking.

Keywords: Object detection and tracking · C. elegan mating
behaviour analysis · deep learning

1 Introduction

Background. This study is concerned with applying computer vision tech-
nologies to discover mating behaviours of Caenorhabditis elegans (C. elegans)
worms. C. elegans are diminutive and free-living nematodes that have emerged
as vital model organisms across diverse scientific disciplines, including neuro-
biology, developmental biology, and genetics [19]. In the short developmental
life cycle, typically three days, C. elegans undergo complete development from
an embryo to a sexually mature adult [1]. This significant characteristic of C.
elegans has made it popular in investigations to unveil correlations between C.
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elegans behaviour and the presence of environmental toxins in the soil [8]. By
analysing C. elegans mating behaviours, scientists intend to reveal soil condi-
tions with regard to pollution [4]. Carefully setting experiments with a camera
to capture C. elegans mating behaviours made the analysis possible purely based
on videos. However, manual methods to observe the whole process are time-
consuming, which restrict the scope and efficiency of comprehensive studies. An
automated analysis tool based on computer vision technologies, such as object
detection and tracking is sought after to discover the mating behaviours.

In recent years, with the development of computer vision technologies, deep
neural networks are adapted in object detection and tracking. The emergence
of YOLO [23], from the original YOLO to YOLOv8, enables accurate real-time
object detection for robotics, autonomous vehicles, and video monitoring appli-
cations [27]. DeepSORT [28] has further advanced multiple object tracking with a
focus on simple and effective algorithms, which integrate appearance information
to improve the performance of the original simple online and real-time tracking
(SORT) algorithm [3]. Alternatively, the Segment Anything Model (SAM) is an
attempt to lift image segmentation into the era of foundation models [17].

Problem Statement. The videos taken in the C. elegans reproductive experi-
ments contain six worms, ideally, in each frame, five females and one male. The
duration of each video is about 18 min. The male worm is active and moving
around to approach females, whilst female worms are relatively inactive but with
motions. Figure 1(a) shows six worms in a frame and Fig. 1(d) demonstrates the
male worm has contacted a female worm after a few minutes in the video. From
Fig. 1, it can be seen that positions and shapes of these worms are changing in
the course of the process. This leads to a problem of deformable object detection
and tracking. The active male worm may move out of the scene (see Fig. 1(b)),
and imprints may appear in the scene (see Fig. 1(b), (c), and (d)). These chal-
lenge the traditional approaches, e.g. appearance based object detection, motion
based tracking, etc. [5–7,21].

With the final aim of automated analysis of C. elegans mating behaviours,
the initial objective of this study is to detect and record the contacting points
between the male and a female worm in the 18 min videos so that researchers can
skip to these points to observe the mating behaviours. Deep learning methods,

Fig. 1. Examples of C. elegans positions in experiments (a) Initial positions, (b) Male
left the scene, (c) Male back to the scene, (d) Male touching female 5
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based on both YOLOv8 and DeepSORT, are considered in object detecting and
tracking to investigate how the aforementioned challenges can be dealt with by
advanced technologies.

Related Work. Using a computer to monitor nematodes movement was
attempted in the 80’s of the last century [9] with a 6809 microprocessor pro-
grammed in assembly language under a lighting condition of high contrast. In the
area of C. elegans behavioural research, an array of innovative tracking systems
and methodologies have emerged, each with distinct attributes and capabilities.
Ramot, et al. [22] developed the Parallel Worm Tracker, a platform for quantita-
tive analysis of C. elegans locomotion. This system is capable of tracking multiple
worms in sequential video frames and recording their centroid positions. It is also
adept at calculating the worm’s speed and angular velocity. Simonetta, et al. [26]
proposed an automated system that tracks the locomotor activity of C. elegans
which is also suitable for circadian locomotion recording and research on aging
mechanisms. The system utilizes light microbeams to detect worm movement
and convert the frequency of the signal, allowing for a sophisticated analysis of
locomotion patterns. Jaensch, et al. [13] presented an automated tracking and
analysis system that offers exceptional accuracy in quantifying and tracking the
size of Green Fluorescent Protein (GFP)-labelled centrosomes in early C. ele-
gans embryos. It proves its efficiency by effectively processing large datasets with
only minor manual corrections required. Dzyubackyk, et al. [10] introduced an
algorithm designed for tracking C. elegans embryogenesis utilizing fluorescence
microscopy images. The algorithm demonstrated successful segmentation and
tracking of nuclei in the image sequence, surpassing the performance of existing
methods. It was found to be efficient and user-friendly, employing graph-cut-
based energy minimization for improved results. Restif, et al. [24] introduced
CeleST, a sophisticated computer vision software tailored for automated tracking
and in-depth analysis of C. elegans swimming behaviour. This innovative app-
roach employs adaptive background subtraction to effectively discern and track
individual nematodes within video frames, surmounting the challenges posed by
intricate and diverse background environments. Despite its impressive capabil-
ities, it is noteworthy that CeleST is designed to exclude worms that are in
contact during the tracking process. This unique exclusion, while advantageous
in some contexts, may present limitations when applied to specific studies that
aim to explore the nuances of worm interactions and contact behaviour.

Javer, et al. [14], introduced the Tierpsy Tracker, a Python-based multi-
worm tracker that extracts postural information from worm behaviour videos.
By offering enhanced head-tail detection and locally calculated thresholds, the
system provides an improved tracking accuracy. Lorimer, et al. [20] developed an
approach that excels in detecting changes in worm locomotion behaviour through
prediction error analysis. The algorithm localizes changes in worm locomotion
behaviour and offers flexibility and sensitivity. Leonard and Vidal-Gadea [20]
proposed a cost-efficient and user-friendly C. elegans tracking system. Although
designed for classroom usage, the system delivers results almost rivalling more



116 C. H. Akpu et al.

expensive professional systems, making it a cost-effective option for basic worm
behaviour studies. Deep learning methods were employed by Banerjee, et al.
[2] in their deep-worm-tracker for accurate detection and tracking C. elegans in
worm behavioural studies.

Contributions. Different from the existing tracking systems, the uniqueness
of this study lies in detecting and monitoring C. elegan pairs engaged in mat-
ing interactions. This requires identifying individual worms and tracking them
throughout their movements with position and appearance changes until the
male worm touches one of the female worms. Limitations of robustness and
reliability are still issues in dealing with occlusion and object lost/back in the
scene by using traditional approaches. Curiously, this study investigates how
an integrated deep learning approach copes with the limitations. In this paper,
we introduce an automated system that aids the study of C. elegans mating
behaviours analysis. The developed system, adapting YOLOv8 and modified
DeepSORT, addresses the challenging task of detecting and tracking individual
deformable worms, monitoring the trajectory of the male worm, and identify-
ing mating occurrences in recorded videos. A contact detection mechanism is
implemented efficiently reporting instances where worms overlap or make con-
tact. The system’s overall performance achieves a substantial level of accuracy in
worm tracking and contact detection. The technical innovation of the integrated
system is demonstrated in developing algorithms to modify DeepSORT, which
significantly improves the performance in worm tracking and contact detection.

The rest of the paper is organised as below. Section 2 briefly describes
YOLOv8 and DeepSORT. Section 3 introduces our technical approaches, includ-
ing the system framework, data annotation, and details of implementation. Rel-
evant experiments and testing results are demonstrated in Sect. 4. Section 5 con-
cludes the study and lays the future work.

2 Preliminary: YOLOv8 and DeepSORT

YOLOv8: YOLO was introduced by Redmon, et al. [23], representing a sig-
nificant leap forward in object detection efficiency and effectiveness. The key
innovation of YOLO lies in its ability to perform object detection in a single
forward pass of various deep neural networks as backbones for different versions,
from the original YOLO to recent YOLOv8, thereby achieving real-time process-
ing speed. The network divides the input image into a grid, and each grid cell is
responsible for predicting bounding boxes (objects). This grid-based approach
significantly reduces the computational overhead, making YOLO highly efficient
and suitable for real-time applications.

Essentially, the object detection task is framed as a regression problem, where
the neural network predicts bounding boxes and class probabilities directly from
the input image. Non-Maximum Suppression (NMS) is then used, which is a post-
processing technique [12] to reduce the number of overlapping bounding boxes
and improve the overall detection quality. From the original YOLO to recent
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YOLOv8, the algorithm also introduces anchor boxes to improve the accuracy
of object detection. Anchor boxes are predetermined shapes of different aspect
ratios that are used to refine the predicted bounding boxes. By introducing
anchor boxes, recent versions, such as YOLOv8, are better equipped to handle
objects of various shapes and sizes leading to improved localization accuracy.

As a state-of-the-art model, YOLOv8 [15] by Ultralytics was used in this
study. Object detection algorithms of YOLOv8 generate multiple bounding
boxes around the same object with different confidence scores, followed by NMS
which filters out redundant and irrelevant bounding boxes, keeping only the
most accurate ones. From input images, the YOLOv8 efficiently outputs a set of
detected bounding boxes together with their sufficiently high confidence scores
of object detection.

DeepSORT: DeepSort stands for Deep Learning-based SORT (Simple Online
and Realtime Tracking), is an advanced object tracking algorithm that combines
the principles of deep learning and traditional SORT to achieve highly accurate
and efficient tracking results in real-time video sequences. Extended from SORT,
a traditional online tracking method that uses Kalman filtering [16] and the Hun-
garian algorithm [18] for data associations, DeepSORT addresses the limitation
of the SORT algorithm by incorporating two pieces of information, motion and
appearance into its framework [28], named as d(1) and d(2), respectively.

The motion metric d(1) is implemented with the Mahalanobis distance
between predicted Kalman states vector dj of jth bounding boxes (consisting
of its center position (u, v), aspect ratio r, height h as well as their respective
velocities in image coordinates) and newly arrived measurements yi of ith track.

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi) (1)

where the i-th track distribution is projected into the measurement space by
(yi,Si).

For each bounding box detection dj , an appearance descriptor aj with ‖aj‖ =
1, is calculated based on a pre-trained convolution neural network(CNN) [28].
This approach trains appearance features offline with a large number of training
samples on a convolution neural network. The appearance metric d(2) measures
the smallest cosine distance between the i-track and j-th detection in the image
space.

d(2)(i, j) = min{1 − aTj a
(i)
k |a(i)k ∈ �i} (2)

where aj denotes an appearance descriptor in j-th detection, and a(i)k represents
appearance descriptors in the i-th image space �i, which is maintained as the
recent 100 associated appearance descriptors for each track.

Finally, the two metrics are combined as:

Ci,j = λ d(1)(i, j) + (1 − λ)d(2)(i, j) (3)

where 0 ≤ λ ≤ 1 is a hyperparameter. Ci,j are used to determine if the detected
bounding boxes are assigned to each track. For the details of DeepSORT imple-
mentation, refer to [28].
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3 Methodology

Relevant system frameworks and algorithms are developed to overcome chal-
lenges that arise when dealing with visually similar entities such as C. elegans
for their mating behaviours analysis based on videos. Figure 2 depicts the system
framework. YOLOv8, fine-trained by annotated C. elegans data, is for C. elegans
detection. It automatically resizes and rescales the input image to match that of
the images used for training the detector. The locations of objects detected in
the input image are returned as a set of bounding boxes. A modified DeepSORT
algorithm is implemented for multiple worm tracking. In the framework, SAM
(Segment Anything Model) is optionally attempted to assist DeepSORT in accu-
rate tracking with binary images [17]. For the technical details of SAM, which
is beyond the scope of this paper, the readers are referred to [17]. In Sect. 4, we
carried out an ablation study of SAM to obtain empirical results with or without
SAM module in Fig. 2. The male worm is identified and tracked in each frame,
even when it leaves and comes back to the scene. The system outputs two text
files with information on the contact times of the male worm and a female worm,
and coordinates of the male worm’s trajectory, as well as videos with detected
worms in each frame.

Fig. 2. Framework of the worm detection and tracking system.

3.1 Data Annotation

To fine-train YOLOv8, annotated training samples are prepared from the C.
elegans mating videos. This endeavour is expedited through the utilization of
the RoboFlow platform [25], which eased the annotation and data augmenta-
tion process. Two different versions of annotated training samples are collected,
bounding boxes (version 1: V1) and segmented encapsulations (version 2: V2),
as shown in Fig. 3 (a) and (b), respectively. The initial step involves the conver-
sion of videos into images. This task was achieved through the utilization of the
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Fig. 3. Training samples for YOLO fine-train (a) Bounding box, (b) Segmented

ffmpeg library [11], where images or frames are meticulously extracted from the
videos at intervals, typically spanning every 5 to 10 s.

In the selection of training samples, diversity is the key element to ensure
the robustness of a trained model. V1 contains 846 training samples, whilst V2
only has 208 training samples due to the process being highly time-consuming.

3.2 Modification of DeepSORT

A modified DeepSORT algorithm was proposed in this study to enhance the
tracking accuracy. Due to high visual similarities between the worms, identity
switching often occurs when these worms come in contact with each other or
occlude themselves. This, in turn, affects tracking accuracy. In other instances,
it would create a new ID for an existing worm. Knowing that videos in this study
consist of 6 worms at maximum, we modified DeepSORT to limit the frequency
in which new worm IDs are created after all 6 worms in the video have been
identified and are being tracked.

To mitigate identity switches during worm interactions, where visual similar-
ities can lead to confusion, we introduced dynamism to the number of frames for
new track identification. The DeepSORT algorithm initiates a new track hypoth-
esis for each detection that cannot be associated with an existing track. These
nascent tracks are initially classified as tentative with the algorithm anticipating
their consecutive appearance in a specified number of frames before their inclu-
sion in the track set. Failure to meet this criterion results in discarding these
tentative tracks. This predefined number for track identification can be adjusted
prior to the program’s execution. In modifying DeepSORT, we made the prede-
fined number for track identification adjustable during program execution. At
the program’s onset, this number is set to a relatively low value (e.g., 10 frames)
and once all six worms in the video are integrated into DeepSORT’s track set,
we dynamically increase the number of frames for new track identification to
a substantial value (e.g., 400 frames). This means that after all 6 worms are
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identified if the YOLO model detects a 7th object (maybe a worm imprint as
shown in Fig. 1), this 7th object (wrongly detected) will not be easily included in
our modified DeepSORT’s track set as opposed to the default DeepSORT. This
dynamic adjustment significantly enhances tracking accuracy by minimizing the
occurrence of identity switches.

SAM (Segment Anything Model) [17] is explored aiming to improve Deep-
SORT tracking accuracy. Although experiments with SAM had better track-
ing performance, the time taken to run such experiments is double that of the
experiments without SAM (see Table 2). For this reason, we left SAM to be
an optional process, for instances where speed is prioritized. YOLOv8 outputs
bounding boxes after C. elegans detection. SAM is applied to each bounding
box to segment C. elegan within it. Using this way, the segmented image and
the bounding boxes are passed into the DeepSORT tracker. Figure 4 depicts the
outputs of YOLO and SAM in the system.

Fig. 4. Outputs of YOLO and SAM in the system

3.3 Male Worm Detection and Contact Detection

An integral objective of this worm detection and tracking system is to provide
scientists with valuable insights into the moments when contact occurs between
male and female worms. The visual similarity between male and female worms
may cause problems for the appearance metric used in DeepSORT. A male
worm detection algorithm is developed and implemented. As aforementioned,
the male worm tends to have higher mobility and move more rapidly compared
to those female worms in the videos taken from C. elegans mating events. This
behavioural disparity presents a unique opportunity to leverage mobility as a
discriminating factor for distinguishing between male and female worms. The
approach for male worm detection is presented in Algorithm 1.

For contact detection, the initial way involves calculating the Euclidean dis-
tance between the centre points of two bounding boxes of worm pairs (one is the
male worm). If this distance falls below a specified threshold, it unequivocally
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Algorithm 1. Male Worm Identification by Mobility
Require: Coordinates of bounding boxes in each frame. Total number of bounding

boxes m. A specified frame number n.
Ensure: The male worm coordinates are identified.

1. For bounding boxes k = 1, ...,m in a frame of the video

(a) Obtain the centre coordinates u
(i)
k and v

(i)
k in the initial frame.

(b) At a specified frame number (n):

i. Obtain the current centre coordinates u
(c)
k and v

(c)
k .

ii. Compute the Euclidean distance Dk between the current and initial
coordinates.

Dk =

√
(u

(c)
k − u

(i)
k )2 + (v

(c)
k − v

(i)
k )2 (4)

2. At frame (n+1), identify the worm with the highest Euclidean distance
max{Dk} as the male worm.

3. Return

signals contact between the worms. The time of contact in the video was deter-
mined by multiplying the frame number and the frames per second of the video.
While this method provides a quick, straightforward, and intuitive way for con-
tact detection, it also demonstrates certain limitations. In scenarios where two
worms are positioned in parallel, their bounding box centre points may exhibit
proximity, leading to potential false positives in the contact detection process. To
address the limitations, worm segments as connected components are attempted
in contact detection. If any segmentation point from the male worm overlaps
or is in proximity to any female segmentation point, it is indicative of contact
between the two worms, and the time is recorded for the occurrence. The second
method highly depends on the accurate segmentation of each worm in the frame.
Otherwise, it may introduce contact detection errors.

4 Evaluation and Results

Evaluation takes place in three folders, i.e. worm detection, tracking, and con-
tact detection. A set of metrics is adopted. Mean Average Precision (mAP)
and mAP(50–95 ) are for worm detection, whilst the Multiple Object Tracking
Accuracy (MOTA) is used for evaluating worm tracking accuracy. The contact
detection is done by comparing the system output with the ground truth man-
ually obtained, and contact accuracy and contact F1 score are used as metrics.
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4.1 Evaluation Metrics

Mean Average Precision (mAP ) is a commonly used evaluation metric in
object detection tasks. It is defined in Eq. 5

mAP =
1
N

N∑

i=1

APi (5)

where APi is the precision for detection class i, defined as APi = TPi

TPi+FPi
. N is

the number of detection classes, in this case, six classes represent six worms in
a scene. A higher mAP score indicates better performance in object detection,
implying that the detection model excels in both precision and recall, where
recalli = TPi

TPi+FNi
. TP , FP , and FN stands for true positive, false positive,

and false negative, respectively.

mAP(50–95) is an extension of the mAP metric, taking Intersection over
Union (IoU ) in the calculation. IoU is defined as:

IoU =
Area of Overlap
Area of Union

(6)

mAP(50–95) measures the mean Average Precision over a range of IoU thresh-
olds, typically from 0.5 to 0.95, in increments of 0.05. The following steps are
involved in the calculation.

1. For each detection class and for each IoU threshold (beginning from 0.5,
incrementing by 0.05 up to 0.95), we compute the AP.

2. The mAP (50−95) score is then obtained by averaging these AP values across
all detection classes and across all IoU thresholds (from 0.5 to 0.95).

A high mAP (50 − 95) score indicates that the model performs well in object
detection across various IoU thresholds. This metric is more reliable than
the mAP which only uses an IoU value of 0.5, thus indicating that a higher
mAP (50 − 95) score will result in more accurate bounding box predictions.

Multiple Object Tracking Accuracy (MOTA) is an evaluation metric
in the field of object tracking that provides a holistic assessment of a tracking
system’s ability to accurately track multiple objects over time. It is defined as:

MOTA = 1 − (FN + FP + Msw)/GT (7)

where

– False Negatives (FN): quantifies the number of worms present in the frame
which the tracking system fails to detect.

– False Positives (FP ): encompasses objects erroneously identified as worms by
the tracker, quantifying instances of incorrect worm detection.
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– Male worm switches (Msw): indicates whether the male worm is detected or
switched with other worms in a given frame. This parameter carries a weight
of 0.25 greater (+25%) than that of identity switches occurring within female
worms.

– Ground Truth (GT ): represents the actual number of worms present in the
frame.

A high MOTA score suggests that the tracking system is performing well in
terms of accuracy in object tracking. This implies that it effectively tracks the
majority of objects while minimizing missed detections (FN), false alarms (FP ),
and failure in detecting a male worm (Msw) in a frame.

Contact Accuracy in contact detection is defined as

Contact accuracy =
contacts detected
overall contacts

(8)

In Eq. 8, contacts detected refers to the number of contacts (between male and
female worms) that were detected by the system in the testing video, and overall
contacts is derived from the ground truth showing the real contact number.

Contact F1 Score is expressed in Eq. 9.

Contact F1 score =
2TP

2TP + FP + FN
(9)

where TP refers to contacts detected as contacts, FP ; non-contacts detected as
contacts,and FN, contacts that were not detected by the system.

4.2 System Evaluation

Evaluation experiments were conducted by using a system with a 7th-generation
Intel processor, 16GB RAM, and a 6GB Nvidia Rtx2060 GPU. A pre-trained
YOLOv8n (a nano-sized model) was adapted in the experiments. The fine-tuning
of the model utilised the two sets of training samples, V1 and V2, described in
Sect. 3.1. The learning rate was set as 0.01 and the default Adam optimizer is
used in training. Two YOLOv8 models, M1 and M2, are established with V1
and V2, respectively. The training took less than an hour for M1 and over 4 h
for M2. Figure 5 shows the losses against epochs in their training. In M1, box
losses and class losses were involved in the training, whilst for M2, segmentation
losses were also taken into account. Testing was conducted on both M1 and M2.

Worm Detection Evaluation. In the evaluation experiments, we had three
sets of testing data in each model. For Model M1, associated with the V1 dataset,
133 samples were derived along with the training samples from the three videos
as described in Sect. 3.1; 167 samples were annotated from a new set of videos,
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Fig. 5. Losses against epochs in training (a) Model M1, (b) Model M2

and then we applied data augmentation to increase the testing dataset to 298
samples. For Model M2, associated with dataset V2, 46 testing samples were
derived along with the training samples; 48 samples from a new set of videos,
and 71 samples from data augmentation. As demonstrated in Table 1, M2 shows
the consistency of mAP and mAP(50–95) scores for the three testing datasets.
Interestingly for M1, the testing dataset derived from the same videos as the
training samples produces a much better mAP(50–95) score than those from
the testing datasets extracted from different videos. This may be caused by
bounding boxes with larger percentage overlaps decreasing in these two testing
datasets. Meanwhile, M1 yields superior mAP scores. The performance diver-
gence can be attributed to several factors, mainly because of the dissimilarity in
training data. It is worth noting that both the V1 and V2 training datasets com-
prise images extracted from three distinct C. elegans mating videos. However, a
pivotal distinction emerges in the volume of training samples. The V1 dataset
boasts a larger training sample size, amounting to 846 samples, in contrast to
the V2 dataset, which comprises a modest 208 samples. On the one hand, it
may indeed imply an enhancement in model performance, as a larger training
dataset generally fosters better learning outcomes. Conversely, this scenario can
also potentially lead to overfitting, where the model becomes excessively tai-
lored to the idiosyncrasies of the three specific videos present in the V1 dataset.
It underscores the significance of dataset diversity in achieving robust model
generalization.
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Table 1. Worm detection performance

Model Training Epochs Batch TestingmAP mAP

sample in training size sample (50–95)

M1 846 300 133 0.992 0.858

16 167 0.981 0.591

298 0.980 0.587

M2 208 450 46 0.975 0.765

1 48 0.960 0.714

71 0.950 0.713

Worm Tracking Evaluation. Building up on the YOLOv8 models is the
DeepSORT for worm tracking with or without optional modular SAM. Abla-
tion experiments were conducted with three different scenarios in worm tracking
evaluation.

1. A system that uses the default DeepSORT algorithm.
2. A system that uses the modified DeepSORT algorithm.
3. A system that incorporates the Segment Anything Model (SAM) in conjunc-

tion with the modified DeepSORT algorithm.

Overall, 113,400 frames were involved in the worm tracking and contact eval-
uation, about 10.5 fps (frame per second). The results presented in Tables 2 and 3
were from a test of an eighteen-minute video. With different algorithms applied,
the testing time was different. From Table 2, it is observed that with default
DeepSORT, the M2 model, trained on a dataset comprising 208 images has the
lowest MOTA. However, it attains the most commendable performance when
coupled with the modified DeepSORT tracker and SAM. Table 2 has clearly
shown that in both M1 and M2, the modified DeepSORT outperforms the default
DeepSORT significantly. The modified DeepSORT with SAM incorporated gives
better MOTA scores, but the tracking operation took a longer time.

Table 2. Worm tracking performance

Model Tracker MOTAMsw Testing time

M1 Default DeepSORT 61.5% 9 50:16

Modified DeepSORT 82.2% 4 51:06

Modified DeepSORT (SAM) 85.2% 3 2:12:45

M2 Default DeepSORT 21.4% 30 51:44

Modified DeepSORT 97.6% 4 56:23

Modified DeepSORT (SAM) 97.9% 4 2:23:45
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Worm Contact Evaluation. Detecting contact between male and female
worms was evaluated by implementing a manual recording process to estab-
lish the ground truth. It documents the time frames encompassing the male
worm’s interaction with a female worm, including the initiation and cessation
of contact. A video of C. elegans mating behaviours was involved in the test-
ing. Contact accuracy and F1 score defined in Eqs. 8 and 9 are demonstrated in
Table 3. Due to the low performance in tracking, the default DeepSORT algo-
rithm was excluded from the tests for both M1 and M2, only modified variants
are evaluated for contact detection.

Table 3. Contact detection performance

Model Tracker Contact Contact F1

accuracy score

M1 Modified DeepSORT 91.7% 0.861

Modified DeepSORT (SAM) 93.7% 0.898

M2 Modified DeepSORT 85.3% 0.738

Modified DeepSORT (SAM) 73.4% 0.347

The M1 model uses bounding boxes for contact detection since it does not
have segmentation coordinates while the M2 model uses the segmentation-based
contact detection. Although the M2 model coupled with Modified DeepSORT
and SAM has shown the highest performance in worm tracking, it exhibits an
anomaly, which affects the contact detection accuracy. The reason for this mis-
classification is due to how image segmentation was implemented, which renders
the worms in stark white against a pitch-black background. Thus, when the
worms, displayed as white entities, converge, their contours are not clearly visi-
ble due to the overlapping white pixels, making it difficult to identify individual
worms in contact. Although worm segmentation has shown an advantage in
tracking isolated worms, it occasionally makes mistakes in detecting worms dur-
ing contact. We observe that the bounding-box-based contact detection (with
SAM) performs better than the segmentation-based methods. Interestingly, the
M1 model with modified DeepSORT tracker and SAM produced the best results
with respect to both contact accuracy and contact F1 score on the video used
in evaluation.

5 Conclusion and Future Work

In this study, we developed a computer vision system which works on worm mat-
ing videos to identify and track each worm involved, leading to worm contact
detection. By adapting YOLOv8 and DeepSORT algorithms in the system, the
modified tracker associated with the developed male worm detection and contact
detection algorithms has achieved commendable contact detection accuracy on
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the evaluated video recording worm mating behaviours. The research problem
involves deformable object detection and tracking. It has proved that the inte-
grated deep learning approach can cope with the difficulty. The evaluation results
have shown that YOLOv8 has excellent performance in worm detection to cope
with deformable worm shapes in both M1 and M2. By incorporating SAM in the
tracker, excellent tracking performance was achieved in M2 although substan-
tial time is required in the operation, and the contact detection accuracy is also
improved in M1. Future study includes two aspects, investigating a larger num-
ber of small sequences to gain more comprehensive views on mating behaviours
and to investigate the role of segmented objects in contact detection. With the
two approaches, it is expected to make the system more robust and efficient in
coping with different scenarios.
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24. Restif, C., Ibáñez Ventoso, C., Vora, M.M., Guo, S., Metaxas, D., Driscoll, M.:
CeleST: computer vision software for quantitative analysis of C. elegans swim
behavior reveals novel features of locomotion. PLoS One 10(7), e1003702 (2014)

25. Roboflow: everything you need to build and deploy computer vision models (2023).
https://roboflow.com/ Accessed 28 June 2024

26. Simonetta, S.H., Golombek, D.A.: An automated tracking system for Caenorhab-
ditis elegans locomotor behavior and circadian studies application. J. Neurosci.
Methods 161, 273–280 (2007)

27. Terven, J., Córdova-Esparza, D.M., Romero-González, J.A.: A comprehensive
review of YOLO architectures in computer vision: from yolov1 to YOLOv8 and
YOLO-NAS. Mach. Learn. Knowl. Extr. 5(4), 1680–1716 (2023)

28. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep
association metric. In: 2017 IEEE International Conference on Image Processing
(ICIP), pp. 3645–3649. IEEE (2017)

http://ffmpeg.org/
http://ffmpeg.org/
https://github.com/ultralytics/ultralytics/
https://github.com/ultralytics/ultralytics/
https://roboflow.com/


Interactive-Time Text-Guided Editing
of 3D Face

Yeon-Jeong Lee1 , Yeong-Hun Song1 , Sang Wook Yoo2 ,
and Joon-Kyung Seong1,3(B)

1 Department of Artificial Intelligence, College of Informatics, Korea University,
Seoul 02841, South Korea

{bbcdggl920,syh6087,jkseong}@korea.ac.kr
2 LULULAB, Seoul 06054, South Korea

sangwook.yoo@lulu-lab.com
3 School of Biomedical Engineering, College of Health Science, Korea University,

Seoul 02841, South Korea

Abstract. Manipulating 3D faces using text is an important technology
in the entertainment industry. However, text-based manipulation of 3D
faces remains a challenging area due to the scarcity of data pairs con-
sisting of 3D faces and corresponding text. Additionally, inference for
manipulating 3D faces using text prompts often requires several min-
utes due to the large model sizes or the optimization process to fit the
text prompt. In this paper, we propose the ITFaceEdit model, a text
and image-based 3D face manipulation model. ITFaceEdit constructs a
framework trainable only with image and text data pairs, allowing it to
learn a direct relationship between the text latent space and the 3D face
latent space. By utilizing vectors from the learned text embeddings, we
can manipulate 3D faces, employing face parsing for disentangled manip-
ulation. Through this approach, we not only extend the reconstructed
3D face space using images with text-based manipulation but also con-
figure an inference process without relatively heavy model structures and
optimization steps, enabling 3D face manipulation in a few seconds. We
demonstrate the superiority of our proposed method through compar-
isons with existing methods in various ways.

Keywords: 3D face manipulation · Text-driven 3D face
manipulation · Text-driven 3D face animation

1 Introduction

Manipulating 3D faces is crucial in various industries such as film, gaming, and
beauty. Since the emergence of CLIP [27], many studies have attempted to gener-
ate or manipulate facial images or 3D faces from text using the joint embedding
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Fig. 1. Text-based 3D face manipulation with ITFaceEdit. The ITFaceEdit model
identifies the direction of 3DMM coefficient manipulation from the given text and
image, then manipulates the reconstructed 3D face from the image in that direction.
ITFaceEdit allows for manipulation of the identity, expression, and texture of the face
individually, and this process can be executed within seconds.

space learned by CLIP. However, text-guided manipulation of 3D faces remains
challenging due to the scarcity of paired 3D face-text data and the difficulty in
geometric manipulation of 3D faces.

Previous research has utilized image-text data to supplement the lack of 3D
face-text data pairs for training 3D face manipulation models. However, using
facial images alone makes it easy to distinguish differences in expressions and
colors, but difficult to learn geometric details such as eyes, nose, and mouth due
to the loss of geometric information. Therefore, previous studies have focused on
changing expressions and colors while maintaining facial identity. Additionally,
many models in text-based 3D face manipulation rely on outputs from StyleGAN
[17]-base and Diffusion [13]-based generative models and optimization processes
using text prompts, resulting in manipulation processes taking several minutes
or more.

To address these challenges, we propose a new model, ITFaceEdit (Fig. 1).
We utilized the Deep3DFaceRecon [7] model to extract coefficients for Basel Face
Model (BFM) [10]-based 3D face reconstruction from images, thereby incorpo-
rating 3D geometric information that extends beyond the capabilities of facial
images alone. This approach facilitates the manipulation of identity aspects,
which were previously difficult to manage. Additionally, to achieve rapid manip-
ulation, we trained a network that directly maps text to the BFM coefficient
space, circumventing the need for optimization techniques. This network effec-
tively maps the specific parts of the coefficients associated with the text prompts.
During training, we segmented each text into identity, expression, and texture
components, and independently mapped these to the respective coefficients. This
method enables swift text-based 3D face manipulation, thereby enhancing both
the efficiency and diversity of manipulations. Furthermore, we employed texture
maps obtained through differential rendering and facial parsers to achieve higher
quality and more visually realistic manipulation results.
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We use datasets such as Multi-Modal CelebA-HQ [15,19,23], AffectNet [25],
along with Cleaned Face Datasets [15,19,23] and BFM coefficients obtained from
the Deep3DFaceRecon [7] model, for training and evaluation. Our model can
manipulate 3D faces reconstructed from various images based on values mapped
to BFM coefficients from text input, and can handle manipulation for entire
sentences, not just single words. In summary, the contributions of our paper are
as follows:

– We propose a new model, ITFaceEdit, structured as a single pipeline (see
Fig. 3). This model takes image and text prompts as inputs and effectively
manipulates 3D faces with simplicity. Specifically, the Text-BFM Mapper
within our model directly maps text features to the 3D coefficient space,
offering a new method distinct from prior optimization-based training. We
demonstrate in Table 3 that this approach can significantly reduce the time
for 3D face manipulation to about 10 s and enables simultaneous manipula-
tion of multiple 3D faces with the same text.

– Unlike many studies that target expression or texture for manipulation, our
model divides the Text-BFM Mapper into identity, expression, and texture
components for training, allowing for detailed manipulation that includes
facial identity. Moreover, unlike previous methods that required adjusting
manipulation intensity through iterations of optimization-based training, our
model provides three parameters that independently control the identity,
expression, and texture aspects of the 3D face. These parameters enable users
to manipulate and animate faces in real-time with the desired intensity.

– Lastly, we applied texture maps and localized manipulation using parsers in
ITFaceEdit, enabling more visually realistic and natural manipulations. We
demonstrate the effectiveness of our approach using FID and CLIP scores in
Table 1, as well as visual evidence in Table 2.

2 Related Work

2.1 Parameter Space of 3D Faces

The development of 3D Morphable Models(3DMM) has been driven by signifi-
cant research contributions over the years. [4] introduced the foundational con-
cept by leveraging Principal Component Analysis (PCA) [1] to model facial
shape and texture variations. Cao et al. [5] expanded the scope with Face-
Warehouse, offering an extensive database of facial expressions, fostering fur-
ther research in 3D face fitting and animation. Additionally, models like BFM
[10] and FLAME (Faces Learned with an Articulated Model and Expressions)
[22] have refined the representation of facial features, enabling more accurate
modeling and animation. In recent years, research on learning the parameter
space of 3DMM and reconstructing 3D facial parameters from images has seen a
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rapid increase. Particularly, models like Deep3DFaceRecon [7] utilize deep neural
networks to directly estimate 3DMM parameters from images, enabling highly
accurate and detailed 3D facial reconstruction. HRN [21] adopt a hierarchical
approach to extract facial features and predict 3DMM parameters for multi-
step reconstruction. Additionally, methods like HiFace [6] and DECA [8] have
enabled the restoration of detailed facial components and the animation of 3D
faces. From these studies, extracting parameters for 3D face reconstruction from
images has become feasible, indirectly addressing one of the major challenges in
3D facial research, which is the scarcity of 3D facial datasets. Drawing inspira-
tion from such studies, we trained our model using pairs of 3DMM coefficients of
3D faces obtained from images and corresponding text, instead of insufficient 3D
face-text data pairs. By utilizing the 3DMM coefficients extracted from images
rather than using the images directly, we were able to incorporate geometric
information of 3D that images alone could not capture into our model.

2.2 Text-Driven 3D Manipulation

Since the emergence of CLIP [27], text-based image manipulation has become
increasingly prevalent, leveraging the shared embedding space of images and
text. In the domain of 3D face manipulation, efforts have been made to optimize
the rendering image of 3D faces and the CLIP embedding values of given text
to align, aiming to manipulate 3D faces based on text descriptions. Latent3D
optimizes input 3D faces in the direction of text using TBGAN [9] and CLIP,
while ClipFace [2] utilizes StyleGAN-ADA [16] and CLIP to optimize the param-
eters of 3DMM and the texture style in the direction of text, thus transforming
facial expressions and textures. Additionally, TG-3DFace [30] draws inspiration
from StyleGAN2 [18] to learn text styles and generate corresponding 3D faces
using Tri-plane, proposing a method to manipulate them with CLIP. Moreover,
approaches like DreamFace [31] and HeadSculpt [12] explore text-based manip-
ulation of 3D faces using latent diffusion model [28] and CLIP, while FaceCLIP-
NeRF [14] presents a method to deform expressions in the hyper space of NeRF
using CLIP. However, these methods often allow manipulation of only certain
aspects of 3D faces, and suffer from issues such as the presence of CLIP-based
optimization processes or long inference times due to model size during the face
manipulation process. We introduce a novel approach to learning the shared
embedding space between 3DMM parameters and text, achieving extremely fast
inference manipulation within 10 s, without the use of complex model structures
or optimization processes.

3 Overview

Our goal is to manipulate reconstructed 3D faces from images according to
the direction indicated by the text. Our research proceeded in two steps: (1)
Unlike previous methods, which iteratively align text and rendered images of
3D faces using CLIP’s image-text joint embedding space, we trained a text-
to-parametric 3D face mapper that directly maps text to the parametric 3D
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face space. Figure 2b illustrates the entire training process. We trained three
mapping networks to handle the identity, expression, and texture aspects of
the text, respectively, in order to map the text to the parametric 3DMM space
(the orange mapping networks). This was achieved using a pre-trained image-
parametric 3D face space mapper (the pink Image encoder) and an image-text
joint embedding space (the green CLIP encoder). This framework eliminates
the need for optimization during manipulation and allows for the manipulation
of multiple 3D faces simultaneously using a single text. (2) After training the
model, we use the trained three mapping networks to manipulate 3D faces based
on text. The overall manipulation process is shown in Fig. 3. The Text-BFM
Mapper shown in Fig. 3 is the same as the one in Fig. 2b. During manipulation,
we use texture maps to obtain higher-quality textured 3D faces and employ a
face parser for more disentangled manipulation. Those two steps are detailed in
Sect. 4 and Sect. 5, respectively.

4 Training the Mapping Between Text and 3DMM
Coefficients

To enable text-based 3D face manipulation, we first learn the relationship
between the text latent space and the parametric 3D face space. We were inspired
by the idea that the parameter space of 3D faces is a concatenation of parameter
spaces containing the meaning of identity, expression, and texture of the face.
Based on this insight, we aimed to create a model that can be more fittingly
manipulated according to text. To achieve this, we reclassified the facial features
into three parts: identity, expression, and texture, based on the existing dataset,
and used them for training. Additionally, we designed the model to be capable
of separately training each part.

4.1 Text Generation

As depicted in Fig. 2a, we constructed a new text dataset corresponding to the
three elements (identity, expression, texture) constituting the parametric 3D face
space. We directly separated the features of images into identity, expression, and
texture parts using the image annotation of the Multi-Modal CelebA-HQ dataset
[19]. Since our goal was to manipulate only the front part of the face, annotations
for accessories, hair, and other parts not relevant to the manipulation were not
utilized during the separation process. Additionally, to supplement the relatively
sparse information on expression in the Multi-Modal CelebA-HQ dataset, we also
utilized the AffectNet dataset. The separated annotations were then converted
into sentences using an LLM (Large Language Model) and used as input values.
Specifically, we employed the Qwen [3] and Llama2 [29] models for this task. In
cases where the annotation information corresponding to identity, expression,
or texture was missing for an image, the sentence for that particular part was
masked with a None value.
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Fig. 2. (a) An example of generated text data. Using the face image annotation and
LLM model, we generated new text data related to each element comprising the 3D
facial parameter space and utilized it for training. (b) An overview of our training
framework. We train a text encoder using image-text pairs to embed the 3D face
representation implied by text. Images are embedded into 3DMM coefficients through
a pre-trained image encoder, which serve as features of the 3D face. We then freeze the
pre-trained image encoder and text encoder before training the mapping network.

4.2 Training

Based on this image-text dataset, we train the three 4-layers MLP networks
showed in Fig. 2b. Each of these mapping networks takes associated text as input
and maps it to the parametric 3D face space. To enable direct mapping between
text and 3D face parameters, as mentioned in Sect. 3, we utilize a pre-trained
network capable of mapping facial images to the parametric 3D face space and
the image-text joint embedding space of CLIP.

In Fig. 2b, the R-Net is a pre-trained CNN released by Deep3DFaceRecon
[7] with weakly-supervised learning that takes a single image and outputs the
coefficients for a 3DMM. The 3DMM coefficients are represented by the vector
coeff = (cid, cexp, ctex, cr, cg, ct) ∈ R

257; cid ∈ R
80, cexp ∈ R

64, ctex ∈ R
80, cr ∈

R
3, cg ∈ R

27, and ct ∈ R
3. The six components represent the encoded face

identity, expression, texture, the degree of facial rotation, lighting coefficient,
and position of the face in the image, respectively. And coefficients are used to
generate the 3D face mesh M with face shape S and face texture T as follows:

M = (S, T )
S = ReconS(cid, cexp) = S̄ + Bid · cid + Bexp · cexp

T = ReconT (ctex) = T̄ + Btex · ctex

(1)

where S̄ and T̄ mean the average face shape and texture. Bid, Bexp, and Btex

are the PCA bases of identity, expression, and texture respectively, which are
all scaled with standard deviations. [7] using the Basel Face Model(BFM) [26]
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for S̄, Bid and T̄ and use the expression bases Bexp of [11] which are built from
FaceWarehouse [5].

We employ R-Net and the CLIP text encoder to train a new mapping network
for establishing the correspondence between the 3DMM coefficients space and the
latent space of text. Notably, camera and lighting information of the coefficients
was not utilized during training. The mapping network comprises linear layers
and activation functions, and during the training phase, we calculate the loss for
each mapping network based on the CLIP loss, and the total loss is obtained as
the sum of these losses:

L = Lid + Lexp + Ltex (2)

Lid = (LIid + LTid
)/2

LIid = − 1
N

N∑

i=1

log
exp(S(Ii, Tid,i)/σ)

N∑
j=1

exp(S(Ii, Tid,j)/σ)

LTid
= − 1

N

N∑

i=1

log
exp(S(Tid,i, Ii)/σ)

N∑
j=1

exp(S(Tid,i, Ij)/σ)

(3)

where I and T are the embedded coefficients for the image and text, respectively.
Since the calculation method for the loss of the three mapping networks is the
same, we have provided an example using the id mapping network here, and
the same process is followed to calculate the remaining two losses. Note that, Ii

denotes the portion of the embedded value that influences facial features (the
pink part of the embedding vector in Fig. 2b). S(·, ·) is a function that calculates
the cosine similarity. N is the mini-batch size for the image-text pairs. And
σ, a learnable parameter, is a logit scale value multiplied after calculating the
cosine distance between image embedding vectors and text embedding vectors.
For training, we utilized the CLIP text encoder pre-trained with the ‘ViT-B/16’
image encoder. We employed the Adam optimizer with learning rates set to 1e-5
and weight decay set to 0.2. Additionally, training was conducted with a batch
size of 1024 on a RTX A6000 GPU.

5 Text-Driven 3D Face Manipulation

5.1 Manipulation Through Text Embeddings

The user can input an image of the face they wish to manipulate and text
prompts into the ‘ITFaceEdit’ framework, which includes a pre-trained ‘Text-
BFM Mapper’, to adjust the reconstructed 3D face according to the directions
specified by the text. The text prompts can be divided into identity, expression,
and texture, allowing for repetition based on the user’s criteria. For parts with-
out corresponding text prompts, the value ‘None’ is used. When provided with
BFM coefficients obtained from the image, the model manipulates the 3D face
using the embedding values of the learned text through the Text-BFM Mapper.
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Fig. 3. An overview of the manipulation of 3D faces with a text prompt. (ITFaceEdit)
When a text prompt is entered, the trained model maps the text to the parametric 3D
face space and then uses it to manipulate the 3D face. Texture maps are used for higher
resolution during manipulation, and a face parser is employed for more disentangled
manipulations.

We manipulate the shape and color of the 3D face independently. Particularly
for the color manipulation, we utilize texture maps generated from the input
image to achieve higher-quality 3D face editing. Denoting the BFM coefficients
obtained from the image for manipulation as I, the embedding value of the text
prompt as T , and the resulting 3D face generated by the manipulation as M ′,
our manipulation processes for shape and color are defined as follows:

M ′ = (S′, T ′)
S′ = ReconS(Iid + α · Tid/ |Tid| , Iexp + β · Texp/ |Texp|)
T ′ = Cimg + ReconT (Itex + γ · Ttex/ |Ttex|) − ReconT (Ttex)

(4)

where α, β, and γ determine the extent of deformation of the 3D face along the
direction embedded by the text T, controlling the degree of change for identity,
expression, and texture respectively. And Cimg represents the color obtained
from the texture map of the image. This texture map is generated through a
pre-trained network of the HRN [21] model and used accordingly. Through our
experiments, we found that the appropriate values for α, β, and γ are approxi-
mately between 0 and 20, 0 and 30, and 0 and 10 respectively.
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5.2 Localization by Face Parsing

By individually training the mapping networks for each feature, we were able to
achieve some level of disentanglement within the feature space. However, within
the same feature space (such as identity), similar issues could arise. For instance,
if the statistical analysis of the training data showed a correlation between large
noses and large mouths, inputting ‘large nose’ might inadvertently result in
a larger mouth. To address this entanglement issue within a single mapping
network, we introduced a parser to further disentangle the features.

We employ a pre-trained face parsing model from CelebAMask-HQ [20] to
obtain localization maps. This model already contains text pairs (classes) cor-
responding to each facial feature. Thus, when a word, synonym, or similar term
related to a class is input, we mask and utilize the corresponding part. If it does
not match any class, we use the entire face. Additionally, to address potential
discontinuities in 3D manipulation arising from the use of the parser for natural
manipulation, we mitigate this issue by applying Gaussian blur.

M ′ = (S′, T ′)

S′ =

⎧
⎪⎨

⎪⎩

wv · ReconS;v(Iid + α · Tid/ |Tid| , Iexp + β · Texp/ |Texp|)
+(1 − wv) · ReconS;v(Iid, Iexp) if v ∈ Vparsing

ReconS;v(Iid, Iexp) otherwise

T ′ =

⎧
⎪⎨

⎪⎩

Cimg;v + wv · (ReconT ;v(Itex + γ · Ttex/ |Ttex|)
−ReconT ;v(Itex)) if v ∈ Vparsing

Cimg;v otherwise

(5)

Fig. 4. Results of text-based 3D face manipulation. (a) is the image after reconstruction
and the desired manipulation, (b) is the text prompt used for manipulation, and (c)
is the mask of the face parser for the text prompt in (b). From the resulting images
on the right, it’s evident that employing the texture map leads to much more realistic
outcomes, while the use of the parser effectively suppresses the alteration of facial
contours beyond the desired areas, such as eyebrows, observed previously. The leftmost
image in the same row is the result of reconstruction the original image, and moving
to the right, the results are obtained by increasing the values of α, β, and γ according
to the text prompt.
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In the above equation, v represents the set of mesh vertices corresponding
to the areas masked using face parsing in the image for the prompt text. Addi-
tionally, wv denotes the weights indicating the degree of manipulation for each
v. The bottom row of images in Fig. 4 illustrates the results of manipulating the
face mesh using parsing.

6 Result

Figure 5 presents the results of single-text-based 3D face manipulation using
both texture maps and parsers. It demonstrates that our model performs well
with various texts, reflecting the text accurately in the manipulation of identity,
expression, and texture aspects. The last two columns in Fig. 5 depict the manip-
ulation results from the mean face of BFM and omit the texture to emphasize
geometric changes. This allows us to observe the direction of change from the
mean face due to the text. Our model finds a mapping between the parametric
3D face space and a single text prompt without the need for inference for each
text-image pair, enabling simultaneous application to multiple images, thereby
allowing the manipulation of a large number of 3D faces concurrently. Addition-
ally, our model adeptly manipulates 3D faces not only with a single text but
also with multiple text prompts. Figure 6a demonstrates that our model per-
forms well even with multi-text prompts. Figure 6b demonstrates that by using
the three parameters α, β, and γ, we can manipulate or animate the 3D face to
match the desired text to the preferred extent. The figure illustrates how each
parameter appropriately adjusts the identity, expression, and texture aspects of
the face.

Lastly, we present the results of an ablation study conducted on approxi-
mately 16,000 manipulated 3D faces in Table 1b. The FID scores were calcu-
lated using images rendered from manipulated 3D faces via CelebA-HQ and
ITFaceEdit. The results confirmed that the use of texture maps contributed to
the overall quality improvement of the final outcomes, as evidenced by the FID
scores. The CLIP score represents the similarity between the rendered images
and the corresponding text prompts, with the values in parentheses next to the
CLIP scores indicating the increase in scores compared to the original images
and text prompts. Through our experiments (Table 1a), we observed that 3D
face reconstructions using texture maps resulted in visually superior outcomes,
despite lower CLIP scores. This suggests that the CLIP model may not be per-
fectly aligned with human visual perception, potentially due to internal biases
and the fact that it is not specifically trained on facial images and features.
[2] also discusses that a high CLIP score does not necessarily reflect perceptu-
ally high-quality results and may have a bias towards color. While CLIP scores
may not be an entirely accurate measure for 3D face manipulation, we still used
them for our analysis as CLIP is one of the best existing models for capturing
the correspondence between images and text. Therefore, for a more accurate
analysis, we calculated the increase in CLIP scores based on the presence or
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Fig. 5. Results of 3D face manipulation with various single text prompts. It can be
observed that identity, expression, and texture are all being manipulated appropriately.
The rightmost two columns show the manipulation results for the mean face of the
BFM.

absence of texture maps before manipulation. Ultimately, we found that CLIP
scores increased after 3D face manipulation in all cases, and that the combined
metric for FID values and the increase in CLIP scores was highest when both
texture map and parser were used.



140 Y.-J. Lee et al.

Fig. 6. (a) Results of 3D face manipulation in response to multi-text prompts. The
leftmost image shows the 3D face reconstructed from an image, and moving to the
right, the results are obtained by linearly increasing the values of α (0 to 20), β (0 to
30), and γ (0 to 10) simultaneously. This demonstrates that we can animate the 3D face
using these parameters. (b) The results of the controlled study for the bottom-most
outcome in Figure (a) are shown. From the first row, the parameters α, β, and γ are
manipulated one by one while fixing the other parameters at 0. As indicated by the
meaning of each parameter, α focuses on chubby, β on contempt, and γ on rosy cheeks.
It can be observed that each parameter is well-manipulated to reflect its specific focus.
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Table 1. (a) The CLIP score between the original image, the 3D reconstruction using
BFM without any manipulation, and the text. This shows that environmental vari-
ations can result in different CLIP scores despite the absence of any manipulations.
(b) Ablation study on Multi-Modal CelebA-HQ dataset, where ↓ means the lower the
better, ↑ means the higher the better. In the experiment, In the experiment, we used
values of 20 for α, 30 for β, and 10 for γ. The increase in CLIP score was calculated
based on the CLIP score corresponding to the presence or absence of the texture map
before manipulation.

Resources CLIP score ↑
2D origin image 21.5977

3D rendering w/o texture map 23.5648

3D rendering w/ texture map 22.4195

(a) Before manipulation

Methods FID ↓ CLIP score ↑ (Increase)

w/o texture map, w/o parser 61.5505 24.3120 (0.7472)

w/ texture map, w/o parser 50.6994 23.8908 (1.4713)

w/ texture map, w/ parser 46.8236 23.9273(1.5078)

(b) After manipulation

7 Comparison

To demonstrate the superiority of our model, we compare our results with exist-
ing models such as Text2Mesh and CLIP face (Fig. 7). Compared to basic text-
based 3D mesh generation models, we exhibit better performance. Furthermore,
when compared to ClipFace, we show stronger capabilities in manipulating the
identity aspect.

One of the greatest strengths of our model is its fast learning speed and
execution time. By leveraging the powerful 3D and text representations inherent
in CLIP embeddings and 3DMM parameter space, we were able to construct the
learning and manipulation processes with simpler networks. Table 3 illustrates
the number of parameters among the models and the time taken for manipulating
text-based 3D faces. It also includes TG-3DFace, a model whose comparison in
terms of manipulation results is currently not feasible. As there have been no
cases achieving manipulation in less than one minute so far, we consider this
point to be our strong advantage. For the runtime calculations, we use a single
RTX A6000.
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Table 2. An example of visual data corresponding to the results in Table 1. Here, the
text prompt “big lips” was used. This figure and Table 1 demonstrate that a high CLIP
score may not always align with what is perceived as visually preferable by humans.

(a) 2D origin image

(b) An example of visual data

Before
manipulation

After manipulation

w/o parser w/ parser

w/o texture
map

-

w/ texture
map

Table 3. Comparison model parameters and manipulation time

Model Text2Mesh ClipFace ITFaceEdit(Ours)

Total Parameters 151M – 152M

Trainables Parameter 659K – 3.3M

Manipulation Time 12min 6min 8 s (w/o texture maps 1.14 s)



Interactive-Time Text-Guided Editing of 3D Face 143

Fig. 7. Comparison of text-based 3D face manipulation results between existing meth-
ods and the ITFaceEdit model. The ITFaceEdit demonstrates better performance in
accurately transforming the 3D face in the direction desired by the input text compared
to Text2Mesh [24]. Additionally, it performs well in manipulating finer details such as
the nose and eyes, surpassing ClipFace [2] in this aspect.

8 Limitations and Discussion

Due to the use of pre-trained models, our research was unable to adequately
represent features such as hair, ears, and neck. Moreover, while we utilized text
generation to accommodate a variety of texts, the model learns mappings during
training, which can pose challenges in responding to unseen texts. In the future,
we plan to address this issue by generating a more diverse set of text-image
pairs. Additionally, because the use of CLIP scores may not be a perfect metric
for evaluating text-based 3D manipulations, we anticipate that the development
of new evaluation metrics could enable more accurate assessments.

9 Conclusion

We propose a model that learns the relationship between the coefficient space
of 3D faces and the latent space of corresponding text, and present a method
for text-based 3D face manipulation using this model. By utilizing 3DMM coef-
ficients obtained from images in our model training, we constructed a model
capable of learning the mapping between text and the latent space of 3D faces
with fewer parameters. Moreover, our method enables 3D face manipulation
without the need for iterative optimization processes during the inference stage,
allowing for obtaining desired manipulation results within seconds. Addition-
ally, to achieve richer textures in the results, we utilize texture maps obtained
from images and employ face parsing to obtain more disentangled manipulation
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results based on text inputs. Furthermore, our proposed approach allows the
application of text embeddings obtained from a single text input to multiple 3D
faces, and the degree of variation can be adjusted using parameters, enabling
the use of our method for animation purposes.
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Abstract. The implementation of data protection regulations such as
the GDPR and the California Consumer Privacy Act has sparked a grow-
ing interest in removing sensitive information from pre-trained models
without requiring retraining from scratch, all while maintaining predic-
tive performance on remaining data. Recent studies on machine unlearn-
ing for deep neural networks have resulted in different attempts that put
constraints on the training procedure and which are limited to small-scale
architectures and with poor adaptability to real-world requirements. In
this paper, we develop an approach to delete information on a class
from a pre-trained model, by injecting a trainable low-rank decomposi-
tion into the network parameters, and without requiring access to the
original training set. Our approach greatly reduces the number of param-
eters to train as well as time and memory requirements. This allows a
painless application to real-life settings where the entire training set is
unavailable, and compliance with the requirement of time-bound dele-
tion. We conduct experiments on various Vision Transformer architec-
tures for class forgetting. Extensive empirical analyses demonstrate that
our proposed method is efficient, safe to apply, and effective in removing
learned information while maintaining accuracy.

Keywords: Machine Unlearning · Low-Rank Adaptation · Vision
Transformers · Image Classification

1 Introduction

Unlearning, the task of removing the impact of specific training data from a
pre-trained model [35], is gaining attention in the Machine Learning community
due to data protection laws like GDPR and the California Consumer Privacy
Act [18,43], that aim to guarantee every user with the “right to be forgotten” [14,
15] and require companies to erase personal data and their impact on trained
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Fig. 1. Overview of our approach: we unlearn a class from a pre-trained image classi-
fication network without requiring access to the pre-training dataset and by injecting
a low-rank adaptation matrix into the network weights.

models, upon request. Solutions aim to erase the influence of certain data points,
essentially “untraining” the model to resemble one trained without them [4,7,24].

While removing one or more specific datapoints is crucial for addressing
privacy concerns, the literature has also been recently investigating the removal
of entire classes from a classification network [2,33,34,39]. This setting, which
is much more complex in both computational and algorithmic terms, is needed
when the entire class is a source of privacy leak (e.g., in a face recognition
system), but also opens up new possibilities in terms of removing portions of
the knowledge learned by the model when it is detrimental or not needed for a
specific application scenario.

Previous attempts in this direction have tackled the unlearning phase as a
fine-tuning step that involves all weights of a neural network [4,20,42], which
makes untraining computationally complex and hardly feasible in practical sce-
narios in which a neural network, that is employed in production needs to
be quickly adapted in response to a data removal request. Moreover, most
approaches to unlearning require the load and access of the entire training
dataset over which the network has been trained [19,20,42], putting another
constraint on the practical applicability of previous approaches in a production
environment. In these scenarios, indeed, the pre-training dataset can be signifi-
cantly large or even not available if the model has been trained on private data
and acquired from a third party.

To address these issues, we propose an unlearning algorithm that does not
require fine-tuning the entire set of parameters of a pre-trained model and that
does not need access to the dataset employed at training time (see Fig. 1). For
each layer of a pre-trained neural network, we learn a low-rank matrix that is
summed to the pre-trained parameters of the layer, with the aim of both forget-
ting unwanted data and retaining the original knowledge of the network. This
is achieved by modeling a low-rank trainable decomposition and leaving the
rest of the layers frozen, significantly reducing the number of trainable parame-
ters and optimizer states needed for untraining. At the same time, this solution
increases the network retaining capability and limits the loss in performance on
the portion of the data to preserve, thus addressing one of the most important
challenges in unlearning [12]. What is more, differently from many recent propos-
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als [19,42], this approach does not require explicit knowledge of the pre-training
dataset. Indeed, the objective of retaining the original knowledge is achieved by
regularizing the low-rank decomposition to increase its sparsity. Therefore, our
approach can be applied without storing the pre-training dataset, thus lowering
the storage requirements and allowing unlearning on backbones whose training
dataset is not known or available.

Experimentally, we validate the proposed approach on modern image classifi-
cation architectures based on the Vision Transformer [17] on CIFAR-10, CIFAR-
20, and ImageNet-1k datasets, demonstrating its applicability and efficiency. In
summary, our major contributions are as follows:

– We propose low-rank unlearning, the first approach to unlearn an entire class
from a neural network by injecting a low-rank decomposition into the network
parameters. Compared to existing work, low-rank unlearning greatly reduces
the amount of computational resources required for unlearning.

– Our method is based on learning low-rank trainable matrices. In contrast to
previous works which require complete access to retaining data, our approach
allows for modeling an unsupervised retaining objective that does not require
loading the pre-training dataset.

– We conduct extensive experiments to evaluate low-rank unlearning on image
classification tasks. The results show that low-rank unlearning can rapidly
and effectively forget undesired classes and outperform existing techniques.

2 Related Work

Machine Unlearning. Research efforts initially focused on unlearning solu-
tions for traditional machine learning algorithms [7]. Instead, more recent
approaches targeted erasing specific data points or entire classes from pre-
trained deep neural networks [4,20,28,29,42]. One approach involves retrain-
ing the model from scratch on the remaining data, which is computationally
demanding, especially for large-scale deep neural networks. To address these
limitations, some works aim to accelerate the retraining process [4,10,21,44]. In
this context, Bourtoule et al. [4] suggested partitioning the retraining dataset
into shards to minimize data requirements. Another solution [21] involves storing
and reusing gradient information during training. However, these methods often
require modifying the original training process and are not easily applicable in
real-world scenarios.

A different research line has focused on developing effective strategies to
update network parameters according to the samples the model should for-
get, without retraining the entire model from scratch [11,20,42]. For example,
Golatkar et al. [20] introduced a scrubbing procedure to remove information
from parameters by adding noise. However, these methods face challenges with
large datasets. To address this issue, a subsequent work [19] proposed splitting
the network weights into core non-linear weights and linear user parameters,
allowing for selective deletion without loss of accuracy.
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Recently, other proposals for tackling the unlearning task have been pre-
sented, where unlearning is done either by retraining the model with a teacher-
student paradigm with competent and incompetent teachers [42] or by shift-
ing the decision boundary of a deep neural network to emulate the behavior
of a model trained without samples of the forget class [9]. While almost all
the above-mentioned works need the set of data the network should not forget,
Cha et al. [8] proposed a novel instance-wise unlearning framework in which a
set of instances is deleted from the original model by intentionally misclassify-
ing them. Our work, in contrast, focuses on unlearning entire classes through
a fine-tuning strategy that involves learning low-rank decomposition matrices.
This allows for a reduction of the computational complexity of the unlearning
procedure while achieving good retaining capabilities.

Some other research efforts have been dedicated to few-shot [36,45] and zero-
shot [12] machine unlearning. While the former concerns a setting in which only
a few samples of the target data are available, the latter imposes the constraint
that no training data are available to perform the unlearning task. While these
settings are closely related to our proposal, we instead place ourselves in a more
realistic scenario, in which all the unwanted samples are available, while having
access to the rest of the pre-training dataset is not required.

Low-Rank Adaptation. During fine-tuning, updating all parameters of a pre-
trained model is computationally expensive. Parameter-Efficient Fine-Tuning
(PEFT) addresses this problem by optimizing a small portion of parameters,
leaving the backbone model unchanged. Among PEFT methods, Low-Rank
Adaptation (LoRA) [23] is one of the most popular approaches since it only
requires tuning small low-rank matrices, achieving comparable performance com-
pared to full fine-tuning across a wide range of tasks. For its efficiency, LoRA has
been used across different research fields, like the fine-tuning of large language
models to adapt them for various multimodal tasks [5,6] and foundation models
fine-tuning for improving their safety [38]. LoRA has also been used in facing
the severe risk of privacy leakage in latent diffusion models [31]. Moreover, in
federated learning, LoRA can be used to update local models efficiently without
sharing the full model parameters. This ensures that sensitive data remains on
local devices, enhancing privacy [41]. In contrast to previous research, we are the
first, to the best of our knowledge, to design a LoRA-based solution to unlearn
classes from pre-trained classification backbones.

3 Proposed Method

3.1 Preliminaries

Notation. Let Dtrain = {(xi,yi)}N
i=1 ⊆ X × Y be the complete training set

over which a deep neural network classification model has been trained, where
xi ∈ X denotes an input image and yi ∈ Y = {1, ...,K} its corresponding label,
being K the number of classes. We denote with Df ⊂ Dtrain a set of training
items whose impact needs to be removed from the model (i.e. the forget set)
and Dr = Dtrain \ Df the remaining set of training items over which we want
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to keep prediction accuracy (more formally, the retaining set). In this work, we
focus on the class unlearning scenario, in which Df will consist of all items from
one class. Also, let Dtest denote the test set used for evaluation.

Fig. 2. Overview of the proposed low-rank unlearning solution. The pre-trained model
is endowed with a trainable low-rank adapter, which is summed to existing network
weights. During test, the low-rank adaptation is accumulated in the pre-trained weights
to disable access to the previous state of the network.

Further, let gθ0 : X → Y indicate the original classification model pre-trained
on Dtrain, parametrized by a set of parameters θ0. The objective of the unlearning
phase is to fine-tune g by moving θ towards a state of the parameters θ′ where
the information of Df is unlearned and the information in Dr is maintained.
The resulting model, therefore, should behave similarly to a model gθ∗ which
has been trained from scratch on Dr and which has never received gradient from
samples in Df .

No-Retain Unlearning. Differently from previous works which require access
to both Df and Dr (or none of them, such as in the zero-shot setting defined
in [12]), we suppose to have access to the pre-trained model gθ0 and the for-
get set Df , without requiring access to the larger retain set Dr. Our setting
is more grounded and practical than previous ones. Indeed, it is reasonable to
hypothesize that the data holder has natural access to the data that needs to be
removed, i.e. Df . Also, the right to be forgotten gives the data holder up to a
month to remove the data, which largely settles our approach within the bounds
permitted by law. On the other hand, it is desirable that an unlearning method
does not need to process the whole training set, i.e. Dr. The original training
set, indeed, might not be completely known or available, as in the case of models
pre-trained on private data and then fine-tuned. Even when the full training set
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is available, however, processing during the unlearning phase inevitably requires
higher computational costs and also increases storage costs.

3.2 Class-Wise Unlearning

The objective of unlearning is that of removing the impact of the set of samples
in Df . This can be achieved by either imposing a misclassification or a re-labeling
of those datapoints. In the first case, the network is trained to misclassify all
datapoints in Df , i.e. so that gθ′(x) �= y for (x,y) ∈ Df . This can be done by
performing gradient ascent over a classification loss with ground-truth labels,
computed over the forget set, i.e.

Lunl(Df ; θ) = −Ex,y∈Df
LCE(gθ′(x),y; θ). (1)

In the second case, instead, a gradient descent learning can be performed
over a classification loss with labels different from the ground-truth ones for all
the samples in Df , i.e.

Lunl(Df ; θ) = Ex,y∈Df
LCE(gθ′(x),y′; θ), with y′ �= y. (2)

Whatever the above choice is, one of these unlearning objectives alone would
induce forgetting what the network has learned on Dr, therefore reducing its final
performance after responding to a removal request. Under a setting in which
direct access to Dr is allowed, this could be avoided by performing gradient
descent with a cross-entropy loss on Dr, to refresh its knowledge continuously
during untraining. In our scenario, in which access to Dr is not considered,
instead, a regularization loss can be added to keep the weights of the network
close to θ0 during the unlearning phase. The unlearning loss, therefore, becomes

L(Df , θ0; θ) = Lunl(Df ; θ) + Rret(θ0; θ), (3)

where R(·) is a regularizer that aims at overcoming forgetting of knowledge on
the remaining data Dr. Usually, this regularization is implemented by considering
either the magnitude of weight change (i.e. θ′−θ0) and its sparsity [25] or sample
importance [8].

3.3 Low-Rank Unlearning

The unlearning procedure is, essentially, a fine-tuning process θ0 → θ′ induced
by the loss L. While previous literature has focused on fine-tuning the entire
set of parameters θ0 without imposing constraints on the selection of trainable
weights, we instead hypothesize that this fine-tuning should happen in a low-rank
space. Under this hypothesis, a complete fine-tuning of θ0 is unnecessary and,
potentially, also detrimental as it leaves the door open to overfitting on Dtrain. In
a scenario in which Dr is not accessible, moreover, constraining the unlearning
phase to happen in a low-rank space helps to retain the original knowledge of
the model that has been learned on Dr.
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Without loss of generality, in the following, we describe our approach for
the case of a fully-connected layer. While these are a key ingredient of many
Transformer-based models as they build up the attention operator, our approach
can also straightforwardly be extended to convolutional layers. Given a pre-
trained layer f , with weight W0 ∈ θ0, W0 ∈ R

d×k and bias b ∈ θ0, which
applies a transformation f(x) = xW ᵀ

0 + b to its input tensor x ∈ R
k, we re-

parametrize its transformation during the unlearning phase by adding a low-
rank trainable component W̃ , initialized from zero. We then fine-tune only the
low-rank decomposition, leaving the rest of the layer frozen. Formally,

f(x) = xW ᵀ
0

�

+x

��

W̃ ᵀ + b

�

. with W̃ = BA, (4)

where A and B provide a bottleneck that creates a low-rank decomposition
(denoted with ��, above), with B ∈ R

d×r, A ∈ R
r×k and r being the rank

of the decomposition. During unlearning, W0 and b are kept frozen (�) and
we backpropagate gradient only on A and B. These are respectively initialized
with a Gaussian initialization and with zero, so that, at the beginning of the
unlearning phase W̃ = BA is a zero matrix and f behaves exactly as in the
pre-trained state.

Constraining the unlearning phase inside the low-rank decomposition �� also
provides a straightforward way to overcome the forgetting of knowledge with
respect to Dr, as limiting the magnitude of weight change during the unlearning
phase can be done by simply constraining the magnitude of W̃ . In continuity
with previous works that suggest that unlearning should produce a sparse update
of weights, we constrain W̃ to be sparse by adding an L1 regularization on B,
as follows:

Rret(θ0; θ) = λ‖vec(B)‖1, (5)

where vec(·) is the vectorization operator and λ a scalar non-trainable constant.
As it can be noticed, this induces B to be sparse, which in turn makes W̃
sparse. The regularizer can then be plugged into any unlearning loss, to realize
an unlearning procedure that does not require access to the retain set. In the
case of unlearning via misclassification, the complete loss thus becomes

L(Df , θ0; θ) = −Ex,y∈Df
LCE(gθ′(x),y; θ) + λ‖vec(B)‖1. (6)

After untraining is performed, A and B will contain the modifications applied
to layer f to remove the knowledge of Df while maintaining that of Dr. The orig-
inal knowledge of the network, though, will still be accessible through W . During
the evaluation, W can be made inaccessible by just collapsing the decomposition
settled in Eq. 4 back into a single parameter matrix, as follows:

W ′ ← W0 + BA, f(x) = xW ′ + b. (7)

After performing this operation, the resulting unlearned network will also
have the same number of parameters as the pre-trained model. Our approach is
also visually depicted in Fig. 2.
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3.4 Bounded Unlearning Loss

To realize proper unlearning, L should be minimized, zeroing the regularization
term and increasing the forget loss as much as possible. However, this involves
some drawbacks. Firstly, as we perform gradient ascent, the forget loss is not
bounded, like standard loss functions. Further, as the loss approaches negative
infinity, we would end up having ‖LCE(·)‖ 	 ‖Rret(·)‖, losing any numerical
guarantee that the regularizer will maintain information on the retaining classes.

To overcome these issues, we propose to minimize the following objective, in
which we employ the reciprocal of the forget loss, with a positive sign:

L(Df , θ0; θ) =
1

Ex,y∈Df
LCE(gθ′(x),y; θ)

+ λ‖vec(B)‖1. (8)

As it can be seen, the loss defined above can be minimized towards zero,
imposing the unlearning loss to be maximized, and the retain regularizer to be
minimized. Through the rest of the paper, the unlearning loss above will be
referred to as bounded unlearning loss.

4 Experimental Evaluation

4.1 Experimental Setting

We conduct a set of different experiments to validate the effectiveness of low-rank
unlearning, by comparing with baselines and state-of-the-art approaches.

Backbones. While most of the recent unlearning literature has employed small-
sized CNNs [9], we argue that it is crucial to test the effectiveness of unlearning
methods over modern image classification architectures. This choice increases
the effectiveness of the comparisons by reflecting a scenario closer to a future
production-like environment and helps to guide the literature toward developing
models that are more useful in real-world applications. Following this line, we
employ image classification backbones based on Vision Transformers, which have
proven their effectiveness on a wide range of tasks [1,3,13]. In particular, we
employ the original ViT model [17] in its Tiny and Small versions (i.e. ViT-T
and ViT-S respectively) and the Swin Transformer architecture [30] in its Small
configuration (i.e. Swin-S). Following concurrent works that have employed low-
rank decompositions for fine-tuning language models [23], we apply the low-rank
adapters to each linear layer producing the query, key, and value vectors.

Datasets. Following [11], we perform experiments on the CIFAR-10 dataset and
on a modified version of CIFAR-100 where images are grouped in 20 super-classes
by considering their semantic similarity. We refer to this modified version as
CIFAR-20. Both datasets [27] contain 50,000 training and 10,000 validation sam-
ples. In all experiments, we follow the standard splits. Additionally, we extend
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our analysis on the ImageNet-1k dataset [16] which contains images correspond-
ing to 1,000 different classes. For these experiments, we perform unlearning on
10 random classes1, using the original splits.

Baselines. To test and compare the effectiveness of the proposed strategies,
we employ the following baselines: the original model, i.e. trained from scratch
on the corresponding datasets reported in the tables using the standard cross-
entropy loss, without performing any unlearning strategy; the retrained model,
i.e. a model trained from scratch on Dr; the fine-tuned model, i.e. the original
model fine-tuned on Dr. Additionally, we implement two other unlearning base-
lines typically used in previous works [8,9], namely random labels [22] where we
fine-tune the model using randomly assigned labels for samples from Df , and
negative gradient [20] in which the model is fine-tuned on Df using negative
gradients (i.e. fine-tuned in the direction of gradient ascent). To validate the
effectiveness of our model, we also design three model alternatives to measure
the contribution of the proposed low-rank unlearning and bounded forget loss.

Metrics. To evaluate class-wise unlearning, we measure the accuracy scores on
both retaining and forget sets of the validation split of each dataset (i.e. Accr

and Accf respectively). Ideally, the accuracy on the retaining set should be close
to that of the original model, while the accuracy on the forget set should be equal
to zero, thus getting close accuracy with the retrained model.

Unlearning Details. To test the true capabilities of each of the baselines,
we opt for maximizing the performance of each of them by running a separate
grid search over their loss weights for each backbone and dataset. This is a
reasonable choice, as in practice the data holder could run a similar grid search
over its own architecture and data before deploying a model in production. Also,
we adopt an early stopping procedure that considers the average between the
retain accuracy and the opposite of the forget accuracy (i.e. 100 − Accf ), so as
to evenly balance between the capabilities of forgetting and those of retaining.
This is also different from what has been done in recent works [8] in which the
early stopping criterion was set exclusively on Accr, thus showcasing the forget
capabilities of an approach to the detriment of its retaining effectiveness.

In all experiments, we employ Adam [26] as optimizer with a batch size of
256. We use a learning rate equal to 0.0001 for the baselines employing retaining
data. In our setting without the retaining set, instead, we use a learning rate
of 0.01 and 0.00005 respectively for the models with and without low-rank fine-
tuning. In our complete model, we set the λ regularization weight to 0.001 for
ViT-T and 0.0025 for ViT-S and Swin-S. The rank of the decomposition r is
always set to 8, as it performed favorably in our initial experiments.

1 The classes that we consider are as follows: kite, mud turtle, triceratops,
scorpion, peacock, goose, jellyfish, snail, flamingo, beagle.



156 S. Poppi et al.

Table 1. Class-wise unlearning performance, comparing our solution with baselines
with access to retaining data and different ablations. Column Dr indicates whether the
method needs access to the retain set. Final accuracy scores are obtained by performing
an unlearning stage for each of the dataset classes and then averaging the results.

ViT-T ViT-S Swin-S

Dr Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓
Original model - 82.0 82.0 84.0 84.0 89.8 89.8

Retrained model ✓ 80.9 0.0 85.4 0.0 88.8 0.0

Fine-tuned model ✓ 80.2 7.9 81.3 3.0 85.0 2.3

Random labels [22] ✓ 83.0 0.0 85.1 0.0 88.9 0.0

Negative gradient [20] ✓ 84.4 0.0 85.8 0.0 88.9 0.0

Negative gradient w/ L1 regularization ✗ 80.8 0.3 82.2 1.0 85.4 2.1

Negative gradient w/ low-rank ✗ 80.9 0.1 82.5 0.9 85.4 1.8

Bounded loss w/ L1 regularization ✗ 81.2 0.1 82.3 0.8 85.5 1.4

CIFAR-10

Bounded loss w/ low-rank (Ours) ✗ 81.9 0.1 83.5 0.8 86.0 0.8

Original model - 67.0 67.0 71.9 71.9 74.4 74.4

Retrained model ✓ 64.2 0.0 69.7 0.0 72.7 0.0

Fine-tuned model ✓ 64.5 8.2 67.2 8.6 68.3 4.6

Random labels [22] ✓ 66.2 0.0 70.8 0.0 73.2 0.0

Negative gradient [20] ✓ 67.6 0.0 71.4 0.0 72.2 0.0

Negative gradient w/ L1 regularization ✗ 62.9 1.1 68.0 1.2 67.9 3.8

Negative gradient w/ low-rank ✗ 63.0 1.0 67.8 1.0 67.9 3.8

Bounded loss w/ L1 regularization ✗ 63.1 1.2 67.9 0.8 68.0 3.7

CIFAR-20

Bounded loss w/ low-rank (Ours) ✗ 63.5 0.9 68.2 0.8 68.2 3.4

Table 2. Single-class unlearning performance on 10 randomly selected classes from
ImageNet-1k, using ViT-Small as backbone. Averaged results and standard deviations
are reported in the rightmost columns.

Class 1 Class 2 Class 3 Class 4 Class 5

Dr Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓
Original model - 86.0 92 86.0 94.0 84.5 74.0 83.5 76.0 85.0 92.0

Random labels [22] ✓ 58.9 0.0 62.7 0.0 83.8 0.0 79.3 0.0 79.3 0.0

Negative gradient [20] ✓ 77.5 2.0 74.4 3.2 65.3 0.0 70.7 0.0 62.2 0.0

Bounded loss w/ low-rank (Ours) ✗ 68.0 0.0 61.3 6.0 70.4 0.0 74.9 0.0 69.8 0.0

Class 6 Class 7 Class 8 Class 9 Class 10 Avg (ViT-Small)

Dr Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓
Original model - 84.0 82.0 86.0 74.0 81.9 75.9 81.9 80.0 82.9 93.9 84.2±1.5 83.4±8.2

Random labels [22] ✓ 76.0 0.0 78.7 8.0 77.8 0.0 78.0 18.0 61.3 0.0 70.6±8.5 4.6±2.7

Negative gradient [20] ✓ 59.5 4.0 69.8 0.0 68.9 0.0 78.6 0.0 48.9 0.0 67.7±8.4 0.9±1.5

Bounded loss w/ low-rank (Ours) ✗ 68.7 2.0 75.1 0.0 73.1 0.0 79.1 0.0 70.4 0.0 71.1±4.6 3.0±6.6

4.2 Utility Analysis

A machine unlearning method is effective when the unlearned model contains
little or no information about the forget data items contained in Dr. In the
following, we evaluate the utility of the different baselines and that of the pro-
posed approach, by also conducting ablation experiments. Results are reported
in Table 1, over the three considered backbones and on both datasets.
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We begin by considering the retrained model in comparison with the original
model, which provides an upper bound in terms of accuracy on both the retaining
set and the forget set and which, on the other side, needs access to the full
training dataset. We then compare with three unlearning approaches which need
access to the retaining data as well, and which therefore operate on a setting
that is easier than the one on which we operate. Namely, we compare the model
trained with random labels and one trained with negative gradient.

Firstly, we notice that both the random labels approach and the negative
gradient approach are effective in forgetting the data contained in Df , as testi-
fied by their zero accuracies on the forget class. We also notice that fine-tuning
the original model on Dr is effective in erasing the information on Df to some
degree, even though the baseline fails to reach a zero accuracy and also takes
more training time, as already noted by previous literature [9]. Also, the ran-
dom labels approach struggles to maintain good retain accuracy, which can be
explained by the significant ground-truth noise caused by the model. The neg-
ative gradient approach, instead, is effective at both forgetting data and main-
taining the accuracy on other classes and reaches an accuracy on Dr which is
comparable, or even superior in some cases, to that of the retrained model.

We then turn our attention to the “no retain set” scenario, in which the model
has no access to Dr, where we investigate the performance of the negative gra-
dient approach, that of a model trained with the bounded unlearning loss, that
of a model trained with low-rank unlearning, and that of our complete model.
For the negative gradient baseline, we employ the negative gradient loss on Df ,
in conjunction with an L1 regularization on weight change, without employing
low-rank matrices. This baseline, while being consistent for comparing with our
final model, is also in line with recent works that demonstrated the effectiveness
of sparsity in unlearning [25].

Employing an effective unlearning approach such as the negative gradient
one, without having access to the retain set, results in a significant lowering of
the retain accuracy, of around one accuracy point on all backbones and datasets.
The addition of low-rank fine-tuning and the bounded unlearning loss, instead,
provide a good recovery of the retaining capabilities of the models, without com-
promising the forget accuracy, or even enhancing it in some cases. On CIFAR-10
and ViT-T, the combination of bounded loss and low-rank learning enhances
the retain accuracy by 1.1 points, while keeping the same forget accuracy, while
on ViT-S it increases the retain accuracy by 1.3 points and improves the forget
accuracy by 0.2 points. The same applies to the Swin-S model, where low-rank
unlearning significantly increases unlearning performance with respect to the
negative gradient baseline. The same can be observed on CIFAR-20, and over
all the three considered backbones. For instance, low-rank unlearning on ViT-T
increases the retain accuracy by 0.6 points, while obtaining a 0.9 forget accuracy.

In Table 2, we instead report the results on ImageNet-1k, considering the
ViT-S model and 10 randomly selected classes. In this setting, we compare our
model with the negative gradient and random labels baselines, which both lever-
age the retain set during unlearning. For completeness, we also show the results of
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Fig. 3. Visualization of the embedding space of pre-trained models and unlearned mod-
els on CIFAR-10 using the ViT-Tiny (top) and ViT-Small (bottom) backbones. Samples
from the unlearned class are represented with red markers. (Color figure online)

the original model which represents an upper bound reference. From the results,
it can be noticed that performing unlearning on the ImageNet-1k dataset is in
general more challenging: while all considered models can adequately unlearn
the selected classes, they experience some performance drops on the retain set.
It is worth noting, however, that our model can achieve competitive retain accu-
racy scores, performing better or on par than the two considered competitors
which both have access to the retain set during unlearning. All reported results
outline that our method achieves the utility guarantee effectively and low-rank
decomposition is a viable solution to perform unlearning without retaining data.

4.3 Visualizations

Embedding Space Visualizations. To better visualize the effect of unlearning
on the decision space of the network, we report t-SNE [32] visualizations of the
embedding space produced by the classification layer of the ViT-Tiny and ViT-
Small models, both unlearned on CIFAR-10. For comparison purposes, we report
the visualization obtained by the pre-trained model, by the negative gradient
approach (which employs retaining data), and by low-rank unlearning. As it
can be seen from Fig. 3, low-rank unlearning brings the embedding of unlearned
samples toward other classes, thus realizing the unlearning objective. Noticeably,
unlearned samples are moved to the embedding space of multiple classes, which
is a valuable effect. The opposite, indeed, could represent the Streisand effect
and provide more information about the forgetting data [20]. We observe that
this can happen in the case of the negative gradient baseline, especially with
the ViT-Tiny backbone, despite this baseline having access to retaining data.
Low-rank unlearning, instead, appears to be less prone to collapsing unwanted
data in the embedding space of a single class.
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Fig. 4. Grad-CAM [40] attention visualizations of different unlearning methods.

Further, we can notice that the clusters representing the other classes have
remained compact after unlearning, which testifies that their knowledge has
been retained. In particular, we observe that there is no significant difference
between retained clusters in negative gradient and those in low-rank unlearning.
Therefore, low-rank unlearning can effectively unlearn the embedding of a class,
while correctly maintaining the knowledge of retained classes.

Attention Maps. We also report the attention maps of models untrained with
our approach and with other approaches from the literature. In particular, we
employ Grad-CAM visualizations [40], which have been originally developed for
convolutional neural networks and which can seamlessly be adapted to Vision
Transformers [37]. We do this by reducing the stride of the first convolutional
layer of a ViT, so as to have an attention map with higher resolution. The maps
represent the areas of the input image that the network has paid more attention
to when predicting the final output distribution. Results are reported in Fig. 4,
where we can observe that the attention maps produced by low-rank unlearning
are significantly sparser than those produced by the negative gradient baseline,
and tend to shift the attention from the foreground object to the background,
in a manner that closely resembles the behavior of the retrained model. These
results confirm that low-rank unlearning is effective in removing knowledge of
the unwanted class, and also that models fine-tuned with our approach closely
resemble the models retrained without the unwanted data.

4.4 Computational Analysis

One of the most significant benefits of low-rank unlearning is that we greatly
reduce memory occupation and storage requirements, and we can also reduce
the computation times required to unlearn a given class. In particular, for a
Vision Transformer trained with Adam, low-rank unlearning reduces the VRAM
requirement by up to 2/3 with r = 8. Further, we also observed a reduction in
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Table 3. Unlearning times measured as the average number of seconds required to
unlearn a single class. Results are reported on the CIFAR-10 dataset.

Unlearning Time (s)

Dr ViT-Tiny ViT-Small

Negative gradient w/ L1 regularization ✗ 7.96 10.38

Bounded loss w/ low-rank (Ours) ✗ 6.83 9.16

backward times without increasing the number of iterations needed to bring the
model to early stopping. The detailed unlearning times are reported in Table 3,
in which we measure the number of seconds required to unlearn a single class,
averaging the results on all CIFAR-10 classes. We compare the unlearning times
of our complete model with those of the baseline without low-rank decomposition
and bounded unlearning loss (i.e. negative gradient with L1 regularization),
using a single P100 GPU to run the experiments. As it can be seen, our proposal
does not negatively impact unlearning times but on the contrary, it contributes
to improving the efficiency of model training when employing both ViT-Tiny
and ViT-Small model versions, thus further confirming the appropriateness of
our solution. It is also worth noting that at test time our model has the same
number of parameters as the original model. This guarantees that we do not
introduce any additional latency during inference compared to a retrained model.

4.5 Few-Shot Unlearning Analysis

Finally, we analyze the impact of using a reduced number of samples from Df to
perform unlearning. The results are shown in Fig. 5 using a variable number of
samples from the CIFAR-10 forget set. Also in this case, we compare our model
with the negative gradient baseline with L1 regularization and also report the
accuracy upper bounds obtained by our model trained using all samples in Df .
Notably, using 100 forget samples per class (i.e. instead of 5,000 as in the full
CIFAR-10 forget set) does not significantly deteriorate the performance. Both

Fig. 5. Retaining and forget accuracy scores when varying the number of forget samples
for each class. Results are reported on the CIFAR-10 dataset.
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ViT-Tiny and ViT-Small models achieve better retaining accuracy scores when
using our configuration compared to the baseline. In terms of forget accuracy,
our model can effectively forget the selected class, especially with 20, 50, and 100
forget samples. When instead using a very limited number of forget samples per
class, the accuracy scores are comparable or slightly worse than those obtained
by the baseline, which however loses in terms of retaining capabilities.

5 Conclusion

We have presented low-rank unlearning. Our approach removes the knowledge of
entire classes from a pre-trained neural network by learning a low-rank adapta-
tion of the network weights, which is then accumulated into the original weights
at test time. By leveraging a sparsity regularization, our approach does not
need access to the retain dataset, making it suitable for production-like envi-
ronments. Further, compared to previous approaches, it requires less computa-
tional resources, less memory allocation, and fewer storage requirements at train-
ing time. Extensive experimental results have demonstrated its performance in
unlearning of modern image classification architectures. We envision our work
as a step in the direction of efficient and effective unlearning.

Acknowledgments. This work has been conducted under a research grant co-funded
by Leonardo S.p.A. and supported by the EU Horizon project “ELIAS - European
Lighthouse of AI for Sustainability” (No. 101120237).
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Abstract. Atmospheric gravity waves occur in the Earth’s atmosphere
caused by an interplay between gravity and buoyancy forces. These
waves have profound impacts on various aspects of the atmosphere,
including the patterns of precipitation, cloud formation, ozone distribu-
tion, aerosols, and pollutant dispersion. Therefore, understanding gravity
waves is essential to comprehend and monitor changes in a wide range
of atmospheric behaviors. Limited studies have been conducted to iden-
tify gravity waves from satellite data using machine learning techniques.
Particularly, without applying noise removal techniques, it remains an
underexplored area of research. This study presents a novel kernel design
aimed at identifying gravity waves within satellite images. The proposed
kernel is seamlessly integrated into a deep convolutional neural network,
denoted as gWaveNet. Our proposed model exhibits impressive profi-
ciency in detecting images containing gravity waves from noisy satellite
data without any feature engineering. The empirical results show our
model outperforms related approaches by achieving over 98% training
accuracy and over 94% test accuracy which is known to be the best
result for gravity waves detection up to the time of this work. We open
sourced our code at https://rb.gy/qn68ku.

Keywords: Gravity Wave Detection · Pattern Recognition · Custom
Kernel · Hybrid Deep Neural Network · Remote Sensing

1 Introduction

Gravity waves (GW) are physical perturbations caused by gravity’s restor-
ing force in a planetary environment, distinct from gravitational waves [13].
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In Earth’s atmosphere, various disturbances like airflow over mountains, jet
streams, and thunderstorms create atmospheric gravity waves, displacing air
parcels and leading to wave patterns resembling ripples on water [20]. These
waves have broad effects, including localized vertical motion, turbulence, and
impacts on the middle atmosphere’s dynamics. They contribute to the transport
of heat, momentum, and atmospheric composition [4], as well as influencing
weather patterns, precipitation, cloud formation, tidal waves [10], and aviation
safety due to clear air turbulence [23]. Due to the significant impact of gravity
waves, there has been a surge of interest in their detection. AI researchers, along
with domain experts, are using machine learning techniques to understand the
phenomenon better and improve detection accuracy. However, the single-channel
satellite dataset used in this study presents challenges. Firstly, limited ground
truth availability makes data accuracy verification difficult. Secondly, the dataset
contains significant noise interference such as city lights, clouds, and instrumental
horizontal/vertical lines. Lastly, there’s a restricted amount of data identified by
domain experts. While gravity wave data are publicly accessible [1], the ground
truth is not provided. Domain experts helped select data containing gravity wave
patterns. The dataset comprises night bands obtained from the VIIRS satellite’s
day/night band (DNB) [7], introducing noise from city lights and clouds that
may reduce classification accuracy [12]. Applying denoising methods, like Fast
Fourier Transform (FFT) [11], can blend gravity wave patterns with noise, mak-
ing them harder to isolate.

To enhance the classification of gravity waves in satellite images, we introduce
a specialized convolutional kernel, the checkerboard kernel. This custom kernel
is designed to improve pattern recognition during convolution, particularly for
complex features and noisy environments. Inspired by successful applications in
computer vision, such as depth completion and image classification, our app-
roach emphasizes the importance of tailored kernels. Studies by Ku et al. [16],
Pinto et al. [26], and Zhang et al. [33] underscore the effectiveness of custom ker-
nels in diverse scenarios. In our specific application, the use of the custom kernel
enhances classification accuracy for gravity waves in satellite images, capturing
finer details and outperforming conventional methods. While deep neural net-
works (DNNs) excel in various tasks [15,19,24,30], but may not always be opti-
mal for detecting shapes in images due to the extensive training data required.
Effective categorization and minimizing assumptions are crucial, as advised by
[25]. In situations with limited data or subtle shapes, deep learning may struggle,
suggesting the need for complementary techniques [21]. Additionally, adjusting
weights to amplify signals enhances learning [35]. In our study with noisy data,
we propose a hybrid method using a custom kernel to capture challenging shape
information for deep neural networks. We focus on accurately identifying grav-
ity waves within images, even in noisy conditions. We introduce ‘gWaveNet’,
a hybrid deep neural network integrating the ‘checkerboard’ kernel in the first
layer. Our main contributions are: 1) We designed a unique ‘checkerboard’ kernel
capable of detecting gravity wave features amidst noise. This kernel acts as a spe-
cialized filter, highlighting gravity wave patterns for more accurate detection. 2)
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We propose ‘gWaveNet’, a novel deep neural network incorporating our custom-
designed checkerboard kernel to enhance gravity wave detection. This integration
allows the model to effectively learn and recognize intricate wave patterns. 3)
We conducted extensive ablation studies, exploring various training configura-
tions (as discussed in Sect. 5), employing checkerboard kernels of different sizes
to demonstrate our model’s performance. These experiments helped us under-
stand the impact of different setups and modifications needed to address the
challenges of detecting gravity waves in noisy datasets. Traditionally, detecting
gravity waves required expert knowledge and handcrafted features tailored to
wave characteristics [18]. However, our model automatically learns and extracts
relevant features from the data, reducing the need for domain-specific knowledge
and enhancing our approach’s generalizability.

The rest of the paper is structured as follows. Section 2 reviews relevant
literature related to this research. Section 3 discusses the facts about data, its
collection process, preprocessing steps, and groundtruth information. In Sect. 4,
we detail the methodologies employed for both the proposed kernel and the
model. Experiment details and results discussed in Sect. 5. Lastly, we conclude
the paper in Sect. 6.

2 Related Works

In this section, we review related work that is particularly relevant to custom
kernels and the detection of gravity waves.

Custom Kernel for Image Detection. Yousafzai et al. proposed a polyno-
mial custom kernel based on Mercer’s theorem with the support vector machine
for acoustic waveform classification with noise signals [32]. Ku et al. proposed
a simple algorithm to generate the depth information of LIDAR sensor data
and outperformed deep learning-based methods [16], which applied four (5 × 5)
custom kernels of circle, cross, diamond, and full shapes to compute the missing
data points in sensor data which improved the accuracy of depth information.
Suresha et al. proposed the integration of a custom multiquadric kernel func-

tion (k =
√

‖x1 − xj‖2 + c2) with the KPCA algorithm to generate important
features for image classification [29]. This custom kernel which resembles the
sigmoid kernel helps to extract new features from the original feature space and
also increases classification accuracy and reduces computational complexity, time
complexity, and storage issues. Zhang et al. [34] performed texture and object
classification using kernel-based discriminative analysis of local features to make
the distinction between different classes. Also, Zhang et al. [33] proposed the
integration of custom kernels with the 3D depth information to better analyze
and classify 3D objects in the presence of noise and low-intensity data.
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Deep Learning Approaches for GWDetection. CNN models often improve
object detection performance greatly in the computer vision domain. As gravity
waves can be detected by analyzing satellite images, the CNN model can be used
for this task very efficiently. Thus far, some research has been conducted regard-
ing gravity wave detection using deep learning models. There is a notable study
by Lai et al. that developed a convolutional neural network-based auto-extraction
program, which extracts gravity wave patterns in all-sky airglow images [17]. In
this work, the process involves using cleaner images, and on top of that, there is
still a step of discarding images that are not suitable for the model to learn dur-
ing the training process. In our case, we fed all images that include noise. Mat-
suoka et al. used U-net deep neural network model to estimate the gravity wave
from reanalysis data [22]. Recently, paper [28] proposed Deep Dictionary Learn-
ing algorithm to integrate deep learning and dictionary learning to detect gravity
waves by learning different kernels. InceptionV3 deep learning model was used in
[11] with transfer learning technique to detect gravity waves from satellite images.
In addition to these advancements, attention-based techniques, particularly the
Transformer, have gained popularity for image classification. Dosovitskiy et al.
[8] demonstrated that Transformers can outperform CNN models. Chen et al. [6]
highlighted the potential of Transformers in capturing multiscale features from
images. In the context of remote sensing, Bazi et al. [5] introduced a Transformer-
based classification model. In our research, we also evaluated the performance of
the Vision Transformer on complex satellite dataset to assess its suitability.

In conclusion, both custom kernel-based methods and deep learning-based
approaches have their strengths and weaknesses in image classification tasks.
Custom kernels can capture fine-grained details in the images and are especially
useful when the shape information is subtle. On the other hand, deep learning-
based approaches are highly flexible and can learn complex representations of the
images given enough training data. Our study seeks to integrate both techniques
to perform gravity wave detection from noisy satellite data with higher accuracy.

3 Data Preprocessing

For this investigation, we used the Day/Night Band (DNB) images from the
Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the
Suomi NPP satellite [7]. VIIRS DNB observes board band upwelling radiance in
the visible region. VIIRS DNB has a wide swath (∼3,000 km) and a relatively
high spatial resolution at 1 km approximately. Pixels within a 6-minute gran-
ule (∼4,000× 3,000 pixels) are stored in one Hierarchical Data Format version-5
(HDF5) [2] file. The raw HDF5 files contain radiance measurements within the
wavelength range of 0.5µm to 0.9µm. To highlight the airglow from gravity wave
events, nighttime images under new moon conditions are used in this study. As
a result, the DNB radiance could be extremely low with a value in the order
of magnitude of −10−9W/cm−2sr−1. To comprehend easily, we performed pre-
processing on the raw data, ensuring that the array values are within a specific
range while maintaining their relative distribution. This involved subtracting the
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minimum value from all array elements, scaling by the median, and normalizing
to 0.5. Normalizing to this reference point enables easier visual comparison and
analysis of the data. Finally, we transformed the intensity distribution from an
approximate normal distribution to a uniform one, while preserving the accurate
range of values. We present examples of our data processing in Fig. 1. Sub-figure
1a shows normalized data from a raw HDF5 file, while Sub-fig. 1b displays a pre-
processed image derived from the same file. Sub-figure 1c illustrates an image
containing gravity waves, along with various unwanted elements such as clouds,
city lights, and instrumental noise. Finally, Sub-fig. 1d presents an image with-
out gravity waves. The algorithm for raw data preprocessing is detailed in our
previous work [11].

Fig. 1. Examples of Data Processing and Image Types: (a) Normalized data from raw
HDF5 file (b) Pre-processed image from the same file (c) Image with gravity waves,
including unwanted elements (clouds, city lights, instrumental noise) (d) Image without
gravity waves.

We started by gathering raw satellite data stored in HDF5 format, focusing on
50 files chosen by domain experts containing gravity waves and noise. Using the
GDAL library we normalize the HDF5 files and convert them into PNG format.
We generated 200 × 200 grayscale image patches, overcoming the limited dataset
challenge. Given the infrequent occurrence of gravity waves, we employed data
augmentation, including rotation and flip, to increase the number of patches
with gravity waves. We manually categorized patches into two classes: “gw” for
gravity waves and “ngw” for non-gravity waves, maintaining a balanced dataset
of 5,985 image patches in each class, resulting 11,970 in total.

4 Research Methodology

Checkerboard Kernel for Gravity Wave Pattern Detection. Since our
dataset contains excessive noise, including city lights, clouds, and instrumental
noise (horizontal/vertical lines), we designed the checkerboard kernel to capture
all types of gravity wave patterns while excluding the noise. In this experiment,
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Fig. 2. Examples of ‘checkerboard’ kernels proposed in the gWaveNet.

we utilized kernels of different sizes, including 3× 3, 5× 5, 7× 7 and 9× 9, with
the same pattern as illustrated in Fig. 2. We used the kernel in the first layer of
our proposed deep-learning model (discussed later in this Section) to generate
low-level features from input grayscale satellite images. The proposed custom
kernel is defined as: K(x, y) = [(x + y + 1)%2] x ∈ (0, ..., w) and y ∈ (0, ..., w).
Here, w is the length of the square kernel (K) and (x, y) is any position in the
2-dimensional kernel of size (w × w). The visualization of the proposed kernel
is provided in Fig. 3a. This kernel is capable of finding various shapes and ori-
entations of the gravity wave traces from the noisy input dataset. We apply
the checkerboard kernel on different images using the convolutional approach
to observe the effects of the proposed kernel, as illustrated in Fig. 4. The figure
demonstrates that the features corresponding to gravity waves are successfully
extracted. To enhance visibility, we have highlighted these extracted features in
yellow.

The concept behind utilizing a custom kernel within a deep learning app-
roach is to enable the model to extract specific features relevant to the problem
at hand. The conceptual purpose of the custom kernel, illustrated in Fig. 3a,
is to capture intricate and nonlinear gravity wave patterns within the images
that aligns the properties of gravity waves, even in the presence of noise. The
alternating pattern of ‘1’s and ‘0’s within the checkerboard kernel enables the
identification of lines, representing gravity waves, and gaps between them respec-
tively. Additionally, the repeating pattern in the kernel helps identify recurring
ripple-like nonlinear lines of varying shapes in the images. Our experimental
results (in Sect. 5) indicate that the proposed gWaveNet outperformed all other
approaches.

Proposed Checkerboard Kernel-Based Hybrid Neural Network. Our
proposed gWaveNet in Fig. 5 is a deep convolutional network with 15 layers.
It features a hybrid model with the proposed checkerboard kernel integrated at
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Fig. 3. Checkerboard kernel concept and application. (a) Proposed kernel capturing
gravity wave patterns: yellow lines - potential linear waves, red lines - potential non-
linear waves, gray lines - wave gaps. (b) Learned kernel from trained gWaveNet (Color
figure online).

the beginning, comprising 6 convolutional layers, followed by ReLU activations, 6
max-pooling layers, 2 dense layers, and 1 dropout layer, and a sigmoid activation
at the end. Our custom kernel is placed in the first convolutional layer along
with ReLU activation in the network. The hybrid architecture is designed for
binary classification tasks on grayscale satellite images. The rationale behind
incorporating the custom kernel in the initial layer is to specifically extract
features aligned with those associated with gravity waves, allowing subsequent
layers to identify similar intricate patterns. Focusing on the complexity of the
problem, a large number of kernels is used in the earlier layers of the model which
helps to learn more low-level features from the data. Gradually the number
of kernels is reduced in the later layers to combine earlier features into more
problem-specific high-level features. To avoid overfitting from the custom kernel,
we apply L2 regularization in the second convolutional layer.

We conducted experiments by configuring the layer in the proposed network
to be either trainable or non-trainable, incorporating the checkerboard kernel
(details are in Sect. 5). The checkerboard kernel’s original weights of ‘0’ or ‘1’
can be updated during the model training process based on its configuration.
Weights in the trainable layer are adjustable, directly influencing the model’s
predictions by learning from input data during training if the method is config-
ured as trainable with the checkerboard kernel integrated. On the other hand,
in the non-trainable configuration, although the weights are fixed, certain layers
can still update their statistical entities such as mean and variance, indirectly
impacting the model’s output, as noted in [3]. This indicates that non-trainable
layers continue to impact the model’s performance. We further explain, how
the settings of the kernels with trainable/non-trainable would affect the overall
model performance in Sect. 5.
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Fig. 4. The proposed kernel highlights extracted gravity wave features in sub-figures
(a), (b), and (c). The left column of each sub-figure displays the actual PNG files,
while the right column highlights the extracted gravity wave features. In sub-figure
(a), simple patterns of gravity waves are detected. Sub-figure (b) shows detection of
complex patterns even in the presence of noise, such as vertical lines in the top image
and a black bar in the second image. However, sub-figure (c) exhibits partial failure in
detection, as indicated by the red rectangular box. (Color figure online)

Fig. 5. Architecture of the proposed gWaveNet network.

Experiment and Evaluation Setup. For our experiment, all the implemen-
tation is carried out using Keras 2.11 and TensorFlow 2. The training and testing
processes for both the proposed and baseline models were conducted on a GPU
machine equipped with 20 gigabytes of memory.

We considered four distinct configurations to train all the models. In the
“trainable” configuration, we integrated the proposed checkerboard kernel into
the first layer, with this layer set as trainable (trainable = true). Conversely,
the “non-trainable” configuration retained the same concept, but with the
first layer designated as non-trainable (trainable=false). The “no-custom-kernel-
layer” (denoted as ‘nckl’ in Tables) configuration indicated the absence of a cus-
tom kernel in the first layer. Lastly, the “kernel-applied-prior-training” (denoted
as ‘kapt’ in Tables) configuration was similar to “no-custom-kernel-layer,” except
the kernel was applied to the images as a filter before initiating the model train-
ing process.
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All models are trained for 2,000 epochs with a batch size of 128 on the training
dataset. The training and validation dataset is split into a 65:35 ratio, and we
reserved 240 image patches for testing, which were never used in training. The
hyperparameters for the remaining methods are kept intact for experimentation
with our data. We employ binary cross-entropy loss function during training to
calculate the detection loss and The stochastic gradient descent (SGD) method,
coupled with the binary cross-entropy loss objective function, is chosen for model
optimization. In terms of evaluations, we used overall detection accuracy and the
F1 score as evaluation metrics.

5 Experiment Results

In this section, we present our findings from various aspects such as, kernel size,
trainable or non-trainable, kernel applied prior training (kapt) and no custom
kernel layer (nckl) which is discussed in Ablation Study. We conducted extensive
experiments to answer the following questions. Q1: How does the performance of
our hybrid deep learning model with the integrated checkerboard kernel compare
with state-of-the-art (SOTA) approaches? Q2: How can the capability of the pro-
posed model be inferred from the ablation studies? Q3: How can the model learn
without denoising the data? Q4: Is the kernel integration approach generalizable?
Q5: How does the model perform when trained with a reduced amount of data?

Comparing with State-of-the-Art Techniques. We evaluated our model
against five advanced State-of-the-Art (SOTA) techniques in computer vision
research. This includes the Vision Transformer (ViT) [8], an attention-based
model, and VGG16 [27], chosen for its similar architecture to our proposed
model. Additionally, we assessed three influential convolutional filters: Gabor
[9], Sobel [14], and Laplacian [31]. Furthermore, our evaluation included an FFT
denoising-based approach using Transfer Learning Mechanism [11].

We compared our model with State-of-the-Art techniques, summarized in
Table 1 where the best results in each category are in bold and the overall
best results are emboldened and underlined. First, we incorporated Gabor filters
of size 7 × 7 with various orientations (0◦, 30◦, 60◦, 120◦, 150◦) into our deep
learning model considering the gravity wave patterns in the image. This process
yielded high accuracy with an F1 score of 88.35%. Secondly, we applied Sobel
filters (using 3× 3 kernels) as a preprocessing step before training the model.
Additionally, we integrated the Sobel filters into our proposed method during
training, labeled as ‘Sobel 3×3 t’ with a trainable kernel. The result indicates
that the model trained with Sobel filters integrated into the first layer achieved
higher accuracy and F1 score compared to the model trained on images pre-
processed by Sobel filters (denoted as, Sobel 3×3 pt). However, our detailed
optimization plot reports overfitting as the training keeps progressing. We fol-
lowed the same process for the Laplacian filter, using a 7× 7 kernel. The results
showed a similar pattern, with better accuracy obtained when the Laplacian
filter was integrated into the model (Laplacian 7×7 t) as opposed to utilizing it
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Table 1. Performance comparison of the proposed model against state-of-the-art tech-
niques: ViT [8], VGG16 [27], Gabor [9], Sobel [14], Laplacian [31], and Transfer Learn-
ing approach using FFT denoised data [11].

Methods Architecture Accuracy F1 Score Train config.

Train Validation Test

ViT Transformer 89.12 86.08 83.74 79.71 nckl

VGG16 VGG 100.00 81.52 61.91 60.15 nckl

VGG16 3×3 t VGG 87.86 80.19 68.74 66.29 trainable

Gabor 7×7 t gWaveNet 95.24 93.46 89.17 88.35 trainable

Sobel 3×3 kapt gWaveNet 88.76 85.35 82.91 80.89 kapt

Sobel 3×3 t gWaveNet 91.23 87.17 83.74 82.24 trainable

Laplacian 7×7 kapt gWaveNet 86.44 83.50 76.66 74.38 kapt

Laplacian 7×7 t gWaveNet 90.91 87.19 79.16 80.00 trainable

FFT gWaveNet 76.59 75.04 70.66 69.50 nckl

FFT 7×7 nt gWaveNet 92.68 91.64 84.47 82.19 non-trainable

FFT 7×7 t gWaveNet 93.78 92.50 90.78 90.07 trainable

gWaveNet 5×5 nt gWaveNet 94.40 93.16 93.75 91.89 non-trainable

gWaveNet 7×7 t gWaveNet 98.10 96.53 94.21 93.69 trainable

as a data preprocessing step (Laplacian 7×7 pt). However, the model also shows
overfitting similar to Sobel filter. During our testing of the ViT model, the results
indicated 89.12% accuracy in training with 79.71% F1 score which is quite com-
parable to the performance of Sobel and Laplacian approaches. However, the
overfitting is significant.

Comparing the VGG16 method with its base architecture and its modified
architecture with our trainable approach (denoted as VGG16 and VGG16 3×3 t,
respectively) reveals a notable difference. The base model is highly overfitted,
showcasing high accuracy during training but experiencing a considerable drop
in validation accuracy, nearly 20%. On the contrary, VGG16 with a 3× 3 kernel
integrated trainable layer improved across all metrics though there are inconsis-
tencies. While it still falls short of outperforming other models, the enhancement
from the base model is notable. This suggests the potential generalizability of our
proposed kernel with other methods addressing Q4. Furthermore, performance
comparisons between VGG16 3×3 t and our gWaveNet noK model (Table 1 and
Table 2, respectively) show that VGG16 3×3 t trails behind gWaveNet noK in
achieving competitive scores. Our experiments suggest that the gWaveNet noK
model, specifically designed for our noisy dataset performs better in extracting
relevant features from noisy data while the base VGG16 falls short due to its
architectural configuration.

We further compared models trained with denoised data using FFT tech-
niques based on three training configurations which are, trainable, non-trainable
and no-custom-kernel-layer. The experiments revealed that the highest train-
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ing accuracy achieved with FFT-denoised images reached 93.78%. Notably, the
model with a trainable layer outperformed the two other models with differ-
ent training configurations for the same dataset. The results indicate a gradual
improvement in model performance from the no-custom-kernel-layer to the non-
trainable layer and finally to the trainable layer. However, with a 7× 7 trainable
layer the performance improved with consistent training. It is noteworthy that
despite the high accuracy achieved by the model trained on denoised data, it
still falls short compared to our proposed model trained using noisy data. This
discrepancy could be attributed to the FFT transformation, which removes lower
amplitude signals. There is a possibility that this process eliminated some grav-
ity wave patterns that matched specific frequencies, leading to a lower overall
performance score.

Referring to ‘gWaveNet 7×7 t’, our approach outperforms all the aforemen-
tioned SOTA techniques. The proposed model, featuring a trainable 7× 7 custom
kernel, achieved the best results in terms of different accuracies and F1 score.
Notably, these accuracies demonstrate improved optimization without overfit-
ting. These findings address Q1 at the beginning of this section, highlighting the
performance of our proposed hybrid deep learning model (in Table 1) with the
integrated checkerboard kernel.

Ablation Study. We thoroughly examined variety of configurations using the
gWaveNet core architecture in our ablation study, as shown in Table 2. In all
training configurations, except for the ‘non-trainable’ layers, we used various
kernel sizes of 3 × 3, 5× 5, 7× 7, and 9× 9, for all the gWaveNet models. We
discuss training configuration wise performances as follows.

Model with Trainable or Non-trainable Layer. The model with a trainable layer
with integrated kernels refers to learning following kernel patterns, while the non-
trainable layer refers to the opposite. With the trainable layer with the checker-
board kernel integrated, training, validation and testing accuracies are achieved
as high as 98.43%, 97.22%, and 94.21%, respectively, along with 93.69% F1 score
across models for various kernel sizes. The non-trainable layer also demonstrated
significant performance with accuracies of 97.53% in training, 95.60% in valida-
tion, and 93.75% in testing, along with an F1 score of 91.89%.

Models with Kernel-Applied-Prior-Training. We also evaluated the proposed
gWaveNet model by applying the kernels to the images prior to training the
models that also show significant performance. With this training approach, we
achieved the best training accuracy of 97.77% with a competitive F1 score of
93.07%.

Model with No-Custom-Kernel-Layer. As our next evaluation, we experimented
with no-custom-kernel-layer (denoted as gWaveNet noK in Table 2). Without
the custom kernel, the model exhibited relatively poor performance compared
to other approaches in the table. The low F1 score indicates a large number of
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Table 2. Ablation Studies.

Methods Accuracy F1 Score Train config.

Train Validation Test

gWaveNet 3×3 t 97.17 95.23 92.43 92.00 trainable

gWaveNet 5×5 t 98.43 97.22 93.75 92.11 trainable

gWaveNet 7×7 t 98.10 96.53 94.21 93.69 trainable

gWaveNet 9×9 t 97.22 95.01 91.06 91.55 trainable

gWaveNet 3×3 nt 91.38 90.25 87.50 86.63 non-trainable

gWaveNet 5×5 nt 94.40 93.16 93.75 91.89 non-trainable

gWaveNet 7×7 nt 97.53 95.60 92.50 91.61 non-trainable

gWaveNet 9×9 nt 93.94 92.80 91.66 90.88 non-trainable

gWaveNet 3×3 pt 97.21 95.69 90.83 89.47 kapt

gWaveNet 5×5 pt 96.64 94.94 91.75 90.29 kapt

gWaveNet 7×7 pt 97.72 96.03 93.24 93.07 kapt

gWaveNet 9×9 pt 97.77 95.94 93.58 92.46 kapt

gWaveNet noK 82.49 85.20 76.77 75.22 nckl

gWaveNet 16K 7×7 93.49 91.69 92.50 91.53 trainable-16

gWaveNet 64K 7×7 93.33 91.61 90.13 89.07 trainable-64

false positives and negatives in the confusion matrix possibly due to not learning
the patterns of gravity waves, but the noise. This finding emphasizes the impor-
tance of using the proposed model architecture by integrating the checkerboard
kernel for datasets dominated by noise. Though this approach performed poorly
compared to other approaches that we proposed, it still performed better than
VGG16 approaches in terms of learning and achieving better F1 scores.

Models with Multiple Kernels. We further expanded our experiment to evaluate
the proposed models with stacked identical 7× 7 kernels, either 64 or 16 times.
We observed that both approaches performed almost similarly, with a slight
improvement using the kernel 16 times. The training accuracies were over 93%,
with F1 scores exceeding 91%. From the experiment results, we notice that
gWaveNet model with the trainable custom kernel provided better performance
than the models with the non-trainable custom kernel. This left us curious to
investigate what changes are made to the custom kernel by the training process.
For clarity, we derived the learned kernel, shown in Fig. 3b, at the first layer of
the proposed trained model. If we compare this learned kernel with the proposed
kernels (Fig. 2), the updated weights follow the same pattern as the initial kernel.
This justifies that the custom kernel at the first layer has an impact on gaining
better performance by the proposed model with trainable configuration, ensuring
the continued relevance and applicability of the custom kernel.

In summary, the ablation studies showed significant improvements in detect-
ing intricate patterns with both trainable and non-trainable configurations. The
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method without a custom kernel (“gWaveNet noK”) achieved an F1 score of
75.22, while integrating the custom kernel increased the F1 score to 91.89 (non-
trainable) and 93.69 (trainable). Notably, the non-trainable configurations, apart
from the trainable ones, outperformed all other state-of-the-art approaches in
Table 2, demonstrating the custom kernel’s effectiveness and improved general-
izability over a standard convolutional kernel. Our findings from the ablation
studies led us to conclude that the proposed model is highly effective in detect-
ing gravity waves amidst noise, achieving higher accuracies. These conclusions
address Q2 and Q3 that are related to the model’s overall capability and ability
to learn without denoising data.

Table 3. Comparison of models trained on 60% and 40% reduced datasets.

Methods Accuracy F1 Score

Train Validation Test

gWaveNet 9×9 60% 89.74 87.85 86.66 86.39

gWaveNet 7×7 60% 94.18 93.24 89.99 88.67

gWaveNet 5×5 60% 93.99 92.46 86.66 84.39

gWaveNet 3×3 60% 94.02 92.27 93.75 90.76

gabor 7×7 60% 99.86 93.44 91.04 93.50

sobel 3×3 60% 89.70 82.66 68.15 69.37

vgg16 3×3 60% 99.37 80.86 64.17 63.17

gWaveNet 9×9 40% 99.50 85.14 63.74 61.35

gWaveNet 7×7 40% 98.10 91.04 64.10 64.30

gWaveNet 5×5 40% 99.29 83.33 69.08 70.36

gWaveNet 3×3 40% 99.59 82.76 73.33 75.19

gabor 7×7 40% 99.93 92.66 90.88 92.05

sobel 3×3 40% 88.40 80.76 66.28 67.71

vgg16 3×3 40% 100.00 77.99 74.76 —–

Model Evaluation with Reduced Amount of Data. We further evaluated
model’s performance using a reduced dataset, which is 60% and 40% of the
total data and the comparisons are depicted in Table 3. The results in the Table
highlights that gWaveNet models trained with 60% of the data exhibit minimal
fluctuations in both training and validation accuracy, as well as in the F1 score.
Conversely, other models with the same data proportion show significant over-
fitting, indicating suboptimal performance. When assessing models with 40% of
the data, all models, including gWaveNet, exhibited overfitting issues. This por-
tion of ablation study shows, training the model with more than 50% of the data
resulted in improved scores. In particular, VGG16 with a 3× 3 trainable kernel
failed to produce a meaningful F1 score due to its poor performance with the
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limited dataset. These findings addresses the Q5 regarding the reduced amount
of data.

Table 4. Comparison of mean and standard deviation between state-of-the-art and
our proposed techniques.

Methods Train acc Validation acc F1 Score

VGG16 3×3 t 86.98 ± 2.88 80.05 ± 1.59 67.66 ± 1.07

Gabor 7×7 t 91.83 ± 2.57 88.57 ± 3.50 76.29 ± 4.61

FFT 7×7 t 92.78 ± 0.66 90.74 ± 0.61 89.56 ± 0.88

gWaveNet 3×3 t 98.25 ± 0.54 96.64 ± 0.71 91.58 ± 0.81

gWaveNet 5×5 t 98.07 ± 0.18 96.31 ± 0.46 91.83 ± 0.99

gWaveNet 7×7 t 97.71 ± 0.26 95.85 ± 0.54 92.95 ± 0.48

gWaveNet 9×9 t 97.10 ± 0.12 94.99 ± 0.09 90.80 ± 0.52

gWaveNet 64k 7×7 t 92.61 ± 0.58 90.80 ± 0.76 88.89 ± 0.21

gWaveNet 16k 7×7 t 92.84 ± 0.46 90.53 ± 0.81 89.19 ± 0.60

gWaveNet 60% 3×3 t 93.89 ± 0.08 93.30 ± 1.61 88.11 ± 2.41

gWaveNet 60% 5×5 t 93.82 ± 0.33 92.41 ± 0.37 87.74 ± 2.55

gWaveNet 60% 7×7 t 95.57 ± 1.04 93.78 ± 0.42 89.62 ± 2.09

gWaveNet 60% 9×9 t 91.53 ± 1.35 89.30 ± 1.16 87.61 ± 1.03

Model Robustness Comparison. As the final step, we compare the mean
and standard deviation of selected methods in Table 4. Our comparison includes
VGG16 with a 3× 3 trainable kernel (denoted as VGG16 3×3 t), ViT method,
Gabor approach and FFT-based methods along with all gWaveNet methods
with trainable layers. To ensure a thorough analysis of average performance and
variability, each model was run five times. As we see from the table, the devia-
tions for VGG16 3×3 t, are not much, however, the model shows an inadequate
performance compared to others in terms of F1 score. The Gabor approach
performs well in both accuracies and F1 scores, but the standard deviation is
higher across all cases. Comparing the model with FFT denoised data with
a 7× 7 trainable layer(denoted as FFT 7×7 t) exhibits higher accuracies with
lower deviations. However, the F1 score does not achieve as high as our proposed
model, even when using the custom kernel layer. Despite this, the deviation in
all categories is better in FFT 7×7 t compared to the above models. When com-
paring the performance of our models, gWaveNet with different kernel sizes, we
observe minimal deviations, except few cases trained with 60% data, indicating
the robustness of our proposed hybrid deep learning model with the checkerboard
kernel integrated.
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Limitations. From our experiments, we observed a performance drop when
gWaveNet models are trained with less than 50% of the data, emphasizing the
common requirement of ample data in deep learning model training. Addition-
ally, in some instances, applying the convolutional kernel detected partial pat-
terns or missed certain patterns (Sub-fig. 4c). We attribute this to the image
preprocessing steps, indicating an area for improvement in future.

Discussions. Our proposed 7× 7 and 5× 5 kernels with trainable layers in
gWaveNet demonstrated significant performance improvements over baseline
methods, including Gabor, Sobel, or Laplacian filter-based kernels, as well as
advanced models like ViT and Vgg16. Despite achieving high training accu-
racy by fewer approaches like, the Gabor, VGG16 was hampered with the
overfitting issue or low F1 scores, indicating its limited effectiveness. However,
gWaveNet performed well in those cases, highlighting the critical role of both ker-
nel shape and coefficients in enhancing model performance. Notably, our model
showed superiority in non-trainable configurations, consistently achieving higher
F1 scores compared to state-of-the-art techniques. These results highlight the
effectiveness and improved generalizability of our custom kernel over standard
convolutional kernels, establishing our approach as a new benchmark in gravity
wave detection.

6 Conclusions

Overall, our propose gWaveNet model demonstrated the ability to learn without
data denoising, with higher accuracies and the versatility of the proposed kernel
allows for integration into other approaches towards its generalizability. However,
in future, we would like to experiment with various satellite data of similar
patterns collected from multi-angular view and also would like to address the
underlying physics behind the patterns of the gravity waves and the proposed
kernel. Additionally, we are interested in addressing the challenges associated
with the localization of gravity waves using bounding boxes, particularly with a
diverse set of images capturing similar patterns in presence of noise and unwanted
objects.
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Abstract. We introduce neural-code PIFu, a novel implicit function
for 3D human reconstruction, leveraging neural codebooks, our app-
roach learns recurrent patterns in the feature space and reuses them
to improve current features. Many existing methods predict normal
maps from image feature space which easily overlook non-trivial features.
Moreover, neglecting global geometric correlations restricted the use of
repetitive features to improve the expressive power of current features. In
this work, we propose neural-code PIFu, a novel framework that enhances
initial features by fusing them with neural codes that are learned from
the input features and geometric prior. It also models the global geomet-
ric correlation to facilitate the use of neural codes. Extensive experiments
demonstrate that our method outperforms state-of-the-art (SoTA) PIFu-
based approaches by a large margin, and achieves comparable results to
parametric-models-based methods without the use of auxiliary data.

Keywords: 3D Human Reconstruction · Deep Learning · Neural Code
Integration

1 Introduction

The growing demand for realistic 3D human reconstruction has driven the devel-
opment of diverse methodologies, serving as a crucial foundation for the meta-
verse, and AR/VR industries. The main objective of 3D human reconstruction is
to transform 2D features onto 3D surfaces that accurately represent the human
in the RGB images. Early techniques [1] relied on dense view reconstruction
to model intricate 3D human surfaces, but their reliance on sophisticated cam-
era arrays made large-scale applications impractical. Recently, deep learning has
revolutionized the field. Explicit representation is commonly used with deep
learning to model human surfaces, early methods [1,2] based on explicit surfaces
cannot generate details for human surfaces. To address the issue, [3,4] predicts
3D geometric offsets as clothing details. Despite promising results, explicit sur-
face representations suffer from the inflexibility of modeling shape and struggle
to replicate intricate garments such as dresses due to the significant divergence
in shape from the human body.
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Unlike explicit surfaces such as meshes, implicit surfaces can model arbitrary
shapes and are not limited by the resolution of input data. Pixel-aligned implicit
function first proposed in [5] has emerged as a promising approach in the field.
PIFu [5] and PIFuHD [6] represent pioneering methods that employ implicit
functions to reconstruct a human surface from a single RGB image directly. To
reconstruct more detailed human surfaces, some methods [6,8–10] attempt to
predict normal maps from the image feature and use them as additional inputs
to inform the models.

The main problems of many PIFu-based methods are twofold: (1) Predicting
normal maps from image feature space has limited improvements on non-trivial
details. Many current methods easily overlook subtle details in image features
which are also underrepresented in the predicted normal maps. This limits the
improvements provided by normal maps. (2) Neglecting global geometric correla-
tions among query points hinders the exploitation of repetitive patterns. In this
work, our proposed alternative method addresses these issues without relying on
complex architectures or additional data assistance.

To address these challenges, we propose Neural-Code PIFu, an end-to-end
trainable approach for 3D human reconstruction from a single image. Inspired
by [11] which learns quality-dependent features using vector quantization. Our
method effectively learns repetitive patterns via neural codebook learning mod-
ules and models the overall global geometric correlations via self-attention with
positional encoding to facilitate the use of neural codes. We improve pixel-aligned
features by fusing them with relevant neural codes locally and globally via
context-aware latent fusion. Finally, We fully integrate local and global features
by facilitating query points to sufficiently interact via neural code integration.

Our method outperforms SoTA quantitatively and qualitatively. We eval-
uate neural-code PIFu on Thuman2.0 [12] and BUFF dataset [7] as well as
out-of-distribution images to show the generalization of the proposed method.
Our method demonstrates promising results, outperforming PIFu-based SoTA by
a noticeable margin, and achieving comparable results with parametric-model-
informed methods (i.e. ICON [13] and ECON [14]). The out-of-distribution eval-
uation demonstrates that our method generalises well to unseen garments and
poses with minimum artifacts.

Our main contributions are summarised as follows:

– We propose an end-to-end trainable approach named Neural-Code PIFu
for 3D human reconstruction from a single image, which learns reoccurring
patterns and stores them as neural codes. It also models the global geometric
correlation among query points.

– We propose Context-Aware Latent Fusion to reuse learned neural codes
to improve the expressiveness of the feature. This allows more geometric
details even if they are blurry in the given latent space.

– We propose Neural Code Integration to facilitate the interaction between
query points, and also encourage local and global features to be adequately
integrated.
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2 Related Works

In this section, we briefly review the development and the relevant domains of
single-view 3D human reconstruction.

Explicit Reconstruction. An explicit surface can be described as a prescrip-
tion of the precise location of the surface. The early methods represent a surface
via voxels which discrete a 3D surface into a grid. This allows the explicit sur-
face reconstruction to align with modern learning-based image processing meth-
ods [21–23], which can properly transfer 2D features to 3D surfaces without
sacrificing a massive amount of consistency between 2D and 3D feature space.
However, the aforementioned methods are highly sensitive to the resolution of
input data, the computational consumption non-linearly increases with reso-
lutions, which makes large-scale applications unfeasible. The point clouds, on
the other hand, are computationally friendly in comparison to voxel represen-
tations [25,26,29]. Taking advantage of the properties of point clouds, recently
proposed learning-based methods [13,14,26,27] can encode a sophisticated sur-
face into a compact and sparse latent space with the cost of a small amount
of computational resources, but loss of information is inevitable when mapping
from a dense to a sparse latent space, point clouds normally lack abundant geo-
metric information. This results in a loss of details and over-smoothed surfaces.
Our method proposes to reuse repetitive patterns in the learned image feature
space to enhance the surface details without additional inputs.

Implicit Human Surface Reconstruction. Implicit representation could be
considered as a function of the level set of the function [5]. This representation
can be implemented as a multi-layer perceptron predicting occupancy field or
SDF values, which indicate the probability of whether query points lie within
the surface [5,6]. To convey more useful information from 2D input data to
3D surface, recent methods predict occupancy field conditioned on pixel-aligned
features [5,6,16]. These methods have achieved promising results. However, most
of the methods suffer from over-smoothed reconstructed surfaces.

To address this challenge, recent methods either introduce auxiliary data as
prior or strong constraints, such as normal maps and parametric models (e.g.
SMPL [2] and SMPL-X [24]) or add more 3D supervisions to the models. How-
ever, these methods fail to fully explore the valuable 2D space, and useful infor-
mation such as detailed features lost during the transition from 2D feature space
to 3D space.

3 Methodology

Our objective is to extract a highly detailed 3D human surface from a single-view
image using a novel implicit function. This function employs neural codebooks to
capture repetitive patterns and preserve them as neural codes, leveraging them
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to enhance the expressiveness of features. We argue that when image features are
blurred or over- smoothed, normal maps struggle to capture details, consequently
restricting the improvement offered by normal maps. Additionally, these methods
fail to emphasize global geometric correlation. Some methods like [7] incorporate
a global feature map derived from image feature space. However, it has limited
improvement in global awareness of models, as features of each query point
are still isolated. To alleviate these challenges, we propose a novel framework
to improve initial features by fusing them with neural codes that are learned
from the input features and geometric prior. As shown in Fig. 1, we propose a
selective learning neural codebook that specifically preserves representative and
reoccurring features as neural codes. We purposefully utilize these neural codes
to enhance the expressiveness of the current features, achieving the addition of
human surface details without the need for additional data assistance. Moreover,
we introduce an extra branch for modeling global geometric correlations which
facilitates the use of neural codes.

Preliminary. We start by detailing the background of the implicit function
representation. An implicit function parameterizes a 3D surface as a level set of
functions. Given a query point in the 3D space, an implicit function classifies
the point as either inside or outside the surface. This is denoted as:

f(X) =

{
1, if X is inside the surface,
0, otherwise.

(1)

Pixel-aligned implicit function captures detailed features from RGB images.
It predicts the occupancy field which represents the probability distribution of
whether a query point is inside or outside the surface. The pixel-aligned implicit
function is mathematically defined as:

f(Fc(x), φ(X)) = s : s ∈ R, (2)

where Fc(x) is 2D image feature at position x which is the 2D projection of
query point X, and φ(·) is the depth value of point X in the relative camera
coordinates. For more details, we refer readers to [5].

3.1 Neural-Code PIFu Representation

The inferior performance of current methods [6,8–10] is attributed to the pre-
diction of normal maps from image features and the absence of global geometric
correlation. These methods reconstruct detailed human surfaces dependent on
normal maps derived from image features. Although introducing normal maps
has been proven useful in adding details, it does not address the core issues.
Firstly, the improvement provided by normal maps is limited if the initial features
are non-trivial in the image feature space. Secondly, the majority of PIFu-based
methods [5,6,8,9] fail to consider the global geometric correlation within query
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Fig. 1. The overview of our proposed method. The single view RGB image is fed
into the image encoder, and the query points are projected to the image plane in
order to obtain the pixel-aligned feature which is then used to obtain coarse-level local
features and global features. The fine-level features are produced via neural codebook
integration, which is used to predict the occupancy field for query points.

points. The global geometric correlation within the query points is essential for
artifact reduction and completed human mesh.

To address the aforementioned challenges, we propose Neural-Code PIFu
representation for human reconstruction, which possesses the ability to improve
details based on input features and model global geometric correlations between
query points. We adapt neural codebooks to learn representative and reoccurring
features within the given latent space, selectively preserving them as neural
codes. These neural codes are used as a complement for feature improvement,
which allows the model not only to rely on image feature space but also on neural
codebooks to acquire details. Moreover, modeling global geometric correlation
informs the model with a global context, this allows a noticeable reduction of
artifacts and efficient use of neural codes.

Our proposed model is mathematically represented as:

FQ(xc, Fg(fl, fg), φ(X)) = s : s ∈ R, (3)

where xc is the input feature, Fg is the neural code integration which takes
global and local features, denoted as fg and fl, as inputs. This module allows
local and global features to be fully combined. Additionally, coarse global feature
fg and coarse local feature fl are generated via the context-aware latent fusion
described in Sect. 2.3. We apply self-attention with positional encoding to model
the overall global correlation within all query points. This is denoted as follows:

SA(xc) = softmax(
Pos(Q)Pos(K)T√

dk
) · Pos(V ). (4)

Each query point not only contains its features but is also weighted based on
all the other query points after this operation.
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Neural Codebook Learning. We use neural codebooks to effectively capture
and reuse representative features for reconstructing detailed human surfaces. The
goal of the neural codebook learning module is to learn the latent distribution
representing a shared collection of appearance and geometry within the given
features. Given a pixel-aligned feature xc of query points, we first extract the n
most representative features in xc via a softmax relaxation of nearest-neighbor:

zi ← e||zi−xc||2∑k
n=1 e−||zn−xc||2

. (5)

We adapt a straight-through-estimator (STE) to enable backpropagation
through the neural codebook, which is vital for a learnable codebook. All neural
codes are initialized with a standard Gaussian distribution N ∼ (μ, σ).

Gated Function. This function selectively preserves the neural codes of inter-
est while discarding less relevant ones, ensuring the retention of the most distinct
features captured in the input latent space. This step is crucial for reconstruct-
ing intricate surface details without introducing artifacts. The gated function is
denoted as:

zi ← ω(ϕ(vs − i2/λ), T ) · zi. (6)

The gated function provides a hard decision boundary for neural code selec-
tion. The ω is a binarization function. T is a manually defined threshold, vs is
a scoring function that weights the inputs, and λ is a scaling hyperparameter
based on the size of the neural codebook.

Discussions. Our method possesses better generalisation and flexibility in
selecting features in comparison to existing methods like SuRS [15]. SuRS learns
a prior difference between high- and low- resolution surfaces. This benefits recon-
struction when the details in the image are non-trivial. Nevertheless, it is sig-
nificantly constrained by the limitations imposed by the training distribution,
demanding additional data and supervision. Additionally, it lacks the flexibility
of applying learned prior knowledge to inform the model, which introduces a
lot of artifacts. In contrast, our approach can selectively employ neural codes to
enhance those blurred features. This contributes to artifact reduction and better
generalisation.

3.2 Context-Aware Latent Fusion

Intuitively, details of the clothed human body, such as clothing wrinkles and
facial contours, exhibit significant similarities. Existing works [6,13–16] fail to
take advantage of these similarities and reuse them to enhance non-trivial details.

Therefore, we propose context-aware latent fusion leveraging neural code-
book learning modules for improvements of both local and global features. This
module generates coarse-level local and global features by combining the input
features with learned neural codes. This allows a better representative power to
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improve the non-trivial details in the initial image space. This also enables the
model to process out-of-distribution images. The module has two primary steps,
variance modeling and latent fusion between neural codes and input features.

Variance Modelling. To ensure the neural codes are distinctive within the
codebook, we follow [17] to further maximize the distance between learned neural
codes by modeling the intra-variance between each code. The intra-variance is
modeled using a convolutional neural network V which takes both neural code
zi and input feature xc and outputs the variance perturbation:

zi = zi + ε · V (zi, xc)
||V (zi, xc)||2 . (7)

It draws a clearer boundary within different neural codes and benefits the
reduction of artifacts on the reconstructed surface, as ambiguity within the fea-
tures deteriorates the uncertainty of points near the surface [18]. Introducing
variance perturbation to neural codes eases the uncertainty.

Latent Fusion. It aims to generate local and global coarse-level features by
merging the input latent with its relevant neural codes. There are two branches
to separately process local and global features. We concatenate the input feature
and its neural code and feed it into the local fusion module which is modeled as
a residual MLP to obtain both coarse-level features.

3.3 Neural Code Integration

Deficiency in communication between query points is one of the weaknesses of
previous PIFu-based models. Existing approaches [5,6,8] fail to facilitate suffi-
cient interaction among the query points, and the local and global features are
not adequately integrated.

Hence, we propose neural code integration to integrate coarse-level local and
global features into fine-level features. The purpose of this module is to enable
spatial-wise and channel-wise communication between both features.

We adapt MLP-mixer architecture [19] over the commonly used vision trans-
former for not only its simplicity but also for its comparable performance with a
lighter computational burden. We modify the original architecture and directly
apply it to the latent space. There are two steps within the neural code inte-
gration module: channel-wise mixing and location-wise mixing. In our case, the
former enables communication within each feature of query points, the latter
allows interaction within different query points. The neural code integration
module is defined as:

fchannel = xg,l + MLPchannel(xg,l), (8)

fspatial = fchannel + MLPspatial(fchannel), (9)
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where MLPchannel and MLPspatial are responsible for channel-wise mixing and
spatial mixing respectively, the xg, l is the concatenation of coarse-level local
feature and global feature.

We use fine-level features to predict the occupancy field with an MLP surface
classifier, and the reconstructed mesh is extracted following [20].

4 Experiments

To evaluate the performance of the proposed method, we conducted extensive
experiments on two publicly accessible datasets that are widely accepted by the
community, including Thuman2.0 [12], BUFF [7].

Datasets. Thuman2.0 [12] constitutes 524 high-resolution human meshes with
rich details on the surface. We follow the split ratio mentioned in [15] to split
the dataset into training and testing sets, which contain 402 and 122 meshes
respectively. To evaluate the generalization of our proposed model, we conduct
further experimentation on 143 human scans of both BUFF which no methods
use for training.

Evaluation Metric. In our experiments, we leverage Chamfer Distance (CF)
to measure the distance between the reconstructed surfaces and the ground truth
surfaces. Average point-to-surface Euclidean distance (P2S) is applied to mea-
sure the distance from the vertices of the reconstructed surfaces to the ground
truth surfaces. Lastly, we harness normal reprojection error to evaluate the pro-
jection consistency from input image. All metrics are measured in centimeters
(cm).

Implementation Details. Our proposed model is trained with RGB image
with the size of (NI × NI , NI = 512). We follow the same rendering process
used in PIFU [5] to generate images at every degree along the yaw axis for
each human scan. The ground truth 3D points are sampled following the spatial
sampling procedure mentioned in PIFu [5] The input image is first encoded via a
2D convolutional neural network containing a stacked hourglass network which
has been proven to possess better generalization for human-related estimation.
The encoded continuous image features, which have the shape of (W, H, C,
W = 128, H = 128, C = 321). Pixel-aligned features then are obtained by
projecting the query points to the image feature space. Pixel-aligned features
are then passed to the neural codebook learning module to be decomposed and
extract the most representative neural code. The coarse-level features are learnt
through context-aware latent fusion which are learned via a 4-layer Multi-Layer
Perceptron (MLP). A fine-level feature is produced via neural code integration
which takes both global and local coarse-level features as input. Regarding the
final occupancy prediction, we adapt a surface classifier formulated as a residual
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MLP to classify the fine-level features. Once the occupancy values are obtained,
we visualize it using [20].

Our model is trained on TITAN X GPU with 8 batches, and a learning rate
of 0.0001 with decay. The model is optimized via Adam.

Fig. 2. The comparisons between our method and SoTA. From left to right are the
results of the selected SoTA, the ground truth and our results.

4.1 Comparisons on SoTA

We compare our methods with state-of-the-arts methods: PIFu [5], PIFuHD [6],
PaMIR [16], SuRS [15], ICON [13], ECON [14]. GTA [28], D-IF

Table 1 shows quantitative results on Thuman2.0 [12], BUFF [7] dataset.
Our method outperforms all PIFu-based SoTA with noticeable margins on the
Thuman2.0 test dataset and BUFF dataset. As shown in Fig. 2, our proposed
method produces more plausible meshes with minimum artifacts.

Our method outperforms parametric model-based methods ICON [13] and
ECON [14] on Thuman2.0 dataset [12], and achieves comparable results on
BUFF dataset [7]. This is largely attributed to the utilization of parametric
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Table 1. The Quantitative results on Thuman 2.0 and BUFF dataset. The percentage
shows the improvements of the proposed method in comparison to SoTA. Chamfer,
P2S and Normal consistency evaluation: the smaller the better.

Models THuman 2.0 Dataset BUFF Dataset

Chamfer(↓) P2S(↓) Normal(↓) Chamfer(↓) P2S(↓) Normal(↓)

PIFu 1.501 (↓50%) 1.523 (↓51%) 0.122 (↓37%) 1.781 (↓57%) 1.754 (↓55%) 0.142 (↓39%)

PIFuHD 1.372 (↓46%) 1.432 (↓49%) 0.124 (↓38%) 1.634 (↓54%) 1.671 (↓53%) 0.133 (↓35%)

PaMIR 1.713 (↓56%) 1.818 (↓60%) 0.134 (↓43%) 1.752 (↓57%) 1.872 (↓58%) 0.148 (↓42%)

SuRS 0.931 (↓20%) 1.151 (↓36%) 0.107 (↓28%) 1.532 (↓50%) 1.622 (↓51%) 0.136 (↓37%)

ICON 0.747 (↓0.5%) 0.735 (↓0.5%) 0.086 (↓10%) 0.832 (↓9%) 0.854 (↓9%) 0.087 (–)

ECON 0.748 (↓0.5%) 0.737 (↓0.5%) 0.079 (↓3%) 0.762 (↓0.5 %) 0.732 (↑6%) 0.082 (↑5%)

GTA 0.755(↓0.6%) 0.742(↓0.6%) 0.082(↓12%) 0.822(↓12%) 0.841(↓15%) 0.085(↓0.5%)

D-IF 0.743(↓0.1%) 0.766(↓1.2%) 0.091(↓20%) 0.843(↓20%) 0.824(↓20%) 0.083(↓0.5%)

Ours 0.745 0.733 0.077 0.759 0.781 0.086

Table 2. The quantitative results on CAPE-NPE and CAPE-FP datasets

Models CAPE-NFP CAPE-FP

Chamfer P2S Normal Chamfer P2S Normal

PIFu 2.559 2.340 0.093 1.756 1.625 0.077

PIFuHD 3.372 3.445 3.445 2.439 2.363 0.877

PaMIR 1.422 1.409 0.733 1.198 1.259 0.709

ICON 1.343 1.462 0.092 1.357 1.453 0.918

ECON 1.772 1.730 0.789 1.785 1.743 0.810

GTA 1.021 0.937 0.053 0.786 0.752 0.043

D-IF 1.123 1.087 0.068 0.996 0.805 0.060

Ours 0.893 0.812 0.072 0.901 0.801 0.055

Table 3. The ablation results on Thuman 2.0 and BUFF dataset. The percentage
shows the performance improvement with or without key components. Chamfer, P2S,
and Normal consistency evaluation: the smaller the better.

Thuman 2.0 Dataset BUFF Dataset

Modules Chamfer P2S Normal Chamfer P2S Normal

w/ codebooks w/o fusion 0.774(↓4%) 0.764(↓4%) 0.082(↓6%) 0.787(↓4%) 0.791(↓1%) 0.090(↓4%)

w/o global codebook 0.762(↓2%) 0.754(↓3%) 0.081(↓5%) 0.797(↓5%) 0.798(↓2%) 0.089(↓3%)

w/o local codebook 0.780(↓5%) 0.773(↓5%) 0.084(↓8%) 0.815(↓7%) 0.824(↓5%) 0.092(↓7%)

w/o fusion 0.767(↓3%) 0.769(↓5%) 0.086(↓10%) 0.782(↓3%) 0.813(↓4%) 0.090(↓4%)

w/o Integration 0.782(↓5%) 0.791(↓7%) 0.088(↓13%) 0.812(↓7%) 0.833(↓6%) 0.092(↓7%)

w/ all modules 0.745 0.733 0.077 0.759 0.781 0.086

models in these methods for rendering human normal vector maps, which are
subsequently employed to predict normal vector maps with clothing. The nor-
mal vectors obtained through parametric model rendering demonstrate greater
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Table 4. The ablation study on parameter size and inference time on Nvidia TITAN
X GPU.

Method Parameter Size Inference Time

w/ codebooks w/o fusion 17.6M 35.5 s

w/o global codebook 18.7M 36.3 s

w/o local codebook 18.9M 37.5 s

w/o fusion 18.5M 35.6 s

w/o Integration 17.5M 33.7 s

Full Model 20.6M 41.1 s

stability and accuracy compared to those predicted directly from image features.
The discrepancy in performance is particularly noticeable on the BUFF dataset
(Table 2).

4.2 Ablation Study

We evaluate our methods with a series of ablation studies to assess the key
components contributing to the overall performance. Table 3 illustrates the per-
formance with and without some significant modules of the proposed method.
First, we evaluate the importance of two neural codebook learning modules. It
is obvious that the performance dramatically deteriorates without the two neu-
ral codebook learning modules. Moreover, deployment of either neural codebook
learning module boosts the performance, but the local codebook learning mod-

Fig. 3. The qualitative results of proposed model
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Fig. 4. The evaluation on out-of-distribution images

ule has a large impact on overall performance in comparison to its counterpart.
Lastly, it is noticeable that without neural code integration results in the worst
performance. Figure 3 shows the results of the qualitative ablation study. The
local neural codebook contributes to the diversity of surface details such as fin-
gers and facial details. It is noticeable that surfaces tend to suffer from local
surface detail insufficiency without the local neural codebook. Similarly, neural
code integration encourages local and global neural codes to be fully integrated,
this is beneficial for surface details preservation.

We also conduct an ablation study on parameter size and inference time in
Table 4 to further demonstrate the efficiency of the proposed model.

4.3 Out-of-Distribution Image Evaluation

We involve out-of-distribution image evaluation to further demonstrate the gen-
erality of our proposed models. As shown in Fig. 4, our model generalizes well
on unseen images that are beyond the distribution of the training dataset. Our
learned neural code book can generalize well to various unseen garment details
and fashion poses without further training. Unlike SuRS [15] which are highly
constrained by the distribution of training data, our method captures the most



Neural-Code PIFu: Single Image 3D Human Reconstruction 193

frequently appeared patterns in the training data, and utilizes them to improve
the expressiveness of input features beyond training distribution. We also capture
more details than ICON which also predicts normal maps from image feature
space.

5 Conclusion and Discussions

In conclusion, we propose a novel framework for 3D human reconstruction from
a single image named neural-code PIFu which bridges the pixel-aligned features
and its neural codes for better expressiveness. Our method predicts the coarse-
level feature for both local and global contexts and applies two neural code
books to learn the distinctive neural codes. The fine-level feature is produced
via a neural code integration which considers the global geometric correlation of
each feature, resulting in much detailed human surfaces.

Although our method surpasses SoTA in terms of generalisation, details cap-
turing, and preservation for unseen clothing, our method shows weaknesses in
reconstructing unseen poses which may result in broken meshes. Additionally,
our method tends to recognize hair as details of garments, this frequently occurs
when reconstructing females in fashion poses. Despite the promising perfor-
mance, our model is trained on a fully synthetic dataset, and there is still a
domain gap between the training data and the real-world data.

In future research, we will investigate combining uncertainty modeling,
domain adaption, and diffusion models to alleviate the mentioned challenges,
and also make effects into producing a real-world dataset for 3D human recon-
struction.
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Abstract. In SAR image detection, small target ships are susceptible
to interference from clutter and noise, making accurate classification and
detection challenging. Despite significant progress in this field, there has
been a lack of methods specifically adapting to the characteristics of small
target ships dynamically. This limitation causes the existing dynamic
detectors to equally allocate attention to small objects in simple and
complex backgrounds, resulting in poor detection of small objects in com-
plex backgrounds. To address this issue, we propose the SAR Dynamic
Feature Adaptive Network (Sea-ShipNet). Firstly, we aggregate seman-
tic information at the shallow feature level, significantly enhancing the
feature contrast between small targets and the maritime background.
Secondly, we propose a dynamic feature adaptive vector to guide image
features to the detection head, paying more attention to small targets
within complex backgrounds. We conduct comparative experiments with
common methods on two SAR ship datasets, further demonstrating the
superiority of our approach in detecting small target ships.

Keywords: SAR · Object detection · Small targets · Three-level
feature fusion · Dynamic feature adaptation

1 Introduction

Synthetic Aperture Radar (SAR) has the ability of all-weather and all-day obser-
vation, which is of great significance in maritime surveillance, maritime security,
national defense security and other fields. In SAR applications, ship detection
especially small target ship detection plays a crucial role in maritime manage-
ment and surveillance. Small target ships are easily disturbed by clutter and
other noises due to their small size, which brings challenges to traditional detec-
tors to achieve accurate detection.

The purpose of small target ship detection (STSD) in SAR images is to sep-
arate small target ships from complex background. The task faces two main
challenges: 1) Small size: Small target ships typically have very small dimen-
sions, typically less than 25× 25 pixels, and different small targets may exhibit
different sizes. 2) Complex background: Small target ships are susceptible
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15303, pp. 196–209, 2025.
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Fig. 1. The detection results of Sea-ShipNet on the SSDD dataset compared to SOTAs
are shown in the detection images. The red boxes represent the predicted bounding
boxes, and the yellow circles represent ships that are incorrectly classified. From the
images, it can be observed that our Sea-ShipNet outperforms other methods in terms
of detection accuracy. (Color figure online)

Fig. 2. Architecture of Sea-ShipNet. After obtaining feature maps {T3,T4,T5} through
TFF, they are input into LD-DyHead for dynamic detection. Here, {λ1, λ2, λ3, ..., λc}
is the dynamic feature adaptation vector, and its parameters are updated during the
backpropagation stage.

to the interference of complex backgrounds, resulting in the blurring and loss
of semantic information related to these small targets. As a result, state of the
art (SOTA) detectors are susceptible to interference from complex backgrounds,
leading to errors and missed detections in the results.

The traditional STSD method try to solve the feature ambiguity problem of
small objects by using deeper network structures, multi-scale feature fusion, and
designing detection heads to enhance the features of small objects. For example,
some methods utilize pyramid feature [4,6,7,13] fusion to enhance the represen-
tation ability of small objects by fusing multi-scale feature information. How-
ever, the original intention of these methods is to extract the semantic and spatial
information of the object from the feature maps at different scales. In some cases,
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more complex feature fusion operations in pursuit of richer feature information
may lead to the loss of small target features. Designing a simple and effective
feature fusion method that highlights the characteristics of small targets is an
important research issue.

Additionally, numerous researchers have sought improvements from the
detection head. Many works have proposed novel detection head [1,8,10–12]
structures to better meet the detection requirements of small targets. Dai et
al. [2] propose the dynamic detection head (Dyhead), which achieved significant
performance in multi-scale object detection tasks through cascading multiple
Dyhead blocks. However, it does not differentiate between complex and simple
backgrounds; instead, it applies attention globally and does not prioritize small
targets with complex backgrounds.

To address these issues, we propose a Dynamic Feature Adaptation Net-
work specifically designed for SAR ship images. It consists of two main com-
ponents: 1) Three-level Feature Fusion (TFF): We devise a feature fusion
method tailored for small target ships, focusing on the fusion of shallow fea-
tures. This method selectively aggregates semantic information for small target
ships using deformable convolutions. 2)Lambda Dynamic detection head
(LD-Dyhead): We propose a crucial learnable vector λ in the DyHead. It col-
laborates with the Efficient Channel Attention (ECA) [15] to guide different
detection head algorithms for ship images with varying difficulty levels. This
approach allows the model to truly “adapt” and pays more attention towards
small targets with complex backgrounds.

Figure 1 shows the detection results of different network models in three
distinct scenarios. We select several baseline models for comparison with our
approach, and mark the correctly detected and falsely detected ships. Clearly,
our method outperforms other baseline models by detecting more ships, while
maintaining the lowest false detection rate. This indicates that our approach
is indeed more effective at extracting small target ships from various complex
backgrounds. Further experimental results will be presented in the experimental
section.

In summary, our contributions mainly consist of the following three points:

• We propose the Three-level Feature Fusion, to enhance semantic information
for small objects. By directly fusing shallow, intermediate, and deep feature
maps, we obtain small object features rich in semantic information.

• Addressing the issue of conventional dynamic detection heads not adequately
focusing on complex images, we introduce the dynamic feature adaptation
vector λ. Additionally, we design a loss function tailored to λ to enable end-to-
end training. The λ guides the dynamic detection head to pay more attention
to complex image features during training.

• We conducte extensive ablation and comparative experiments to validate the
effectiveness of our proposed method. Experimental results on two datasets
demonstrate Sea-ShipNet’s performance in SAR ship detection, particularly
its superiority in detecting small targets, outperforming current methods.
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2 Methodology

2.1 Overview

Imagine how you would locate small target ships in a SAR image. You would
compare the target with the background, focusing on the region with the high-
est contrast, and then assess whether it is indeed a ship. In the initial search,
whether the background is simple or complex, you would need to expend atten-
tion to identify small target ships. As you become more adept, you might sub-
consciously employ a form of “muscle memory” in searching simpler images
without expending additional attention on meticulous annotations. We propose
Dynamic Feature Adaptation Network to imitate this human behavior as shown
in Fig. 2. Firstly, we establish the TFF feature fusion network, enhancing the
contrast between the target and the background. Subsequently, we propose a
dynamic feature adaptation vector, emulating human “muscle memory,” allow-
ing straightforward predictions for simple images and employing various self-
attention functions for predicting complex image features.

2.2 Three-Level Feature Fusion

The structure of the three-level feature fusion module is shown in Fig. 2. C3, C4,
C5 are obtained through FPN feature fusion, resulting in P3, P4, P5. P5 and P4
undergo max pooling and upsampling operations, respectively, to align spatially
with P4. They are then concatenated along the channel dimension with the P4
feature map. Finally, the deformable convolution is applied to obtain the output
feature map T. The above process can be summarized as:

Pi =
{

Conv(Ci), i = 5
Conv(Concate(Pi+1, Ci)), i = 2, 3, 4 (1)

Ti = DCN([Upsample(Pi−1), Pi,MaxPool(Pi+1)]), i = 3, 4 (2)

where DCN is deformable convolutional and [·] is matrix concatenation. Ti is
output of the TFF.

To compare the effectiveness of FPN [6], PAN [7], BiFPN [13], and the pro-
posed TFF in feature fusion for small ship detection, we select small target SAR
ship images as inputs and visualized the fused feature maps using these four
fusion methods, as shown in Fig. 3. FPN does not further perform three-level
feature fusion on multi-scale feature maps, which is difficult to highlight the
feature information of small targets. PAN and BiFPN use multi-step cascaded
feature fusion, resulting in the feature information of small targets being sub-
merged in massive features. In contrast, TFF uses a three-level feature fusion
method without too many cascaded feature fusion operations, which effectively
fuses multi-scale feature maps and significantly highlights the feature informa-
tion of small objects. As can be seen from Fig. 3 (e), TFF clearly separates ship
features from ocean features, demonstrating the significant improvement of TFF
in detecting small ship targets.
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Fig. 3. Comparison between TFF and different feature fusion methods. (a) is a SAR
ship image of SSDD dataset. (b), (c), (d) and (e) are the visualized feature maps of
a obtained by the current feature fusion method, and we take the visualized feature
maps of the first three channels (top-down) for display.

2.3 Lambda Dynamic Detection Head

A regular dynamic detection head [2] utilizes three attention functions: πL, πS ,
πC , which operate on the dimensions of the feature map, namely L, S and C.
Assuming the feature map F ∈ RL×S×C , the output feature map of Dyhead is
denoted as W(F):

W (F ) = πC (πS (πL(F ) · F ) · F ) · F, (3)

The attention function πL is scale-aware attention:

πL(F ) · F = σ(f(
1

SC

∑
S,C

F )) · F, (4)

where f(·) is a convolution operation with a 1× 1 kernel and σ(x) =
max

(
0,min

(
1, x+1

2

))
is a hard-sigmoid function.

The attention function πS is spatial-aware attention:

πS(F ) · F =
1
L

L∑
l=1

K∑
k=1

wl,k · F (l; pk + Δpk; c) · Δmk, (5)

where K is the number of sparsely sampled locations. Both Δpk and Δmk are
learned from the intermediate layer features of the input feature map F.

The attention function πC is task-aware attention:

πC(F ) · F = max(α1(F ) · Fc + β1(F ), α2(F ) · Fc + β2(F )), (6)

where Fc is the feature map on the c-th channel, and [α1,β1, α2, β2] is the
adaptive control threshold hyperparameters.

To dynamically adapt to features in both simple and complex images, we pro-
pose the λ = {λ1, λ2, λ3, ..., λc}. It governs the selective entry of image features
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into the Dyhead. Assuming the feature map F ∈ RL×S×C , the output feature
map is denoted as LD(F):

θ =
λT · Λ(F )

||λ||2 · ||Λ(F )||2 , (7)

LD(F ) = θ × W (F ) + F. (8)

In this context, Λ is ECA attention [15], which can map F into a c-dimensional
vector used for matrix multiplication with λ, where · is matrix multiplication.
In our experiments, we find that the confidence loss for complex images tends to
be larger than that for simple images. To address this characteristic, we define
the loss function:

Loss = αbox × Lbox + αobj × (1 − 1
1 + e−||λ||2 ) × Lobj , (9)

where αbox,αobj are balancing coefficients and || · ||2 is L2 norm. Lbox uses the
CIoU [19] loss function.

The λ is a set of one-dimensional vectors, multi-dimensional image features
are mapped to one-dimensional vectors by ECA attention formula, and matrix
multiplication with λ is performed to obtain a numerical parameter θ. This
parameter θ controls whether the image feature is detected by Dyhead or not.
As θ tends to 1, LD(F) is approximately equal to W(F) + F, where W(F) is the
result of F passing through Dyhead to detect the head. LD (F) is approximately
equal to F as θ tends to 0, indicating that F is not detected by the Dyhead head
but by using a simple convolution.

The trend of the parameter θ is controlled by the loss function. According
to the loss function, when the input image features are extremely complex, the
confidence loss is usually large. In order to balance Lbox and Lobj , the λ needs to
take a large value to reduce the confidence loss. When the input image features
are too simple, the confidence loss is usually small, and the λ needs to take a
small value to balance Lbox with Lobj .

In this way, λ can dynamically control the detection path through which
the image passes, so as to adapt to image features of different complexity and
achieve more flexible and effective detection.

3 Experiment

All experiments are conducted on Python version 3.7, PyTorch version 1.13 and
NVIDIA GeForce RTX 4080 with a memory capacity of 16 GB.

3.1 Evaluation Metrics

Model performance is evaluated by precision, recall, and average precision (AP),
which calculate how well the predictions overlap with the ground truth based on
IoU. If the IoU exceeds the threshold, it is a true positive (TP), otherwise it is
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Table 1. The results of comparative experiments between popular object detection
models and Sea-ShipNet on the SSDD and SAR-ship datasets are as follows. The
number of Dyhead blocks denoted by BN.

Model Param FLOPs P R AP50 AP75 mAP APS

SSDD Dataset

Resnet50-l 33.8M 63.8G 84.4 77.0 81.9 52.5 47.8 47.3

YOLOv5-l 46.1M 107.6G 89.8 81.4 87.7 57.6 50.8 49.7

UniRepLKNet-n 82.3M 193.5G 90.2 78.3 86.6 48.4 47.4 46.1

EfficientViT-b5 60.1M 102.2G 88.2 81.4 85.9 55.4 50.1 47.5

FocalNet-s 70.9M 180.3G 86.3 81.1 85.6 51.4 47.6 46.3

YOLOv7-l 37.1M 104.5G 83.3 83.4 86.0 57.3 51.7 50.4

VanillaNet-s 55.1M 193.6G 87.0 81.2 86.1 51.1 48.4 46.4

EMO-5M 26.4M 153.6G 86.3 82.4 86.6 55.7 50.4 49.3

Sea-ShipNet-l(BN = 2) 54.7M 191.5G 91.8 82.0 88.3 57.3 52.1 50.9

Sea-ShipNet-l(BN = 3) 56.3M 192.8G 91.2 82.5 88.6 58.4 53.7 52.9

Sea-ShipNet-l(BN = 4) 58.1M 194.0G 92.6 84.7 89.4 62.7 54.2 53.6

SAR-Ship Dataset

Resnet50-n 1.9M 3.6G 89.9 87.6 93.4 55.9 53.6 50.3

YOLOv5-n 1.8M 4.2G 89.7 90.0 94.3 59.0 55.3 52.0

UniRepLKNet-t 5.8M 11.0G 90.7 87.5 93.8 57.5 54.7 51.2

EfficientViT-b0 20.7M 39.0G 90.9 88.5 93.6 60.3 55.7 53.7

FocalNet-t 29.1M 74.3G 89.4 86.2 92.3 53.8 52.5 49.8

YOLOv7-n 2.3M 6.7G 90.6 90.2 94.6 63.7 57.7 55.1

VanillaNet-n 3.2M 11.0G 90.6 90.1 94.8 61.5 56.4 52.7

EMO-1M 2.0M 25.6G 90.0 89.6 94.7 63.5 57.5 54.2

Sea-ShipNet-n(BN = 2) 2.6M 10.2G 90.7 90.7 94.2 63.3 56.7 54.9

Sea-ShipNet-n(BN = 3) 2.8M 10.6G 90.6 91.1 95.2 64.4 58.4 56.7

Sea-ShipNet-n(BN = 4) 3.0M 10.9G 89.9 90.1 95.0 64.3 58.1 56.4

a false positive (FP). A labeled box with no corresponding prediction is a false
negative (FN). Their calculation formula is as follows:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

mAP =
∫ 1

0

P (R) dR. (12)

The AP value is positively correlated with the model performance. In this paper,
the AP values for IoU = 0.5 and 0.75 are used, which are AP50 and AP75,
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Fig. 4. The detection results of Sea-ShipNet on the SAR-Ship dataset compared to
SOTAs are shown in the detection images. Sea-ShipNet has the lowest false and missed
detection rates among the compared SOTAs. (a) is ground truth, (b) is the result
of Sea-ShipNet, (c)–(i) respectively show the detection results of ResNet, YOLOv5,
EfficientViT, FocalNet, YOLOv7, VanillaNet, and EMO.

respectively. mAP is the average AP value for IoU ranging from 0.5 to 0.95, and
AP for small ship targets is denoted as APS .

3.2 Datasets

In the experiments, we use SSDD [5] and SAR-ship [16] datasets. The SSDD
dataset contains 1,160 images of ships with 512 × 512 pixels, which are divided
into training and validation sets at a 7:3 ratio. The SAR-ship dataset contains
39,729 images of 256 × 256 pixels, again divided into training and validation
sets in a 7:3 ratio.

3.3 Comparison with the State of the Art

Table 1 is the comparative experimental results between Sea-ShipNet and cur-
rent popular methods. We compared CNN-based methods including ResNet,
YOLOv7 [14], UniRepLKNet [3], FocalNet [17], VanillaNet [17] and DETR-
based methods including EfficientViT [9], EMO [18]. Sea-ShipNet outperforms
the current SOTA detectors across various metrics, particularly excelling in the
APS metric, achieving the highest values of 53.6 and 56.7 on the SSDD and
SAR-Ship datasets, respectively. This strongly validates the outstanding perfor-
mance of our method in detecting small target ships. Additionally, Sea-ShipNet
achieves the best results in AP50, indicating its superiority not only in detecting
small targets but also in overall ship detection performance across different sizes.
Figure 4 shows the comparison between our method and other methods.
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Table 2. Compare the effect of TFF and LD-Dyhead respectively on SSDD dataset.

TFF LD-Dyhead AP50 AP75 mAP APS

× × 87.8 57.6 51.6 50.4

× �(BN = 2) 86.8 62.2 53.4 51.7

× �(BN = 3) 87.8 59.3 52.3 50.9

× �(BN = 4) 88.3 62.0 54.0 52.2

� × 88.3 60.4 53.6 52.0

Table 3. Compared the proposed TFF method with the SOTA feature fusion methods
on both datasets.

Model AP50 AP75 mAP APS

SSDD

FPN 87.8 57.6 51.6 50.4

PAN 87.6 57.8 50.8 49.7

BiFPN 87.4 56.7 51.8 50.4

TFF(ours)88.3 60.4 53.6 52.0

SAR-Ship

FPN 94.3 58.7 55.1 52.3

PAN 94.3 59.9 55.7 52.0

BiFPN 94.4 60.2 55.6 52.1

TFF(ours)94.7 60.9 56.1 52.8

3.4 Ablation Experiment

We conduct ablation experiments to validate the roles of the TFF and LD-
Dyhead components in the model. The experimental results are shown in Table 2.
Regarding the impact of TFF: when only the TFF component is added, there
is a significant improvement in the APS small target evaluation metric. This
improvement is attributed to TFF significantly enhancing the semantic features
of ship targets during the feature fusion stage.

Effectiveness of TFF. To verify the superiority of our proposed TFF in small
target detection, we compare it with mainstream feature fusion methods in cur-
rent use, and the results are shown in Table 3. Among the three compared meth-
ods, FPN and PAN do not perform feature fusion on shallow feature maps,
while BiFPN, due to its complex feature fusion operations, disrupts the seman-
tic information of small targets. TFF, without complex feature fusion operations
and specifically fusing shallow semantic features, exhibits superior performance
in small target detection compared to these methods.

Effectiveness of λ (LD). To verify the effectiveness of the dynamic feature
adaptation module, we conduct experiments on the YOLOv7 network, and the
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Table 4. The results of the experiments are conducted on the SSDD dataset using the
YOLOv7 network model are as follows. The BN is the number of Dyhead blocks. The
bold numbers are the experimental results of YOLOv7 combined with LD-Dyhead,
while the non-bold numbers represent the experimental results of YOLOv7 combined
with Dyhead.

BN AP50 AP75 mAP APS

0(baseline) 86.1 57.6 51.5 50.5

2 87.7 56.4 51.6 49.7

88.0 57.7 52.1 50.8

3 88.1 56.6 52.2 49.3

87.9 58.1 52.9 51.2

4 87.2 57.9 52.3 49.8

89.0 59.3 53.8 52.0

Table 5. Experiments with multi-scale feature maps

Layers Param SSDD SAR-Ship

P R AP50 mAP APS P R AP50 mAP APS

P3 37.6M 79.7 75.2 75.4 48.9 47.1 77.1 76.4 80.2 49.6 48.3

P3,P4 41.4M 81.6 79.3 79.4 51.8 51.5 86.1 84.7 88.5 52.7 51.9

P3,P4,P5 45.7M 87.9 83.9 88.3 53.6 52.0 89.1 88.6 94.7 56.1 52.8

P3,P4,P5,P6 47.9M 87.9 83.2 88.1 53.4 51.3 87.5 86.2 93.1 54.6 50.9

P3,P4,P5,P6,P7 49.4M 86.4 82.7 87.1 51.6 50.8 86.2 85.6 91.4 53.1 50.5

results are shown in Table 4. Before the addition of the LD module, Dyhead is
unable to selectively process features from simple and complex images, result-
ing in poorer detection performance. After integrating the LD module, the
model exhibit increased attention towards complex images, leading to an average
improvement of 1.5 in various mAP metrics compared to Dyhead alone.

3.5 Comparative Experiments Within the Module

We conduct comparative experiments inside the TFF and LD-Dyhead modules.
In the TFF module, we gradually add multi-scale feature maps starting from
P3 feature map to verify the detection performance after using fewer or more
multi-scale feature maps for three-level feature fusion. The experimental results
are shown in Table 5. Within the LD-Dyhead module, we verified the ability
of lambda to regulate Lobj by changing the balance coefficient αobj of Lobj , and
further verified the adaptability of lambda to simple and complex image features
by comparing with the model without λ adjustment. The experimental results
are shown in Table 6.
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Table 6. Experiments on different aobj

Parameter Backbone SSDD SAR-Ship

P R AP50 mAP APS P R AP50 mAP APS

αobj = 0.1 DarkNet53 86.2 82.1 86.7 51.2 51.1 84.8 83.7 89.2 53.5 50.8

αobj = 0.3 DarkNet53 87.9 84.1 87.5 53.3 52.0 87.2 85.4 91.5 54.1 51.6

αobj = 0.5 DarkNet53 88.1 83.5 86.9 51.7 51.9 88.6 87.9 94.1 55.6 52.4

αobj = 0.7 DarkNet53 88.4 84.6 88.3 54.0 52.2 87.7 87.4 92.9 55.2 52.0

αobj = 1.0 DarkNet53 87.4 84.1 87.7 52.9 51.7 88.1 87.6 93.4 54.8 51.1

αobj = 10.0 DarkNet53 86.8 81.4 86.2 51.5 50.9 85.4 83.2 90.6 52.7 50.2

αobj = 10.0(no λ) DarkNet53 84.7 12.9 82.1 35.3 24.1 79.5 20.3 83.4 26.8 17.2

Table 7. Experiments of Sea-ShipNet with the generic model ResNet on detection and
classification tasks.

Model SSDD ImageNet

P R AP50 Top.1 Top.5

ResNet50 84.4 77.0 81.9 78.1 93.3

Sea-ShipNet 92.6 84.7 89.4 81.2 94.7

Effectivenes of Using Fewer or More Layers. The experimental results are
shown in Table 5. Starting from using only P3, all the metrics improve signifi-
cantly as the number of layers increases, indicating that multi-scale feature maps
can significantly improve detection performance. P3, P4 and P5 achieve the best
detection results. However, when P6 is added, the indicators begin to decrease,
and the decrease in APS is the most obvious by 0.7. This verifies that too many
feature fusion operations mentioned in this paper will lead to the loss of semantic
information of small objects, and then affect the detection performance. When
P7 is added, all the indicators decrease significantly. In summary, P3, P4 and
P5 achieve the best results, so we choose P3, P4 and P5 as the feature maps to
be detected.

Effectivenes of Adaptive Capabilities of λ. The experimental results are
shown in Table 6. On the SSDD dataset, the best results are achieved when
aobj = 0.7, indicating that λ can adapt well to the features of simple and com-
plex images, and thus better balance Lbox and Lobj . Similarly, on the SAR-Ship
dataset, the best results are achieved when aobj = 0.5. The difference in the
optimal aobj value between the two datasets is mainly due to the large difference
in the image feature distribution between the two datasets. In order to verify the
adaptability of λ to image features and the balance ability of Lbox and Lobj , we
remove λ when aobj = 10 for experiments. The experimental results show that
the model performs poorly when the λ is removed. This is because the balance
coefficient aobj of Lobj is too large, which makes the detector unable to balance
the fluctuation of loss values caused by complex and simple features, and thus
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Table 8. Experiments with different proportions of datasets.

Proportion SSDD SAR-Ship

P R AP50 P R AP50

10% 73.7 6.9 77.1 87.8 24.1 85.1

20% 83.2 27.6 86.9 87.4 62.9 87.0

50% 87.6 79.5 88.6 89.4 86.3 91.5

100% 92.6 84.7 89.4 90.7 91.1 95.2

unable to detect more objects. Although the precision P is at a reasonable value,
this is because the value of abox is reasonable, so that Lbox can converge properly,
so that the model can detect the object with a high degree of accuracy.

3.6 Comparative Experiments on Multi-task Learning

We compare the performance of Sea-ShipNet with the general model ResNet
on multi-task learning. The experimental results are shown in Table 7. From
the table, it can be seen that Sea-ShipNet performs significantly better than
ResNet50 on SAR dataset (SSDD) in terms of precision (P), recall (R), and
average precision (AP50). Meanwhile, the Top-1 and Top-5 accuracy of Sea-
ShipNet on ImageNet dataset is also slightly higher than ResNet50. These results
show that the generic model can effectively utilize the custom information of
SAR data through multi-task learning techniques, thereby improving its perfor-
mance on multiple tasks. Specifically, Sea-ShipNet shows better adaptability and
detection performance when dealing with both complex SAR data and standard
image classification tasks. In summary, our experiments verify the effectiveness
of the multi-task learning technique in combining SAR data custom information
and demonstrate the comprehensive performance advantage of Sea-ShipNet over
ResNet50 on multiple datasets.

3.7 Experiments with Different Proportions of Datasets

We conduct experiments with different proportions of datasets to show the
advantage of the custom solution when there is less data and the performance
improvement of large models when the amount of data increases. The exper-
imental results are shown in Table 8. The experimental results show that the
performance of the custom solution improves significantly on SSDD and SAR-
Ship datasets when the proportion of data is low, such as 10% and 20%. This
indicates that the custom model can better capture the features and provide
higher detection precision and recall when there is less data. As the proportion
of datasets increases 50% and 100%, the performance on both datasets improves,
and the best performance is achieved especially at 100% data size. This shows
that large models can gradually catch up with or even surpass the performance
of custom models when the amount of data is sufficient.
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4 Conclusion

SAR small target ship detection is an extremely challenging task. Due to the
small size of the target ships and their susceptibility to background clutter, exist-
ing methods often struggle to effectively address both issues. To tackle these
challenges, we propose the Dynamic Feature Adaptation Network, Sea-ShipNet:
1) enhancing the contrast between small target ships and background clutter
to significantly highlight the features of the target ships; 2) employing multiple
attention mechanisms to iteratively search for small target ships. Additionally,
the proposed dynamic feature adaptation vector imitates a “muscle memory”
filter, inspired by human filtering of simple background images, directing atten-
tion more towards complex background images. Our experimental results on two
SAR ship datasets demonstrate that Sea-ShipNet effectively addresses the afore-
mentioned challenges, achieving competitive performance across various metrics.

Acknowledgment. This work is supported by the National Natural Science Founda-
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Abstract. Existing multi-label classification works are confined to fixed
target categories, requiring lots of effort in collecting complete labels.
However, annotating all relevant labels for novel categories is impracti-
cable. To cope with this challenge, we investigate a new task, union-set
multi-label image recognition (US-MLR), which allows a varying label
space for each image rather than a fixed one (see Fig. 1). Beyond comple-
menting missing labels, it further requires aligning semantic correlations
among different splits. In this work, we propose a novel semantic correla-
tion adaptation (SCA) framework, which firstly explores semantic corre-
lations within each domain and across different domains to complement
missing labels and then performs semantic correlation co-adaptation to
alleviate the correlation inconsistency due to the domain gap. Compre-
hensive experiments on a new US-MLR benchmark and multiple MLR
benchmarks demonstrate the effectiveness of the proposed SCA frame-
work.

Keywords: Union-Set Multi-label Image Recognition · Semantic
Correlations · Co-Adaptation

1 Introduction

Multi-label image recognition (MLR), which aims to identify all semantic objects
in the given scene, is a fundamental but practical task since daily images inher-
ently contain multiple objects. In the last decade, lots of efforts [3,4] were ded-
icated to facilitating this task as it supports plenty of downstream applications
of image content understanding. However, earlier works predominantly confine
a fixed target space, which requires complete labels for all relevant categories.
When models are required to identify new categories, this issue compels the col-
lection of an entirely new dataset, which is extremely labor-intensive [7,11,13],
instead of reusing existing datasets. To alleviate this dilemma, we delve into a
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novel task, union-set multi-label image recognition (US-MLR), where each image
possesses a distinct set of labels derived from potentially different category splits,
as shown in Fig. 1.

Fig. 1. Two examples in the US-MLR setting (the missing labels are highlighted in
red). Due to the varying label space, each image merely contains annotations in the
original category split while missing all labels in other splits. (Color figure online)

Due to the inconsistency of label space among different images, there are
lots of missing labels in the US-MLR setting, leading traditional MLR models to
poor performance. Fortunately, daily multi-label images contain rich and strong
semantic correlations among different object categories, e.g., cars are likely to
co-exist with roads. Hence, we propose exploring these semantic correlations to
complement unknown labels. It is worth noting that current works in MLR-
PL tasks [17,19], where merely some labels are known while others are missing
per image, are also focusing on complementing unknown labels in multi-label
images. However, there is not only the absence of labels but also gaps between
split domains in the US-MLR task. The latter prevents training MLR-PL mod-
els to solve this task because simply utilizing these correlations from different
domains may introduce noise. Moreover, these semantic correlations obtained
from distinct domains are incomplete, even biased, which can easily lead to
model prediction bias. To address this challenge, we propose to align semantic
correlations between different split domains, as shown in Fig. 2.

Based on these insights, we propose the semantic correlation adaptation
framework (SCA) to achieve co-adaptation of semantic correlations in case the
label space is variable. First, we use label co-occurrence and category similarity
to mine potential semantic correlations within each domain and across different
domains. However, it is not guaranteed that we can acquire all accurate cor-
relations due to the existence of domain gaps, e.g., missing correlations among
categories or all correlations related to one category, as shown in Fig. 2. There-
fore, a co-adaptation module is designed to regularize the consistency between
these semantic correlations.

Our contributions are summarized as follows: 1) We propose a new task,
union-set multi-label image recognition (US-MLR), which allows a varying label
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space for each image rather than a fixed one. 2) We design a novel semantic
correlation adaptation framework (SCA) consisting of two modules: semantic
correlation learning and semantic correlation co-adaptation. 3) We construct a
new US-MLR benchmark for fair and comprehensive evaluations. To the best of
our knowledge, this is the first attempt to construct such a unified evaluation
benchmark.

Fig. 2. Categories annotated in both splits or semantically similar ones allow correlat-
ing between the original split and the other split to learn new correlations (black dots
and lines on the pink or blue background). However, gained correlations are incom-
plete, even biased (red dots and lines in gray dashed frames). After co-adapting, all
semantic correlations are aligned to be consistent (all dots and lines are black). (Color
figure online)

2 Related Work

With the rapid growth of search engines, recognizing multi-label images has
received considerable attention in the computer vision community [20,21]. How-
ever, annotating a complete list of labels for every image is time-consuming
and labor-intensive, making collecting large-scale and complete multi-label
datasets less practical and scalable. To reduce the annotation cost, lots of efforts
[2,15,17,19] are dedicated to training MLR models with partial labels, in which
merely a few positive and negative labels are provided while others are unknown.
Previous approaches [17,19] treat missing labels as negative or ignore them and
consider the MLR-PL task as the multiple binary classification problem. How-
ever, these methods lose some data and even introduce noisy labels, resulting
in poor performance. To overcome this problem, current works propose generat-
ing pseudo-labels for missing labels. Chen et al. [2] proposes to explore within-
and cross-image semantic correlations to transfer knowledge of known labels
to generate pseudo labels for the unknown. Pu et al. [15] proposes to exploit
instance- and prototype-level semantic representation to complement unknown
labels. However, these methods implicitly require consistent semantic correla-
tions among categories and thus easily generate noisy labels when target cate-
gories are sampled from different domains.
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Furthermore, there are various methodologies among current works. 1) Lever-
aging Prior: Ding et al. [5] propose exploring the structured semantic prior via
a semantic prior prompter; 2) Estimating Noise: Li et al. [12] design a novel
noise estimator that exploits label correlations without neither anchor points
nor accurate fitting of noisy class posterior; 3) Tuning Loss: Kim et al. [10] pro-
vide an observation about memorization effect in the noisy multi-classsetting;
4) Exploring Correlation: Xia et al. [22] provide a high-level understanding of
why label dependence helps distinguish the examples with clean/noisy multiple
labels.

Distinct from these prior works, we further explore the semantic correlation
inconsistency resulting from the varying label space of each image. Specifically,
we propose extracting regularization patterns from common categories to align
semantic correlations across distinct split domains.

Fig. 3. An overall illustration of the proposed SCA framework that consists of a seman-
tic correlation learning module and a semantic correlation co-adaptation module.

3 Semantic Correlation Adaptation

In this section, we introduce the proposed semantic correlation adaptation frame-
work, as shown in Fig. 3.

3.1 Semantic Correlation Learning

As semantic correlations can effectively reduce vague predictions, recent works
[8,18] use transformer-based prompt learning to learn label dependencies among
categories. However, these methods require extensive multi-label samples and
are limited to implicit correlation learning. To explicitly model correlations and
facilitate performance comparisons with earlier works, we exploit graph convo-
lutional networks (GCNs).

Initialization-Step. Here, we show two ways for initializing adjacency matri-
ces, which are crucial for GCNs and enable propagated messages across the graph
to explore semantic correlations.
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Intra-domain. Previous existing multi-label recognition methods [3,20,21] have
shown that co-occurrence in the semantic space coming from labels contain a
wealth of prior knowledge to regularize model learning better visual represen-
tations. Therefore, we follow previous works to initialize the adjacency matrix
based on labels coming from each split. Firstly, we use the matrix G ∈ RC×C

to record label co-occurrences, where C is the number of categories, Gij is the
number of co-occurrences of Li and Lj , and Gii is the number of appearances
of Li in the current split. Then, based on the matrix G, we get the adjacency
matrix A as follows

Aij = P (Lj |Li) = Gij/Gii, (1)

where P (Lj |Li) denotes the probability that when label Li appears, label Lj

also appears, so P (Lj |Li) �= P (Li|Lj).

Inter-domain. Although label co-occurrence can give accurate and complete
semantic correlations within each domain, most label intersections between splits
are too weak to uncover all complete semantic correlations across different splits.
Also, gaps between splits make methods [2] of generating pseudo-labels easily
introduce noise, resulting in poor performance. Fortunately, numerous web texts
contain a lot of semantic knowledge that can give guidance on the more common
distribution, so it is proposed to use category similarity to initialize the adjacency
matrix. Specifically, for each category c, we firstly use the pre-trained GloVe
model [14] to extract the category semantic embedding vector wc. Then, the
similarity of category semantic embedding vectors in the adjacency matrix A′

can be calculated using cosine distance with the following formulation

A′
ij = cosine (wi, wj) =

wi · wj

||wi|| · ||wj || , (2)

where i and j are two categories belonging to different or same splits.

Learning-Step. With the help of the above two ways, we can use label co-
occurrence and category similarity to correlate with the original split and obtain
more semantic correlations for categories between different splits, which is ben-
eficial for recognizing objects in the US-MLR task.

Specifically, we first construct corresponding GCNs based on adjacency
matrices, which contain semantic correlation prior within and across splits by
the following equation

fIntra−SCL (X,A) =
(
Aσ

(
AXW (0)

)
W (1)

)
, (3)

where σ (·) is a logistic sigmoid function. If replacing A with A′, we can get
fInter−SCL. Secondly, we obtain the feature embedding ôn

c and ōn
c for each cat-

egory c by following

ôn
c = fo (fIntra−SCL (fn

c , A) , fn
c ) , (4)
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where fn
c denotes the c-th category’s semantic representation vector described in

detail in the supplementary material, fo (·) is an output function that maps the
concatenation into an output vector. If replacing fIntra−SCL with fInter−SCL, we
can get ōn

c . Finally, we can gain category prediction scores Ŝn = {ŝn
1 , ŝn

2 , . . . , ŝn
C}

and S̄n = {s̄n
1 , s̄n

2 , . . . , s̄n
C} for a training image In by the following formulation

ŝn
c = fc (tanh (ôn

c )) , (5)

where tanh (·) is a hyperbolic tangent function, and fc(·) is a classifier that
takes ôn

c as input to predict the probability of objects belonging to category c.
If replacing ôn

c with ōn
c , we can get S̄n.

3.2 Semantic Correlation Co-adaptation

As mentioned above, the proposed framework uses common labels or category
semantic similarity to mine semantic correlations, which are implicitly existent
within and across domains, accomplishing semantic correlation learning. How-
ever, there are two reasons for the inconsistency between learned semantic cor-
relations and those originally contained within split domains: 1) When we try
to correlate between the original split and the other split, we can’t make sure to
learn all semantic correlations in the other split, so they are incomplete. Specifi-
cally, “car” and “person” will appear in the original split at the same time, and
by the common label of “person”, we can get the co-occurrence of “person” and
“bag”, as well as “person” and “bike”, which appear in the other split. However,
it is not possible to obtain the co-occurrence of “bag” and “bike”, which is indi-
cated by a red line in the first row of Fig. 2. 2) It is not sure that we can learn
all correlations of categories belonging to the other split, but category correla-
tions belonging to the original split are complete, which causes biased judgment.
Specifically, “bag” and “bike” co-occur in a split, and by the fact that “motor-
bike” and “bike” have similar semantics, we can obtain the co-occurrence across
splits for “bag” and “motorbike”. However, we cannot obtain correlations with
“helmet” which is indicated by red dots and lines in the second row of Fig. 2.

To address this, we design a module to regularize consistency to realize effec-
tive semantic correlation co-adaptation. We use Kullback-Leibler (KL) Diver-
gence to measure the difference between semantic correlations as follows

l(Ŝn||S̄n) =
C∑

c=1

ŝn
c (In) log

ŝn
c (In)

s̄n
c (In)

. (6)

Compared to original correlations within each split, we need to not only check
the completeness of learned semantic correlations by correlates but also prevent
bias. Since KL Divergence is asymmetric, we measure the distance between S̄n

and Ŝn equally to get a total adaptation equation as follows

Lco =
N∑

n=1

(
l(Ŝn||S̄n) + l(S̄n||Ŝn)

)
. (7)
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In this optimization, learned semantic correlations and correlations originally
contained within splits are pulled closer in the feature space to realize effective
alignment across split domains.

4 Optimization

Due to varying label spaces for different images in the novel US-MLR task, some
labels contained in the original category split are completely absent in other
splits. Inspired by [2], we transfer known labels by category-level feature simi-
larity to supplement missing labels. For each category c, we use cosine distance
to calculate the similarity of category features belonging to different images with
the following formulation

sn,m
c = cosine (fn

c , fm
c ) =

fn
c · fm

c

||fn
c || · ||fm

c || . (8)

We assume that the label of category c in the picture In is unknown and Dc =
{m|ym

c = 1} is the set of pictures that have labels on category c. In order to
obtain a pseudo label representing the presence or absence of objects belonging
to category c in the picture In, we firstly calculate the average similarity between
the feature vector fn

c of the picture In and feature vectors of pictures in Dc and
then utilize the formulation as follows

ỹn
c = 1

⎡
⎣

⎛
⎝ 1

|Dc|
∑

{mεDc}
sn,m

c · ym
c

⎞
⎠ ≥ θ

⎤
⎦ . (9)

Here, 1 [·] is the indicator function and θ is a threshold value. After combining
known labels and pseudo labels, we can get Ỹ n = {ỹn

1 , ỹn
2 , . . . , ỹn

C}.
To improve the feature similarity between images with the same positive

labels, we use a pair loss for ranking tasks to supervise our network with the
following formulations:

Lcon =
N∑

n=1

M∑
m=1

C∑
c=1

ln,m
c , (10)

ln,m
c =

{
1 − sn,m

c , yn
c = 1, ym

c = 1;
1 + sn,m

c , otherwise.
(11)

Here, sn,m
c is the cosine similarity between feature vectors fn

c and fm
c . If both

In
c and Im

c have the same positive label c (i.e., yn
c = 1 and ym

c = 1), we aim
to minimize the gap between fn

c and fm
c in the feature space by setting the loss

to 1 − sn,m
c . Otherwise, we aim to maximize the distance between them in the

feature space by setting the loss to 1 + sn,m
c .

We get the prediction scores Ŝ by the Intra-SCL module and S̄ by the Inter-
SCL module. Previous works used partial binary cross-entropy loss functions to
evaluate the performance of classification modules, and we also use this function.



Semantic Correlation Adaptation for US-MLR 217

To calculate margins between prediction scores and the corresponding pseudo
label (i.e., Ŝ and Ỹ , S̄ and Ỹ ), we use the objective functions defined by follows

l(Ŝn, Ỹ n) =
1∑C

c=1 |ỹn
c |

C∑
c=1

[1 (ỹn
c = 1) log (ŝn

c )

+ 1 (ỹn
c = −1) log (1 − ŝn

c )] ,

(12)

l(S̄n, Ỹ n) =
1∑C

c=1 |ỹn
c |

C∑
c=1

[1 (ỹn
c = 1) log (s̄n

c )

+ 1 (ỹn
c = −1) log (1 − s̄n

c )] .

(13)

We define similar objective functions for prediction scores and the ground truth
(i.e., Ŝ and Y , S̄ and Y ). The total classification loss is the sum of these losses
over all images, formulated as following

Lcls =
N∑

n=1

(
l(Ŝn, Ỹ n) + l(S̄n, Ỹ n) + l(Ŝn, Y n) + l(S̄n, Y n)

)
. (14)

Finally, we sum the classification, co-adaptation, and contrastive losses of all
images to obtain the final loss, formulated as

L = Lcls + Lco + λLcon. (15)

Here, λ is a balance parameter that ensures the classification, co-adaptation,
and contrastive losses have a comparable magnitude. In our experiments, we set
λ to 0.05.

5 Experiments

5.1 Experimental Settings

Some fundamental settings are introduced in this subsection.

Dataset. Following earlier multi-label image recognition works, we conduct
experiments on multiple datasets for fair comparisons, including MS-COCO [13],
VG-200 [11], and Pascal VOC 2007 [7]. They consist of 122, 218, 108, 249, and
9, 963 images, from 80, 200, and 20 classes, respectively.

Benchmark. To delve into potential challenges in reality, we combine MS-
COCO and VG-200 to construct a large-scale US-MLR benchmark COCO&VG,
which contains 231, 536 images. Due to the lack of label information for unique
categories, we select 38 categories that overlap among datasets as all categories
for this benchmark. We set the intersecting proportion of splits to be between
20% and 30%, which corresponds to the median of intersection. Thus, each split
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contains information on 23 categories, and we adopt a random strategy to allo-
cate categories to two splits. For brevity, we name two splits COCO’ and VG-
200’. In addition, we randomly partition target categories and training images
from traditional MLR benchmarks into two distinct splits to simulate the set-
ting of the US-MLR task. Given that there may be intersections between splits,
we set the proportion to 0%, 10%, 20%, ..., and 50%. Specifically, each split
only contains information that belongs to itself and the intersecting part while
missing all information belonging to others.

Evaluation Metric. For fair comparisons, we adopt the mean average precision
(mAP) across all categories at varying proportions and calculate the average
mAP across these proportions. Additionally, we utilize precision, recall, and
F1 measures for more comprehensive comparisons, which are presented in the
supplementary material.

5.2 Comparison with State-of-the-Art Algorithms

To evaluate the effectiveness of our SCA framework, we compare it with the fol-
lowing algorithms that are classified into two folds: 1) MLR algorithms: SSGRL
[3], ML-GCN [4], KGGR [1]. These methods have achieved excellent results
by exploring label correlations and semantic information on traditional MLR
tasks, which are fully annotated. In our experiment, we use these methods by
adopting partial BCE loss instead of BCE loss and keeping others unchanged.
2) MLR-PL algorithms: CL [6], ILRB [15], CST [2], IPRB [16]. Compared to
MLR algorithms, these algorithms perform better on traditional MLR tasks and
have gained impressive results on tasks that require more robustness for missing
labels, e.g., the MLR-PL task. For a fair comparison, we use ResNet-101 [9] as
a backbone to extract global feature maps for given images.

Table 1. On the new US-MLR benchmark, the mAP of categories only in the COCO’
split (COCO’) and only in the VG-200’ split (VG-200’), as well as intersecting categories
between two splits (Both). The best results are in bold.

Methods Publication COCO&VG

COCO’ VG-200’ Both

SSGRL ICCV’19 77.8 69.3 85.7

ML-GCN CVPR’19 78.3 70.0 85.7

KGGR TPAMI’22 78.3 70.4 85.6

CL CVPR’19 75.9 63.0 83.5

CST AAAI’22 78.9 71.3 86.0

ILRB AAAI’22 78.6 71.0 85.7

IPRB ESWA’24 78.9 71.2 85.9

Ours – 79.2 71.6 86.4
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Fig. 4. Visualizations of the correlation matrices of the Intra-SCL (top) and Inter-SCL
(bottom) modules in the initial (left) and final (right) states on the new US-MLR
benchmark COCO&VG. Best viewed in color.

Performance on the New US-MLR Benchmark. We combine two exist-
ing datasets to construct a new benchmark named “COCO&VG” to mirror the
settings of the union-set multi-label image recognition task. Different from pre-
vious benchmarks, it evaluates algorithms on unknown categories of each split to
provide more comprehensive comparisons under the US-MLR setting. In exper-
iments, we choose SSGRL as the baseline and compare our proposed method
with existing excellent algorithms, as shown in Table 1. For the unknown cate-
gories of COCO’, previous algorithms gain the mAPs of 77.8%, 78.3%, 78.3%,
75.9%, 78.9%, 78.6%, and 78.9%. For the unknown categories of VG-200’, previ-
ous algorithms obtain the mAPs of 69.3%, 70.0%, 70.4%, 63.0%, 71.3%, 71.0%,
and 71.2%. For the intersecting categories between two splits, previous algo-
rithms gain the mAPs of 85.7%, 85.7%, 85.6%, 83.5%, 86.0%, 85.7%, and 85.9%.
Our approach achieves the mAPs of 79.2%, 71.6%, and 86.4%, respectively. To
further illustrate the effectiveness of our approach, we visualize the correlation
matrices of Intra-SCL and Inter-SCL modules, as presented in Fig. 4. In the
beginning, the matrix initialized by the intra-domain label co-occurrence has
large blanks in the lower-left and upper-right corners; the matrix initialized by
the inter-domain category similarity has inaccurate correlations in the upper-left
and lower-right corners. At the end of the training, correlations across domains
are mined, as guided by label co-occurrence and category similarity (the colors
are darker and lighter, no longer white in the first row), and learned correla-
tions are aligned with these originally contained within split domains (the color
distributions in the second row tend to be consistent with the first line).
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Table 2. Performance of current state-of-the-art MLR algorithms, MLR-PL algo-
rithms, and our SCA framework under the setting of US-MLR on MS-COCO, VG-200,
and Pascal VOC 2007 datasets. The best results are highlighted in bold.

Datasets Methods Publication Intersecting Proportions Avg.

0% 10% 20% 30% 40% 50%

COCO SSGRL ICCV’19 75.4 75.9 76.0 76.6 77.3 77.4 76.4

ML-GCN CVPR’19 75.2 76.1 76.8 77.3 77.8 78.0 76.9

KGGR TPAMI’22 77.7 78.1 78.3 78.7 78.9 79.0 78.5

CL CVPR’19 65.6 69.6 70.1 71.9 73.1 74.8 70.8

CST AAAI’22 77.6 78.2 78.4 78.6 79.1 79.2 78.5

ILRB AAAI’22 77.7 78.1 78.5 78.9 79.3 79.4 78.7

IPRB ESWA’24 77.8 78.2 78.4 79.0 79.2 79.3 78.7

Ours – 78.7 79.6 79.9 80.2 80.4 80.5 79.9

VG-200 SSGRL ICCV’19 39.8 40.7 40.9 41.0 41.5 42.4 41.1

ML-GCN CVPR’19 39.9 40.7 41.5 41.6 41.9 42.0 41.3

KGGR TPAMI’22 43.3 43.4 43.6 43.7 43.9 44.1 43.7

CL CVPR’19 31.1 33.2 33.8 35.6 37.3 38.5 34.9

CST AAAI’22 43.4 43.5 43.6 43.8 44.1 44.3 43.8

ILRB AAAI’22 43.5 43.7 43.6 43.7 43.9 44.3 43.8

IPRB ESWA’24 42.9 43.2 43.3 43.4 43.5 44.1 43.4

Ours – 44.1 44.6 44.9 45.2 45.5 45.7 45.0

VOC SSGRL ICCV’19 91.4 91.7 91.9 92.1 92.3 92.5 92.0

ML-GCN CVPR’19 88.5 89.2 89.3 89.5 89.8 90.3 89.4

KGGR TPAMI’22 90.9 91.3 91.5 91.8 91.8 91.9 91.5

CL CVPR’19 89.0 91.0 91.5 91.6 92.2 92.2 91.3

CST AAAI’22 91.2 92.0 92.3 92.4 92.4 92.7 92.1

ILRB AAAI’22 91.9 92.1 92.2 92.4 92.3 92.7 92.3

IPRB ESWA’24 92.0 92.2 92.5 92.6 92.7 92.7 92.4

Ours – 92.4 92.6 92.9 93.0 93.0 93.1 92.8

Performance on the Traditional MLR Benchmarks. We experiment with
the setting of the US-MLR task on traditional MLR benchmarks and discuss the
impact of the intersection proportion between two splits, as shown in Table 2.
On MS-COCO, our method improves the average mAP from 78.7% to 79.9%
compared to the second-best. Notably, our method still gains obvious improve-
ments in the case of extremely low intersecting proportions, where categories and
images across splits are wildly different. For instance, the mAP improvements
over the previous ILRB algorithm are 1.0% and 1.5% when the intersecting pro-
portion is 0% and 10%, respectively. Compared with MS-COCO, VG-200 is a
more challenging benchmark because of more categories. Our framework obtains
the best performance for all different intersecting proportions. Specifically, it
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obtains the mAPs of 44.1%, 44.6%, 44.9%, 45.2%, 45.5%, 45.7% on the settings
of 0%-50% intersecting proportions, outperforming the second-best CST algo-
rithm by 0.7%, 1.1%, 1.3%, 1.4%, 1.4%, 1.4%, respectively. Compared with the
above two, Pascal VOC 2007 is more simple since it only covers 20 categories.
Although previous algorithms achieve noticeable results, our SCA framework
beats these methods for all intersecting proportions, as well as outperforms the
excellent CST algorithm by 0.7% and the superior IPRB algorithm by 0.4% on
the average mAP.

5.3 Ablation Study

Performance on the New US-MLR Benchmark. In this part, we conduct
ablation experiments on MS-COCO and VG-200, which are traditional MLR
benchmarks, as well as on the new US-MLR benchmark, which is constructed
by MS-COCO and VG-200, to analyze the contribution of each module in our
proposed SCA framework. More detailed results are provided in the supplemen-
tary materials.

Table 3. Comparisons of the average mAPs of the baseline SSGRL, our framework
doing semantic correlation learning only from intra-domain (Intra-SCL) and only from
inter-domain (Inter-SCL), our framework without the co-adaptation module (Ours w/o
Lco) and our framework (Ours) on COCO&VG, MS-COCO and VG-200.

Methods Datasets

COCO&VG MS-COCO VG-200

SSGRL 76.8 76.4 41.1

Intra-SCL 77.5 78.2 42.6

Inter-SCL 77.7 77.7 43.0

Ours w/o Lco 78.1 79.3 43.4

Ours 78.7 79.9 45.0

Analysis of the Intra- and Inter-domain SCL. To analyze the actual contribution
of semantic correlation learning from intra- and inter-domain, we first compared
the results of two SCL modules with the baseline on multiple benchmarks. As
shown in Table 3, two SCL modules obtain the average mAPs of 77.5%, 77.7%
on COCO&VG, 78.2%, 77.7% on MS-COCO, and 42.6%, 43.0% on VG-200.
Learning semantic correlations only from intra- or inter-domain improves com-
pared to the baseline. Furthermore, “Ours w/o Lco”, which has both Intra-SCL
and Inter-SCL modules, improves the average mAPs of 0.6%, 1.1%, 0.8% than
“Intra-SCL”, and 0.4%, 1.6%, 0.4% than “Inter-SCL”, respectively. It has been
proved that the Inter-SCL module helps the other find missing correlations across
different splits with category similarities, while the Intra-SCL module guides the
other in learning the distributions of object co-occurrence within each split.
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Analysis of the Co-adaptation Module. We propose a co-adaptation module to
align the learned semantic correlations with the original semantic correlations
contained within each split domain to regularize the consistency between two
SCL modules. We design experiments with and without this co-adaptation mod-
ule (namely, “Our” and “Ours w/o Lco”) to analyze the effectiveness of this
module. In Table 3, “Ours w/o Lco”, which does semantic correlation learning
from both intra- and inter-domain, already performs well, achieving the aver-
age mAPs of 78.1% on COCO&VG, 79.3% on MS-COCO, 43.4% on VG-200,
and the average mAPs increases by another 0.6%, 0.6%, 1.6%, after adopting
this module. It is evident that, with the help of this co-adaptation module, two
SCL modules establish more precise category relationships after regularizing and
aligning the consistency of semantic correlations between different split domains.

Performance on the Traditional MLR Benchmarks. In this part, we
conduct ablation experiments on settings with intersecting proportions ranging
from 0% to 50% to analyze the contribution of each module in our proposed
SCA framework.

Table 4. Comparisons of mAP of the baseline SSGRL, our framework merely using
the intra-domain semantic correlation learning module (Intra-SCL), our framework
merely using the inter-domain semantic correlation learning module (Inter-SCL), our
framework without the loss Lco (Ours w/o Lco) and our framework (Ours).

Dataset Methods Intersecting Proportions Avg.

0% 10% 20% 30% 40% 50%

COCO SSGRL 75.4 75.9 76.0 76.6 77.3 77.4 76.4

Intra-SCL 77.3 77.9 78.0 78.4 78.7 78.9 78.2

Inter-SCL 77.2 77.4 77.5 77.7 78.0 78.2 77.7

Ours w/o Lco 78.5 78.9 79.1 79.6 79.8 79.9 79.3

Ours 78.7 79.6 79.9 80.2 80.4 80.5 79.9

VG-200 SSGRL 39.8 40.7 40.9 41.0 41.5 42.4 41.1

Intra-SCL 42.1 42.4 42.5 42.7 42.8 42.9 42.6

Inter-SCL 42.6 42.8 42.9 43.1 43.2 43.3 43.0

Ours w/o Lco 42.7 43.0 43.3 43.3 43.6 43.7 43.3

Ours 44.1 44.6 44.9 45.2 45.5 45.7 45.0

VOC SSGRL 91.4 91.7 91.9 92.1 92.3 92.5 92.0

Intra-SCL 91.6 92.2 92.5 92.6 92.7 92.8 92.4

Inter-SCL 91.7 91.9 92.0 92.4 92.5 92.5 92.2

Ours w/o Lco 92.3 92.5 92.6 92.7 92.9 92.9 92.7

Ours 92.4 92.6 92.9 93.0 93.0 93.1 92.8
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Analysis of the Intra-SCL Module. To analyze the actual contribution of the
Intra-SCL module, we conduct experiments that merely use it (namely, Intra-
SCL) compared with the baseline on multiple benchmarks. As shown in Table 4,
it obtains the average mAPs of 78.2% on COCO, and 42.6% on VG-200, with
an improvement of 1.8%, and 1.5%. Specifically, it obtains the mAPs of 77.3%,
77.9%, 78.0%, 78.4%, 78.7%, 78.9% on the settings of 0%–50% intersecting pro-
portions, outperforming the baseline by 1.9%, 2.0%, 2.0%, 1.8%, 1.4%, 1.5%.
Similar trends are also observed on VG-200 and Pascal VOC 2007.

Analysis of the Inter-SCL Module. To analyze the actual contribution of the
Inter-SCL module, we conduct experiments that merely use it (namely, Inter-
SCL) compared with the baseline on multiple benchmarks. As shown in Table 4,
it obtains the average mAPs of 77.7% on COCO, and 43.0% on VG-200, with
an improvement of 1.3%, and 1.9%. Specifically, it obtains the mAPs of 77.2%,
77.4%, 77.5%, 77.7%, 78.0%, 78.2% on the settings of 0%–50% intersecting pro-
portions, outperforming the baseline by 1.8%, 1.5%, 1.5%, 1.1%, 0.7%, 0.8%.
Similar trends are also observed on VG-200 and Pascal VOC 2007. “Ours w/o
Lco”, which has two SCL modules, improves the average APs of 1.1% than
“Intra-SCL” and 1.6% than “Inter-SCL”, respectively. It is proved that this
Inter-SCL module helps the other find the missing correlations across different
domains with category semantic similarities, while this Intra-SCL module guides
the other to learn the distributions of object co-occurrence in this task.

Analysis of the Co-adaptation Module. We propose a co-adaptation module to
align correlations to regularize the consistency between two SCL modules. We
design experiments with and without this module (namely, Our and Ours w/o
Lco) to analyze the effectiveness of it. In Table 4, “Ours w/o Lco” already per-
forms well with two SCL modules, and the average mAP increases by another
0.6% after adopting this module on COCO. A similar trend is also observed on
VG-200 and Pascal VOC 2007. It is evident that, with the help of this module,
two SCL modules construct more correct category relationships after organizing
and aligning semantic correlations.

6 Conclusion

In this work, we introduce a challenging task, union-set multi-label image recog-
nition, which allows a varying label space for different images rather than a fixed
one. To solve this task, we propose a semantic correlation adaptation frame-
work that explores intra- and inter-domain semantic correlations by label co-
occurrence and category similarity. Besides, we design a co-adaptation module
to resolve the inconsistency between semantic correlations, which is caused by
gaps between split domains. To prove the effectiveness of our framework, we
conduct extensive experiments on the new US-MLR benchmark and traditional
MLR benchmarks.
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Abstract. Domain generalization methods for Face Anti-Spoofing
(FAS) have drawn increasing research attention. However, existing
domain generalization (DG) methods usually require sharing data from
varying source distributions, without considering privacy concerns. In
this work, we propose the Federated Shuffle Codebook (FedSC), a
federated FAS domain generalization method. Instead of sharing raw
data, FedSC facilitates access to multi-source distributions by exchang-
ing information within codebooks, ensuring privacy. Specifically, we first
separate the images into style and content features. Style information
is embedded into the style codebook through vector quantization dur-
ing the training stage. Then the style codebooks are uploaded, shuf-
fled and downloaded to transmit style information across domains. Each
domain’s source training data is diversified by the shuffled style code-
book to achieve generalization. As the codebook represents the overall
distribution rather than any specific image, FedSC offers both efficiency
and privacy preservation. We have also devised a contrastive learning
strategy to suppress the adverse effects of distribution differences on the
liveness classification task. Theoretically, the established error bound-
aries of domain generalization provide robust support for our approach.
Extensive experiments show that our proposed approach is effective and
outperforms previous methods.

Keywords: Face Anti-Spoofing · Federated Learning · Domain
Generalization

1 Introduction

With the rise of face presentation attacks (PAs), such as photo, video replay,
or 3D facial masks, numerous Face Anti-Spoofing (FAS) methods have been
proposed to tackle these challenges [34,38,39]. While most of these FAS methods
demonstrate commendable performance in their specific domains, but may suffer
dramatic degradation in cross-domain settings, primarily due to dataset biases
[29], leading to diminished generalization capabilities in unseen domains.
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Consequently, domain generalization methods (DG) are garnering increas-
ing attention from researchers. Aimed at extracting representations that remain
robust to distribution shifts, existing DG approaches typically necessitate access
to multi-source distributions during the learning phase. For example, adversar-
ial feature alignment methods [14] mandate training the domain discriminator
using samples from various source datasets. Meta-learning based techniques [24]
[26]leverage multi-source data from disparate distributions to formulate virtual
training and testing domains within each minibatch. Methods based on style
transfer [35] necessitate the use of style information from specific images to
augment data by transitioning from one source domain to another. Without
exception, these methods invariably require direct access to multi-source data,
overlooking potential privacy concerns.

Federated learning (FL) [15] is a distributed and privacy-preserving machine
learning technique, allowing for the training of models on distributed datasets
while ensuring data remains localized. However, traditional federated learning
algorithms, akin to FedAvg [22], primarily concentrate on enhancing model per-
formance for internal clients, while neglecting model’s generaliz ability to unseen
domains beyond the federation. In [19], the problem setting of FedDG was intro-
duced, emphasizing that the challenge of the issue lies in enabling each client
to access multi-source data distributions without compromising privacy. FedG-
PAD [27] is the first framework designed specifically to tackle the FedDG issue
in the FAS area, employing a federated domain disentanglement strategy to
extract domain-invariant features. Nevertheless, we contend that in FedGPAD,
the approach of averaging updates for model parameters of domain-invariant
part might lead to a loss of distribution information, thereby adversely affecting
the generalization capability of the federated model.

Based on the aforementioned analysis, our motivation is to employ a method
that transfers data distributions across domains in a privacy-preserving man-
ner, replacing the averaging approach of FedAvg to address the FedDG issue
in the FAS area. Inspired by the generative model VQ-VAE [30], we opt to
introduce the concept of codebook. A codebook is composed of a fixed num-
ber of embedding vectors, forming a latent embedding space. We employ the
codebook to convert features with continuous representations into discrete rep-
resentations using vector quantization. Concurrently, embedding vectors in the
codebook undergo updates, thereby storing the information about local data
distribution. Since the embedding vectors in the codebook represent overall dis-
tribution information from various domains rather than any specific sample,
transferring the codebook as a carrier for distribution information, as opposed
to raw data, achieves both efficiency and privacy protection.

In light of the discussed concepts, we introduce the Federated Shuffle Code-
book (FedSC), a federated FAS domain generalization method. Specifically, we
use a feature extractor to derive style and content features from images. These
features are vector-quantized with their respective codebooks, yielding discrete
representations. These are then re-merged to produce comprehensive features for
subsequent classification task. Notably, the gradient backpropagation from the
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classification task enhances the liveness-related information in the codebook. To
transfer style information cross domains, the style codebooks are shuffled ran-
domly at the server and sent back. During the training phase, each data center’s
local model leverages this stylistic information from other domains to diversify
local data, achieving domain generalization. We have also devised a contrastive
learning strategy to suppress the adverse effects of distribution differences among
the codebooks.

Our contributions can be summarized as follows:

– We introduce a novel architecture, FedSC, which transfers distribution infor-
mation across domains in a privacy-preserving manner by shuffling the code-
book, addressing the FedDG issue in the FAS area.

– We developed a contrastive learning approach to minimize the differences
between features from diverse style codebooks, targeting reduced distribution
discrepancies. Additionally, we offer a theoretical foundation for our method-
ology.

– We conducted experiments on the generalization capabilities of federated
models across four datasets. The results indicate that our method outper-
forms previous approaches, proving the efficacy of our method.

2 Related Work

2.1 Face Anti-Spoofing

Initially, Face Anti-Spoofing (FAS) used hand-crafted features like LBP and
SIFT, but has since evolved with deep learning, employing techniques such as
FCN for facial feature extraction and auxiliary tasks with depth, reflection maps,
and rPPG for improved detection [2,9,10,18,23,37]. Innovations like Central Dif-
ferential Convolution have enhanced feature extraction by integrating intensity
and gradient information [39]. Recent FAS research focuses on domain gener-
alization, developing methods to distinguish genuine and spoof features across
varying domains [14,25]. Techniques like SSAN leverage style transfer to suppress
domain-specific features, promoting generalization [35]. To address the unpre-
dictability of new spoofing attacks, simulated attack images are now used for
training, avoiding reliance on real-world samples [33].

2.2 Domain Generalization

Domain Generalization (DG) aims to enhance model generalization across
unseen domains by leveraging multiple source domains, without using tar-
get domain data. Many DG techniques focus on domain alignment to achieve
domain-invariant features by methods such as reducing KL Divergence, minimiz-
ing Maximum Mean Discrepancy (MMD), and employing Domain-Adversarial
Learning [11,16,17,43]. An approach in [44] improves feature generalization with
multi-grained alignment and domain attention, whereas SA-FAS [28] aligns tran-
sitions for FAS using Invariant Risk Minimization.
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Fig. 1. The overall architecture of our method. Images undergo a feature extractor to
derive style and content features, and these features are then quantized into discrete
representations. The style assembly layers output the combined feature for classification
and contrastive learning. Each data center downloads a collaboratively trained model
from the server for local training. The server aggregates the updates using FedAvg.
To facilitate domain information transfer, the style codebook is conected and shuffled.
Users can download this global model from the server to detect various face presentation
attacks.

Data augmentation, especially through synthetic attack images [33] and style
transfer techniques like AdaIN [13], serves as another strategy for DG, aiming
to prepare models for novel attack types or domains by simulating diverse con-
ditions.

2.3 Federated Domain Generalization

Federated Learning (FL) is a collaborative, privacy-focused machine learning
approach with multiple clients and a central server. Despite limited DG research
within FL, one study investigates cross-domain transfer through amplitude infor-
mation and meta-learning for the FedDG challenge, facing privacy risks [19].
Another proposes adjusting aggregation weights for better out-of-domain gener-
alization, differing from our method [41]. A related strategy involves broadcasting
style information for cross-domain transfer, beneficial for data augmentation but
not suited for FAS, where style impacts classification [5,35]. Our method uses
vector quantization and codebooks, balancing privacy and efficiency.

3 Method

In this section, we will first introduce our model as depicted in Fig. 1. Following
this, we will elaborate on the theoretical error bound, and the motivation behind
the development of our proposed methodology. We summarize the steps of FedSC
in Algorithm 1.



230 S. Yang et al.

Algorithm 1. FedSC
Input: Number of data centers M , number of iterations T , initial weights w0, data

center indices i ∈ {1, 2, . . . , M}, λ1, λ2

1: for t = 0 to T do
2: Server sends wt and style codebooks {Ci}M

i=1 to all data centers
3: for each data center i do
4: Data center i updates its local parameter via computing the loss function

Lall = Lcls + λ1 · Le + λ2 · Lcontra

5: Data center i sends wt
i and Ci back to the Server

6: end for
7: Server shuffles the style codebooks {Ci}M

i=1

8: Server aggregates the else weights as wt+1 = 1
M

∑M
i=1 w

t+1
i

9: end for
10: Output the final weights wT

3.1 Problem Formulation

Suppose that M data centers
{D1,D2, . . . ,DM

}
collect their own datasets, which

are sampled from a joint image and label space(X ,Y). A sample is represented
as (x, y) with x ∈ X and y ∈ Y.

The federated learning paradigm involves communication between a central
server and the M data centers. At each federated round t, each data center
downloads the global model from the server and then trains the model using
its local data. In the training phase, each sample (x, y) is input into the feature
encoder E. As outlined in [35], content features fc(x) and style features fs(x)
are extracted. We define the codebook e ∈ R(K×D), where K is the size of the
codebook and D denotes the dimension of each embedding vector ek within it.
The content codebook and style codebook utilize the same settings of K and D.

After model training is completed, the server collects the local model param-
eters from all data centers and aggregates them to update the global model. This
process is repeated until the global model converges.

Let PD and PU denote observable data center and unseen user distribution.
The model mapping function is fθ : X → Y, with fθ being part of hypothesis
collection F . The goal is to learn a model minimizing empirical error risk RD[fθ]
in each data center during training and enhance the model’s adaptability to
unseen user domain, optimizing the target error risk RU [fθ]:

RD[fθ] = min
fθ

E(x,y)∼PD
[�(fθ(x), y)], (1)

RU [fθ] = min
fθ

E(x,y)∼PU
[�(fθ(x), y)]. (2)

3.2 Vector Quantization for Learning Codebook

Our motivation is to avoid privacy leaks associated with directly transmitting
features. We require a codebook where the vectors do not represent any specific
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training sample but can still represent the local data distribution. We are aware
of various quantization methods that offer optimizations in terms of storage cost,
complexity, and efficiency compared to Vector Quantization (VQ). However, for
our method, the performance of these quantization techniques does not need to
be excessively prioritized. The success of the VQ-VAE model demonstrates VQ’s
capability to store data distribution information. [30] Let’s delve deeper into the
specifics of this approach.

Consider a typical image denoted as (x, y) with the style feature, represented
as fs(x), and the content feature, denoted by fc(x). For ease of reference and to
generalize the concept, we use the notation f(x) to represent both these features.

Once the features are extracted, they need to be matched with their nearest
counterparts in the embedding space of codebook e. The discrete latent variables,
z(x), which essentially are the discrete counterparts of the original features, are
computed using a straightforward nearest neighbor lookup method within this
embedding space, as demonstrated in Eq. 3:

z(x) = ej , where j = argmink |f(x) − ek|2 . (3)

The optimization process for this transformation is driven by a well-defined
objective function, represented as Le. It is illustrated as:

Le = |sg [f(x)] − e|22 + |f(x) − sg[e]|22 . (4)

In the above equation, the term sg[.] denotes the stop-gradient operation. The
objective function has been meticulously designed to cater to two primary goals.
The first term, by applying the stop-gradient to the features f(x), ensures only
the codebook e undergoes updates. This design choice is pivotal for encapsulating
and preserving the distribution information within the vectors of the codebook.
On the other hand, the second term aims to update the encoder E producing
outputs that are as close as possible to the nearest vector in the codebook. This
strategy is essential to constrain the range of the discrete embedding space,
thereby avoiding any uncontrolled expansion [30].

3.3 Style Codebook Contrastive Learning

To mitigate the adverse effects of distribution information discrepancies among
codebooks on classification, we establish the adaptive Style Assembly Lay-
ers (SAL) for Contrastive Learning [35], guided by the principles of Adaptive
Instance Normalization (AdaIN) [13].

Given an input sequence of length N in a mini-batch, where (xi, yi) denotes
the input sample (i ∈ {1, 2, . . . , N}), the feature encoder E and vector quan-
tization are used to generate discrete style and content features, denoted as
zs(xi) and zc(xi), respectively. Subsequently, the SAL is employed to obtain the
assembled feature:

S (xi) = SAL (zc (xi) , zs (xi)) . (5)
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To enhance the liveness-related information within the codebook, We input
S(xi) into the subsequent classifier for binary classification in supervised train-
ing. The model are optimized by the standard cross-entropy loss, denoted as
Lcls.

To mitigate unnecessary inter-domain distribution discrepancies amongst
codebooks, we introduce contrastive learning strategy. For constructing positive
sample pairs in the context of contrastive learning, each data center downloads
the style codebook of another data center from the server. By applying an iden-
tical VQ process to the style feature fs(xi), we obtain z∗

s (xi), which facilitates
cross-domain mapping of style features. Thereafter, utilizing the SAL to inte-
grate z∗

s (xi) with zc(xi), we obtain the positive assembled feature sample for
contrastive learning:

S∗ (xi) = SAL (zc (xi) , z∗
s (xi)) . (6)

At this point, we have got two assembled features, namely S(xi) and S∗(xi).
These two features are assembled from the content feature of the same image
and the style feature from different domains. Therefore, we aim to reduce the
distance between them. After subjecting S∗(xi) to the predictive Multi-Layer
Perceptron (MLP) head, it is termed P (xi). The divergence between these two
features is then quantified using negative cosine similarity:

D (S(xi), P (xi)) = − S(xi)
‖S(xi)‖2

· P (xi)
‖P (xi)‖2

. (7)

Considering that P (xi) is constructed using a style codebook from another
data center, making the backpropagation of its gradient for updates becomes
inefficient. Therefore, we apply a stop-grad operation [6] on P (xi), anchoring its
position within the feature space. We then minimize the distance between S(xi)
and P (xi) for our contrastive learning loss:

Lcontra =
N∑

i=1

D(S(xi), sg[(P (xi)])). (8)

It is noteworthy that although our contrastive learning methodology is akin
to that employed in SSAN [35], our primary intentions and input features are
distinct. SSAN utilizes contrastive learning strategy to underscore style features
related to living label, while simultaneously suppressing style traits specific to
certain domains. This involves style recombination using different labels, and the
choice to either push away or pull closer these styles. In contrast, our method
employs style features corresponding to a single sample across different code-
books, with the aim of reducing the distance between similar style codes in the
style codebooks of various data centers.
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3.4 Shuffle Style Codebook

To effectively utilize the information in the codebook, we perform correspond-
ing operations on the server side based on the unique characteristics of each
codebook.

In FAS, content features represent global image attributes and are consistent
across domains. In contrast, style features reflect local textures, varying due to
factors like lighting and equipment. Thus, we deduce: 1) Content features are
uniform across domains. 2) Style features show noticeable differences.

Accordingly, we use the FedAvg method for content codebooks, allowing a
shared domain embedding space. As for style codebooks, we concatenate them
to form an overarching style codebook eall ∈ RMK×D. We then introduce a
permutation function SC to shuffle the indices of the vectors in eall:

SC : {1, 2, ...,MK} → {i, j, k, ...,m}, (9)

where {i, j, k, ...,m} is a permutation of {1, 2, ...,MK}. Using this permutation
function, the shuffled overarching style codebook e′

all can be derived as:

e′
all = eall(SC(:), :). (10)

After implementing the shuffled style codebook operation, it acts as a medium
to share distribution information across domains, enriching the local data in sub-
sequent training rounds. During the VQ phase, it synthesizes broader represen-
tations than those in the local distribution, effectively expanding the training
dataset for better domain generalization, similar to data augmentation. Cru-
cially, this method securely distributes information within the codebook dis-
cretely, preventing reconstruction of any specific original image, thus maintaining
data privacy and meeting high privacy preservation standards.

3.5 Loss Function

Integrating all things mentioned above together, the objective of the proposed
FedSC framework is:

Lall = Lcls + λ1 · Le + λ2 · Lcontra, (11)

where λ1 and λ2 are two hyperparameters introduced to balance the proportion-
ality of the different loss functions.

3.6 Theoretic Analysis

In the following, we briefly revisit the theoretical error bound as outlined in [1].
Consider that we have M data centers, each with its respective distribution,
represented as P i

D where 1 ≤ i ≤ M . The convex hull, denoted as ΛD, of the set
of these distributions

{
P i

D

}
i=1,··· ,M

is given by

ΛD =

{

P : P =
M∑

i=1

πiP
i
D, [π1, · · · , πM ] ∈ ΔM−1

}

, (12)
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where ΔM−1 refers to the (M − 1)-dimensional simplex which normalizes the
weighting coefficients [π1, . . . , πM ].

For the unseen user with distribution PU , we denote P ∗
U as the point within

the convex hull ΛD, such that P ∗
U ∈ ΛD. This point signifies the smallest distance

between PU and the convex set ΛD:

P ∗
U =

M∑

i=1

π∗
i P i

D, (13)

with

(π∗
1 , · · · , π∗

M ) = argmin
[π1,··· ,πM ]∈ΔM−1

dH

[

PU ,
M∑

i=1

πiP
i
D

]

, (14)

where dH [P ′, P ′′] measures the H-divergence between distributions P ′ and P ′′,
P ∗

U represents the point in ΛD nearest to PU . As we lack knowledge about user
distribution PU , we can’t directly compute the target error risk RU [fθ]. Instead,
we use the known source risk RD[fθ] to estimate an upper bound for the target
risk.

Theorem 1. (Upper-bounding the risk on the unseen user distribution [1]).
Given M data centers {P i

D}M
i=1 and a user PU , the solution of (14) is defined

as π∗ = [π∗
1 , . . . , π

∗
M ]. Utilizing the definition of error risk in (2), the target risk

RU [fθ], for any fθ ∈ F , is bounded in the context of an unseen user PU such
that dH [P ∗

U , PU ] = γ. The bound is given by:

RU [fθ] ≤
M∑

i=1

π∗
i Ri

D[fθ] + γ + ε+

min
{
EP ∗

U
[| fDπ∗ − fU |] ,EPU

[|fU − fDπ∗ |]} ,

(15)

where ε is the largest pairwise H-divergence of
{
P i

D

}
i=1,··· ,M

, which can also

be regarded as the diameter of the convex hull ΛD. fDπ∗ =
∑ND

i=i π∗
i fDi

is the
labeling function of P ∗

U .
Equation (15) presents an upper bound consisting of four components. The

first component assesses the error within each data center, while the last mea-
sures the label distribution difference between data centers and user. A prevalent
assumption is that data centers and user share identical conditional distributions
[8], rendering the last term in the upper bound redundant.

Given this analysis, our primary objective is to minimize the factors γ and
ε.

1)The term γ stands for dH [P ∗
U , PU ], indicating the distance between the

user’s distribution and the convex hull ΛD. By embedding vector quantization
in our method, we substitute the features extracted by the feature extractor
with the nearest vector from the codebook. During inference, the unseen user
leverages the codebooks from all data centers. This ensures that even if PU is
outside ΛD, the user’s representation distribution PZU

is encapsulated within
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the convex hull of the data centers’ representation distributions
{
P i

ZD

}
i=1,··· ,M

.
In this scenario, we achieve the optimal situation where γ vanishes.

2)To reach a lower ε, which signifies the diameter of the data center distri-
bution convex hull ΛD, an effective strategy is to condense the distance among
differing data center distributions. Building upon this concept, our method inte-
grates a strategy of contrastive learning. This innovative approach is employed
to systematically discern and minimize unnecessary variations in the codebooks
across different data centers. It effectively amplifies the similarities between rep-
resentations, fostering closer alignment and cohesion between data center distri-
butions.

4 Experiments

4.1 Implementation Details

Data Preparation. Four datasets were utilized for evaluating our approach:
OULU-NPU (O) [4], CASIA-MFSD (C) [42], Replay-Attack (I) [7], and MSU-
MFSD (M) [36]. These datasets consist of both image and video data. All avail-
able images were utilized for the image data, while frames were extracted at
specified intervals for the video data. After transforming the data into an image
format, the MTCNN algorithm [40] was used for face detection. The detected
faces were then cropped and resized to an input size of 256 × 256 × 6, with both
the RGB and HSV channels extracted from each input image.
Experimental Setup. In our study within the Federated Learning framework,
we adopted a distinct testing protocol to gauge model generalization [27]. Models
were trained on multiple datasets, barring one. This excluded dataset, emulat-
ing user behavior, was then used for testing. By training on both real and spoof
images from the data centers, we assessed the model’s effectiveness in distin-
guishing living from spoofing images in the user-emulated dataset.
Training Setting. To facilitate fair comparisons, we employed the ResNet-18
[12] architecture as the shallow feature extraction network. The network was
implemented using the PyTorch framework, and the training process utilized
a 1080Ti GPU. The Adam optimizer with a weight decay of 1e-2 was used
for optimization. The initial learning rate was set to 3e-4, and we adopted the
CosineAnnealingLR strategy for learning rate decay, with its period set to half
of the total epochs. Constraints due to the GPU memory size necessitated a
training batch size of 6.
Testing Setting. In our experiments, we employed widely-accepted metrics,
such as HTER [3], EER, and AUC for cross-domain evaluations. Notably, during
server-side user performance evaluations on the test set, the style codebook used
is an amalgamation of those from all data centers, instead of originating from
just one or by averaging multiple centers’ codebooks.

4.2 Experimental Results

In this section, we compare our model with the baseline from [27], emphasizing our
method’s generalization. We used three datasets from O, C, I, and M to represent
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Table 1. The results of testing on OULU-NPU, CASIA-MFSD, Replay-Attack, and
MSU-MFSD.

Methods Data Centers User HTER (%) EER (%) AUC (%) Avg. HTER Avg. EER Avg. AUC

Fused

O&C&I

O&M&I

O&C&M

I&C&M

M

C

I

O

34.42

38.32

42.21

28.04

23.26

38.31

41.36

22.24

81.67

67.93

59.72

86.24

35.75 31.29 73.89

All

O&C&I

O&M&I

O&C&M

I&C&M

M

C

I

O

21.80

29.46

30.57

27.22

17.18

31.54

25.71

25.91

90.96

76.29

72.21

82.21

27.26 25.09 80.42

FedPAD

O&C&I

O&M&I

O&C&M

I&C&M

M

C

I

O

19.45

42.27

32.53

34.44

17.43

36.95

26.54

34.45

90.24

70.49

73.58

71.74

32.17 28.84 76.51

FedGPAD

O&C&I

O&M&I

O&C&M

I&C&M

M

C

I

O

12.73

28.69

10.97

21.95

13.36

27.55

11.11

17.91

91.25

80.58

95.34

89.85

18.59 17.48 89.25

Ours

O&C&I

O&M&I

O&C&M

I&C&M

M

C

I

O

16.88

19.89

9.86

21.39

17.00

20.00

9.85

21.37

91.47

87.90

95.70

86.13

17.01 17.06 90.30

Table 2. Comparision (%) of FAS methods for domain generalization

Method O&C&I to M O&M&I to C O&C&M to I I&C&M to O Avg.

HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%)

Without Considering Privacy

MMD-AAE 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08 36.05 69.93

MADDG 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02 23.09 84.39

SSDG-M 16.67 90.47 23.11 85.45 18.21 94.61 25.17 81.83 20.79 88.09

DR-MD-Net 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47 20.64 86.43

RFMeta 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16 16.98 90.94

NAS-FAS 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43 16.09 91.52

SDA 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30 19.65 87.65

ANRL 10.83 96.75 17.83 89.26 16.03 91.04 15.67 91.90 15.09 92.24

SSAN-M 10.42 94.76 16.47 90.81 14.00 94.58 19.51 88.17 15.1 92.08

SSAN-R 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63 9.82 96.46

SA-FAS 5.95 96.55 8.78 95.37 6.58 97.54 10.00 96.23 7.83 96.42

Considering Privacy

FedGPAD 12.73 91.25 28.69 80.58 10.97 95.34 21.95 89.85 18.59 89.25

FedSC (Ours) 16.88 91.47 19.89 87.90 9.86 95.70 21.39 86.13 17.01 90.30

different data centers, with one reserved for user simulation, detailed in Table 1.
’Fused’ indicates aggregated predictions from each center, while ’All’ integrates
all data for training, challenging federated learning’s privacy principles.



FedSC: Federated Generalized Face Anti-Spoofing via Shuffled Codebook 237

Table 3. Evaluations of different components of the proposed method

VQ shuffle Lcontra O&C&I to M O&M&I to C O&C&M to I I&C&M to O

codebook HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%)

22.50 81.60 21.11 87.21 26.50 77.80 26.53 80.68

� 19.58 88.10 23.33 84.01 28.90 74.80 27.20 79.90

� � 18.96 88.69 19.91 86.67 23.04 79.00 24.02 83.84

� � 15.58 92.60 25.59 85.56 19.69 80.29 25.05 84.03

� � � 16.88 91.47 19.89 87.90 9.86 95.70 21.39 86.13

Empirically, our model excels in ‘O&M&I to C’ and ‘O&C&M to I’, showing
competitive performance elsewhere. Averaged across metrics, our model demon-
strates strong generalization without relying on additional information, unlike
FedGPAD.
Comparison With State-of-the-Art FAS Methods. To further delineate
the generalization prowess of our proposed method, we have benchmarked it
against a spectrum of avant-garde FAS domain generalization techniques. It is
pertinent to mention that these methodologies have not specifically catered to
privacy-related concerns. The array of techniques compared includes MMD-AA
[16], MADDG [25], SSDG-M [14], DR-MD-Net [31], RFMeta [26], SDA [32],
ANRL [20], SSAN [35], and SA-FAS [28].

As elucidated in Table 2, it is evident that our method, notwithstanding
its lack of access to comprehensive source domain data from the data centers,
attains an average performance on par with many established FAS domain gen-
eralization techniques. A distinctive feature of our approach is its operational
simplicity, devoid of reliance on complex technologies, elaborate training meth-
ods, or auxiliary data. This inherent simplicity in concept and ease of training
further corroborate the effectiveness of our method in the domain of face anti-
spoofing.
Ablation Study. To validate the contributions of various components in our
proposed model, we conducted experiments under identical conditions using sev-
eral incomplete models. We conducted ablation studies on several components
of FedSC: vector quantization, shuffle codebook, and contrastive learning. Since
VQ is the foundation for the other components, we removed all components,
leaving only the core model structure used for classification as baseline. The
results are presented in Table 3, which demonstrate that each component of our
model contributes to its performance enhancement.

4.3 Visualization and Analysis

Features Visualization. To delve into the feature space constructed by our
FedSC method, we employed the t-distributed stochastic neighbor embedding (t-
SNE) [21] technique for visualization. As discernible from Fig. 2, both style and
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Fig. 2. The visualization of different features under protocol I&C&M to O. The
graphs of (a), (b), and (c) describe the feature distribution of content features,
style features, and assembly features, respectively. Different colors indicate features
from different datases. Different shapes represent different liveness label: point=living,
cross=spoofing.

Fig. 3. The Correlation Analysis of Codebook

content features exhibit a discernible distinction between living and spoofing
samples. Notably, the features derived from the style assembly layer exhibit
superior cohesion within the live samples and a heightened inter-class separation.
These findings further underscore the efficacy of our proposed methodology.
Correlation Analysis. To elucidate the impact of our method’s components
on the codebook, we analyze their correlations in an ablation study. As depicted
in Fig. 3, the full method shows the content codebook with pronounced positive
and negative correlations, while the style codebook leans towards orthogonality,
aligning with our style-content hypothesis. Without the shuffle codebook opera-
tion, the style codebook’s orthogonality drops, hinting at redundancy. Removing
the contrastive loss function Lcontra increases orthogonality in both codebooks,
suggesting Lcontra strengthens the correlation for identical label vectors in the
codebook.
Scalability and Computational Overhead Analysis. We have listed some
experimental data in Table 4. As shown, the parameters introduced by the code-
book in FedSC account for only about 0.2% of the total model parameters,
ensuring scalability with respect to the training data volume. Another column
in Table 4 presents the time consumption for simulating the shuffle codebook
operation on the server side, showing an increase of only about 3% compared to
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Table 4. Parameter quantity and Time consumption

Method Parameter quantity Time consumption

FedAvg 5.8 million 1.13 s

FedSC 5.8 + 0.032 million 1.13 + 0.04 s

FedAvg. This increase is within an acceptable range and does not significantly
burden computational overhead and latency.

5 Conclusion and Discussion

In this study, we address the domain generalization problem in FAS within the
federated learning framework by introducing our FedSC framework. Aimed at
creating a versatile FAS model while ensuring data privacy, we integrated style
and content codebooks to store local texture and global image information from
each data center. Our shuffle codebook method effectively transmits style infor-
mation between data centers and employs contrastive learning to reduce unnec-
essary distribution information differences in the codebooks. Our experimental
results demonstrate the effectiveness of our method, suggesting its potential
beyond FAS, in the broader FedDG challenge, merits further investigation. In
future research, we hope to enhance the model’s ability to cope with new and
evolving spoofing attacks by optimizing the use of distribution information in
codebooks and refining contrastive learning strategies.
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Abstract. In recent years, large-scale synthetic image datasets have
proven to be a boon for training deep semantic segmentation models due
to their easy scalability and cost-effective annotation processes. How-
ever, models trained on synthetic images often fail to generalize well
when deployed in the real world. To solve this problem, various domain
randomization (DR) techniques have been introduced to help generalize
the models in real settings. One common aspect of such DR techniques
is their usage of low-order statistics, particularly the mean and stan-
dard deviation for generating new styles during training. However, real
images have more complex distributions than Gaussian and thus, high-
order statistics also need to be considered for generating new styles.
Towards this goal, this paper proposes Low order High order Style Con-
sistency (LoHoSc), a new Domain Randomization framework consisting
of two modules, LoSC and HoSC. During training, LoSC and HoSC gen-
erate random styles using low-order statistics (e.g., mean and standard
deviation) and high-order statistics (e.g., empirical Cumulative Distri-
bution Functions), respectively, in the feature space. The predictions
corresponding to the two styles are then constrained in the loss space
to learn content-relevant information while discarding any style variant
information. Evaluation of LoHoSC on various benchmark datasets shows
that it achieves state-of-the-art Domain Generalization capabilities, both
quantitatively and qualitatively.
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1 Introduction

Semantic segmentation is one of the core computer vision tasks where the goal
is to associate each pixel in the image with its object class. In the real world,
it has many applications ranging from autonomous driving [1,35], augmented
reality [10,26], robotics [17,25] to medical imaging [16,39]. In the last decade,
with the help of good computing power and advancements in deep learning archi-
tectures, many promising results have been achieved in semantic segmentation.
However, deep learning relies heavily on the availability of large-scale annotated
images from the real world for their training, and developing such annotations is
expensive and time-consuming since class labels must be generated at the pixel
level for each of the real images. Thus, to mitigate this issue, various synthetic
image datasets are introduced, such as GTAV [22] and SYNTHIA [24], which
are inexpensive and fast to construct on a large scale [22].

An important challenge in using synthetic image datasets for training deep
learning architectures is their tendency to overfit the synthetic domains. This
leads to a huge performance drop when such models are tested on images from
real domains. This phenomenon can be attributed to two factors. First, the
synthetic domain may contain limited environmental variations from the real
domains. Second, synthetic and real-world images have distinct style and tex-
ture variations in objects. Note that, from here onwards, we will refer to the
synthetic and real as source and target domains, respectively. One of the solu-
tions to reduce this domain gap is Domain Adaptation, which works by using
unannotated images from the target domains as a reference during the super-
vised training of the segmentation model using images from the source domains.
However, domain adaptive methods perform well only on target domains seen
during the training, limiting their applicability in the real world as the model
may face many unseen domains.

Compared to Domain Adaptation, Domain Generalization proves to be a
more realistic and universal solution for reducing the domain gap between the
source and target domains since its goal is to generalize to any arbitrary tar-
get domain that it may not have seen during training. Existing domain gener-
alized semantic segmentation approaches can broadly be categorized into two
types depending on the technique used: Domain Normalization (DN) [4] and
Domain Randomization (DR) [29]. Among these two, the methods based on
DR have proven to be more effective in reducing the domain gap between arbi-
trary domains. Technically, DR works by applying random styles to the source
domain images in the image or feature space while aligning their content infor-
mation in the loss space. Various recent state-of-the-art methods using DR for
achieving Domain Generalized Semantic Segmentation include WEDGE [14],
AdvStyle [37], SiamDoGe [29], SHADE [36], and TLDR [15]. Please refer to
Sect. 2 for more details on these methods. One important feature of these DR-
based methods for Domain Generalized Semantic Segmentation (DGSS) is their
focus on using only mean and standard deviation to represent the style informa-
tion in images. However, in the real world, this is valid only if we assume that
the feature distribution in real data is strictly Gaussian. However, images from
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the real-world may have more complicated feature distributions. Thus, high-
order statistics other than mean and standard deviation must be considered to
represent style information.

Considering these facts, we propose a new Domain Randomization method
called LoHoSC (Low-order and High-order Style Consistency). Our Domain Ran-
domization method differs from previous works in not only using mean and stan-
dard deviation for representing style information but also high-order statistics
such as empirical Cumulative Distribution Functions (eCDFs) of image features.
More precisely, as shown in Fig. 1, we introduce two consistency constraints, Low
order Style Consistency (LoSC) and High order Style Consistency (HoSC), to
encourage the segmentation model to learn style invariant information while dis-
carding any style-related information originating from Gaussian as well as other
complex distributions. For LoSC, we use MixStyle [38], which uses channel-wise
mean and standard deviation for generating new styles. For HoSC, we use EFD-
Mix [34], which uses high-order feature statistics for generating samples with
diverse styles. We will discuss LoSC and HoSC in more detail in Sect. 3. Once the
stylized samples are generated, we enforce pixel-level consistency between them
in the loss space. Finally, our evaluation of LoHoSC in various settings, such
as single-source and multi-source settings, shows that it significantly improves
the generalization capabilities of the segmentation model. For example, in the
case of the single-source setting, when trained on the GTAV dataset, it outper-
forms TLDR [15], the current state-of-the-art method, by a margin of 0.22% on
CityScapes, 1.1% on BDD100K, and 2.25% on Mapillary datasets on the mIOU
metric.

In summary, the main contributions of this work are as follows:

– We identify an important issue in existing Domain Randomization techniques
used in state-of-the-art Domain Generalized Semantic Segmentation frame-
works: their pure reliance on mean and standard deviation for generating new
styles.

– We advocate for using high-order statistics also to generate diverse styles and
propose a new Domain Randomization method called LoHoSC, which uses
low-order as well as high-order statistics to generate new styles.

– We extensively evaluate LoHoSC and show that using high-order and low-
order statistics for style generation improves the generalization capabilities
of segmentation models quantitatively and qualitatively.

2 Related Works

Domain Generalization. As discussed in Sect. 1, the goal of Domain Gener-
alization (DG) frameworks is to train Deep Neural Networks (DNNs) on known
source domains such that they generalize well on arbitrary target domains.
DG has primarily been studied for image classification, leading to the devel-
opment of many state-of-the-art DG frameworks that can produce robust classi-
fication models. Over the last few years, many state-of-the-art Domain Gen-
eralized Image Classification (DGIC) frameworks have been proposed such
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as MixStyle [38], EFDMix [34], RandConv [31], Progressive RandConv [3],
FACT [30], and L2D [28].

Domain Generalized Semantic Segmentation. In comparison to DGIC,
Domain Generalized Semantic Segmentation (DGSS) is in a nascent stage and a
growing area of interest. Early works attempted to solve this problem by using
techniques such as normalization and whitening, which worked by normalizing
the mean (and standard deviation) and whitening the covariance of features in
the source domain to remove any domain-specific features. For example, Pan
et al. [19] proposed IBN-Net that carefully integrates Instance Normalization
and Batch Normalization as building blocks in deep CNNs to eliminate domain-
features such as color and style while preserving content-related features. Pan
et al. [20] proposed Switchable Whitening, which adaptively selects appropri-
ate whitening or standardization to decorrelate features. Choi et al. [4] pro-
posed Instance Selective Whitening (ISW) to disentangle domain-specific feature
and domain invariant content encoded in higher-order statistics and selectively
removes any style information causing domain shifts. Peng et al. [21] proposed
two modules, namely Semantic-Aware Normalization (SAN) and Semantic-
Aware Whitening (SAW), for enforcing both intra-category compactness and
inter-category separability.

Recent works in this area use Domain Randomization (DR) which works by
applying random styles to the source domain images in the image or feature space
while aligning their content information using consistency loss. Yue et al. [33] first
explored DR by stylizing source domain images using ImageNet [7] images during
training and enforcing content consistency among these stylized images. Huang et
al. [11] applied DR in the frequency domain by randomizing the domain-variant
frequency components while keeping the domain-invariant frequency components
intact. Kim et al. [14] proposed WEb-image assisted Domain GEneralization
(WEDGE) scheme, which exploits the diversity (styles) of web-crawled images
for generalizable semantic segmentation. Very recent methods usind DR include
AdvStyle [37], SiamDoGe [29], SHADE [36], and TLDR [15]. In AdvStyle, Zhong
et al. [37] proposed an adversarial style augmentation (AdvStyle) approach,
which can dynamically generate stylized images during training which can effec-
tively prevent overfitting on the source domain. In SiamDoGe, Wu et al. [29]
used color jittering to generate a pair of random stylized images of a source
domain sample and employed a Siamese architecture to learn domain-agnostic
features during training. In SHADE, Zhao et al. [36] proposed a Style Halluci-
nation Module (SHM) to generate style-diversified samples, which is followed by
Style Consistency (SC) and Retrospection Consistency (RC) modules to align
content information during training. In TLDR, Kim et al. [15] proposed a texture
regularization loss to prevent overfitting to source domain textures by using tex-
ture features from an ImageNet pre-trained model and a texture generalization
loss that utilizes random style images to learn diverse texture representations in
a self-supervised manner.
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3 Methodology

As illustrated in Fig. 1, the proposed LoHoSC module is composed of two sub-
modules- LoSC and HoSC. In the next few sections, we discuss these modules
in detail.

3.1 Low Order Style Consistency

As discussed in Sect. 1, we use mean and standard deviation to generate new
styles in Low Order Style Consistency (LoSC). In this paper, we rely on the
MixStyle [38] module for this purpose and use it in a plug-and-play manner.
Below we discuss the background and mathematical formulation of MixStyle
module in detail.

Background. Assuming that real images follow Gaussian distribution, Huang
et al. [13] showed that the channel-wise mean and standard deviation of fea-
ture maps can represent the style information in images and proposed Adaptive
Instance Normalization (AdaIN), which can be used be used to generate new
images by integrating style and content from different images as shown in Eq. 1.

AdaIN(x, y) = σ(y)

(
x − μ(x)

σ(x)

)
+ μ(y) (1)

Here, x ∈ R
C×H×W and y ∈ R

C×H×W represent the feature maps providing
the content and style information, respectively. μ(∗) ∈ R

C and σ(∗)RC represent
the channel-wise mean and standard deviation, respectively, as defined in Eqs. 2
and 3.

μ(x)(c) =
1

HW

H∑
h=1

W∑
w=1

x(c,h,w) (2)

σ(x)(c) =

√√√√ 1
HW

H∑
h=1

W∑
w=1

(
x(c,h,w) − μ(x)(c)

)2

+ ε, ε = 10−10. (3)

Here, the newly generated feature map borrows style information from y
and content information from x. Following this, various Domain Generalization
methods [38] showed that the image’s style information causes severe domain
shifts, which led to the use of AdaIN as an integral part of various Domain Ran-
domization methods in various Domain Generalization frameworks [29,36,38].

MixStyle Module. MixStyle [38] follows ideas from AdaIN and can be eas-
ily implemented into mini-batch training. It exploits the fact that many sub-
domains exist within a domain, meaning a mini-batch may contain images from
multiple sub-domains. Furthermore, since each sub-domain has distinct style
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Fig. 1. An illustration of our LoHoSC-based Domain Generalized Semantic Segmenta-
tion framework. Note that the MixStyle and EFDMix modules are applied in Layer 0,
1, and 2 of the ResNet backbone.

features, MixStyle uses this fact to intermix style information between various
sub-domains. Let x be a mini-batch of images. MixStyle first constructs a shuf-
fled (random) version of x denoted by x̃. After that, it computes the mixed
feature statistics using the following equations.

γmix = λσ(x) + (1 − λ)σ(x̃) (4)

βmix = λμ(x) + (1 − λ)μ(x̃) (5)

where λ ∈ RB are instance-wise weights sampled from the Beta distribution,
λ ∼ Beta(α, α) with α ∈ (0,∞) being a hyper-parameter. Following the original
paper, we use α = 0.1 in this work. Finally, the mixed feature statistics are used
to generate a newly stylized version of x using Eq. 6.

MixStyle(x) = γmix

(
x − μ(x)

σ(x)

)
+ βmix (6)

3.2 High Order Style Consistency

As discussed in Sect. 1, we use high-order statistics, in particular, eCDFs to
generate new styles in High Order Style Consistency (HoSC). In this paper, we
rely on the EFDMix [34] module for this purpose and use it in a plug-and-play
manner. Below, we discuss the background and mathematical formulation of the
EFDMix module.

Background. As discussed earlier, the feature distributions in the real images
are too complex to be modeled by Gaussian, which makes the process of feature
distribution matching during style transfer less accurate. Thus, matching of high-
order statistics such as empirical Cumulative Distribution Functions (eCDFs)
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of image features is desired for accurate style transfer. Traditionally, such an
Exact Feature Distribution Matching (EFDM) is computationally expensive;
however, it is feasible with the Exact Histogram Matching (EHM) algorithm [5,9]
applied in the feature space. Furthermore, the Sort Matching [23] can improve
its computational complexity. Mathematically, the goal of the EHM algorithm
(Eq. 7) is to transform an image x into an output vector o whose eCDF matches
the target eCDF of a target image y.

EFDM(x, y) : oτi = xτi + yκi
− 〈xτi〉 (7)

where {xτi}n
i=1 and {yκi

}n
i=1 are sorted values of x and y in ascending order

with indexes τ and κ. 〈∗〉 denotes the stop gradient operation. Kindly note that
a detailed discussion of the EHM and the Sort Matching algorithm is beyond the
scope of this paper, and readers may refer to the cited sources for more details.

EFDMix Module. For style augmentation, the EFDM expression can be used
instead of the AdaIN, just like MixStyle as shown in Eq. 8. Note that EFDMix
borrows ideas and assumptions from MixStyle regarding its implementation in
a mini-batch. Furthermore, the hyperparameter λ is also the same as MixStyle.

EFDMix(x, y) : oτi = xτi + (1 − λ)yκi
− (1 − λ)〈xτi〉 (8)

3.3 Loss Function

Let Po denote the posterior probability of the predicted segmentation maps
produced by the segmentation model corresponding to the source domain image.
Similarly, let Pm, and Pe denote the posterior probabilities corresponding to the
LoSC and HoSC modules, respectively. Furthermore, let Pa be the mixture of
the above three probabilities defined as in Eq. 9.

Pa =
Po + Pm + Pe

3
(9)

Next, we define our style consistency loss (LSC) as given in Eq. 10. The goal
of LSC is to constrain the low-order and high-order style variations to enable
the model to focus on learning style-invariant content information.

LSC =
KL(Pa, Po) + KL(Pa, Pm) + KL(Pa, Pe)

3
(10)

In addition to the constraining different styles, we constrain the predicted
segmentation maps to the ground-truth labels (Gt) using cross-entropy loss as
defined in Eq. 11.

LCE = LCE(Po, Gt) + LCE(Pm, Gt) + LCE(Pe, Gt) (11)

Our Final loss function for training is a combination of LSC and LCE as
defined in Eq. 12. In this paper, we set α = 10 in our experiments.

Ltotal = LCE + αLSC (12)
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4 Experiments

4.1 Experimental Setup

Datasets. In Table 1, we summarize the datasets used in this work. We use two
synthetic datasets as source domains - GTAV [22] and SYNTHIA [24]. GTAV
consists of 24,966 images split into train, validation, and test sets, where each
image is of size 1914 × 1052. SYNTHIA consists of 9,400 images split into train
and validation sets (no test set) where each image is of size 960 × 720. We use
three real-world datasets as target domains - CityScapes [6], BDD-100K [32],
and Mapillary [18]. CityScapes consists of 5,000 images split into train, valida-
tion, and test sets where each image is of size 2048×1024. BDD-100K consists of
10,000 images split into train and validation sets (no test set) where each image
is of size 1280 × 720. Finally, Mapillary consists of 25,000 images split into train
and validation sets (no test set) where each image is of size 1920 × 1080.

Table 1. Details about the real and synthetic datasets used in our work.

Synthetic Real

GTAV SYNTHIA CityScapes BDD100K Mapillary

Train 12,403 6,580 2,975 7,000 18,000

Val 6,382 2,820 500 1,000 2,000

Test 6,181 – 1,525 2,000 5,000

Implementation Details. Technically, our goal in this paper is to use our pro-
posed approach from Sect. 3 to train a semantic segmentation model on images
from the synthetic source domain datasets and show improvement in its gener-
alization capabilities on images from various real-world target domain datasets.

To show this, we conduct experiments under two different settings: single-
source domain setting and multi-source domain setting. Under the first setting,
the segmentation model is trained on the images from a single synthetic image
dataset, which is GTAV, in our case. In the second setting, the model is trained
on images from multiple synthetic image datasets, GTAV and SYNTHIA, in our
case. Note that we follow these settings from previous works, such as [4], which
allow us to compare these works fairly.

Following previous works [4,15,29,36,37], we use the DeepLabV3+ [2] archi-
tecture for segmentation which can be equipped with various backbones such
as ResNet, MobileNet, ShuffleNet, and ResNext [4]. In this paper, we use the
ResNet-50 and ResNet-101 networks as backbones that are pre-trained on the
ImageNet [7] dataset. The LoHoSC module is inserted after Layer 0, Layer 1,
and Layer 2 of the backbone. The hyper-parameter values for the LoSC and
HoSC modules and the LSC loss are discussed in Sect. 3.
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Table 2. Comparison with state-of-the-art methods in the single-source DG setting.
All models use the ResNet-50 backbone and are trained with the GTAV train set.
“Extra Data” denotes using extra real-world data such as images from ImageNet as
auxiliary domains during training. (*) denotes the performance of supervised learning
when the model is trained and validated on the same dataset.

mIoU (%)

Methods (GTAV) Extra Data CityScapes BDD100K Mapillary Mean

Baseline ✗ 28.95 (77.5) 25.14 (63.6) 28.18 (54.1) 27.42

SW [20] ✗ 29.91 27.48 29.71 29.03

IterNorm [12] ✗ 31.81 32.70 33.88 32.79

RandConv [31] ✗ 35.38 30.92 32.43 32.91

DRPC [33] ✓ 37.42 32.14 34.12 34.56

IBN-Net [19] ✗ 33.85 32.30 37.75 34.63

ISW [4] ✗ 36.58 35.20 40.33 37.37

Baseline + AdvStyle [37] ✗ 39.62 35.54 37.00 37.39

IBN-Net + AdvStyle [37] ✗ 39.32 36.42 40.82 38.85

ISW + AdvStyle [37] ✗ 39.60 38.59 41.89 40.03

Pro-RandConv [3] ✗ 42.36 37.03 41.63 40.34

SiamDoGe [29] ✗ 42.96 37.54 40.64 40.38

SHADE [36] ✗ 44.65 39.28 43.34 42.42

TLDR [15] ✗ 46.51 42.58 46.18 45.09

LoSC ✗ 43.89 40.55 47.36 43.93

HoSC ✗ 44.67 40.96 47.41 44.35

LoHoSC ✗ 46.73 43.68 48.43 46.28

We train DeepLabV3+ using the SGD optimizer with momentum 0.01,
weight decay 0.00005, and the initial learning rate set to 0.005 for the back-
bone and 0.01 for the remaining model. Note that initializing the backbone with
a lower learning rate makes sense due to the presence of pre-trained weights.
We use polynomial decay with power 0.9 as a learning rate scheduler. Also, all
models are trained with a batch size of 8 for 40K iterations. Furthermore, we
also use various data augmentation techniques such as color jittering, Gaussian
blur, random flipping, and random cropping (crop to 768 × 768).

Following previous works, we use the 19 semantic categories for training
and evaluation and use the mean intersection-over-union (mIoU) of the 19 cate-
gories as the evaluation metric. Finally, as the baseline, we use the DeepLabV3+
architecture that is trained without the LoHoSC module and LSC loss i.e., for
baseline, only cross-entropy loss is used during training.
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Table 3. Comparison with state-of-the-art methods in the single-source DG set-
ting. All models use the ResNet-101 backbone and are trained with all GTAV sets
(train+val+test). “Extra Data” denotes using extra real-world data such as images
from ImageNet as auxiliary domains during training.

mIoU (%)

Methods (GTAV) Extra Data CityScapes BDD100K Mapillary Mean

Baseline ✗ 32.97 30.77 30.68 31.47

ISW [4] ✗ 37.20 33.36 35.57 35.38

IBN-Net [19] ✗ 37.37 34.21 36.81 36.13

Baseline + AdvStyle [37] ✗ 39.52 36.39 36.10 37.34

DRPC [33] ✓ 42.53 38.72 38.05 39.77

ISW + AdvStyle [37] ✗ 43.44 40.32 41.96 41.91

IBN-Net + AdvStyle [37] ✗ 44.04 39.96 42.67 42.22

FSDR [11] ✓ 44.80 41.20 43.40 43.13

SHADE [36] ✗ 46.66 43.66 45.50 45.27

TLDR [15] ✗ 47.58 44.88 48.80 47.08

LoSC ✗ 45.62 43.25 48.56 45.81

HoSC ✗ 46.13 44.10 48.89 45.04

LoHoSC ✗ 48.94 45.93 50.28 48.38

4.2 Comparison with State-of-the-Art Methods

Single-Source Setting. In this section, we compare our proposed method with
previous works under the single source setting where all models are trained using
the GTAV dataset. Table 2 compares the performance of our approach using the
DeepLabV3+ architecture with the ResNet-50 backbone and using the GTAV
train set for training. We observe that, in terms of the mIOU metric, LoHoSC
surpasses the baseline on all three real-world datasets by a considerable margin-
Cityscapes by 17.78%, BDD100K by 18.54%, and Mapillary by 20.25%. Also,
LoHoSC outperforms TLDR [15], the recent state-of-the-art method by a good
margin- Cityscapes by 0.22%, BDD100K by 1.1%, and Mapillary by 2.25%.
Furthermore, using just HoSC or LoSC module surpasses or achieves comparable
performance to previous state-of-the-art methods, especially on the Mapillary
dataset, where they improve mIOU by a good margin.

Table 3 compares the performance of our approach using the DeepLabV3+
architecture with the ResNet-101 backbone and all images (train+val+test)
from the GTAV dataset are used for training. We observe that, like Table 2,
our LoHoSC variant surpasses the baseline method by a considerable margin-
Cityscapes by 15.97%, BDD100K by 15.16%, and Mapillary by 19.6%. Also,
LoHoSC outperforms TLDR [15] by a good margin, Cityscapes by 1.36%,
BDD100K by 1.05%, and Mapillary by 1.48%, a recent state-of-the-art method.
Furthermore, the performance of HoSC and LoSC modules individually is con-
sistent with our observation in Table 2.
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Table 4. Comparison with state-of-the-art methods in the multi-source DG setting.
All models use ResNet-50 backbone and are trained with GTAV and SYNTHIA train
sets.

mIoU (%)

Methods (G+S) CityScapes BDD100K Mapillary Mean

Baseline 35.46 25.09 31.94 30.83

IBN-Net [19] 35.55 32.18 38.09 35.27

ISW [4] 37.69 34.09 38.49 36.75

ISW + Advstyle [37] 39.29 39.26 41.14 39.90

SHADE [36] 47.43 40.30 47.60 45.11

LoSC 45.01 43.88 47.48 45.46

HoSC 45.89 44.40 47.50 45.93

LoHoSC 47.84 45.19 48.59 47.20

Multi-source Setting. In this section, we evaluate our proposed approach
under the multi-source setting where all models are trained using the train set
of GTAV and SYNTHIA datasets. Table 4 compares the performance of our
approach using the DeepLabV3+ architecture with the ResNet-50 backbone.
We observe that in comparison to the single-source setting, the performance of
all methods improves when multiple domains are used for training. This suggests
that the diverse styles from different domains provide informative features for
improving the generalization capabilities of models. Regarding the mIOU metric,
LoHoSC surpasses the baseline method on real-world datasets by a considerable
margin- Cityscapes by 12.38%, BDD100K by 20.1%, and Mapillary by 16.65%.
Also, LoHoSC outperforms SHADE [36] by a good margin, Cityscapes by 0.41%,
BDD100K by 4.89%, and Mapillary by 0.99%, a recent another state-of-the-art
method.
Qualitative Results. Figures 3, 4, and 5 compares the predicted segmentation
maps produced by LoHoSC with previous works on CityScapes, BDD100K, and
Mapillary dataset, respectively. Figure 2 also provides zoom-in version of segmen-
tation maps to highlight the differences. We select one state-of-the-art Domain
Normalization-based method, i.e., ISW [4], and one state-of-the-art Domain
Randomization-based method, i.e., TLDR [15] for comparison. All methods are
trained on the GTAV dataset with the ResNet-50 backbone. We observe that
LoHoSC produces fine-quality segmentation maps, especially at object borders,
in comparison to other methods.

4.3 Ablation Study: Location of MixStyle and EFDMix Modules

In this section, we study the impact of inserting MixStyle and EFDMix modules
at various locations in the ResNet-50 backbone. In particular, we investigate the
placement of these modules at four locations in the ResNet-50 architecture which
are denoted as Layer 0, Layer 1, Layer 2, and Layer 3 in the order of increas-
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Table 5. Ablation study on the location of MixStyle and EFDMix modules in the
ResNet backbone. All models use ResNet-50 backbone and are trained with GTAV
train set.

mIoU (%)

Location CityScapes BDD100K Mapillary Mean

Layer 0 45.41 42.53 47.31 45.08

Layer 0,1 46.46 43.09 48.28 45.94

Layer 0,1,2 46.73 43.68 48.43 46.28

Layer 0,1,2,3 40.36 37.09 34.91 37.45

Fig. 2. Qualitative comparison of segmentation results. The regions are zoomed in to
highlight the superiority of our method.

Fig. 3. Qualitative comparison of segmentation results on the CityScapes dataset.

ing depth. Table 5 shows the results of our study. We observe that applying the
modules in shallow layers i.e. Layer 0, Layer 1, and Layer 2 produces segmen-
tation models that generalize very well. However, when applying the modules in
deeper layers such as Layer 3, the performance drops drastically. Following [36],
we attribute two reasons for this phenomenon. First, low order statistics such
as the mean and standard deviation represent style information dominantly in
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Fig. 4. Qualitative comparison of segmentation results on the BDD100K dataset.

Fig. 5. Qualitative comparison of segmentation results on the Mapillary dataset.

the shallow layers. However, in deeper layers, they are dominant in representing
semantic information [8,13]. Second, in ResNet, the residual connections often
lead to large peaks and small entropy in deeper layers, making the style features
localized instead of encoding global style [27].

5 Conclusion

In this paper, we propose a new Domain Randomization method called LoHoSC
for syn-to-real Domain Generalized Semantic Segmentation. An important fea-
ture of LoHoSC is that it uses both low and high-order statistics to generate
new styles during training, enabling it to generate styles for a wide range of
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complex distributions of real-world images. Our evaluation of LoHoSC shows
that it achieves state-of-the-art performance on various benchmark real-world
target datasets under single-source and multi-source settings.
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Abstract. Recognizing objects in images requires capturing both global
and local visual features. Vision Transformer(ViT) learns to extract these
features from large-scale datasets. However, it is known that ViT strug-
gles with local feature extraction on small-scale datasets, such as CIFAR-
10, Tiny ImageNet, and ImageNet-100, which are smaller than ImageNet-
1k, resulting in poor performance. To resolve this issue, we introduce a
novel self-attention mechanism incorporating spatial locality constraints
in the attention calculation. Specifically, our method performs the self-
attention process independently in spatially divided regions. This con-
straint limits the receptive fields of attention and forces the local feature
extraction. In addition, we provide a global attention path to compute
self-attention from the entire image to achieve local and global feature
extraction. Experiments demonstrate our approach outperforms ViT and
enhanced variants of ViT with original self-attention on various stan-
dard small-scale datasets. Moreover, we evaluated the characteristics of
learned attention weights using mean attention distance and found that
our attention mechanism allows us to extract not only global features
but also local features in all blocks.
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1 Introduction

Transformer [22] has garnered attention in the field of natural language process-
ing because it achieves state-of-the-art performance in various tasks, including
machine translation, using only the attention mechanism [3] and without using
any recurrence or convolutions. Since the attention mechanism has weak induc-
tive biases regarding data implicitly included in learning algorithms and learning
models, Transformer can also handle tasks other than machine translation and
can be applied in various fields.

Vision Transformer (ViT) [6] is a Transformer-based model for the com-
puter vision field, and it outperforms Convolutional Neural Networks (CNNs)
in various image recognition tasks such as image classification, object detection,
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and semantic segmentation. To achieve the performance of ViT, it is necessary
to perform pre-training on large-scale datasets. The original paper [6] empiri-
cally demonstrated that when using small-scale datasets for pre-training, such
as ImageNet-1k [5], compared to using the large-scale datasets, such as JFT-
300M [17], ViT underperforms the CNN-based model [9]. This is because CNNs
have inductive biases specific to image data, such as locality, 2D neighborhood
structures, and translation invariance, while the attention mechanism used in
ViT, which calculates the contextual relationship between patches using dot
product operation, provides a low inductive bias specific to image data. As a
result, ViT requires the pre-training phase with large-scale datasets to learn the
inductive bias from the data itself. Therefore, it is challenging to train ViT on
datasets smaller than ImageNet-1k.

To understand the ViT and its training dynamics, the paper [16] examines
how ViT extracts features to achieve performance comparable to or better than
CNNs. They investigated the characteristics of its feature extraction capabilities
based on the mean attention distance, which is analogous to the receptive field
size of a CNN and is the average distance in image space over which information
is integrated based on attention weights. From this comprehensive study, they
found that when using a large-scale dataset for pre-training, ViT can capture
both local and global features in the shallow blocks, while only global features
are extracted in the deeper blocks. Interestingly, pre-training using a small-scale
dataset makes extracting local features in all blocks difficult. To alleviate the
difficulty of the local feature extraction on small-scale datasets, many researchers
have proposed sophisticated approaches, such as self-supervised learning [7] and
modification of the attention mechanism [12].

In this paper, we tackle the problem of training ViT from scratch using small-
scale datasets that are far smaller than ImageNet-1k [5]. We call the size of a
dataset with tens to hundreds of thousands of samples, such as CIFAR-10 [10],
Tiny ImageNet [11], and ImageNet-100 [19], a small-scale dataset in this paper.
Our hypothesis is that the capabilities of local feature extraction are key to the
success of ViT on small-scale datasets. Thus, we introduce a novel attention
method that can acquire local features in all blocks, even when using small-scale
datasets. Specifically, the proposed attention spatially divides the input feature
into several regions, independently performs self-attention in each divided region,
and then aggregates the local attentional features. In addition, we design a path
that extracts global features in the same way as ViT’s self-attention in order to
extract global features from the entire image. Moreover, the path that extracts
local features can also be attached to the attention part in enhanced ViT vari-
ants and functions as an adapter. Experiments demonstrate that our approach
outperforms traditional ViT self-attention on various small-scale datasets, such
as CIFAR-10, Tiny ImageNet, and ImageNet-100. Moreover, we demonstrate
that our approach outperforms conventional methods on CaiT [20], PiT [8] and
T2T-ViT [23], which are enhanced variants of ViT.
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Our main contributions are summarized as follows:

– We propose a novel attention mechanism incorporating locality constraints
when calculating attention. This mechanism allows us to learn the capabilities
of local feature extraction even when training ViT on small-scale datasets.

– The forward path to extract local features works as an adapter to add local
information to the model in various enhanced variants of ViT.

– We evaluate the average attention distance to reveal that our attention mech-
anism extracts not only global features but also local features in all blocks.

2 Related Work

2.1 Attention Mechanism

The attention mechanism [3] is a mechanism for focusing important information
by capturing the relationships between tokens of the input sequence. Note that
“token” is the input sequence divided into the smallest units used in the model.

Scaled dot-product attention [22] is one of the attention mechanisms used in
Transformer and captures the relationship between tokens using the dot prod-
uct. Specifically, this is an operation in which input information called “value” is
weighted and retrieved by a similarity (attention weight) based on the dot prod-
uct of a certain token called “query” and another token called “key”. Multi-head
self-attention [22] is a method that captures the relationships between various
tokens by considering scaled dot-product attention as one head and generating
multiple attention weights.

First, we formulate the multi-head self-attention. Given the input x ∈ R
N×D,

by applying three linear layers WQ ∈ R
D×dQK , WK ∈ R

D×dQK and W V ∈
R

D×dV to x, three types of vectors, query Q ∈ R
N×dQK , key K ∈ R

N×dQK , and
value V ∈ R

N×dV are generated as follows:

Q = xWQ,

K = xWK ,

V = xW V , (1)

where N is the number of tokens of the input x, D is the dimensions of the token
vector, dQK is the dimensions of the query and key, and dV is the dimensions of
the value. Note that generally D = dQK = dV holds.

Next, each query, key, and value is further divided in the direction of the
channel by the number of heads h. Therefore, the query, key, and value of the i-
th head are respectively Qi ∈ R

N×dQK/h, Ki ∈ R
N×dQK/h, and V i ∈ R

N×dV /h.
Furthermore, after scaling the matrix product QiK

T
i ∈ R

N×N by
√

dQK/h
and applying the softmax function, the attention weight of the i-th head Ai ∈
R

N×N is obtained as follows:

Ai = softmax

(
QiK

T
i√

dQK/h

)

. (2)
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In addition, by calculating the matrix product of attention weight Ai and the
value V i, the scaled dot-product self-attention of the i-th head SA(x)i = AiV i ∈
R

N×dV /h is calculated as follows:

SA(x)i = AiV i = softmax

(
QiK

T
i√

dQK/h

)

V i. (3)

Then, after combining the scaled dot-product self-attention in the head direc-
tion, by applying one linear layer W out ∈ R

dV ×D, the multi-head self-attention
MHSA(x) ∈ R

N×D is calculated, and this is used as the output

MHSA(x) = Concat (SA(x)1, · · · ,SA(x)h)W out. (4)

2.2 Self-attention Mechanism for Local Features

Various models have been proposed that extend ViT, which captures the global
features of an image, so that it can sufficiently capture the local features of
the image [4,13,21]. Among them, Swin Transformer [13] uses two types of
self-attention: Window-based Multi-head Self-Attention (W-MSA) and Shifted
Window-based Multi-head Self-Attention (SW-MSA). W-MSA uses a rectangu-
lar region called the window, divides the patch evenly from the top left corner,
and calculates self-attention only for the patches included in the window. When
the window size is M×M , one window contains M2 patches. SW-MSA calculates
self-attention using a window shifted by (�M

2 �, (�M
2 �) from the window position

in W-MSA in order to capture the relationship between adjacent patches that
belong to different windows. Note that in SW-MSA, since patches that were
located far away on the input feature map before the shift are stored in win-
dows other than the left upper one, attention masks are used to set the attention
weight value to 0 for that area. Then, these two types of self-attention are applied
alternately in the Swin Transformer encoder.

3 Method

3.1 Overall Architecture

We design a neural network architecture based on ViT [6] to confirm the
acquisition of local features by devising attention. As shown in Fig. 1, we first
divide the input x ∈ R

H×W×3 into P × P patches and flatten them to obtain
xp ∈ R

Np×(P 2·3). Then, linear projection is performed using the embedding layer
W emb ∈ R

(P 2·3)×D to generate the patch embedding xpatch ∈ R
Np×D. This pro-

cess is defined as follows:

xpatch = Concat
(
x1
pW emb, · · · ,xNp

p W emb

)
, (5)
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Fig. 1. Overview of ViT architecture with our attention.

where Np(= HW/P 2) is the number of patches, and xi
p ∈ R

P 2·3 is the i-th patch.
Next, we add the positional embedding W pos ∈ R

Np×D to xpatch, making it the
input z0 ∈ R

Np×D to the Transformer encoder. z0 is obtained from

z0 = xpatch + W pos. (6)

Our design of the encoder block is based on the architecture [6]. We modify
the Multi-Head Self-Attention (MHSA) part into our attention method. There-
fore, our Transformer encoder is composed of multiple encoder blocks consisting
of layer normalization [2], our attention mechanism, and a multilayer percep-
tron(MLP). When the Transformer encoder is composed of L encoder blocks,
the output zl ∈ R

Np×D of the l-th encoder block is expressed as follows:

z′
l = Attention(LN(zl−1)) + zl−1, (7)

zl = MLP(LN(z′
l)) + z′

l, (8)

where LN(·) is layer normalization, Attention(·) is our attention, and MLP(·)
is the MLP. Finally, we input z′

L ∈ R
D, which is the average of the output of

the Transformer encoder zL in the patch direction, to the MLP head. The MLP
head consists of layer normalization and one linear layer W head ∈ R

D×K , where
K is the number of classes to be classified. The output of the MLP head y ∈ R

K

is expressed as follows:

y = LN(z′
L)W head. (9)

3.2 Self-attention for Local Feature Extraction

We propose an attention method for enhancing local feature extraction as shown
in Fig. 2. First, the input z ∈ R

Np×D is transformed into z′ ∈ R
H/P×W/P×D so
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Fig. 2. Our attention.

that each patch has the same arrangement as the input image. Next, we apply
window partition(WP) to z′ and use an M × M window to divide the patches.
Based on the paper [13], there are two types of windows used at this time: window
WA, which is divided evenly from the upper left patch, and window WB, which
is shifted by (�M

2 �, �M
2 �) from the position of window WA as shown in Fig. 3.

Note that our method differs from the paper [13] in that we split the input into
four windows with window size M × M = (H/2P ) × (W/2P ). Since the number
of windows remains the same regardless of whether WA or WB is used when the
i-th window is wi ∈ R

(H/2P )×(W/2P )×D,

WP(z′) = w1,w2,w3,w4. (10)

Then, after applying MHSA for each window (hereinafter, this is called local
attention), we apply window reverse(WR) to combine the windows (z′′ ∈
R

H/P×W/P×Dh). Furthermore, z′′ is flattened to generate zlocal ∈ R
Np×Dh .

Therefore, zlocal is expressed as follows:

zlocal = Flatten (WR (MHSA(w1),MHSA(w2),MHSA(w3),MHSA(w4))) .
(11)

Finally, the output is zout ∈ R
Np×D, in which one linear layer W out ∈

R
2Dh×D is applied to the combination of zglobal ∈ R

Np×Dh , which is the result
of applying MHSA to the input z (hereinafter, this is called global attention)
and zlocal in the channel direction. Thus, zout is expressed as follows:

zout = Concat(zglobal,zlocal)W out. (12)

Note that, as shown in Fig. 4, our method does not apply the final linear layer
in MHSA. Hence, using equation(13), MHSA(x) is the combination of SA(x)i
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Fig. 3. Two types of windows in window partition. (Color figure online)

in the direction of the head as shown below:

MHSA(x) = Concat (SA(x)1, · · · ,SA(x)h) . (13)

4 Experiments

4.1 Experimental Setup

All models were trained for 500 epochs with a batch size of 256 and an initial
learning rate of 0.001. We used AdamW (β1 = 0.9, β2 = 0.999, weight decay=
0.05) [14] with the cosine learning rate scheduler [15]. Note that warm-up was
not performed in the cosine learning rate scheduler.

We used CIFAR-10 [10] with 10 classes and 60k images, Tiny ImageNet [11]
with 200 classes and 110k images, and ImageNet-100 [19] with 100 classes and
135k images. ImageNet-100 is a subset of the ILSVRC-2012 ImageNet [5] dataset.
For training, we resized the shorter side to 256 and cropped the center to
256× 256, then applied RandomCrop, RandomHorizontalFlip, Mixup [25], Cut-
Mix [24], and RandomErasing [26] to obtain 224 × 224 images. For evaluation,
we resized the shorter side to 256, then cropped the center to 224×224. Further-
more, we applied label smoothing [18] to the labels and used the cross entropy
loss adapted to label smoothing as the loss function:

L = (1 − ε)LCE(i) + ε
1
K

K∑

j=1

LCE(j), (14)

where ε is a parameter, i is the truth label, K is the number of classification
classes, and LCE is the cross-entropy loss, which is expressed as follows:

LCE(k) = −tk log(pk), (15)

where tk is one-hot vector of the truth label and pk is the softmax probability
for the k-th class.
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Fig. 4. MHSA in our method.

Table 1. Configuration of the model used in this experiment.

Model Patch size Dimensions(D) Blocks Heads Params

ViT-S/16(baseline) 16 384 12 6 21.6M

baseline+ 16 384 16 6 28.7M

ViT-S/16 w/ our attention 16 384 12 6 28.7M

Swin-T 4 [96, 192, 384, 768] [2, 2, 6, 2] [3, 6, 12, 24] 27.6M

CaiT(XXS-24) 16 192 24+2 4 11.8M

CaiT(XXS-24) w/ our attention 16 192 24+2 4 15.3M

T2T 16 384 2+12 6 21.7M

T2T w/ our attention 16 384 2+12 6 28.8M

PiT-S 16 [144, 288, 576] [2, 6, 4] [3, 6, 12] 22.7M

PiT-S w/ our attention 16 [144, 288, 576] [2, 6, 4] [3, 6, 12] 30.2M

4.2 Image Classification

Comparison with ViT Model. To evaluate the performance on the standard
ViT model, we used ViT-S/16 published in timm1 as a baseline. As summarized
in Table 1, since we changed only the MHSA part in our method, the basic
configuration is the same as in the baseline. In addition, two types of baselines
1 https://github.com/huggingface/pytorch-image-models.

https://github.com/huggingface/pytorch-image-models
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Table 2. Comparison of the best score of validation top1-accuracy with baseline. We
show the results for the case of using only window WA in the WA column and the
results for the case of using window WA and window WB alternately for each block in
the WA/WB column.

baseline baseline+ ours

WA WA/WB

ImageNet-100 80.48 79.28 81.24 81.60

CIFAR-10 93.77 93.12 94.66 94.94

Tiny ImageNet 60.77 58.05 61.79 61.39

Table 3. Comparison of the best score of validation top1-accuracy using ImageNet-100.

Model top1-acc

ViT-S/16(baseline) 80.48

ViT-S/16 w/ our attention 81.24

Swin-T 84.18

CaiT(XXS-24) 82.06

CaiT(XXS-24) w/ our attention 83.02

T2T 84.36

T2T w/ our attention 84.94

PiT-S 83.64

PiT-S w/ our attention 83.76

are used: baseline, which differs only in the attention part compared to our
attention, and baseline+, which has almost the same number of parameters as
our attention by setting the number of blocks to 16.

In our method, we evaluated the case of using only window WA (hereafter,
this is called method WA) and the case of using window WA and window WB

alternately for each block (hereafter, this is called method WA/WB) in the win-
dow partition part of our attention. Note that due to the structure of our atten-
tion, method WA and method WA/WB have the same number of parameters.

We compared the performance of baseline, baseline+ and our methods in
terms of the best score of validation accuracy with CIFAR-10, Tiny ImageNet
and ImageNet-100. The results are summarized in Table 2. Our method outper-
forms baseline and baseline+ on all datasets. Also, method WA/WB is slightly
superior when using ImageNet-100 and CIFAR-10, and method WA is slightly
superior when using Tiny ImageNet.

Comparison with the Enhanced Variants of ViT. We compared our
method WA with Swin Transformer [13], CaiT [20], T2T-ViT [23] and PiT [8] as
the enhanced variants of ViT using ImageNet-100 dataset. Here, except for T2T-
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ViT, we used Swin-T, XXS-24, and PiT-S published in timm1 as Swin Trans-
former, CaiT, and PiT, respectively. We also conducted similar experiments with
variants that adapted local attention to each attention part. However, the train-
ing of the Swin transformer on small-scale datasets is quite unstable, and we
needed to change the learning rate of the Swin Transformer from the baseline
setting to achieve stable training(initial learning rate: 0.001→0.0005). We were
unable to train the Swin Transformer with our attention because training was
unstable even after changing the learning rate.

The results are summarized in Table 3. ViT-S/16 with our attention was
less accurate than any variant other than ViT-S/16. On the other hand, when
comparing the original version and the local attention adapted version with our
attention for each variant, our methods outperformed the original variants in
CaiT(XXS-24), T2T and PiT-S.

4.3 Analysis with Mean Attention Distance

We used the mean attention distance, the same evaluation index as in the original
paper [16], to evaluate the receptive field size in each model. The attention
distance is the distance between two patches multiplied by the corresponding
attention weight, and the mean attention distance is the average of the sum of
the attention distances of each patch. Therefore, it can be said that the smaller
the mean attention distance, the more local features are extracted, and the larger
the mean attention distance, the more global features are extracted. Now, we will
formulate a method for finding the mean attention distance. When the number
of patches is N , the attention weight A is N × N . First, we create a distance
matrix X ∈ R

N×N that summarizes the distance between two patches based
on the input image in the arrangement corresponding to the attention weight.
Next, by taking the Hadamard product of A and X, we generate the attention
distance matrix Y ∈ R

N×N as follows:

Y = A � X. (16)

Note that � represents the Hadamard product, that is, the product of each
element of two matrices. In addition, we prepare coordinates that extend the
x-axis to the right and the y-axis to the bottom, with the upper left patch of the
input image divided into P × P patches as the origin. At this time, letting any
two of the coordinates of the patches be (x1, y1) and (x2, y2), respectively, the
distance d between the two patches stored in the distance matrix is calculated
as follows:

d = P ×
√

(x2 − x1)2 + (y2 − y1)2. (17)

When the input is composed of NH × NW patches, the coordinates of the
two patches with the largest distance between them are (0, 0), (NW −1, NH −1).
Therefore, the maximum distance between two patches stored in the distance
matrix dmax is as follows:
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Fig. 5. Comparison of average mean attention distance per head for each block.

dmax = P ×
√

((NW − 1) − 0)2 + ((NH − 1) − 0)2

= P ×
√

(NW − 1)2 + (NH − 1)2. (18)

The mean attention distance is calculated by calculating the total attention
distance for each patch and then taking the average of them. Therefore, when
the element in the i-th row and j-th column of Y is Y ij , the mean attention
distance y is expressed as follows:

y =
1
N

N∑

i=1

N∑

j=1

Y ij . (19)

We calculated the average of 100 data points for the mean attention distance
for each attention head. The results are shown in Fig. 5. Some blocks or heads
with small mean attention distances can be seen in the baseline, but there are
almost no blocks or heads with small mean attention distances in the global
attention of our method. Furthermore, the mean attention distance of global
attention is larger, and the mean attention distance of local attention is smaller
in all blocks. In this experiment, the input consists of 14× 14 patches, the patch
size is 16, and the window size is 7. Therefore, from equation (18), the maximum
value of the distance between two patches stored in the distance matrix in global
attention is dGmax = 16 × √

(14 − 1)2 + (14 − 1)2 ≈ 294.16, and the maximum
value of the distance between two patches stored in the distance matrix in local
attention is dLmax = 16 × √

(7 − 1)2 + (7 − 1)2 ≈ 135.76. Therefore, it is obvious
that the mean attention distance of local attention is less than half of that of
global attention.

Considering these facts, it can be said that the global attention of our method
extracts more global features than the attention of the baseline, even though it
processes the same amount of input as the baseline. On the other hand, we cannot
conclude that local attention of our method extracts local features, but since
global attention is specialized for extracting global features, it is highly likely
that local attention is responsible for extracting local features to supplement it.
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Fig. 6. Comparison of attention maps of baseline (ViT-S/16) and global attention map,
local attention map in the case of using method WA. (Color figure online)

4.4 Visualization of Attention Map

In order to show which patch of the image each model focused on for image clas-
sification, we used a method called attention rollout [1] to visualize an attention
map that maps the attention weight. We will describe the case of applying atten-
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tion rollout in MHSA. Suppose that the input to MHSA is z ∈ R
(Np+1)×D, where

Np +1 is the number of class token and patches. When the Transformer encoder
consists of B blocks and the number of heads of MHSA is h, the attention weight
of the i-th head of the b-th block is set to Ab

i (b = 1, 2, · · · , B, i = 1, 2, · · · , h). In
attention rollout, first, we take the average attention weight for each block. The
average attention weight of the b-th block Ab ∈ R

(Np+1)×(Np+1) is as follows:

Ab =
1
h

h∑

i=1

Ab
i . (20)

Next, we add the identity matrix I ∈ R
(Np+1)×(Np+1) to Ab and multiply

it sequentially starting from the first block. The average of the entire attention
weight A ∈ R

(Np+1)×(Np+1) is obtained as follows:

A =
B∏

b=1

(Ab + I). (21)

Furthermore, we extract the attention weight between the class token and
each patch Acls ∈ R

Np from matrix A. Finally, each patch is transformed so
that it has the same layout as the input image, and is resized to the same size
as the input image to generate an attention map. Note that our model does not
use class token, as shown in Fig. 1, so instead of Acls, we use Â ∈ R

Np , which
is the average of the entire attention weight A

′ ∈ R
Np×Np , further averaged in

the patch direction. If the element in the i-th row and j-th column of A
′
is A

′
ij ,

then Â is expressed as follows:

Â =
1
N

N∑

j=1

A
′
ij . (22)

In local attention, attention maps are generated for each window. Since window
WA divides the input into four equal parts without shifting it from the top left
of the patch, it is possible to visualize the local attention map by combining the
attention maps.

Using the trained models in the baseline and our models (method WA),
we generated the attention maps for several picked images. Figure 6 shows the
original image and images with an attention map superimposed on the original
image. The top two are single-object samples with equal proportions of subject
and background in the image, the middle two are single-object samples with a
high proportion of subject and almost no background, and the bottom two are
multiple-object samples. Note that, as shown in Fig. 2, our attention has two
types of attention: global attention and local attention, whereas baseline has
only one type of attention.

It can be observed that our global attention is more focused on the back-
ground outside the target object compared to the baseline, but more focused
on the inside of the target object compared to local attention. This is especially
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noticeable in the multiple-object samples. Moreover, if we focus on the middle
two samples where the proportion of the background is small, local attention
focuses on parts or patterns of the target object that global attention does not
capture.

4.5 Ablation Study

We conducted ablation studies regarding the method for merging global and
local feature vectors and the number of heads. Note that all experiments are
performed based on method WA, and ImageNet-100 is used as the dataset. The
results are summarized in Table 4.

Feature Merging. As mentioned in Sect. 3.2, in our attention, we finally con-
catenated the global attention output zglobal ∈ R

Np×D and the local attention
output zlocal ∈ R

Np×D in the direction of the channel and applied one linear
layer W out ∈ R

2D×D to merge the features. We performed ablation by changing
the concatenating part in the channel direction to a simple addition. Note that
since the dimensions of the addition of zglobal and zlocal is D, the one linear
layer applied after the addition is W ′

out ∈ R
D×D, and the learning parameters

are slightly reduced. In addition, in order to confirm whether the improvement
in accuracy depends on merging global and local feature vectors, we performed
ablation using only local features without feature merging. Note that if only
global features are used, it is the same as the baseline.

The results indicated that when using addition, the accuracy improved by
0.58% compared to when using concatenating. However, the accuracy when using
method WA/WB is 81.58% (−0.02%). Also, when the dataset was CIFAR-10,
the accuracy of method WA is 94.39% (−0.27%), and the accuracy of method
WA/WB is 94.77% (−0.17%). Therefore, in other cases, using concatenating pro-
vides superior performance, and it cannot be concluded that applying addition
instead necessarily contributes to better performance. Furthermore, when using
only local feature, the accuracy decreased by 4.10% compared to when using
concatenating, and also decreased by 3.34% compared to the baseline. There-
fore, the improvement in accuracy from our attention method is not due to the
use of local features, but to the merging of global and local features.

The Number of Heads. We performed ablation by varying the number of
MHSA heads for global attention and all local attention. When the number of
global attention heads was unchanged, and the number of local attention heads
was set to 3, the accuracy improved by 0.22%. In addition, when the number of
global attention heads was set to 8, the accuracy improved by 0.20% regardless
of the number of local attention heads. However, when the number of baseline
heads was set to 8, the accuracy improved by 0.22%. Therefore, it can be said
that the accuracy improvement effect of our attention has hardly changed.
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Table 4. Ablation study. The numbers in parentheses shows the change in accuracy
from before the change (to the left of the arrow).

Ablation Variant Top-1 accuracy(%)

Features merging Concat → Add 81.82(+0.58%)

Concat → None(only local feature) 77.14(−4.10%)

The number of heads baseline(6) → baseline(8) 80.70(+0.22%)

G : Global attention (G, L) = (6, 6) → (G, L) = (6, 3) 81.46(+0.22%)

L : Local attention (G, L) = (6, 6) → (G, L) = (8, 8) 81.44(+0.20%)

(G, L) = (6, 6) → (G, L) = (8, 2) 81.44(+0.20%)

5 Conclusion

We proposed a method to address the issue of ViT, which suffers from relatively
poor performance when learning with small datasets. The proposed method is
a novel attention method that can extract both global and local features in all
blocks, based on the fact that local features are hardly extracted when training is
performed using a dataset that is not large. In image classification, our method,
which uses both global attention and local attention, outperformed the conven-
tional method that uses only global attention. It has also been demonstrated
that local attention can be applied not only to ViT but also to various enhanced
variants of ViT, contributing to improving recognition accuracy.

However, for some variants, such as Swin Transformer, the training using
small-scale datasets was very unstable, making it difficult to apply the proposed
method. Therefore, further modification of the proposed method is necessary to
apply it to variants with unique structures such as Swin Transformer. In addi-
tion, since we calculated the attention for each window as well as the attention
for the entire input in our method, the computational cost was slightly larger
than the original attention. Therefore, it is necessary to consider a more com-
putationally efficient method. Furthermore, it is necessary to verify whether our
approach is effective for other vision tasks, such as object detection and semantic
segmentation.
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Abstract. Weakly Supervised Semantic Segmentation (WSSS) methods
based on image-level labeling alleviate the burden of annotation due to
image-level labels only providing object categories. However, the gener-
ated Class Activation Maps (CAM) can only localize the most discrimi-
native region rather than the entire object region. To remedy this issue, a
framework of WSSS algorithms for Cross-Domain Calibration and Bound-
ary Denoising Network (CD-CBN) is presented. Specifically, a Spatial Fea-
ture Calibration Network (SFCN) is proposed to align cross-dimensional
features with class prototypes, focusing on intra-class feature consistency.
Then, a Class-Specific Distance Model (CSDM) is adopted to separate fea-
tures from different classes, and feature activation in the object region sur-
passes the background area. Finally, a Full-domain-aware Noise Reduction
Model (FNRM) is designed to refine the object boundary pixels by captur-
ing global contextual features and further filtering out pixel-level noise. A
comprehensive experimental evaluation of the highly challenging Pascal
VOC 2012 dataset and MS COCO 2014 is presented in this study, illus-
trating the effectiveness of our suggested approach.

Keywords: Weakly Supervised · Semantic Segmentation · Spatial
Feature Calibration · Class Prototypes · Full-Domain-Aware

1 Introduction

Thanks to the rapid advancements in deep neural networks, the field of semantic
segmentation has experienced substantial progress. The performance of exist-
ing semantic segmentation methods relies on dense pixel-level labels. However,
obtaining pixel-level annotation is unbearably expensive for a fully-supervised
semantic segmentation network. For instance, the task of annotating each image
within the Cityscapes dataset typically requires approximately 90 min [1]. As
such, WSSS methods employ image-level annotations and have garnered signifi-
cant attention due to their crucial practical applications. Consequently, to reduce
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15303, pp. 275–288, 2025.
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the dependence on extensive annotation efforts, researchers are increasingly
focusing on weakly supervised learning approaches. “Weak” indicates image-
level labels that can be readily acquired, e.g., scribbles [2], bounding boxes [3],
points [4], and image-level labels [5]. Among them, image-level labels prove to
be the most efficacious, which significantly lowers the cost of data annotation
and has become a focal point in current research.

Fig. 1. Two-stage Weakly-supervised semantic segmentation.

The current WSSS methods predominantly rely on CAM as a fundamen-
tal approach, as illustrated in Fig. 1. The crucial stage in training a semantic
segmentation model involves extracting CAM [6] from a classification model.
To be more precise, the overall workflow of WSSS involves three key stages:
1) training a multi-label classification model utilizing the image-level labels;
2) deriving class-specific CAMs to produce binary masks (commonly known as
seed masks), which are often refined to generate pseudo-masks; 3) employing
all class pseudo-labels to train a fully-supervised model. It is evident that the
quality of CAMs obtained in the initial step significantly impacts the perfor-
mance of the ultimate semantic segmentation network. However, the first chal-
lenge is that CAM only identifies the most distinguishing regions of objects.
The presence of tiny and sparsely activated areas poses challenges in acquir-
ing pixel-level labels of high quality, and has a higher mean Intersection over
Union (mIoU) for pseudo-labels does not necessarily indicate the superiority
of the segmentation model. To address this, a prevalent number of subsequent
efforts strive to learn more complete object regions, and the second challenge
is that classification networks yield noisy pseudo-labels. Inspired by this obser-
vation, existing studies on learning from noisy labels primarily concentrate on
the classification task, e.g., robust architecture [7], robust regularization [8], loss
adjustment [9], and sample selection [10]. However, the above method suffers
from incomplete object regions as well as focusing on the noisy pixels generated
by the classification network. Given the above-mentioned analysis, we propose
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a cross-domain calibration and boundary denoising network (CD-CBN), which
can capture integral object regions by combining cross-dimensional features with
class prototypes and improve the learning of noisy pixels. Specifically, a spatial
feature calibration network (SFCN) is proposed to synchronize salient region
features with the prototype of the object class, which fosters the activation of a
greater number of object regions within the classification network. In contrast
to the current context fusion models, SFCN provides a location feature while
maintaining higher performance. Besides, another class-specific distance model
(CSDM) [11] is adopted to separate features from different classes and keep fea-
ture activation in the background area significantly lower than observed in the
object. A full-domain-aware noise reduction model (FNRM) is designed to refine
the object boundary pixels by combining pseudo-labels with initial prediction,
which captures global contextual features and further filters out pixel-level noise.

Our work has made the following major contributions :

1) A cross-domain calibration and boundary denoising network (CD-CBN),
which consists three parts (i.e., SFCN, CSDM and FNRM) is presented to
extract the complete object area in cross-dimensional feature spaces, and fur-
ther denoising the pixel-level labels, ensuring sufficient utilization of object
features.

2) SFCN is elaborately designed to align cross-dimensional features with class
prototypes and focus on intra-class feature consistency.

3) FNRM is proposed to refine the object boundary information and further
filter out pixel-level noise.

4) Experimental results on two widely used datasets demonstrate our proposed
method has the superior performance compared with other state-of-the-art
approaches.

2 Related Work

2.1 Semantic Segmentation

In recent years, semantic segmentation has been extensively studied, with the
fully convolutional network [12] emerging as the most distinguished framework.
Numerous methods in this field are built upon this foundational structure.
For instance, the initial research on SegNet [13] proposed a deep convolutional
encoder-decoder structure that was engineered to restore the spatial resolution
of the input image. Lin et al. [14] proposed a versatile multipath refinement net-
work aimed at generating high-resolution segmentation maps, which employs a
recursive merging method that combines low-resolution semantic features with
fine-grained low-level features in a hierarchical manner. Recently, the concept
of self-attention has been investigated in [15], emphasizing the adaptive integra-
tion of local features while considering their global dependencies. The research in
[15] utilized non-local neural networks for capturing distant correlations, whereas
DANet [16] proposed both position and channel-level awareness models, designed
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to understand the spatial and channel-wise interrelations of feature representa-
tions. CCNet [17] proposed an innovative criss-cross attention model aimed at
gathering contextual information along a criss-cross path. Nonetheless, due to
semantic gaps between feature maps of varying levels, where high activation
regions contain more semantic details, methods like aggregation of features or
concatenation yield suboptimal results. Compared to the aforementioned meth-
ods, we focus on capturing the complete object area in cross-dimensional feature
spaces and further denoising the pixel-level labels.

2.2 Weakly Supervised Semantic Segmentation

Approaches in WSSS have been developed to mitigate the high costs associated
with labeling in fully-supervised semantic segmentation, and which resorts to
solving the problem of expensive labels. The majority of current WSSS meth-
ods employ a multi-stage process [5]. Among these methods, image-level labels
are commonly utilized as a form of weak supervision [5] due to their easy avail-
ability. The initial phase of segmentation involves employing image-level labels
and creating CAMs for the training datasets. Subsequently, pseudo-masks can
be derived from these CAMs. Given the rough localization of object regions by
CAMs, the resulting pseudo-masks often lack precision. To mitigate this issue,
several methods employ extra labels or data sources (such as saliency [11,31],
and [33]) for enhanced supervision in the training phase. However, the use of
saliency maps is primarily aimed at identifying the edges of prominent areas
rather than objects. Thus, we leverage image-level labels as a means of supervi-
sion in our approach, and tackle the challenges of both background and object
incompleteness.

2.3 Sturdy Training Under Noisy Label

Handling noisy labels is a crucial task [18] in the field of machine learning, which
can be divided into four distinct categories based on their underlying approaches:
robust architectural design, robust regularization strategies, robust loss design,
and selective sampling. Various robust architectures [7] have been proposed to
effectively model the noise transition matrix in datasets with label noise. But
these methods often yield unsatisfactory results when faced with a high level of
noise. In response, some researchers have shifted their focus towards using robust
regularization methods, such as early robust learning [7,10], and Mixup [19], to
alleviate this issue. However, designing a reliable method to distinguish noisy
samples poses a significant challenge and can potentially lead to accumulated
errors due to incorrect selections. In contrast to previous studies that primarily
address classification tasks, our work focuses on robust segmentation learning.
Notably, ADELE [20] dynamically adjusts noisy annotations by leveraging the
phenomenon of early learning in semantic segmentation. Different from existing
works on segmentation, we propose the full-domain-aware noise reduction model
specifically designed for robust segmentation learning.
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Fig. 2. The overall architecture of CD-CBN. These are separated by a Spatial Feature
Calibration Network (SFCN), a Class-Specific Distance Model (CSDM), and a Full-
domain-aware Noise Reduction (FNR).

3 Methodology

3.1 Overview

Figure 2 provides an overview of our proposed CD-CBN, comprising three key
components: a SFCN, a CSDM, and a FNR block. First, an input image is fed
into the proposed network, which has undergone pre-training on ImageNet [21]
for extracting features. Then, the extracted features were divided into two parts,
object and background areas, and sent into the SFCN, which is designed to align
multi-dimensional features with class prototypes in order to capture inter-class
consistent features. Subsequently, the CSDM is employed to integrate features
from the SFCN outputs in a manner that enhances semantic complementarity.
Then, we combine the initial noisy pseudo-labels generated by the classification
network with the initial predictions obtained by the segmentation network to
further complement the semantic information, which leads to an explicit dis-
tinction between object and background information. Finally, the features are
fed into the FNR, the original noisy pseudo labels are refined by training to
eliminate noise pixels and further enhance target features, resulting in improved
pseudo labels that achieve better segmentation performance on complex images.

3.2 Spatial Feature Calibration Network (SFCN)

SFCN is proposed to aggregate the global context in Fig. 3. In many other WSSS
methods, object locations are identified using CAMs, which often highlight the
most distinctive features of objects.

Specifically, given the input X. the output for the c-th channel at a particular
height h can be written as

zhc (h) =
1
W

∑

0�i�W

xc(h, i). (1)
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Fig. 3. Spatial Feature Calibration Network(SFCN).

Likewise, the output of the c-th channel at width w can be expressed as

zwc (w) =
1
H

∑

0�j�H

xc(j, w) (2)

As described above, Eqs. (1) and (2) facilitate a comprehensive receptive field and
encode detailed positional data. Specifically, they are concatenated and passed
for transformation F1.

f = σ
(
F1

([
zh, zw

]))
(3)

Here, generated by concatenating horizontally and vertically aggregated features,
is divided into two tensors.

gh = σ
(
Fh

(
fh

))
(4)

gw = σ (Fw (fw)) (5)

Here,σ(·) is the sigmoid function. The outputs gh and gw focus on crucial spatial
features while maintaining efficiency.

yc(i, j) = xc(i, j) × ghc (i) × gwc (j) (6)

For training the classification network, we utilize the multi-label soft margin
loss, defined as follows:

Lcls = − 1
C

C∑

c=1

yc log(σ(qc)) + (1 − yc) log(1 − σ(qc)) (7)

yc represents the C-th class at the image level, to generate the CAM for each
object category.

Ac =
ReLU (F c)
max (F c)

(8)
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While CAM can identify objects within images, it often emphasizes distinc-
tive areas. Additionally, without boundary information, the object activations
revealed by CAMs can extend into the background. Aiming at this issue, we
propose a Spatial Feature Calibration Network (SFCN), as illustrated in Fig. 3.
For images containing a single object category, the class-independent saliency
map serves as an approximate object mask, and extracts a class prototype vector
from the features. Subsequently, the element in the prototype vector p can be
computed as:

pc =

∑h,w
i=1,j=1 Sij · F c

ij∑h,w
i=1,j=1 Sij

(9)

Here, h and w correspond to the dimensions of the saliency map, representing its
height and width respectively. Our approach aims to enhance the learning process
by encouraging the development of coherent feature encoding, specifically in the
trget area, thereby enhancing the overall activation of objects in CAMs. The
prototype vector is up-sampled to match the spatial dimensions of the attention
map, and the feature distance D is computed using element-wise subtraction.
The corresponding loss can be expressed as:

Lsfc ob =
1

∑h′,w′
i=1,j=1 Sij

h′,w′∑

i=1,j=1

(
Sij · 1

C

C∑

c=1

(Dc
ij)

2

)
(10)

Here h′, w′, and C correspond to the height, width, and channel dimensions of
the attention map, respectively. Our proposed spatial feature calibration model
offers a dual benefit. Firstly, by minimizing variations within the features of the
same category, the network is encouraged to expand the entire object region
indicated by the saliency map. Secondly, matching features with the prototype
moderates the high level activation in CAMs’ most distinctive regions, com-
pelling the network to activate non-distinctive areas for maintaining classifica-
tion performance. However, only focusing on intra-class relations may result in a
positional offset, causing the activation to shift towards background regions, this
can diminish the localization capability of CAMs. To tackle this challenge, we
also utilize our spatial feature calibration model with the inverse saliency map to
ensure the compactness and consistency of background features. The calculation
of the background prototype follows a similar approach to Eq. (11).

pc =

∑h,w
i=1,j=1 Sij · F c

ij∑h,w
i=1,j=1 Sij

(11)

Here, S = 1 − S represents the inverse saliency map. Computating the feature
distance D with its prototype in the background area, the spatial feature cali-
bration loss for the background region can be defined in a similar manner as Eq.
(12) as follows:

Lsfc bg =
1

∑h′,w′
i=1,j=1 Sij

h′,w′∑

i=1,j=1

(
Sij · 1

C

C∑

c=1

(D
c

ij)
2

)
(12)
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CSDM. By incorporating the intra-class relation constraint into the spatial
feature calibration model mentioned above, the variance of features within or
outside the salient region is effectively minimized. Nevertheless, the presence of
features exhibiting greater intra-category consistency does not necessarily imply
that the activation of the object region will surpass that of the background area.
To relieve the dilemma, we adopt a Class-Specific Distance Model (CSDM) to
create a clear separation between object and background features and promote
higher activation in the object region compared to the background. As illustrated
in Fig. 2, y is image-level label and the class-specific distance loss is defined as
follows:

Lcsd = y · p − y · p (13)

Here, p and p refer to the object and background prototypes, respectively, as
defined in Equations (9) and (11).

With our proposed SFCN and CSDM, we can represent the classification loss
in the training as:

L = Lcls + λobLsfc ob + λbgLsfc bg + λcsdLcsd (14)

Here, λob, λbg and λcsd are the spatial feature calibration losses for objects and
background, and the CSDM loss, respectively.

3.3 Full-Domain-Aware Noise Reduction (FNR)

Due to their ability to provide detailed object boundaries, saliency maps derived
from existing saliency detection models have been extensively utilized in WSSS
tasks, which mitigate the problem of easily confused object boundaries. Lever-
aging the category information available through image-level labels, we employ
class-agnostic saliency mapping to generate pseudo-labels that are specific to
each class. Nevertheless, the identified salient regions may not align with the
objects or may encompass irrelevant background areas. As such, labels contain-
ing image-level noise often exhibit a high noise rate, leading to the degradation of
network training performance. Aiming at this issue, we propose a Full-domain-
aware Noise Reduction (FNR) model to alleviate the mislabeled pixel problems.
Based on the assumption that the class label in the salient region is correct
with high probability, first, a comprehensive activation region is obtained by
combining the noisy pseudo-label and the initial prediction to supplement the
incomplete object region in the initial prediction. Subsequently, an initial mask
is generated based on the activated feature, which is then subjected to a denois-
ing process to reduce false negatives among pixels. This method yields refined
pseudo-labels with distinct boundaries, enhancing the label accuracy for subse-
quent segmentation tasks, which leverage the inherent self-correction capability
of the segmentation network to enhance the final predictions of the model.
The specific process of extracting the initial mask is: firstly, given an input image,
assume that its gray image is Gij and define a threshold value Tmg, according to
which the gray scale image is transformed into a binary image; then, the region
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of the binary image containing a pixel value of 1 is labeled as the foreground
target, and the region with a pixel value of 0 is labeled as the background region.

Mij =

{
1, if Gij > Tmg

0, otherwise
(15)

4 Experiments

4.1 Datasets and Evaluation

Datasets. To assess the effectiveness of our approach, we conducted a compre-
hensive set of experiments on two widely recognized and popularly used datasets,
the PASCAL VOC 2012 dataset [22] and the MS COCO 2014 dataset [23].
PASCAL VOC 2012 consists of 21 classes, including 20 object categories
and the background class. It comprises a total of 10,582 training images (which
are extended by the SBD dataset [24]). Additionally, there are 1,449 validation
images and 1,456 test images available for evaluation.
MS COCO 2014 consists of 81 classes of objects, including one background
class, and it has 80K images for training and 40K images for validation.

Evaluation. Consistent with previous studies [25]– [37], we employed the stan-
dard mean Intersection over Union (mIoU) and Pixel Accuracy (PixAcc) as the
evaluation metrics to assess the effectiveness of our model.

4.2 Implementation Details

Our classification network is built upon the VGG-16 model [11], which is pre-
trained on the ImageNet dataset [21]. We initialize the learning rate to 10−3

and reduce it by a factor of 10 after the 5th and 10th epochs. The classification
network is trained for 30 epochs using a batch size of 5. As for the segmentation
network, we adopt the DeepLab-v2 framework following the approach in [11]. The
segmentation network undergoes training for 10,000 iterations, utilizing a batch
size of 10. These settings ensure that both the classification and segmentation
networks are effectively trained to achieve optimal performance on the respective
tasks.

4.3 Evaluation and Analysis

Ablation Studies: To demonstrate the effectiveness of our method, we per-
formed a comprehensive set of experiments on the Pascal VOC 2012 dataset
to evaluate the performance of the key components in our model. Specifically,
we studied the impact of SFCN, CSDM, and FNR individually. The results of
the ablation studies are presented in Table 1, showing the performance of each
component.



284 Z. Liu et al.

It is evident from the results that by employing the SFCN, can attain better
global context features and recognize precise locations. As shown in Fig. 4, the
first row represents the input image, followed by the ground truth in the second
row, the saliency map in the third row, and the final result visualization in the
last row. The results demonstrate that the network can be effectively guided to
focus on the comprehensive regions corresponding to class prototypes. Further-
more, the inclusion of CSDM in the network leads to improved performance,
which furthers the separation of target and contextual features. Nonetheless,
due to the coarse features extracted by both SFCN and CSDM, a FNR block
is proposed to refine the noisy labels and enhance performance. By integrating
the SFCN, CSDM, and FNR components within a unified network, our method
achieves superior accuracy compared to other variants.

Fig. 4. The visualizations on Pascal VOC 2012 dataset.

Comparison with State-of-the-Art Networks: In Table 2 and Table 3, we
conducted a comprehensive comparison of our results with state-of-the-art meth-
ods on the two widely-used datasets.

Quantitative Results on PASCAL VOC 2012 [21]:To demonstrate the
effectiveness of the proposed CD-CBN, we compare it against the existing state-
of-the-art WSSS approaches on the validation and test datasets of PASCAL
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Table 1. Ablative studies on Pascal VOC 2012. SFCN: Spatial Feature Calibration
network; CSDM: class-specific distance model; FNR:full-domain-aware noise reduction.

Baseline SFCN CSDM FNR MIoU (%) PixAcc (%)

� - - - 64.8 91.4

� � - - 65.0 91.1

� � � - 69.3 92.6

� � � � 72.2 92.9
Table 2. Comparisons with the state-of-the-art approaches on Pascal VOC 2012
dataset. I: image-level labels, S: saliency maps.

Methods Publication Sup. Val(%) Test(%)

DSRG [25] CVPR18 I+S 61.4 63.2

Affinity Net [5] CVPR18 I 61.7 63.7

FickleNet [26] CVPR19 I+S 64.9 65.3

OAA [27] ICCV19 I+S 65.2 66.4

SEAM [28] CVPR20 I+S 64.5 65.7

CONTA [29] NIPS20 I 66.1 66.7

Li et al. [30] AAAI21 I+S 68.2 68.5

NSROM [31] CVPR21 I+S 68.3 68.5

ECS-Net [32] ICCV21 I 66.6 67.6

I2CRC [11] IEEE22 I+S 69.3 69.5

W-OoD [33] CVPR22 I 70.7 70.1

L2G [34] CVPR22 I+S 72.1 71.7

ACR [35] CVPR23 I 71.9 71.9

MDBA [36] IEEE23 I+S 72.0 71.5

CD-CBN(ours) - I+S 72.2 74.3

VOC 2012. As shown in Table 2, Specifically, Compared to some multi-stage
semantic segmentation methods with only image-level class labels, DSRG [25],
Affinity Net [5], FickleNet [26], OAA [27], SEAM [28], CONTA [29], Li et al.
[30], NSROM [31], ECS-Net [32], I2CRC [11], W-OoD [34], L2G [35], ACR [36],
MDBA [37]. Compared to these methods, our method can achieve 72.2% on the
validation dataset and 74.3% on the test dataset, which can demonstrate our
method’s superior ability to accurately locate and expand the complete object
region, thereby enhancing segmentation performance.

Quantitative Results on MS COCO 2014 [22]:In this section, we present
the experimental results on the highly challenging MS COCO 2014 dataset [23].
Table 3 illustrates the performance of our approach and other weakly supervised
methods [25,30], [40], and [33] on the validation set. Our CD-CBN model sur-
passes the existing WSSS models, achieving a mIoU of 31.9%. These results
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Table 3. Comparisons with the state-of-the-art approaches on MS COCO 2014 vali-
dation set. sup: supervision, I: image-level label, S: saliency maps.

Methods Publication Sup. Backbone Val(%)

DSRG [25] CVPR18 I+S VGG16 26.0

IAL [37] IJCV20 I+S VGG16 27.7

GWSM [30] AAAI21 I+S VGG16 28.4

I2CRC [11] TMM22 I+S VGG16 31.2

CD-CBN(ours) - I+S VGG16 31.9

present the capability of our proposed method to enhance segmentation quality
by mitigating background incompleteness and addressing object incompleteness.

5 Conclusion

In this work, we propose an innovative CD-CBN method for WSSS, CD-CBN is
composed of three key components: SFCN, CSDM and FNR block. SFCN is used
to align class prototypes with features in spatial features with cross-dimensional
feature fusion. CSDM promotes the network to produce stronger activation for
the object prototype compared to the background. FNR is proposed to filter
out pixel-level noise and refine semantic segmentation. We conducted extensive
comparisons with other state-of-the-art approaches on two widely-used datasets,
the results demonstrate the effectiveness and robustness of our method.
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Abstract. Few-shot image classification aims to learn a model to cor-
rectly classify images with a few labeled data, however, feature extractors
often fail to extract more generalized and discriminative features in low-
data scenarios. Previous work has shown promising improvements by
utilizing local descriptors of images. Unfortunately, they do not effec-
tively suppress local descriptors where background noise is located and
local descriptors that favour the classification of other classes. In this
paper, we propose exploiting the relationship between the support set
itself and the relationship between the support set and the query set
in a task to enhance the discriminative power of local descriptors while
suppressing the local descriptors associated with background noise in
the images. In addition, we explore how to combine global features of
images with local descriptors organically. Extensive experiments demon-
strate that our method outperforms the state of the art on both standard
datasets for few-shot learning.

Keywords: Deep Learning · Few-Shot Learning · Meta Learning ·
Local Descriptors

1 Introduction

With the advancement of deep learning, it has achieved remarkable success in
the field of computer vision [5,6,16]. Despite its numerous advantages, deep
learning also exhibits limitations and challenges. One of the primary challenges
is the requirement for a substantial amount of annotated data for training, which
can be challenging to obtain and financially costly. Few-shot learning aims to
address the image classification problem in scenarios with limited data, thus
mitigating the challenge of data scarcity faced by deep learning to some extent.

Few-shot Learning (FSL) [3,12,17,18,20] aims to imitate humans learning
new concepts through limited examples. To achieve human-like capabilities, few-
shot learners first learn deep knowledge from a base training dataset and gen-
eralize this knowledge through a few examples to identify new unseen classes.
However, the data distribution formed by a small number of samples often
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Previous work did not take into account that images in a task would have the
similarity background, so the background descriptors would be used as discriminative
feature. At the same time, through the DFHM and BSM modules, we can allow discrim-
inative features to play a greater role while suppressing the background descriptors. In
DFHM, where the red bi-directional solid arrows indicate that the DFHM suppresses
the background noise in the current category of images with the help of other cate-
gories of images in the support set. Meanwhile, the green bi-directional solid arrows
represent that the DFHM uses the images of the same category in the current support
set to filter out the more discriminative features. In BSM, we first use the query set to
further filter the more discriminative features Support* in the support set which after
DFHM processing, and then we use Support* to select the more discriminative Query*
in the query set. This is what we call two-way selection. (Color figure online)

deviates significantly from the true data distribution. Training models on imbal-
anced data distributions can lead to severe overfitting, greatly undermining the
model’s generalization ability. Therefore, it becomes crucial to identify more dis-
criminative features in images, specifically the characteristics of the foreground
object, while suppressing adverse features such as cluttered background noise
that hampers image classification.

In order to utilize local descriptors to achieve the goal of enhancing the fore-
ground of an image while suppressing cluttered background noise, previous work
such as DN4 [10] lets the similarity calculation between each descriptor in a
query image and the nearest neighbour descriptor in each support class. Finally,
the similarity of the query descriptors is accumulated as the similarity of the
query set image to the current class, [11] introduce the Discriminative Mutual
Nearest Neighbor Neural Network (DMN4) which leverages the relationships
between query sets and support sets to alleviate the cumulative impact of aggre-
gating background clutter; specifically, they use the support set that emphasizes
the more discriminative local descriptors in the query set by the mutual nearest
neighbor selection. However, in our perspective, although DMN4 [11] addresses
the fact that DN4 [10] directly uses all local descriptors for classification without
considering the effect of background noise local descriptors on the experiments,
we believe that the use of a pool of local descriptors consisting of local descrip-
tors from all classes in the support set for filtering the query set is also affected
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by background noise. As shown in Fig. 1, when the backgrounds of images in
a task are strikingly similar, the local descriptors representing the background
noise in the query image will be considered as discriminative features, which
in turn will affect the classification results. In addition, both ignore the global
features of the image.

Therefore, in our work, we propose a Discriminative Feature Highlighting
Module to mitigate the effects of background local descriptors in the support set
with the help of relationships between different classes within the support set. In
addition, the previous work only used the support set to filter the query set with-
out considering to understand the relationship between support set and query
set. So, we propose a Bi-directional Selection Module for bi-directional selection
between query set and support set to obtain more generalized feature by the
relationship of them. Preferably, we propose a Feature Fusion Module to effec-
tively explore how to combine an image’s global features with local descriptors
to fully utlize the information of a image.

In summary, our main contributions can be summarized as follows:

– A Feature Fusion Module (FFM) is proposed to fuse global features with local
descriptors to obtain more discriminative local descriptors.

– A module called Discriminative Feature Highlighting (DFH) is proposed
for emphasizing discriminative features and suppressing background features
within a support set.

– A Bidirectional Selection Module (BSM) is proposed to emphasize the dis-
criminative features in the support set and query set.

– We experimentally demonstrate that our method reaches competitive accu-
racy on popular benchmark datasets.

2 Related Work

2.1 Few-Shot Learning

Few-shot learning methods can be classified as metric-based [12,17,18,20] and
optimization-based [3,7,14,23] methods depending on how the model works.
Metric-based methods execute classification by performing a similarity calcula-
tion between the feature representations of the acquired images. Optimization-
based meta-learning involves training a meta-learner to acquire optimized
parameters that enable efficient adaptation to new tasks with limited data. It
aims to improve the learning process itself by fine-tuning the model parameters
through iterative updates, facilitating rapid generalization to novel tasks.

3 Methodology

3.1 Problem Definition

The Few-shot classification is specified as an N-way K-shot classification, in
which we should classify the N classes and each of them has K-labeled data. Two
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Fig. 2. Feature fusion module. Instead of indiscriminately adding the same global
semantic information to all local descriptors, we set the weights based on the cosine
similarity between the local descriptors and the global features.

databases are given to us, which are named base dataset Db and novel dataset
Dn respectively, Db = {(xi

b, y
i
b)}nb

i=0, where yi
b ∈ Cb and the Dn = {(xi

n, yi
n)}nn

i=0,
where yi

n ∈ Cn. It is important to emphasize that these two data sets are disjoint
which means Cb ∩Cn = ∅. The base dataset has sufficient labeled training data,
whereas the novel dataset has only a small number of labeled training data. FSL
does not sample images as traditional image classification does, but samples the
task to train. A task consists of the support set S = {(xi

n, yi
n)}N×K

i=0 and the
query set Q = {(xi

n, yi
n)}N×K+N×Q

i=N×K , where Q is the number of images in each of
the N categories in the query set.

3.2 Feature Fusion Module

We will first explore how to effectively combine an image’s global and local
features to obtain more discriminative local descriptors, besides, it also can avoid
DFHM module misclassifying discriminative descriptors as background noise due
to the same coat colour but different categories (e.g. white dog and white cat,
under the premise of only looking at the torsos of white cats and white dogs, they
are highly similar). It can be effectively improved by the ocal descriptors with
global semantic information, because at this time the local descriptors where
the torsos of the white dog and the white cat are located already have the
category information of the dog and the cat, respectively, so their similarity
will be reduced a lot also to a certain extent to avoid the misclassification of
DFHM. The procedure is shown in Fig. 2, for an image x, we feed it into the
feature extraction network f(·) to obtain its feature map f(x) ∈ Rhw×d, which
represents that we have divided a picture x into r = hw local descriptors, each
of dimension d, and next get the global feature g(x) ∈ Rd of the image after a
global pooling operation on f(x), and then we reshape it to g

′
(x) ∈ Rr×d so that

it can work on every local descriptor. Next, we need to think about how they fit
together organically. If we simply apply the global features of the image equally
to each local descriptor may hinder the functioning of our subsequent modules,
because the local descriptor where the background is located will also have some
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of the feature information of the foreground of the image. Therefore, we need to
consider how only the local descriptor where the foreground object is located can
benefit from the global features. We can note that the global features of an image
tend to express the foreground of the image as the learning process progresses,
so we can weigh the global features of the image before working on the local
descriptors. Therefore, the local descriptor with global semantic information can
be defined as

f
′
(x) = f(x) + M(f(x), g(x))g

′
(x),

where,M(f(x), g(x)) = f(x)g(x) ∈ Rr

(1)

M(·, ·) is a matrix multiplication operation that calculates the similarity of each
local descriptor to the global feature. In this way, local descriptors with greater
similarity to global features can benefit more from global features, and conversely
will benefit less from global features.

3.3 Discriminative Feature Highlighting Module

After obtaining FFM-processed local descriptors with global semantic informa-
tion we can further explore how to filter out the more discriminative local descrip-
tors, as well known, the image local descriptors that have high similarity with
different categories will essentially belong to the background noise features of
the image. Therefore, we let all local descriptors of a class in the support set
calculate the similarity with the local descriptors of other classes in the support
set. Suppose that a local descriptor exists with greater similarity to the other
classes. In that case, we will primarily consider it to be the background and,
therefore, we give it a lower weight. As indicated by the solid red bidirectional
arrows in the DFHM which in the Fig. 1, two different classes of foregrounds
yet have the same grass background. Therefore, most local descriptor where the
grass is located are filtered out by our DFHM. By the way, it is worth mention-
ing that in the 5-way 5-shot scenario, our DFHM module can also be used to
enhance discriminative features with the help of images of the same category.
This is because images belonging to the same category must have the same fore-
ground, so if a local descriptor of one image has a high degree of similarity with
the local descriptor of another image of the same category, then it is likely be
the local descriptor of the foreground of the image, it is show as the green solid
bidirectional arrows in the Fig. 1.

We use the bold font dc = {dkr
c |k = 1, ...,K, r = 1, ..., hw} represents local

descriptors from the same class c ∈ C in the support set, where dkr
c represents a

local descriptor of an image which label is c. Thus the formula that emphasizes
the discriminative features of each class within the support set is shown below:

weightc =
1

(N − 1)Kr

N/c∑

i=1

Similarity(dc ,di), (2)
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Fig. 3. The illustration of the whole network architecture of our work and our Feature
Fusion Module. We first obtain local descriptors with global semantic information
through the FFM, then use the DFHM module to obtain more discriminative local
descriptors for the support set, and finally obtain discriminative local descriptors for
the support and query sets through the BSM.

dc = dc � 1
weightc

, (3)

where � represents Element-wise Product, meanwhile, the Similarity(di ,dj )
represents the cosine similarity of local descriptors between class i and class j
within the support set, so the higher its value means the higher the probability
that the current local descriptor is where the background is located, so we have
to give it a lower weight, and in turn, we have to give him a higher weight.

3.4 Bidirectional Selection Module

Our DFHM can theoretically perform well if the environments in which the
different classes of objects in the support set exist are highly similar, but if the
environments in which the different classes of objects exist are also different our
DFHM may not perform as well as expected. For a query set in a task, we do
not know what each image class is, but we know that there will be Q samples
for each class, and the classes correspond to the support set. Therefore we need
to make use of the query set as well, and not just as an object to be classified.
With this information, we can use the query set to highlight discriminative local
descriptors in the support set before filtering the query set by the support set
and finally feed back into the filtering of the query set, which we call bidirectional
selection. As shown in Fig. 1, the local descriptors filtered out by the DFHM may
still have background noise. Therefore, in our BSM, we first use the query set to
further filter the local descriptors in the support set to get a more discriminative
local descriptor Support*, and then use Support* to filter the local descriptors
Query* in the query set that are discriminative. Specifically, we use bold font
q = {ql|l = 1, .., NQr} to represent the local descriptor pool consisting of all
local descriptors of the query set, while ql represents a local descriptor of an
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image in the query set. We define φkr
c , which is computed with the help of the

query set, as the relevance of a local descriptor dkr
c in dc to class c.

φkr
c =

1
n

n∑

i=1

Topn
1=<i<=l

Similarity(dkr
c , qi). (4)

Therefore, the support set after query set selection is defined as follows:

dc = Φ(dc , q) � dc , (5)

where, Φ(dc , q) = {φkr
c |k = 1, ..,K, r = 1, .., hw}, Topn represents we choose n

local descriptors in the q to calculate the correlation between a local descriptor in
dc and the foreground object of class c. Finally, we will use the support set after
the query set filtering to feed the process of filtering the discriminative query
set local descriptors, we use qi = {qj

i |j = 1, ..., r}(1 <= i <= Q) to represent an
image in the query set, where qj

i represents a local descriptor of the image. Then
we define ψj,c as the similarity of each local descriptor in qi to the category c in
the support set as follows:

ψj,c
i =

1
r

r∑

l=1

Similarity(qj
i , d

l
c), (6)

thus, qi becomes qi,c after being filtered by the local descriptors of all the support
sets belonging to class c:

qi,c = qi � Ψ(qi,dc). (7)

That is, qi will be dynamically adjusted to qi,c to suit the different categories
in the support set, instead of using qi for all classes as in previous work, where,
Ψ(qi,dc) = {ψj,c

i |j = 1, .., r}, so the similarity between qi and class n can be
defined as follows:

sqi,n =
|qi,n|∑

lq=1

|dn |
max
ls=1

Similarity(qls
i,n, dls

n ). (8)

Subsequently, the loss function can be defined as follows:

J (φ) = − 1
|Q|

∑

qi∈Q

y log pφ (ŷ = y | qi)

pφ (ŷ = c | qi) =
exp (sqi,c)∑N

c′=1 exp (sqi,c′)

(9)

where y is the label of the query image qi. The overall architecture is illustrated
in Fig. 3.
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4 Experiments

Table 1. 5-way 1-shot and 5-shot classification accuracies on Mini-ImageNet and
Tiered-ImageNet datasets using ResNet-12 backbones with 95% confidence intervals.
All the results of comparative methods are from the exiting literature (’-’ not reported).

Method Backbone Mini-ImageNet Tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

MatchingNet [20] ResNet-12 75.99± 0.15 68.50± 0.92 80.60± 0.71

ProtoNet [17] ResNet-12 62.33± 0.12 80.88± 0.41 68.40± 0.14 84.06± 0.26

RelationNet [18] ResNet-12 60.97 75.12 64.71 78.41

MetaOptNet [7] ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53

DN4 [10] ResNet-12 65.35 81.10 69.60 83.41

DeepEMD [24] ResNet-12 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58

RFS-Simple [19] ResNet-12 62.02± 0.63 79.64± 0.44 69.74± 0.72 84.41± 0.55

RFS-Distill [19] ResNet-12 64.82± 0.60 82.14± 0.43 71.52± 0.69 86.03± 0.49

BML [25] ResNet-12 67.0± 0.63 83.6± 0.29 68.9± 0.50 85.4± 0.34

FRN [22] ResNet-12 66.45± 0.19 82.83± 0.13 72.06± 0.22 86.89±0.14

DMN4 [11] ResNet-12 66.58 83.52 72.10 85.72

DSKT-2 [4] ResNet-12 67.33 ± 0.82 84.19± 0.50 72.11± 0.89 86.69± 0.59

SPRM [9] ResNet-12 66.35 ± 0.34 82.24± 0.27 70.70± 0.33 85.40± 0.25

EFLLD-Net(ours)ResNet-12 67.98±0.52 84.39±0.33 73.63±0.13 86.78± 0.53

4.1 Datasets and Implementation Details

We experimented on three data sets that are more mainstream in few-shot learn-
ing.

Mini-Imagenet [20] contains 100 different classes with 600 images in each
class. In this case, 64 classes are used as the training set, 16 classes are used as
the validation set and the remaining 20 classes are used as the test set.

Tiered-Imagenet [13] consists of 608 classes with 779,165 images. Out of
these, 351 categories were used for the training set, 97 categories were used for
the validation set, and 8 categories were used for the test set.

CUB-200 [21] is a fine-grained dataset for bird, which contains 200 different
bird species. In the dataset, we used 100 classes as the training set, 50 classes
are used as the validation set and the remaining 50 classes are used as the test
set.

Network Architecture. We use Conv-4 and ResNet-12 [5] as feature
extraction networks fθ. In our experiments, the images in each dataset were
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Table 2. 5-way 1-shot and 5-shot classification accuracies on Mini-ImageNet and
Tiered-ImageNet datasets using Conv-4 backbones with 95% confidence intervals. All
the results of comparative methods are from the exiting literature (’-’ not reported).

Method Backbone Mini-ImageNet Tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

MatchingNet [20] Conv-4 43.56 ± 0.84 55.31± 0.73 - -

ProtoNet [17] Conv-4 51.20± 0.26 68.94± 0.78 53.45± 0.15 72.32± 0.57

RelationNet [18] Conv-4 50.44± 0.82 65.32± 0.70 54.48± 0.93 71.31± 0.78

MetaOptNet [7] Conv-4 52.87± 0.57 68.76± 0.48 54.71± 0.67 71.79± 0.59

CovaMNet [10] Conv-4 51.19± 0.76 67.65± 0.63 54.98± 0.90 71.51± 0.75

DN4 [10] Conv-4 51.24± 0.74 71.02± 0.64 52.89± 0.23 73.36± 0.73

DeepEMD [24] Conv-4 51.72± 0.20 65.10± 0.39 51.22± 0.14 65.81± 0.68

RFS-Simple [19] Conv-4 55.25± 0.58 71.56± 0.52 56.18± 0.70 72.99± 0.55

RFS-Distill [19] Conv-4 55.88± 0.59 71.65± 0.51 56.76± 0.68 73.21± 0.54

ATL-Net [2] Conv-4 54.30± 0.76 73.22± 0.63 - -

FRN [22] Conv-4 54.87 71.56 55.54 74.68

DMN4 [11] Conv-4 55.77 74.22 56.99 74.13

EFLLD-Net(ours)Conv-4 56.69±0.74 75.36±0.31 57.66±0.72 75.87±0.43

scaled to 84 × 84, so for the feature extractor with ResNet-12 as the skeleton, a
feature map whose shape is 19 × 19 × 64 of the image will be obtained, Conv-4
will get a feature map of size 5 × 5 × 512.

Training and Evaluation. For both Conv-4 and ResNet-12, we performed
pre-training followed by fine-tuning in the meta-training phase. For Conv-4, we
fine-tuned it for 100 epochs using the Adam optimizer with a learning rate of
1e − 3, decaying it by a factor of 0.1 every 30 epochs. For ResNet-12, we also
fine-tuned it for 100 epochs using the Adam optimizer with a learning rate of
1e − 4, decaying it by a factor of 0.2 every 30 epochs. The topn belonging to
the BSM in miniImageNet, tieredImageNet and CUB-200 are set to 15,15,20,
respectively.

4.2 Comparisons with State-of-the-Art Methods

Results on Mini-ImageNet. Table 1 and Table 2 show that EFLLD-NET
achieves state-of-the-art. Compared with the local descriptor based on Conv-4,
we have 1.14% and 0.92% improvement on 5-way 5-shot and 1-shot, respectively,
at the same time, we have 2.14% and 0.81% improvement on 5-way 5-shot and 1-
shot respectively, compared with other non-local descriptor-based methods. On
ResNet-12, we have 0.2% and 0.65% improvements on 5-way 5-shot and 1-shot,
respectively, compared to the local descriptor-based, while we have 0.79% and
0.98% improvements, respectively, compared to the non-local descriptor-based
methods.
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Table 3. 5-way 1-shot and 5-shot classification accuracies on CUB-200 dataset using
ResNet-12 backbones with 25% confidence intervals.

Method Conv-4 ResNet-12

1-shot 5-shot 1-shot 5-shot

ProtoNet [17] 63.73 81.50 66.09 82.50

DN4 [10] 73.42 90.38 - -

DSN [15] 66.01 85.41 80.80 91.19

CTX [1] 69.64 87.31 78.47 90.90

DeepEMD [24] - - 77.14 88.98

FRN [22] 73.48 88.43 83.16 92.59

DMN4 [11] 78.36 92.16 - -

IAM [8] 77.17 89.90 84.17 93.30

DSKT-2 [4] - - 78.32 91.47

EFLLD-Net(ours) 81.37 93.42 86.74 93.87

Results on Tiered-ImageNet. The experiments results on Tiered-ImageNet
are also shown in Table 1 and Table 2. For local descriptor-based methods with
Conv-4 as backbone, we have 0.67% and 1.74% improvement on 5-way 1-shot
and 5-shot, respectively, while at the same time we have 0.86% and 1.19%
improvement compared with other non-local descriptor-based method, respec-
tively. Meanwhile, the result on ResNet-12, compared with local descriptor-based
methods, we have 1.53% and 1.06% improvements on 5-way 1-shot and 5-shot,
respectively. Compared to other non-local descriptor based sota our results have
a 1.57% improvement on the 5-way 1-shot, but at 5-shot we are 0.11% lower
compared to sota.

Results on CUB-200 Dataset. The experiments results on CUB-200 are
shown in Table 3, it can be clearly seen that our proposed method works effec-
tively on fine-grained datasets like CUB-200. Compared with the state-of-the-art
approach using Conv-4 as the backbone network, we achieve an improvement of
3.01% and 1.26% on the 5-way 1-shot and 5-shot, respectively. Moreover, com-
pared to the state-of-the-art approach using ResNet-12 as the backbone network,
we achieve 2.57% and 0.57% improvements in 5-way 1-shot and 5-shot, respec-
tively.

5 Ablation Study

5.1 Effective of Submodules

In this section, we will verify the validity of each submodule of our network by
performing 5-way 1-shot and 5-shot ablation experiments on Mini-ImageNet and
CUB-200 with ResNet-12 as our backbone. The results are shown in Table 4. It is
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Table 4. Ablation study on Mini-ImageNet and CUB-200 datasets with ResNet-12.

EFLLD-NET Mini-ImageNet CUB-200

FFM DFHM BSM 1-shot 5-shot 1-shot 5-shot

✗ ✗ ✗ 64.35 80.67 73.24 89.47

� ✗ ✗ 65.54 81.64 82.74 91.27

� � ✗ 66.67 82.71 84.67 92.83

� ✗ � 66.58 82.63 85.26 92.78

✗ � � 67.21 82.95 85.43 92.87

� � � 67.98 84.38 86.74 93.87

clear that when we use only FFM, the results obtained on Mini-ImageNet have an
improvement of 1.19% and 0.97% on 5-way 1-shot and 5-shot, respectively, com-
pared to the blank group. At the same time, there is an improvement of 9.47%
and 1.8% in CUB-200 on 1-shot and 5-shot, respectively. This can strongly indi-
cate the discriminability of the local descriptors with global semantic information
that we obtain through FFM. The results obtained when we combined FFM and
DFHM(or BSM) were significantly improved compared to the blank group and
the group using only FFM, especially 12.02% and 2.52% on the cub-200, respec-
tively. Compared to the blank group, at the same time, there was also a 1.13%
and 1.07% improvement in 1-shot and 5-shot on Mini-ImageNet compared to
the FFM-only group, and 2.52% and 1.51% on the CUB-200, respectively. This,
on the one hand, can illustrate that our DFHM can effectively highlight the role
of foreground objects in the picture through the relationship between different
classes within the support set and the effectiveness of the BSM module. On
the other hand, it should also prove the effectiveness of the combination of the
DFHM (or BSM) and the FFM. Finally, when all three are combined, the best
results are obtained in Mini-ImageNet and CUB-200. This is a strong indication
of the effectiveness of our EFLLD-NET.

Table 5. The experiments results on Mini-ImageNet and CUB-200 dataset with dif-
ferent TopN using ResNet-12.

TopN Mini-ImageNet CUB-200

1-shot 5-shot 1-shot 5-shot

5 65.32 81.26 82.65 91.23

10 66.47 82.71 83.14 92.77

15 67.98 84.38 84.16 92.59

20 67.52 83.63 86.74 93.87

25 66.33 82.59 85.97 92.38
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5.2 Choice of TopN in BSM

As mentioned above, for a local descriptor in the support set, Q local descriptors
in q will be highly similar. So, theoretically, we should use Q local descriptors in q
to select each sample in the support set, but this is not rigorous, so we conducted
experiments on the Mini-ImageNet and CUB-200 datasets with different topn
to illustrate the reasonableness of the topn we chose. The results are shown in
Table 5. It can be seen that our EFLLD-NET does not work as well as it should
when the value of topn is less than 15 on Mini-ImageNet, probably because
there are too few local descriptors for it to work well when the value of topn
is greater than 15, the effect is also worse, this is because when too many local
descriptors are involved in the selection, much useless information will be added
to interfere with the experiment. Instead, it is the theoretical 15 that works
best. The situation applies to CUB-200, but the best choice is 20 instead of the
theoretical 15. This is because he is a fine-grained bird dataset, so more local
descriptions are favourable to the support set’s choice.

6 Conclusion

We propose to enhance few-shot learning with the local descriptors(EFLLD-
Net). First, to fully use an image’s information, we propose a Feature Fusion
Module (FFM) to organically combine the global and local features of an image
to obtain local descriptors with global semantic information. Next, in order to
reduce the influence of the local background descriptors in the image on the
classification results, we propose the Discriminative Feature Highlighting Mod-
ule (DFHM) to emphasize the more local discriminative features of each category
by the relationships between the categories in the support set. Finally, we filter
the more discriminative features in the support set through the query set in
our proposed BSM and subsequently use the processed support set to feed the
process of emphasizing the more discriminative features in the query set. Exten-
sive experimental results and visualizations demonstrate that our approach is
practical and achieves state-of-the-art on the few-shot classification benchmark.
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Abstract. Image Attribution is the task of ascribing importance to
regions of the input, for the final decision of a classifier. Many meth-
ods for attribution exist, and a recent development has been to use the
image at multiple scales to improve the performance of some lightweight
attribution methods. These gains have been demonstrated for meth-
ods that require a single or multiple but independent forward passes
through the network; however, they haven’t been explored in the con-
text of optimization-based attribution (OA) methods. As compared to
other techniques, like CAMs or axiomatic methods, OA is attractive as it
lends a natural formulation of the task without the need for any heuris-
tic rules. However, the iterative way of solving the optimization problem
presents challenges to straightforward utilization of multiple scales. We
investigate this scenario and develop a novel 2-step approach that first
discovers promising areas across scales and locations from the input and
then runs Optimization based Attribution on them. We find that while a
naive incorporation of image crops is unsuccessful, this 2-stage pipeline
leads to improvements in performance. We provide qualitative and quan-
titative evidence for this and investigate the reasons for the improvement
via multiple ablation experiments.

1 Introduction

As the complexity of machine learning models increases, there is a growing need
to understand their decision making process. This becomes essential before such
complex models are adpoted for critical tasks, where failure can be catastrophic.

Measures such as accuracy, precision and recall etc. provide single number
summaries that help us choose between approaches. However, it is prudent to
explore the behavior of these black boxes comprehensively before relying on them
for sensitive tasks.

Model Explanation is one such endeavor, which tries to understand the rea-
sons behind the model’s decision. Instead of looking at this from the lens of
mathematical operations, it tries to recast the process into human understand-
able concepts.

An example of such a concept is what, i.e. “what input patterns influence
the features of the network”. This question is addressed by feature visualization
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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methods [13] [29] [32] [24], which map the feature maps back to images, and
expose phenomenon like input invariances for the network and preferred patterns
for neurons.

Another concept is where, i.e. “where are the parts of the input that are
important for the network’s decision”. This is answered by attribution methods,
which are the focus of the current work. Attribution results in saliency maps or
heat maps highlighting regions that strongly influence the output.

Fig. 1. Comparison of the working of Multiscale Perturbation (MSP) and Extremal
Perturbation (EP). (a) Original image. For illustrative purposes the object of interest
(Bottle) is highlighted.(b) Attribution produced by EP misses the object. (c,d) MSP
first produces a coarse map of Promising Crops (c), which is refined into the final
attribution (d) which captures the object

While attribution may be realized in many different ways, and we review
many such methods in Sect. 2, one way of organizing these techniques is on
the basis of the amount of computation required to generate the heat map.
Using the number of queries to the classifier as the cost, Single-Pass methods
like Gradient [22], GradCAM [20], and Guided Backprop [26] require a single
forward-backward pass through the network. In contrast, Batch-Pass methods
like RISE [16] and ScoreCAM [30] perform multiple but independent passes,
where their independence allows them to be done in parallel, upto the limits
of memory. The assets produced from these independent passes, i.e. the feature
maps and the feature gradients, are used in various ways to produce the final
heat map. Finally, Sequential/Iterative methods like Meaningful Perturbations
(MP) [4] or Extremal Perturbations (EP) [3] build the attribution map in an
iterative fashion, also requiring multiple forward-backward passes, but unlike
batch-pass methods these cannot be parallelized.

Recent work has demonstrated the benefits of using the image at multiple
scales in attribution algorithms. For e.g. CAMERAS [9] presents a modification
of GradCAM by using multiple zoomed in versions of the image. Another work,
SESS [28] presents a general framework that samples crops from the zoomed
versions of the image. It then runs a base attribution method like GradCAM
on these crops, and aggregates the crop saliencies to yield the final attribution.
Note, the CAMERAS pipeline is based on a Single-Pass method, while SESS
has been explored on Single-Pass and Batch-Pass methods.

However, neither of these ideas can directly be adapted to sequential attribu-
tion schemes. For sequential methods, the attribution for any crop would require
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multiple iterations to complete, making the SESS’s methodology of attribute,
then aggregate impractical. Alternately, a strategy like CAMERAS, to perform
attribution on the entire image at any scale, would be prohibitive in computation
and memory at higher scales. Further, the batch processing of multiple scales in
tandem is complicated due to the difference in their sizes.

To address these challenges, we develop a novel method, that at any step
selects a single promising crop from the image or its zoom, and runs a single
step of an iterative attribution method like EP on it. Central to the scheme is the
crop sampling module, that identifies crops likely to contain object regions, and
extracts them efficiently from the image. Iterative attribution is computation-
ally more demanding than single and batch-pass attribution, which requires the
crop sampling module to be lightweight. To work within this constraint, we use
a Bayesian model, a Gaussian Process (GP) regressor, to model a single image’s
crop importances. Bayesian models quantify their own uncertainty about a pre-
diction, allowing us to pick confidently high scoring crops as well as crops with
high uncertainty, to feed to the base iterative attribution method. This ability
relaxes the need for a large or carefully collected set of crops from an image for
fitting this model.

Figure 1 highlights some aspects of the approach: while Extremal Perturba-
tions (EP) gets the location of a small object (bottle) wrong, our approach,
Multiscale Perturbations (MSP), is able to refine the crude importance map of
its GP regressor to correctly locate the object.

To summarize, our contributions in the present work are: (1) An improved
Optimation based Attribution method, by effectively utilizing multi-scale infor-
mation. Our method is a novel two-stage pipeline that uses a Bayesian model to
feed crops for optimization (2) Rigorous baselines where we establish the neces-
sity for this approach by demonstrating the ineffectiveness of simpler ways of
using multiscale information (3) Comprehensive comparisons against contem-
porary attribution methods, both qualitative and quantitative, to establish the
efficacy of our scheme. Our experiments are performed across different CNN
architectures to verify generality of the improvements.

2 Related Work

Image Attribution. There are a host of image attribution techniques, which
may be grouped according to various commonalities and differences. While we
discussed categorization on the basis of passes through the network in Sect. 1,
another distinction is between Heuristic-based methods and Perturbation-based
methods.

Heuristic based methods commonly prescribe a set of rules that creates the
attribution by combining the quantities created during the forward and backward
passes for the image. The utility of gradients as a marker for importance was
first discussed in [22], and the subcategory of Modified Backpropogation meth-
ods specify rules for the class gradients to yield improved attribution. Some
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examples include Guided-Backpropogation [26], Layerwise Relevance Propoga-
tion [15], Contrastive Layerwise Relevance Propogation [6], DeepLIFT [21], Exci-
tation Backprop [34] and Deconvolutional Networks [33].

Another sub-category, the Class Activation Map (CAM) family of methods,
define a set of rules to incorporate the feature maps created during the forward
pass for attribution. For e.g., GradCAM [20] functions at a late convolutional
layer where it combines altered gradients with the feature map to produce the
attribution. Subsequent works like LayerCAM [10], GroupCAM [35] and Rele-
vanceCAM [12], GPNN-CAM [25] also use a combination of the features and
gradients, differing in the exact manner in which the combination happens.

Perturbation-based methods, test candidate masks by applying them to the
input and measuring the effect on neural network outputs. Within this cate-
gory, Optimization based methods solve for the mask by using gradient descent
on a loss that differentiably measures the change in network output. Extremal
Pertrubation (EP) [3], IGOS & IGOS++ [18] [11] and Meaningful Perturbations
(MP) [4] fall in this family.

The CNN output loss is usually not sufficient to find sensible masks, and
inductive biases in the form of auxiliary losses are needed. MP proposes smooth-
ness and area minimality losses as the inductive biases. EP enforces smooth-
ness via a smootness operator instead of a loss, and replaces area minimality
by regressing the mask size towards a fixed pre-chosen area. IGOS++ replaces
anisotropic smoothness with a term that takes into consideration the structure
of the underlying image.

While Optimization based attribution utilizes gradients to create the mask,
forward-only schemes forgo the backpropogation step. Starting from a cache of
candidate masks, the importance of each mask is measured by masking and
forward passing. The candidates are aggregated considering these importances
to produce the final attribution. RISE [16] considers random binary masks as
the candidates. To reduce the search space, these are upsampled from a small
size. The final attribution is a weighted combination of the candidates, where
weights are proportional to the class scores predicted by the CNN for the masked
images. LIME [19] proposes using a lightweight regressor to model the behavior
of the classifier instead of a simple weighted combination of masks. ScoreCAM
[30] considers the channels (after normalization) of a late stage feature map
as the prospective masks, before using a RISE-like masking-testing-aggregation
scheme.

An important design decision for the Perturbation-based schemes is the mask-
ing module. Some variants include replacing the values to be supperessed by a
constant like 0 or the median color, e.g. in RISE, or replacing the suppressed
values by a highly blurred version of the image, e.g. in Meaningful Perturbations
and Extremal Perturbations.

Multi-scale information in Attribution. Recent work has explored the
effects of presenting the image at multiple zooms. CAMERAS [9] proposes a
modification to GradCAM: feature maps and gradients are computed for images
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at multiple zooms. After resizing to the common size of the largest feature map,
these are aggregated in a manner similar to GradCAM.

SESS [28] proposes a general framework that is in principle applicable to
any attribution method. Its procedure may be described as a 2-staged pipeline
of attribute and then aggregate. In the inner loop, non-overlapping crops are
sampled from the image at multiple scales and the attribution is computed inde-
pendently for each crop. Finally, these attributions are aggregated in a weighted
manner such that crops with higher class scores are weighted more.

Note, these methods first resize the raw image to CNN input size, and then
create the zooms from this down-sampled version. Thus, it is fair to compare
multi-scale and conventional single scale methods as they start from the same
“amount of information”.

As discussed in the introduction 1, both these strategies of utilizing multi-
scale information have challenges when adapted for a sequential attribution
method like Extremal Perturbation.

Bayesian Models. Our proposed method is a 2 step procedure that builds a
proxy model for the action of the classifier in the first step, and in the second
step use it to feed regions for Extremal Perturbation (EP) to run on. We use
a Gaussian Process model [31] for the proxy, as it can quantify the uncertainty
in its predictions. This is useful as it allows us to perform an active learning
flavored sampling, where we select both regions the proxy scores highly, as well as
regions where the proxy shows high uncertainty. Previously, Gaussian Processes
have been explored in connection to attribution in [14], where the methodology
was to use it to sample sizes and locations of occluding windows to apply on the
image. Here, the notion of scale referred to the sizes of the occlusion windows
rather than the zoom of the image.

3 Background: Extremal Perturbations

Extremal Perturbations (EP) [3] is an optimization based attribution method
that is a central element of our approach. EP seeks the attribution, represented
as a mask m, for an image I and the class of interest c, as seen by a function f
representing the CNN. m takes on values in [0, 1] representing the importance
of the pixel. The class score (pre-softmax logit) predicted by CNN for class c is
represented by fc, while the predicted probability (post-softmax) by pc.

We measure the efficacy of the mask by applying it to the image and measur-
ing the impact on the CNN output. We represent the application of the mask to
the image by the Perturb(I,m) operator. While we don’t delve into the details,
the crux of Perturb is that the mask modulates the blur level, with higher values
retaining pixel information from the original image while lower values replacing
them with values from a blurred version of the image. Thus higher mask values
retain information while lower values discard it.

Under this setup, EP seeks to find a mask that can maximize the class score
predicted by the CNN. We define the confidence loss:

Lf (I,m) = −fc(Perturb(I,m)) (1)
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which is minimized using gradient descent with m as the optimized entity.
Optimizing the confidence loss in isolation, however, is not enough to produce

high quality attributions, for multiple reasons:
(i) Ideally, we seek a sufficient mask, which reveals the least amount of pixels

required for the object to be recognizable. However, the CNN loss Lf seeks to
maximize the predicted score, allowing for greedy solutions where the mask
may be too large. To address this, EP affixes the size of the sought mask by
introducing a hyperparameter a for the area of the mask relative to the image
area. This is enforced via a size regularization loss: The mask pixels are sorted
by value, and the top a proportion of pixels are encouraged to be 1 and the
rest are pushed towards 0. This area loss is represented by La(m), whose exact
mathematical form is unnecessary here.

(ii) A second challenge is the adversarial phenomenon [27], observed while
using class gradients to optimize the input of a neural network: The optimization
produces artefacts indistinguishable from noise to humans, but have an unex-
pectedly large effect on the network output. In the case of attribution, this man-
ifests as masks with complicated boundaries and exhibiting large variations in
importance within small neighbourhoods (high frequency artefacts). Such masks
do not correspond to human notions of attribution, but instead highlight adver-
sarial vulnerabilities of the network, which is not the goal here.

To circumvent this problem, EP constraints the search to only smooth masks.
We define a pre-mask m̂, of a size smaller than the image, that is upsampled
and smoothed by a non-linear convolution to produce the actual mask m. We
represent the computation of m from m̂ by the Smooth operator, where m =
Smooth(m̂)

This operator may also be understood from the lens of Occam’s razor, which
prescribes that simpler explanations for a phenomenon must be preferred: For
attribution, a mask with smooth and simple structure should be preferred over
a mask with complicated boundaries.

The final EP problem is to solve for the pre-mask m̂ (instead of the mask m)
with the loss (where λa is a weighing factor):

L = Lf (I, Smooth(m̂)) + λaLa(Smooth(m̂)) (2)

Here, λa trades off between the emphasis on increasing class score and keeping
the span of the mask small. In practice, we anneal λa starting from a lower value
and increasing it across the iterations. This allows the mask to encompass object
areas before it is reduced in size. The scheduling is a delicate balance between
the two objectives: setting λa to high values too early might not allow Lf to find
the object, while if λa is too low, the mask encapsulates too large an area, not
sufficiently distinguishing the important parts of the image from the rest.

4 Multiscale Perturbations

We now describe our proposed pipeline, Multiscale-Perturbations (MSP). In
essence, at any step of MSP we sample a crop from the mask and image to
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run a single step of Extremal Perturbation (EP) on. The major novelty of the
approach is in the manner these crops are selected. This process of cropping and
optimizing is repeated for T iterations. Algorithm 1 lays out the steps involved
in the pipeline, while Fig. 2 depicts the steps graphically. The technique involves
2 stages, where a crude model for crop importances is fit in stage I, and used to
choose crops for attribution in stage II

Fig. 2. Multiscale Perturbations Pipeline:(Left) In Stage I, we sample crops at random
scales and centers from the image. Their classifier scores are used to fit a Gaussian
Process g (Right) In Stage II, at every step g is used to sample a promising crop from
the image, which is used for a step of EP optimization. This process is repeated for T
iterations to yield the final attribution.

The crops used in the process are specified by their center points in the
original image, (μ, ν), the zoom factor s relative to the original image, and
the crop size (Hw,Ww). We define the crop operator acting on the image I:
Crop(I; s, μ, ν,Hw,Ww). As we use the same crop size throughout, we make it
implicit as Crop(I; s, μ, ν), and when speaking of a solitary crop, we further
abbreviate it as Crop(I). Using these crops within EP losses, any stage of MSP
optimizes:

L = Lf (Crop(I), Crop(Smooth(m̂))) + λaLa(Smooth(m̂)) (3)

Note, as compared to Eq. 2, while the size regularization La is still applied to
the entire mask, the CNN loss Lf now utilizes the crops.

The core of the algorithm is the Crop Sampling module, which defines the
selection strategy for the crop coordinates as well as how to efficiently extract
them from the image.
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Algorithm 1. Multiscale Perturbations
Require: classifier f , image I, class-of-interest c, number of EP steps T , EP area

hyperparameter a, budget B of training crops for proxy g (Stage I), budget BA of
crops for multinomial distribution (Stage II).
procedure Stage I: Fitting Proxy Model

(1.1) Collect B random crops
{Īi} = {Crop(I, (si, μi, νi))}
at locations (si, μi, νi)1..B

(1.2) Acquire scores of crops yi = Log(pc(Īi))
(1.3) Fit Gaussian Process g on training set

Dg = {((si, μi, νi), yi)}1..B

end procedure
procedure Stage II: Run EP on Crops

(2.1) Initialize pre-mask m̂
for t ← 1 to T do

(2.2) Create smooth mask m = Smooth(m̂)
(2.3) Randomly sample BA crop locations

(sAj , μA
j , νA

j )1..BA

(2.4) Sample scores for crops from
g : ŷA

j ∼ g((sAj , μA
j , νA

j ))
(2.5) Build Multinomial distribution qA for the crops with weights as

exp(ŷA
j )

(2.6) Sample crop coordinate as (s, μ, ν) ∼ qA
(2.7) Extract mask crop m̄ = Crop(m; s, μ, ν)

and image crop Ī = Crop(I; s, μ, ν)
(2.8) Run 1 step of EP using m,m̄ and Ī as in Eq 3

end for
end procedure

4.1 Crop Sampling Module

An image may contain large areas that are unrelated to the class of interest.
Due to the large number of possible crops, extracting and running attribution
on these crops is wasted computation. To address this issue, we develop a 2 stage
pipeline.

Fitting a Proxy Model (Fig. 2, Stage-I) (Algorithm 1, Step 1.1): At stage
one, we extract a small budget B of crops Dg:={Crop(I; si, μi, νi)}1..B from
the image at randomly selected (scale,crop-center) tuples, (si, μi, νi). In Fig. 2
stage I, the sampling density depicts the chances of a pixel being seen in these
uniformly sampled patches. (Note, the number of patches involving pixels near
the boundaries is lesser than the those involving pixels near the center. Uniformly
sampling of patches leads to higher pixel sampling density near the center.)

(Algorithm 1, Step 1.2): We capture class probabilities output by the CNN
for these crops as {pi}. (Algorithm 1 Step 1.3): We then fit a Gaussian Pro-
cess (GP) [31] model g to predict the value of a crop, yi = log(pi), given its
coordinates (si, μi, νi) . Once fit, we can use g to get the value for any candidate
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crop by just using its coordinate (s, μ, ν). Thus, the model g acts as a proxy,
removing the need for an actual forward pass of Crop(I) through the CNN f .

In practice, the expensive steps required in stage I are (i) the forward pass
through the CNN f to collect {yi}, and (ii) fitting the Gaussian Process g
that requires an inversion of a B × B Covariance matrix. In light of this, we’d
prefer the budget B of initial crops be small, but this leads to a trade-off of
reduced quality of g’s predictions. In this scenario using a Bayesian model like
Gaussian Processes has benefits, as it can explicitly quantify the uncertainty in
its predictions. This property is utilized in stage II of the pipeline.

Once g has been fit, we wish to utilize it to feed promising crops to the
EP optimization step, whose predicted value according to g is high. However,
crops with low predicted value from g but high uncertainty shouldn’t be ignored
either, as their value hasn’t been captured well by the training data and may
actually contain object regions. To meet these two requirements, we devise an
active learning flavored approach. The process of using the crops for attribution
is depicted in Fig. 2, stage II.

Sampling Promising Crops (Algorithm 1 Step 2.3): We randomly select an

initial query set consisting of BA crop coordinates (s(A)
j , μ

(A)
j , ν

(A)
j ) to query g.

If g were a simple linear regressor, this would have yielded a scalar prediction
for any query. A Gaussian Process, however, predicts a normal distribution for
any query, known as the posterior predictive. The covariances of this distribution
communicate to uncertainty the model has in its predictions. To leverage this
information, we sample the scores ŷA

j for the queries from the posterior predictive
distribution. High values in ŷA

j can occur for two types of crops: (i) where g has
high predicted mean, (ii) where g has high uncertainty. We term these 2 types
of crops as Promising Crops.

(Algorithm 1 Step 2.5): Once we have the sampled scores for the initial query
set, we must select a single crop location from it. To encourage exploration we
perform a second round of sampling: we build a multinomial distribution qA
with exp(ŷA

j ) as the importance weights, from which we sample an index k. This

refers to the coordinate (s, μ, ν) = (s(A)
k , μ

(A)
k , ν

(A)
k ) (Algorithm 1 Step 2.6). This

second round of sampling allows crops whose predicted value may not be the
maximum in the first sampling, to be still be selected. In Fig. 2 stage II, the
sampling density shows which regions are favored by this sampling procedure.

Sampling from g consistently, i.e. respecting covariances, is computationally
expensive in the number of crop coordinates BA. In order to perform this effi-
ciently, we implement our model using GPytorch [5] and use the fast predictive
variances method proposed in [17].

Efficient Crop Extraction (Algorithm 1 Step 2.7): Once we have chosen the
crop location (s, μ, ν), we must extract the crop from the image (and the mask).
Two straightforward ways of crop extraction are (i) Scale & Crop: where we
upsample the image by the factor s and then extract the crop of size (Hw,Ww)
centered at (sμ, sν), and (ii) Crop & Scale: where we extract a crop of size
(Hw

s , Ww

s ) from the image at location (μ, ν) and then upsample it by s.
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There are shortcomings with either of these approaches:
• At higher scales, most of the computation done in Scale & Crop is wasted

as the sampled area is a fraction of the total area of the upsampled image.
• In Scale & Crop, upsampling by a factor of s might not lead to integral sizes

(sH, sW ), requiring us to alter s. For Crop & Scale, the initial crop must have
boundaries at integral locations in the original image, which may require crop-
ping a larger area than required. Subsequently, a second crop is performed after
upsampling to get the correct area. These scenarios make the implementation
tedious.

• An implementation detail for EP is that it concurrently searches for mul-
tiple masks of different target areas (i.e. different a’s in La in Sect. 3). Thus, we
need to supply crops for each of these a’s. As both Scale & Crop, and Crop &
Scale produce intermediate quantities of arbitrary dimensions, neither method
lends itself to a batched implementation.

We can address these needs of a batched implementation that is memory
efficient, with a Spatial Transformer [8] based mechanism.

Assume we are interested in the crop Crop(I; s, μ, ν). We consider how the
value at u, v of the crop is computed. This maps to the location u′, v′ in the
original image I. This location may be fractional and not map to to an actual
pixel in I. So, we use Bilinear Interpolation to do a weighted average of its 4 real
neighboring pixels. We define the top-left (tl), top-right (tr), bottom-left (bl),
bottom-right (br) pixels as:

Itl = I[�u′�, �v′�] Itr = I[�u′�, �v′�]
Ibl = I[�u′�, �v′�] Ibr = I[�u′�, �v′�] (4)

where �·� is the ceiling operator and �·� is the floor operator. The value at
(u, v) is then given by:

Crop(I)[u, v] = Itlwtl + Itrwtr + Iblwbl + Ibrwbr (5)

where the bilinear weights w vary inversely with distance:

wtl = (1 − (u′ − �u′�))(1 − (v′ − �v′�)) wtr = (1 − (u′ − �u′�))(1 − (�v′� − v′))
wbl = (1 − (�u′� − u′))(1 − (v′ − �v′�)) wbr = (1 − (�u′� − u′))(1 − (�v′� − v′)) (6)

These equations lend themselves to an efficient implementation that is par-
allelizable across pixels and crops. These crops can then be fed for 1 step of EP
optimization to be performed (Algorithm 1 Step 2.8).

5 Experiments

Experimental Setup: To validate our approach we conduct experiments on
the Pascal/VOC-2007 [2] dataset with 2 different network architectures. We
benchmark on the 2007 Test set consisting of 4952 images from 20 classes.
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We run experiments using the VGG16 [23] and Resnet50 [7] architectures.
This choice is made keeping in mind the dissimilar nature of the two architec-
tures, and is standard in attribution literature. We base our experimentation
code on the Torchray [3] library to ensure reproducibility and comparability to
previous work.

Implementation Details: Our proxy model g is an exact Gaussian Process
regressor with the RBF covariance kernel. While fitting g on the crop scores, the
hyperparameters optimized are the variance and lengthscale associated with the
RBF kernel, the noise variance associated with the likelihood and the mean of
the GP. We use the Adam optimizer with a learning rate of 0.01 to optimize these
hyperparameters for 50 steps. While sampling crops, we sample from zooms in
range [1, 4]. We use crops of size (Hw,Ww) = (224, 224). In Stage I, we use
B = 1024 initial random crops to fit g, while in Stage II, we sample Ba = 100
initial crop locations in every step to query g.

EP (and the EP module within MSP) is run with standard hyper-parameters
as in Torchray [1]: EP upsamples a pre-mask which is smaller than the image size
by a factor of 7. Upsampling is performed using softmax-pooling, with a coldness
factor of 20. The size regularization weight λa is annealed from 300 by a factor of
1.0035 at every iteration. In every alternate iteration, a horizontal flip is applied
to the image and mask as an augmentation policy. The EP optimization is run
for 800 steps.

Notation. The ith image of the dataset is Ii. There are C classes, and the
attribution for Ii for class c is m(i,c)(u, v) where (u, v) refer to spatial dimensions.
For Ii, there might be multiple ground-truth bounding boxes for class c, and the
jth such box is bboxj

(i,c).

Pointing Game. To quantify performance we use the Pointing Game bench-
mark defined in [34]: We capture the coordinate of the maximum point of the
attribution map. The evaluation scores a hit if this point lies within one of the
bounding boxes for the class of interest, and a miss otherwise. Per-class accu-
racy is calculated and averaged to give the Pointing Game score for the method.
Formally,

Hit(i,c):=argmax(u,v)(m(i,c)(u, v)) ∈
⋃

j

bboxj
(i,c)

Miss(i,c):=argmax(u,v)(m(i,c)(u, v)) /∈
⋃

j

bboxj
(i,c)

PG =
1
C

∑

c

∑
i Hit(i,c)∑

i Hit(i,c) +
∑

i Miss(i,c)
(7)

The protocol in [34] also defines a separate evaluation on a difficult subset
of images: This consists of samples where the object of the class of interest is
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Table 1. (a): Pointing Game Comparison between MSP and several popular methods
on the Pointing Game benchmark (Sect. 5).( ∗ denotes average over 3 runs with dif-
ferent random seeds) Best in bold, second-best underlined. Grad : gradient-based Ptb:
Perturbation-based Scale: uses multiscale information (b): Comparison of MSP against
several baselines (see Sect. 5).Best in bold, second-best underlined. Simpler methods
of incorporating multi-scale crops into the pipeline (EP+crops & EP+crops+W) are
unsuccessful at improving over EP. The proxy model (GP) when used by itself is a
poor attribution method

(a) Pointing Game Evaluation

VOC07 Test (All/Diff)

Method VGG16 ResNet50 Grad Ptb Scale

Grad [22] 76.3/56.9 72.3/56.8 � ✗ ✗

DConv [33] 67.5/44.2 68.6/44.7 � ✗ ✗

Guid. [26] 75.9/53.0 77.2/59.4 � ✗ ✗

MWP [34] 77.1/56.6 84.4/70.8 � ✗ ✗

cMWP [34] 79.9/66.5 90.7/82.1 � ✗ ✗

RISE ∗ [16] 86.9/75.1 86.4/78.8 ✗ � ✗

GCAM [20] 86.6/74.0 90.4/82.3 � ✗ ✗

SESS [28] 90.4/80.8 93.0/86.1 � ✗ �
CAMERAS [9] 86.2/76.2 94.2/88.8 � ✗ �
EP ∗ [3] 88.0/76.1 88.9/78.7 � � ✗

MSP (Ours)∗ 90.3/79.9 90.8/81.5 � � �

(b) Ablation & Baselines

VOC07 Test (All/Diff)

Method VGG16 ResNet50

EP 88.0/76.1 88.9/78.7

MSP (Ours) 90.3/79.9 90.8/81.5

EP+crops 86.7/74.1 87.2/75.6

EP+crops+W 88.8/77.3 88.1/74.0

GP 69.5/54.8 70.4/59.4

smaller than 25% of the total image area, and is present alongside at least one
object of another class ( referred to as distractors ).

Table 1 (a) compares the performance of Multiscale Perturbations (MSP)
against contemporary methods. While SESS or CAMERAS score higher on the
benchmark, MSP leads to tangible improvements over the standard Extremal
Perturbation algorithm, validating the usage of crops. Table 2 compares the
Pointing Game performance per class on the VOC-2007 test set. It can be seen
that the improvements stem from generally improved performance across most
categories.

Ablation Studies. We investigate these reasons behind the improvements: (i)
Our proposed pipeline prioritizes the sampling of Promising Crops (defined in
Sect. 4). We compare this approach against a baseline where the crops are sam-
pled uniformly without consideration of their potential value. We dub this the
EP+crops variant. As table 1 (b) shows, this approach is unsuccessful in improv-
ing performance over standard EP. (ii) While MSP uses importance sampling,
an alternate way of incorporating crop importances is to sample uniformly but
weigh the loss of each patch in proportion to its importance. Specifically, we
use the ratio of the predicted class probability for the crop vs the class prob-
ability for the original image as the weight. The class probability for the crop
is acquired via a separate forward pass through the network. This leads to the
EP+crops+W variant. Table 1 (b) shows that this approach too does not lead
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Table 2. Per class comparison between MSP and EP on the Pointing Game. Table
compares scores on the 20 VOC-2007 classes. MSP improves upon EP on most classes

Classes 0-9

Model MethodAirplaneBicycleBird Boat Bottle Bus Car Cat ChairCow

VGG16 EP 97.5 96.7 92.9 90.7 60.8 91.4 86.0 97.5 64.3 95.3

MSP 98.0 95.1 93.8 92.8 65.4 94.4 87.9 98.0 66.2 98.1

ResNet50 EP 97.1 93.7 88.7 89.0 57.5 94.3 88.9 96.0 71.9 100.0

MSP 96.1 95.9 94.3 90.9 62.1 92.0 89.6 98.1 73.1 98.7

Classes 10-19

Model MethodDining- Dog HorseMotor-PersonPotted- SheepSofaTrain TV-

Table Bike Plant Monitor

VGG16 EP 83.7 96.4 97.1 96.8 90.5 74.6 94.8 84.8 93.8 81.2

MSP 84.0 98.3 97.4 96.2 93.5 73.5 95.9 91.9 97.2 87.9

ResNet50 EP 87.9 95.9 97.1 96.4 89.1 75.4 97.9 81.2 92.7 79.0

MSP 88.6 99.2 97.6 98.6 93.5 76.6 97.5 90.7 96.9 86.6

to improved performance. The performance of such baselines suggests that sam-
pling less valuable patches is detrimental to performance, motivating the need
for importance sampling.

In principle, the Gaussian Process g that is the proxy model in for our app-
roach ( see Sect. 1) is also an attribution method on its own, as it captures the
importance of regions of the image. In light of this, our 2 stage pipeline can be
seen as refining the importance captured by g. We can measure the performance
of standalone g as GP-saliency on the Pointing Game in table 1 (b), where it
scores poorly. This suggests that while it is useful as a feeder of promising crops,
its modeling is too crude to capture importances completely.

Pointing Game++ While the original Pointing Game defines a difficult
split consisting of smaller objects alongside distractors, we propose a system for
rating the difficulty for any sample. The intuition is that the smaller the ground
truth area occupied by the class, the more difficult it is for an attribution method
to score a hit. In contrast, objects that occupy almost all of the image are near
impossible to miss. Thus we propose a new metric, Pointing Game ++ (PG
++), which takes into acount the difficulty of scoring a hit while aggregating
the results. Formally,

WeightedHit(i,c):=Hit ×
Area(

⋃
j bboxj

(i,c))

Area(Ii)
(8)

PG + + =
1
C

∑

c

∑
i WeightedHit(i,c)

P∗
c

P∗
c =

∑

i

Area(
⋃

j bboxj
(i,c))

Area(Ii)
(9)
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Here P∗
c is a normalizer that represents the maximum weighted hits that can be

achieved for a class. It can be seen in table 3 that MSP improves upon EP on
PG++, implying a general ability to do better on smaller (harder) cases.

Table 3. Pointing Game ++ (PG++) Energy Pointing Game (EPG) scores of EP
and MSP for VGG16 and ResNet50. MSP shows improvement in correctly placing the
saliency peak within harder (smaller) object as well as aligning the saliency within the
object region

Method VGG16 ResNet50

PG++ ↑EPG ↑PG++ ↑EPG ↑
EP 0.82 0.54 0.83 0.55

MSP 0.84 0.56 0.85 0.56

Energy Pointing Game. The Energy Pointing Game (EPG) [30] studies the
overall structure of the attribution map instead of just the peak point as in the
Pointing Game. Considering that an attribution contains values in the range
[0, 1], the energy of a map is defined as the sum of its values. The EPG score
is then defined as the ratio of the energy within the ground truth region to the
total energy of the map. Formally,

TotalEnergy:=
∑

u,v

m(i,c)(u, v)

EnergyRatio:=

∑
u,v m(i,c)(u, v)

⋂ (⋃
j bboxj(i, c)

)

TotalEnergy(m(i,c))

EPG =
1
C

∑

c

∑
i EnergyRatio(i,c)∑

i 1
(10)

We use EPG to compare MSP and EP in our experimental settings in
Table 3, where MSP shows improvement in aligning the saliency with the ground
truth regions.

Comparison with SESS and CAMERAS. We hypothesize that the smooth-
ing involved in EP, and consequently MSP, might be limiting its performance
compared to SESS and CAMERAS. To explore this idea, we compared the total
energy (Eq. 10) of these methods. In table 4a, it can be seen for any model,
CAMERAS and SESS have smaller energy than MSP and EP, implying more
succinct heatmaps. While MSP improves over EP, it falls short of SESS and
CAMERAS. This finding is consistent with the hypothesis that the smoothing
operator in EP (and MSP) might be spreading the saliency over a larger area,
leading to decreased performance.
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Table 4. (a) Average value (Total Energy) of the saliency maps produced by EP, MSP,
CAMERAS, SESS. Lower values imply more succinct heat maps. MSP improves upon
EP, yet falls short of CAMERAS and SESS. The smaller, more precise heat maps might
explain the superior performance of CAMERAS and SESS (b) Time (in seconds) taken
by MSP and EP to finish a run. MSP matches EP in speed on VGG16, while incurs a
slightly higher time cost on ResNet50.

(a) Average Total Energy

Average Energy ↓
Method VGG16 ResNet50

EP 0.19 0.18

MSP 0.18 0.18

SESS 0.10 0.10

CAMERAS 0.04 0.06

(b) Time (s) per Run

Average Time ↓
Model VGG16 ResNet50

MSP 59.7 ± 0.71 37.6 ± 0.67

EP 60.23 ± 3.32 35.4 ± 1.63

Fig. 3. Difference in MSP and EP performance as a function of the object size: We
bin the object sizes into 10 bins and measure the improvement in Pointing Game
performance per bin. Left: ResNet50, Right: VGG16. For ResNet50, MSP outperforms
EP at all sizes, while for VGG16, it falls behind at just the 50% − 60% bin.

Timing Comparison. In table 4b, we compare the average time taken for
computing MSP and EP over 500 images of VOC-2007 on a RTX-3060 GPU.
The results are interesting: MSP is as fast as EP on VGG-16, and only slightly
more expensive on ResNet-50 (approximately 6%). It may seem paradoxical that
a 2-stage procedure incurs such minimal overhead. This can be explained with
the help of an example: Consider an image of original size (353, 500), which is
resized to (224, 317) for attribution. In the case of EP, the optimization steps
are performed on (224, 317) sized input for all the iterations. In contrast, for
MSP, there is an initial time cost for aggregating the CNN scores for B zoom-
crops of size (224, 224) from the (224, 317) sized image, and fitting a Gaussian
Process model. However, the subsequent optimization steps are performed on
the smaller (224, 224) sized crops, which is computationally cheaper. This gain
in speed accrues over the optimization iterations, allowing MSP to catch up
to EP. Thus, the improved performance comes essentially for cheap, in terms
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Fig. 4. Qualitative Comparison of MSP with several other methods, on ResNet50 (Top,
in pink), and VGG16 (Bottom, in yellow). (Color figure online) on VOC-2007. Zoom
in to see small objects. See Sect. 5 for details.

of computational cost. Further, the EP times show higher variance than MSP
times, suggesting sensitivity of computation time to image sizes.

Size Study. We compare the performance of MSP and EP as a function of
the object size. As an image may have multiple instances of the class, we take
the area of the union of all bounding boxes for the class. We quantize the spans
into 10 bins, and measure the pointing game scores for MSP and EP for these
bins. In Fig. 3 we plot the difference in PG accuracy between MSP and EP as a
histogram: For ResNet50, MSP outperforms EP at all sizes, while for VGG16,
it falls behind at just the 50% − 60% bin. This scenario is interesting for further
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Fig. 5. Failure cases on VGG16 (left, in yellow) and ResNet50 (right, in pink). On
these VOC-2007 samples EP performs better than MSP. These are subject for further
investigation (Color figure online)

study. For any model, the gains are the steepest at the smallest sizes, validating
the zoom-crop methodology of MSP.

Qualitative Comparison: Figure 4 compares importance maps created by var-
ious attribution methods. It can be seen that MSP performs favorably against
several competing methods. Note that for EP & MSP, the attribution is com-
puted independently for 4 different values of the area hyper-parameter a (see
Eqs. 2 and 3), and smoothed to give the final attribution seen in the figure. This
is the standard protocol defined by the original EP implementation [1], where
the areas are [2.5%, 5%, 10%, 20%] of the image size. In some cases, however,
MSP shows worse performance than EP ( Fig. 5). These cases are subject of
further investigation.

6 Conclusion

We investigated the challenges and benefits of utilizing the image at multiple
scales for Optimization based Attribution. While such ideas have been explored
with lightweight attribution schemes like single-pass and batch-pass methods,
they face challenges with regard to iterative/sequential attribution methods (see
Sect. 1).

Our pipeline improves upon such an iterative method, Extremal Perturba-
tions (EP) [3], by incorporating crops from the image at various scales. Via
comparative studies we establish the ineffectiveness of naively introducing crops
to the EP algorithm. To meet this challenge, we devise a novel two-stage pipeline,
where stage I fits a lightweight regressor for modeling crop importances of an
image, and stage II leverages it to sample promising crops to feed to the EP mod-
ule. Owing to the computational needs of iterative attribution, such a pipeline
must limit the amount of overhead it adds. We discuss aspects of the scheme such
as the regressor type and the design of the crop extraction module that meet
these demands. Finally, we quantify the effectiveness of our approach, Multiscale
Perturbations (MSP), by demonstrating improved performance on the Pointing
Game [34] benchmark with different CNN architectures. We perform ablation
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experiments against baselines to investigate the reasons for improvement, as well
as provide qualitative results from our technique, and failure cases.
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Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XII, pp. 318–333. Springer
Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19775-8 19

29. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR, pp. 9446–
9454 (2018)

30. Wang, H., et al.: Score-cam: Score-weighted visual explanations for convolutional
neural networks. In: CVPR Workshops, pp. 24–25 (2020)

31. Williams, C.K., Rasmussen, C.E.: Gaussian Processes For Machine Learning, vol.
2. MIT press Cambridge, MA (2006)

32. Yin, H., et al.: Dreaming to distill: Data-free knowledge transfer via deepinversion.
In: CVPR, pp. 8715–8724 (2020)

33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV
2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part I, pp. 818–833. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-10590-1 53

34. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural
attention by excitation backprop. IJCV 126(10), 1084–1102 (2018)

35. Zhang, Q., Rao, L., Yang, Y.: Group-cam: Group score-weighted visual explana-
tions for deep convolutional networks. arXiv preprint arXiv:2103.13859 (2021)

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-031-19775-8_19
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/2103.13859


Split-DNN Computing for Video
Analytics

Nagabhushan Eswara2, Jaroslaw Sydir3, V. Srinivasa Somayazulu1,
Parual Datta2, Nilesh Ahuja3(B), and Omesh Tickoo1

1 Intel Labs, Hillsboro, USA
2 Bangalore, India

3 Santa Clara, USA

nilesh.ahuja@intel.com

Abstract. Optimization of Visual AI applications for next-generation
networked and distributed edge scenarios is an important and challeng-
ing problem area given the computation, power and bandwidth resource
constraints of client devices and edge servers. Dynamically adapting to
variations in system resource availability and optimizing the trade-offs in
accuracy vs. compression rate and computational complexity is impor-
tant for system efficiency. An emerging paradigm for the deployment of
complex Deep Neural Network (DNN) models for video analytics in these
edge computing scenarios is split-DNN computing, where the DNN model
is partitioned with one part executed on a client device and the other part
on an edge server. Earlier work has largely addressed split-DNN comput-
ing in the context of image analytics. However, the application to video
sequences presents significant challenges of computational complexity. In
this paper, we propose a flexible and low-complexity approach to address
these specific challenges for distributed DNN-based video analytics and
semantics-preserving learned compression. We combine lightweight bot-
tleneck encoder-decoder neural networks for compressing deep feature
representations along with optical flow-based warping of these deep fea-
tures. We demonstrate significant compression gains measured with a
BD-Rate of −82.68% for object detection and −59.31% for segmentation
when compared with the earlier image-based analytics and compression
approaches, and even larger gains over conventional video compression.
In addition, we enable dynamic optimization of split-DNN video analyt-
ics at the edge by providing lightweight training and inference approaches
with simple solutions for fine-grained adaptation in the complexity-rate-
accuracy space.
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1 Introduction

The proliferation1 of real-time visual AI inference at the edge is driving require-
ments for processing massive amounts of visual data with computationally heavy
deep neural network (DNN) models, a significant challenge for power- and
compute-constrained end devices. The rise of next generation networks with
improved throughput, latency, and reliability is enabling offloading [3] of this
visual AI computing by compressing video streams using video compression stan-
dards such as H.265/HEVC [13] for transmitting to a network edge server. While
this can help address the limitations of processing at the client devices, this app-
roach is sub-optimal since the AI compute must be fully offloaded to the edge
server, precluding collaborative intelligence that exploits all available compute
at both clients and edge servers. Additionally, conventional video compression is
optimized for human visual perception, and the compression artifacts can seri-
ously impact the accuracy of DNN-based video analytics. Recent advances in
neural compression algorithms for either images or videos [1,16,23,25] are also
largely optimized for perceptual quality and add additional AI computational
complexity in the edge compute scenarios since the video must be first recon-
structed prior to analytics.

In parallel, there has been considerable research into optimal compression
of images and videos for machine vision tasks. Prominent among this has been
research into split-DNN computing [6,7,15,18,19], where the DNN trained for a
specific task (or set of tasks) is split into a front-end (head) and back-end (tail)
portions, and implemented in a distributed manner across a client device and
an edge-server. Intermediate deep feature representations from the head portion
are compressed and transmitted to the tail residing on an edge server where the
remaining processing is completed. The compression of the features is learnt by
jointly optimizing both for task-specific performance (e.g., classification, object
detection, or image segmentation etc.) as well as compression efficiency. A key
attribute of many of these approaches is the introduction of bottleneck layers at
the split point of the DNN to reduce the dimension of the transmitted features
[6,7,19] followed by network distillation to reduce the complexity and optimize
performance. However, these approaches have largely focused on the image ana-
lytics pipeline, and do not exploit temporal correlations inherent in videos to
drive further gains in the compression-accuracy tradeoff. Furthermore, although
the proportion of compute between the client and edge can be adapted, the total
end-to-end compute across the network remains the same.

1.1 Contribution

We summarize our contributions below:

– We propose a solution for distributed video analytics with split-DNN comput-
ing and end-to-end learned semantics-preserving video compression. To the

1 Code to reproduce results at https://github.com/IntelLabs/SPVC.

https://github.com/IntelLabs/SPVC
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best of our knowledge, this is the first work that exploits temporal coherence
in the deep-feature space to optimize for accuracy-rate-complexity tradeoff in
distributed video analytics rather than frame-by-frame image analytics. This
is achieved by compressing features from a few selected key-frames using bot-
tleneck modules (similar to [6]), and predicting non-key-frame features from
the closest key-frame features via flow-based feature warping.

– We introduce key-frame interval as a parameter in split-DNN computing for
additionally adapting client compute complexity and enabling an accuracy-
rate-complexity trade-off. This allows system designers to have greater flex-
ibility in managing and balancing workloads in compute-constrained edge
scenarios, while maintaining task performance. This is in contrast to image
analytics solutions such as [6,7,18] which allow for a accuracy-rate tradeoff,
with limited ability to adapt the compute complexity beyond the DNN split
between client and edge server.

– Finally, we evaluate our approach over two workloads, namely, (i) semantic
segmentation and (ii) object detection, on true video datasets instead of image
datasets, and we demonstrate how our approach outperforms image-based
analytic approaches and conventional compression on such datasets.

In summary, our approach, which we call Semantic Video Compression with
Feature Warping (SVC-FW), addresses the problem of compression for video-
analytics (as opposed to images only), is well-suited for low-complexity client
devices and also enables a flexible adaptation to trade-off rate, accuracy and
client complexity.

2 Background

2.1 Semantic Image Compression with Bottleneck Units

Several split-DNN approaches for image analytics with feature compression
introduce ‘bottleneck units’ at the split point - lightweight neural networks that
reduce the dimension of the features prior to compression and encoding, and
restore them to their original size after decoding. Most approaches employing
bottleneck layers nevertheless require a retraining of the original DNN’s param-
eters (or at least the head portion) [7,18] if a different split point or compression
level is desired. A different approach was taken in [6] where the original DNN
parameters were preserved unchanged across different splits. Instead, only the
bottleneck modules were trained at each split point, with different parametriza-
tions yielding different compression levels. Since only a small set of low com-
plexity bottleneck modules need to be trained and loaded dynamically, such an
approach promises to better address the constraints of real-world systems.

A procedure to design the bottleneck units in an optimized manner was also
provided in [6], which we briefly summarize next. The procedure involves explor-
ing the space of architectural hyper-parameters of a single bottleneck encoder
layer such as number of output channels and stride of the convolutional ker-
nel. The procedure can be generalized to include other design hyper-parameters
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such as number of layers, topology of the layers, etc. A sample from this hyper-
parameter space is generated, and a bottleneck unit with these parameters is
instantiated. The weights of this bottleneck unit are then trained without mod-
ifying the weights of the original network. The accuracy of the pipeline with
the trained bottleneck is measured along with the average bit-rate required
to transmit the compressed features. This process is repeated multiple times
with an appropriate sampling procedure (random-search, grid-search, Bayesian
approaches, etc.) to generate multiple bottleneck units at different rate-accuracy
points. From this set, the Pareto optimal set of points are determined and these
correspond to the set of trained bottleneck layers that yield the optimal rate-
accuracy performance.

2.2 Deep Feature Prediction

Recognizing that high-level semantic information represented by deep features
within a DNN evolve more slowly than the pixel level image appearances
[14] motivated video compression and analytics approaches exploiting temporal
coherence in the deep feature domain [10,16,17,28]. In [17] for example, a deep
video compression approach is based upon computing the latent features from a
set of past frames and using them as input to a prediction network. The residual
error between the actual and predicted latent features of the current frame are
compressed and transmitted to the decoder. Adapting approaches such as this
for efficient split-DNN edge video analytics and compression would be limited
by the significant computational complexity of the prediction networks as well
as the requirement to compute latent features for all or a large fraction of the
input frames. In [10], learned motion estimation and deformable convolutions in
the feature space are combined with feature prediction residual coding for deep
video compression optimized for human visual perception metrics. However, the
motion estimation in the feature space incurs both complexity and compres-
sion efficiency impacts, while the requirement to compute latent features for
all frames is still a significant issue for computationally efficient edge analytics.
Using motion vectors estimated in the pixel domain for temporal prediction of
deep features in deep video compression offers a solution with lower complex-
ity. In [16], optical flow estimated between current and previous frames is used
to generate warped features that provide the context for compression of the
latent representation of the current frame produced by an encoder/decoder net-
work. However, all these and related approaches have focused on learned video
compression and are not appropriate for efficient edge video analytics with split-
DNNs. Sparse deep feature propagation as in [28] and related works employed
optical flow computed in the pixel domain and combined this with relatively sim-
ple deep feature warping in order to reduce average computational complexity
for DNN workloads.

In what follows, we outline our split-DNN video analytics approach that com-
bines an efficient image analytics and semantics preserving compression solution
on a sparse set of frames together with compressed learned optical flow for the
remaining frames.
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3 Our Approach

Our approach is based on exploiting the temporal correlations in the feature
space of deep networks to achieve greater compression efficiency for distributed
analytics. Similar to standard video-compression approaches (VVC, HEVC,
etc.), a small set of video frames are selected as key-frames and the remaining
are designated as non-key frames, as in [28]. The deep-feature representations
from key-frames are compressed using lightweight bottleneck encoder module
following the approach in [6]. These key-frame features serve as reference points
relative to which the non-key frame features are calculated using the optical flow
computed in the pixel space. For non-key frames, only the compressed optical
flow is transmitted to the edge-server. At the server, a feature-warping module
warps the relevant key-frame features using the flow information for a particular
non-key frame to predict the deep features for that frame. This approach yields
several benefits over existing image-based approaches –

1. Motion information requires far fewer bits to compress and transmit, enabling
better compression than image only approaches.

2. The flow network is designed to be much more lightweight than the original
backbone network. Hence, the computationally heavier backbone needs to be
run only for key-frames and this reduces the overall computational complexity
significantly.

3. Since the flow network is trained for the task (or tasks) of interest, the resul-
tant motion field is optimized for those tasks. This helps improve the overall
task accuracy.

3.1 Semantics-Preserving Video Compression with Flow Based
Feature Warping

The overall flow diagram of our approach is shown in Fig. 1. A DNN model
trained for a particular task typically comprises a backbone followed by a task
network. The Deeplab-v3 model used in our experiments for video semantic seg-
mentation comprises a Resnet-50 model (backbone) followed by an ASPP module
(task). Similarly, the Faster-RCNN used for video object detection, comprises a
Resnet-50 backbone followed by the region-proposal network (RPN) and predic-
tion modules as task layers. We start by partitioning the backbone network into
a ‘head’ portion that is deployed on the client side, and a ‘tail’ network deployed
on the server. This is followed by the task network that produces the analytics
task-specific outputs (e.g. for object detection, image segmentation, etc.). The
flow of operations is as follows. At the client device,

– A sparse set of input video frames are selected as key-frames, with N −1 non-
key frames following every key frame, as in [28]. N is called the key-frame
interval. The process of selecting key-frames and the key-frame interval can
be adaptive, based upon the input context, the analytics task requirements,
the network and compute resource availability, etc.
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Fig. 1. The proposed distributed video analytics pipeline SVC-FW combining deep
feature compression and compression of optical flow for feature warping.

– The key-frames are processed through the head network to extract deep fea-
ture representations as depicted in the upper branch of Fig. 1. These key-
frame head network features are then compressed for transmission to the edge
server using a lightweight bottleneck encoder module following the approach
in [6]. A set of optimized lightweight bottleneck encoder-decoder modules
is derived for different rate-accuracy points to enable efficient and flexible
compression of the key-frame deep features.

– For each non-key frame, optical flow information is calculated between it and
the nearest key-frame, compressed and transmitted to the edge server.

At the edge server,

– A bottleneck decoder is employed to decompress the key-frame features and
feed them to the tail network for the next step in the DNN processing. The
results are processed by the task-specific network, as well as stored for pro-
cessing the relevant non-key frames.

– For each of the non-key frames, the optical flow is decompressed and then
used to warp the relevant key-frame features in order to predict the deep
features for that frame. In our work, bilinear interpolation is used as the
warping function.

– Reconstructed deep features at the output of the tail network for both key-
frames and non-key frames are processed through the task network to generate
the DNN output analytics results (e.g. object bounding boxes, or segmenta-
tion maps, etc.).

For the non-key frame warping, there are two variants: (1) ‘forward’ warping,
in which the optical flow computation is with respect to the most recent past
key-frame, possessing the virtue of a low-delay system implementation (2) ‘bi-
directional’ warping wherein the flow computation is with respect to the nearest
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key-frame, past or future - which can result in superior rate-accuracy perfor-
mance since the average distance of a non-key frame to the reference key-frame
is reduced, though at the cost of increased delay.

3.2 Models and Training

To develop our proposed SVC-FW model, we adopt a 2-step training process
as shown in Fig. 1. We start with the baseline analytics model that has been
trained with the relevant video dataset using a task-appropriate end-to-end loss
function. In Step 1, we train the parameters for the head, tail and task networks,
as well as the flow network shown in green blocks in Fig. 1, which we collectively
refer to as the Feature Warping with Flow, or FWF model. This FWF model is
trained end-to-end by initializing the optical flow generator network using the
weights from the pre-trained Flownet2S model [11] and the rest of the network
using the weights from the baseline model, and with the task-appropriate loss
function.

The model weights from Step 1 are next used in Step 2 for training bottleneck
modules for all DNN splits. First, a split version of the FWF model from Step
1 is generated at the desired DNN split point to provide the head and tail/task
network parameters. Next, bottleneck encoder and decoder networks (shown in
blue in Fig. 1) are included and trained. The head/tail/task network parame-
ters as well as the flow network parameters are frozen and only the bottleneck
encoder-decoder module parameters are trained starting with random weight
initialization, and with the loss function as in [6].

L = Lt + αLr (1)

with the difference that the task-specific loss term Lt is evaluated over both key-
frames and non-key frames; Lr is the rate-loss term, and α controls the relative

Fig. 2. Illustration of the hyper-parameter search procedure to determine the configu-
rations providing optimal rate-accuracy performance. Each color represents a different
optimal key-frame compression starting point with different points corresponding to
increasing key-frame intervals as we move to the left.
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weighting of the two terms, each setting generating models with different rate-
accuracy performance. The combined FWF model together with the bottleneck
modules for the key-frames is our SVC-FW model.

During inference, our SVC-FW model is initialized by loading the head net-
work, flow network, and tail network weights from the FWF model in Step 1.
The appropriate bottleneck encoder-decoder module(s) from Step 2 are selected
together with the key-frame interval(s) based upon the rate-accuracy-complexity
operating points desired. Because we perform warping at the end of the tail net-
work, the head, flow, and tail networks are unchanged for all splits, and only
the lightweight bottleneck encoder-decoder module(s) need to be loaded for each
operating split point.

Bottleneck Design and Training. The procedure to design and train the bot-
tleneck units for a desired split-point involves a search over a hyper-parameter
space as described in [6] and summarized in Sect. 2.1, which includes (i) Cfeat,
the number of bottleneck encoder-decoder channels, (ii) S, the stride for the
encoder convolutional layer, (iii) Q, the quantization parameter, and (iv) log10α,
where α is the rate loss weight term from Eq. 1. For video analytics, key-frame
interval is an additional fifth parameter. Different from the image analytics case,
therefore, the training is performed using both key-frames and non-key frames
and the metric employed for search-space optimization is the average perfor-
mance of SVC-FW over an entire key frame interval (i.e., average accuracy over
a key frame and associated non-key frames) set to a fixed, maximum value of
20. Performing a hyperparameter search over this extended five dimensional
parameter space would involve sampling from this space followed by training
and evaluation of models to guide the Bayesian optimization search process. In
order to reduce the complexity of the overall process, we follow a decoupled
search process, where the four-dimensional hyperparameter space for the key-
frame compression is first explored and the Pareto optimal configuration settings
are derived. These are then used for the evaluation of SVC-FW across a range
of key frame intervals.

In Fig. 2 we illustrate this process for an object detection task with a Faster R-
CNN model with a split at the res4 layer. The rate-accuracy points for different
key-frame intervals N derived from the same key-frame compression configura-
tion are shown as dots with the same color in this figure, with the rightmost point
for each color corresponding to the N = 1 case. The different colors represent
different key-frame compression configurations. Once all the points are accu-
mulated, the Pareto frontier over all these operating points is derived, shown
as the solid black line in the figure. This defines the profile or the configura-
tion settings for the five hyper-parameters for generating the variable bit rate
compression with optimized rate-accuracy performance.

3.3 System Design and Complexity

We first assess the computational complexity of our approach and then discuss
how it offers greater flexibility for partitioning of a visual analytics DNN work-
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load while simultaneously achieving superior rate-accuracy performance. Let N
denote the key frame interval, i.e. a key-frame is followed by N − 1 non-key
frames. Denoting the computational complexity of the flow network by MOF ,
that of the backbone network (composed of the head plus tail networks) by Mb,
and that of the task network by Mt, the time-averaged computational complex-
ity over a key frame interval (set of N − 1 non-key frames and a key-frame) is
calculated as

Mavg =
Mb

N

(
1 + (N − 1) ∗ MOF

Mb

)
+ Mt (2)

By design, MOF � Mb, and significant compute efficiency gains can be obtained
with increasing N through employing a lightweight optical flow network when
compared to the conventional DNN approach where the compute intensive back-
bone network processes every incoming video frame.

As shown in Fig. 1, regardless of the DNN split point, we perform the optical
flow-based feature warping at the tail network output, which is usually the layer
with smallest spatial resolution. Thus, the size of the compressed optical-flow
data per frame is very small compared to the size of the compressed key-frame
features. This leads to significant compression efficiency gains over the image
based baseline, as the key-frame interval N increases. However, errors between
the predicted non-key frame features and the “true” deep features generated
in the image-based pipeline tend to increase with the increasing N . Our SVC-
FW approach adapts the key frame interval in addition to the DNN split point
and compression bottleneck module design parameters to enhance flexibility in
enabling an optimal trade-off between the compression rate, task accuracy, and
computational complexity.

4 Experiments

4.1 Setup

The performance of our approach is evaluated on two video analytics tasks: 1)
object detection and 2) semantic segmentation. For the detection task, the Faster
R-CNN model with a ResNet-50 backbone [21] was used. Additional modifica-
tions in the conv5 layer to produce denser features with a reduced dimension
of 1024 channels as described in [28] were also employed. For segmentation, the
Deeplabv3 model [4] with a ResNet-50 backbone was used. For both tasks, the
Resnet50 backbone was pretrained on the ImageNet-1K dataset [22]. Also, for
both tasks, FlowNet2S [11] is used for the optical flow network with the input
frame downsized by 2 × 2 and the output flow resolution is 1/8 of the orig-
inal resolution. The flow output is selected from an appropriate stage in the
FlowNet2S refinement network to match the desired feature resolution at the
warping point. This avoids computation of the remaining up-convolutions in the
flow network and bilinear interpolation is used to obtain optical flow at the input
frame resolution. The complexity of the resulting FlowNet2S implementation for
the input resolutions we considered in our experiments is quite small, at around
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15 GMACs, which is ≈ 10% of the backbone network complexity. This is used
in the average complexity calculations per Eq. (2) as shown later on in Table 2
for two different DNN split points. The flow information itself is compressed
with HEVC using FFmpeg [8] and libx265, with the medium preset setting, no
B-frames, and with crf=22. The flow values are scaled to the range 0-255 and
encoding is performed separately on X and Y channels. The task specific imple-
mentation and experiment details are given in the next two subsections.

Video Object Detection: For training and evaluation of the entire model, images
from ImageNet VID (a true video dataset) were used together with ImageNet
DET. When training the FWF model in Step 1, pairs of samples were drawn from
the VID dataset, one for the key frame and one for the non-key frame. Samples
from DET were created by using each sample as both the key and the non-key
frames. A batch size of 8 was chosen and initial learning rate was 10−3 with a
step to 10−4 at 60K iterations, for a total of 90K iterations. During training, the
maximum key frame interval was set to N = 10. Next, the SVC-FW model was
trained as described in Step 2 of Sect. 3.2, with the task loss Lt as described in
[21], and the performance was evaluated using the VID validation set.

Video Segmentation: For video segmentation, the Deeplabv3 model [4] was fine-
tuned on the Cityscapes dataset [5] to obtain the FWF model in Step 1 from
Sect. 3.2. The training samples were generated by using the one frame per clip
with fine-grained annotations as the non-key frame and a frame either before or
after it - up to a pre-specified maximum key-frame interval separation - as the
key-frame. The maximum key-frame interval during training was set to N = 10.
The FWF model in Sect. 3.2 was trained with a batch size of 32, for 25 epochs as
described in Sect. 3.2. For the SVC-FW model the batch size was set to 48 and
training was performed for 12 epochs. In both cases, the initial learning rate was
set to 10−4 and was reduced by a factor of 10 for the last few epochs. Evaluation
was performed on the Cityscapes validation set by selecting the key-frame and
non-keyframe pairs in the same way as described for the training set.

Evaluation Metrics. To evaluate and compare the effectiveness of our app-
roach, we adopt the standard practice of deriving accuracy-vs-compression curve,
which is a plot of a task-specific accuracy metric against the compression rate.
For object-detection, the metric used is the mean average precision (mAP), while
for video segmentation it is the mean intersection over union (mIoU) metric. The
compression rate is represented by bits-per-pixel (bpp), which as the name indi-
cates is the number of bits of information that needs to be transmitted divided
by the total number of pixels. In the video setting, the number of bits is the
average of the bits required to encode features for key-frames and those required
to encode optical flow for non-key-frames. To quantify the compression efficiency
improvement, we use a modification of the widely used BD metric [2], both BD-
rate (which quantifies bitrate savings at equivalent quality levels) and BD-PSNR
(which quantifies quality gains at equivalent bitrates). The original BD metric is
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designed using peak signal to noise ratio (PSNR), which we modify by replacing
the PSNR with an analytics-appropriate task metric - mAP or mIOU. We refer
to the resulting task-specific metrics as BD-mAP or BD-mIOU. For BD-rate, a
negative value implies bit-rate savings; hence the more negative the value, the
better. On the other hand, for BD-accuracy metric, positive values imply better
quality; hence the greater the value, the better.

Baselines. The performance of our proposed approach was compared with three
baselines: two modern video-compression standards – HEVC [24] and VVC [12]
(Versatile Video Coding) – and a recent state-of-the-art image analytics model
[6]. For HEVC compression, we used FFmpeg v6.0.1 with libx265 [8], medium pre-
set setting and crf rate control setting to generate HEVC compressed sequences
at different rate-quality points and record the average compressed frame sizes.
We then processed the decompressed sequences with the appropriate DNN model
(Faster R-CNN or Deeplabv3 in our two cases) to compute the task-accuracy vs.
bpp curves as explained earlier.

For VVC, the inputs were compressed using VVenC v1.9.1 [26] with the default
medium preset setting. The compression levels were varied with the quantization
parameter (QP) and their corresponding sizes were recorded. Similar to the
HEVC baseline processing, the VVC encoded files were first decoded with VVdeC
v2.1.3 [27] before running the appropriate DNN model upon the decoded frames.

The third baseline was the image based analytics model from [6], and eval-
uated the performance of the frame-by-frame distributed analytics and com-
pression. This baseline serves to show the additional compression efficiency and
computational complexity gains resulting from our video based SVC-FW app-
roach compared with the earlier image based analytic/compression solutions.

4.2 Results

Fig. 3. Rate-Accuracy performance for the two tasks.
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Comparing Forward and Bidirectional Warping. We first compare the
forward warping and bi-directional warping approaches described in Sect. 3 on
an example analytics task - object detection with the ResNet-50 backbone from
the Detectron2 implementation split after the res4 and res5 blocks respec-
tively. The results showed rate-accuracy gains for bi-directional warping over
forward warping: for the res5 split, BD-Rate = −18.81%; and for res4, BD-
Rate = −26.42%. We observed this superior behavior for bi-directional warping
uniformly over different backbone network splits for the two different analytics
tasks we studied. Hence, going forward we only report results with bi-directional
warping.

Rate-Accuracy Performance. Next, we show the rate-accuracy performance
of our approach for two analytic tasks and compare it with the baselines men-
tioned earlier for two different split points each as in Table 1. The rate-accuracy
curves are shown in Fig. 3a for object detection and in Fig. 3b for segmentation.
We see that our method clearly outperforms both the image baseline (frame-
by-frame approach) as well as standards based compression (HEVC and VVC)
for both tasks, something also seen from the improvements in BD-rate and BD-
accuracy metrics shown in Table 1. It is also noteworthy that the performance
of the conventional VVC and HEVC baselines is quite poor - we could not even
evaluate BD-Rate between these results and our SVC-FW approach due to lack
of sufficient overlap between the curves.

Table 1. BD-Rate and BD-Accuracy results showing gains for our approach vs. the
image-based baseline and the VVC baseline. *See note in text.

Object Detection Segmentation

Baseline Frame-by-Frame VVC Frame-by-Frame VVC

Split BD rateBD mAPBD rateBD mAPSplitBD rateBD mIoUBD rateBD mIoU

res5 –72.69 0.066 −∗ 0.273 4[2] –59.31 0.014 –92.59 0.131

res4 –82.68 0.043 −∗ 0.175 4[0] –40.29 0.007 –95.28 0.131

Complexity. Table 2 shows the computational complexity for two different
DNN split points for each of the two analytics tasks we considered. Following [6],
the key-frame feature compression bottleneck modules are designed to incur very
low added complexity in comparison with the total DNN network complexity.
For this reason, the bottleneck module complexity is neglected in these calcu-
lations. The table shows reduction in total (client + edge server) complexity
as well as client-only complexity as the key frame interval N increases, though
there are diminishing returns with longer key-frame intervals.
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Table 2. Average total and client-only computational complexity in GMACs for object
detection and video segmentation tasks at different split points and key-frame intervals.

Key-Frame Interval KF = 1 KF = 3 KF = 5

Task Split layer Total Client Total Client Total Client

Segmentation Split 1 4[2] 335.56 204.67 209.19 78.30 183.92 53.03

Split 2 4[0] 129.79 259.11 53.34 243.82 38.05

Object Detection Split 1 res5 179.53 126.76 104.70 77.90 89.74 36.97

Split 2 res4 40.59 162.15 23.21 158.67 19.73

Flexibility in DNN Workload Partitioning. Neural compression
approaches have thus far mostly focused on rate-distortion optimization, neglect-
ing complexity. Recently, however, the topic of rate-distortion-complexity opti-
mization has received greater attention [9,20]. Our SVC-FW approach enables
additional flexibility and finer-grained system operating points in navigating this
space through the key-frame interval parameter choice, when compared with the
image based baseline where the main design parameter is the DNN split point.
An ‘operating-point’ refers to a point the rate-distortion-complexity space. To
analyze the impact of key-frame interval on model performance, we proceed
as follows: the key-frame interval is frozen at different settings, and the optimal
compression bottleneck configurations are selected as described in Sect. 3.2. This
results in an R-D performance curve for that fixed value of key-frame interval.
The BD-accuracy metric for this curve relative to the VVC baseline is computed
along with the complexity. The resultant complexity is divided by that of image
analytics baseline [6] to get a normalized value (0.0 - 1.0).

In Fig. 4, following [9] we illustrate the operating points for the image-based
baseline and for our approach with different key-frame intervals by plotting the
BD-accuracy against normalized complexity (both total and client-only, using
the numbers from Table 2) for the two analytics tasks. For object detection with
the image-based baseline, the top left figure shows that we can obtain one oper-
ating point for each split point but the total (normalized) system complexity
is unchanged at 1. With our approach, varying the key-frame interval generates
additional system operating points with simultaenous improvements in BD-mAP
and complexity (though diminishing and eventually worsening BD-mAP is to
be expected) that better enable systems to optimize utilization of constrained
resources. The top right figure shows the same BD-mAP results, except from the
view of a compute-constrained client - here, the image-based baseline method
offers two distinct operating points with a client complexity vs. BD-mAP trade-
off, while our approach offers a much wider range of operating points to optimize
the client system resource utilization. Similar results for the segmentation task
are shown in the bottom row of Fig. 4.

In Fig. 5, we present another view of this for the case of object detection
task, with the Faster R-CNN model’s ResNet50 backbone network split at res4
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Fig. 4. Improvements in BD-mAP (vs. VVC baseline) for object-detection (top-row)
and BD-mIOU for segmentation (bottom-row) vs Complexity (both total and client
side) with varying key-frame intervals. Higher BD-mAP/mIoU is better. Increasing
key-frame interval at moderate values not only reduces complexity, but also improves
rate-accuracy performance.

layer. The lower plot for compression rate (bpp) is a section of the Pareto fron-
tier plot from Fig. 2, with each color segment representing a different bottleneck
compression level (i.e. a given key-frame compression model). The upper (com-
plexity) plot shows that the corresponding normalized average total complexity
decreases commensurately with the compression rate within each color segment
representing a particular key-frame compression model. As the key-frame inter-
val is increased, the optimal rate-accuracy performance is obtained by switching
to a new key-frame compression configuration combined with a smaller key-frame
interval This plot shows the average complexity can be reduced by a factor of
5x (decrease in normalized complexity from 1.0 to 0.2) for a moderate tradeoff
in accuracy.

5 Conclusions and Future Work

In this paper, we presented our split-DNN based distributed edge video analytics
approach with lightweight semantics-preserving compression optimized for rate-
complexity-accuracy tradeoffs and enabling flexible adaptation to dynamic edge
network conditions. The results for different video analytics applications show
significant compression efficiency gains with our approach compared to state of
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Fig. 5. Tradeoffs in object detection accuracy (mAP) vs (i) complexity (normalized
w.r.t image analytics baseline [6]) in the upper plot and (ii) compression level (bpp)
in the lower plot. Key-frame interval increases from right to left, and different colors
represent different key-frame compression parameter settings.

the art image-based methods, as well as conventional state of the art video com-
pression which is optimized for the human visual system. This is an area of great
emerging interest, and developing approaches that apply across a wider range
of different deep neural network architectures as well as other models such as
transformers and multi-task models is an important area for further research.
Jointly learning the compression for optical flow and the key frame features in
an end-to-end manner, as well as employing learnable deep feature warping are
promising areas to explore. Applying more advanced compression approaches
such as arithmetic coding, improved loss functions, e.g., neural entropy estima-
tion techniques etc. to replace the relatively simple choices we implemented here
should also lead to further improvements. At the systems level, there is consid-
erable scope to explore and develop approaches to key frame selection as well as
key-frame interval adaptation in order to assure optimal end-to-end performance
in dynamically varying conditions and with network errors.

References
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Abstract. Few-shot fine-grained image classification involves using lim-
ited samples to classify images from novel subcategories within the same
category. Recent research indicates that classifiers based on reconstruc-
tion for few-shot learning attain elevated accuracy levels due to their
capacity to preserve greater detail in appearance. However, they recon-
struct using a weighted sum of all local descriptors and consider the
reconstruction error of all descriptors for classification. This may lead to
the reconstruction and utilization of task-irrelevant descriptors for clas-
sification, potentially misguiding the final outcome. This study presents,
for the initial instance, a task-aware discriminative local descriptors
reconstruction mechanism to address these issues, which can adaptively
filter out task-irrelevant descriptors throughout the task, selecting highly
discriminative descriptors for reconstruction. This design effectively aids
the model in filtering out redundant information and exploring more
nuanced and distinctive features throughout the task. Additionally, our
unique detail-aware self-reconstruction module further refines feature dis-
criminability. Extensive experimental results on fine-grained and gen-
eralized datasets consistently demonstrate that the proposed TARNet
surpasses current state-of-the-art methods.

Keywords: Few-shot learning · Feature reconstruction · Task-aware

1 Introduction

As a particularly vital research avenue within computer vision, fine-grained
image classification [5,21,34] boasts broad applications and has been the sub-
ject of thorough investigation. Its objective is to recognize finer sub-categories
within the same general category. Specifically, the similarities between the sub-
categories and the differences between instances at the intra-class level [30] make
the fine-grained classification task difficult. Present deep learning techniques
employ extensive annotated for effective training to tackle this challenge. How-
ever, annotating fine-grained images is prohibitively expensive [32], and image
collection faces challenges posed by long-tail distributions [33,35].
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Fig. 1. Illustration of our motivation. For the same image of Yellow Breasted Chat, the
most distinctive local parts change depending on the task.

To tackle the aforementioned problem, Few-shot approaches are extensively
utilized for tasks involving fine-grained classification(FSFG) [10,13,36], designed
to swiftly adjust to new tasks or domains using a scarce number of samples.
Among them, few-shot methods based on feature reconstruction have attracted
considerable interest due to their ability to preserve more spatial information and
better capture shared features. FRN [23] is based on the principle that images
of the same class can be better reconstructed due to their highly similar embed-
dings, and vice versa. Each local descriptor from the query set is reconstructed
by a weighted aggregation across all spatial positions of the support features
for each class, followed by classification based on the calculated reconstruction
errors. BiFRN [24] introduces a novel bidirectional reconstruction mechanism,
which not only employs the support set for reconstructing the query set but also
utilizes the query set to reconstruct the support set. BiFRN aims to concurrently
increase inter-class variations and decrease intra-class variations.

In the above few-shot methods based on reconstruction, whether reconstruct-
ing query images or the support images, local descriptors from all positions are
reconstructed, including task-irrelevant descriptors(TID), such as redundant and
background descriptors. Specifically, local descriptors that are effective for the
current task may become distracting irrelevant descriptors in other tasks. For
instance, when distinguishing between Yellow Breasted Chat and Canada War-
bler, humans pay more attention to the color of the chest feathers. However, in
identifying Yellow Breasted Chat and Canada Warbler, the feather color of the
body parts is evidently more important, whereas the color of the chest feathers
might interfere with the classification (see Fig. 1).

Inspired by the above insights, this study innovatively proposes a Task-Aware
Local Descriptors Reconstruction Network (TARNet) that can selectively recon-
struct highly discriminative local descriptors for the current task. To automate
the identification of these discriminative local descriptors, we first introduce the
task-aware discriminative local descriptor(TAD) selection module. Since highly
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discriminative local descriptors will have a higher correlation with specific sup-
port classes, this module approximates the discriminative ability of each descrip-
tor by analyzing its relationship with all support classes and selecting effective
local descriptors using an adaptive threshold. We then propose the TAD Recon-
struction module to specifically reconstruct the TAD and classify them by cal-
culating the TAD reconstruction loss. In addition to the above modules, we also
uncover a detail-aware self-reconstruction module that enhances the learning of
fine-grained features and effectively collaborates with the prior component in
identifying TAD.

In summary, the main facets of our contributions are threefold:

• We introduce a new task-aware local descriptors reconstruction network
(TARNet) for FSFG.

• We propose a novel detail-aware self-reconstruction module to leverage both
the spatial positional and channel information, which can aid in the semantic
comprehension of the images.

• We design a new TAD reconstruction module to adaptively select highly dis-
criminative local descriptors pertinent to the current task for reconstruction,
enabling effective minimizing of the interference of TID on the classification
task.

2 Related Work

2.1 Few-Shot Classification Through Metric-Based Approaches

Metric-based methods address the few-shot classification challenge by learning
a distance metric, which defines a measure of similarity or dissimilarity between
the support and query set. [7] presents a one-shot image recognition approach
using Siamese Neural Networks, which leverages a CNN architecture to learn
image embedding and trains the network to discriminate between pairs of images
as either similar or dissimilar. QGN [14] inputs an additional query image to
guide the Siamese Network’s learning. Prototypical Networks [16], which clas-
sify by learning prototype representations within a metric space, where the class
prototype is the mean of its support set samples. Rather than employing a
predetermined metric, RN [17] employs a relation module for deep distance
metric learning, facilitating the comparison and classification of few-shot sam-
ples. To extend the Relation Network, Self-Attention Relation Network [4] inte-
grates embedding, self-attention, and relation modules to enhance metric learn-
ing by effectively capturing non-local information and long-range dependencies.
Some metric-based approaches yield enhanced results in classifying fine-grained
images by focusing on extracting more unique features. For example, DN4 [11]
employs deep local descriptors alongside an image-to-class distance for learn-
ing feature metrics. Bi-Similarity Network [12] combines two distinct similarity
metrics to enable the model to learn more compact and discriminative feature
representations.



342 J. Tan et al.

The aforementioned metric-based approaches strive to learn a task-agnostic
feature capable of generalizing to new categories using some specific distance
metrics.

Contrary to the aforementioned approaches, we propose that the most dis-
criminative features should vary for each task. Therefore, our model, TARNet,
produces a TID mask matrix to explore the most distinctive features in the
current task.

2.2 Few-Shot Classification Through Alignment-Based Approaches

In fine-grained few-shot methods, feature alignment approaches focus on spa-
tially aligning similar objects to improve learned similarities between images.
PARN [26] extracts features focused on semantic objects and overcomes the local
connectivity issue of convolutional neural networks, enabling the model to com-
pare relevant semantic features across different positions. SAML [3] employs a
“collect-and-select” technique to align images with semantically related objects,
concentrating on salient features. DeepEMD [31] employs the Earth Mover’s Dis-
tance as a metric to measure the structural distance between images and refine
region matching. CTX [1] infers class membership by establishing a coarse spatial
correspondence between query and labeled images, followed by calculating the
distance between corresponding spatial features. OS2 [28] constructed an SQIE
module to explore the mutual information between support and query slices.
It utilized a collaborative attention mechanism to identify target co-occurring
objects in the query slices based on the support slices. Unlike the aforemen-
tioned approaches that require new modules or large-scale trainable parameters,
FRN [23] predicts image categories by reconstructing query feature maps within
a latent space. Specifically, FRN avoids introducing a large number of learnable
parameters by directly computing the regression from supporting features to
query features. To address the issue of large within-class variances in fine-grained
image classification, BiFRN [24,25] incorporates a bidirectional reconfiguration
mechanism, leveraging the supporting set to enhance inter-class variability and
the query set to reduce intra-class variability. For the reconstruction of each
local descriptor, reconstruction-based few-shot methods employ a weighted sum
of local descriptors from all support samples in a class. However, in this process,
TID from the support set may interfere with the reconstruction of TAD.

In contrast, in our TARNet, a novel TAD reconstruction module is devised to
alleviate TID effects on TAD reconstruction, enhancing object semantic under-
standing.

3 Methodology

This section presents our task-aware local descriptors reconstruction network,
detailing the detail-aware self-reconstruction module (Sect. 3.3), the TAD selec-
tion module (Sect. 3.4), and the TAD reconstruction and classification module
(Sect. 3.5). An overview is provided in Fig. 2.
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3.1 Problem Definition

In the typical setting of few-shot classification, there are three datasets: The Base
dataset Db along with its corresponding class set Cb, the validation dataset Dv

with its class set Cv, and the novel dataset Dn with its class set Cn. Notably, their
class spaces are distinct, with no overlapping elements. Typically, Db and Dn are
divided into individual tasks. In each task, C classes are randomly selected from
these datasets. For each class, K labeled examples are included as support, and
M unlabeled samples serve as query. Our goal is to learn transferable knowledge
based on Db. Then, utilizing Dv to ascertain whether the current model rep-
resents the best-performing few-shot classification model. Finally, the ultimate
performance of the optimal model is usually assessed by calculating the mean
accuracy across tasks sampled from Dn.

Fig. 2. The proposed task-aware local descriptors reconstruction network. DSFM refers
to the detail-aware self-reconstruction module, TDSM refers to the task-aware discrim-
inative local descriptor selection module and DRM refers to the task-aware discrimi-
native reconstruction module.

3.2 The Framework of TARNet

Masking TID is essential in few-shot image classification because some local
descriptors containing TAD are more relevant to the label than other descrip-
tors [27]. Current reconstruction methods primarily reconstruct feature maps
using all local descriptors and fail to reduce the interference of the information
from TID, we propose a task-aware local descriptors reconstruction network.

Figure 2, we describe the framework of TARNet. We feed the query set Q
and the support set S and to embedding module fθ to obtain deep convolution
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Fig. 3. Detail-aware self-reconstruction module.

image features Fq and Fs respectively. The subscripts q and s are used to rep-
resent embedding from Q and S. The detail-aware self-reconstruction module
takes Fs and Fq as inputs to get detail-enhanced features DFs and DFq. Then,
the TAD selection module takes DFs and DFq as inputs to obtain TID mask
activation map Ms and Mq. These maps, along with DFs and DFq, are then
inputted into the TAD reconstruction module, producing two sets of masked
reconstructed support embedding and query embedding, denoted as MRs and
MRq. The Euclidean metric distances between MRs and support embedding are
computed as the reconstruction error, as well as MRq and query embedding. The
metric score for classifying the query image is calculated by combining the two
reconstruction errors through a weighted sum.

3.3 The Detail-Aware Self-reconstruction Module(DSFM)

DSFM can enhance foreground saliency and obtain more detailed information
through the interplay of spatial and channel attention features to assist classifi-
cation.

In a C-way K-shot classification task, we feed a given image from C×(K+M)
samples, denoted as Xn, into the embedding module fθ. This process yields a
three-dimensional feature embedding array, which we then transform into an
assembly of r(r = h×w) d-dimensional local descriptors ˜Xn = [x1, x2, . . . , xr] ∈
R

r×d. We calculate the summation of ˜Xn and the corresponding position encod-
ing pos ∈ R

r×d as the input, i.e., Yn = [x1, x2, . . . , xr] + pos, where pos employs
sinusoidal position encoding.

We leverage the synergy between spatial and channel attention to extract
more nuanced details, as illustrated in Fig. 3. For the spatial attention branch,
we scale the number of channels by a convolution to λ(0 ≤ λ ≤ 1) for simplic-
ity, denoted as Zn ∈ R

r×dλ. Next, we input them into standard self-attention
operation and generate the final spatially enhanced feature map En. The com-
putational operation is depicted as follows:
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En = Softmax
(

BK�
√

dk

)

V + Zn (1)

where B, K and V are obtained by Zn multiplying WQ
ω , WK

ω and WV
ω , respec-

tively, with dimensions of R
r×dλ. Furthermore, WQ

ω , WK
ω and WV

ω are three
learnable weight parameters matrix with d × d size.

Similar to the spatial attention branch, in the channel attention branch, we
also use convolution to obtain Z

′
n ∈ R

r×dλ. Afterward, we feed Z
′
n into a variant

of self-attention to obtain the final channel-enhanced feature map E
′
n.

E
′
n = Softmax

⎛

⎝

(Z
′
n)

�
Z

′
n

√

dZ′
n

⎞

⎠ Z
′
n + Z

′
n (2)

Next, we fuse En and E
′
nwith two learnable parameters α and β. To restore

the channel count, we input them into a convolution layer, with the computa-
tional process described below:

Zn = Conv(αEn + βE
′
n) (3)

Finally, the detail-enhanced feature map DFn is computed using Layer Nor-
malization (LN) and Multilayer Perceptron (MLP).

DFn = LN(MLP (LN(Zn + Yn)) + Zn) (4)

Fig. 4. Task-aware discriminative local descriptor selection module.

3.4 The TAD Selection Module (TDSM)

TDSM aims to adaptively select TAD and generate TID mask activation maps
among the entire task to reduce the interference of the TID during reconstruc-
tion. The basic idea is that TAD plays a key role in classification. The complete



346 J. Tan et al.

framework of TDSM in one image Xn = [x1, . . . , xr] ∈ R
r×d is detailed as fol-

lows:
To reduce computing power, we compute the empirical mean of feature maps

for each support class within each task, denoted as P c = [pc
1, . . . , p

c
r] ∈ R

r×d in
support class c. For each descriptor xi, we identify the top-k closest standard
support local descriptors Txi

= {p̃c
1, . . . , p̃

c
k} within class c by calculating their

cosine distances to xi from P c. Following this, we ascertain the similarity of xi

to class c by summing up the cosine distances between the descriptor xi and
each p̃c

k:
Dxi

c =
∑

p̃c
k∈Txi

Sim(xi, p̃
c
k) (5)

where c ∈ {1, . . . , N} represents the support class and Sim(·) denotes cosine
similarity in this work.

Then, we feed Dxi
c to the softmax layer to normalize them and calculate the

discriminative score of xi:

Rxi = max
c

(Softmax(Dxi
c )) (6)

To distinguish between TAD and TID, we use a threshold V∗
n to filter out

local descriptors with low discriminative scores. Inspired by [2], we adopt a
learnable module Fς to generate V∗

n. In this work, Fς is implemented as MLP
to adaptively predict the threshold V∗

n specific to each local descriptor within
the image. Formally, Fς takes the current image descriptor set Xn as input and
calculate threshold V∗

n as follows:

V∗
n = σ(Fς(Xn)) (7)

where σ represents a sigmoid function. Next, we compute the values of the TID
mask activation map Mn ∈ R

r×1 as follows:

Mn = I(V∗
n,RXn) =

1
1 + exp−μ(RXn−V∗

n)
(8)

The above formula represents a modification of the sigmoid function. In the-
ory, as μ reaches a sufficiently high value, the value of Mn will approach one if
Rxn > V∗

n, otherwise, it will be near zero. This characteristic enables the mask
attention map Mn to effectively facilitate the filtration of TID.

Through module DSFM, we get that DF s
c consist of DF s

c,j ∈ R
r×d in class c,

where j ∈ {1, . . . , K}, and DF q
m ∈ Rr×d, where m ∈ {1, . . . , C × M}. Next, we

feed DF s
c,j and DFm

q into TDSM to produce TID mask activation maps Ms
c,j

for the support set and Mq
m for the query set, respectively.

3.5 The TAD Reconstruction Module (DRM)

Traditional reconstruction methods directly use all local descriptors to recon-
struct feature maps, including descriptors that might be irrelevant to the task
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at hand, such as background and redundant descriptors. In our work, we filter
out these TID through a masking mechanism.

To filter out the TID during the reconstruction process, we adopt a cross-
attention function and masking mechanism to generate masked reconstructed
support features MRs

c,m ∈ R
kr×d in class c, where m ∈ {1, . . . , C × M} and

masked reconstructed query features MRq
c,m ∈ R

r×d, where m ∈ {1, . . . , C×M}.
Initially, DF s

c , DF q
m, and DF q

m are each multiplied by WQ
φ , WK

φ , and WV
φ , respec-

tively, obtaining SQ
c , QK

m and QV
m, where WQ

φ , WK
φ and WV

φ ∈ R
d×d. Similarly,

DF q
m, DF s

c , and DF s
c are each multiplied by WQ

φ , WK
φ and WV

φ , respectively,
obtaining QQ

m, SK
c , SV

c .
Next, We determine MRq

c,m using the support embedding SV
c in the c-th

class and calculate MRs
c,m in the c-th class from the m-th query embedding QV

m,
employing the following two equations.

MRs
c,m = MAtt(SQ

c , QK
m, QV

m) =

(

Softmax

(

SQ
c (QK

m)�
√

dQK
m

)

· req(Mq
m)

)

QV
m (9)

MRq
c,m = MAtt(QQ

m, SK
c , SV

c ) =

(

Softmax

(

QQ
m(SK

c )�
√

dSK
c

)

· res(Ms
c)

)

SV
c (10)

where Symbol “·′” denotes element-wise multiplication. res(·) refers to the oper-
ation of copying Ms

c r times to generate RMs
c ∈ R

kr×r. Likewise, req(·) refers
to the operation of copying Mq

m kr times to generate RMq
m ∈ R

r×kr.
After DRM, we compute the reconstruction error between original feature

maps and reconstructed feature maps by using the Euclidean metric. Since the
label is only related to the foreground, the error of the TID must also be fil-
tered out. The final reconstruction error is derived from the weighted sum of the
discrepancies between local descriptors of the original images and their corre-
sponding reconstructed images. The computing process is shown as follows:

ec,m = τ(η1(||QV
m − MRq

c,m|| × Mq
m) + η2(||SV

c − MRs
c,m|| × Ms

c)) (11)

where η1 and η2 are learnable weight parameters associated with each reconstruc-
tion error, respectively. Symbol τ is a learnable temperature factor. Symbol “×”
is spatial-wise multiplication. We then normalize ec,m to get êc,m as follows:

êc,m =
exp(ec,m)

∑C
i=1 exp(ec,m)

(12)

In one C-way K-shot task, the total loss is computed using cross-entropy loss
as follows:

L = − 1
C × M

C×M
∑

m=1

C
∑

c=1

yc,m log(êc,m) (13)

where yc,m equals 1 when c and lm are equal, otherwise 0, and lm is the label of
the query image Qm.
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4 Experimental Results and Analysis

4.1 Experimental Setup

Dataset. Fine-grained datasets: CUB [20] contains 200 bird species with a total
of 6033 images. Dogs [6] includes 20 dog breeds, totaling 20580 images. Cars [8]
comprises 196 vehicle classes with 16185 images. meta-iNat [18,22] is a wildlife
species benchmark with 1135 categories, each having between 50 to 1000 images.
tiered meta-iNat [22] is a more challenging version of meta-iNat, where its 354
test categories do not overlap with the 781 training categories. Coarse-grained
datasets: mini-ImageNet [19] is a subset of ImageNet consisting of 100 classes,
each with 600 images. tiered-ImageNet [15] is a larger subset of ImageNet with
351-97-160 categories for training, validation, and testing, respectively.

We divided each dataset into training, validation, and test sets. The propor-
tions of Dtrain, Dval, and Dtest are the same as in references [22,24] and all
images were resized to 84 × 84.

Implementation Details. Our study conducted experiments using two widely
adopted backbone architectures: Conv-4 and Resnet-12. The design of these
architectures is entirely consistent with the designs in [23,29]. During the training
phase, both Conv-4 and ResNet-12 models are trained using SGD with Nesterov
momentum of 0.9 for 1200 epochs. The initial learning rate is set to 0.1, with
a weight decay of 5e-4, and the learning rate is reduced by a factor of 10 every
400 epochs. For Conv-4, we use 30-way 5-shot episodes for training and 30-way
5-shot episodes for testing. The nearest neighbor k is set to 2. Specifically, for
ResNet-12, due to memory constraints, we use 15-way 5-shot episodes for its
training. The nearest neighbor k is set to 5. In both settings, we use 15 query
images per class. We adopt standard data augmentation techniques, including
random horizontal flip, color jitter, and center crop, to enhance training stability.
During testing, we randomly create 10,000 episodes in Dv to compute the final
results, ensuring reliability with a 95% confidence interval.

Table 1. Comparison to prior works on meta-iNat and tiered meta-iNat with Conv-4
backbones. All 95% confidence intervals are below 0.25. The highest results are high-
lighted in bold font

Method meta-iNat tiered meta-iNat

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [16] 55.34 76.43 34.34 57.13

CTX [1] 60.03 78.80 36.83 60.84

FRN [23] 62.42 80.45 43.91 63.36

BiFRN [24] 65.85 83.28 47.56 67.55

Ours 66.63 84.61 48.31 69.75
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4.2 Results

Fine-Grained Few-Shot Classification. To ascertain the efficacy of our
approach in FSFG, we benchmark against established few-shot image classifi-
cation techniques (PARN [26], DeepEMD [31], CTX [1], FRN [23], TDM [9],
BiFRN [24]). The datasets utilized by these methods are also employed in the
research presented in this work.

Table 2. Comparison to prior works on CUB, Stanford Cars and Dogs. Average accu-
racy(in %) is reported. Results with Conv-4 backbone appear in the top block and
ResNet-12 in the bottom. The highest results are highlighted in bold font

Method CUB Dogs Cars

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [16] 64.82 ± 0.23 85.74 ± 0.14 46.66 ± 0.21 70.77 ± 0.16 50.88 ± 0.23 74.89 ± 0.18

Relation [17] 63.94 ± 0.92 77.87 ± 0.64 47.35 ± 0.88 66.20 ± 0.74 46.04 ± 0.91 68.52 ± 0.78

DN4 [11] 57.45 ± 0.89 84.41 ± 0.58 39.08 ± 0.76 69.81 ± 0.69 34.12 ± 0.68 87.47 ± 0.47

PARN [26] 74.43 ± 0.95 83.11 ± 0.67 55.86 ± 0.97 68.06 ± 0.72 66.01 ± 0.94 73.74 ± 0.70

DeepEMD [31] 64.08 ± 0.50 80.55 ± 0.71 46.73 ± 0.49 65.74 ± 0.63 61.63 ± 0.27 72.95 ± 0.38

BSNet [12] 62.84 ± 0.95 85.39 ± 0.56 43.42 ± 0.86 71.90 ± 0.68 40.89 ± 0.77 86.88 ± 0.50

CTX [1] 72.61 ± 0.21 86.23 ± 0.14 57.86 ± 0.21 73.59 ± 0.16 66.35 ± 0.21 82.25 ± 0.14

FRN [23] 74.90 ± 0.21 89.39 ± 0.12 60.41 ± 0.21 79.26 ± 0.15 67.48 ± 0.22 87.97 ± 0.11

TDM [9] 72.01 ± 0.22 89.05 ± 0.12 51.57 ± 0.23 75.25 ± 0.16 65.67 ± 0.22 86.44 ± 0.12

BiFRN [24] 79.08 ± 0.20 92.22 ± 0.10 65.23 ± 0.22 81.87 ± 0.14 76.32 ± 0.20 92.36 ± 0.11

Ours 82.37 ± 0.19 93.58 ± 0.10 68.60 ± 0.22 83.82 ± 0.13 80.86 ± 0.18 94.67 ± 0.07

ProtoNet [16] 81.02 ± 0.20 91.93 ± 0.11 73.81 ± 0.21 87.39 ± 0.12 85.46 ± 0.19 95.08 ± 0.08

CTX [1] 80.39 ± 0.20 91.01 ± 0.11 73.22 ± 0.22 85.90 ± 0.13 85.03 ± 0.19 92.63 ± 0.11

DeepEMD [31] 75.59 ± 0.30 88.23 ± 0.18 70.38 ± 0.30 85.24 ± 0.18 80.62 ± 0.26 92.63 ± 0.13

FRN [23] 84.30 ± 0.18 93.34 ± 0.10 76.76 ± 0.21 88.74 ± 0.12 88.01 ± 0.17 95.75 ± 0.07

TDM [9] 85.15 ± 0.18 93.99 ± 0.09 78.02 ± 0.20 89.85 ± 0.11 88.92 ± 0.16 96.88 ± 0.06

BiFRN [24] 85.44 ± 0.18 94.73 ± 0.09 77.19 ± 0.21 88.34 ± 0.12 90.20 ± 0.15 97.60 ± 0.05

Ours 86.15 ± 0.17 94.91 ± 0.08 78.11 ± 0.20 89.96 ± 0.11 89.98 ± 0.15 97.26 ± 0.06

Tables 1 and 2 showcase the classification results for 5-way few-shot tasks on
fine-grained datasets. Our TARNet achieves the highest accuracy across all five
fine-grained datasets when utilizing the Conv-4 architecture. This underscores
the efficiency and superiority of TARNet. Meanwhile, TARNet is 0.22% and
0.34% lower than BiFRN on the 5-way 1-shot and 5-shot tasks of Cars when the
ResNet-12 is adopted, and outperforms BiFRN by 0.18% to 1.62% in other set-
tings. This indicates that TARNet consistently delivers competitive performance
across various datasets and experimental configurations.
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Table 3. Comparison to prior on mini-ImageNet and tiered-ImageNet.

Method Backbone mini-ImageNet tiered-ImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [16] Conv4 48.98 ± 0.20 70.92 ± 0.16 49.58 ± 0.22 70.31 ± 0.18

BiFRN [24] 54.00 ± 0.20 71.79 ± 0.16 57.74 ± 0.22 76.28 ± 0.17

Ours 54.79 ± 0.20 73.48 ± 0.15 58.60 ± 0.22 77.82 ± 0.17

ProtoNet [16] Resnet12 58.80 ± 0.20 76.68 ± 0.15 64.77 ± 0.23 81.58 ± 0.17

BiFRN [24] 59.29 ± 0.20 76.00 ± 0.15 65.71 ± 0.23 80.80 ± 0.18

Ours 60.05 ± 0.20 76.12 ± 0.16 66.93 ± 0.23 81.08 ± 0.18

General Few-Shot Classification. We also conducted further evaluations
of TARNet’s performance on the mini-ImageNet and tiered-ImageNet datasets.
From Table 3, it can be seen that our method achieves the best or most compet-
itive performance on the 5-way 1-shot and 5-shot tasks of mini-ImageNet and
tiered-ImageNet, indicating that our method has broad applicability.

In summary, the above results demonstrate that TARNet is effective in few-
shot classification tasks on both fine-grained and coarse-grained datasets.

4.3 Ablation Study

This section first examines the impact of DSFM and DRM on TARNet, as well
as the influence of spatial and channel attention on TDSM. Next, we examine
the influence of feature map size on the classification performance of TARNet on
the CUB and Cars datasets under the Conv-4 backbone. Finally, we visualized
the reconstruction errors for the 5-way, 5-shot classification tasks.

Table 4. Ablation studies using only DSFM module or DRM module.

DSFM DRM Backbone CUB Dogs Cars

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

✗ ✗ conv4 74.95 90.17 61.56 80.25 71.41 89.03

✓ ✗ 80.83 92.45 67.05 81.67 79.19 92.88

✗ ✓ 78.55 92.71 62.09 81.09 77.81 93.70

✓ ✓ 82.37 93.58 68.60 83.82 80.86 94.67

✗ ✗ Resnet12 85.02 94.50 76.63 89.16 89.14 97.15

✓ ✗ 86.03 94.65 77.74 89.35 89.81 97.30

✗ ✓ 85.37 94.53 76.29 87.74 89.64 97.24

✓ ✓ 86.15 94.91 78.11 89.56 89.98 97.26
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The Impact of the DSFM and DRM. To assess the efficacy of our method,
we systematically strip down its components. Specifically, we perform experi-
ments wherein we remove the DSFM module (denoted as DRM), then the DRM
module (denoted as DSFM), and finally, both. The results, presented in Table 4,
clearly demonstrate enhanced performance when both DSFM and DRM mod-
ules are employed concurrently (DSFM+DRM). This indicates that the DSFM
and DRM modules are not only essential but also complement each other to
improve the overall functionality.

Table 5. Ablation of channel and spatial attention in the DSTM module.

Channel Spatial Backborn CUB Dogs Cars

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

✗ ✗ Conv4 78.55 92.71 62.09 81.09 77.81 93.70

✓ ✗ 81.95 93.35 66.00 83.33 81.15 94.66

✗ ✓ 82.17 93.08 67.72 84.20 80.96 94.81

✓ ✓ 82.37 93.58 68.60 83.82 80.86 94.67

✗ ✗ Resnet12 85.37 94.53 76.29 87.74 89.64 97.24

✓ ✗ 86.40 94.84 77.31 88.95 90.07 97.01

✗ ✓ 85.33 94.41 78.32 89.44 89.01 96.99

✓ ✓ 86.15 94.91 78.11 89.56 89.98 97.26

The Impact of the Channel Attention and Spatial Attention in DSFM
Module. To verify the effectiveness of channel attention and spatial attention
in the DSFM module, we conducted ablation experiments targeting these two
components. The results are shown in Table 5. The results show that using either
channel attention or spatial attention alone improves classification performance
to some extent, indicating that both attention mechanisms are effective. How-
ever, in most cases, the combination of both achieves optimal or near-optimal
results. Therefore, we generally choose the DSFM module that integrates both
channel and spatial attention.

Table 6. Ablation on feature map size of TARNet.

Feature Map Size Methods CUB Cars

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

5×5 BiFRN 73.61 ± 0.21 89.40 ± 0.12 70.01 ± 0.21 86.13 ± 0.12

Ours 75.87 ± 0.21 90.46 ± 0.12 73.79 ± 0.21 88.78 ± 0.11

10×10 BiFRN 74.17 ± 0.21 90.52 ± 0.12 70.98 ± 0.21 88.63 ± 0.11

Ours 76.64 ± 0.21 91.73 ± 0.12 75.90 ± 0.20 91.71 ± 0.09
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The Impact of Feature Map Size. Table 1 demonstrates that Conv4 yields
more pronounced improvements than Resnet12. We believe this is because the
feature maps generated by Resnet12 have a larger receptive field, which may
filter out some important foreground information along with TID. To test this, we
eliminated the pooling layer from the last convolutional layer in Conv4, enlarging
the feature map from 5×5 to 10×10, thus reducing the receptive field. Table 6
shows that the classification accuracy of BiFRN increased by an average of 1.29%
when using 10×10 feature maps compared to 5×5 maps, while the TARNet
model improved by 1.77%. This suggests that the smaller the receptive field, the
higher the improvement in the performance of TARNet in the same backbone.

Fig. 5. Reconstruction errors predicted by BiFRN and our TARNet under the 5-way
5-shot setting on the CUB-200 dataset. In every bar chart, the vertical axis represents
the five classes, while the horizontal axis reflects the reconstruction error.

The Quality of the Selected Query Descriptors in TARNet. We visu-
alized the reconstructed errors generated by BiFRN and our TARNet under
the Conv-4 and ResNet-12 backbones on a 5-way 5-shot classification task from
CUB-200. Specifically, We designate the query as belonging to the first category
and calculate the reconstruction errors between the query and the five classes.
The results of the visualization are shown in Fig. 5. It is evident that both
models accurately classified the query, as the reconstruction errors computed by
both models of the first class were the smallest among all settings. However, Our
model yields a greater disparity in the reconstruction error between the confused
and target classes. This indicates that TARNet has found more discriminative
features and only reconstructed them.
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4.4 Model Complexity Analysis

Table 7. Comparison of the efficiency of some publicly available few-shot methods.

Method Backborn Params. (M) FLOPs (G) Time (S)

ProtoNet [16] Conv4 0.113 0.601 0.004

BiFRN [24] 0.152 0.608 0.034

Ours 0.211 0.616 0.081

ProtoNet [16] Resnet12 12.424 21.161 0.044

BiFRN [24] 16.132 21.726 0.258

Ours 21.847 22.435 0.374

To comprehensively evaluate performance, we compared the efficiency of
TARNet with several publicly available few-shot learning methods. The results of
model parameters (Params.), floating-point operations (FLOPs), and inference
time (Times) are shown in Table 7. From the comparisons in Table 7 and Table 1
to Table 3, it can be seen that although TARNet slightly increases the storage
requirements, it still achieves better few-shot fine-grained image classification
performance while maintaining competitive computational and inference effi-
ciency. Especially when using Conv4 as the backbone, where a slight increase in
computational cost and storage leads to significant performance improvements,
we consider this investment worthwhile.

5 Conclusion

In this work, we proposed a task-aware local descriptors reconstruction network
for FSFG. Our primary innovation is a task-aware discriminative local descrip-
tors reconstruction module, i.e. We eliminate background and redundant local
descriptors, reconstructing only task-aware discriminative local descriptors. Rel-
ative to current methods based on reconstruction, our proposed method can
better focus on the most crucial details of the current task, disregarding distrac-
tions or irrelevant parts. Rigorous testing indicates that our network consistently
achieves strong performance across three fine-grained image datasets, often rival-
ing or even outperforming the existing state-of-the-art methods.

Acknowledgements. This work was supported by the Science and Technology
Project of Qingdao (No.23-2-8-smjk-20-nsh).



354 J. Tan et al.

References

1. Doersch, C., Gupta, A., Zisserman, A.: Crosstransformers: spatially-aware few-shot
transfer. Adv. Neural. Inf. Process. Syst. 33, 21981–21993 (2020)

2. Dong, C., Li, W., Huo, J., et al.: Learning task-aware local representations for
few-shot learning. In: Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pp. 716–722 (2021)

3. Hao, F., He, F., Cheng, J., et al.: Collect and select: semantic alignment metric
learning for few-shot learning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8460–8469 (2019)

4. Hui, B., Zhu, P., Hu, Q., Wang, Q.: Self-attention relation network for few-shot
learning. In: 2019 IEEE international conference on Multimedia & Expo Workshops
(ICMEW), pp. 198–203. IEEE (2019)

5. Ke, X., Cai, Y., Chen, B., et al.: Granularity-aware distillation and structure mod-
eling region proposal network for fine-grained image classification. Pattern Recogn.
137, 109305 (2023)

6. Khosla, A., Jayadevaprakash, N., Yao, B., et al.: Novel dataset for fine-grained
image categorization: Stanford dogs. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshop on Fine-grained Visual
Categorization (FGVC), vol. 2. Citeseer (2011)

7. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-
shot image recognition. In: International Conference on Machine Learning Deep
Learning Workshop, vol. 2. Lille (2015)

8. Krause, J., Stark, M., Deng, J., et al.: 3d object representations for fine-grained
categorization. In: Proceedings of the IEEE International Conference on Computer
Vision workshops, pp. 554–561 (2013)

9. Lee, S., Moon, W., Heo, J.P.: Task discrepancy maximization for fine-grained few-
shot classification. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5331–5340 (2022)

10. Li, P., Zhao, G., Xu, X.: Coarse-to-fine few-shot classification with deep metric
learning. Inf. Sci. 610, 592–604 (2022)

11. Li, W., Wang, L., Xu, J., et al.: Revisiting local descriptor based image-to-class
measure for few-shot learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7260–7268 (2019)

12. Li, X., Wu, J., Sun, Z., et al.: Bsnet: Bi-similarity network for few-shot fine-grained
image classification. IEEE Trans. Image Process. 30, 1318–1331 (2020)

13. Li, X., Yang, X., Ma, Z., et al.: Deep metric learning for few-shot image classifica-
tion: a review of recent developments. Pattern Recogn., 109381 (2023)

14. Munjal, B., Flaborea, A., et al.: Query-guided networks for few-shot fine-grained
classification and person search. Pattern Recogn. 133, 109049 (2023)

15. Ren, M., Triantafillou, E., Ravi, S., et al.: Meta-learning for semi-supervised few-
shot classification. arXiv preprint arXiv:1803.00676 (2018)

16. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Adv.
Neural Inform. Process. Syst. 30 (2017)

17. Sung, F., Yang, Y., Zhang, L., et al.: Learning to compare: relation network for
few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1199–1208 (2018)

18. Van Horn, G., Mac Aodha, O., Song, Y., et al.: The inaturalist species classification
and detection dataset. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 8769–8778 (2018)

http://arxiv.org/abs/1803.00676


Task-Aware Local Descriptors Reconstruction Network 355

19. Vinyals, O., Blundell, C., Lillicrap, T., et al.: Matching networks for one shot
learning. Adv. Neural Inform. Process. Syst. 29 (2016)

20. Wah, C., Branson, S., Welinder, P., et al.: The caltech-ucsd birds-200-2011 dataset
(2011)

21. Wei, X.S., Song, Y.Z., Mac Aodha, O., et al.: Fine-grained image analysis with
deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8927–
8948 (2021)

22. Wertheimer, D., Hariharan, B.: Few-shot learning with localization in realistic
settings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6558–6567 (2019)

23. Wertheimer, D., Tang, L., Hariharan, B.: Few-shot classification with feature map
reconstruction networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 8012–8021 (2021)

24. Wu, J., Chang, D., Sain, A., et al.: Bi-directional feature reconstruction network for
fine-grained few-shot image classification. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, pp. 2821–2829 (2023)

25. Wu, J., Chang, D., Sain, A., et al.: Bi-directional ensemble feature reconstruction
network for few-shot fine-grained classification. IEEE Trans. Pattern Anal. Mach.
Intell., 1–16 (2024)

26. Wu, Z., Li, Y., Guo, L., Jia, K.: Parn: position-aware relation networks for few-shot
learning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6659–6667 (2019)

27. Yan, L., Li, F., Zheng, X., et al.: Few-shot learning via task-aware discriminant local
descriptors network. In: Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, pp. 2887–2894 (2023)

28. Yang, Y., Wang, B., Zhang, D., et al.: Self-supervised interactive embedding for
one-shot organ segmentation. IEEE Trans. Biomed. Eng. (2023)

29. Ye, H.J., Hu, H., Zhan, D.C., et al.: Few-shot learning via embedding adapta-
tion with set-to-set functions. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8808–8817 (2020)

30. Zha, Z., Tang, H., Sun, Y., et al.: Boosting few-shot fine-grained recognition with
background suppression and foreground alignment. IEEE Trans. Circ. Syst. Video
Technol. (2023)

31. Zhang, C., Cai, Y., Lin, G., et al.: Deepemd: few-shot image classification with
differentiable earth mover’s distance and structured classifiers. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12203–12213 (2020)

32. Zhang, C., Yao, Y., Xu, X., et al.: Extracting useful knowledge from noisy web
images via data purification for fine-grained recognition. In: Proceedings of the
29th ACM International Conference on Multimedia, pp. 4063–4072 (2021)

33. Zhang, S., Li, Z., Yan, S., et al.: Distribution alignment: a unified framework for
long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2361–2370 (2021)

34. Zhao, P., Li, Y., Tang, B., et al.: Feature relocation network for fine-grained image
classification. Neural Netw. 161, 306–317 (2023)

35. Zhou, Y., Hu, Q., Wang, Y.: Deep super-class learning for long-tail distributed
image classification. Pattern Recogn. 80, 118–128 (2018)

36. Zhu, Y., Liu, C., Jiang, S.: Multi-attention meta learning for few-shot fine-grained
image recognition. In: Proceedings of the Conference on International Joint Con-
ferences on Artificial Intelligence, pp. 1090–1096 (2020)



TRIGS: Trojan Identification
from Gradient-Based Signatures

Mohamed Hussein1(B) , Sudharshan Subramaniam Janakiraman1 ,
and Wael AbdAlmageed2

1 Information Sciences Institute, University of Southern California, Arlington,
VA 22203, USA

mehussein@isi.edu, sudharshan.sj@seekout.com
2 Electrical and Computer Engineering Department, Clemson University, Riggs Hall,

Clemson, SC 29634, USA

wabdalm@clemson.edu

Abstract. Training machine learning models can be very expensive or
even unaffordable. This may be, for example, due to data limitations,
or computational power limitations. Therefore, it is a common practice
to rely on open-source pre-trained models whenever possible. However,
this practice is alarming from a security perspective. Pre-trained mod-
els can be infected with Trojan attacks, in which the attacker embeds
a trigger in the model such that the model’s behavior can be controlled
by the attacker when the trigger is present in the input. In this paper,
we present a novel method for detecting Trojan models. Our method
creates a signature for a model based on activation optimization. A
classifier is then trained to detect a Trojan model given its signature.
We call our method TRIGS for TRojan Identification from Gradient-
based Signatures. TRIGS achieves state-of-the-art performance on two
public datasets of convolutional models. Additionally, we introduce a
new challenging dataset of ImageNet models based on the vision trans-
former architecture. TRIGS delivers the best performance on the new
dataset, surpassing the baseline methods by a large margin. Our exper-
iments also show that TRIGS requires only a small amount of clean
samples to achieve good performance, and works reasonably well even if
the defender does not have prior knowledge about the attacker’s model
architecture. Our data (https://github.com/vimal-isi-edu/tat) and code
(https://github.com/vimal-isi-edu/trigs) are publicly available.

Keywords: Poisoning · Backdoor Attacks · Trojan Models · Defense
Methods

1 Introduction

Machine learning has made great progress since the introduction of deep learning.
However, the training of deep models remains more of an art than science. It

S. S. Janakiraman—Contributed to this research during his time at USC.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15303, pp. 356–371, 2025.
https://doi.org/10.1007/978-3-031-78122-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78122-3_23&domain=pdf
http://orcid.org/0000-0002-4707-9313
http://orcid.org/0009-0004-0501-2809
http://orcid.org/0000-0002-8320-8530
https://github.com/vimal-isi-edu/tat
https://github.com/vimal-isi-edu/trigs
https://doi.org/10.1007/978-3-031-78122-3_23


TRIGS: Trojan Identification from Gradient-Based Signatures 357

requires a lot of trial and error and parameter fine-tuning. All this incurs a
significant computational cost and energy footprint. More importantly, high-
performing models are trained on huge amounts of data, a process that can only
be afforded by a few organizations. As a result, researchers and practitioners use
open-source pre-trained models when they are available.

Fig. 1. TIRGS Framework.

Despite the ubiquity of using
open-source pre-trained models, this
practice poses a security threat. Del-
egating the training process to a
third party allows the training party
to embed a trigger pattern in the
training data. In such a case, the
trained model behaves normally in
the absence of the trigger but can
produce a certain output, determined
by the attacker, when the trigger is
present. This is known as Trojan or
backdoor attacks on machine learn-
ing models.

Trojan attacks are hard to detect
in a trained model because the model
behaves normally on benign inputs.
Without knowledge of the trigger, it
is impossible to reproduce the model’s malicious behavior. Consequently, many
proposed methods for Trojan model detection employ reverse engineering to
reconstruct possible triggers used to train a given model. The candidate triggers
are usually then filtered using heuristics about the trigger size [3], norm [31],
or the resulting attack success rate [15]. The reverse engineering process can be
time-consuming, especially, if it involves attempting all possible combinations
of source and target classes for trigger reconstruction [27]. Furthermore, the
deployed heuristics for anomaly detection are susceptible to detecting a trigger
when none exists [23].

In this paper, we introduce a novel method for the detection of Trojan mod-
els. Our method does not attempt to reconstruct the trigger, nor does it apply
heuristics about the nature of the trigger. Instead, we use a purely data-driven
approach to detect the presence of a trigger from its fingerprint in the model’s
signature. The main ingredient of our method is the construction of such a signa-
ture for a model, which is accomplished using an activation optimization process
that results in a fixed number of activation maps for a given classification model.
The signature can be further reduced in size via a feature extraction step that
uses pixel-wise statistics. A classifier is then used to detect whether a model
is Trojan or not based on the signature or its features. We call our method
TRojan Identification from Gradient-based Signatures (TRIGS). The process is
illustrated in Fig. 1. TRIGS is agnostic to the nature of the probe models’ archi-
tecture. In fact, it works well on very different architectures, as we shall discuss
later.
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Most of the proposed methods for Trojan model detection in the literature
are evaluated on non-public model sets of vastly varying sizes. The few publicly
available datasets for image-classification models are limited in the number of
classes they support. Also, the vast majority of the model architectures are
convolutional. In this paper, we introduce a new dataset of vision transformer
(ViT) models [5] trained on ImageNet. Our dataset will be the largest public
dataset in terms of the number of classes (1000) supported by its classification
models. It is also the only dataset that focuses on the ViT architecture, which
has recently become a popular backbone for many computer vision tasks [1,32].
On our collected data and two public datasets, TRIGS delivers state-of-the-art
performance.

2 Related Work

2.1 Activation Maximization

Activation maximization, also known as model inversion or feature visualization,
was first introduced in [6] to visualize the internal nodes of a neural network. The
method employed gradient descent with L2 regularization to visualize internal
units of Stacked Denoising Auto-encoders and Deep Belief Networks. In [24], the
same technique was applied to convolutional networks. The authors also showed
that this gradient-based approach is a generalization of the deconvolution-based
approach in [35], which was proposed for the same purpose. In [34], Gaussian blur
and pixel clipping were added as additional regularization techniques to produce
smoother visualizations. Alternatively to Gaussian blur, in [18], random jittering
and minimization of the total variation were introduced as extra regularization
techniques. More feature visualization techniques are discussed in [20].

2.2 Trojan Attacks

Trojan attacks on deep learning models were first introduced by [9], in which
mislabeled examples stamped with a trigger were used to train a Trojan model.
In [16], a method was presented for creating Trojan attacks without access to
training data by using model inversion [19]. In [8,22], methods for clean label
poisoning attacks were introduced. These methods target the misclassification of
a specific test example. Interestingly, in [21,26], clean label attacks were carried
out in such a way that a trigger can be used in the testing phase while being
completely hidden during training.

2.3 Defenses Against Trojan Attacks

Defenses against Trojan attacks include the detection of poisoned samples in a
training dataset [2] and making model training robust against poisoned samples
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[30]. In both types of defenses, it is assumed that the defender has control over
the training process. Other types of defenses include modifying a known Trojan
model to bypass the trigger [14] and detecting if a trained model is Trojan or
not [13]. Our focus in this section is on the latter type of defense, which is the
topic of this paper. We argue that Trojan model detection is an indispensable
capability because it is the first step towards removing the effect of the trigger
if it is present.

DeepInspect [3] is an algorithm for detecting models with backdoors assum-
ing that the defender has access only to the trained model and no access to
clean data samples. To achieve this goal, the method uses model inversion [7] to
construct a training dataset for the model. Using the constructed training data,
a generator is employed to create perturbation patterns (triggers) such that the
model produces a given target class with the poisoned samples. Then, anomaly
detection is applied to determine if any of the generated triggers is a real trig-
ger used to train the model. Similarly, in [27,31], anomaly detection is applied
to detect the real trigger (if any) among a set of generated triggers. The idea
was extended in [4] to the black-box case, where the model is only accessible
through its query responses. However, in this case, the triggers are generated by
reverse engineering with real clean samples. In [15,23], potentially compromised
neurons are first identified. Based on the identified compromised neurons, possi-
ble triggers are generated and only those that consistently subvert the model’s
predictions to a certain target class are admitted. The methods require at least
one clean sample of each class. The case when the clean samples available to
the defender are limited or non-existent was handled in [29]. The method uses
the similarity between two embeddings per image, one with a universal pertur-
bation pattern and one with a local perturbation pattern, as an indicator of
the presence of a Trojan. Similar to [33], Universal Litmus Patterns (ULPs) [13]
were introduced as probes to a classification model, the output of which can
distinguish benign from Trojan models. Complex attack scenarios, in which the
trigger pattern is not limited to be patch-shaped, were the focus of [17]. More
recently [28], a detection method was intorduced based on the observation that
Trojan models have an anomalously large logit margin for the target class. Our
proposed method, TRIGs, works both in the white-box and black-box settings
and with a limited access to clean data. TRIGS also works well with both CNN
and ViT architectures. The closest defense to TRIGS is the One-Pixel Signature
(OPS) defense [11], in which a model signature is used to train a binary classifier
to distinguish Trojan from bengin models. However, to work in the black-box
scenario, OPS uses brute force search to construct the signatures instead of using
gradient descent optimization as in TRIGS. Also, the signature size in OPS is
proportional to the number of classes, which can be very large, while TRIGS
can leverage pixel statistics to significantly reduce the signature size regardless
of the number of classes.
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2.4 Datasets for Trojan Attack Defense

Most of the work done on Trojan attack defenses used private datasets, usu-
ally containing a small number of models. To our knowledge, the only work
with models publicly released is the universal litmus patterns work [13], where
the models for the CIFAR10 and Tiny ImageNet classification tasks have been
released. More recently, under IARPA’s TrojAI program1, a software package [12]
and multiple datasets have been released for different computer vision and NLP
tasks. Our focus in this paper is on the image classification task in natural images,
as opposed to synthetic images used in the TrojAI data collections. The datasets
released so far for image classification have been limited in the number of classes
supported (maximum is 200 classes in the Tiny ImageNet classification task).
Furthermore, there has been no sufficient focus on the vision transformer archi-
tecture [5] despite its rising popularity. Therefore, we create a new dataset based
on vision transformer models trained on the ImageNet dataset (1000 classes).

3 Approach

3.1 Threat Model

The attacker is assumed to train a K-class classifier and provide it to the victim
such that the classifier works normally on clean inputs, but once a trigger is
attached to an input, the classifier produces a certain class (the target class) of
the attacker’s choice. The trigger is assumed to be small in size with respect to
the input so that the attacker can deploy the attack in the physical world. The
attacker achieves their goal by poisoning a fraction of the training dataset, which
is done by adding the trigger to the poisoned fraction from all classes and giving
them the target label as the ground truth label during training. Alternatively,
the attacker can release a poisoned dataset to the public such that the victim
can train the classifier on their end. In this case, the attacker can choose to use
a clean-label poisoning mechanism that still allows the attacker to deploy the
attack in the physical world.

The defender, who can be a third party different from the victim, has access
to the trained model’s weights and hence can use gradient descent to create a
signature for the model without the need for any data samples. The defender also
can train a binary classifier (a detector) that can tell from the signature whether
the model is Trojan or not. The detector is trained on signatures from a set of
benign and Trojan models for the target K-class classification task. To train the
detector, the defender needs access to pre-trained benign and Trojan models,
which can be obtained from trusted sources, such as NIST’s TrojAI data, or can
be created by the defender by training a small number of shadow models on a
small set of clean data.

A similar threat model in the black box setting was used in [11,13,33].
We show that our approach still works in the black-box setting. However, it

1 https://www.iarpa.gov/research-programs/trojai.

https://www.iarpa.gov/research-programs/trojai
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is important to note that targeting the white box case is still practical due to
the wide-spread use of pretrained model weights downloaded from the web. In
such cases, when the model weights are available, it is imperative to leverage
them to enhance the detectability of Trojan models.

3.2 Intuition

Due to the way the attack is installed, the Trojan model develops a strong associ-
ation between the trigger pattern and the target class. Such a strong association
is expected to be evident upon model inversion. Namely, if we attempt to syn-
thesize an image that maximizes or minimizes the activation associated with
the target class, the trigger pattern is expected to have a fingerprint in such an
image. Not only that, but the trigger’s fingerprint is expected to appear even if
we are maximizing or minimizing the activations of other classes. For example,
if our objective is to minimize the activation of a class other than the target
one, the easiest way could be just to add the trigger to an image. Similarly, if
the objective is to maximize such an activation instead, the model would make
sure that it does not have any trace of the trigger. Therefore, whether we are
maximizing or minimizing the activation of any class, the trigger can have a
fingerprint on the resulting image.

3.3 Framework

Figure 1 illustrates the proposed framework, which generalizes the intuition out-
lined above. Given a trained K-class classifier, a signature is created by finding
images that optimize M loss functions, which are computed based on the log-
its of the K classes. Therefore, M is a function of K. This results in M such
images, which collectively constitute the signature for the model. A classifier is
then trained to determine from the model’s signature whether it is Trojan or
not, after an optional feature extraction step.

3.4 Activation Optimization

Let f(x) be a K-class classification model. That is, f : RC×H×W → RK , such
that the input to the function f is a C-channel H×W image, and the output is a
vector of K logits corresponding to the K classes. The ith activation optimization
map of the signature is defined as

ai = arg min
x

Li(f(x)) , (1)

where Li is a loss function defined over the logits corresponding to an input x.
Then the signature of the model is defined as

S = [a1|a2| . . . |aM−1|aM ] , (2)

where | is the channel-wise image concatenation operator.
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In the current realization of our framework, we use M ≤ 2K loss functions,
where M = K when we use logit minimization or maximization as our loss
functions, and M = 2K when we combine logit maximization and minimization
together. Let fj(x) be the jth element of the output of f . In the case of combining
minimization and maximization, the ith loss function is defined as

Li(f(x)) =

{
fi(x) i ∈ Z+, i ≤ K

−fi−K(x) i ∈ Z+,K < i ≤ 2K
. (3)

For the rest of the paper, unless otherwise specified, we will use the variant of
the signature with M = 2K.

Regularization. The activation optimization process can be implemented using
gradient descent starting from a random image. However, a number of regu-
larizations are important to make the resulting images as natural as possible.
Otherwise, we may end up having images that contain no useful patterns. In
particular, we applied the following regularization techniques during activation
optimization.

L2 Regularization. This is the most common regularization technique used in

model inversion. It works by adding the L2 norm of the resulting image as a
term in the loss. That is

RL2(x) = ||x||2 . (4)

Total Variation Regularization. The total variation regularization [18] is used to
enhance the smoothness of the generated image by minimizing the local gradients
at every pixel. In particular, we minimize the L1 norm of the local gradient in
each channel as follows.

RTV (x) =
∑
ijk

|x(i, j, k) − x(i, j − 1, k)| + |x(i, j, k) − x(i − 1, j, k)| , (5)

where x(i, j, k) is the pixel value at location (i, j) in the kth channel of x.
Adding the main loss and the regularization terms together, the ith activation

optimization map is obtained by

ai = arg min
x

Li(f(x)) + λL2RL2(x) + λTV RTV (x) , (6)

where λL2 and λTV are loss term weight parameters to be finetuned.

3.5 Feature Extraction

The size of our constructed model signature grows linearly with the number of
classes. When the number of classes is large, training a classifier on the resulting
signature may not be practical. To address this issue, we propose a feature
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extraction step, which converts the signature into a fixed number of channels
regardless of the number of classes. The idea is to use pixel-wise statistics over
the signature channels. Consider the signature S composed of M activation
optimization maps, as shown in Eq. 2. Suppose that each activation optimization
map contains c channels (typically c = 3). Then, S has N = cM channels in total.
Consider the pixel at (i, j) in the N channels of S. Let sij = [sij1sij2 . . . sijN ]
be a vector containing the values of the N channels at the (i, j) pixel location.
Let g : RN → RP such that uij = g (sij) be a vector of P statistics computed
over the values of sij . The compilation of the pixel statistics vectors constitute
a P -channel feature map U whose size is independent of the number of maps M
in the raw signature S. Specifically, we set P = 11, where the 11 statistics are
as follows: minimum, maximum, sample mean, sample standard deviation, 0.25
quantile, median, 0.75 quantile, and four histogram bins.

As discussed in Sect. 3.4, our current realization uses a combination of activa-
tion minimization and activation maximization maps. That is S = [Smin|Smax],
where Smin and Smax are the portions of S that correspond to the activation min-
imization maps and the activation maximization maps, respectively. In addition
to the pixel statistics feature map U , whose values are computed over all chan-
nels of S, we also construct Umin and Umax, which are pixel statistics feature
maps computed over the channels of Smin and Smax, respectively. Therefore, our
final pixel statistics feature map is [Umin|Umax|U ] with a total of 33 channels.

4 Experimental Evaluation

4.1 Evaluation Data

To evaluate our method, we use two public datasets introduced in [13] and
create our own dataset. All Trojan models in all the datasets are created via the
BadNets method [9].

Public Datasets. One of the two public datasets is for models trained on the
CIFAR10 dataset. The models are based on a modified version of the VGG
architecture [25]. The other public dataset is for models trained on the Tiny
ImageNet dataset. The models for the latter dataset are based on a shallow
version of the ResNet18 architecture [10], which we will refer to as ResNet10.
In both datasets, 20 different trigger patterns were used such that 10 of them
appear only in the training models, and the other 10 appear only in the testing
models. Each dataset has 1000 and 2000 models, respectively, for training, and
200 models for testing, all split equally between benign and Trojan models.

Our Dataset. Our own created dataset contains 1, 200 models, with 600 benign
and 600 Trojan. From each class, we use 500 models for training and the remain-
ing 100 for testing. All models in our dataset are created from a pre-trained ViT-
B-16 architecture [5] available with the torchvision package. Specifically, we
used the weight version named ViT B 16 Weights.IMAGENET1K V1. Each model
was then trained for one epoch on 90% of the ImageNet training set using the
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AdamW optimizer with a learning rate of 10−5 and a batch size of 64. For each
Trojan model, a random target class was chosen, and a randomly generated trig-
ger was created and placed at a random location in 1% of the training data. A
trigger was generated by first randomly sampling a 5 × 5 3-channel tensor and
then resizing it to 32 × 32 using bicubic interpolation. The performance of the
original ViT-B-16 model on the ImageNet validation data was 81%. After train-
ing for one epoch, the accuracy of our benign models dropped to around 79%
(which could be due to overfitting), and the accuracy of the poisoned models on
clean data was between 78% and 79%. Therefore, our Trojan models preserved
performance on clean data. On the other hand, with the addition of triggers, the
performance of Trojan models dropped to almost 0% in all victim classes, which
means that the trigger was effective in poisoning the model.

4.2 Implementation Details

Signatures were created using the Adam optimizer with 200 iterations. A learning
rate of 10 was used with the CIFAR10 dataset while a learning rate of 0.1 was
used with the Tiny ImageNet and the ImageNet datasets. For the CIFAR10
dataset, it was important to standardize the final image so that it has pixel
values with 0.5 mean and 0.25 standard deviation.

L2 regularization was implemented by setting the weight decay argument of
the optimizer to 10−5. The weight for the total variaton regularization was set
to 10−3 for the CIFAR10 and ImageNet datasets, and was set to 10−2 for the
Tiny ImageNet dataset.

The detection classifier model (ResNeXt-50 (32 × 4d)), was trained using the
Adam optimizer with a learning rate of 10−4, and with 100 epochs. 90% of the
training samples were used for training and the remaining 10% were used for
validation.

4.3 Evaluation Results

Sample signatures for one Trojan model and one benign model from the
CIFAR10 Trojan dataset are shown in Fig. 2. In this dataset, the trigger was
placed at the corners of the image. You can see the footprint of the trigger
clearly at the corners of the Trojan model’s signature, particularly in the acti-
vation minimization maps (top two rows).

In the remainder of this section, we focus on comparing different variants of
our methods to prior research. Table 1 shows the detection accuracy and the area
under the receiver operating characteristics curves (AUC) for detecting Trojan
attacks using our method and three baseline methods on the three datasets. As
explained in Sect. 3.4, we applied three variants of our method using activation
minimization, activation maximization, and both, in which case we concatenated
the signature channels coming from the former two optimizations. We also used
the pixel statistics channels as explained in Sect. 3.5. In Table 1, for all exper-
iments on CIFAR10 and Tiny ImageNet and for the statistics experiment on
ImageNet, we present the average and the standard deviation of the metrics
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over ten independent training sessions for each classifier. For activation max-
imization, minimization, and their combination on ImageNet, we only trained
three models for each due to the heavy computational cost.

Fig. 2. Sample signatures from the CIFAR10
Trojan dataset. Each signature has 20 images
corresponding to the 10 classes of the dataset.
The top two rows of each signature are for
the activation minimization maps while the
bottom two rows are for the activation max-
imization maps. Note how the trigger has a
clear fingerprint in the minimization maps for
the signature of the Trojan model.

The three baseline methods,
which are ULP [13], k-Arm opti-
mization [23], and MM-BD [28],
were chosen based on the availabil-
ity of their code and its adapt-
ability to new datasets. For ULP,
we used the publicly available code
for CIFAR10 and Tiny ImageNet.
We applied the best configura-
tion in the paper for each dataset,
which was ten litmus patterns for
CIFAR10 and five for Tiny Ima-
geNet. We created ten sets of lit-
mus patterns for each dataset. In
Table 1, we report the mean and
standard deviation of the AUC and
accuracy scores over the litmus pat-
tern sets. It is worth noting that we
could not reproduce or even come
close to the results reported in the
ULP paper despite using the code
released by the authors. For the
ImageNet dataset, we could not get
the method to work due to exces-
sive computational cost and lack of
convergence.

For k-Arm optimization, we
adapted the publicly released imple-
mentation and evaluated it on the
three datasets. We used the Trigger
Size output for each model as the
score based on which we computed
the AUC. Again, we evaluated the
method ten times for each probe model with different random seeds. We report
the mean and standard deviation of the resulting metrics in Table 1.

For the MM-BD method, we adapted the publicly available code to work
with our datasets. We found that the default number of steps used in the paper
(300) was too small for the models to converge. For a fair comparison, in all
our experiments, we let the optimization run until convergence. We used ten
different runs for each model in the CIFAR10 and the Tiny ImageNet datasets.
However, due to the excessive computational time, we only used one run for the
ImageNet dataset.
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In Figs. 3a to 3c, box plots are used to present the AUC scores for all the
runs. From the results in Table 1 and Figs. 3a to 3c, we can observe that, in each
dataset, at least one of our four variants surpasses or matches the baseline perfor-
mance, regardless of whether the probe model is CNN or ViT-based. Moreover,
when our method surpasses the baseline methods, the margin is statistically
significant.

It is interesting to observe that the pixel-wise statistics variant is the only
variant that consistently outperforms or matches all baseline methods. It is also
the best in the case of CIFAR10 and Tiny ImageNet, achieving the highest mean
score and the lowest standard deviation. However, for ImageNet, the variant that
combines both types of activation optimization maps achieves the best perfor-
mance. It is also interesting to notice that the activation minimization variant
consistently performs better than the activation maximization one. This result
is surprising given that all prior work on model inversion focused on activa-
tion maximization (or alternatively minimizing the classification loss, e.g. the
cross-entropy loss). Here, for the first time, we find a good use for activation
minimization-based model inversion.

Out of the three baseline methods, the only serious contender is the MM-BD
method. In fact, this method achieves a perfect AUC score on the Tiny ImageNet
dataset (though its accuracy is not the best). However, similar to the other two
baseline methods, MM-BD struggles on the ImageNet dataset. We believe this
struggle is due to the ViT architecture, in which the main assumption of the
MM-BD method (the presence of an anomalously large logit margin for the
target class in a Trojan model) may not hold.

Table 1. Comparative performance results.

CIFAR10 Tiny ImageNet ImageNet

AUC Acc. AUC Acc. AUC Acc.

ULP 0.64 (0.060) 0.61 (0.048) 0.74 (0.075) 0.71 (0.066) – –

k-Arm 0.68 (0.028) 0.51 (0.000) 0.65 (0.120) 0.54 (0.024) 0.51 (0.67) 0.5 (0.000)

MM-BD 0.90 (0.012) 0.79 (0.029) 1.00 (0.000) 0.97 (0.009) 0.59 0.51

TRIGS Both 0.95 (0.022) 0.90 (0.038) 0.98 (0.010) 0.93 (0.014) 0.94 (0.015) 0.87 (0.033)

Max 0.60 (0.067) 0.57 (0.054) 0.93 (0.016) 0.83 (0.047) 0.73 (0.013) 0.66 (0.020)

Min 0.96 (0.011) 0.92 (0.019) 0.96 (0.015) 0.92 (0.013) 0.82 (0.108) 0.75 (0.083)

Stats 0.99 (0.003) 0.96 (0.011) 1.00 (0.001) 0.99 (0.010) 0.84 (0.046) 0.76 (0.050)

4.4 Sensitivity to Chosen Statistics

Since the pixel-wise statistics variant is the most efficient and provides the best
performance on average, we study its sensitivity to varying the number of used
statistics. We focus on the ImageNet dataset because the other two datasets
are almost saturated. The results in Table 1 are for 11 statistics (Sect. 3.5). We
experimented with adding four more quantiles at 0.125, 0.375, 0.625, 0.875. We
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also experimented with different numbers of histogram bins. Figure 3d shows
the results of these experiments. The bars represent the mean AUC over 10
training sessions and the error lines represent the range of values. There is no
clear advantage of adding more quantiles. However, more histogram bins slightly
enhance the performance at the cost of higher memory and computational costs.

Fig. 3. (a-c) AUC Box plots for the main three evaluation datasets. (d) Average AUC
with different number of histogram bins and quantiles for the ImageNet dataset. The
error lines show the range of values.

4.5 Stronger Threat Models

In this section, we study the effect of having a stronger threat model. In partic-
ular, we study three aspects of the threat model: (1) the data available to the
defender for training shadow models is different and much smaller than the data
available to the attacker, (2) the defender uses a different architecture to train
the shadow models, and (3) the defender uses a small number of shadow models.

To conduct these experiments, we created another set of models trained on
the Tiny ImageNet dataset. To mimic the effect of having different and smaller
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Fig. 4. Average AUC values vs (a) different fractions of the Tiny ImageNet dataset
used to train the ResNet10 shadow models, and (b) same as (a) but across different
numbers of shadow models used to train the detector.

data available to the defender, we split the dataset into two disjoint sets: a large
set consisting of 50% of the original training data used only by the attacker
(i.e. the testing models.) and 4–10% of the data used only by the defender to
train the shadow models. All shadow models were trained on the ResNet10
architecture adopted in [13]. For each percentage of the data used to train the
shadow models, we trained 1000 of them, split as 500 benign and 500 Trojan
models. For the testing models (representing the attacker’s trained models), we
trained 200 models using the ResNet10 architecture and 200 models using the
VGG16 architecture. For each architecture, half of the models were benign and
the other half were Trojan. Each model, whether used for training or testing the
detector, was trained on a unique random trigger created in a similar way to
what we used for the ImageNet-ViT dataset, but using a trigger size of 8 × 8.
Triggers are placed in random locations in 2% of the training data in the case
of the testing models, and in 5% of the training data in the case of the training
models. The reason for having different poisoning fractions is that as the size of
the training data reduces, we found that a higher poisoning fraction is needed
to achieve a high attack success rate (typically ∼ 98%).

Figure 4a shows the average AUC plots for these experiments. Each point is
an average of 10 different runs. For these experiments, we used the pixel-wise
statistics variant of our method. As can be observed from the plots, as low as
6% of the dataset is enough for excellent performance if the architecture of the
shadow models matches with that of the probe models. When the architectures
are different, despite the drop in performance, it is still higher than the baseline
methods, ranging from around 0.8 to 0.9 AUC.

In another experiment, we study the effect of reducing the number of shadow
models used to train the detector. We originally trained 1000 models for each
fraction of the Tiny ImageNet dataset. We evaluate the perfomrnace when only
100, 250, 500, or 750 models are used to train the detector. The results are
shown in Fig. 4b. In these results, the ResNet10 architecture is used for the
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testing models. Each point in the plot is an average of 10 different runs. The
performance does not degrade much if we reduce the number of shadow models
down to 250, especially if we use at least 8% of the Tiny ImageNet dataset for
training the shadow models. However, going further down to 100 models can
hurt the performance.

5 Conclusion

In this paper, we present a new method for detecting Trojan models named
TRIGS for TRojan Identification from Gradient-based Signatures. TRIGS
applies a data-driven approach, where a signature of a trained model is con-
structed using activation optimization, and a classifier detects whether the model
is Trojan or not based on the signature. On two public datasets as well as our
own created challenging dataset, TRIGS achieves state-of-the-art performance,
in most cases surpassing baseline methods by large margins. TRIGS works well
regardless of whether the probe model architecture is convolutional or a vision
transformer. It also works very well when the defender only has access to a
small amount of clean samples. Our dataset will be the first public dataset for
Trojan detection that is composed only of models based on the vision trans-
former architecture and trained on a 1000-class classification task (those of the
ImageNet dataset).
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Abstract. Structural adversarial attack methods that attack a graph
neural network by perturbing the edges of the input graph are well-
known for their strong effectiveness. However, most existing structural
attacks focus on achieving high attack performance, but they ignore the
high cost of budget to control (i.e., buy out or hijacking) the nodes
(i.e., user accounts in a social network) when executing the attacks in
real-world networks. The classic anchor nodes attacks are more budget-
efficient because they only control a small set of anchor nodes to conduct
all the attacks. However, their attack effectiveness is also limited by the
restriction of using one set of anchor nodes. In this paper, we develop a
strong and budget-efficient multifaceted anchor nodes attack on graph
neural networks. The key idea is to simultaneously train multiple sets
of anchor nodes and an assignment network, such that the assignment
network can select the best set of anchor nodes to conduct each new
attack successfully. This significantly improves the attack effectiveness
while keeping the budget of controlled nodes small. Extensive experi-
ments on five real-world datasets demonstrate the outstanding perfor-
mance of our method. Our code and Appendix is available at https://
github.com/zhz0108/mfan/.

Keywords: Adversarial attack · Graph neural network

1 Introduction

Modern graph neural networks (GNN) are widely employed in many real-world
application scenarios, such as social network analysis [4,24], recommendation
systems [6,13] and drug discovery [9]. However, GNNs are known to be vul-
nerable to adversarial attacks [11,18,28,30,33,39], which may potentially cause
severe negative impacts on the society. For instance, fraudulent users on social
networks, such as spam bots, phishing accounts and scam accounts, may establish
seemingly genuine friendships to evade account validation checks. Hoax articles
on Wikipedia can effectively disguise themselves by carefully modifying their
links [20]. A money laundering account may also evade detection by conducting
seemingly normal transactions with other legitimate accounts.
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To improve security and robustness of GNNs, many works have been pro-
posed to discover potential security loopholes in trained GNN models by
developing strong adversarial attacks. Among the existing adversarial attacks
on GNNs [5,8,11,16,18,22,23,28,30,32,33,36–39], the structural attack meth-
ods [5,7,12,16,22,23,32,34,36–38], which attack a GNN by perturbing (i.e.,
modifying) the edges of the input graph, are well-known for their strong effec-
tiveness. However, most existing structural attack methods [5,12,16,22,23,32,
36,38] focus on improving the attack effectiveness, but they ignore the huge cost
of budget to control nodes in order to perturb edges. For example, in order to
perturb an edge in a social network, the adversary needs to take control of at
least one node connected to the edge, which often requires either paying a user
to buy out his/her account or paying a hacker to hijack the account. If an adver-
sary perturbs many edges, it needs to control a large number of nodes, which
not only costs a big budget to realize the attack but also increases the risk of
being detected.

How to conduct a strong and budget-efficient attack against GNNs is a novel
problem that has not been systematically studied in the literature. As discussed
later in Sect. 2, both the targeted structural attacks [5,7,12] and the global struc-
tural attacks [1,16,23,32,38] have to control many nodes in order to achieve
a good attack performance. The huge budget required to control the nodes
significantly reduces their cost-effectiveness. In comparison, the anchor nodes
attacks [36,37] are more budget-efficient because they only need to control a
small set of anchor nodes to attack all the target nodes. However, due to the
limited attack effectiveness of a single set of anchor nodes, existing anchor nodes
attacks [36,37] often cannot achieve good attack performance.

In this paper, we develop a budget-efficient Multi-Faceted Anchor Nodes
(MFAN) attack against GNNs performing node classification tasks. The key idea
is to train multiple sets of anchor nodes together with an assignment network,
where each set of anchor nodes successfully attacks a different set of target nodes,
and the assignment network accurately selects the best set of anchor nodes to
attack each new target node. In this way, MFAN achieves outstanding attack
performance by conducting “divide and conquer”, which successfully attacks the
union of the nodes that are successfully attacked by each set of anchor nodes.
MFAN is also budget-efficient because it only controls a small number of anchor
nodes. Specifically, we make the following contributions. First, we propose a
novel adversarial attack task that aims to achieve strong attack effectiveness
while costing a low budget of controlled nodes. Second, we successfully tackle
the task by developing the strong and budget-efficient MFAN attack. Last, we
conduct extensive experiments on five real-world datasets to demonstrate the
outstanding performance of MFAN.

2 Related Work

Multifaceted anchor nodes attack on graph neural networks is a novel problem
that has not been systematically tackled before. Since our work only modifies the
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edge structure of the input graph, it is substantially different from the existing
works that perform attacks by modifying node features [2,8,29,40] or injecting
poisonous nodes [11,18,28,30,33,39]. Instead, it is more related to the structural
attacks [1,5,7,12,16,22,34–38] that reduce the classification performance of a
victim graph neural network model by perturbing (i.e., adding or removing) the
edges of the input graph. We discuss the relationship between our work and the
related existing works in detail as follows.

Targeted Structural Attacks. [5,7,12]. A targeted structural attack causes
the victim model to fail its classification on a single node by perturbing a small
set of edges in the graph. RL-S2V [12] employs hierarchical reinforcement learn-
ing to generate edge perturbations, which significantly reduces the prediction
accuracy of the victim model. FGA [7] leverages iterative gradient information
of pairwise nodes from a trained graph convolutional neural network to generate
edge perturbations. GF-Attack [5] generates edge perturbations by employing
graph embedding learning with a corresponding graph filter. The above tar-
geted structural attacks generate a different perturbation of edges for each spe-
cific target node to attack. Since perturbing edges requires control of the nodes
connected to the edges, launching a new attack by perturbing a new set of edges
requires control of a new set of nodes. Since controlling each new node costs a
proportion of the budget, the targeted structural attacks are not budget-efficient.
When the budget is limited, these attacks cannot afford to control enough new
nodes to attack many target nodes.

Global Structural Attacks. [1,16,22,23,32,34,38]. A global structural attack
aims to reduce the overall classification accuracy of a victim model on all the
nodes of the graph by perturbing a large set of edges once and for all. Meta-
Self [41] uses meta-learning to perform attacks by treating the adjacency matrix
of the graph as a hyper-parameter. [35] proposes two perturbation methods using
first-order attack generation. [16] launches attacks on large-scale graphs by using
projected randomized block coordinate descent (BCD) and greedy randomized
BCD to sample the set of edges to perturb. There are also works that perform
effective global structural attacks by eliminating gradient bias [23], using Eigen
decomposition [1], and utilizing a certified robustness-inspired framework [32].
The above global structural attacks often require perturbing a large number of
edges in order to achieve a good attack performance. These methods are not
budget-efficient, because perturbing a large number of edges requires control of
many nodes, which demands a substantial budget.

Anchor Nodes Attacks. [36,37]. An anchor nodes attack is a special type of
structural attack. It first finds a constant set of nodes, named anchor nodes,
then fails the classification of the victim model on each target node by flipping
the edges between the anchor nodes and the target node. Here, flipping an edge
means adding a non-existing edge or deleting an existing edge. As the first work
in this line, GUA [37] identifies a set of anchor nodes by a minimum perturbation
iteratively. The follow-up work GUAP [36] generates a set of new nodes and uses
them as anchor nodes to launch attacks. Both GUA and GUAP are budget-
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efficient because they only require control of a small constant set of anchor
nodes in order to attack all the target nodes. However, their attack effectiveness
is largely restricted by the limitation of using only a single set of anchor nodes for
all the attacks. The proposed multifaceted anchor nodes attack differs from GUA
and GUAP because it smoothly incorporates multiple sets of anchor nodes with
a well-trained assignment network to significantly improve attack effectiveness
while keeping a low budget of controlled nodes.

3 Preliminary: Graph Neural Network

Denote by G = (V,E,A,X) an unweighted graph, where V is the set of nodes,
E is the set of edges, and N = |V | is the number of nodes in G. The adja-
cency matrix A ∈ {0, 1}N×N describes the edge structure of G. Each node in
G is associated with a d-dimensional feature vector; we represent the feature
vectors of all the nodes by a feature matrix X ∈ R

N×d, where the i-th row of X
corresponds to the feature vector of the i-th node vi in G. Each node in graph
G is associated with a class label in one of the C total number of classes. A
graph neural network, denoted by f(X,A), takes the feature matrix X and the
adjacency matrix A of a graph G as the input and predicts the class labels for
the nodes in G.

Following the literature [7,35–37,40,41], we target a classic graph neural
network named graph convolutional network (GCN) [19] as the victim model to
attack. A typical GCN consists of one or more hidden graph convolution layers
followed by a softmax layer to produce the final prediction. The hidden graph
convolution layer is defined as

H(l+1) = σ(ÂH(l)W (l)), (1)

where l is the number of convolution layers, σ(·) is the activation function
ReLU [15], and Â = D̃−1/2ÃD̃−1/2 is a normalized adjacency matrix with
Ã = A + I and diagonal degree matrix D̃ii =

∑
j Ãij . After adding the final

softmax layer, a typical GCN with one hidden graph convolution layer is repre-
sented by

f(X,A) = softmax(Â ReLU(ÂXW (0)) W (1)), (2)

where W (0) and W (1) are the model parameters of the GCN. We write f(X,A)
in short as f when the context is clear. The output of the GCN f , denoted by

Z = f(X,A), (3)

is a matrix with N rows and C columns, where the i-th row and j-th column
entry, denoted by Zij , is the probability of the i-th node being predicted as the
j-th class, 1 ≤ j ≤ C. We also write the i-th row of Z as f(X,A)i.
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4 Task Definition and Problem Formulation

4.1 The Task of Multifaceted Anchor Nodes Attack

In the task of multifaceted anchor nodes (MFAN) attack, we aim to attack a
victim GCN f trained on an unweighted graph G. We perform the attack by
perturbing (i.e., modifying) the edges in G to generate a perturbed graph G′,
such that the label of a target node vi predicted by f on G′ is different from the
label of vi predicted by f on G.

Following the routine of [36,37], the perturbation on G is defined as a set of
edge modifications (i.e., adding or removing edges) induced by a set of nodes in
G, named anchor nodes. Denote by Q ⊂ V a set of anchor nodes, a pertur-
bation induced by Q to attack f ’s prediction on a target node vi is to flip the
edges between each node in Q and vi. Here, flip means adding a non-existing
edge or deleting an existing edge. We refer to “change f ’s prediction on a target
node vi” as “attack the target node vi” in short.

In our work, we aim to train K sets of anchor nodes, denoted by a collec-
tion Q = {Q1, . . . , QK}, where each set of anchor nodes Qk ∈ Q specializes in
attacking a large subset of target nodes in V . Together with the training of Q,
we also train an assignment network, denoted by gθ, which is used to select
the best-suited set of anchor nodes from Q to attack a target node vi. We define
the MFAN task as follows.

Definition 1. Given an integer budget ξ > 0 on the number of controlled nodes
for each perturbation and a victim GCN f trained on an unweighted graph G,
the task of multifaceted anchor nodes (MFAN) attack is to train an attack
model, composed by K sets of anchor nodes Q = {Q1, . . . , QK} and an assign-
ment network gθ, such that

1. the size of each set of anchor nodes is not larger than ξ;
2. each target node vi ∈ V is attacked by the perturbation induced by the set of

anchor nodes Qk ∈ Q that is selected by the assignment network gθ; and
3. our attack model can successfully attack most of the nodes in G.

Compared to the classic anchor nodes attacks [36,37], the MFAN attack is
multifaceted because it uses more than one set of anchor nodes. The assign-
ment network gθ takes G and the target node vi as the input to select the
best-suited set of anchor nodes that has the largest chance to successfully attack
vi. Since different sets of anchor nodes are specialized in attacking different
subsets of target nodes, the proposed MFAN attack is essentially performing
“divide and conquer” to successfully attack the union of target nodes that are
attacked by each set of anchor nodes. This significantly boosts the attack effec-
tiveness of MFAN. The budget ξ limits the number of controlled nodes for each
set of anchor nodes. Since the same sets of anchor nodes are used to attack all
the target nodes in G, the number of anchor nodes to control is very small, which
makes MFAN extremely budget-efficient.

We use the same white-box setting in [36,37] that an adversary has full access
to the structure and parameters of the victim model f . However, as demonstrated
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Fig. 1. An example of MFAN attack. To attack the target node v4 in the original graph
G, the assignment network selects the anchor nodes set Q1 = {v1, v6, v9}. Then it flips
the edges between v4 and Q1, generating the perturbed graph G′.

later in Sect. 6.2, the attack model trained by MFAN on a white-box victim
model f can be straightforwardly transferred to successfully attack other black-
box models.

4.2 Modelling the Assignment Network and the Perturbation

We model the assignment network as a GCN, denoted by gθ(X,A), that
predicts the probabilities of selecting each of the K sets of anchor nodes in Q to
attack each target node vi in G. The output of gθ(X,A) is an N -by-K matrix,
where the entry in the i-th row and the k-th column, denoted by gθ(X,A)ik, is
the probability of selecting the set of anchor nodes Qk ∈ Q to attack the target
node vi in G.

Given a set of anchor nodes Qk ∈ Q, MFAN attacks the target node vi

by conducting a perturbation on G, which flips the edges between vi and each
anchor node in Qk. To mathematically model this perturbation, we first represent
the set of anchor nodes in Qk by a perturbation vector pk ∈ {0, 1}N . The i-th
element of pk being equal to 1 means the i-th node vi in G is an anchor node
in Qk. In this way, the sets of anchor nodes in Q are modelled by the set of
perturbation vectors P = {p1, . . . ,pK}. Then, we follow [36,37] to model the
perturbation induced by a perturbation vector pk ∈ P to attack vi as

ρ(vi,pk) = (1 − P ) ◦ A + P ◦ (10 − A), (4)

where ρ is the perturbation function, ◦ means element-wise multiplication, 1 is
an N -by-N matrix with all entries equal to one, 10 is an N -by-N matrix of all
ones except the diagonal entries being zeros, and P is an N -by-N matrix with
i-th row and i-th column replaced by pk and the other entries equal to zero.

According to [36,37], the output of ρ(vi,pk), denoted by A′ = ρ(vi,pk), is
the perturbed adjacency matrix of the perturbed graph G′, where the
edges in G between vi and each anchor node in Qk are flipped. Figure 1 shows
an example of the attacking procedure of MFAN.
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4.3 Formulating the Problem

We formulate the loss of the proposed MFAN attack as

L(P, θ) = −
N∑

i=1

K∑

k=1

gθ(X,A)ik · CE(f(X,A′)i, f(X,A)i

)
, (5)

where A′ = ρ(vi,pk) is the perturbed adjacency matrix induced by the pertur-
bation vector pk ∈ P, f is the victim model, f(X,A′)i and f(X,A)i represent
the predicted class distributions of vi on the perturbed graph G′ and original
graph G, respectively, and CE(·, ·) is the cross entropy loss.

In Eq. (5), the cross entropy term measures the difference between f(X,A′)i

and f(X,A)i when we use pk to attack the target node vi. Since gθ(X,A)ik

is the probability of selecting pk to attack vi, the summation term
∑K

k=1 is
computing the expected difference between f(X,A′)i and f(X,A)i. According
to the task definition in Definition 1, our goal is to successfully attack most of
the nodes in G, which can be achieved by maximizing the expected difference
between f(X,A′)i and f(X,A)i on all the nodes in G. As a result, we formulate
the MFAN attack as the following optimization problem.

min
P,θ

L(P, θ) s.t. ∀pk ∈ P, ||pk||1 ≤ ξ,pk ∈ {0, 1}N , (6)

where the constraint ||pk||1 ≤ ξ requires the number of anchor nodes in each set
Qk ∈ Q to be no larger than the budget ξ.

5 Solving the Formulated Problem

The original optimization problem in Eq. (6) is a constrained integer program-
ming problem, which is NP-hard and cannot be straightly solved by gradient-
based methods. A typical solution often involves two steps.

Step-1: we relax each integer-valued constraint pk ∈ {0, 1}N , pk ∈ P, to a real-
valued constraint pk ∈ [0, 1]N ; this converts the original optimization problem
in Eq. (6) to

min
P,θ

L(P, θ) s.t. ∀pk ∈ P, ||pk||1 ≤ ξ,pk ∈ [0, 1]N . (7)

Step-2: following the standard penalty method [3,14,27], we incorporate each
constraint ||pk||1 ≤ ξ as a penalty term max(||pk||1 − ξ, 0) in the loss function.
This converts the problem in Eq. (7) to

min
P,θ

L(P, θ) + λ
∑

pk∈P
max

(||pk||1 − ξ, 0
)

s.t. ∀pk ∈ P,pk ∈ [0, 1]N . (8)
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Algorithm 1: Training P and θ

Input : ξ, f , G, and a training set of nodes VT ⊂ V .
Output: P and θ

1 Randomly initialize P ← P(0) and θ ← θ(0); and set T = 1, λ = 0.1 and
max epoch = 120.

2 while epoch < max epoch do
3 for each mini-batch in VT do
4 for each pk ∈ P do
5 pk ← pk − η1∇pkL∗(P, θ)
6 pk ← clip(pk, 0, 1)

7 end
8 θ ← θ − η2∇θL∗(P, θ)

9 end
10 Update λ ← λ × 5 for every 20 epochs when epoch ≤ 1

2
max epoch.

11 Update T ← T
2

for every 5 epochs when epoch > 1
2
max epoch.

12 end
13 P ← quantize(P, ξ)
14 return P and θ

Algorithm 2: Attacking a target node vi in G

Input : G, vi, P, and gθ

Output: A perturbed adjacency matrix A′

1 k∗ ← arg maxk gθ(X, A)ik (Selecting the most suitable set of anchor nodes)
2 A′ ← ρ(vi,pk∗) (Conduct perturbation by the selected set of anchor nodes)
3 return A′

Solving the optimization problem in Eq. (8) often cannot find a good col-
lection of K sets of anchor nodes, because, due to the relaxed constraint
pk ∈ [0, 1]N , the entries in each solution pk ∈ P can be a real value that is
far from 0 or 1. Directly quantizing (i.e., binarizing) the entries in pk to 0 or 1
causes a large quantization error, thus reduces the quality of the final solution.

To tackle this issue, we propose a simulated annealing trick to force the
real-valued entries in each solution pk ∈ [0, 1]N to be close to 0 or 1. This effec-
tively reduces the quantization error when quantizing a solution pk to a binary
vector in {0, 1}N , thus improving the quality of the final solution. Specifically,
we develop a weighted penalty term to rewrite Eq. (8) as:

min
P,θ

L(P, θ) + λ
∑

pk∈P
max

(||wk ◦ pk||1 − wmin
k ξ, 0

)
s.t. ∀pk ∈ P,pk ∈ [0, 1]N ,

(9)
where wk is an N -dimensional weight vector computed from pk, wmin

k is the
minimum value of all the entries in wk, and ◦ is element-wise product. The h-th
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entry of wk is computed by

wh
k = σ(ph

k) =
1

1 + e(p
h
k−δ)/T

, (10)

where ph
k is the h-th entry in pk, δ is the mean of the ξ-th and (ξ +1)-th largest

entry in pk, and T is a hyperparameter controlling the “temperature” of the
annealing process. A smaller value of T renders the annealing function σ closer
to a step function that assigns weights close to 1 to the top-ξ largest entries in
pk and assigns weights close to 0 to the other entries. Therefore, by gradually
decreasing the value of T , we can force the top-ξ largest entries in pk closer to 1
and also force the other entries closer to 0. This makes the solution of pk close
to a binary vector, which reduces the quantization error.

Equation (9) is the formal form of our optimization problem, which can be
solved by standard proximal gradient descent [25]. A feasible solution to Eq. (9)
is also a feasible solution to Eq. (7) due to the following reasons. First, when
minimizing the objective function in Eq. (9) following [3,14,27], λ is gradually
increased to push the penalty terms to zero. This ensures each feasible solution
pk ∈ P to Eq. (9) satisfies the constraint ||wk ◦pk||1 ≤ wmin

k ξ. Second, as shown
by Theorem 1, since ||wk ◦pk||1 ≤ wmin

k ξ, we have ||pk||1 ≤ ξ, which implies pk

is a feasible solution to Equation (7).

Theorem 1. For any pk ∈ [0, 1]N , if ||wk ◦ pk||1 ≤ wmin
k ξ, then ||pk||1 ≤ ξ.

Proof. Since ||wk ◦ pk||1 ≤ wmin
k ξ, we have ξ ≥ || wk

wmin
k

◦ pk||1 ≥ ||pk||1.

Since Eq. (7) is a relaxed version of the original optimization problem in
Eq. (6), we can obtain a final solution to Eq. (6) by quantizing each feasible
solution pk ∈ P to a binary vector in {0, 1}N . We ensure that the final solution
quantized from pk satisfies the budget of controlled nodes by quantizing the
top-ξ largest entries in pk to be 1 and the other entries to 0. Since the simulated
annealing trick forces the top-ξ largest entries in pk closer to 1 and the other
entries closer to 0, the quantization error of pk is small.

Now, we introduce how to train P and θ by solving the optimization problem
in Eq. (9). Denote by L∗(P, θ) the objective function in Eq. (9), Algorithm 1
summarizes the details to train P and θ. Line 5 and line 8 are conducting typical
gradient steps to update pk and θ, respectively, where η1 and η2 are learning
rates. In line 6, the function clip(pk, 0, 1) is conducting a proximal projection
of standard proximal gradient descent [25] to clip each entry in pk that is out
of the range [0, 1] back to its closest value in [0, 1]. Line 10 gradually increases
the weight λ of the penalty term. Line 11 conducts the simulated annealing to
make the annealing function σ closer to a step function by gradually reducing
the value of T . Line 13 quantizes pk to a final solution.

After training P and θ, we can use P and assignment network gθ to conduct
multifaceted anchor node attacks. Algorithm 2 summarizes the details to attack
a target node vi in G. In line 1, we use gθ to select the most suitable set of anchor
nodes to attack vi, denoted by pk∗ . In line 2, we use the selected pk∗ to attack
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vi by flipping the edges between vi and each of the anchor nodes represented by
pk∗ . Since gθ is trained together with P, it generalizes well to select the most
suitable set of anchor nodes, which significantly boosts the success rate of each
attack.

Table 1. Model configuration of the assignment network.

Layer Type Input Dim. Weight Dim. Output Dim. Activation

1 Graph Convolution N × d d × 16 N × 16 ReLU

2 Graph Convolution N × 16 16 × K N × K Softmax

Table 2. Statistics of datasets.

Dataset Statistics Cora Citeseer Facebook Wiki Pubmed

#Nodes 2,708 3,327 4,039 2,405 19,717

#Edges 5,278 4,676 88,234 17,981 44,324

#Features 1,433 3,703 1,283 4,973 500

#Classes 7 6 193 17 3

6 Experiments

In this section, we conduct extensive experiments to compare our method with
six baseline methods performing adversarial graph structural attacks, such as
GUA [37]1, GUAP [36]2, PGD [35], DICE [34], Meta-Self [41] and FGA [7]3.
We use the publicly available source code of the baseline methods and we use
their default parameter settings in our experiments. Our code is available at the
following link4.

Experiment Setting. We use the publicly available source code for each of
the baseline methods and we use their default parameter settings in our experi-
ments. For our method, we adopt the GCN described in Equation (2) to imple-
ment the assignment network gθ. The model configuration of gθ is shown in
Table 1, where the graph convolution layer performs mean aggregation. The
“Input Dim.”, “Weight Dim.” and “Output Dim.” are the dimensions for H(l),

1 Code: https://github.com/chisam0217/Graph-Universal-Attack.
2 Code: https://anonymous.4open.science/r/ffd4fad9-367f-4a2a-bc65-1a7fe23d9d7f/.
3 Code for PGD, DICE, Meta-Self and FGA: https://github.com/DSE-MSU/DeepRobust.
4 Code for MFAN: https://github.com/zhz0108/mfan.

https://github.com/chisam0217/Graph-Universal-Attack
https://anonymous.4open.science/r/ffd4fad9-367f-4a2a-bc65-1a7fe23d9d7f/
https://github.com/DSE-MSU/DeepRobust
https://github.com/zhz0108/mfan
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W (l) and H(l+1) in each layer l, as defined in Equation (1). Following the lit-
erature [7,35–37,40,41], we use the classic graph convolutional neural network
(GCN) [19] introduced in Sect. 3 as the default victim model to attack. We also
use the GAT [31] and Node2Vec [17] as the black-box victim models for transfer
attacks. We set ξ = 5, K = 2 and use the initial value of λ = 0.1 by default if
not specified otherwise. For the training algorithm (Algorithm 1) of our method,
we use a batch size of 32, max epoch = 120 and η1 = 0.01. The learning rate η2
is set to 0.2 on the Facebook dataset and 0.005 on the other datasets. The effect
of K on the attack effectiveness of our method is analyzed in Appendix A. All
experiments are conducted on a server with an NVIDIA RTX 3090 GPU, 64 GB
RAM and an Intell(R) Core(TM) i9-10900K CPU.

Datasets. The experiments are performed on five commonly used node clas-
sification benchmark datasets listed in Table 2. Cora [26], Citeseer [26] and
Pubmed [26] are scientific publication networks, Facebook [21] is a social net-
work, and Wiki [10] is a network of web pages with their hyperlinks as edges. For
the largest dataset Pubmed, we sample a subgraph with 2,000 nodes to do the
training and use the rest of the nodes as target nodes for testing. The training is
performed on the sampled subgraph instead of the complete graph of Pubmed.
For the other datasets, we follow the setting of [5,7,28,29,40], where the training
is performed on the entire graph with 20% of the nodes used for training and
the rest 80% of the nodes used as target nodes for testing. FGA cannot finish
attacking all the testing target nodes on Pubmed within 72 h, thus we cannot
report its corresponding results.

Evaluation Metrics. We evaluate the attack performance on misclassification
by foolingratio (FR), that is,

FR =
# of misclassified nodes in test set

# of nodes in test set
(11)

Due to the various attack formats of different baseline methods, we design
two measures on the budget of controlled nodes to comprehensively evaluate their
performance.

The first type of budget, named budgetpertargetnode (BPT) and denoted by
ξ, is the number of controlled nodes used in attacking a single target node. For
GUA and GUAP, since they use the same set of anchor nodes to attack each
target node, ξ is the number of anchor nodes. For our method, since we only use
one set of anchor nodes to attack each target node, ξ is exactly the budget in
Definition 1. For the other baseline methods, ξ is the average number of nodes
connected by a perturbed edge to a target node either before or after the attack.

The second type of budget, named budgetforalltargetnodes (BFA) and
denoted by δ, is the total number of all controlled nodes used to attack all
the target nodes in the testing dataset. For GUA and GUAP, δ = ξ. For our
method, δ = K ∗ ξ. For FGA, δ is the size of the union of nodes connected to
perturbed edges in each attack. For the other baseline methods, δ is the total
number of nodes connected to a perturbed edge either before or after the attack.
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Fig. 2. Fooling ratio (FR) v.s. budget per target node (BPT, ξ).

For each attack method, we also measure its training time by the time cost
to train an attack model, and we measure its attacking time by the time cost of
using a trained attack model to conduct an attack on a target node. We discuss
the attacking time in Appendix B, and we analyze the training time complexity
and the empirical training time in Appendix C.

6.1 Fooling Ratio Under Different Budgets of Controlled Nodes

In this section, we analyze the FR of all compared methods under different
budgets of controlled nodes.

Figure 2 shows how the FR of each method changes when using different BPT
(i.e., ξ). The FR of all methods increases when ξ increases because a larger BPT
allows each attack to perturb more edges, which improves the chance of suc-
cess. FGA achieves the best FR on Cora, Citeseer and Facebook when using the
same BPT as the other methods. Because FGA specifically trains a unique set
of controlled nodes to attack each new target node. This significantly improves
the successfulness of each attack, however, as illustrated later, it also requires a
significantly larger BFA because attacking each new target node requires control-
ling a new set of nodes. The other baseline methods cannot achieve a comparable
FR to FGA because they only use a single set of controlled nodes to conduct
each attack, and the constant set of controlled nodes is not specifically trained
for each new target node. Interestingly, the proposed MFAN does not specifically
train the anchor nodes for each new target node either, but the FR of MFAN

Fig. 3. Fooling ratio (FR) v.s. budget for all target nodes (BFA, δ).
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is the closest to FGA on all the datasets. This demonstrates the outstanding
performance of MFAN.

While FGA champions the performance when using BPT as the budget of
controlled nodes, its FR is dramatically inferior to the anchor nodes attacks (i.e.,
GUA, GUAP and MFAN) when using BFA as the budget. Figure 3 shows how
the FR of each method changes when using different BFA (i.e., δ). We can see
that the minimum BFA of FGA, which is achieved by setting ξ = 1 for FGA,
is much larger than the BFA of GUA, GUAP and MFAN. This is because FGA
specifically trains a unique set of controlled nodes to attack each new target
node, thus it requires control of a lot of nodes to attack the thousands of target
nodes in the testing dataset. The global structural attacks (i.e., DICE, PGD and
Meta-Self) also cost a significantly larger BFA than the anchor nodes attacks,
because they perturb a large number of edges once and for all the attacks. On the
contrary, the anchor nodes attacks are extremely efficient in BFA, because they
only use a small constant set(s) of anchor nodes to attack all the target nodes.
We can also see that MFAN champions the performance on all datasets due to
the effective multifaceted attack that successfully implements the principle of
“divide and conquer”.

In summary, when the total number of controlled nodes is limited by the
resource (i.e., money, hackers, etc.) to control nodes, MFAN achieves the best
FR performance by leveraging the power of “divide and conquer”. Moreover,
the attacks conducted by MFAN are also much more stealthy than the other
non-anchor nodes attacks due to its small BFA.

6.2 Effectiveness of Transfer Attack

In this section, we evaluate the effectiveness of the transfer attacks by all the
compared methods. For each method, we first train its attack model on the white-
box victim model f , which is the GCN mentioned in the experiment setting.
Then, we apply the trained attack model to attack two other black-box victim
models, such as GAT [31] and Node2Vec [17]. The black-box victim models are
trained on the same dataset as the white-box victim model.

Table 3 shows the FR of transfer attacks on the five datasets, respectively.
The best FR is in bold and the runner-up is underlined. FGA could not produce
meaningful results when using small BFA (i.e., δ), thus we cannot report its
corresponding results. Meta-Self requires too much memory to run when using
the values of ξ in the tables, thus we cannot report its corresponding performance
due to out-of-memory issues.

We can see that MFAN achieves the best performance in most cases, which
shows the outstanding performance of MFAN in transfer-attacking black-box
victim models. We believe such transfer attack performance is due to the follow-
ing reasons. First, each set of anchor nodes works well in transfer attacks. Since
each set of anchor nodes is trained to successfully attack a large group of target
nodes, the set of anchor nodes tends to exploit the common defect patterns of
many target nodes. Since the defect patterns are commonly carried by many
target nodes, they can be learned by a new GNN model trained on the same
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Table 3. Fooling ratio of non-transfer attacks and transfer attacks.

Dataset Model GCN (white-box, non-transfer) GAT (black-box, transfer) Node2Vec (black-box, transfer)

Cora Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 77.37% 85.75% 88.83% 89.96% 81.39% 86.19% 88.74% 90.03% 76.92% 84.85% 89.33% 88.60%

GUAP 75.32% 86.20% 89.25% 90.25% 65.56% 85.78% 86.54% 91.89% 71.64% 85.86% 87.04% 87.11%

PGD 71.88% 85.33% 0.74% 2.07% 74.72% 83.86% 0.93% 1.80% 72.04% 70.89% 15.53% 15.77%

DICE 44.30% 54.99% 0.05% 0.10% 51.03% 51.77% 0.11% 0.35% 79.88% 80.24% 15.83% 16.21%

Meta-Self - - 0.02% 0.06% - - 0.59% 1.17% - - 15.84% 16.04%

FGA 95.00%98.63% - - 85.44% 92.95% – – 62.81% 82.14% – –

MFAN 93.79% 94.30% 94.30%96.11% 84.67% 93.04%93.04%94.59%85.14%92.17%92.17%96.01%

Citeseer Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 76.63% 80.35% 83.83% 84.49% 74.63% 81.51% 84.10% 85.12% 86.41% 86.56% 86.70% 86.94%

GUAP 75.17% 82.20% 86.45% 87.65% 66.87% 79.69% 83.19% 89.24% 76.89% 81.40% 83.18% 84.13%

PGD 75.67% 83.80% 0.16% 0.34% 77.92% 80.42% 0.64% 1.33% 79.58% 79.45% 37.14% 37.45%

DICE 45.30% 48.96% 0.03% 0.05% 46.73% 48.90% 0.16% 0.33% 79.06% 79.79% 37.80% 37.89%

Meta-Self - - 0.04% 0.06% – – 0.44% 0.72% - - 37.22% 38.05%

FGA 96.27%98.70% – – 84.45% 92.72% – – 73.93% 86.29% – –

MFAN 92.37% 97.31% 97.31%98.45%90.21%95.78%95.78%97.86%91.79%93.09%93.09%94.65%

Facebook Budget ξ = 10 ξ = 20 δ = 200 δ = 400 ξ = 10 ξ = 20 δ = 200 δ = 400 ξ = 10 ξ = 20 δ = 200 δ = 400

GUA 13.12% 26.60% 60.44% 66.02% 13.45% 16.63% 50.78% 58.23% 10.24% 15.47% 54.19% 61.77%

GUAP 15.12% 29.10% 68.69% 73.67% 16.59% 26.68% 64.35% 70.23% 14.96% 20.44% 59.40% 65.23%

PGD 24.12% 24.96% 3.24% 5.47% 31.16% 33.67% 2.74% 5.45% 16.85% 19.43% 10.25% 10.68%

DICE 12.99% 16.90% 0.26% 0.66% 15.24% 19.05% 0.74% 1.21% 19.05% 25.93% 10.07% 10.11%

Meta-Self - - 1.33% 2.16% – – 1.98% 4.16% – – 10.10% 10.33%

FGA 37.68%49.40% - - 30.33% 49.14% - - 21.23% 34.87% - -

MFAN 27.36% 39.53% 88.37%94.94%33.49% 38.50% 76.54%85.53%38.50%58.53%83.39%87.52%

Wiki Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 85.58% 90.85% 93.68% 94.35% 42.70% 45.90% 50.06% 56.72% 30.81% 44.99% 54.47% 74.18%

GUAP 85.40% 90.65% 92.73% 93.11% 39.85% 48.76% 50.81% 66.59% 21.87% 43.08% 51.52% 67.44%

PGD 52.01% 60.01% 0.81% 2.06% 56.37% 67.92% 0.68% 1.11% 42.55% 46.15% 14.74% 15.20%

DICE 30.78% 44.94% 0.13% 0.35% 39.58% 63.42% 0.26% 0.31% 46.63% 62.37% 14.64% 15.45%

Meta-Self – – 4.66% 6.69% – – 0.70% 1.27% - - 15.10% 15.71%

FGA 86.74% 96.84% – – 52.81% 63.24% – – 44.23% 72.45% – –

MFAN 92.55% 95.52% 95.52%97.82%62.93% 67.07% 67.07%73.31%47.78% 54.97% 54.97%82.70%

Pubmed Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 50.04% 53.50% 55.11% 59.42% 47.33% 48.54% 51.03% 55.45% 41.00% 43.27% 44.36% 48.31%

GUAP 54.97% 56.13% 59.88% 63.14% 49.98% 56.97% 60.08% 65.30% 45.19% 47.33% 50.87% 54.33%

PGD 58.02% 59.47% 0.20% 0.33% 58.06% 63.44% 1.02% 1.99% 47.59% 52.98% 20.14% 24.77%

DICE 30.46% 32.55% 0.03% 0.05% 36.68% 38.40% 0.73% 0.92% 32.32% 37.65% 18.00% 18.78%

Meta-Self – – 0.26% 0.38% – – 0.80% 1.14% – – 19.56% 22.17%

FGA – – – – – – – – – – – –

MFAN 59.48%64.04%64.04%66.88%60.09% 62.95% 62.95%65.63%49.64% 51.34% 51.34% 53.34%

dataset. In this case, the anchor nodes are still effective to transfer-attack the
new model. Second, the assignment network also works well in transfer attacks.
Since the input graph does not change, the output of the assignment network
will not change. Therefore, the same set of anchor nodes will still be selected
to attack the target node when performing transfer attacks. If the same defect
pattern of the target node is learned by a new GNN model, the selected set of
anchor nodes can successfully transfer-attack the target node.
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Table 4. FR of standard MFAN (ST) and ablated MFAN (AB).

Dataset Model GCN (white-box, not transfer) GAT (black-box, transfer) Node2Vec (black-box, transfer)

ξ = 5 ξ = 10 ξ = 20 ξ = 5 ξ = 10 ξ = 20 ξ = 5 ξ = 10 ξ = 20

Cora MFAN (AB) 78.32% 83.43% 83.46% 75.15% 82.41% 83.60% 50.96% 69.34% 77.98%

MFAN (ST) 93.79%94.30%96.11% 84.67%93.04%94.59% 85.14%92.17%96.01%

Citeseer MFAN (AB) 77.41% 80.92% 81.70% 75.86% 80.40% 80.61% 80.16% 81.61% 82.81%

MFAN (ST) 92.37%97.31%98.45% 90.21%95.78%97.86% 91.79%93.09%94.65%

Facebook MFAN (AB) 13.33% 21.51% 29.46% 15.05% 27.81% 32.21% 12.98% 23.64% 29.76%

MFAN (ST) 16.25%27.36%39.53% 18.22%33.49%38.50% 20.45%38.50%58.53%

Wiki MFAN (AB) 75.77% 85.55% 90.48% 57.99% 63.72% 70.95% 44.49% 50.28% 78.05%

MFAN (ST) 92.55%95.52%97.82% 62.93%67.07%73.31% 47.78%54.97%82.70%

Pubmed MFAN (AB) 46.67% 48.26% 52.99% 40.26% 42.97% 45.94% 40.47% 44.70% 47.66%

MFAN (ST) 59.48%64.04%66.88% 60.09%62.95%65.63% 49.64%51.34%53.34%

6.3 The Effects of gθ , λ and Simulated Annealing

In this subsection, we discuss the effects of the assignment network gθ, the hyper-
parameter λ and the simulated annealing trick.

The Effect of the Assignment Network gθ. To investigate the effect of gθ,
we compare the FR of the standard MFAN using the assignment network and
an ablated MFAN that selects a set of anchor nodes uniformly at random. Both
methods use the same sets of anchor nodes trained by the standard MFAN. As
shown in Table 4, the FR of the standard MFAN is much better than the ablated
MFAN, which shows the effectiveness of the assignment network.

The Effect of λ. We analyze the effect of λ by comparing the performance of
MFAN when using different growth rates, denoted by v, which is the multiplying
factor on λ when increasing its value in line 10 of Algorithm 1. As shown in
Fig. 4, the loss curves when training MFAN are comparable when using different
growth rates. This means the training of MFAN is stable with respect to the
growth rate of λ. If we zoom in Fig. 4(c), we can see the SPT with a larger v
drops slightly faster than the SPT with a smaller v. This is because a larger v
increases λ at a faster speed, which pushes the SPT faster towards zero. However,
since the effect of v on the training of MFAN is not significant, it does not affect
the FR of MFAN very much. As a result, we can see in Table 5 that the FR of
MFAN are comparable when using different values of v.

The Effect of the Simulated Annealing Trick. To show the effect of the
simulated annealing trick, we analyze the FR and the quantization error of
the perturbation vectors produced by two versions of MFAN. One version is
the standard MFAN that solves Eq. (9), where the simulated annealing trick
is applied; the other version is an ablated MFAN that solves Eq. (8), which
does not apply the simulated annealing trick. The quantizationerror (QE) is
measured by

QE =
∑

pk∈P
||pk − φ(pk, ξ)||1, (12)
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Fig. 4. The curves of the total loss L∗(P, θ), the original loss L(P, θ), the sum of
penalty terms (SPT)

∑
pk∈P max

(||wk ◦ pk||1 − wmin
k ξ, 0

)
and λ on Cora dataset.

Each subfigure shows three curves using different growth rates.

Table 5. FR of MFAN when using different growth rates v ∈ {2.5, 5.0, 10.0}.

Dataset ξ = 5 ξ = 10 ξ = 20

v = 2.5 v = 5.0 v = 10.0 v = 2.5 v = 5.0 v = 10.0 v = 2.5 v = 5.0 v = 10.0

Cora 93.69% 93.79% 93.97% 94.27% 94.30% 94.19% 95.85% 96.11% 95.85%

Citeseer 91.79% 92.37% 92.34% 97.24% 97.31% 97.33% 98.45% 98.45% 98.38%

Facebook 15.01% 15.55% 15.14% 25.85% 25.97% 25.66% 38.29% 38.84% 38.84%

Wiki 91.26% 92.55% 92.62% 94.61% 95.52% 95.33% 97.79% 97.82% 97.62%

Pubmed 59.48% 59.48% 58.98% 63.97% 64.04% 63.77% 66.79% 66.88% 66.31%

Table 6. Effect of simulated annealing on fooling ratio and quantization error.

Dataset Model Fooling ratio (FR) ↑ Quantization error (QE) ↓
ξ = 5 ξ = 10 ξ = 20 ξ = 5 ξ = 10 ξ = 20

Cora Ablated MFAN (w/o simulated annealing) 91.44% 92.53% 94.99% 8.68 16.01 28.42

Standard MFAN (with simulated annealing) 93.79%94.30%96.11%1.37 2.98 4.07

Citeseer Ablated MFAN (w/o simulated annealing) 90.76% 96.02% 96.88% 16.77 29.10 47.77

Standard MFAN (with simulated annealing) 92.37%97.31%98.45%1.57 3.12 7.72

Facebook Ablated MFAN (w/o simulated annealing) 14.88% 25.47% 38.12% 51.21 104.45 172.56

Standard MFAN (with simulated annealing) 16.25%27.36%39.53%15.30 27.29 34.84

Wiki Ablated MFAN (w/o simulated annealing) 90.69% 94.94% 96.75% 8.24 12.51 22.00

Standard MFAN (with simulated annealing) 92.55%95.52%97.82%2.20 2.61 4.61

Pubmed Ablated MFAN (w/o simulated annealing) 57.66% 60.98% 63.55% 9.84 20.14 27.10

Standard MFAN (with simulated annealing) 59.48%64.04%66.88%2.85 3.43 5.01

where φ(pk, ξ) outputs the quantized pk with the top-ξ largest entries being 1
and other entries being 0. As shown in Table 6, the standard MFAN achieves
a smaller QE and a larger FR than the ablated MFAN. This demonstrates the
effectiveness of the simulated annealing trick in reducing the quantization error
and improving attack performance.
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7 Conclusion

In this paper, we proposed and tackled a novel problem named multifaceted
anchor nodes attack. The key idea is to simultaneously train multiple sets of
anchor nodes together with an assignment network. Each set of anchor nodes
is specialized in successfully attacking a different set of target nodes, and the
assignment network accurately selects the best suitable set of anchor nodes to
attack a new target node. In this way, we implement the mechanism of “divide
and conquer” to successfully attack the union of the nodes that are attacked by
each set of anchor nodes. Since the same sets of anchors are used to attack all
the target nodes, our method is extremely budget-efficient, which only requires
controlling a very small number of nodes to achieve outstanding attack perfor-
mance.
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Abstract. The demand for group recommendations in the field of rec-
ommendation systems is steadily increasing. In group recommendation,
how to accurately aggregate the preferences of group members to infer
group decisions has become the core issue. Currently, various deep learn-
ing methods are applied to group recommendation problems. Among
them, attention based methods dynamically aggregate group member
preferences by distinguishing the importance of different members, which
greatly improves group recommendation performance. However, atten-
tion mechanism methods cannot avoid the negative impact of potential
confounding factors. That is to say, the correlation between group mem-
bers and the learned candidate projects cannot accurately reflect the
impact of group members on the group recommendation results, lead-
ing to false correlation. This affects the accuracy of group representation
learning. To tackle this challenge, the paper introduces a model named
Causal Attentive Group Recommendation(CAGR). This model incor-
porates causal inference within an attention network to tailor the group
representation, effectively addressing the problem of capturing erroneous
correlations. Building upon the potential outcome framework, CAGR
utilizes the concept of individual treatment effects (ITE) to quantify the
causal relationship between each group member and the outcome. Our
objective is to capture the authentic influence of group members on the
desired outcome. To integrate causal insights into the group represen-
tation learning process, we introduce regularization that aligns the dis-
tance between the ITE of group members and the conventional attention
weights, correct the importance of group members, and obtain a more
accurate causal correlation between group and group members. Compre-
hensive experiments conducted on two authentic datasets validate the
superiority of our proposed model in the realm of group recommenda-
tion.

Keywords: Group recommendation · Causal inference · Attention
mechanism

1 Introduction

In the context of the information age, due to the surge in group activities, users
with shared interests and goals now form various online groups[1]. Traditional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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recommendation systems tailored for individuals are no longer sufficient to cater
to the preferences of these collectives, thereby fostering the emergence of the
notion of group recommendation[2][3]. Group recommendation entails aggregat-
ing the preferences of all group members to deliver tailored recommendations
that align with the group’s contentment[4]. Group recommendation sets itself
apart from traditional individual recommendation systems by involving decision-
making, rendering the process considerably intricate. Because each member of
the group plays a distinct role and contributes differently, leading to varying
impacts on the final decision.

With the application of deep learning in personal recommendation, signifi-
cant advancements have been made [5]. Researchers are leveraging various com-
ponents of deep neural networks to simulate the group’s decision-making pro-
cess [6]. In current research, some neural attention methods [2,7,8] are demon-
strating superior performance. Attention-based approaches offer the ability to
discern the importance of the item’s features, enabling efficient aggregation of
group members’ preferences in the context of group recommendation. In group
recommendation, the relevance captured by the attention mechanism is derived
from calculating the co-occurrence frequency of each member with the candidate
items recommended to the group [2]. For instance, in a group decision regard-
ing travel destinations, a group member frequently journeys to China. Con-
sequently, this user would carry a significant weight in the destination decision
process regarding China. However, this approach comes with certain limitations.
Firstly, although numerous innovative neural network architectures have been
introduced for group representation learning (GRL), they still struggle to ade-
quately capture the collective item preferences of a group. This limitation arises
from potential confounding factors, and the correlation captured by the attention
mechanism doesn’t accurately represent the genuine impact of group members
on the target outcome, that is, spurious correlation [9]. For example, in the group
decision-making process of choosing a tourist destination mentioned above. If a
member frequently visits China for work reasons or only passes through China,
such as flight transfers, then the member’s understanding of China is very lim-
ited, but the attention mechanism model will also assign higher weights to that
group member. It is obvious that simple co-occurrence frequencies cannot iden-
tify this issue and lead to biased recommendation results. Therefore, it is crucial
to identify causal relationships and assign appropriate weights to each member
in the decision-making process.

To tackle the aforementioned challenges, this paper presents a novel model
known as the CAGR, which effectively identifies causal relationships from obser-
vational data by incorporating a potential outcome framework and calculates
weights accordingly. Causal inference has been used in recommendation systems
[10] to tackle potential confounding factors that can affect recommendation per-
formance. Inspired by individual recommendation, causal inference can also help
in identifying causal relationships within groups. By leveraging the causal infer-
ence framework, this paper enhances the attention mechanism in the group rec-
ommendation model with the goal of better learning the significance of group
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members’ weights for improved group recommendation outcomes. Specifically,
we first obtain the attention weights of group members through an attention
mechanism network to describe their importance. Then, based on the potential
outcome framework, the concept of individual treatment effectiveness (ITE) [11]
is used to accurately measure the causal relationship between group members
and expected outcomes. ITE involves evaluating causal relationships (known as
interventions) by calculating the differences in outcomes when relevant group
members are actively retained and deleted. This generates an ITE vector, where
each component reflects the causal impact of the member on the target, which
is another important variable. Finally, in order to incorporate causal reason-
ing into group recommendations, we use various distance functions to align the
obtained group ITE vectors with attention weights, minimizing the distance
between them. This corrects the importance of group members and obtains an
accurate correlation between group members and recommendation results. In
summary, the main contributions of this study are as follows:

• This paper pioneers the integration of causal inference into group recom-
mendation. By utilizing the potential outcome framework, the group recom-
mendation task undergoes reconstruction, effectively eliminating potential
confounding factors and revealing the causal relationships within group rec-
ommendation.

• The Individual Treatment Effect (ITE) is employed to infuse causality into
the conventional attention mechanism, and the group members are aggregated
to realize group representation learning and improve group recommendation
performance.

• We propose the CAGR and extensively evaluate its effectiveness through
experiments on two real datasets, showing significant improvement over pre-
vious methods.

This paper describes related work in Sect. 2, introduces the potential outcome
framework in Sect. 3, elaborates on the CAGR model in Sect. 4, in Sect. 5, the
experimental results that validate the effectiveness of the model are presented,
and the paper concludes in Sect. 6.

2 Related Work

In this section, we delve into two relevant aspects of our study: group recom-
mendation and causal recommendation.

2.1 Group Recommendation

Group recommendation methods can be classified into two main categories:
memory-based and model-based approaches. The first method aggregate group
members’ preferences without accounting for their interactions. For example,
the average strategy (AVG) calculates the group’s overall preference score
by averaging the individual preference scores of its members [12]. The maxi-
mum satisfaction strategy (MS) ranks group members according to their scores
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and then calculates the average score of the top n members to represent the
group preference[13]. However, this approach ignores other group members.
Similar strategies include the least misery strategy (LM) and others. Model-
based approaches emphasize modeling the decision-making process and internal
interactions among group members. These models can be classified into two
groups: conventional approaches and deep learning-based techniques. Conven-
tional approaches use probabilistic models [14], game theory [15], ect, to model
and generate recommendation results. Deep learning-based methods utilize var-
ious deep neural networks for modeling purposes [6]. Recently, the effectiveness
of attention mechanisms in personal recommendations has sparked the applica-
tion of attention mechanisms in group recommendations and produced positive
effects [2,8]. These models account for the dynamic impact of group members.
It’s worth noting that AGREE [2] pioneers the use of the attention mechanism
to enhance feature representations of users and groups, fostering improved inter-
actions between them. MoSAN [8] considers the social influence of individuals
on others and utilizes sub-attention neural networks to model user interactions.
However, due to the potential confounding factors, the representation captured
by the attention mechanism might not accurately reflect the correlation between
the responding member and the target.

2.2 Causal-Based Recommendation

The causal inference focuses on how to eliminate confounding bias [16]. Causal
inference has been recently introduced into recommender systems to eliminate
various biases[17] and improve the performance of recommendation systems such
as popularity bias [18], clickbaitbias [19] and Matthew effect [20]. These efforts
can be categorized into two main groups. One category is counterfactual. Mehro-
tra et al. [21] used a quasi-experimental Bayesian framework to generate coun-
terfactual data to evaluate the impact of treatment on outcomes. Yuan et al.
[22] learns with a small amount of unbiased data generates labels for unob-
served data. Wang et al. [19] utilizes counterfactual reasoning to estimate causal
effects and solve clickbait problems. Another type is to consider confounding
effects in recommendation. Wang et al. [23] suggests a method that utilizes
causal relation to improve the recommendation process. Wang et al. [24] focuses
on actual user interests influenced by unobserved confounding factors, utiliz-
ing a de-confounding technique with linear models for learning. Sato et al. [25]
explored the causal effects of recommendations, taking user and item attributes
as confounding variables, and addressing confounding challenges through sample
reweighting. In this paper, we consider the confounding factors brought about
by group members and use ITE to estimate the causal relationship between each
member and the outcome.

3 Preparation

In this section, we will provide a concise introduction to the fundamental prin-
ciples of the Potential Outcome Framework (POF) [11]. The potential outcome
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framework comprises three basic elements: unit (I), treatment (T), and outcome
(Y). Causality is bound to the intervention, acting on units. The influence of
such interventions is assessed by comparing potential outcomes resulting from
different interventions, thus determining the causal impact[9]. The unit stands
as the smallest object in the study, the treatment is the operation performed on
the object of study, and the outcome obtained by the intervention acting on the
unit is called the potential outcome. If we translate this into the context of rec-
ommendations. In that way, the unit symbolizes the user under consideration for
recommendation, the treatment represents the suggested item, and the outcome
corresponds to the item’s score. The score indicating the user’s affinity for the
item. Overall, the potential outcomes framework provides a concrete formula for
describing causal relationships from observed data.

In this paper, the concept of Individual Treatment Effect (ITE) is employed,
which pertains to individual units. Its definition is provided below:

ITEi = Yi(T = 1) − Yi(T = 0), (1)

In formula 1, Yi(T = 1) and Yi(T = 0) stand for the potential outcomes of unit
i under different treatmentY. Under the assumption of negligible, positive and
stable unit treatment values (SUTVA), Yi(T = t), t ∈ {0, 1}, can be re-obtained
from the observed data through Yi(T ) [9]. For a more detailed understanding of
the potential outcomes framework, please refer to [11].

4 Causal Group Recommendation Framework

In this section, we start by formally defining the group recommendation problem
to be addressed. Subsequently, we present the proposed model in two steps: 1)
outlining the manner in which the group recommendation task is structured
using the potential outcome framework; and 2) offering a detailed introduction
to group representation learning for causal inference.

4.1 Problem Formulation

Let’s assume there is a collection of users denoted as U = {u}, a collection
of items identified as I = {i}, and a collection of groups represented by G =
{g}. Each group is comprised of users, for example, g = {u1, u2, . . . , un}, where
n represents the size of group and u ∈ U . We have two types of observable
interaction data in U , G, I: user-item interactions denoted as Y, and group-item
interactions denoted as R. In general, our aim is to provide recommendations
for a target group g by suggesting a list of potentially interesting items. This
objective is formally defined as [2] follows:

Input: Group, user, item, and group-item and user-item interactions corre-
spond to G, U , I, and R, Y, respectively. They are all one-dimensional variables
with a length of 32. After concatenating the Embedding Layer layers, a two-
dimensional variable representation of [32,6] is obtained.

Output: The personalized sorting function f associates an item with each
group, fg(g, i) → R.
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4.2 Potential Outcome Framework for Group Recommendation

Conventional group recommendation involves assigning a fixed value to each
group member and subsequently aggregating their preferences to create a group
representation. However, this approach lacks dynamic adjustment of member
weights. Consequently, these methods cannot flexibly learn group preferences,
and cannot be more accurate for group recommendation. Drawing inspiration
from the neural attention mechanism [26], which captures the significance of
various elements through data-driven learning. However, we observe that the
weights acquired via the attention mechanism inevitably contain errors, with
some failing to align with causal effects. In this paper, we leverage the potential
outcome framework to influence the attention mechanism, thereby enhancing the
precision of attention mechanism learning. This approach successfully enhances
the efficiency of group recommendation.

In group recommendation, for every group, we utilize a member vector
denoted as fg ∈ R

U , where U signifies the total count of members within the
system. In fg, each element indicates whether the group member is considered
for the group, with values of either 1 or 0. In the group-item interaction set
R = {rgi}, rgi takes the values 0 or 1, representing negative and positive sam-
ples. We treat the potential outcome framework as a group recommendation
task, the group as a unit, the group member vector fg represents a treatment,
and the outcome pertains to whether the group interacts with the item. In other
words, our investigation the impact of group members on group-item interaction.
According to the varying influence of the members within the group, we assign
weights to these members, and then make recommendations for the group. For
a given group-item pair (g, i), consider the set of accessible members for group g
as zg, then the ITE of a group member u ∈ zg(i.e., fgu = 1) can be computed
as follows:

βu
gi = ITEu = p

(
rgi = 1 | g,fg

) − p
(
rgi = 1 | g,f−u

g

)
, (2)

In formula 2, f−u
g indicates removing the member vector of group member u, that

is, fgu = 0, as an intervention style. p
(
rgi = 1 | g,fg

)
and p

(
rgi = 1 | g,f−u

g

)

signify the interaction probabilities, considering the inclusion or exclusion of
group member u, correspondingly. This formula delineates the causal connection
between group member u and the ultimate group-item interaction probability,
signifying the extent of group members’ significance in the recommended out-
come for the group. The larger βu

gi is, the more important the group member u
is for the final prediction result.

4.3 Group Representation Learning

This paper employs a representation learning framework to tackle the chal-
lenge of group recommendation. Denote the embedding vectors of user u and
item i as eu and vi, respectively. Our objective is to obtain the representation of
a group g, represented as the embedding vector sg, that encapsulates the group’s
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Fig. 1. The CAGR overall framework. The black squares in the Embedding Layer
represent the intervened users.

preferences. We aggregate the preferences of all members within the group, con-
sidering each member’s input, and merge it with the group’s inherent preference
representation qg to obtain the ultimate group preference[2]. The formula of the
group representation as follows:

sg = qg +
∑

u∈zg

wF
u

(
αu

gi · eu

)
, (3)

In formula 3, wF =
{
wF

u

} ∈ R
U is a weight parameter, and αgi =

{
αu

gi

} ∈ R
|zg|

represents a learned parameter, signifying the attention weight assigned to each
member in the group. The magnitude of this weight dictates the impact of a
group member on the entire group, where a larger weight corresponds to a more
influential position within the group. Additionally, the status of group members
within the group depends on their past interactions. If a member interacts more
frequently with item i than other members, we believe that the member has
a better understanding of item i and his opinions will be more informative.
Therefore, we consider group members with higher weights to be more important
for this group. Calculate αu

gi as follows:

αu
gi = softmax

(
ReLU

(
wT [eu,vi] + b

))
, (4)

In formula 4, w ∈ R
2u represents the weight, b ∈ R is the deviation parameter,

and ReLU serves as the nonlinear activation function.
Our model is illustrated in Fig. 1. y(g, i) is defined as the predictive function

for group preferences towards items as follows:

y(g, i) = σ(h(. . . (h
︸ ︷︷ ︸

l

([sg,vi])))), (5)

In formula 5, [·, ·] denotes the concatenation operation, σ(x) represents the sig-
moid function, and h denotes the multi-layer perceptron (MLP) with a total of
l layers.
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4.4 GRL Based on Causal Inference

This paper employs a regression-based pairwise loss function [27]. This loss func-
tion ensures that observed interactions are given more significance than unob-
served interactions when predicting scores. Then, the optimization of y can be
represented as:

Lp =
∑

(g,i,t)∈O

(ygit − ŷgit)
2
, (6)

In formula 6, O represents the training set, with each instance (g, i, t) signifies
the interaction between group g and item i (i.e. positive instance), but not yet
with item t (i.e. negative instance). ŷgit = ŷgi − ŷgt refers to the predicted range
of observed interactions (g, i) and unobserved interactions (g, t). This paper pri-
marily addresses implicit feedback, which means that if an observed group-item
interaction is represented as 1 and an unobserved group-item interaction is 0.

Obviously, based on the co-occurrence frequency of each member with the
item, the attention weight αgi captures how important the group member is to
the target. To explore causal relationships, it’s logical to establish a connection
between αgi and βgi. βgi represents group member ITE, which evaluates goal
change by active intervention group members. Therefore, this paper introduces
a regularization factor [9] to minimize the distance between αgi and βgi. We
first regularize βgi:

ηu
gi =

exp
(

βu
gi

ρ

)

∑
v∈zg

exp
(

βv
gi

ρ

) , (7)

In formula 7, ρ is a parameter controlling distribution sharpness. When ρ → ∞,
then ηu

gi = 1
|zg| , and all group members are treated equally. When ρ → 0, ηu

gi is
1 for the group member with the largest βu

gi, then ηu
gi is 0 for all other group

members. The following is the loss formula between αgi and βgi:

Lc =
∑

(g,i)∈R

(
αgi,ηgi

)
+ a ‖αgi‖1 , (8)

In formula 8, ηgi =
{
ηu

gi

} ∈ R
|zg|. Because real-life group decision-making pro-

cesses are often controlled by a small subset of group members. Therefore, we
use the L1 norm to motivate αgi, and (·, ·) is the distance function. In the
experimental section, we discuss several common distance functions to imple-
ment (·, ·), and study its influence and choose the one with the best effect. The
overall optimization loss for y is outlined as follows:

L = Lp + Lc. (9)

5 Experiments

In this section, we conducted extensive experiments on two datasets to validate
the effectiveness of our model and answered the following questions:
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RQ1: How effective is our designed Causal Attentive Group Recommenda-
tion model (CAGR)? Can they provide better group recommendation perfor-
mance?

RQ2: How does causal inference affect the performance of group recommen-
dation models?

RQ3: How do different hyper-parameter settings affect our model?
RQ4: How do different distance function settings affect our model?

5.1 Experimental Settings

1. Datasets
The two chosen datasets in this study have been adopted from prior research

[2,7]: Mafengwo1 and CAMRa20112, both originating from the real world.

• Mafengwo: This is an event-based dataset obtained through web crawling
of a tourism website. The site offers group travel, and each group consists of
a minimum of 2 members.

• CAMRa2011: This is a family movie-watching recommendation dataset.
Families can be regarded as groups. The data set all information interaction
is with a score of 0–100.

Table 1. Experimental data statistics

Datasets Mafengwo CAMRa2011

# Total users 5,275 602

# Total groups 995 290

# Total items 15,13 7,710

# Avg. group size 7.19 2.08

# Avg. record for a user 7.54 193.26

# Avg. record for an item 26.28 15.09

The dataset’s rating records are transformed into positive instances with
a target value of 1, while instances with missing data are labeled as negative
instances with a target value of 0. Table 1 presents the statistical findings for
the two datasets. In both datasets, an event is regarded as a group, where the
attendees of the event are considered as group members, and the event’s venues
(or movies) signifies the selected items [2]. Our objective is to suggest an appro-
priate venue (or movie) for a group event. It’s important to note that these two
datasets solely consist of observed interactions, which correspond to positive
instances. To create balanced pairs, we randomly select missing data as negative

1 http://www.mafengwo.cn.
2 http://2011.camrachallenge.com/2011.

http://www.mafengwo.cn
http://2011.camrachallenge.com/2011
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instances. Through observation, the optimal sampling rate is determined to be
6. Therefore, the negative sampling rate is fixed at 6. In particular, for every
entry in the Mafengwo dataset, we selected 6 venues that the group had not
previously visited at random. Similarly, for each log in the CAMRa2011 dataset,
we sampled 6 movies that the group had not watched before. Each negative
instance was assigned a target value of 0.

2. Evaluation Protocols
In this paper, we used the leave-one-out evaluation [28]. This method entails

randomly excluding one interaction from each group for testing. Then the train-
ing and test sets are disjoint. However, ranking all items within each group could
be time-consuming. Therefore, we randomly chose 100 items from non-interacted
groups as part of our strategy. Subsequently, the test items were ranked within
the pool of 100 items [2]. This study randomly picked 10% of these groups as
the test group and excluded their group-item interactions. The experimental
evaluation was conducted on Pytorch platform, and the performance of ranking
list of this model was evaluated according to the indexes NDCG@k and HR@k.
A larger value indicates better performance. Hyper-parameters tuning involve
employing grid search. The learning rate and embedding size were tuned within
the ranges [0.001, 0.005, 0.01, 0.05] and [16, 32, 64, 128], with a batch size of 256.
For gradient-based optimization, the Adam optimizer was used. We consider two
values of k: 5 and 10 respectively, to assess the model’s performance.

3. Baselines
To assess our model’s effectiveness, we will compare it against the following

methods.
(1) Memory-based approach
These models utilize predefined score aggregation strategies. Firstly, the neu-

ral collaborative filtering(NCF) [29] is applied to obtain the recommendation
scores of group members, and then some aggregation strategies are adopted to
determine the final recommendation results.

• NCF+AVG [12]: The fusion of NCF and the average strategy involves using
the average strategy to compute the mean preference scores of members.

• NCF+LM [30]: NCF combined with the least misery strategy, akin to the
cask principle, fails to produce satisfactory outcomes for each group member.

• NCF+MS [13]: NCF combined with the maximum satisfaction strategy
computes the average score of the top n-ranked group members as the group
preference.

(2) Model-based approach

• COM [3]: This probabilistic approach models group activities by considering
individual content factors and member influence for generating recommenda-
tions.

• DPMF-CNN [31]: This approach employs a dynamic probabilistic matrix
factorization model and convolutional neural network to tackle recommen-
dation tasks. It considers the temporal factor, rating matrix, and service
description document.
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• AGREE [2]: This method utilizes the attention mechanism to tackle the pref-
erence aggregation issue through data-driven learning of aggregation policies.
It then conducts group recommendation using Neural Collaborative Filtering
(NCF).

• SoAGREE [7]: Unlike AGREE, this approach introduces an additional
attention network to integrate each group member’s followees information,
thus improving individual user representation and better capturing their per-
sonal preferences.

5.2 Performance Comparison (RQ1)

Table 2 showcase data from two real-world datasets across various models. By
analyzing these tables, we can deduce the following insights.

Table 2. Experimental comparison results and without Lc

Methods CAMRa2011 Mafengwo

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10NDCG@10

NCF+AVG 0.5685 0.3818 0.7643 0.4449 0.3290 0.2225 0.6220 0.3420

NCF+LM 0.5598 0.3790 0.7645 0.4452 0.3168 0.2430 0.6305 0.3526

NCF+MS 0.5430 0.3713 0.7604 0.4348 0.3710 0.2385 0.6279 0.3145

COM 0.5789 0.3765 0.7688 0.4370 0.4422 0.3300 0.5433 0.3730

DPMF-CNN 0.5800 0.3842 0.7530 0.4543 0.4670 0.3455 0.6339 0.3768

AGREE 0.5818 0.3883 0.7708 0.4577 0.4810 0.3747 0.6398 0.4239

SoAGREE 0.5818 0.3883 0.7708 0.4577 0.4889 0.3800 0.6475 0.4298

CAGR 0.5972 0.3975 0.7890 0.4712 0.4945 0.3823 0.6405 0.4315

CAGR-Lc 0.5862 0.3870 0.7731 0.4601 0.4834 0.3725 0.6310 0.4282

1. This observation is evident in the experimental outcomes. The CAGR
model introduced in this paper demonstrates superior accuracy on the
CAMRa2011 dataset compared to all seven baseline models. Moreover, good
results are also achieved with the Mafengwo dataset. By utilizing the attention
mechanism, we allocate distinct weights to each member within the group. We
have addressed the shortcomings of attention mechanism in group recommen-
dation applications, which may not accurately assess the significance of individ-
ual group members in the group recommendation. Therefore, this study incor-
porates causal inference and utilizes ITE to establish the causal relationship
between group members and groups. This method better discriminates the sig-
nificance of individual group members, leading to improved recommendation
performance.

2. Among the baseline models, the least performing ones are NCF+AVG,
NCF+LM, and NCF+MS. Because they simply aggregate the group’s prefer-
ences without considering the decision-making process. This finding also verifies
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that the predefined static score aggregation strategy are inadequate in accu-
rately achieve group decision-making, echoing the observations in [2,32]. Unlike
the baseline memory-based method, attention-based models show higher accu-
racy. AGREE and SoAGREE effectively capture the impact of individual group
members through distinct weight assignments that indicate varying levels of
importance. This approach can enhances the precision of group characteristic
representation. However, they differ from our model in that while they also
utilize attention, they ignore the fact that the attention mechanism itself is sus-
ceptible to confounding factors and might not capture the weight accurately. In
addition, we found that SoAGREE performed superior on the Mafengwo dataset
because the SoAGREE model considers social followees information, which is
included in the Mafengwo dataset and not in the CAMRa2011 dataset. There-
fore, in the CAMRa2011 dataset, SoAGREE degenerates into AGREE.

5.3 Influence of Causal Inference Lc (RQ2)

This paper’s main contribution lies in incorporating causal inference into group
recommendation, infusing causal relationships into the attention mechanism to
derive the group representation. From Table 2 we observe that when causality is
excluded from the final loss, performance across all datasets shows a decline. This
outcome is attributed to the fact that the incorporation of causality in group
recommendation, through the computation of ITE, enhances the identification
of the significance of group members. This also leads to the acquisition of more
accurate aggregated group representations.

5.4 Influence of Hyper-parameters (RQ3)

This section investigates the influence of key components and hyperparameters,
then refines parameter values for optimal performance.

1. Influence of a
The parameter a regulates the extent to which we can promote sparsity in

the values of α. In Fig. 2(a) and 2(b), we can observe that the model delivers
optimal performance across all datasets when a assumes a more intermediate
value. Specifically, the value of 0.6 is optimal for the CAMRa2011 dataset, while
0.5 is found to be the best choice for the Mafengwo dataset. When a is too
small, it cannot impose too large a constraint on αgi, which may result in the
inability to distinguish key group members from other group members. On the
other hand, an excessively large a could result in the suppression of numerous
important group members, ultimately constraining the final outcomes. Hence,
neither of these extremes is optimal. Achieving an effective trade-off necessitates
fine-tuning a within the appropriate range.

2. Influence of ρ
We adjust the parameter ρ to examine the impact of the softness of the

distribution ηgi. As illustrated in Fig. 2(c) and 2(d), for the CAMRa2011, the
most optimal performance is achieved when ρ = 0.1. We propose the hypothes
is that due to the relatively small number of group members in the dataset and
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Fig. 2. Adjustment of the weight for the L1 norm and ρ.

the clear and stable group-item interactions, a lower value of ρ could result in a
more distinct distribution of ηgi. Therefore, important group members can be
effectively distinguished to achieve the best results. However, for the Mafengwo,
the best performance is achieved when ρ = 0.9. We speculate that as the number
of group members in the dataset increases, the number of significant members
to be identified also grows. Therefore, raising the value of ρ would be beneficial
to achieve optimal results.

5.5 Influence of Distance Function (RQ4)

Table 3. Experimental comparison results of different distance functions

Methods(Distance) CAMRa2011 Mafengwo

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

CAGR(Euclidean) 0.5752 0.3788 0.7814 0.4445 0.4915 0.3736 0.6389 0.4286

CAGR(Cosine) 0.5745 0.3816 0.7886 0.4496 0.4884 0.3593 0.6289 0.4310

CAGR(Dot) 0.5710 0.3826 0.7828 0.4593 0.4915 0.3555 0.6349 0.4275

CAGR(Pearson) 0.5814 0.3834 0.7772 0.4551 0.4874 0.3511 0.5935 0.3812

CAGR(KL) 0.5972 0.3975 0.7890 0.4712 0.4945 0.3823 0.6405 0.4315

To establish a connection between attention weights αgi and ITE vectors βgi,
we used a distance function to minimize the distance between them to distill
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causal information into model optimization process. We investigated how the
choice of distance function affects the ultimate performance outcomes. In this
paper, the distance function experiment encompassed various metrics, including
Euclidean distance, Cosine similarity, Dot product similarity, Pearson similarity
and KL divergence to analyze their impact[9]. Examining the results presented in
Table 3, notably, the Pearson correlation coefficient fared least favorably over-
all on both datasets. In a holistic context, our model attains optimal results
on both datasets when employing the Kullback-Leibler divergence as the des-
ignated distance function. This underscores the influence of the distance func-
tion on recommendation performance, highlighting the KL divergence as adept
at amalgamating αgi and βgi.

6 Conclusion

In this work, we propose the novel CAGR model. Leveraging the strength of
attention neural networks in group recommendation and inspired by the poten-
tial outcome framework, we incorporate causal inference into the process. This
leads to a redefined group inference task that bolsters the attention mecha-
nism’s effectiveness. By explicitly regularizing the distance between the Indi-
vidual Treatment Effects (ITEs) of members and their corresponding attention
weights, we effectively integrate causal information into the group representa-
tion learning process to accurately capture group preferences. The performance
of the CAGR model is extensively evaluated through experiments on two genuine
datasets.

In forthcoming research, we aim to address inherent fairness issues within
groups. Moreover, we consider enhancing performance by incorporating user
data to address the challenge of sparse group data, and also introduced causal
inference to improve performance.
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ing tremendous performance improvements, these CNNs-based saliency
models are plagued by two major shortcomings: spatial content-agnostic
and computationally intensive. Inspired by the effectiveness of equiv-
ariant network in the majority of computer vision tasks, we propose a
novel efficient equivariant dynamic aggregation saliency (E2DAS) model
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specific, our proposed model consists of an efficient equivariant module,
a dynamic convolutional aggregation module, and an optimization com-
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are the first attempt to introduce an efficient equivariant dynamic con-
volutional aggregation operation into the saliency prediction task, which
can fundamentally alleviate the projection distortion problem and can
effectively learn spatial content-adaptive features. Moreover, we clearly
observe a considerable decrease in the number of parameters resulting
from the replacement of standard convolution with dynamic convolution
aggregation. Extensive experiments on several benchmark datasets show
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terms of performance.
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1 Introduction

In recent decades, advancements in virtual reality (VR) and stereoscopic tech-
nology have led to significant growth and diverse applications, including the pre-
sentation of omnidirectional images (ODIs) via head-mounted displays (HMDs).
HMDs allow users to fully immerse themselves in virtual experiences and engage
in novel forms of interaction. Unlike traditional 2D images, ODIs provide a higher
resolution and a wide field of view (FoV). When wearing an HMD, users can
freely explore scenes within a FoV of 180o × 360o, resulting in a truly immersive
experience. However, the high resolution of ODIs presents challenges in terms of
storage, streaming, and rendering. Effectively addressing these aspects becomes
crucial. Therefore, accurate saliency prediction in ODIs is vital for streamlining
data management and optimizing network resource distribution.

Convolutional neural networks (CNNs) have gained immense popularity for
saliency prediction tasks and have demonstrated remarkable advancements in
performance. In the task of 2D image saliency prediction, many representative
CNNs-based saliency models [7] have emerged. Despite the significant progress
made in 2D image saliency prediction, these CNNs-based models are not entirely
suitable for ODIs and may lead to a degradation in performance. To this end,
several representative saliency models [23] designe for ODIs have emerged and
substantially improved performance. For instance, Ling et al. [23] utilize a sparse
matrix-based dictionary to extract image features and apply dimensionality-
biased augmentation to perform saliency estimation for ODIs. Lebreton et al.
[22] introduce two saliency models based on traditional 2D images: boolean map-
based saliency [36] and graph-based visual saliency [29]. Although these methods
utilizing hand-crafted features have made advancements in saliency prediction
for ODIs, they often encounter challenges when dealing with complex scenes. Due
to the inherent limitations of hand-crafted features, it is challenging to capture
the intricate details and subtle visual cues in ODIs. Thus, more advanced models
are urgently needed to effectively exploit the rich and semantic information in
ODIs to achieve superior performance of saliency prediction.

Several saliency models CNNs-based have been proposed to enhance the
performance of saliency prediction for ODIs, yielding promising results [5,25].
Specifically, motivated by the structure of generative adversarial networks
(GANs [11]), Pan et al. [25] designed a GAN-based saliency prediction model for
predicting the head fixation on ODIs. Subsequently, to mitigate the issue of pro-
jection distortion when projecting ODI to 2D image, some saliency models [1,5]
with attention mechanism and context-aware features are proposed to achieve
more accurate saliency prediction and alleviate the projection distortion prob-
lem. While these models have achieved performance gains, they face limitations:
1) CNNs’ translation equivariance due to parameter sharing cannot effectively
address projection distortion in ODIs. 2) these models have high computational
costs, making them unsuitable for real-time applications. Therefore, there is a
pressing necessity to propose a lightweight saliency model specifically designed
for ODIs, considering both reducing projection distortion and minimizing com-
putational costs.
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Drawing inspiration from the group equivariant convolutional neural net-
work (G-CNN) [8], we propose a novel efficient equivariant dynamic aggregation
saliency (E2DAS) model. This model effectively mitigates projection distortion
and reduces computational complexity by incorporating three core components:
an efficient equivariant module, a dynamic convolutional aggregation module,
and an optimization computation module. Notably, this represents the initial
attempt to incorporate dynamic convolutional aggregation operation into the
ODIs saliency prediction task. Different from the conventional convolution fil-
ter, E4 [13] convolutional filter (i.e., rotational equivariant filter) can diminish
projection distortion during the mapping of spherical images onto a 2D plane,
while also offering substantial reductions in computational costs. Specifically, by
incorporating E4 convolutional filters into the saliency prediction task of ODIs,
our filter can perform calculations based on the input features, making the pro-
posed E2DAS model dynamic and reducing projection distortion. Furthermore,
to reduce the computational cost, we decouple the feature aggregation operation
into attention calculation and kernel aggregation operations. This decoupling
mechanism can reduce feature redundancy in the convolution filter and accel-
erate the computation. As our proposed model is both computational efficient
and feature equivariant, thus we name our model as E2DAS. In brief, the main
contributions of this paper can be outlined as follows:

– We propose a novel efficient equivariant dynamic aggregation saliency model
E2DAS, which effectively addresses the projection distortion problem and
reduces computation costs.

– We are the first to introduce an efficient equivariant dynamic convolutional
aggregation operation into the saliency prediction task, which can effectively
learn spatial content-adaptive features and reduce the model parameters.

– We present a comprehensive analysis on two benchmark datasets widely used
in the field of saliency prediction. Through extensive experiments and com-
parisons, we demonstrate the significant performance gains achieved by our
(E2DAS) model over the current state-of-the-art methods.

2 Related Work

2.1 Saliency Prediction Methods for ODIs

Recently, the metaverse and Artificial Intelligence Generated Content (AIGC)
technologies have significantly contributed to advancements in content gen-
eration and display, leading to the emergence of numerous saliency methods
for ODIs. These methods help reduce transmission load and conserve network
resources. To our knowledge, existing saliency prediction methods for ODIs can
be broadly classified into two main categories: improved saliency prediction
methods for ODIs and CNNs-based saliency prediction methods. In the realm
of the improved saliency prediction methods, Ling et al. [23] and Federica et al.
[2] adopted heuristics manner to extract features and achieved saliency predic-
tion in ODIs. Lebreton et al. expanded the traditional 2D saliency method to
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the ODIs through fine-tuning, and proposed two new methods: GBVS360 [22]
and BMS360 [22]. Indeed, with the continuous advancements in CNNs, numer-
ous saliency prediction methods based on CNNs have emerged [2,23]. PAN et
al. [25] introduced a method for enhancing saliency prediction performance in
ODIs by drawing inspiration from generative adversarial networks (GANs). Since
SalGAN360 [4] can predict saliency in ODIs even when the bipolar global infor-
mation is seriously lost, Chen et al. [5] introduced a bifurcation model that
preserved both local and global features. Although these CNNs-based meth-
ods improve performance, they often incur high computational costs due to the
use of standard convolutional filters. Therefore, it is imperative to introduce a
lightweight saliency prediction model that strikes a superior balance between
prediction performance and computational efficiency.

2.2 Equivariant Networks

CNNs possess translational equivariance, reducing parameters by applying
shared convolutional kernel weights to extract features from different spatial
locations. To extend equivariance to larger rotational and scale symmetry groups,
Cohen and Welling [8] proposed G-CNNs, which ensures rotational [8] and scale
[33] equivariance when performing feature extraction. Although G-CNNs incor-
porate more equivariance, leading to notable performance improvements over
conventional CNNs, they encounter two challenges: spatial-agnostic and high
computational cost. To address these issues, He et al. [13] proposed a gener-
alized framework E4 with equivariance, which decouples space and additional
geometric dimensions in computation to accelerate neural network operations
in parallel. At the same time, feature aggregation is divided into kernel gen-
erators and encoders, which helps alleviate the spatial content-agnostic issue.
Motivated by this, we apply the E4 network to the task of saliency prediction
in ODIs, aiming to address high projection distortion and computational cost
simultaneously.

2.3 Dynamic Convolution

Over the past few years, CNNs have gained considerable popularity and demon-
strated remarkable performance across diverse computer vision tasks. However,
with the rapid growth in data volume due to internet technology advancements,
the main goal for researchers [15–17,28] is to design an efficient CNN model
that achieves a balance between performance and computational cost. In partic-
ular, MobileNetV1 [16] significantly reduces the number of floating-point oper-
ations (FLOPs) by decomposing 3 × 3 filter into depth and point convolution.
Building upon this, MobileNetV2 [28] introduced reverse residuals and linear
bottlenecks to further enhance efficiency. MobileNetV3 [15] applied squeeze-
and-excitation(SE) operation in the residual layer [17] and adopted a platform-
aware neural structure approach [32] to find the optimal network structure. The
1 × 1 convolution is further reduced by channel shuffling operation. ShiftNet
[34] replaced expensive spatial convolution with shift operations and point-state
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convolution. However, when the computational constraints become extremely
low, the width and depth of these efficient networks will be limited, leading to a
substantial reduction in the network’s representation capabilities. To tackle this
challenge, Chen et al. [6] proposed dynamic convolution, which increases model
complexity without requiring an increase in depth or width.

3 Proposed Model

In this section, we thoroughly describe our proposed E2DAS model. The gen-
eral architecture of our model is illustrated in Fig. 1. It comprises three main
modules: an efficient equivariant convolution module for feature extraction, a
dynamic convolutional aggregation module for enhancing feature representation
ability, and an optimization computation module for measuring the disparity
between the predicted saliency map and the ground-truth. Notably, we introduce
the equivariant dynamic convolution aggregation operation for the first time in
the task of ODIs saliency prediction. This operation not only improves compu-
tational efficiency but also enhances feature representation capability. Detailed
discussions on each component follow in the next subsection.

3.1 Efficient Equivariant Module

Most top-ranking saliency prediction models of ODIs usually rely on deeper or
wider CNNs to achieve strong feature representation. However, the computa-
tional complexity of these saliency models often hampers their practical applica-
tions in real-world scenarios. Additionally, standard convolution filters with grid
setting are not suitable for ODIs saliency prediction because they inevitably
incur projection distortion when ODIs are projected onto a 2D plane. More
specifically, projection distortion arises from the rotational angle of the spherical
image, resulting in stretching especially at the two poles. To address the afore-
mentioned issues, we introduce the equivariant E4 convolution filter for the first
time into the task of ODIs saliency prediction. This innovative approach effec-
tively alleviates projection distortion and significantly reduces computational
burden.

Specifically, the E4 convolutional filter is composed of translation and rota-
tion operations. It performs a 90-degree rotation around any center of rotation
within a square grid, making it the smallest unit of rotation. With this advan-
tage, E4 convolution filter enables the extraction of rotation-equivariant features,
thereby enabling accurate prediction of human attention in ODIs. Each E4 con-
volution filter encompasses all possible combinations of translations and 90◦C
rotations around different centers of rotation within the square grid. For the pur-
pose of executing this process, the convolution operation of E4 is divided into
K(·) operation (kernel generator) and V (·) operation (encoder). Mathematically,
E4 convolution [13] can be defined as follows:
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Fig. 1. Architecture of the proposed E2DAS model, which comprises an efficient equiv-
ariant module, a dynamic convolutional aggregation module, and an optimization com-
putation module. In particularly, An example of the E4 layer in an equivariant convo-
lutional network is shown in the upper right corner [13]. Firstly, we adopt four rotation
convolution filters (i.e. 0, 90, 180, 270) to extract the rotation invariant features. It’s
important to note that these four feature extraction processes are performed in parallel.
On one of the channels, the concatenated features through an MLP layer to generate
kernel features. On the other channels, the concatenated features pass through a linear
layer to generate encoded features. Subsequently, we employ the element-wise product
operation to learn the encoded features. Lastly, spatial-wise aggregation is executed to
acquire the ultimate feature representation.

f (l+1)(g) =

∑

g̃∈N (g)

Kg−1g̃

⎛

⎝
⋃

g′∈N1(g)

f (l) (g′)

⎞

⎠ � V

⎛

⎝
⋃

g̃′∈N2(g̃)

f (l) (g̃′)

⎞

⎠ ,
(1)

where N (g) is the spatial-wise neighborhood pixels that need to be aggregated,
i.e., N (g) = {g (v, eA) | v ∈ Ω}, Ω ⊆ R

� and eA is the identity element of group
A. f (l) represents the feature at the lth layer, Ni(g) represents the neighborhood
pixels of g ∈ {gg′ | g′ ∈ Ni(e)} and Ni(e) is the predefined neighborhood of the
identity element e ∈ G, which is the group. g′ and g̃′ represent a pair of relative
locations.

⋃
and � denote the rotation-wise concatenation and element-wise

product operations. In this way, we can obtain the output representation of E4

convolution filter. The upper right corner of Fig. 1 shows the detailed structure of
t9he E4 convolution layer. Notably, this design improves computational efficiency
and reduces projection distortion.
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3.2 Dynamic Convolution Aggregation Module

The efficient equivariant convolution module in our proposed E2DAS model
aims to generate discriminative features to minimize projection distortion in
ODIs saliency prediction. The goal of the dynamic convolution aggregation mod-
ule is to augment the model’s feature representation capability, thereby alleviat-
ing the problem of spatial content-agnostic problem. In other words, this module
improves the feature representation of the previous module’s output by dynam-
ically aggregating multiple parallel convolution filters using attention weights.
The process involves two stages: attention calculation and kernel aggregation. In
the attention calculation stage, weights are assigned to each convolution kernel.
In the kernel aggregation stage, the parallel filters are combined based on these
weights.

Attention Calculation. Taking inspiration from the effectiveness of SE atten-
tion mechanism in enhancing the feature representations, we directly introduce
the SE attention into the ODIs saliency task in our proposed E2DAS model.
Specifically, the attention calculation involves the following steps: Initially, a
global pooling operation is employed to condense the global spatial information.
Subsequently, two fully connected layers and softmax operations are utilized
to generate normalized attention weights for the parallel convolution kernels
of efficient equivariant module. These operations reduce the size of the feature
map by a factor of 4. Unlike SENet [17], where attention is calculated on the
output feature channel, our dynamic convolution aggregation operation calcu-
lates attention on the conventional filter. Consequently, the computational cost
of attention calculation is relatively low and negligible. For example, for a fea-
ture map with an input size of h × w × cin, the attention computation requires
O(π(x)) = hwcin + c2in/4 + cink/4 Multi-Adds. On the other hand, the calcu-
lation amount for traditional convolution is O

(
W̃Tx + b̃

)
= hwcin cout k2

n, in
which cin and cout signify the quantities of input and output channels respec-
tively, while kn represents the size of the kernel. It is evident that the attention
computation in the dynamic aggregation module is significantly lower than that
of traditional convolution.

Kernel Aggregation. In traditional convolution operations, each layer typ-
ically uses a single convolution filter to extract features. However, in dynamic
convolution operations, multiple parallel convolution kernels can be dynamically
aggregated based on attention weights. Specifically, the dynamic convolution
aggregation operation aggregates a set of 4 parallel convolutional kernels using
attention weights. The weights w and bias b can be expressed as:

w̃ =
∑

k

πk(x)w̃k, b̃ =
∑

k

πk(x)̃bk, (2)

where x represents the input feature, k denotes the number of convolution ker-
nels, w̃ and b̃ represent the output weights and biases after dynamic convolution
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aggregated operations, respectively. It should be emphasized that while dynamic
convolution aggregation operation increases the model’s, the output dimension
of each layer remains unchanged. Moreover, compared to traditional convolution,
the increase in computation due to the convolution kernel is negligible. Therefore,
the devised efficient equivariant dynamic aggregation module not only achieves
superior saliency prediction performance but also offers the advantage of high
computational efficiency.

3.3 Optimization Computation Module

To our knowledge, the loss function plays a crucial role in evaluating the perfor-
mance of a model by measuring the discrepancy between predicted and ground-
truth data. Its primary purpose is to aid the training process by optimizing the
network’s parameters and guiding the model towards convergence. To attain the
optimal performance of saliency prediction for ODIs, we choose smooth L1 loss
to guide the model training. Mathematically, the L1 loss can be expressed as the
following:

loss(x, y) =
1
n

∑

i

zi, (3)

where zi can be expressed as the following:

zi =
{

1
2 (xi − yi)

2
, if |xi − yi| < 1,

|xi − yi| − 1
2 , otherwise,

(4)

where yi denotes the ground-truth, xi represents the predicted value, and n
signifies the total number of sample points. From Eqn.4, we can clearly observe
that the smooth L1 loss is actually a piecewise function. If the absolute difference
|xi − yi| is less than or equal to 1, the equation represents L2 loss, which solves
the problem of non-smoothness in L1. On the other hand, when the absolute
difference is greater than 1, the equation represents L1 loss, which handles the
issue of outlier gradient explosions.

4 Experiments

4.1 Datasets

Our primary objective is to assess the performance of our proposed model in pre-
dicting saliency. To accomplish this, we employ two publicly available datasets:
Salient360! [26,27] and AOI [35]. The Salient360! dataset contains 85 ODIs with
salience plots under free-view conditions, involving 63 observers (avg. 42 per
stimulus) who view each ODI for 25 s, separated by a 5-second gray screen inter-
val. The dataset covers indoor, outdoor, and face scenes. The AOI dataset has
600 high-res ODIs categorized into human, cityscapes, indoor, and natural land-
scapes. Both datasets’ ground-truth is in equirectangular format. Due to the ODI
dataset’s limited size, direct deep neural network training is unfeasible. Hence,
we use transfer learning. We pretrain our model on the larger and more diverse
SALICON [20] dataset and fine-tune it using Salient360! and AOI datasets for
saliency prediction in ODIs.
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4.2 Evaluation Metrics

To comprehensively access the effectiveness of our proposed model, we employ
several widely used evaluation metrics, as described in the work by Bylinskii et al.
[3]. The four evaluation metrics employed are CC (linear correlation coefficient),
AUC (Area under ROC curve), NSS (Normalized Scanpath Saliency), and KLD
(Kullback–Leibler divergence).

4.3 Implementation Details

For implementing our proposed E2DAS model, we use PyTorch with the Adam
optimizer, setting weight decay to 0.00001 and an initial learning rate of 0.001.
During training, we adjust the learning rate reductions at specific epochs. At
the 60th, 120th, and 160th epochs, the learning rate is decreased by a factor of
0.1. This strategy is commonly used to fine-tune the learning process and allow
the model to converge more effectively. With a batch size of 4, our model con-
verges after approximately 200 epochs, and we train it on an NVIDIA GeForce
RTX3090Ti GPU platform.

4.4 Comparison with State-of-the-Art Models

Fig. 2. Compare various methods visually on the Salient360! and AOI datasets. The
first four columns are from Salient360! and the next four columns are from AOI. Among
them, the four images from AOI represent four categories: cityscapes, indoor scenes,
human scenes, and natural landscapes.

In this subsection, we conduct a comprehensive comparison between our pro-
posed model, E2DAS, and several state-of-the-art saliency prediction methods.
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The comparison is carried out from both qualitative and quantitative perspec-
tives. The comparison methods consist of various approaches, such as BMS [36],
BMS360 [22], GBVS360 [22], SALICON [19], SalGAN360 [4], SalBiNet360 [5],
SalGAIL [35], RINet [31], and EPSNet [1]. We select these models by considering
the public code availability and their representability of the state-of-the-art. The
first three models are designed for 2D images and utilize low-level features. The
remaining models are CNN-based, representing the most recent advancements
in saliency prediction. These CNN-based models include saliency prediction for
both 2D images and ODIs. Therefore, we believe that the selected models ade-
quately represent the state-of-the-art in this area.

Qualitative Comparison. To intuitively demonstrate the outstanding perfor-
mance of the proposed E2DAS model in ODIs saliency prediction, we visually
compare it with multiple state-of-the-art saliency prediction methods on two
benchmark datasets: Salient360! and AOI. Specifically, we randomly select 4
ODIs from Salient360! dataset and one ODI from each category on the AOI
[35] to compare the performance of our proposed E2DAS model against other
methods. The visual results are presented in Fig. 2, revealing that our model’s
saliency maps are more similar to the ground-truth than other methods. This
visual comparison serves as compelling evidence of our model’s superiority on
both the Salient360! and AOI datasets. In summary, the visualization results
clearly indicate that our model’s superiority over other methods, demonstrating
its capability to generate saliency maps that closely resemble the ground-truth.

Table 1. A comparison of different saliency prediction approaches on both Salient360!
and AOI datasets.

Methods Salient360! AOI

CC ↑ AUC ↑ NSS ↑ KLD ↓ CC ↑ AUC ↑ NSS ↑ KLD ↓
BMS [36] 0.560 0.719 0.958 0.587 0.557 0.758 0.975 0.584

BMS360 [22] 0.614 0.751 1.373 0.581 0.714 0.841 1.378 0.584

GBVS360 [22] 0.584 0.835 0.993 0.559 0.590 0.766 0.995 0.559

MLNet [9] 0.429 0.638 0.462 1.367 0.589 0.784 1.064 0.844

SalBiNet360 [5] 0.661 0.749 0.975 0.402 0.722 0.803 1.167 0.448

RINet [31] 0.558 0.772 1.501 0.781 0.736 0.799 1.141 0.380

EPSNet [1] 0.714 0.742 0.864 0.624 0.574 0.836 1.445 0.627

SalGAIL [35] 0.757 0.708 0.893 0.366 0.742 0.853 1.556 0.345

SALCON [19] 0.726 0.770 1.391 0.532 0.511 0.857 0.856 0.637

Ours 0.828 0.860 1.727 0.333 0.872 0.853 1.562 0.323
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Quantitative Comparison. To comprehensively evaluate the performance of
our E2DAS model in ODIs saliency prediction, we conduct a comparative anal-
ysis with several other methods on two benchmark datasets. Specifically, on the
Salient360! dataset, our model outperforms the second-best method, namely CC
has improved to 0.828, AUC to 0.860, NSS to 1.727, and a KL divergence to
0.333. Moreover, on the AOI dataset, our model achieves an impressive 0.872
for CC, 0.853 for AUC, 1.562 for NSS, and 0.323 for KL divergence. These
outstanding qualitative and quantitative results provide strong evidence for the
superiority of our model in saliency prediction across both datasets.

4.5 Ablation Study

In this subsection, we conduct comprehensive ablation studies to affirm the effi-
ciency of each element in our proposed E2DAS model. The purpose of these
experiments is to gain a deeper understanding of the contribution of each com-
ponent.

Table 2. Ablation analysis of several convolutions over AOI dataset. The backbone is
ResNet50 [12].

Convolution type Metric

CC ↑ AUC ↑ NSS ↑ KL divergence ↓
Standard convolution 0.851 0.852 1.526 0.328

E4 convolution 0.731 0.832 1.475 0.426

DY convolution 0.843 0.849 1.505 0.605

E2DAS convolution 0.873 0.853 1.562 0.323

Effectiveness of Different Convolution Filters. To further validate the
effectiveness of our devised convolution filter in the ODIs saliency prediction,
we replace our devised convolution filter for each layer in backbone network
ResNet50 [12] with standard convolution, dynamic convolution (DY ), and E4

convolution filters, respectively. The detailed comparison results are presented
in Table 2 and Fig. 3. As depicted in Table 2, our designed convolution filter sig-
nificantly improves CC, NSS, AUC, and KL divergence results compared to the
standard convolution filter. In contrast, substituting the standard convolution
filter with the dynamic convolution filter (DY ) and the E4 convolution filter
resulted in lower performance in saliency prediction. Figure 3 clearly demon-
strates that the saliency maps produced by E2DAS ResNet50 [12] exhibit a
closer resemblance to the ground-truth, thanks to our rotationally invariant and
spatially content-adaptive convolution filter. To summarize, the quantitative and
qualitative results obtained from these experiments verify the effectiveness of our
devised convolution filter in the proposed E2DAS model for ODIs saliency pre-
diction.
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Fig. 3. A visual comparison of various convolution filters on both Salient360! and AOI
datasets. The first two rows depict examples from Salient360!, while the remaining ones
showcase samples from AOI.

Effectiveness of Different Backbone Networks. To validate the effec-
tiveness of our proposed E2DAS model using ResNet50 as the backbone net-
work, we conduct experiments by replacing the ResNet50 with VGG16 [30],
AlexNet [21], and DenseNet [18], respectively. The experiments are performed
on the Salient360! dataset, while keeping the other settings of the E2DAS model
unchanged to ensure a fair comparison. The results, presented in Fig. 4, clearly
show that the ResNet50 backbone outperforms other backbone networks (e.g.,
VGG16, AlexNet, and DenseNet), indicating the effectiveness of our proposed
E2DAS model with the ResNet50 for the saliency prediction on the salient360!
dataset.

Effectiveness of Different Numbers of Layer in Backbone Network. In
our work, we also investigate the impact of varying backbone network layers in
our proposed E2DAS model. In particular, we adopt ResNet [12] with differ-
ent layer configurations as the backbone to assess their performance in ODIs
saliency prediction. Figure 5 presents the comparison results by using ResNet18,
ResNet34, and ResNet50 on the Salient360! dataset and AOI dataset. As shown
in this figure, increasing the number of network layers significantly improves
saliency prediction performance. Notably, when the number of network layers
reaches 50, the performance is optimized. Therefore, we choose the ResNet50 as
the backbone of our proposed model.

4.6 Computational Complexity Analysis

To improve ODI saliency prediction, existing methods use deeper or wider CNNs
but face high computational costs. We aim for a better performance-cost trade-off
by proposing a novel equivariant dynamic aggregation saliency model, addressing
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Fig. 4. The proposed E2DAS model employing various base networks, depicting the
performance comparison using four evaluation metrics.

Fig. 5. Qualitative comparison of different layers of ResNet [12] on both the Salient360!
dataset and AOI dataset. The first two columns display results from the Salient360!
dataset, while the remaining columns showcase results from the AOI dataset.

projection distortion and reducing computational cost. To clearly and intuitively
prove the lightweight nature of our proposed model, we compare our model’s size
and running time with other saliency methods on the Salient360! dataset using
a mobile device with a RAM platform. Our E2DAS model outperforms others,
indicating its lightweight nature and suitability for resource-constrained mobile
devices, as shown in Table 3.
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Table 3. Comparison of the model size and running time of our model with other
methods over the Salient360! dataset.

Comparison Methods Model Size (MB) Runtime (s)

BMS [36] 27 0.145

BMS360 [22] 32 0.135

GBVS360 [22] 34 0.284

SAM [10] 96 0.10

MLNet [9] 75 0.318

SALICON [19] 130 0.341

SalNet360 [24] 85 0.103

SalGAN360 [4] 130 0.020

Vavadvsm [14] 138 0.142

SalGAIL [35] 68 0.040

Ours 1.79 0.005

4.7 Discussion

Our proposed E2DAS model consistently demonstrates excellent performance
across various datasets and evaluation metrics. This improvement is attributed
to two key points: 1) the integration of E4 convolution, which introduces spatial
knowability, addresses projection distortion, and reduces network parameters for
improved computational efficiency. 2) The dynamic aggregation method in our
model uses the attention mechanism to adjust relevant information in the output
of layer E4, achieving improved saliency prediction performance while reducing
the number of model parameters. However, it struggles with generalization to
real-world ODIs and has limited practical application. Future work will focus on
enhancing generalization and exploring practical uses, such as ODI compression
and quality assessment.

5 Conclusion

The main goal of this work is to develop a lightweight ODIs saliency predic-
tion model capable of effectively addressing projection distortion and reducing
computational costs. To this end, we propose an efficient equivariant dynamic
aggregation saliency E2DAS model, which addresses the issue of projection dis-
tortion and effectively learns spatial content-adaptive features. Specifically, the
model comprises an efficient equivariant module for extracting rotation-invariant
features and reducing model parameters, a dynamic convolutional aggregation
module for learning spatial content-adaptive features and enhancing feature rep-
resentations, an optimization computation module for calculating the difference
between the predicted saliency map and ground-truth. We conduct extensive
experiments on two benchmark datasets: salient360! and AOI. Experimental
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results demonstrate that our proposed model achieves excellent performance
in saliency prediction while maintaining a low computational cost. These find-
ings validate the effectiveness and efficiency of the E2DAS model in handling
polar distortion and generating accurate saliency predictions in ODIs. In future
research, we aim to extend our proposed model to the scanpath prediction task in
omnidirectional videos. We intend to develop a lightweight scanpath prediction
model that accurately infers the trajectory of human fixations. This advance-
ment will contribute to a deeper understanding of the mechanisms behind human
visual attention.
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Abstract. Generative Adversarial Networks (GANs) can synthesize
high-quality images by estimating the latent distribution. However, when
face with few-shot image datasets, they often suffer from severe overfit-
ting. Previous solutions have primarily focused on data augmentation,
model architecture, and loss functions. This paper proposes to address
the instability and overfitting issues from the perspective of the con-
volution process. To tackle these problems, FewConv is introduced as
a plug-and-play alternative to traditional convolutions. FewConv inde-
pendently learns spatial and channel information, reducing the spatial
information that needs to be learned while complexifying the channel
information. Specifically, FewConv calculates the variance of channel
features at each layer to assess their importance and selects the sig-
nificant portions for depthwise convolution. For channel information,
spatial-to-channel feature transformation is performed before pointwise
convolution. This makes pointwise convolution need to learn more diverse
channel information. The diverse feature input of FewConv enhances its
capacity to combat overfitting. Moreover, using FewConv also reduces
network parameters and FLOPs, making the network more compact. To
validate the effectiveness of FewConv, extensive experiments were con-
ducted on diverse datasets. Models using FewConv achieved better FID
scores and exhibited more stable training processes. FewConv is also
applied to recognition training on ResNet and MobileNet, with experi-
mental results demonstrating its effectiveness in recognition tasks.

Keywords: Few-shot generation · Generative adversarial networks ·
Variant convolution

1 Introduction

Generative Adversarial Networks (GANs) have demonstrated remarkable
prowess in generating high-quality and diverse images [11,12,27,45]. For
instance, StyleGAN and BigGAN can produce results nearly indistinguish-
able from real data [15–17]. However, their performance heavily relies on large
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amounts of high-quality training data [14,46]. Simply applying GAN models to
few-shot image generation tasks often results in training failures, making it a per-
sistently challenging problem [13,22]. Initially, researchers attributed model fail-
ures on few-shot image datasets to insufficient data [1,26,41,47]. Consequently,
most approaches start with pre-trained models on large source datasets, fine-
tuning them to align closer with the target dataset [21]. While fine-tuning can
mitigate overfitting, methods like DistanceGAN [5] and subsequent works [28,40]
maintain image pair distances during fine-tuning to prevent overfitting. Addi-
tionally, incorporating an additional fully connected layer, as seen in MineGAN
[35] and MineGAN++ [36], or using adaptor networks [49], as demonstrated in
One-shot GAN [43] and WeditGAN [6], can guide fine-tuning and improve gen-
eration results. However, these methods often rely on compatible pre-training
datasets, limiting their applicability when such datasets are unavailable [28,48].

Researchers explore diverse strategies, including training methodologies, data
augmentation, and model architectures, to combat overfitting in few-shot image
generation [9,24,30,33,34]. However, the convolution process itself has received
little attention despite the existence of various convolution variants. Some
researchers advocate for altering the receptive fields of convolutions to enable
networks to learn more intricate spatial structures [2,29]. Conversely, others
aim to improve convolutional efficiency by reducing redundant parameters [3].
In this study, we propose a novel approach to enhance the convolution process
from a fresh perspective. In few-shot image generation tasks, overfitting dur-
ing training needs addressing. We contend that convolutions inherently possess
powerful capabilities for spatial and channel information extraction. However,
this excessive capability leads to overfitting phenomena. To tackle these issues,
FewConv is introduced. FewConv adeptly weakens the spatial structure learning
of convolutions, preventing premature overfitting during training. Specifically,
variance is used to evaluate channel feature importance, and top layers with
the highest variance are selected for spatial information extraction. Simultane-
ously, FewConv enriches channel information, making the 1× 1 convolution face
more complex channel information, thereby reducing overfitting risks. Moreover,
FewConv’s generic design facilitates easy deployment as a plug-and-play unit,
replacing convolutions without architectural changes or hyperparameter tun-
ing. FewConv enhances image quality and training stability, while substantially
reducing network parameters and FLOPs. Evaluations on ResNet and MobileNet
confirm FewConv’s effectiveness, maintaining comparable recognition accuracy
with reduced parameters and FLOPs. Remarkably, in ResNet-101, FewConv out-
performs the original model. This indicates that FewConv is successfully mitigat-
ing the risk of convolutional overfitting in a proper way. Our main contributions
are summarized as follows:

– We designed a plug-and-play convolution operation called FewConv to replace
the original convolution. It exclusively focuses on the most salient spatial
features, while simultaneously diversifying the input features across channels.
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– Through extensive experimentation, FewConv not only improves the image
generation quality in few-shot image generation tasks but also provides a
more stable training process and lower overfitting risk.

– FewConv also maintains comparable recognition accuracy to the original mod-
els in recognition tasks, while significantly reducing the number of parameters
and FLOPs, increasing the model’s compactness.

2 Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) represent a promising category of deep
networks trained adversarially. GANs involve a competition between the gener-
ator and discriminator, ultimately converging to a Nash equilibrium where the
generated data distribution matches the real distribution. They have made sig-
nificant strides in tasks like image and video generation, restoration, and segmen-
tation [32,37,38,50]. StyleGAN [16], an extension of CNNs, encompasses various
functionalities including unconditional and conditional generation, style transfer,
and image editing, showcasing the robust capabilities of GAN models. Despite
advancements seen in StyleGAN2 and StyleGAN3 [15,31], which enhance struc-
ture and mitigate artifacts, these GANs heavily rely on large, parameter-rich
training datasets. Failure to meet these conditions leads to unstable training
and diminished generation capabilities. This study delves into the convolution
process to uncover the root causes of overfitting and mode collapse with limited
image data and proposes necessary improvements.

2.2 Few-Shot Image Generation

The research on few-shot image generation using GANs has both scientific and
practical significance. However, training the discriminator with limited real data
can lead to overfitting. To address this issue, most methods use pre-trained mod-
els. Then fine-tuning is performed on the pre-trained models [28,35,39]. One-shot
domain adaptation [42] can be achieved by using lightweight adapters and clas-
sification heads on pre-trained models. Additionally, researchers adopt feature
fusion as a solution to this problem. However, these techniques require similar
semantics between training sets; otherwise, the generated images may exhibit
obvious artifacts [7,8,18,19,44]. Researchers also make further improvements in
data augmentation, model constraints, and loss functions to better train mod-
els. This work hopes to explore the root causes of GAN failure under few-shot
conditions and solve this problem using simple and effective methods.

2.3 Variant Convolution

To develop efficient models for mobile and embedded devices, depthwise sep-
arable convolution was introduced in MobileNet [10]. This separation signifi-
cantly reduces computational load and parameters. However, a straightforward
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replacement may lead to accuracy decline. The common approach is to widen
the network, but this increases parameters, offsetting benefits. Octave convolu-
tion [4] addresses redundant channel information in network features, reducing
parameters and enhancing accuracy. MUXConv [25] partitions features into orig-
inal, sub, and superpixels, enriching feature learning and model expressiveness.
PConv [3] extracts essential information through channel pruning and T-shaped
kernels, boosting network speed. SCConv [20] tackles redundancy by separating
and reconstructing features.

Fig. 1. The convolution processing of FewConv. The top figure is the main convolution
process of FewConv, and the bottom figure is the mapping diagram between spatial
features and channel features.

3 Methodology

3.1 Motivation

When traditional convolutions are directly applied in few-shot image generation,
the discriminator tends to overfit specific image patterns due to their powerful
learning capacity. This leads to a lack of diversity in generated images. To address
this, it’s beneficial to regulate the learning capability of convolutions. Depthwise
separable convolution offers a solution by decomposing standard convolution into
depthwise and pointwise convolutions, effectively decoupling spatial and channel
learning. Leveraging this concept, FewConv is introduced in this work to control
convolutional learning capacity.
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3.2 Depthwise Separable Convolutions

In the traditional convolutional computation process, each kernel performs a
dot product with the entire input feature map. In contrast, depthwise separa-
ble convolution divides the convolution process into depthwise convolution and
pointwise convolution. The depthwise convolution focuses on extracting spatial
information, while the pointwise convolution focuses on extracting channel infor-
mation. Given an input feature map P ∈ R

W×H×Cin , where W is the width of
the input feature map, H is the height of the input feature map, and Cin is
the number of channels in the input feature map, the depthwise convolution
processes it with a sliding window.

At each window position, a set of K × K trainable convolutional kernels,
denoted as Wdepthwise ∈ K × K × Cin, is applied to a patch of the same size.
Since depthwise convolution only extracts spatial information from the feature
map and does not change the number of channels, the output of the convolution
operator remains Cin-dimensional, denoted as O = Wdepthwise ∗ P .

Channel information is then extracted using a computationally efficient 1 ×
1 convolution. This set of trainable 1 × 1 convolutional kernels is denoted as
Wpoint ∈ 1 × 1 × Cout. As the pointwise convolution also needs to serve the
purpose of expanding or compressing channels, the output of the convolution
operator is a Cout-dimensional feature O = Wpoint ∗ P .

3.3 FewConv

Although depthwise separable convolution can effectively reduce FLOPs and the
number of network parameters, directly replacing conventional convolution leads
to significant accuracy degradation. In order to appropriately constrain the capa-
bilities of the convolutional layer, the input features are preprocessed. Consider-
ing the substantial feature redundancy along the channel dimension, a selective
approach is adopted to fully exploit both channel redundancy and spatial redun-
dancy. As Fig. 1 illustrated, a channel selection module is introduced with the
objective of distinguishing between information-rich and less informative parts
along the channel dimension. This is achieved by utilizing affine transformation
parameters from the group normalization layer.

Specifically, the group normalization layer is employed to normalize features,
with the scaling factor used to assess the importance of different channels. Given
an input feature X ∈ N× W × H × Cin, the input feature is first normalized as
follows:

BN(X) = γ
X − μ√
σ2 + ε

+ β (1)

where μ and σ are the mean and standard deviation of X, ε is a small positive
constant added for division stability, and γ and β are trainable affine transfor-
mation parameters. The scaling factor γ reflects the variance between spatial
pixels of each batch and channel. A larger γ indicates richer spatial and channel
information, with less redundant information.
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Subsequently, based on γ, α channels of feature maps are selected, Pchoice ∈
N×W×H×Cin×α. Pchoice represents the most information-rich part of the entire
feature map and ensures that subsequent convolutional layers learn sufficient
knowledge for various tasks. In order to minimize the redundant learning of
spatial information in the convolutional layer, depthwise convolution operations
are performed on the selected, most information-rich part of the feature, denoted
as Pchoice. The output feature is named Pspatial:

Pspatial = Wdepthwise ∗ Pchoice (2)

This operation, which independently calculates the spatial information for each
channel, not only effectively reduces the FLOPs of the convolution operation
but also avoids overfitting caused by redundant learning.

Certainly, the flow of information between channels is equally important.
After independently learning spatial information, the feature maps are rear-
ranged from spatial to channel dimensions. This results in each r × r spatial
feature being sequentially arranged along the channel dimension. Specifically,
we define an r × r window and an input feature Pspatial ∈ N× W × H × Cchoice.
Each feature in this window is sequentially arranged along the channel dimen-
sion, and the window then slides with a stride of r until processing the entire
feature map. The output feature size is Pspatial ∈ N × W

r × H
r × (Cchoice × r2).

Subsequently, pointwise convolution is used to process the rearranged feature
map, facilitating the flow of information across channels:

Pout = Wpoint ∗ Pspatial (3)

Therefore, the following pointwise convolution not only needs to extract chan-
nel information but also needs to learn certain spatial information. The diverse
combination of information ensures that pointwise convolution does not overfit
due to redundant features and a single texture pattern. Finally, the convolved
features are restored from the channel dimension back to the spatial dimension.
After that, the feature map size is Pout ∈ N × W × H × Cchoice. Finally, the
output features are concated with the unconvolved part, and then go through a
layer of 1 × 1 convolution to reach the number of output channels:

O = Wpoint ∗ concat(Pout, Punconvolved) (4)

3.4 Integrating FewConv Into Backbone Networks

FewConv, based on the spatial and channel separable convolution approach,
weakens the spatial extraction capability of depthwise convolution, concentrat-
ing it on the most crucial parts. It enhances the learning content of pointwise
convolution, no longer limiting its focus solely to channel information. This app-
roach not only facilitates effective learning of the required information for each
component but also mitigates overfitting issues arising from redundant infor-
mation. Thus, FewConv is well-suited for tasks such as few-shot image genera-
tion. FewConv is compatible with standard convolutions, seamlessly insertable
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into various conventional convolutional networks like ResNet and GAN without
requiring special adjustments. For generation tasks, a channel selection rate of
1/4 is recommended, reducing network flops and parameters while improving
the generated output quality and preventing overfitting. For recognition tasks,
a 1/4 channel selection rate still achieves comparable efficiency to the baseline,
making the entire network more compact.

It is noteworthy that FewConv lacks channel expansion and compression
capabilities. Therefore, after FewConv, pointwise convolution is chosen to employ
acting on the entire channel to perform this task. Despite the additional use of
a 1 × 1 convolution, it incurs minimal flops and parameter costs compared to
standard convolution. For downsampling operation, specifying the appropriate
stride value for depthwise convolution is sufficient. For channels not involved in
the FewConv convolution, an average pooling layer is utilized for downsampling,
and the outputs are concatenated. Our channel rearrangement is applicable to
feature maps of any size r × r and any scaling rate. However, we advise against
using excessively large scaling rates, as they may significantly increase network
flops and parameters.

3.5 Efficiency Analysis

FewConv is designed as a plug-and-play module that can be easily embedded into
various well-designed neural architectures to reduce computational and storage
costs. To illustrate the advantages of FewConv over traditional convolutions
more intuitively, we analyze the theoretical reduction in memory usage. The
parameters of a standard convolution Y = MkX can be calculated as:

Ps = k × k × C1 × C2 = k2C1C2 (5)

where k is the kernel size of the convolution, C1 and C2 are the numbers of input
and output feature channels, respectively.

The parameters of the proposed FewConv module are composed as follows:

PFew = k × k × αC1 × g + 1 × 1 × αC1 × r × αC1 × r

+1 × 1 × C1 × C2 (6)

where α is the feature selection rate for group normalization, g is the group size
for group convolution, r is the transformation rate from spatial to channel, and
C1 and C2 are the sizes of input and output feature channels, respectively. In
experiments, typical parameter settings are α = 1/4, r = 4, g = 1, k = 3, and
C1 = C2 = C. The number of parameters can be reduced by 3.5 times, where
Ps/PFew ≈ 3.5, while the performance of the model can be even better than
that of standard convolutions.
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4 Experiments

In this section, we conducted experiments to assess FewConv’s effectiveness
across diverse datasets for both few-shot image generation and image classifi-
cation tasks. We replaced only the 3 × 3 kernel in the recognition network with
the FewConv module. In the few-shot image generation task, FewConv was also
utilized for downsampling operations. To ensure a fair comparison, we replace
only the convolutional layers in both tasks, keeping hyperparameters constant
between the baseline and our method. All models, including the baseline re-
implemented with FewConv, are trained from scratch on NVIDIA 2080TI GPUs
using default data augmentation and training strategies, without additional tech-
niques. Multiple training runs with consistent configurations are conducted to
mitigate fluctuations, and the median results is reported for each experiment.

Fig. 2. Qualitative comparison between FastGAN and re-implemented using FewConv.
Both models are trained from scratch for 10 h with a batch-size of 8.



432 S.-H. Liu et al.

Table 1. FID comparison at 256× 256 resolution on few-shot datasets.

Animal Face-Dog Animal Face-Cat Obama Panda Grumpy-cat

Image number 389 160 100 100 100

styleGAN2 58.85 42.44 46.87 12.06 27.08

styleGAN2 finetune 61.03 46.07 35.75 14.5 29.34

FastGAN 50.66 35.11 41.05 10.03 26.65

Ours 51.28 35.04 38.88 9.85 25.46

Table 2. FID comparison at 1024× 1024 resolution on few-shot datasets.

Skull Shell Anime-Face Pokemon Art-painting Flowers FFHQ

Image number 100 60 120 800 1000 1000 1000

styleGAN2 127.98 241.37 152.73 190.23 74.56 45.23 25.66

styleGAN2 finetune 107.68 220.45 61.23 60.12 N/A N/A 36.72

FastGAN 130.05 155.47 59.38 57.19 45.08 30.24 30.42

Ours 106.76 98.40 57.84 43.23 40.89 23.98 29.50

Baselines. In the few-shot image generation task, FastGAN [23], a state-of-
the-art unconditional few-shot image generation model, is selected as the base-
line. Alongside FastGAN, comparison models including StyleGAN2, trained for
few-shot image generation with optimal configurations and differentiable data
augmentation. Another variant of StyleGAN2 is trained on a large dataset and
fine-tuned on a smaller dataset. In FastGAN, all components except the output
layer’s convolutional block are replaced by FewConv. Additionally, the down-
sampling layers in the discriminator utilize depthwise convolution and average
downsampling from FewConv for the required operations. For the baseline of
image recognition, ResNet and MobileNet, widely used for comparison, are cho-
sen. Popular variants like ResNet-34, ResNet-50, and ResNet-101 are used in the
experiments to demonstrate the effectiveness of FewConv. These networks are
trained from scratch and optimized using SGD with a cosine learning rate.

Dataset. The experimental setup is as same as FastGAN’s setup and run the
experiment on multiple datasets with a wide range of content categories, includ-
ing Animal-Face Dog and Cat, 100-shot-Obama, 100-shot-panda, and Grumpy-
cat, at 256 × 256 resolution. The 1024 × 1024 resolution datasets include Flickr
Face-HQ(FFHQ), Oxford-flowers, art paintings, photographs of natural land-
scapes, Pokemon, anime face, skull and shell. We randomly chose 1000 images
from the FFHQ dataset for few-image training purposes. As a result, we will
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Table 3. Comparison of the number of model parameters and computational complex-
ity between FastGAN and re-implemented using FewConv.

Params(M) FLOPs(M)

FastGAN’G 29.13 79271.04

Ours’G 13.42 12680.63

FastGAN’D 8.39 13229.01

Ours’D 5.97 5735.94

Fig. 3. Trends in FID scores between FastGAN and re-implemented using FewConv.

need to retrain the other models for the FFHQ training dataset in order to
achieve comparable FID scores. The image recognition task will employ the
CIFAR dataset, which includes CIFAR-10 and CIFAR-100. These datasets con-
sist of 50,000 training images and 10,000 validation images, divided into 10 and
100 classes, respectively.

Metrics. For image generation quality, Frechet Inception Distance is mainly
used to evaluate it by measuring the similarity between two datasets of images or
Evidence Lower Bound (ELBO) in each dataset. The level of similarity indicates
the distance between the generated images and the original images. A lower FID
value suggests a better generated image quality. Learned perceptual similarity
(LPIPS) is used to measure the similarity between the original and generated
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Fig. 4. Comparison of signal output and loss value of discriminator between FastGAN
and re-implemented using FewConv. In the left four figures, the blue curve is the
signal output of the discriminator to the real image, and the orange curve is the signal
output of the discriminator to the fake image. The right four figures show the output
of adversarial loss. (Color figure online)

images by calculating the pairwise perceptual distance. Lower LPIPS means
greater similarity between two images. We let each class of generating model
generates 5,000 images and calculate the FID between the generated image and
the entire training dataset. Top-1 accuracy is reported as the evaluation metric
for image classification.

4.1 Few-Shot Generation

Figure 2 shows the image generation results. As depicted in Tables 1 and 2, Fast-
GAN with FewConv outperforms the baseline across most datasets at resolutions
of 256 × 256 and 1024 × 1024. FewConv not only boosts generative capabilities
but also notably reduces computational and parameter Table 3. This highlights
redundancy in parameters within deep generative networks, hindering adaptabil-
ity to few-shot image datasets and leading to overfitting on simple structures.
By selectively employing depthwise convolution for spatial learning only on the
most representative parts of the features, FewConv effectively mitigate the risk
of overfitting, to some extent, at the cost of slightly reducing spatial learning
capabilities. By introducing spatial information into channel data in pointwise
convolution, FewConv enriches learning content. The increased richness of chan-
nel information implies a more diverse input feature stream, which is highly
beneficial for harnessing the learning capabilities of pointwise convolution.

To assess the superior anti-overfitting capability of adversarial neural net-
works with FewConv, four datasets prone to overfitting (Pokemon, anime face,
skull, and shell) are selected. The models undergo an additional 60,000 epochs
of training, with parameters saved every 10,000 epochs to calculate the FID
between generated and real images, as shown in Fig. 3. The FID trends reveal
that FewConv-trained models exhibit greater stability, with minimal mode col-
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lapse and lower overfitting risk. Even after 60,000 epochs, FewConv models
achieve lower FID scores compared to FastGAN, which experiences a notable
FID increase post 50,000 epochs. This suggests that networks with traditional
convolutions are more susceptible to overfitting and mode collapse. Visualizing
the original and FewConv-enhanced discriminator signal outputs, as shown in
Fig. 4, we observe that FastGAN outputs near-certainty values (close to 1 for real
data and 0 for generated data), indicating potential overfitting around 20,000
epochs. Conversely, FewConv models output values closer to 0.8 for real data
and around 0.15 for generated data, facilitating Nash equilibrium. Additionally,
monitoring adversarial loss values during training in Fig. 4, shows that FewConv
models achieve more stable losses, ensuring a smoother training process and
superior outcomes.

Table 4. LPIPS of back-tracking with G.

FFHQ Art paintings Dog Face Cat Face

Image number 1000 1000 389 160

FastGAN @ 40k iter 2.425 2.624 1.918 1.821

Ours @ 40k iter 2.200 2.465 1.756 1.773

FastGAN @ 80k iter 2.342 2.601 1.986 1.897

Ours @ 80k iter 2.096 2.402 1.750 1.788

A well-trained GAN should be able to reverse a real image to the latent
space, with lower levels of overfitting indicating results closer to the real image.
Four datasets, AnimalFace-Cat, AnimalFace-Dog, FFHQ, and Art-Paintings,
were used for this experiment, and the LPIPS was used to evaluate the final
reversal results. The datasets were randomly divided into training and test sets
in a 9:1 ratio. The models were trained for 1000 epochs on the training set
to prevent the latent vectors from deviating from the distribution. The model
parameters were then fixed, and the LPIPS loss was used to update the input
random noise. As shown in Table 4, the models using FewConv outperformed
FastGAN in terms of reconstruction results, with lower performance loss as the
number of iterations increased. This suggests that models using FewConv have
lower risk of mode collapse.

4.2 Image Recognition

For CIFAR-10 and CIFAR-100, we adopt a training setup similar to ResNet.
The network undergoes 200 epochs of training using the SGD optimizer. At each
stage, we set the weight decay to 5 × e−4 and momentum to 0.9. The learning
rate starts at 0.05 and decays to 0.1 at epochs 100 and 150. Training is performed
on a single GPU with a batch size of 128. Each model is trained five times, and
reported the median Top-1 accuracy along with FLOPs and parameter quanti-
ties for each network. In Table 5, although MobileNet with FewConv experiences
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a slight increase in FLOPs and parameters, it achieves accuracy improvements of
1.14% and 1.72% on CIFAR-10 and CIFAR-100, respectively, at a 17% additional
computational cost. The parameter increase is mainly due to widening of 1× 1
convolutions for spatial to channel mapping. For ResNet, FewConv significantly
reduces both FLOPS and parameter quantities, while maintaining comparable
accuracy. For ResNet-34, despite a 3.68% accuracy drop on CIFAR-10, we use
only 16.7% of the original parameters and 12.1% of the FLOPS. As network
depth increases, the accuracy gap decreases. For ResNet-50, the accuracy dif-
ference is only about 0.1% to 0.2%, with a 38.4% reduction in FLOPS and a
37.3% reduction in parameters. Finally, for ResNet-100, using only 58.3% of
the FLOPS and 61.0% of the parameters, there is an accuracy improvement of
0.21% and 0.4% on CIFAR-10 and CIFAR-100, respectively. FewConv effectively
avoids interference from redundant features and parameters in deeper networks
by extracting only partial spatial features and allowing 1 × 1 convolutions to
learn more complex representations in the channel domain, thereby enhancing
network learning capability.

Table 5. Comparison of parameters, FLOPs, and recognition accuracy between the
original model and the model re-implemented using FewConv.

flops params cifar10 cifar100

MobileNet 587.95M 3.22M 91.39 71.39

MobileNet-FC 693.13M 5.97M 92.53 73.11

ResNet34 3678.23M 21.29M 93.31 74.08

ResNet34-FC 445.29M 3.56M 89.63 72.91

ResNet50 4131.72 M 23.53M 92.42 72.90

ResNet50-FC 2545.1 M 14.73 M 92.16 72.76

ResNet101 7864.41M 42.52 M 92.37 72.31

ResNet101-FC 4587.39 25.94 M92.58 72.71

For the ResNet-34 model, we conduct ablation experiments to validate our
explanations and identify causes of accuracy loss. Different div parameters are
experimented with to represent the number of channels from which spatial infor-
mation is learned. As div decreases in Table 6, indicating fewer channels selected,
there is no significant accuracy change, indicating spatial redundancy across
channels. FewConv uses fewer computations and parameters to acquire spa-
tial information more reasonably, avoiding unnecessary redundancy. Next, we
validate the inference that mutual mapping between spatial and channel dimen-
sions enhances the learning capability of 1×1 convolutions. “w/o map” indicates
not using the spatial-channel mapping. Without this mapping, accuracy drops by
4%, showing 1 × 1 convolutions’ powerful learning capability. “w/o down” indi-
cates not using FewConv for downsampling operations. Omitting FewConv for
downsampling operations in the ResNet-34 model results in a 51% increase in
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Table 6. Ablation experiments on the ResNet-34 model.

flops params cifar10

ResNet34 3678.23M 21.29M 93.31

div = 1 984.42M 15.63M 90.03

div = 2 753.37 M 10.35 M 90.50

div = 3 522.32 M 5.28 M 90.33

div = 4 445.29M 3.56M 89.63

w/o map 445.29M 3.56M 85.28

w/o down 1895.29M 11.26M 92.29

w/o down 50% 1170.29M 7.41M 92.04

FLOPs and parameters, achieving accuracy close to the original model. “w/o
down 50%” in Table 6 indicates using FewConv for downsampling only in the
second half of the network, resulting in 0.1% difference in accuracy compared to
the original network. This is because in shallower networks, the use of average
pooling layers results in the loss of too much spatial information, affecting the
accuracy of the network, which becomes less significant as the number of layers
increases.

5 Conclusion

This paper introduces a plug-and-play convolution module named FewConv,
suitable for few-shot image generation tasks. FewConv focuses on learning the
most important spatial information from those significant and variable feature
parts. By avoiding the learning of redundant features, it reduces the risk of
convolutional overfitting on certain spatial information while lowering the com-
putational and parameter storage costs of convolution operations. Additionally,
for channel information, a mapping between spatial and channel dimensions is
utilized to complexify it, resulting in pointwise convolutions facing more diverse
and richer feature inputs. This enhances the expressive learning capability of
pointwise convolutions. Through extensive experiments, the use of FewConv
stabilizes the few-shot image training process, mitigates overfitting risks, and
improves image generation quality. Similarly, we evaluated FewConv’s perfor-
mance in recognition tasks, where experimental results show that FewConv
achieves comparable or better outcomes than the original models at a lower
cost of computation and parameters. In the future, we will further explore these
intriguing issues and hope that this work can benefit various downstream tasks,
providing a new research direction for subsequent studies.
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Abstract. Efficient and effective on-line detection and correction of
bad-pixels can improve yield and increase the expected lifetime of image
sensors. This paper presents a comprehensive Deep Learning (DL) based
on-line detection and correction approach, suitable for a wide range of
pixel corruption rates. A confidence calibrated segmentation approach
is introduced, which achieves nearly perfect bad pixel detection, even
with a few training samples. A computationally light-weight correction
algorithm is proposed for low rates of pixel corruption, that surpasses
the accuracy of traditional interpolation-based techniques. In addition,
a vision transformer (ViT) auto-encoder based image reconstruction app-
roach is presented which yields promising results for high rates of pixel
corruption or clustered defects. Unlike previous methods, which use pro-
prietary images, we demonstrate the efficacy of the proposed methods
on the open-source Samsung S7 ISP and MIT-Adobe FiveK datasets.
Our approaches yield up to 99.6% detection accuracy with <0.6% false
positives and corrected images within 1.5% average pixel error from 70%
corrupted images. We achieve correction error at par with the state-of-
the-art (SoTA) DL methods for clustered defects with less than half the
computational cost.

Keywords: CMOS image sensor · pixel defect · bad pixel detection ·
bad pixel correction · deep learning

1 Introduction

There have been remarkable technological advances in the development of CMOS
image sensors with improvement in quality, efficiency, and fault-tolerance [20].
Nevertheless, pixel defects can occur in these sensors during the manufacturing
process or later during operation, are permanent, and increase in number over
the lifetime of the sensor. These defects degrade the sensor yield and effectiveness
and consequently increase cost. Pixel defects are important for a wide range of
image sensors, but particularly for sensors that are regularly exposed to high
levels of light, electrical energy, or radiation, such as in satellites and telescopes,
which leads to high rates of pixel corruption.
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Traditionally, pixel defects are detected only during manufacturing [17]. How-
ever, the resulting static pixel defect maps do not capture defects developed dur-
ing the lifetime of the sensor. Online pixel defect detection usually relies either
on the analysis of neighborhood pixels within the current frame [2,29] or on mul-
tiple frames [23,27], rendering them useless when pixel defects occur in nearby
pixels or clusters. In this work, we propose bad pixel detection leveraging multi-
ple frames capable of detecting clustered defects without the need to store pixel
information from individual frames, thereby eliminating any increased memory
overhead while achieving perfect detection.

The detected pixel defects are typically corrected using interpolation algo-
rithms, such as nearest neighbor interpolation [28], linear filtering [19], and
median filtering [37]. Traditional approaches are heuristic-based and often tai-
lored for a particular sensor type and error pattern. Clustered defect correction
algorithms [22,32] assume that the defect locations are already known, whereas,
defect detection and correction in commercial image signal processors (ISP) are
not equipped to detect or correct clustered defects. Sophisticated approaches like
adaptive filtering [32] aim to estimate edges and directions and are extremely
complicated and harder to optimize. This motivates a learning-based method
that is applicable to a wide range of error patterns, error rates and sensor types.
Motivated by successes in a wide variety applications, deep learning (DL) have
also been explored in the area of pixel defect detection and correction [18,22].

In this paper, we propose DL based online bad pixel detection and correc-
tion on Bayer images suitable for both photographic and computer vision (CV)
applications. Our goal is to improve sensor yields during manufacturing as well
as increase their effective lifetime. More specifically, we first propose to detect
bad pixels, which gives us the error rate in the image. We then propose two
different strategies for correcting low and high rates of pixel corruption. For low
error rates, we propose a lightweight patch-based pixel correction on extracted
patches around the detected bad pixel. For very high error rates and clustered
defects, we propose a ML-based complete reconstruction algorithm. We demon-
strate results by injecting errors on two different datasets, Samsung S7 ISP [33]
and MIT-Adobe FiveK dataset [3] that have RAW Bayer CFA format images.
Our approach for detecting and correcting image errors can be easily extended
to all types of images, including grayscale, RGB, or IR images.

Contributions. Our contributions can be summarized as follows. (1) We pro-
pose a binary segmentation method for effective detection of bad pixels. While
this approach achieves nearly perfect detection for large datasets, the detection
rate drops for smaller datasets. To mitigate this gap, we propose confidence
calibration using multiple images during inference. Our confidence-calibrated
segmentation approach yields an improvement of up to 20% over regular binary
segmentation. (2) We propose a lightweight patch based pixel correction using
multi-layer perceptron (MLP) models for low error rates, that outperforms exist-
ing interpolation techniques. More specifically, our MLP model exceeds reported
values for Adaptive Defect Correction [35] by 7.05dB and linear [19] and median
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[37] interpolation by 4.85dB, for the same error rate. (3) For extremely high
rates of pixel corruption, we propose a fail-safe autoencoder based image recon-
struction approach, that needs no prior detection. This approach achieves a
Normalized Mean Squared Error (NMSE) of 1.55% for up to 70% corrupted
pixels. For 5 × 5 defect clusters, it achieves an NMSE as low as 0.3%, which is
at par with SoTA DL approaches [22], with less than half the parameters and
computational cost.

2 Background

Bad Pixel Detection: There are two main types of bad pixel detection meth-
ods: online and offline. Offline methods detect bad pixels during the manufac-
turing process, while online methods are used to detect defects throughout the
sensor’s lifetime. Traditionally, offline detection involves observing which pixel
values remain unchanged across images and creating a map of defective pixels
[17]. This map is then stored in a non-volatile memory integrated with the sensor
chip to guide downstream pixel correction logic [17]. Online detection is crucial
for identifying defects during the lifetime of a sensor, and can be done by ana-
lyzing either a single frame or multiple frames. Single-frame detection [2,4,7,29]
involves comparing the values of the pixel in question to those of its neighboring
pixels. Two commonly used defect detection and correction algorithms in com-
mercial ISP are Pinto [29] and Kakarala [2]. Pinto [29] uses a 3×3 neighborhood
and identifies a pixel as defective if it has the highest or lowest value in the
neighborhood. Naturally, this method cannot detect multiple defective pixels in
the same neighborhood. [2,4,7] set upper and lower thresholds based on values
of neighboring pixels, and any pixel that falls outside of this range is flagged as
defective. [14] performs rule-based analysis of pixel deviation from local aver-
age estimates of same color neighbors. None of these methods are equipped to
detect clustered defects or multiple bad pixels in close vicinity. [23,27,34] uses
multi-frame processing to detect defects. [27] uses a combination of neighborhood
pixels and temporal consistency. The pixels exceeding the average neighborhood
pixel values by a pre-defined threshold are stored as candidate bad pixels and
monitored over a number of time steps. Pixels whose value remains unchanged
over a sufficient time period are declared defective. [23] uses Bayesian statis-
tics of image sequences collected over days for defect detection. These methods
incur a large memory overhead for storing image statistics. More recently, deep
learning has also been used for bad pixel detection [18,25,39]. Kalyanasundaram
et al. [18] proposed a MLP model for detection of isolated defects, although it
needs some initial pre-processing steps. [39] uses convolutional neural networks
(CNNs) while [25] uses a YOLOv3 [30] based architecture for defect detection.

Bad Pixel Correction: Pixel defect correction is typically performed using
interpolation. While nearest neighbor interpolation [28] replaces the defective
pixel with its nearest non-defective pixel value in 2D space, linear filtering
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[19], and median filtering [37] compute the mean and median of a few non-
defective neighboring pixels to replace the defective pixel. Bad pixel correction
in Kakarala [2] and Pinto [29] are performed using linear and median filter-
ing, respectively, which leads to image blurring when edges are present in the
patch. More advanced interpolation techniques such as Adaptive Defect Cor-
rection (ADC) [35] tries to estimate edges and directions for defect correction
although it can only work on Bayer pattern images. Sparsity-based Defect Inter-
polation [32] devises a sparsity based high-complexity iterative algorithm that
leverages complex-valued frequency selective extrapolation and outperforms pre-
vious interpolation techniques. These correction approaches assume that defect
locations are already known during manufacturing. DL approaches have also
been explored for pixel defect corrections [5,22]. For pixel-defect correction of
flat-panel radiography images, [22] uses different DL approaches: a single-layer
ANN, a multi-layer CNN, a concatenated CNN, and GANs, and infer that their
concatenated CNN performs the best for correcting clustered defects.

3 Bad Pixel Detection

Semantic segmentation [6,13,24,31] is a common task in computer vision, where
each pixel in an image is assigned a specific class. Segmentation is popular for
understanding image context in applications like autonomous driving [15] or
medical image analysis [31]. We formulate bad pixel detection as a binary seg-
mentation problem consisting of two classes: good pixels and bad pixels (Fig. 1).
We perform detection using U-Net [31], originally proposed for medical image
segmentation. It has an encoder-decoder architecture making the network U-
shaped (as shown in Fig. 1), where the encoder consists of a set of downsampling
layers while the decoder consists of a set of upsampling layers. The model takes
single channel Bayer images with defective pixels as input and generates a binary
map indicating good and bad pixels as output, which has the same dimension
as the input. This method can be extended for RGB inputs by training a U-Net
model with three input channels instead of one input channel. The model is
trained using a combination of binary cross-entropy and dice loss.

However, simply using binary segmentation cannot achieve perfect detection,
particularly when there are limited number of images for training the segmenta-
tion model (see Sect. 5.2). Due to nature of defects, the corrupted pixels always

Fig. 1. Bad pixel detection using binary segmentation
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occur in the same location across images. A single image may not be enough to
correctly identify all bad pixel locations. We leverage the predictions from multi-
ple test images for more reliable bad pixel detection. For semantic segmentation,
the model outputs a set of probability or confidence scores indicating if a pixel
belongs to a particular class. Instead of taking probability values from a single
image, we take mean probability score of n images during test time, which is
then thresholded to obtain final class labels, as shown in Fig. 2. This approach
is termed as confidence-calibrated segmentation. Our results show significant
improvement in detection performance (see Sect. 5.2). Notably, we maintain a
pixel-wise cumulated probability score (sum of probability scores) across mul-
tiple frames, instead of maintaining individual pixel-wise probabilities for each
frame. Therefore, we just need to store the information corresponding to the
number of pixels in a single frame, making our method more memory-efficient
as compared to existing multi-frame detection approaches.

Fig. 2. Bad pixel detection using confidence-calibrated segmentation

4 Bad Pixel Correction

For correction of bad pixels, we propose two different approaches to deal with
different error rates. The error rate can be measured using the detection method
proposed above. First, we propose a patch-based correction approach, where a
n × n patch around the detected bad pixel is extracted, and passed through
the correction network to obtain the actual value of the erroneous central pixel.
While this method performs reasonably well for low error rates, it fails when the
bad pixels are clustered or the number of bad pixels in a patch is very high. For
this, we propose a fail-safe, a Vision Transformer based Autoencoder (ViT AE)
[12,16] for pixel correction using complete image reconstruction.
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MLP Based Correction: While bad pixel detection needs to be applied peri-
odically during the lifetime of the sensor (e.g., during the boot-up process), bad
pixel correction has to be performed on every single captured image. Hence, the
correction algorithm should be preferably lightweight. We build a 2-layer MLP,
consisting of 2 fully-connected layers with ReLU activation, to predict the cen-
tral pixel from neighboring pixel values. The ReLU layers introduce non-linearity,
which helps the network better estimate the optimal pixel value and outperform
traditional interpolation approaches. We compare our approach with linear [19]
and median [37] filtering (Fig. 4) and observe that our approach yields ∼ 14.2×
lower NMSE than these methods (Fig. 3).

Fig. 3. Patch based bad pixel correction

A n × n patch may contain multiple bad pixels in the neighborhood of the
central pixel, as shown in Fig. 4, which makes the problem of pixel correction
harder. We adopt two different approaches to mitigate this problem: increasing
patch size and training models with neighborhood bad pixels. Increasing patch
size provides the model with a larger window of neighborhood pixels for pre-
diction of the central pixel, which is particularly advantageous when there are
multiple bad pixels in close vicinity. On the other hand, training with corrupted
pixels imparts the ability to infer correct prediction discarding defective pixels
in the neighborhood. While very effective for low error rates, for high levels of
image corruption, these methods experience notable deterioration (see Sect. 5.2),
motivating a secondary approach.

Image Reconstruction Using a ViT AE: An Autoencoder (AE) [1,36] has
an encoder-decoder architecture, where the encoder learns the latent features
from input images and the decoder reconstructs the image using those latent
features. They are used for a wide range of vision tasks, including anomaly
detection [1,40,41], segmentation [6,31] and super-resolution [11,26]. Denoising
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autoencoders (DAE) [36] or masked autoencoders (MAE) [16] are used as pre-
training for very large models. While DAE injects noise, MAE masks out large
portions of the input, and the model learns to reconstruct the image from partial
input information, learning robust features.

Unlike these approaches, we use AE with the goal to recover original pixel
values from corrupted images. We design a ViT based AE inspired from MAE
[16], which takes corrupted single-channel Bayer images as input. However, dif-
fering from [16], we do not mask image portions or use mask tokens, but input
all embeddings from the corrupted images into the encoder blocks. The AE is
trained by minimizing normalized error on the corrupted pixels. We demonstrate
that this method, although computationally expensive compared to an MLP and
hence unnecessary for low error rates, yields significant benefits for high rates
of pixel corruption. More importantly, this method does not require exact bad
pixel locations. Therefore, there is no need to perform detection every single time
prior to correction, thereby saving detection cost. Moreover, the size of the AE
model scales with input size, meaning, based on the model size that can fit into
the sensor chip, we can break the input image into patches and perform patch
wise reconstruction. For an input of 15×15, we demonstrate results using an AE
model with only 2 encoder and decoder layers consisting of only 11K parameters
(Table 2).

5 Experimental Results

5.1 Experimental Setup

Models and Dataset: Our approaches are evaluated on the Samsung S7 ISP
[33] and the Canon EOS 5D subset of the MIT-Adobe FiveK dataset [3] datasets.
The S7 ISP is a small dataset, consisting of 110 image pairs, captured using
the Samsung S7 rear camera, whereas the MIT FiveK is a large-scale dataset,
containing 5,000 photographs taken with SLR cameras, from which we extract
777 Canon images, similar to [38]. We consider the raw images for this task and
inject bad pixels to the images to evaluate our approaches. The datasets are split
into train, validation, and test sets in a ratio of 8:1:1. Detection is performed
using U-Net [31] segmentation model, and correction is performed using a 2-layer
MLP [21] and ViT AE, inspired from [16].

Bad Pixel Injection: Pixel defects in image sensors have different types. While
dead pixels are permanently stuck at 0, hot pixels or stuck pixels maybe perma-
nently bright. Pixel defects may also cause them to deviate from their original
value. In our framework, the bad pixel value is obtained by adding at least ±δ
variation to original pixel value, but still within the permissible range of pixel
values. We test our approach over a wide range of δ. The lower the deviation
from its original value, the harder it is to detect a bad pixel, whereas, higher
the deviation in neighboring pixels, harder it is for correction. The number of
bad pixels expected is determined by manufacturing facilities as well as sensor
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lifetime models. We test over a wide range of error rates from 0.01% to 85% with
the location of bad pixels selected at random.

Training Framework: Both U-Net and ViT AE models are trained for 50
epochs on S7 ISP and 10 epochs on MIT FiveK datasets. For U-Net, we use
a step learning rate (lr), starting with a lr of 0.001 and decaying by 0.5 every
10 epochs. ViT AE is trained with an initial lr of 0.01, a linear increase in lr
for the first 5 epochs, and cosine decay in lr for the rest of the training epochs.
The MLP models for correction are trained for 50 epochs using a learning rate
of 0.01. Since raw images have very high dimension (∼3000×4000), each image
is broken down into 64 patches before being fed into U-Net or ViT AE, to
reduce computation. They can be decomposed into even smaller patches based
on computational constraints.

Evaluation Metrics: The detection approach is evaluated using Precision and
Recall. Precision is defined as TP/(TP+FP) and Recall is defined as TP/(TP+
FN) where TP, FP, and FN refer to true positives, false positives, and false
negatives, respectively. In this case, bad pixels are considered positives. Thus,
recall quantifies the detection rate and precision quantifies the false positive
ratio. The correction approach is evaluated using NMSE given by ‖ppred−pact‖2

2
‖pact‖2

2

where pact and ppred refer to actual and predicted pixel values. PSNR or peak
signal to noise ratio is used to measure the quality of the corrected image with
respect to the original image. PSNR is given by 10log10( 1

MSE ) where MSE is
the mean squared error between original and corrected image.

5.2 Results and Analysis

Table 1 summarizes the results for bad pixel detection and correction using the
proposed approaches for error rates ranging from 0.01% to 70% and bad pixel
values deviating from the original pixel value by 70%. Detection results are
reported for a single test image. While for the larger dataset MIT FiveK, we
are able to achieve 99.6% detection accuracy, even with a single test image, the
obtained detection rate is lower for the smaller S7 ISP dataset. More specifically,
we observe a lower recall or detection rate for an error rate of 0.01%. The num-
ber of bad pixels in the training set for an error rate of 0.01%, is much smaller
than the number of good pixels, resulting in a skewed distribution for the binary
segmentation task, which probably leads to poor training and consequently, a
performance drop. To mitigate this, we leverage prediction confidence for mul-
tiple test images (see Fig. 4). NMSE values are reported for both patch-based
correction using an MLP (NMSEMLP ) and image reconstruction using an ViT
(NMSEAE). The MLP model is applied on 5×5 patches surrounding the pixel
to be corrected, whereas, the AE is applied on the entire image, both having the
specified error rate. While patch-based pixel correction is effective for low error
rates, it suffers up to 31% pixel error when 70% pixels are bad. The AE model
successfully reduces this error to 1.55%.
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Table 1. Detection and correction results for widely different error rates (with δ = 0.7).

Dataset Error (%) Detection Correction

Recall Precision NMSEMLP NMSEAE

S7 ISP 0.01 0.85 0.96 0.005 0.053

70 0.95 0.99 0.26 0.098

MIT FiveK 0.01 0.996 0.994 0.0009 0.0036

70 0.994 0.995 0.31 0.0155

Improving Detection using Confidence Calibration: In Table 1, we observe
that for the S7 ISP dataset, we are not able to detect nearly 15% of the bad pixels,
even for a δ variation of 0.7. To address this, we use our confidence calibration app-
roach. Figure 4 illustrates precision and recall values for a fixed error pattern and
different δ variations, with an increase in the number of images used during infer-
ence. A lower δ variation from the original pixel value makes it harder to detect
the bad pixel, resulting in lower recall. The increasing trend in precision and recall
with increased number of images used during inference reaffirms our hypothesis
that using multiple images during test time helps in more reliable pixel detection.
We observe that using 9 test images, the maximum number supported by our test
set, yields an improvement of ∼20% in detection rate, compared with a single test
image. Note, the recall values in Table 1 and Fig. 4 are different for same δ and
error rate. This is because the difference in the injected error pattern or the loca-
tion of the injected bad pixels.

Fig. 4. Precision and recall vs # of test images for confidence calibration on S7 ISP
dataset (error rate=0.01%)
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Correction Using MLP Vs ViT AE: In Fig. 5, we compare patch based pixel
correction vs AE based reconstruction for different error rates. MLP models
are trained with varying patch sizes with pre-defined error rates. We observe
that increasing patch size for MLP models is ineffective when the number of
bad pixels scales with patch size. ViT, however, learns from the global image
context and maintains a low NMSE even for very high error rates, achieving
2.2% NMSE for 85% corrupted pixels. While ViT AE performs significantly
better for high error rates, patch wise detection and correction is more effective
for low error rates. This is primarily because local context is more helpful if
the neighborhood pixels are not corrupted. However, if there are too many bad
pixels in the neighborhood as in case of clustered defects, the global context is
more effective in pixel correction. From Fig. 5, we observe that the MLP still
performs better for an error rate of 40% on the S7-ISP dataset, while it suffers
a small increase on MIT Adobe 5K. Therefore, we set an error rate of 40% as
the threshold for switching to AE based reconstruction.

Fig. 5. Comparison of ViT AE and MLP based correction with S7 ISP and MIT FiveK
datasets with a wide range of error rates

Comparison with SoTA Interpolation Methods: We compare MLP based
pixel correction with existing interpolation techniques for an error rate of 20%,
where 5 erroneous pixels are present in a 5×5 patch. Our MLP model achieves
a PSNR of 30.55 dB on the S7 ISP dataset, which is higher than reported for
all interpolation techniques described in Sect. 2. More specifically, a comparison
with the results reported in Table 6 suggests that our model exceeds ADC [35]
by 7.05dB and linear [19] and median [37] interpolation by 4.85dB and Sparsity-
based Defect Interpolation [32] by 0.15dB. The numbers for the interpolation
methods are taken from [32]. Thus, simple learning-based techniques is found to
outperform complex rule-based handcrafted interpolation methods (Fig. 6).
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Fig. 6. Comparison of MLP based correction with existing interpolation methods

Comparison with SoTA DL Approaches: In Table 2, we compare our ViT-
based reconstruction approach with the results of Concatenate Convolutional
Neural Network from the paper [22], which claims to achieve the best perfor-
mance among the different DL models. We present results on the MIT FiveK
dataset using a 5× 5 defect cluster in the center of a 15× 15 patch, similar to [22].
Since the defect cluster location is known in advance according to the assump-
tion in [22], we divide the image into 5 × 5 patches and mask the defective patch
embedding in the center before sending the embeddings into the encoder. Thus,
the value of the defective patch in the center is predicted based on the neighbor-
ing 8 patches. Since the input size is only 15× 15, we use only 2 encoder and 2
decoder layers for the ViT model with an embedding length of 16. Remarkably,
our method attains similar performance with less than half the parameters and
computational cost and does not need the location of the bad pixels. In particu-
lar, if we do not know the bad pixel locations, we can simply run our model on
all image patches independently, reconstructing the entire image.

Table 2. Comparison of ViT-based reconstruction vs pixel correction using Concate-
nate CNNs [22] for a 5 × 5 defect cluster

Method NMSE Params FLOPs

Concat CNN [22] 0.003 26.84 K 203.89 KMac

ViT AE (Ours) 0.004 11.36 K 102.3 KMac

5.3 Ablation Studies

Necessity for Training with Corrupted Pixels: For patch-based pixel cor-
rection using MLP (Fig. 5), we assess if models need to be trained with bad
pixels in the neighborhood. In Fig. 7(a), we present results for models trained
with patches at different error rates. We observe that no single model achieves
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the best performance for all error rates. A model trained using no bad pixels in
the neighborhood performs poorly when it is fed with a patch containing up to
four bad pixels. On the other hand, a model trained with four bad pixels incurs a
small increase in error for cases with no neighborhood defects, although it yields
relatively low error for all defect rates. Hence, we train separate models for a
given error rate.

Fig. 7. Patch-based pixel correction on the S7 ISP dataset

Impact of Increasing Patch Size: In Fig. 7(b), we demonstrate results with
an increased patch size of 9×9 and 13×13 when there are up to 10 bad pixels in
the neighborhood. The models are trained on patches with no bad pixels in the
neighborhood and tested on patches with multiple bad pixels. Increasing patch
size provides a clear advantage.

6 Summary and Conclusions

This paper presents novel and comprehensive DL based solutions for both the
detection and correction of bad pixels for image sensors, for a wide range of error
rates, and pixel variations. We achieve detection rate up to 99.6% with less than
0.6% false positives. The correction algorithm yields significantly better results
than classical interpolation based approaches. We also offer a fail-safe recon-
struction approach for extremely high error rates, which achieves 1.55% average
pixel error for 70% corrupted pixels. Our future work includes exploring how the
correction algorithm can be combined with in-sensor computing solutions.

Since our pixel detection and correction pipeline operates on the pre-ISP
raw images, it can also completely bypass the ISP operations [10], which are
typically expensive and performed off-chip. This also enables the pathway for
our pipeline to be integrated with existing in-pixel computing paradigms [8,9],
that can significantly improve the sensor energy efficiency for CV tasks.
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Abstract. This work proposes a novel variation to source-free domain
adaptation (SFDA) that achieves generalizability through interdomain-
intraclass manifold fusion and encoding-guided clustering for classify-
ing new and unseen categories. Multidomain adaptation is accomplished
without accessing the source data using two stages; (i) interdomain-
intraclass manifold fusion (IMF) and (ii) interclass-cluster-cohesive fine-
grained classification (IFC). IMF stage adheres to real-world source data
privacy concerns related to proprietary and intellectual property rights.
In the IMF stage, intermediate embeddings generated from the source
model (without accessing source domain data) are used to propagate
source domain knowledge. Instead of linearly combining different classes,
which can diminish class discriminability and is non-intuitive in the real
world, we introduce interdomain-intraclass embedding mixup to filter the
domain invariant class-specific features. The IFC stage enforces strong
intraclass cohesion and interclass separation. We conduct our experi-
mental analysis on the fine-grained vehicle detection (FGVD) dataset, a
complex and chaotic unconstrained road dataset.

Keywords: Domain Adaptation · Fine-grained · Intraclass Mixup ·
Multitarget · Open-set Recognition · Source-free

1 Introduction

A usual premise in domain adaptation approaches is the on-demand availabil-
ity of source data for re-adaptation to target domains [1,18]. However, in real-
world scenarios, access to source data in tandem with off-the-shelf models is
often restricted due to proprietary rights, privacy concerns, intellectual prop-
erty rights, and storage constraints [7,18]. As a result, a nascent but potential
direction for research is source-free domain adaptation, wherein source data is
unavailable for re-adapting the source model to target domains. The need for
more comprehensive research to mitigate the lack of source data hindering source
to target domain knowledge transfer forms the basis for this work.

Adaptability and generalizability are indicators of the adroitness of deep
learning algorithms, leading to extensive research related to domain adaptation
[4]. However, when deep learning algorithms are deployed in real-world scenarios
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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they fail in new and unseen environments [4]. This is because most algorithms
are tested on datasets captured in controlled environments, lacking real-world
randomness and complexities. To overcome this limitation, we use a fine-grained
vehicle detection (FGVD) [17] dataset that was captured in the wild using a
camera mounted on a car. This dataset precisely captures real-world challenges;
complex & chaotic traffic scenarios, extreme interclass similarity and intraclass
variance, occlusion, lighting changes, and changes in camera view angle.

To effectively expose algorithms to real-world challenges, it is essential to
curate training strategies that are intuitive and align with human cognition.
However, in the process of achieving multitarget domain adaptation, some
domain adaptation approaches use non-intuitive data augmentation techniques;
mixup [18,31] and CutMix [30], which mix different categories at the input. This
mixing of unrelated categories does not accurately reflect real-world scenarios,
wherein it is more reasonable to mix within categories across domains. Therefore,
in the first stage of our algorithm, as shown in Fig. 1, we introduce interdomain-
intraclass manifold fusion (IMF) to increase the generalizability across multiple
target domains by enhancing the learning of domain invariant, salient, class-
specific features. This stage aligns with human cognition as when we are exposed
to different variants of a particular class, we learn to focus on salient features
while paying less attention to less specific features. For example, when children
see red apples, they associate the color red with apples until they encounter
green or golden apples, at which point they begin to focus on the shape of the
apple.

Fig. 1. The overall approach comprises two end-to-end stages; 1: interdomain-intraclass
manifold fusion (IMF) stage, and 2: intraclass-cluster-cohesive fine-grained classifica-
tion (IFC) stage.

In a constantly evolving and dynamically changing real-world scenario, it is
imperative to design reliable algorithms. The algorithms can be designed robust
to unforeseen changes by imparting the ability to recognise new and unseen
objects. After the first stage, we follow the open-set paradigm for tuning the algo-
rithm for coarse to fine-grained classification by introducing intraclass-cluster-
cohesive fine-grained classification (IFC) as the second stage. In the second stage,
the cluster formation is supervised by apriori assignment of separate cluster cen-
tres for each category to ensure better intraclass cluster cohesion and interclass
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separability in the latent space, as shown in Fig. 1. Therefore, the major contri-
butions of this work are:

– We propose a novel variation to source-free domain adaptation (SFDA) that
achieves generalizability by exploiting interdomain-intraclass manifold fusion
and encoding-guided intraclass clustering for classifying new and unseen cat-
egories.

– We introduce an IMF strategy. In this approach, intraclass embeddings are
linearly combined across multiple target domains. To the best of our knowl-
edge, most approaches leverage mixup [18,31] or CutMix [30] for combining
interclass embeddings or raw image, which is non-intuitive in the real world.

– We introduce a fine-grained open-set IFC stage & amalgamate it to multitar-
get domain adaptation to ensure robustness to extreme real-world challenges.

– We demonstrate the applicability of class anchoring cluster (CAC) loss [23] for
fine-grained open-set recognition for multitarget domain adaptation in real-
world scenarios. CAC loss enhances intraclass cluster cohesion and interclass
separability.

– We address the issue of extreme class imbalance in the real world and preserve
source domain knowledge as a byproduct of the IMF strategy.

– We introduce a practicable algorithm and validate its proficiency through an
exhaustive experimental study on real-world data. We verify the suitability
of the proposed approach through comparisons with state-of-the-art domain
adaptation techniques.

2 Related Works

We conducted a literature review of works related to domain adaptation, which
is as brought out:

2.1 Domain Adaptation Approaches Leveraging Data
Augmentation/Adversarial Framework

Consistency with nuclear-norm maximization and mixup (CoNMix) [18] lever-
ages interclass mixup [31] strategy for achieving domain adaptation, whereas
[13,29], and [20] augment features using generative adversarial networks (GAN)
for enforcing domain invariance. In RevGrad [10], a gradient reversal layer (GRL)
is introduced for achieving domain adaptation. The GRL attempts to fool the
domain critic by making feature distribution of the source and target domains
similar. Moreover, in adversarial discriminative domain adaptation (ADDA) [28]
framework, the source and target convolutional neural network (CNN) encoders
share weights without being tied, following that the target CNN is adapted to
the target domain in an adversarial setup. Wasserstein distance guided repre-
sentation learning (WDGRL) [26] attempts to improve the adversarial domain
adaptation methods by proposing the use of Wasserstein distance [2] to com-
pare the source and target distribution. Wasserstein GAN (WGAN) ensures a
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favourable generalization bound and gradient property. However, data augmen-
tation has limitations that the augmented data may not encompass the varia-
tions witnessed in the real-world. Additionally, GAN-based or any adversarial
approach is susceptible to mode collapse and non-convergence. Except for CoN-
Mix [18], none of the approaches are designed for SFDA.

2.2 Source-Free Domain Adaptation (SFDA)

In response to the practical constraint of restricted access to source data, SFDA
is an emerging field of research [1,7]. CoNMix [18] is amongst the introductory
works towards multitarget SFDA techniques. On gleaning through [18], it is felt
that mixing two different classes as in CoNMix is non-intuitive. Combining two
classes leads to confusion between class decision boundaries, and diminishes the
class discrimination ability of the classifier. Instead of adapting to multi-target
domains (as in CoNMix [18]), Data frEe multi-sourCe unsupervISed domain
adaptatiON (DECISION) [1] uses multiple source domains. However, in the real-
world, it is difficult to find multiple off-the-shelf source domain models belonging
to different but related domains. In lieu of source data, the approach described in
source-free domain adaptation via distribution estimation (SFDA-DE) [7] esti-
mates source distribution using anchors generated from pseudo labels. Pseudo
labels are generated by freezing the classification layers, which implicitly assumes
that class centres in latent space learned by the source model are well separated.
However, this assumption may not hold as categorical cross entropy loss does not
guarantee well-separated class-specific clusters [23]. A few approaches counter-
balance the unavailability of source data by generating samples using generative
adversarial networks (GANs) [19], but generated samples from GANs have less
diversity. Hence, GAN-generated samples are not a reliable substitute for the
lack of source samples [11].

2.3 Fine-Grained Vehicle Classification

In [16] the data imbalance problem, arising in fine-grained vehicle classification,
is addressed using a combination of Faster R-CNN and dense attention network
(DAN). Fine-grained vehicle classification is addressed in [27] by using multi-
view cameras, and [9] intentionally introduces confusion in activations. However,
most of these works perform their experimental analysis using datasets contain-
ing fine-grained samples captured in controlled environments. Most objects of
interest in videos/images captured in controlled environments are well illumi-
nated, well focused, and proportionately placed at the centre of the frame [17].
Only a handful of works address fine-grained classification in real-world complex
scenarios [17]. The dataset in [17] precisely captures real-world challenges such
as frequent occlusion of salient features, changes in lighting, out-of-focus objects,
variation in image resolution, variation in object size, extreme intraclass variance
and interclass similarity.
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2.4 Open-Set Recognition

Closed-set recognition in deep learning for object identification and classification
contradicts the open-set nature of real-world [5]. Thus, in real-world applications,
it is not ideal to forcefully classify a new or unseen test sample as one of the
closed set classes. Instead, it should be recognised as a new or unseen class
[5,6]. Therefore, for real-world adoption of any domain adaptation approach, it
is necessary to follow an open-set classification paradigm. Also, in the purview
of domain adaptation, it is more realistic to assume that source and target
domains have few common and few uncommon classes [24,25]. Anchor clustering
is leveraged in [23] to improve open-set recognition performance. However, there
is a need for more exhaustive research in source-free open set recognition in
domain adaptation for the real world.

In this process, we comprehend the gaps in existing literature, thus fueling
our research towards a real-world adoption of source-free domain adaptation. We
culminate our literature survey by identifying the gaps and propose an algorithm
to overcome the gaps. We introduce our proposed method in the next section.

3 Proposed Approach

In this section, we discuss our proposed approach for source-free adaptation
to multiple target domains. Our proposed approach comprises two end-to-end
stages:

1. Interdomain-intraclass manifold fusion (IMF) stage.
2. Intraclass-cluster-cohesive fine-grained classification (IFC) stage.

The proposed approach is illustrated in Fig. 2. We introduce an IMF strategy
for distilling knowledge from a source domain to multiple target domains. After
learning a generalized multitarget domain classifier, we introduce an IFC stage
for open-set fine-grained classification. This stage is designed to handle any
dynamical real-world scenario, wherein new and unseen categories may emerge
unexpectedly.

3.1 Problem Setting

For addressing the problem of source-free domain adaptation (SFDA), we lever-
age the source model Fs(x) (without accessing source training data) to obtain an
adapted multidomain target model Gt(x); wherein the multiple target domains
are denoted by (t1, . . . , tT ) and source domain by s. After deriving the general-
ized model Gt(x), we re-train the encoder in a fine-grained open-set paradigm.
We include K classes, further split into M + N + 1 fine-grained classes where;
each target domain ti is assumed to have M common categories, N domain-
specific categories, and an open class represented by 1 for all new and unseen
categories that might unexpectedly emerge in the test bed.
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Fig. 2. Proposed approach comprising two end-to-end stages; 1: IMF stage, and 2: IFC
stage.

3.2 Overall Framework

The details of the proposed framework is discussed stage-wise:

Stage 1: Interdomain-Intraclass Manifold Fusion (IMF). In this stage
we propose to fuse intermediate intraclass and interdomain embeddings i.e., we
combine embeddings of the same class but from different domains. In CoNMix
[18], first target models are trained for each target domain, and then the knowl-
edge from each target model is distilled into a multitarget model. We simplify
the training process by combining two stages in CoNMix [18] into a single IMF
stage.

To obtain the multitarget encoder, we replicate the architecture of source
model Fs(x), and conjoin it with the source encoder in an untied weight sharing
mode. The multitarget encoder branch is trainable while the source branch is
frozen. Both branches are initialized using source model weights. The trainable
branch learns general features across domains and is adapted as a multitarget
domain classifier. The input images from different domains are passed alter-
nately through both branches. This setup keeps the source knowledge intact in
the frozen branch while distilling source knowledge to the multitarget domain
encoder. To elucidate, the frozen encoder ensures that during training the source
knowledge preserved in the source-learned filters is propagated to the multitar-
get encoder through interdomain-intraclass mixup. Thus, implicitly leading to
knowledge distillation and multitarget domain adaptation.

We insert an interdomain-intraclass manifold fusion layer after the conjoined
encoders to strategically combine the output from each branch as shown in
Fig. 3. The input images belonging to the same class but different domains i.e.
interdomain-intraclass embeddings are fused using an improvised mix-up strat-
egy which we name as “cohort” mixup.
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Fig. 3. Illustration of interdomain-intraclass feature fusion introduced as cohort mixup.
In cohort mixup, embeddings belonging to the same class but different domains are
linearly combined. Cohort mixup expands the model view by combining images from
different domains.

Cohort Mixup. In general, mixup is performed across classes which is non-
intuitive. As it is evident that apples do not compare with oranges and thus,
we should not combine the embeddings of apples and oranges. However, to learn
a general embedding of apple class we can combine red, golden or green apples
from different domains i.e. different geographic locations. By mixing embeddings
of apples of different colours the more class-specific feature i.e. shape will become
more prominent and the less salient feature i.e. colour will be weighed low.

Therefore, in the proposed cohort mixup we amalgamate the feature embed-
dings from frozen and trainable branches belonging to the same class but dif-
ferent domains in the interdomain-intraclass manifold fusion layer. Let xi =
[xi1, xi2, . . . , xid]

� and xj = [xj1, xj2, . . . , xjd]
� be the vector representation

of feature embeddings obtained for input images belonging to different target
domains ti and tj but from the same class k. Here, d is the size of the feature
embedding. We perform cohort mixup on xi and xj to obtain a domain invariant
class-specific feature embedding ε as

ε = λ(Fs(xi)) + (1 − λ)(F ′
s(xj)), (1)

where Fs is the frozen source encoder, F ′
s is the weight-updatable branch, and

λ is a randomly sampled value from beta distribution [15]. The illustration of
cohort mixup operation is depicted in Fig. 4.

The real world exhibits extreme class imbalance, where a few classes have the
most samples and most classes have few samples. The extreme class imbalance
problem in the real-world can be dealt with as a by-product of cohort mixup.

The output from the interdomain-intraclass manifold fusion layer is for-
warded to the classification head for identifying the object category.

Single Target Domain Scenario. Our multidomain adaptation technique is
equally applicable when only one target domain is available. In such a scenario
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Fig. 4. Illustration of cohort mixup operation.

images from the single domain are fed to both the branches. The input through
the trainable branch adapts to the target domain while the knowledge preserved
in the source domain encoder is distilled into the target encoder.

Loss Function. Contrary to other approaches, cohort mixup does not mixup
labels. Thus, categorical cross-entropy loss without any modifications can be
leveraged (unlike [18,31]). We use categorical cross-entropy loss as the objective
function:

Lclass = −
K∑

i=1

yi · log ŷi (2)

where K is the number of classes, yi corresponds to ith value in true class dis-
tribution for an input image spanned over K classes, and ŷi corresponds to ith

model output which is predicted probability score for ith class.

Stage 2: Intraclass-Cluster-Cohesive Fine-Grained Classification
(IFC). To the best of our knowledge, we did not encounter any approach that
introduces open-set fine-grained recognition post source-free multitarget domain
adaptation stage. Domain adaptation is achieved in stage: 1, the second stage
is added to the framework for endowing the model with finesse to recognise
fine-grained categories in an open-set paradigm. Fine-grained classification is
defined as classifying within a class, where classes are more specific and dis-
tinguished. Thus, inordinately visually similar real-world categories may lie in
different classes, rendering fine-grained real-world classification extremely chal-
lenging.

Fine-grained classification is achieved by finetuning the multitarget domain
model. To impart the model with robustness to identify new and unseen cate-
gories, we train following an open-set fine-grained paradigm. Let each domain
consist of M + N + 1 categories, where M is the number of fine-grained classes
common across domains, N is the number of fine-grained categories specific to a
particular target domain, and 1 represents an open category. The open category
is the collective class for all new and unseen categories that might unexpectedly
emerge in the test bed.
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We use class anchor clustering (CAC) loss [6] for enforcing class cohesive clus-
ter formation to achieve fine-grained classification. The class cluster formation
is encoding guided, ensuring better intraclass cohesion and interclass separation.
Let x be the input to multitarget model Gt(x), C be the set of predefined class
centres; (c1, . . . , cN ) (the one-hot encoded label y vector for each class is defined
as the class centre), and γ be a hyperparameter, then CAC loss is defined as

LCAC(x, y) = LP (x, y) + γLA(x, y), (3)

where LP is tuplet loss [6] defined as

LP (x, y) = log

⎛

⎝1 +
M+N∑

j �=y

edy−dj

⎞

⎠ , (4)

and d Euclidean distance between the class center and network logits, LA [6] is
as defined

LA(x, y) = dy = ‖Gt(x) − cy‖2 . (5)

4 Experimental Study and Results

In this section, we discuss our experimental setup, results, and inferences. We use
the FGVD dataset, the details of which are described in the subsequent section.

4.1 Fine-Grained Vehicle Detection (FGVD) Dataset and Data
Splits

FGVD [17] is a distinct and exclusive dataset captured in the wild, comprising
complex and chaotic traffic scenarios. There are six coarse categories: (i) car, (ii)
scooter, (iii) motorcycle, (iv) truck, (v) autorickshaw, and (vi) bus. It consists
of 5502 dense traffic scenes, with a total of 24450 instances of vehicles and 210
fine-grained labels. The 210 fine-grained labels (comprising of type, manufac-
turer, and model) are provided only for classes ‘car’, ‘scooter’ and ‘motorcycle’.
The fine-grained labels are highly granular, capturing even the most minute and
local differences. The challenges in the FGVD dataset are illustrated in Fig. 5.
The extreme class imbalance in fine-grained categories for car and motorcycle is
shown in Fig. 6 and Fig. 7. It is seen from Fig. 6 and Fig. 7 that few classes com-
prise most instances and most classes comprise few instances depicting extreme
class imbalance. To the best of our knowledge, no fine-grained dataset (except for
FGVD) is publicly available with highly precise fine-grained labels for vehicles
in tandem with complex traffic scenarios [17]. We crop vehicle instances from
video frames for our experimental study. For performing a comprehensive study,
we segregate the data into multiple domains A, B, and C. We interchange one
amongst domains A, B, and C as source, and treat the rest domains as target
domains. Data in each domain is carefully chosen with some randomization to
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replicate the real-world scenario of cities of different tiers with vehicles in accor-
dance with demographics and income level. We divide 24450 vehicle images into
three parts using a 70:15:15 ratio for training, validation, and testing respec-
tively.

Fig. 5. Illustration of challenges in FGVD dataset: (a) part of the vehicle captured;
only a part gets captured due to moving traffic, (b) interclass similarity; many cars
appear highly similar and are difficult to identify from the front view, (c) occlusion and
multiple objects; the autorickshaw is occluded by a motorcycle, and (d) illumination
changes; due to changes in daylight & weather conditions.

Fig. 6. Number of instances vs. fine-grained categories of ‘car’ depicting high class
imbalance. There is a total of 112 fine-grained labels for ‘car’.

4.2 Stage 0: Source Training

This stage is a precursor to the source-free domain adaptation stages. In this
stage, we train the source model. After this stage, the source data will not be
available for adapting the source model to target domains. The source encoder
is a stack of nine convolution layers with ReLU [14] activation function. Each
convolutional layer has 3 × 3 sized kernels, the stride is set to 1 or 2 between
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Fig. 7. Number of instances vs. fine-grained categories of ‘motorcycle’ depicting high
class imbalance. There is a total of 67 fine-grained labels for ‘motorcycle’.

alternative layers. After each convolution layer, we use a batch normalization
layer, and dropout at an interval of three layers. The learning rate is set to
0.0001.

The result of this stage is shown in Table 1. We obtain 90.78%, 81.62%, and
90.02% accuracy for vehicle classification in domains A, B, and C respectively
using the backbone chosen for our experimental study. We use ResNet-50 [12]
and vision transformer (ViT) [8] for comparisons as these are commonly used
backbones [18]. We obtain accuracy in the range 15% - 20% with ResNet-50 and
ViT, and hence discard ResNet-50 and ViT backbones for further experimental
study. A primary reason for poor performance from ResNet-50 and ViT is poor
image resolution and small image size ranging from 28 × 28 to 64 × 64. Due to
small image size and low-resolution features dilute in early layers of deep and
complex architectures (ResNet-50/ViT) rendering the networks with no gradi-
ent for learning. We visualize the feature maps as shown in Fig. 8 and observe
that the features become progressively sparse and almost diluted till the fourth
convolutional layer of ResNet-50. Additionally, transformer-based architectures
are proficient in learning complex pixel-to-pixel relations, and hence suitable for
applications wherein background clues aid in recognising objects of interest [8].
However, for identifying the type of vehicle, only the vehicle of interest is to be
looked at irrespective of background conditions; number of vehicles in vicinity,
daylight, landscape, and weather conditions.

Table 1. Source domain test accuracy (accuracy in %)

Backbone A B C

Ours 90.78 81.62 90.02

ResNet-50 19.49 12.02 16.66

ViT 16.05 15.53 15.71
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Fig. 8. Feature maps visualized from the fourth convolutional layer of ResNet-50 [12].
The feature maps are sparse and contain little information.

Table 2. Source-free multitarget domain adaptation results (accuracy in %)

Source → Target A → B A → C B → A B → C C → A C → B

Ours 93.75 94.94 93.30 91.33 90.11 91.27

CoNMix [18] 39.65 18.34 56.37 48.60 14.77 58.35

SHOT [21] 51.92 50.00 56.55 53.46 51.37 52.03

SHOT++ [22] 61.48 61.33 62.19 62.06 53.08 52.29

WDGRL [26] 55.81 25.58 62.70 51.05 14.37 41.09

ADDA [28] 34.24 18.43 50.65 55.75 32.64 36.37

RevGrad [10] 74.43 60.05 72.58 71.36 73.31 60.19

4.3 Stage 1: Interdomain-Intraclass Manifold Fusion (IMF)

In this stage, in a round-robin manner, we choose one amongst A, B and C to act
as the source domain and leverage the corresponding domain model (obtained
from stage 0) as the source model. The remaining domains are treated as the tar-
get domains. We experiment with all combinations of source and target domains.
The results obtained from this stage are presented in Table 2.

We obtain 93.75% and 94.94% accuracy for vehicle classification during
source-free multitarget domain adaptation from source A to target domains B
and C respectively. We obtain 93.30% and 91.33% accuracy while treating B
as the source domain, and A & C as target domains. We obtain 90.11% and
91.27% accuracy while treating C as the source domain, and A & B as target
domains. Despite extreme data challenges such as high occlusion, variation in
illumination, weather variations, and chaotic traffic, our proposed method yields
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promising results for practical usage in real-world complex scenarios. Further-
more, irrespective of the combination of source domain and target domains, the
accuracy is consistently greater than 90%. This observation validates that the
proposed approach is domain invariant.

Comparison with Other Approaches. We compare the proposed method with
CoNMix [18], SHOT [21], SHOT++ [22], WDGRL [26], ADDA [28], and RevGrad
[10]. The results of the comparison are presented in Table 2. Upon comparison
with CoNMix [18] it is observed that our method clearly outperforms. The rea-
son inferred is that the ViT backbone used in CoNMix [18] is not suitable for
real-world datasets. The datasets captured in the wild comprise poor-resolution
images and smaller instances of objects. Transformers perform well when coa-
lescing background concepts are necessary for object identification [8]. However,
transformers do not work well when objects are to be identified in isolation.
For example, in complex traffic scenarios, only the vehicle of interest has to be
looked at irrespective of the adjacent vehicles and road conditions. Similarly, in
comparison to SHOT [21] and SHOT++ [22] our proposed outperforms at least
by a margin of 30% accuracy. SHOT [21] and SHOT++ [22] use the same frozen
classifier obtained from the source domain for classifying objects in the target
domain resulting in the subpar performance when tested against real-world chal-
lenges. A primary reason for this observation is the high reliance on the quality of
frozen source classifier leading to lower performance against large domain shifts
encountered in the real world. We adapted methods WDGRL [26], ADDA [28]
and RevGrad [10] in source-free paradigm for fair comparisons. It is observed
from Table 2, that our method clearly stands out. Overall, there is a source
domain dependency observed i.e. all other approaches tend to better adapt if
the source domain is B. Whereas, our approach is source domain invariant, as
consistently across all domains the accuracy is above 90%.

4.4 Stage 2: Intraclass-Cluster-Cohesive Fine-Grained Classification
(IFC)

We achieve source-free domain adaptation in the previous stage. The experiments
for this stage are performed to enable the model finesse to recognise fine-grained
vehicle categories and to endow the model with open-set recognition ability. We
randomly choose certain fine-grained labels to be common across domains, some
specific to the domain and some open set. The empirically obtained value of γ
is 0.1.

Despite extreme challenges such as extreme class imbalance, high interclass
similarity, high intraclass variance, occlusion (as depicted in Fig 5, Fig. 6, and
Fig. 7), it is seen from Table 3 that our method performs consistently well across
domains and vehicle categories.
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Table 3. Stage 2: Open-set fine-grained vehicle classification (accuracy in %)

Fine-grained category A → B A → C B → A B → C C → A C → B

Car 81.08 77.89 74.69 72.72 74.15 73.59

Scooter 81.25 82.85 86.58 80.00 77.64 77.72

Motorcycle 83.33 78.94 66.67 90.00 81.81 82.80

4.5 Ablation Study

We ablate the cohort mixup layer and re-run our experiments. We observe a
considerable drop in accuracy of at least 10% as seen in Table 4. Following this,
we replace CAC loss [23] with categorical cross-entropy loss and see a drop in
accuracy ranging between 10%–30%. From the results of our ablation study, it
is reinforced that both cohort mixup and CAC loss are necessary.

Table 4. Ablation study results (accuracy in %)

Source → Target A → B A → C B → A B → C C → A C → B

Without Cohort mixup 84.92 70.91 78.41 74.66 60.00 80.29

Without CAC 73.94 68.91 56.37 62.10 61.36 56.18

Ours 93.75 94.94 93.30 91.33 90.11 91.27

The strategically developed IMF & IFC stages overcome the potential limita-
tions: (i) performance deterioration due to large domain shift, (ii) restricted
access to source data, (iii) inadequate generalizability, and (iv) high inaccuracy
for identification of fine-grained classes with high intraclass variance and high
interclass similarity to a significant extent by achieving higher than 90% accu-
racy in the face of extreme domain shifts as seen from Table 4.

Expanding into Other Application Areas. Source-free domain adaptation is
extremely relevant across multiple application areas such as wildlife detection,
crop monitoring, worker safety equipment detection, and manufacturing. Domain
adaptation and generalization are widely explored within wildlife detection [3,4].
Wildlife data is captured as a continuous video stream using camera traps, and
thus often source data is inaccessible due to large storage requirements [3,4].
The variations in biodiversity across locations necessitate a multitarget domain
adaptation model for wildlife detection and crop monitoring. From an industrial
perspective, worker safety equipment such as helmets exhibit high intraclass
variance, for example, headgear in mining differs from the biochemical industry.
In the case of manufacturing defect detection, the faults (e.g., cracks) are mostly
similar, but the industry changes. The experimental study addresses real-world
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challenges that are universal across domains, including large domain shifts, low-
resolution data, environmental changes, out-of-focus objects, occlusion, vary-
ing lighting, high intraclass variance, and high interclass similarity across fine-
grained classes. The proposed approach shows promising cross-domain appli-
cability, achieving at least 90% accuracy against these universally applicable
real-world challenges.

Our experimental study validates our proposed approach towards a robust,
domain invariant, and practicable solution for real-world challenges.

5 Conclusion and Future Scope

In this paper, we propose an approach that supplements the existing works on
source-free domain adaptation for real-world environments. Our model employs
two end-to-end stages for multidomain data adaptation without using the source
data. Despite this, our approach achieves good performance on real-world data
and identifies new and unseen data into an open-set category. One of the merits
of our approach involves combining separate training stages into a single stage
for each target domain. Through cohort mixup, our model has an enhanced view
of objects making it more intuitive. The class imbalance issue arising in the real
world is dealt with implicitly through cohort mixup. Furthermore, the open-set
fine-grained stage provides deeper insights for any real-world statistical study.
This work is readily extendible to wildlife detection, worker safety equipment
detection, manufacturing, and crop monitoring. In a nutshell, the comprehensive
experimental study validates the efficacy of this approach in a real-world setting
and corroborates the practicable use of this approach. In future, we aim to
integrate eXplainable AI (XAI) with source-free domain adaptation.
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