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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Semi-Supervised Variational Adversarial Active
Learning via Learning to Rank

and Agreement-Based Pseudo Labeling

Zongyao Lyu and William J. Beksi(B)
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Abstract. Active learning aims to alleviate the amount of labor involved in data
labeling by automating the selection of unlabeled samples via an acquisition func-
tion. For example, variational adversarial active learning (VAAL) leverages an
adversarial network to discriminate unlabeled samples from labeled ones using
latent space information. However, VAAL has the following shortcomings: (i) it
does not exploit target task information, and (ii) unlabeled data is only used for
sample selection rather than model training. To address these limitations, we
introduce novel techniques that significantly improve the use of abundant unla-
beled data during training and take into account the task information. Concretely,
we propose an improved pseudo-labeling algorithm that leverages information
from all unlabeled data in a semi-supervised manner, thus allowing a model to
explore a richer data space. In addition, we develop a ranking-based loss pre-
diction module that converts predicted relative ranking information into a dif-
ferentiable ranking loss. This loss can be embedded as a rank variable into the
latent space of a variational autoencoder and then trained with a discriminator in
an adversarial fashion for sample selection. We demonstrate the superior perfor-
mance of our approach over the state of the art on various image classification
and segmentation benchmark datasets.

Keywords: Active Learning · Semi-Supervised Learning · Image
Classification and Segmentation

1 Introduction

Deep learning has shown impressive results on computer vision tasks mainly due to
annotated large-scale datasets. Yet, acquiring labeled data can be extremely costly
or even infeasible. To overcome this issue, active learning (AL) was introduced
[6,31]. In AL, a model is initialized with a relatively small set of labeled training
samples. Then, an AL algorithm progressively chooses samples for annotation that
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yield high classification performance while minimizing labeling costs. By demonstrat-
ing a reduced requirement for training instances, AL has been applied to various com-
puter vision applications including image categorization, image segmentation, text clas-
sification, and more.

Fig. 1. An overview of SS-VAAL. First, a loss prediction module attached to the target model
predicts losses on the input data. Next, the predicted losses along with the actual target losses are
transformed into ranking losses via a pretrained ranking function. Unlabeled samples are then
passed to the target model and subsequently through a k-means algorithm to acquire pseudo
labels for additional training. Finally, a discriminator following a variational autoencoder is
trained in an adversarial manner to select unlabeled samples for annotation.

Among the most prevalent AL strategies, pool-based approaches have access to a
huge supply of unlabeled data. This provides valuable information about the under-
lying structure of the whole data distribution, especially for small labeling budgets.
Nevertheless, many AL methods still fail to leverage valuable information within the
unlabeled data during training. On the other hand, semi-supervised learning (SSL), in
particular the technique of pseudo labeling, thrives on utilizing unlabeled data. Pseudo
labeling is based on the concept whereby a model assigns “pseudo labels” to samples
that produce high-confidence scores. It then integrates these samples into the training
process. In contrast, AL typically selects only a handful of highly-informative samples
(i.e., samples with low prediction confidence) at each learning step and regularly seeks
user input. Although AL and pseudo labeling both aim to leverage a model’s uncer-
tainty, they look at different ends of the same spectrum. Hence, their combination can
be expected to achieve increased performance [14].

In light of this observation, we propose to exploit both labeled and unlabeled data
during model training by (i) predicting pseudo labels for unlabeled samples, and (ii)
incorporating these samples and their pseudo labels into the labeled training data in
every AL cycle. The idea of using unlabeled data for training is not new. Earlier work by
Wang et al. [36] showed promising results by applying entropy-based pseudo labeling to
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AL. However, pseudo labeling can perform poorly in its original formulation. The sub-
par performance is attributed to inaccurate high-confidence predictions made by poorly
calibrated models. These predictions produce numerous incorrect pseudo labels [1]. To
tackle this issue, we introduce a novel agreement-based clustering technique that assists
in determining pseudo labels. Clustering algorithms can analyze enormous amounts of
unlabeled data in an unsupervised way [7,26], and cluster centers are highly useful for
querying labels from an oracle [18]. Our two-step process involves (i) separately clus-
tering labeled and unlabeled data, (ii) assigning each piece of unlabeled data an initial
pseudo label and a clustering label. A final pseudo label is confirmed only if these two
labels agree. The end result is a significant reduction in the number of incorrect pseudo
labels.

The second aspect of our work focuses on the sample selection strategy in AL.
We base our approach on the VAAL [34] framework. VAAL uses an adversarial dis-
criminator to discern between labeled and unlabeled data, which informs the sample
selection process. Later adaptations of VAAL (e.g., TA-VAAL [19]) incorporate a loss
prediction module, relaxing the task of exact loss prediction to loss ranking prediction.
Additionally, a ranking conditional generative adversarial network (RankCGAN) [29]
is employed to combine normalized ranking loss information into VAAL. To better inte-
grate task-related information into the training process, we propose a learning-to-rank
method for VAAL. This decision is inspired by the realization that the loss prediction
can be interpreted as a ranking problem [23], a concept central to information retrieval.
We refine the loss prediction process by applying a contemporary learning-to-rank tech-
nique for approximating non-differentiable operations in ranking-based scores. The loss
prediction module estimates a loss for labeled input, converting the predicted loss and
actual target loss into a differentiable ranking loss. This ranking loss, along with labeled
and unlabeled data, is provided as input into an adversarial learning process that identi-
fies unlabeled samples for annotation. Therefore, by explicitly exploiting the loss infor-
mation directly related to the given task, task-related information is integrated into the
AL process. The architecture of our proposed method, SS-VAAL, is depicted in Fig. 1.

To summarize, our contributions are the following.

1. We create a novel agreement-based pseudo-labeling technique that optimally har-
nesses rich information from abundant unlabeled data in each AL cycle, capitalizing
on the advantages of unsupervised feature learning.

2. We devise an enhanced loss prediction module that employs a learning-to-rank
method, yielding a more effective sample selection strategy. We develop a ranking
method that explicitly ranks the predicted losses by taking into account the entire list
of loss structures, as opposed to only the pairwise information considered in prior
approaches.

3. We highlight the superior efficacy of our approach through its application to com-
mon image classification and segmentation benchmarks.

Our source code is publicly available [35].
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2 Related Work

2.1 Active Learning

ALmethods operate on an iterative principle of constructing a training set. This involves
(i) cyclically training the classifier on the current labeled training set, and (ii) once
the model converges, soliciting an oracle (e.g., human annotator) to label new points
selected from a pool of unlabeled data based on the utilized heuristic. This type of
AL belongs to pool-based AL, in which our methodology lies. Pool-based AL can be
classified into three groups: (i) uncertainty (informativeness-based) methods [3,12,22],
(ii) diversity (representativeness-based) methods [30], and (iii) hybrid methods [2,17,
38,39] based on the instance selection strategy they use. Among the various instance
selection strategies, uncertainty-based selection is the most prevalent. It measures the
uncertainties of new unlabeled samples using the predictions made by prior classifiers.

Diversity-based AL methods rely on selecting a few examples by increasing the
diversity of a given batch. The core-set technique [30] was proposed to minimize the
distance between the labeled and unlabeled data pool using the intermediate feature
information of a convolutional deep neural network (DNN) model. It was shown to
be an effective method for large-scale image classification tasks and was theoretically
proven to work best when the number of classes is small. However, as the number of
classes grows the performance deteriorates.

AL methods that combine uncertainty and diversity use a two-step process to select
high-uncertainty points as the most informative points in a batch. Li et al. [24] presented
an adaptive AL approach that combines an information density and uncertainty measure
together to label critical instances for image classification. Sinha et al. [34] observed
that the uncertainty-based batch query strategy often results in a lack of sample diversity
and is vulnerable to outliers. As a remedy, they proposed VAAL, a method that utilizes
an adversarial learning approach to distinguish the spatial coding features of labeled
and unlabeled data, thereby mitigating outlier interference. It also employs both labeled
and unlabeled data to jointly train a variational autoencoder (VAE) in a semi-supervised
fashion. Sample selection in VAAL is based on the prediction from the discriminator
adversarially trained with the VAE. While VAAL incorporates unlabeled data during
the adversarial learning process, it neglects this data during target task learning due to
its inherently task-agnostic nature. An extended version of VAAL [42] was proposed to
combine task-aware and task-agnostic approaches with an uncertainty indicator and a
unified representation for both labeled and unlabeled data.

Task-aware VAAL (TA-VAAL) [19] is an alternative extension of task-agnostic
VAAL that combines task-aware and task-agnostic approaches. TA-VAAL adapts
VAAL to consider the data distribution of both labeled and unlabeled pools by com-
bining them with a learning loss approach [40]. The learning loss is a task-agnostic
method. It includes a loss prediction module that learns to predict the target loss of
unlabeled data and selects data with the highest predicted loss for labeling. TA-VAAL
relaxes the task of learning loss prediction to ranking loss prediction and employs
RankCGAN to incorporate normalized ranking loss information into VAAL. However,
the main difference between VAAL and TA-VAAL is the use of task-related informa-
tion for learning the ranking function in conjunction with information from unlabeled
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data. Even so, unlabeled data is not directly applied to target task learning. To rectify
this, we propose a novel pseudo-labeling technique that can be integrated into each AL
cycle, enabling the comprehensive utilization of the rich information contained within
unlabeled data for direct learning of the target task. Another recent method, multi-
classifier adversarial optimization for active learning (MAOAL) [13], employs multiple
classifiers trained adversarially to more precisely define inter-class decision boundaries
while aligning feature distributions between labeled and unlabeled data. We demon-
strate that our method outperforms MAOAL in image classification tasks.

2.2 Semi-Supervised Learning

SSL is a strategy that leverages both labeled and unlabeled data for model training,
with an emphasis on utilizing abundantly available unlabeled data. Several techniques
have been proposed to exploit the relationship between labeled and unlabeled data to
achieve better performance. A notable technique is pseudo labeling [21] where a model,
once trained, is used to predict labels for unlabeled data. These pseudo-labeled data are
then used in subsequent training iterations. Other methods, such as multi-view training
[33] and consistency regularization [28], leverage the structure or inherent properties of
the data to derive meaningful information from the unlabeled portion.

Several efforts have been made to combine SSL and AL methods to make better use
of the unlabeled data during training [4,32,36]. A common strategy in this integrated
approach is to apply pseudo labeling techniques during each AL cycle. This enriches the
training set and improves model accuracy by combining SSL’s efficient use of unlabeled
data with AL’s selective querying, offering a cost-effective solution for scenarios with
limited labeled data. Although simple to implement, pseudo labeling can perform rel-
atively poorly in its original formulation. The underperformance of pseudo labeling is
generally attributed to incorrect high-confidence predictions from models that are not
properly calibrated. This causes a proliferation of wrong pseudo labels, thus resulting in
a noisy training process [27]. Our enhanced pseudo-labeling approach addresses this
limitation by incorporating unsupervised feature learning through the use of clustering.
Clustering algorithms are employed to group the unlabeled data, and the cluster centers
are used for verifying the predicted pseudo labels. This greatly reduces the number
of incorrect pseudo labels as the labels are assigned based on the proximity to cluster
centers, which represents the classes better than individual instances.

3 Method

Let (XL, YL) be a pool of data and their labels, and XU the pool of unlabeled data.
Training starts withK available labeled sample pairs (XK

L , Y K
L ). Given a fixed labeling

budget in each AL cycle, b samples from the unlabeled pool are queried according to
an acquisition function. Next, the samples are annotated by human experts and added
to the labeled pool. The model is then iteratively trained on the updated labeled pool
(XK+b

L , Y K+b
L ), and this process is repeated until the labeling budget is exhausted.

SS-VAAL enhances the VAAL framework and its variant, TA-VAAL, as fol-
lows. VAAL employs adversarial learning to distinguish features of labeled and unla-
beled data, which reduces outlier impact and leverages both labeled and unlabeled
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data in a semi-supervised training scheme. TA-VAAL, building on the groundwork
of VAAL, utilizes global data structures and local task-related information for sam-
ple queries. Our methodology improves upon these predecessors by harnessing the full
potential of the data distribution and model uncertainty, hence further refining the query
strategy in the AL process.

Fig. 2. The detailed architecture of SS-VAAL. (Stage 1) A loss prediction module is attached
to the target model to predict losses on the input data. These predicted losses, along with the
actual losses obtained from the target model, are transformed into ranking losses via a pretrained
ranking function. Features of the labeled samples are extracted from the target model to fit a k-
means algorithm. (Stage 2) Unlabeled samples are processed through the target model to obtain
initial pseudo labels. The k-means algorithm, already fit with labeled features, is also applied to
the unlabeled samples to obtain clustering labels for them. Initial pseudo and clustering labels
are combined to determine the final pseudo labels. These unlabeled samples and their pseudo
labels are then used for additional training of the target model. (Stage 3) Both labeled and unla-
beled samples are fed into an encoder network to learn the latent variables. The learned and rank
variables are trained adversarially with a discriminator. Sample selection is based on the predicted
probability from the discriminator.

3.1 Clustering-Assisted Pseudo Labeling

Both VAAL and TA-VAAL do not fully use unlabeled data in the target learning task.
Therefore, we propose to exploit both types of data during model training as follows.
Given XL and XU for labeled and unlabeled examples, respectively, we apply a clas-
sifier f on the unlabeled data f(XU ), and select and assign pseudo labels ŷ for the
most certain predictions. Traditionally, the labeled set will be directly augmented by
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y = y+ ŷ for the next round of training. Nonetheless, pseudo labeling in its initial form
may produce high-confidence predictions that are incorrect, resulting in numerous erro-
neous pseudo labels and ultimately causing an unstable training process.

To mitigate this issue, we present a semi-supervised pre-clustering technique for
each pseudo label selection process that enhances robustness by reducing incorrect
pseudo labels. In each AL cycle, we first train a model on the available labeled data.
We modify the network to output both the probability score and the feature vector from
the last fully-connected layer before sending it to the softmax function. Then, we fit a
k-means clustering algorithm on the output features of the labeled training data. This
allows the algorithm to learn the structure of the labeled data and predict clusters each
of whose centroid corresponds to one of the classes of the dataset. One thing to note
is that the cluster assignments won’t necessarily correspond directly to the classes of
the dataset being trained. This is because clustering algorithms (e.g., k-means) do not
have any inherent knowledge of class labels and thus the cluster labels they assign
have no intrinsic meaning. To be meaningful, we map the clustering labels to the actual
classes to ensure that they correspond to each other. This is done by assigning each
cluster label to the most frequent true class label within that cluster based on the labeled
training data.

Next, we train a classifier on all unlabeled data to get the predicted probability
vectors

U∑
p(yi = j |xi) = f(XU ) −→ Rc, (1)

where c is the number of total classes. We assign initial pseudo labels to the unlabeled
data with the most certain predictions only when their associated probabilities are larger
than a threshold τ (we set τ = 0.95 in the experiments), i.e.,

j∗ = max
j

p(yi = j |xi),

ŷi =

{
arg j, j > τ

0, otherwise.
(2)

Then, we apply the k-means function learned on the labeled data to the unlabeled data
to predict the clusters they belong to. Each unlabeled sample is grouped to the nearest
cluster and assigned a label to which the cluster centroid corresponds.

Each unlabeled data point will now have both an initial pseudo label and a cluster-
ing label. Lastly, we compare the temporary pseudo labels with the clustering labels to
determine a final pseudo label for each unlabeled data only if they agree with each other.
By doing so, we reduce the number of incorrect pseudo labels, thus taking full advan-
tage of the abundant unlabeled data for model training. Stage 2 in Fig. 2 shows this
agreement-based pseudo-labeling process. We demonstrate improvement over conven-
tional pseudo labeling through an ablation study in the supplementary material.

3.2 Loss Prediction with Learning-to-Rank

In LL4AL [40], Yoo and Kweon designed a loss prediction module attached to the tar-
get network and jointly learned to predict the losses of unlabeled inputs. The loss is
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predicted as a measure of uncertainty, directly guiding the sample selection process.
LL4AL has proven to be effective, yet the “loss-prediction loss” that is key to this app-
roach is not trivial to calculate. The loss module adapts roughly to the scale changes of
the loss instead of fitting to the exact value. Similar to TA-VAAL, we incorporate task-
related information into the learning process by combining VAAL with the loss predic-
tion module. Unlike TA-VAAL, which employs a GAN-based ranking method to address
this issue, our approach integrates VAAL with a listwise learning-to-rank technique that
explicitly ranks the predicted losses thus taking into account the entire list of loss struc-
tures. This decision stems from the observation that learning the loss prediction can be
seen as a ranking problem. Additionally, the loss in TA-VAAL resembles the original
LL4AL as both only consider the neighboring data pairs and ignore the overall list
structure. This motivates us to use a more appropriate listwise ranking scheme. Rank-
ing is crucial for many computing tasks, such as information retrieval, and it is often
addressed via a listwise approach (e.g., [5,25]). This involves taking ranked lists of
objects as instances and training a ranking function through the minimization of a list-
wise loss function defined on the predicted and ground-truth lists [37].

SoDeep [10] is a method for approximating the non-differentiable sorting operation
in ranking-based losses. It uses a DNN as a sorter to approximate the ranking function
and it is pretrained separately on synthetic values and their ground-truth ranks. The
trained sorter can then be applied directly in downstream tasks by combining it with
an existing model (e.g., the loss prediction module) and converting the value list given
by the model into a ranking list. The ranking loss between the predicted and ground-
truth ranks can then be calculated and backpropagated through the differentiable sorter
and used to update the weights of the model. Figure 3 illustrates the sorter architecture.
We find this process works well with the loss prediction task in the loss module. There-
fore, we apply SoDeep to the loss prediction module and learn to predict the ranking
loss as a variable that injects task-related information into the subsequent adversar-
ial learning process, which increases the robustness of the unlabeled sample selection.
Concretely, we substitute the loss prediction module into the sorter architecture as the
DNN target model to produce the predicted scores where the target losses are used as
the ground-truth scores.

The upper-right side of Fig. 2 displays the architecture of the modified loss learning
process. We retain the basic structure of the original loss prediction module. Given an
input, the target model generates a prediction, while the loss prediction module takes
multi-layer features as inputs that are extracted from multiple mid-level blocks of the
target model. These features are connected to multiple identical blocks each of which
consists of a global average pooling layer and a fully-connected layer. Then, the outputs
are concatenated and passed through another fully-connected layer to be converted to a
scalar value as the predicted loss Lpred. The target prediction and annotation are used
to calculate a loss Ltarget, which assists in training the target model. This target loss
is treated as the ground-truth loss for the loss prediction module and used to compute
the loss-prediction loss. Specifically, the predicted loss and the target loss are passed
through the pretrained SoDeep sorter and converted to a differentiable ranking loss

Lranking = SoDeep(Lpred,Ltarget), (3)
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Fig. 3. An overview of the SoDeep sorter architecture. A pretrained differentiable DNN sorter
converts the raw scores into ranks given by the target model. A loss is then applied to the predicted
rank, backpropagated through the differentiable sorter, and used to update the weights.

which can be used to update the weights of the model. The objective function of the
task learner with the ranking loss module is

L = Ltarget(ŷL, yL) + λLranking, (4)

where ŷL and yL are the predicted and ground-truth labels, respectively, and λ is a
scaling constant. This training process is illustrated as Stage 1 in Fig. 2. The learned
ranking loss is embedded as a task-related rank variable in the latent space of a VAE for
the subsequent adversarial learning process, which is described in detail in Sect. 3.3.
Stage 1 of the two-stage training is summarized in Algorithm 1.

Algorithm 1. Target Model Training
Require: Labeled data pool (XL, YL), unlabeled data pool XU , pretrained SoDeep sorter S,

initialized model θT , training epochs N , threshold τ
Ensure:
1: for i = 1 to N do
2: Train target model θT on labeled data (XL, YL) to obtain features and target loss Ltarget

3: Obtain predicted lossLpred through loss prediction module by fusing multi-level features
4: Lranking ← S(Ltarget, Lpred)
5: Fit features to k-means algorithm
6: Apply k-means on unlabeled data XU and predict clustering labels (CL)
7: Predict initial pseudo labels (IPL) ŷi for unlabeled data XU using (2)
8: Final pseudo labels ← IPL ∩ CL
9: Train model on labeled and pseudo labeled data
10: end for
11: return Trained model θT
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3.3 Joint Training with a Variational Autoencoder and Discriminator

For sample selection, we extend VAAL by utilizing a VAE and an adversarial network
(discriminator) to distinguish labeled from unlabeled data. Unlike VAAL, which only
considers the data distribution for adversarial learning, we incorporate task-related
information by embedding the ranking loss as a rank variable in the latent space for
training both the VAE and the discriminator. Let pθ and qφ be the encoder and decoder
parameterized by θ and φ, zL and zU the latent variables generated from the encoder
for labeled and unlabeled data, and rL the rank variable for the labeled data. Let p(z) =
N (0, I) be the unit Gaussian prior. The transductive learning of the VAE to capture
latent representation information on both labeled and unlabeled data is characterized by

Ltrans
V AE = E[log qφ(xL | zL, rL)] − βKL(pθ(zL |xL)||p(z))

+E[log qφ(xU | zU , l̂U )] − βKL(pθ(zU |xU )||p(z)),
(5)

where l̂U is the predicted loss Lpred over unlabeled data, β is the Lagrangian parameter,
and E denotes the expectation [16].

With the latent representations zL and zU learned by the VAE of both the labeled
and unlabeled data, the objective function of the VAE in adversarial training is then

Ladv
V AE = −E[log(D(pθ(zL |xL, rL)))] − E[log(D(pθ(zU |xU , l̂U )))]. (6)

Combining (5) and (6), the overall objective function of the VAE is

LV AE = Ltrans
V AE + ηLadv

V AE , (7)

where η is a coefficient hyperparameter. The objective function of the discriminator D
during adversarial training is

Ladv
D = −E[log(D(pθ(zL |xL, rL)))] − E[log(1 − D(pθ(zU |xU , l̂U )))], (8)

and the overall objective function of the adversarial training is

min
pθ

max
D

E[log(D(pθ(zL |xL, rL)))] + E[log(1 − D(pθ(zU |xU , l̂U )))]. (9)

The VAE and discriminator are trained in an adversarial manner. Specifically, the
VAE maps the labeled pθ(zL |xL) and unlabeled pθ(zU |xU ) data into the latent space
with binary labels 1 and 0, respectively, and tries to trick the discriminator into classi-
fying all the inputs as labeled. On the other hand, the discriminator tries to distinguish
the unlabeled data from the labeled data by predicting the probability of each sample
being from the labeled pool. Thus, the adversarial network is trained to serve as the
sampling scheme via the discriminator by predicting the samples associated with the
latent representations of zL and zU to be from the labeled pool xL or the unlabeled
pool xU according to its predicted probability D(·). In short, sample selection is based
on the predicted probability of the discriminator adversarially trained with the VAE.
The smaller the probability, the more likely the sample will be selected for annotat-
ing. This adversarial training process is shown as Stage 3 in Fig. 2 and summarized in
Algorithm 2.
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Algorithm 2. Adversarial Training and Sample Selection
Require: Labeled data (XL, YL), unlabeled data XU , rank variable (i.e., ranking loss) rL,

trained model θT , initialized models θV AE and θD , training epochs N , labeling budget b
Ensure:
1: for i = 1 to N do
2: Compute Ltrans

V AE , Ladv
V AE , and LV AE using (5), (6), and (7), respectively

3: Compute Ladv
D using (8)

4: Update θV AE and θD using (9)
5: Select samples Xb withminb D(XU )
6: Query labels for Xb: Yb ← Oracle(Xb)
7: (XL, YL) ← (XL, YL) ∪ (Xb, Yb)
8: XU ← XU − Xb

9: end for
10: return Updated (XL, YL), XU

4 Experiments

To evaluate the proposed SS-VAAL framework, we carried out extensive experiments
on two computer vision tasks: image classification and semantic segmentation.

4.1 Active Learning for Image Classification

Datasets. To evaluate SS-VAAL, we performed experiments on the following com-
monly used datasets: CIFAR-10, CIFAR-100 [20], Caltech-101 [11], and ImageNet
[9]. Both the CIFAR-10 and CIFAR-100 datasets consist of 50,000 training images
and 10,000 test images that are 32× 32 in size. The Caltech 101 dataset contains 9,146
images, split between 101 different object categories. Each object category contains
between 40 and 800 images, each of which is approximately 300 × 200 pixels. Ima-
geNet is a large-scale dataset with more than 1.2 million images from 1,000 classes.

Implementation Details. We first trained a SoDeep sorter to rank the losses. Given the
close performance of several available sorter options, we opted for the LSTM sorter.
The sorter was trained with a sequence length of 128 for 300 epochs on synthetic data
consisting of vectors of generated scalars associated with their ground-truth rank vec-
tors. This training is separate from the AL process. After training was complete, the
sorter was applied to the loss prediction module to convert the predicted and target
losses into ranking losses for the AL process.

For CIFAR-10 and CIFAR-100, we applied the same data augmentation as the com-
pared methods, including a 32 × 32 random crop from 36 × 36 zero-padded images,
random horizontal flip, and normalization with the mean and standard deviation of the
training set. The target model underwent 200 epochs of training on labeled data with a
batch size of 128, then 100 epochs of semi-supervised training on pseudo-labeled data.
The initial learning rate was set to 0.1, and reduced to 0.01 and 0.001 at 160 and 240
epochs, respectively. For training, we employed ResNet-18 [15] as the target network
with the loss prediction module described in Sect. 3 using stochastic gradient descent
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with the momentum set to 0.9 and a weight decay of 0.0005. Experiments began with an
initial labeled pool of 1000/2000 images from the CIFAR-10/CIFAR-100 training set,
respectively. At each stage, the budget size was 1000 (CIFAR-10)/2000 (CIFAR-100)
samples. The pool of unlabeled data consisted of the residual training set from which
samples were selected for labeling by an oracle. Upon labeling, these samples were
incorporated back into the initial training set and the process was carried out again on
the updated training set.

For Caltech-101 and ImageNet, the images were resized to 224 × 224 and we initi-
ated the process with 10% of the samples from the dataset as labeled data with a budget
size equivalent to 5% of the dataset. All other settings remained the same as those used
for CIFAR-10 and CIFAR-100, except that the main task was trained for 100 epochs
for the ImageNet dataset. The effectiveness of our approach was assessed based on the
accuracy of the test data. We compared against a random sampling strategy baseline and
state-of-the-art methods including the core-set approach [30], LL4AL [40], VAAL [34],
TA-VAAL [19], and MAOAL [13].

Results. All the compared against methods were averaged across 5 trials on the CIFAR-
10, CIFAR-100, and Caltech-101 datasets, and across 2 trials on ImageNet. Figure 4
and Fig. 6 (see supplementary material) show the classification accuracy on the bench-
mark datasets. The results obtained for the competing methods are largely in line with
those reported in the literature. Our comprehensive methodology, SS-VAAL, incorpo-
rates both the ranking loss prediction module and the clustering-assisted pseudo label-
ing. The empirical results consistently show that SS-VAAL surpasses all the competing
methods at each AL stage.

Fig. 4. Image classification comparison on the (a) CIFAR-10, (b) CIFAR-100, and (c) Caltech-
101 datasets.

4.2 Active Learning for Semantic Segmentation

Experimental Setup. To evaluate the effectiveness of our AL approach in more com-
plex environments, we analyzed the task of semantic segmentation using Cityscapes
[8], a large-scale dataset of urban street scene videos. Consistent with the settings in
[34], we utilized the dilated residual network [41] as the semantic segmentation model.
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Performance was measured by the mean intersection over union (mIoU) metric on the
Cityscapes validation set. All other experimental settings were kept consistent with
those used in the image classification experiments.

Results. All the compared against methods were averaged across 3 trials and are
shown in Fig. 5. Our method consistently outperforms all the other methods on the task
of semantic segmentation on the Cityscapes dataset as evidenced by its higher mIoU
scores.

Fig. 5. Semantic segmentation results on the Cityscapes dataset.

4.3 Ablation Study

To assess the impact of each proposed component, we executed an ablation study for the
classification task on the CIFAR-10, CIFAR-100, and Caltech-101 datasets. The results
are presented in the supplementary material, here we report the main observations. SS-
VAAL (w/ ranking only), which refers to the enhancement of VAAL by integrating the
ranking loss-based module, outperforms VAAL and LL4AL. This confirms the benefits
of considering task-related information in task learning. Moreover, it outperforms TA-
VAAL, indicating that our selection of the listwise ranking method more effectively
conveys task-related information than that of TA-VAAL (Fig. 7–Fig. 9).

Conversely, SS-VAAL (w/ CAPL only), which entails implementing the proposed
clustering-assisted pseudo-labeling procedure at every stage of model training, yields a
noticeable improvement over all the other methods. This highlights the effectiveness of
exploiting unlabeled data during model training. It also offers a modest improvement
over the SS-VAAL (w/ ranking only) configuration, implying that leveraging unlabeled
data for training contributes more to the performance improvement than employing
alternative means for conveying task-related information (Fig. 10–Fig. 12). Addition-
ally, we contrast this configuration with SS-VAAL (w/ PL only), which represents the
use of the conventional pseudo-labeling technique. The increase in performance under-
scores the effectiveness of our refinement of this method (Fig. 13–Fig. 15).
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5 Conclusion

In this paper we developed key enhancements to both better optimize the use of vast
amounts of unlabeled data during training and incorporate task-related information. Our
approach, SS-VAAL, includes a novel pseudo-labeling algorithm that allows a model to
delve deeper into the data space, thus enhancing its representation ability by exploiting
all unlabeled data in a semi-supervised way in every AL cycle. SS-VAAL also incorpo-
rates a ranking-based loss prediction module that converts predicted losses into a differ-
entiable ranking loss. It can be inserted as a rank variable into VAAL’s latent space for
adversarial training. Evaluations on image classification and segmentation benchmarks
demonstrate the increased performance of SS-VAAL over state-of-the-art techniques.
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Abstract. Deep learning method requires a substantial amount of
labeled data to achieve the state-of-the-art performance. However, anno-
tating a large volume of data is often costly and impractical. Active
Learning is a approach that reduces labeling costs by intelligently select-
ing and annotating the most crucial data points, which benefits from
the integration of uncertainty and diversity as key criteria for sam-
pling. Existing uncertainty-based methods often fall short in captur-
ing the distinct sources of uncertainty, resulting in a diminished qual-
ity of uncertainty estimation. Additionally, clustering is commonly used
to ensure diversity, which requires multiple iterations but overlooks the
global correlations present throughout the entire unlabeled dataset. As a
result, a well-designed ad hoc combination is essential to balance uncer-
tainty and diversity. To address above limitations, we propose Evidential
Uncertainty-aware Determinantal Point Process active learning method.
Specifically, we employ the theory of Subjective Logic to measure multi-
faceted uncertainty including vacuity and dissonance. On these grounds,
we first focus on the samples with high dissonance and employ Determi-
nantal Point Process to select the samples considering both vacuity and
diversity. The proposed method explores and exploits the information
associated with the latent feature space near the decision boundary to
select the most valuable samples. The experimental results on various
real-world datasets reveal the superiority of our method.
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1 Introduction

Deep learning models have shown advanced performance in various domains.
Yet, this advantage becomes obvious only when an extensive amount of labeled
training data is accessible. In practical scenarios, labeled data is often scarce and
annotating a large number of unlabeled samples is impractical. This limitation
is detrimental to model performance, especially in knowledge-rich domains. A
survey [4] shows that training samples do not improve the performance of the
model all the same. So a carefully chosen small training set can be better than
a randomly chosen large labeled training set. Active learning algorithms aim
to query and annotate the most valuable examples so that a high-performance
classifier can be trained with the least amount of labeling effort. Two primary
criteria commonly used in devising AL querying strategies are uncertainty and
diversity. Recent uncertainty-based sampling strategies [9,29,31] aim to query
the most informative samples, which typically only consider single-source uncer-
tainty and overlook the diversity in sample selection. Existing selection strate-
gies for diverse subsets [3,6,33] are not considered global correlations among
the entire unlabeled data pool. Furthermore, some methods [32,35] integrating
uncertainty and diversity must carefully control the trade-off between multiple
criteria. To address these limitations, we consider selecting samples with mul-
tifaceted uncertainty, paying simultaneous attention to the diversity within the
subsets. Evidential Deep Learning (EDL) [28] is employed to obtain the Dirichlet
distribution of prediction and uncertainty based on Subjective Logic (SL) [14].
Two distinct uncertainty vacuity and dissonance correspond to the lack of evi-
dence and the conflict of evidence. Initially, we prioritize samples exhibiting
strong conflict of evidence, characterized by high dissonance. Subsequently, we
utilize Determinantal Point Process (DPP) for sample selection, considering both
vacuity and diversity. The contributions of this paper are summarized below.

– Explore multifaceted uncertainty measure. Evidential uncertainty included
vacuity and dissonance concerns samples with different characteristics. It pro-
vides valuable information to design sampling strategy.

– Uncertainty-aware determinantal point process for balancing uncertainty and
diversity. We first incorporate DPP with evidential uncertainty measure into
active learning. We can assess the capability of samples to explore new areas
for the model at both the feature and decision levels.

– Propose a two-stage sampling strategy based on multifaceted uncertainty mea-
sure. We propose a two-stage sampling strategy, making it focus on conflict
samples and exploring new areas.

2 Related Work

Active Learning in Deep Learning. AL frameworks currently have three
main types of query strategies [4,20]: (1) Membership query synthesis. The
learners generate query instances in the input space based on the hypothesis
model [2]. (2) Stream-based AL. The instances are sampled from some sources



Deep Evidential Active Learning with Uncertainty-Aware DPP 19

one after another, just like a stream of instances [36]. (3) Pool-based AL. The
learner has access to all the unlabeled instances before initiating the sampling
process. The learner evaluates or ranks these instances from the unlabeled pool
to decide whether to query their labels or not. In real-world scenarios, a sig-
nificant amount of unlabeled data often exists, which can be thought of as an
unlabeled data pool. Pool-based sampling methods are divided into three types.
At the data level, representativeness [23,27,32] and diversity [3,6,33] can help
the model select informative and diverse samples. At the model level, they often
select samples that are beneficial to model performance improvement, such as
gradient length [3], fisher information [30] and the loss of models [34]. Further-
more, various metrics are employed to assess the quality of sample, such as
uncertainty [26,29,31], distance from adversarial examples [7], etc. These meth-
ods are commonly integrated into hybrid approaches to enhance performance.

Uncertainty-Based Learning. Quantifying uncertainty is a crucial research
topic in deep learning. One line of research concentrates on combining deep
learning with Bayesian probability theory [16]. Another line explores to esti-
mate the uncertainty by other methods [13,21]. While recent efforts provide
abundant uncertainty measure, there is a scarcity of methods on how to effec-
tively leverage uncertainty measure for AL. For example, the prior network [24]
requires training properly as its parameters must capture knowledge from both
the in-domain distribution and the decision boundary, making it not suitable for
AL. Considering the shortcomings of existing uncertainty measures for AL, we
consider designing our strategy based on evidential uncertainty including vacu-
ity (i.e., lack of evidence) and dissonance (i.e., conflict of evidence). EDL [28]
treats the predictions of the neural network as subjective opinions. Based on
SL [14], vacuity and dissonance can be computed, which are more suitable for
active sampling.

Determinantal Point Processes. Determinantal Point Process is an elegant
probabilistic model used in a variety of machine learning tasks. In the discrete
case, the point process is a probability measure over all subsets. It links the prob-
ability of selecting a subset to the computation of the determinant, which is asso-
ciated with the kernel matrix that defines global measure of similarity between
samples. Similar items are less likely to appear simultaneously, because DPP
assigns higher probabilities to more diverse subsets. DPP algorithms include
basic DPP [19], k-DPP [18] and Markov DPP [1]. Different DPP algorithms
have different application scenarios. Basic DPP [19] can select the subset which
has unfixed size. For k-DPP [18] algorithm, we can select a subset of k samples.
Markov DPP [1] is also proposed to ensure the diversity of samples in the time
series. However, there is few work that applies DPP to active learning.
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Fig. 1. Module Overview. We utilize Evidential Deep Learning as the evidence gen-
erator, which can quantify multifaceted uncertainty including vacuity and dissonance
based on Subjective Logic. Two-stage sampling strategy is proposed to select samples
with high quality.

3 Method

AL models actively select valuable samples for annotation using various strate-
gies. To select more valuable samples, we propose Evidential Uncertainty-Aware
Determinantal Point Process (EUDPP) sampling strategy in Fig. 1, which takes
into account both multifaceted uncertainty and diversity. In the first round, we
select samples with strong conflict of evidence. Then we select a subset among
them based on diversity and vacuity. Specifically, we combine vacuity with sim-
ilarity matrix for sampling, called uncertainty-aware DPP. In order to make the
sampling strategy more effective, we use representative loss providing guidance
on the distance of intra-class samples in the feature space.

3.1 Multifaceted Uncertainty Quantification

Entropy is the uncertainty measure that represents the uncertainty of the entire
output prediction distribution. Traditional works [8,13] select samples with
larger entropy. A challenge associated with entropy-based sampling is that sam-
ples with high entropy may not effectively contribute to the enhancement of
model performance, since the predicted entropy may be inaccurate, particu-
larly in the early stage of AL. Furthermore, it lacks the ability to differentiate
among sources of uncertainty and fails to facilitate the model in learning the
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decision boundary. To differentiate among the sources of uncertainty, Eviential
Deep Learning [28] can output the collected evidence and measure multifaceted
uncertainty. Specifically, Subjective Logic provides a principled way to form sub-
jective opinion and uncertainty mass based on the parameters of Dirichlet dis-
tribution [14]. In the multi-class setting, EDL considers a frame of K mutually
exclusive singletons (i.e., class labels) by assigning a belief mass {bk}K

k=1 and
providing an overall uncertainty mass u. These K + 1 mass values are all non-
negative and add up to one

u +
K∑

k=1

bk = 1, (1)

where u ≥ 0 and bk ≥ 0 for k = 1, 2, ...,K. Let αk be the Dirichlet distribution
parameters corresponding to the K class. We can obtain Dirichlet distribution
characterized as Dir(p|α). The belief mass bk and the uncertainty mass u are
computed as

bk =
αk − 1

S
and u =

K

S
, (2)

where S =
∑K

i=1 αk is referred as Dirichlet strength. The model outputs evidence
of samples about each singleton. Let ek ≥ 0 be the evidence derived for the kth

singleton, which can be computed by ek = αk − 1.

Insufficient Evidence: Vacuity. The uncertainty mass is related to Dirichlet
strength S, which represents the amount of evidence. So we can consider the
uncertainty caused by lack of evidence as vacuity: V ac(α) = K/S. In Fig. 1, we
can see the areas with clusters overlap or fewer samples have higher vacuity. We
should choose additional samples from these areas to mitigate uncertainty about
lack of evidence.

Conflicting Evidence: Dissonance. Uncertainty that results from the rela-
tionship between belief masses can be viewed as the conflict of evidence [15],
which is defined as

Diss (α) =
K∑

k=1

(
bk

∑
j �=k bjBal (bj , bk)

∑
j �=k bj

)
, (3)

Bal (bj , bk) =

{
1 − |bj−bk|

bj+bk
if bibj �= 0,

0 if min (bi, bj) = 0.
(4)

High dissonance indicates that these samples cannot be classified with cer-
tainty because both classes are assigned an equal amount of supporting evidence,
leading to the strong conflict between belief masses. Samples with high Diss(α)
tend to be located at the decision boundary, which are beneficial for the model
classification task.

By clearly identifying the sources of uncertainty instead of employing them in
a combined form as in entropy, evidential uncertainty provides a deeper insight.
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We derive the relationship between evidential uncertainty and entropy. We can
easily know p(y = k) = 1/K when the entropy takes the maximum value. Thus
the two theorems are formalized below.

Theorem 1. Given a Dirichlet Strength S, if S → ∞, we have

q = argmax
xi∈Du

Diss(αi) ⇒ q = argmax
xi∈Du

H(yi|xi). (5)

Proof. If we have Diss(αq) = 1, which indicates eq1 = eq2 = . . . = eqk and
eqk = αqk − 1, then

lim
S→∞

p(y = k) = lim
S→∞

eqk + 1
S

= lim
S→∞

S
K + 1

S
=

1
K

(6)

Theorem 2. Given a Dirichlet Strength S, we have

q = argmax
xi∈Du

V ac(αi) ⇒ q = argmax
xi∈Du

H(yi|xi). (7)

Proof 1. If we have V ac(αq) = 1, which indicates eq1 = eq2 = . . . = eqk = 0.
i.e., S = K, then

p(y = k) =
eqk + 1

S
=

1
K

. (8)

For a high-entropy data, the uncertainty is caused by high dissonance (i.e.,
conflicting evidence and S � K) or a high vacuity (i.e., insufficient evidence and
S ≈ K). The multifaceted uncertainty provides valuable information to design
an effective sampling strategy.

3.2 Balanced Uncertainty and Diversity Sample Selection
with Determinantal Point Process

Uncertainty-based methods do not fully leverage the data distribution, while
samples chosen solely based on data distribution may offer limited new infor-
mation, indicating low uncertainty. Our sampling strategy meets two important
criteria: (1) help the model to learn the decision boundary. (2) the selected subset
must have diversity and information to obtain more various samples.

Dissonance-Based Sampling. The conflicting evidence indicates that samples
are near the decision boundary where classes are heavily overlapped. Labeling
samples with high dissonance helps the model have a better ability to discrimi-
nate.

q = argmax
xi∈Du

Diss(αi) (9)

we obtain n1 samples according Eq. 9, which are selected in the first stage.
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Vacuity-Aware Determinantal Point Process Sampling. Diversity plays
a crucial role in sampling strategies. Recent studies [3,32,33] propose sampling
strategies based on diversity. In the first stage, we already obtain n1 samples. In
this stage, we pay attention to informative samples measured by V ac(αi) and
diversity. We utilize determinantal point process with vacuity, which consider
both data distribution and the impact of samples on the model. We regard
V ac(αi) as scores of unlabeled samples and combine scores with DPP [18].

Definition 1. Marginal DPP Distribution. Determinantal Point Process
P is a probability distribution over 2n subsets of a discrete set Y = {1, 2, ..., n}.
Drawing a random subset Y according to P, for every subset A ⊆ Y , the prob-
ability of subset selection is formalized as

Pr(A ⊆ Y ) = det (KA) , (10)

for the positive semidefinite matrix K indexed by the elements of Y . KA ≡
[Kij ]i,j∈A denotes a submatrix of K to the entries indexed by the elements of A.
We refer to K as the marginal kernel, as all the eigenvalues of K should be less
than or equal to one. Large values of kij imply that i and j tend not to co-occur.
Therefore, DPPs can be used naturally to model diverse sets of items.

For modeling real-world data, the L-ensemble offers a more flexible approach
to constructing DPPs, free from the constraints imposed by eigenvalues. The
L-ensemble [18] defines a DPP via a positive semidefinite matrix L ∈ R

n×n

indexed by the elements of Y

PL(Y = A) =
det (LA)

det(L + I)
, (11)

L = X�X =

⎛

⎜⎜⎜⎝

〈x1,x1〉 〈x1,x2〉 . . . 〈x1,xn〉
〈x2,x1〉 〈x2,x2〉 . . . 〈x2,xn〉

...
...

. . .
...

〈xn,x1〉 〈xn,x2〉 . . . 〈xn,xn〉

⎞

⎟⎟⎟⎠ , (12)

where I is an identity matrix and LA denotes a submatrix of L. LA is the set
of 〈xi, xj〉 about samples in set A. For every subset A ⊆ Y, the probability of
subset is

PL(Y = A) ∝ det (LA) = Vol2
({xi}i∈A

)
, (13)

where det (LA) the determinant of LA. Determinants have an intuitive geometric
interpretation. In Fig. 1, the determinant of the matrix L is the square of the
volume of the parallel polyhedron formed by the vectors.

Balancing Uncertainty and Diversity. In contrast to existing methods rely-
ing on pairwise dissimilarities [3,33], our approach defines diversity in the feature
space of the entire subset based on Determinantal Point Process (DPP). Selecting
a sample set that maintains maximum diversity is advantageous for the model,
but without considering measures of uncertainty, the selected samples may con-
tain little new information. Therefore, to balance diversity and uncertainty, we
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employ vacuity V ac(αi) as a score to assess the quality of samples, helping our
model in gathering evidence. We construct the matrix of uncertainty scores

U =

⎡

⎢⎢⎢⎣

u1 0 · · · 0
0 u2 · · · 0
...

...
. . .

...
0 0 · · · un

⎤

⎥⎥⎥⎦ , (14)

where ui is V ac(αi). We combine the matrix of uncertainty scores U with matrix
L. We define X as the matrix of feature vectors

[
x1 x2 . . . xn

]
. Let’s start by

combining the feature vectors xn and scores un into weighted samples x′
n

[
u1x1 u2x2 . . . unxn

]
= X ′ = XU. (15)

Subsequently, we can obtain the new matrix L with samples’ score

L′ (x′
1, . . . ,x

′
n) = X ′�X ′

= (XU)�(XU)

= U�X�XU,

(16)

There are many kinds of metrics, such as euclidean distance, cosine similarity,
RBF, etc. We use the following shorthand for similarity measure

Lij = 〈xi,xj〉 =
xi

T xj

‖xi‖2‖xj‖2 . (17)

Therefore, the probability (diversity) of the subset sampled by uncertainty-aware
DPP can be equivalent to computing the determinant

PL(Y = A) ∝
(

∏

i∈A

u2
i

)
det (LA) , (18)

where the first term increases with the uncertainty scores of the selected samples,
and the second term increases with the diversity of the selected subsets.

Furthermore, we have the geometric intuitions that the determinant of L′
A

is equal to the squared volume of the parallel polyhedron spanned by the vec-
tors uixi for i ∈ A. Figure 1 shows the magnitude of ui and the direction xi.
The larger the volume is, the determinant of the matrix is increasing and the
corresponding subset is also more diverse.

Fast Greedy MAP Inference for DPP. We can sample subsets by the MAP
inference [10]

Amap = arg max
A⊆Y

(
∏

i∈A

u2
i

)
det (LA) . (19)
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We know that MAP inference is a NP-hard problem and greedy algorithm is the
widely used for it, justified by the fact that the log-probability of set in DPP
is submodular. Due to the submodular nature of the MAP objective, greedy
algorithms have been used with empirical success. The submodular maximization
task is to find a subset maximizing a submodular function, which corresponds
to the MAP inference in the DPP case [11]. Its greedy strategy is formalized as

j = arg max
i∈Du\A

[
log

(
u2

i

)
+ log det

(
LA∪{i}

) − log det (LA)
]
, (20)

where Du is the unlabeled dataset and A represents subsets having been selected.
We can use fast greedy map inference [5] to obtain n2 samples. The selected
samples contribute not only learn the model’s decision boundary but also offer
diversity and information, enabling exploration of new regions.

3.3 Evidential Deep Learning for Uncertainty Measure

EDL can form multinomial opinions for the classification [28] of a given sample
i as a Dirichlet distribution Dir(pi|αi), where pi is a simplex representing class
assignment probabilities pi = αi/S. By placing a Dirichlet distribution on the
class probabilities, EDL learns to obtain the uncertainty of the prediction from
the evidence collected from the data. The prediction for the classification prob-
lem is a Dirichlet distribution whose parameters are set by the output of the
neural network. The loss function of prediction error is formalized as

L(i)
ce (αi) =

∫ ⎡

⎣
K∑

j=1

−yij log (pij)

⎤

⎦ 1
B (αi)

K∏

j=1

p
αij−1
ij dpi

=
K∑

j=1

yij (ψ (Si) − ψ (αij)) ,

(21)

where ψ(·) is the digamma function and B(α) is the K-dimensional multinomial
beta function. As long as the correct category has the highest evidence value,
the neural network will generate evidence for other wrong labels. If it cannot be
correctly classified, we prefer zero total evidence, i.e., S = K, corresponds to the
uniform distribution and indicates uncertainty, i.e., u = 1. So we should add a
component to normalize predictive distribution

Ledl =
N∑

i=1

L(i)
ce (αi) + λ

N∑

i=1

KL [Dir (pi | α̃i) ‖Dir (pi | 1)] , (22)

where λ = min{1, t/T} is annealing coefficient with current epoch number t
and total epoch number T . The Dirichlet parameters after removal of the non-
misleading evidence from predicted parameters αi can be formalized as α̃i =
yi + (1 − yi) � αi. Moreover, due to the sampling strategy considering diversity
of subsets, the representative loss Lrep = 1

2

∑m
i=1 ‖fi − cyi

‖22 contributes to make
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intra-class samples of labeled set more clustered in the feature space, where fi is
feature vector and cyi

is the center of class about training data. The distance of
intra-class samples in the training set is reduced. At the same time, the distance
between samples of the unlabeled set that are similar to the training data is also
reduced. Based on our strategy for obtaining diverse subsets, Lrep can help us
to select more valuable samples.

4 Experiment

We validate the effectiveness of our method on three datasets: MNIST [22],
SVHN [25] and CIFAR10 [17]. Experiments include model performance compar-
ison and the ablation study. For MNIST and SVHN datasets, the initial size of
training datasets is set to 100 and we select 100 samples per round for a total
of 15 rounds. For CIFAR10 dataset, the initial size of training datasets is set to
1000 and we select 1000 samples per round for a total of 20 rounds. The perfor-
mance of the models is compared when starting with 5 classes and 10 classes.
We use LeNet as the the network structure of feature extraction.

Fig. 2. Performance comparison. Test accuracy under a range of conditions. The
shaded area represents the standard error.

4.1 Model Performance Comparison

Evaluating the quality of selected samples involves observing test accuracy after
each round of sampling and the diversity of selected subsets. We compare our
method with the following state-of-the-art approaches: DUC [31], DEAL [12],
BADGE [3], Core-set [27], DBAL [9] and random sampling.
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Test Accuracy. The purpose of sampling is to obtain high-quality samples
added to the training set. Therefore, test accuracy is used as an external represen-
tation of the informative samples. In Fig. 2, we compare three types of sampling
methods based on uncertainty, representativeness and diversity, respectively. The
test accuracy of our method is higher than other methods. In the setting of start-
ing categories of 5, our method still maintains a good performance.

Fig. 3. T-SNE on MNIST dataset. Black points are the selected samples in the
first round. Points in other colors are unlabeled samples.

Diversity. The diversity of subsets needs to be guaranteed to save the cost of
human annotation. We measure the diversity of annotated samples respectively
from the average cosine distance, class distribution and t-SNE. In Fig. 3, we select
samples that effectively span most of the distribution area. Except for diversity-
based methods, other methods select samples clustered in the feature space.
Figure 4 shows the cosine distance and class distribution of the selected subsets.
We can observe that our method selects the most dissimilar subsets, maximizing
cosine distance, while maintaining uniformity in the number of selected samples
for each class.

4.2 Ablation Study

Obviously, diversity is not necessarily conducive to the improvement of model
classification performance without restrictions. Therefore, we give priority to
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Fig. 4. Diversity comparison. (Left) The average cosine distances of selected sam-
ples. (Right) The category distribution of selected samples.

Fig. 5. Uncertainty-based sampling strategy comparison. Entropy, vacuity only,
dissonance only and multifaceted uncertainty.

the samples at the decision boundary. Due to the small amount of initial train-
ing data, selecting samples at the boundary will limit the area covered by the
training set. So in the second stage, we propose the uncertainty-aware DPP. We
respectively performed ablation experiments on the performance of uncertainty
estimation and the effectiveness of uncertainty-aware DPP sampling strategy.

Uncertainty Estimation. The uncertainty of a high-entropy sample may be
caused by either insufficient evidence (i.e., high vacuity) or conflicting evidence
(i.e., high dissonance). We use multifaceted uncertainty to sample in two stages
separately. In Fig. 5, we compare the experimental results of single uncertainty,
entropy and multifaceted uncertainty. We find that the multifaceted uncertainty
is more beneficial to select high-quality samples.
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Fig. 6. T-SNE on CIFAR10 dataset. Uncertainty-based sampling strategy select
samples clustered in the feature space. DPP can help increase diversity of subsets.

Fig. 7. Ablation study on Lrep. It has a positive impact on the DPP-based sampling
strategy, making it easier to select samples that have not been seen in the training set.

The Performance of the Uncertainty-Aware DPP. We are the first to
apply the relevant theory of DPP in active learning. We use V ac(αi) as the
sample quality score combined with the similarity matrix for sample selection,
considering the information about the model learning and diversity in the feature
space. Figure 6 shows t-SNE of the samples obtained by the sampling strategy.
We can see that selected subset based on our method has more diverse samples.
The sampling strategy based on UDPP has a significant improvement on the
diversity of subset. We add additional guidance to help the model focus on
valuable samples. Lrep can reduce the diversity of intra-class samples in labeled
set, which is beneficial to our sampling strategy. In Fig. 7, we can see the test
accuracy has a certain increase, so adding Lrep can help our strategy based on
UDPP have more noticeable effect.
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5 Conclusion

In this paper, we propose a two-stage active learning framework called EUDPP
that systematically incorporates multifaceted uncertainty and diversity, to inves-
tigate and leverage the data associated with the hidden feature space close to
the decision boundary. Through theoretical analysis, we identify the relationship
between entropy and multifaceted uncertainty including vacuity and dissonance,
highlighting that our multifaceted uncertainty offers profound insights. In the
initial stage, dissonance uncertainty is employed to select conflicting samples.
Subsequently, vacuity uncertainty is integrated with the Determinantal Point
Process to form the uncertainty-aware DPP, which identifies the most informa-
tive and diverse subset of conflicting samples while taking into account the global
correlations within the entire unlabeled pool. Extensive experiments on various
real-world datasets validates the effectiveness of our method.
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Abstract. Knowledge distillation addresses the problem of training
a lightweight model (student) from a deeper, more complex model
(teacher) so as to mimic its performance. Existing techniques mostly
utilize the predictions furnished by the teacher on a given training set
to perform the distillation and train the student. However, querying
the teacher model for labels can be an expensive process in terms of
computational/ financial overhead. In this paper, we tackle the prob-
lem of distilling knowledge from a blackbox teacher model into a stu-
dent deep neural network, in a cost-efficient manner. Active learning
algorithms automatically identify the salient and exemplar samples from
large amounts of unlabeled data and are instrumental in reducing human
annotation effort in inducing a machine learning model. We propose a
novel active learning algorithm using which the student model can iden-
tify the most informative samples from a large amount of unlabeled data,
which need to be queried from the teacher. We exploit the geometry of
the unlabeled data to identify a batch of representative samples which
can reconstruct the data with minimal error. We pose the sample selec-
tion as an NP-hard optimization problem and solve it efficiently using an
iterative algorithm, with global convergence. Such an algorithm can be
effective in distilling relevant knowledge from the teacher to the student
under a constrained query budget. Our extensive empirical studies on five
challenging datasets from two application domains (computer vision and
text mining) corroborate the efficacy of our active sampling framework
over competing baselines.

Keywords: Knowledge distillation · Deep learning · Subset selection

1 Introduction

Knowledge distillation (KD) is a method for transferring complex mapping func-
tions learned by a high-capacity model or an ensemble of multiple models (the
teacher) to a relatively simpler, lightweight model (the student) [9,11]. Gener-
ally, the teacher models deliver good generalization performance; however, they
have a high memory footprint and are computationally expensive. The student
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models, on the other hand, require much less memory and computation and
are thus more suitable for real-time applications. KD has been used in a vari-
ety of applications, such as pose estimation [25], object detection [6] and video
representation [7] among others.

In any KD application, the objective is to train the student network to imi-
tate the teacher network, using a given training set. The transfer of knowledge
from the teacher to the student is typically facilitated using a variety of meth-
ods, such as matching the soft-label probabilities, the l2 norm between the fea-
ture representations or the attention maps, and the maximum mean discrepancy
(MMD) between the distributions of the neuron selectivity patterns learned by
the teacher and the student networks [11,15,29] among others. In all these meth-
ods, all the training examples are required to be passed to the teacher, and its
outputs are used to compute a distillation loss and train the student. However,
in certain applications, querying the teacher model can be expensive computa-
tionally and/or financially. For instance, the teachers are often models that are
trained and hosted by companies on the cloud, commonly referred to as Machine
Learning as a Service (MLaaS) platforms. Third-party developers access these
models through Application Programming Interfaces (APIs). Each access to the
API incurs a cost, which means that a price needs to be paid each time the
teacher model is queried. In such applications, obtaining the teacher’s output
on all the training samples in order to train the student, can be prohibitive.
This necessitates the development of an algorithm to distill knowledge from the
teacher to the student network, when the number of label queries to the teacher
cannot exceed a pre-specified budget.

We formally pose the research question as follows: We are given a blackbox
teacher model (deep neural network) trained on a given application of interest.
The data used to train the teacher is not available; the specific architecture and
trained parameters of the teacher are also not known. We are interested to train
a student deep neural network using a knowledge distillation algorithm to imitate
the teacher. For this purpose, we are given a small amount of labeled data L, and
a large amount of unlabeled data U , with |L| � |U |. However, we are not allowed
to query the labels of all the |U | samples from the teacher due to computational
and/or financial cost constraints. We are further given a query budget k which
denotes the number of unlabeled samples whose labels can be queried from the
teacher. Which k samples should we select for query so that the student model’s
generalization accuracy gets closest to that of the teacher?

Active learning (AL) is a machine learning paradigm to automatically iden-
tify the most informative samples from large amounts of unlabeled data [34]. This
tremendously reduces human annotation effort in inducing a model, as only the
few samples that are selected by the algorithm, need to be labeled manually.
Further, since the model gets trained on the exemplar data samples, it typically
depicts better generalization accuracy than a passive learner, where the training
data is sampled at random. AL has been successfully used in a variety of appli-
cations, such as computer vision [43], text analytics [38], computational biology
[26], email classification [32] etc.
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In this paper, we propose a novel AL algorithm to address the aforemen-
tioned research question. We pose the sample selection as a constrained NP-
hard optimization problem (based on the data reconstruction error) and derive
an iterative algorithm, with global convergence, to solve it. Our framework is
easy to implement and independent of the underlying KD algorithm, as well as
the architectures of the teacher and student networks. The proposed algorithm
is generic and can be used in any application to select an informative subset of
samples from large amounts of data; we validate it on the KD application in this
paper, as research in this area is still in a nascent stage.

2 Related Work

Active Learning: With the advent and popularity of deep neural networks,
deep active learning (DAL) has attracted significant research attention, where
the objective is to identify the salient unlabeled samples for manual annotation
and simultaneously learn discriminating feature representations using a deep
neural network [28]. Recently proposed DAL strategies include learning a task-
agnostic loss function to identify the informative unlabeled samples [43], finding a
core set of samples such that the deep model trained on this subset is competitive
over the whole dataset [33], a method based on diverse gradient embeddings
(BADGE) which combines uncertainty and diversity for active sample selection
[2], a discriminative algorithm that selects samples such that the labeled and
the unlabeled sets are maximally similar [8] and methods based on adversarial
learning [36,48]. Other related research in AL includes active learning in the
presence of noisy annotators [14], actively completing an incomplete data matrix
[30], combining active learning with transfer learning [37], actively selecting the
informative features and samples [20] and AL with novel annotation mechanisms
[12] among others.

Knowledge Distillation: Knowledge distillation has received increasing atten-
tion from the research community in recent years; please refer [9] for a compre-
hensive survey. A simple and effective idea to transfer knowledge is to match
the responses [11], learned feature representations [29] or relationships between
different layers [19] between the student and the teacher models. Metrics such
as the KL-divergence, Maximum Mean Discrepancy (MMD), l2 and l1 norm
distance are commonly used to compute the similarity and formulate the dis-
tillation loss terms to train the student network. Several distillation techniques
have been explored to improve the transfer of knowledge from the teacher to the
student in more complex settings, including adversarial distillation [22], multi-
teacher distillation [45] and graph-based distillation [5] among others. Recently,
a body of research has focused on reducing the amount of training data required
foreffective transfer of knowledge. Few-shot KD has been proposed to retain the
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teacher model’s performance with pseudo samplers which are generated in an
adversarial manner [16]. Zero-shot KD has also been explored by generating data
using the gradient information of the teacher network [23]. However, these meth-
ods require the gradient information of the teacher network, which is difficult to
obtain in real-world applications.

Active Learning for Knowledge Distillation: Even though both AL and
KD have been extensively studied, AL for KD is in its nascent stage and has only
been explored in recent years. As in conventional AL, uncertainty sampling has
been exploited to actively select unlabeled samples to train the student model
[3,27,46]. Very recently, researchers have begun to study the performance of
deep active learning algorithms such as BADGE and Coreset for KD [13,18].
Wang et al. [39] proposed mixup together with active learning to augment the
unlabeled pool with synthetic data samples, and then query the labels of the
hard examples from the teacher to train the student. However, as noted by the
authors, mixup may produce data samples that are semantically meaningless,
and the knowledge gained by the student from such fake (sample-label) pairs may
not be substantial. In contrast, we propose a method to identify the informative
unlabeled samples to train the student without generating synthetic/fake data
samples. We now describe our framework.

3 Proposed Framework

3.1 Problem Setup

In our problem setup, the student model is given a labeled set L and an unla-
beled set U , where |L| � |U |. Let n be the number of unlabeled samples, where
each sample is represented using a vector of d dimensions. Let X ∈ �d×n denote
the unlabeled data matrix, where each column represents a sample and each row
represents a feature. Our objective is to select k samples from U to distill knowl-
edge from the teacher and train the student model. Our method is motivated by
research in transductive experimental design [35,44], which attempts to select
a representative subset such that the whole dataset can be approximated by a
linear combination of the selected samples. We formulate the active sampling
problem based on data geometry and attempt to select k samples using which
the unlabeled data can be reconstructed with minimal error.

3.2 Active Sample Selection

Let z ∈ {0, 1}n×1 be a binary selection vector where zi = 1 if unlabeled sample
xi is selected in the batch and zi = 0 otherwise; let diag(z) be a diagonal matrix
with z along the main diagonal. We pose the sample selection as minimizing the
following residual:
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min
z, ̂C

∥
∥
∥X − Xdiag(z)Ĉ

∥
∥
∥

2

F
(1)

s.t.: z ∈ {0, 1}n×1,

n∑

i=1

zi = k

where ||.||F denotes the matrix Frobenius norm. The term Xdiag(z) attempts
to retain k columns (data samples) in the matrix X and set the remaining
(n − k) columns to 0; these k samples therefore denote the most representative
samples to reconstruct the unlabeled data matrix X. Ĉ ∈ �n×n is a matrix
of reconstruction coefficients. We decompose Ĉ = CX where C ∈ �n×d and
express the problem as:

min
z,C

‖X − Xdiag(z)CX‖2F (2)

s.t.: z ∈ {0, 1}n×1,

n∑

i=1

zi = k

This can be written equivalently as:

min
Q

‖X − XQX‖2F (3)

s.t.: ‖Q‖2,0 = k

where Q = diag(z).C and ‖Q‖2,0 denotes the l2,0 norm of a matrix, that is,
the number of non-zero rows in the matrix Q. To see the equivalence between
Eqs. (2) and (3), we note that, if a particular row of diag(z) has all 0 s, that row
in Q will also have all 0 s. Hence, the number of non-zero rows in Q is equal to
the number of non-zero entries in diag(z), that is, ‖Q‖2,0 = k. Based on this, we
propose to optimize the following objective function:

min
Q

‖X − XQX‖2F + α ‖Q‖2,0 (4)

where α ≥ 0 is a regularization parameter. Once we solve for Q, we can compute
the l2 norm of each row of Q and select the k unlabeled samples corresponding
to the k highest l2 norm values. However, this is an NP-hard problem due to
the matrix l2,0 norm. Nie et al. [24] established that the l2,1 norm of a matrix
is the minimum convex hull of the l2,0 norm, and minimizing the l2,1 norm is
equivalent to minimizing the l2,0 norm, as long as the matrix is row-sparse.
With this assumption, we can relax (4) into the following convex optimization
problem:

min
Q

‖X − XQX‖2F + α ‖Q‖2,1 (5)

where ‖Q‖2,1 is the matrix l2,1 norm, which is the sum of the l2 norm of each
row of a matrix. Our objective function contains the non-smooth term α ‖Q‖2,1,
which makes it challenging to guarantee an optimal solution by directly differen-
tiating the objective. We employ the alternating direction method of multipliers
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(ADMM) to solve this problem [4]. We introduce a new variable Q̂ and express
the problem as:

min
Q, ̂Q

‖X − XQX‖2F + α
∥
∥
∥Q̂

∥
∥
∥
2,1

s.t.: Q = Q̂ (6)

The augmented Lagrangian function can be written as:

L(Q, Q̂, λ, θ) = ‖X − XQX‖2F + α
∥
∥
∥Q̂

∥
∥
∥
2,1

+
〈

λ,Q − Q̂
〉

+
θ

2

∥
∥
∥Q − Q̂

∥
∥
∥

2

F
(7)

where λ ∈ �n×d is the matrix of Lagrangian multipliers, θ ∈ �1×1 is a constraint
violation penalty parameter and 〈., .〉 denotes the matrix inner product operator.

Updating Q: Considering the terms with Q in Eq. (7), we have the objective
function to be minimized as:

LQ = ‖X − XQX‖2F +
θ

2

∥
∥
∥
∥
Q − Q̂ +

λ

θ

∥
∥
∥
∥

2

F

(8)

Setting ∂LQ

∂Q = 0, we get

2X�XQXX� + θQ = 2X�XX� + θ

(

Q̂ − λ

θ

)

(9)

Let A = 2X�X and B = 2X�XX� + θ
(

Q̂ − λ
θ

)

. Plugging back in Eq. (9)
we get:

AQXX� + θQ = B (10)

Note that both A and XX� are symmetric and positive-semidefinite matri-
ces. We can therefore perform an eigen decomposition of both these matrices as
follows:

A = UΣ1U
�, XX� = V Σ2V

� (11)

where U and V are orthogonal matrices, Σ1, Σ2 are diagonal matrices. Plugging
this back in Eq. (10) we get:

UΣ1U
�QV Σ2V

� + θQ = B (12)

Multiplying both sides by U� from left and V from right, we get:

Σ1U
�QV Σ2 + θU�QV = U�BV (13)

Let D = U�QV . Plugging this back in Eq. (13) we get:

Σ1DΣ2 + θD = U�BV (14)

Equating both sides element by element, we get:

Dij =
(U�BV )ij

(Σ1)ii.(Σ2)jj + θ
, i = 1 . . . n, j = 1 . . . d (15)
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Now, D = U�QV . Thus, we can solve Q as:

Q = UDV � (16)

Updating Q̂: From Eq. (7), considering the terms with Q̂, we have the objective
function to be minimized as:

L
̂Q = α

∥
∥
∥Q̂

∥
∥
∥
2,1

+
θ

2

∥
∥
∥
∥
Q − Q̂ +

λ

θ

∥
∥
∥
∥

2

F

(17)

Since the l2,1 norm is the sum of the l2 norms of each row of a matrix, we
can decouple the minimization problem and solve for the matrix Q̂ row by row.
The following lemma can be used to solve the above optimization problem [42].

Lemma 1. For any κ, μ > 0 and g ∈ �n×1, the minimizer of

min
t∈�n×1

κ||t||2 +
μ

2
||t − g||22

is given by

t =

{(

1 − κ
μ||g||2

)

g if ||g||2 > κ
μ

0 if ||g||2 ≤ κ
μ

The solution to (17) is thus obtained as:

Q̂i =

{(

1 − α
θ||s||2

)

s if ||s||2 > α
θ

0 if ||s||2 ≤ α
θ

(18)

where s =
(

Q + λ
θ

)i
, for i = 1 . . . n and M i denotes the ith row of matrix M .

Updating λ: The matrix λ can be updated using the following equation [4]:

λ ← λ + θ(Q − Q̂) (19)

The pseudo-code of our framework is outlined in Algorithm 1. As evident from
the pseudo-code, our algorithm is independent of the underlying KD algorithm
and the teacher-student network architectures, and can thus be seamlessly inte-
grated across different teacher-student architectures and different applications.
It is also very easy to implement.

3.3 Convergence Analysis

As evident from Algorithm 1, the sub-problems corresponding to Q, Q̂ and λ
have closed form solutions. The convergence of Algorithm 1 can be obtained
from the ADMM convergence results established in [4,10], which is formalized
in the following theorem:

Theorem 1. For given parameters α and θ, the iterates (Qi, ̂Qi, λi) converge to
the solution (Q�, Q̂�, λ�) where (Q�, Q̂�) is the global optimal solution of Problem
(6).

Please refer [4,10] for detailed proof.
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Algorithm 1. The proposed active sample selection algorithm
Require: Unlabeled data matrix X ∈ �d×n, AL batch size k, parameters α, θ

1: Initialize: Q = ̂Q = λ = {0}n×d

2: repeat
3: Compute the matrices A and B, as shown in Equation (10)
4: Perform eigen-decomposition and compute the matrices U , V , Σ1 and Σ2, as

shown in Equation (11)
5: Compute the matrix D element by element, as shown in Equation (15)
6: Update the matrix Q, as shown in Equation (16)

7: Update the matrix ̂Q row by row using Equation (18)
8: Update the matrix λ using Equation (19)
9: until Convergence

10: Compute the l2 norm of each row of the matrix Q. Identify the k rows with the
highest l2 norms and select the corresponding k unlabeled samples in the batch

3.4 Using Labeled Data for Active Sampling

Depending on the size of the initial training set L, it maybe desirable to use the
uncertainty of the student model trained on L to select unlabeled samples from
U , together with the method proposed in Algorithm 1. To this end, we compute
an uncertainty vector e ∈ �n×1 containing the prediction entropy of the student
on all the unlabeled samples. Also, let q be the vector containing the l2 norm of
each row of the matrix Q, as detailed in Algorithm 1. We compute a weighted
summation of these two vectors as follows:

v = β.q + (1 − β).e (20)

where 0 ≤ β ≤ 1 is a weight parameter governing the relative importance of the
two terms. The k largest entries in the vector v are used to select the unlabeled
samples in the batch. Note that our active sampling algorithm still remains
independent of the network architecture and the KD algorithm, since the entropy
vector can be computed merely from the probability values furnished by the
student on the samples in U .

4 Experiments and Results

Datasets: Since knowledge distillation has been most extensively used in com-
puter vision, we used three challenging and widely used computer vision datasets
to study the performance of our framework: (i) Fashion-MNIST (FMNIST)
[41]; (ii) CIFAR-10 [17]; (iii) CIFAR-100 [17]. We also studied the perfor-
mance of our framework on two text mining datasets (detailed below).

Experimental Setup: Each dataset was divided into 4 subsets. The first subset
was used to train the blackbox teacher model. The other subsets were used
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as the initial labeled set L, unlabeled set U and test set to actively train the
student. The number of samples in each subset for each dataset, together with the
accuracy of the teacher model, are detailed in Table 1. Each algorithm selected
a batch of k unlabeled samples in each AL iteration (where k is the query
budget/batch size). The labels of the selected samples were obtained from the
teacher and the newly labeled samples were added to the labeled training set.
The student network was trained on the updated labeled set and its accuracy was
computed on the test set. The process was continued for 15 iterations (taken as
the stopping criterion in this work). All the results were averaged over 3 runs to
rule out the effects of randomness. The vanilla knowledge distillation algorithm
proposed by Hinton et al. [11] was used as the underlying KD algorithm for
knowledge transfer.

The batch size k was taken as 300; the weight parameter β in Eq. (20) was
taken as 0.5, the parameters α and θ in Eq. (7) were taken as 10−6 and 10−5

respectively. The matrices Q, Q̂ and λ were all initialized to 0. Following the
convention in knowledge distillation research [9,39], the teacher was considered
the oracle in our empirical studies; that is, the labels furnished by the teacher in
response to the sample queries were considered the ground-truth and were used
to train the student network. The labels of the samples in the initial training set
L were also obtained from the teacher model.

Teacher Student Network Architectures: The architectures of the teacher
and student networks for each dataset are also shown in Table 1. Such architec-
tures have been used with these datasets in previous KD research [31,40].

Table 1. Details of our experimental setup. The columns respectively denote the
dataset, number of samples used to train the teacher model, the generalization accuracy
of the teacher, the number of samples in the initial training set L, the unlabeled set
U , the test set, the network architecture of the teacher model and the student model.

Teacher Train Teacher Acc.(%) Initial Train Unlabeled Test Teacher Arch Student Arch

FMNIST 30,000 88.27 500 5,000 10,000 LeNet-5 LeNet-5-Half

CIFAR 10 30,000 75.34 500 5,000 10,000 AlexNet AlexNet-Half

CIFAR 100 30,000 68.63 500 5,000 10,000 ResNet-34 ResNet-18

IMDB 25,000 84.28 500 5,000 6,500 BERT DistilBERT

Tripadvisor 10,000 86.71 400 5,000 5,000 BERT DistilBERT

Implementation Details: Please refer to the Supplemental File regarding the
implementation details for training the teacher and student models.

Evaluation Metric: We used the distillation success rate [39] as the evaluation
metric in this research. It computes the amount of knowledge the student network
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distills from the teacher and is computed as the ratio between the student’s
classification accuracy and the teacher’s accuracy on the test set. A high value
of this metric denotes better performance.

Comparison Baselines: The following AL algorithms were used as comparison
baselines in our work: (i) Random Sampling, where a batch of unlabeled
samples was selected at random; (ii) Learning Loss for Active Learning
(LL) [43]; (iii) Coreset [33]; and (iv) Discriminative AL (Disc) [8]. LL and
Disc are widely used techniques in recent active learning research [28]; Coreset
has been used in the context of AL for knowledge distillation [18] and was hence
selected as a comparison baseline.

Fig. 1. Active Learning performance comparison. The x-axis denotes the iteration
number and the y-axis denotes the distillation success rate on the test set. Best viewed
in color.

4.1 Active Learning Performance

The AL performance results are depicted in Fig. 1. In each figure, the x-axis
denotes the iteration number, and the y-axis denotes the distillation success
rate. Random Sampling does not produce good performance and achieves low
distillation success rates with increasing size of the training set. The Coreset
and Disc methods perform better than Random Sampling for the CIFAR-100
dataset. However, for CIFAR-10 and FMNIST datasets, the performance of Core-
set is almost similar to Random Sampling and is sometimes inferior to Random
Sampling ; the Disc method mostly outperforms Coreset in the initial AL itera-
tions. Both these observations are consistent with [8]. The Learning Loss method
depicts the best performance among the baselines. The proposed method con-
sistently depicts impressive performance and shows a steady growth in the dis-
tillation success rate with increasing label queries. It depicts the highest success
rate for most of the AL iterations across all three datasets; it also attains the
highest success rate at the end of 15 AL iterations, for all three datasets. Thus,
by minimizing the reconstruction error, the proposed method is able to identify a
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Fig. 2. Study of query budget on the CIFAR 10 dataset. The results with budget 300
are presented in Fig. 1(b) and are not included here. Best viewed in color.

batch of exemplar samples which well-represent the unlabeled data. These results
unanimously depict the potential of the proposed AL technique to actively distill
knowledge from the teacher to the student network, when the number of label
queries to the teacher is constrained by a given budget.

4.2 Study of Query Budget

The goal of this experiment was to study the effect of query budget on the AL
performance. The results on the CIFAR-10 dataset for query budgets 100, 200
and 500 are presented in Fig. 2. The results depict a similar trend as Fig. 1.
However, the performance of Learning Loss is not consistent across different
budgets; it sometimes depicts marginally worse performance than Coreset and
Disc (Fig. 2(c)). Our framework outperforms the baselines consistently across all
query budgets. This shows the practical usefulness of our algorithm, as the query
budget is often application specific and is dependent on the resources available
for a given application.

Fig. 3. Performance comparison on text mining datasets. Best viewed in color.
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4.3 Performance on Text Mining

One of the useful features of our algorithm is its ability to generalize across
multiple network architectures and hence, multiple applications. To demonstrate
this, we studied its performance on text mining. We used the IMDB [21] and
Tripadvisor [1] datasets for this experiment; the number of samples used are
detailed in Table 1. The BERT model (based on a Transformer architecture)
was used as the teacher and DistilBERT (a sub-network of BERT with half
the number of layers) was used as the student for this experiment, similar to
[31]. The KD algorithm was kept the same [11]. The baseline methods have
largely been studied with CNN architectures for computer vision applications.
The Learning Loss method, for instance, has mostly been applied with CNNs
and its integration with transformer based architectures is not straightforward.
We therefore compared our framework against Random Sampling in this study.
The results are presented in Fig. 3. Our algorithm comprehensively outperforms
Random Sampling and attains a much better success rate at the end of the AL
iterations. For Tripadvisor, the improvement in the final success rate is about
7%. This corroborates the ability of our algorithm to seamlessly integrate across
multiple teacher-student network architectures, and its ease of applicability in
different domains.

4.4 Study of the Underlying KD Algorithm

Another useful feature of our framework is its independence of the underlying
KD algorithm. In this experiment, we studied the performance of our framework
in conjunction with the KD algorithm that uses activation based spatial atten-
tion as a mechanism of transferring knowledge from the teacher to the student
network [47]. As in Table 1, we used AlexNet as the teacher and AlexNet-half
as the student in this experiment. The results on the CIFAR-10 dataset are
shown in Fig. 4(a). We also analyzed our framework with a KD algorithm where
the teacher furnishes only hard labels (instead of the soft-label probabilities) in

Fig. 4. Study of the underlying knowledge distillation (KD) algorithm on the CIFAR
10 and FMNIST datasets. Best viewed in color.
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response to each sample query. We used LeNet-5 as the teacher and LeNet-5-half
as the student, as in Table 1. The results on the FMNIST dataset are depicted
in Fig. 4(b).

Our framework once again depicts competitive performance, demonstrating
its generalizability across different KD algorithms (even when the teacher pro-
duces only hard labels). The Learning Loss method also depicts good perfor-
mance.

We also conducted experiments to study the effect of the weight parameter
β in Eq. (20) and the computation time of all the algorithms. These results are
included in the Supplemental File due to space constraints.

5 Conclusion and Future Work

In this paper, we proposed a novel active learning algorithm for knowledge dis-
tillation applications. Such an algorithm can be immensely useful in training
a lightweight student model to imitate a more complex teacher model, when
the number of queries to the teacher cannot exceed a pre-specified budget. We
posed the selection of exemplar training samples (to distill knowledge from the
teacher to the student) as an NP-hard optimization problem and solved it using
an iterative algorithm with global convergence. Our framework is independent
of the underlying KD algorithm, as well as the architectures of the teacher and
student networks, and can thus be seamlessly integrated across different KD
applications. Our extensive empirical analyses verified the effectiveness of our
framework for cost-effective blackbox knowledge distillation. Although validated
on the KD application in this paper (as this is an under-explored research area),
the proposed method is generic and can be used in any application to select
an informative subset of samples from large amounts of data. As part of future
research, we plan to study the performance of our framework on applications
beyond computer vision and text mining, and also for regression and multi-label
knowledge distillation.
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Abstract. In today’s fast-paced and interconnected financial markets,
the use of machine learning (ML) has become a game-changer in the
realm of algorithmic trading. However, designing a consistently profitable
algorithmic trading system (ATS) is challenging because of the dynamic
and stochastic nature of the stock market. Often, stock markets undergo
phase transitions where a market may suddenly change from a bullish
trend to a bearish trend or vice versa. Most ML models fail to capture
these phase changes. Consequently, inferior performance is observed from
ATS during phase transitions. Moreover, the recent market data is usu-
ally small in quantity and often not sufficient to train an ATS model. We
propose Adabot, an ensemble of phase-specific few-shot learners that can
adapt to the changing market dynamics. Our models exploit synthetic
data alongside real market data to train the ensemble. Adabot can adapt
to a completely different market without any redesigning or training with
extensive historical data thus reducing the deployment cycle, and can be
used in markets that do not have sufficient historical data. When tested
in four diverse markets, Adabot generated profits that were 30 to 90%
greater than the respective benchmark returns over the test period. At
the same time, Adabot significantly reduced the overall risk and did not
degrade even after price shocks.

Keywords: Few-shot Learning · Synthetic data · Algorithmic Trading
Systems · Ensemble

1 Introduction

An automated or algorithmic trading system (ATS), is a computer program that
follows a defined set of instructions (an algorithm) to generate and place a trade
in the Stock Exchange. The stock market is a dynamic stochastic environment
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that constantly changes from one phase to another. A stock that was trending
up (bullish phase) may suddenly crash and start trending downwards (bearish
phase) or may start consolidating (sideways moving phase) due to various micro
and macroeconomic factors. Designing an ATS that is consistently profitable in
all the market phases is an extremely difficult task even with AI technology.
Moreover, the ML models that are being used in ATS are trained conventionally
and then used over a period of time without changing the parameters. Any phase
change in the market may cause these models to degrade and produce very poor
results.

Trading or investing in the stock market has many inherent difficulties. As
per the Random Walk Hypothesis [10] the stock market exhibits a significant
degree of randomness and noise, which can make short-term price movements
unpredictable. The Efficient Market Hypothesis [9] suggests that stock prices
already incorporate all available information. So, it is challenging to consistently
find undervalued or overvalued stocks because market participants quickly react
to news and information. Some of the other common factors contributing to the
failure of ML models in stock trading are due to heavy reliance on historical
data, overfitting, and rare “black swan” events which may not be present in the
training data. Over time, AI models can experience a phenomenon known as
“model drift,” where their predictive accuracy diminishes as market conditions
change.

This paper proposes Adabot, an adaptive Deep Trading Bot that overcomes
these limitations. Adabot is an innovative model that adapts to the changing
market dynamics with a small amount of real-time data by using few-shot learn-
ing techniques of synthetic data generation and Meta-Learning in an ensemble
framework. The model was trained using only S&P 500 (USA) data and gave
good results in that market. Using transfer learning, the model was then tested
in three other diverse markets (Gold, Shanghai Composite (China), and MOEX
(Russia)) without changing any parameters, the only change was that the test
data was from different markets. Even in these markets, Adabot generated prof-
its that were much greater than the respective benchmark returns over the test
period while reducing the overall risk and did not degrade even after price shocks.

The main contributions of this paper are as follows:

– We propose an ATS model Adabot that can adapt to the phase transitions
in the market.

– Our design consists of an ensemble of three expert models. While one model
caters to the bullish phase of the market, the other two models handle the
bearish, and consolidating phases of the market, respectively.

– Our model uses a small amount of real data alongside synthetic data to adapt
to the changing market scenario.

– We propose a novel strategy for synthetic data generation.
– Our model significantly outperforms the benchmarks for various stock mar-

kets in the world in profitability as well as risk metrics.



Adabot: An Adaptive Trading Bot 51

2 Related Works

The most popular classical trading strategies are the trend following and mean
reversion strategies, which are covered in detail in [6,19]. The focus of the
majority of works applying machine learning techniques for algorithmic trad-
ing is on forecasting. The computation of optimal trading decisions is easy
if the market behavior is known in advance with a high level of probability.
Many DL techniques have already been investigated following this approach
with good results [1]. In [3] a novel deep learning framework where wavelet trans-
forms, stacked autoencoders, and LSTM are combined for stock price forecast-
ing is presented. In this paper, the use of hierarchically extracted deep features
using stacked autoencoders for stock price forecasting is introduced. Fischer and
Krauss used LSTM networks for predicting directional movements for the con-
stituent stocks of S&P 500 from 1992 until 2015 and concluded that the LSTM
network could effectively extract meaningful information from the financial time
series data [11]. A comparative study of Backpropagation, Kalman filter, SVM,
and LSTM, to predict the stock price of nine selected companies is presented
in [15]. LSTM was found to have the best performance in terms of prediction
accuracy with low variance. A stock price prediction method that combines
the phase-space reconstruction method for time series analysis and the LSTM
model is presented in [25]. A comparative study of four models: Multilayer Per-
ceptron, LSTM, and Convolutional Neural Network, and one attention-based
neural network for the task of predicting the next day’s index price according to
the historical data on the dataset consists of the SP500 index, CSI300 index, and
Nikkei225 index is presented in [12]. The results showed that the attention-based
model had the best performance among the alternative models. A method for
the prediction of stock trends by using the wavelet transform and the multi-stage
fuzzy inference system based upon the optimization of membership function by
using the GA is proposed in [16].

The use of Reinforcement Learning models is also gaining popularity for algo
trading. Moody and Saffell present methods for optimizing portfolios, asset allo-
cations, and trading systems based on direct reinforcement. Investment decision-
making is viewed as a stochastic control problem in this approach, and strategies
are discovered directly. They introduced a recurrent RL algorithm for discovering
new investment policies without the need to build forecasting models [18]. Deng
et al. introduced the fuzzy recurrent deep neural network structure to obtain
a technical-indicator-free trading system taking advantage of fuzzy learning to
reduce the time series uncertainty. They also propose a task-aware backpropa-
gation through time method to cope with the gradient vanishing issue in deep
training [7]. One can also mention [4] which studied the application of the deep
Q-learning algorithm for trading in foreign exchange markets. Théate and Ernst
propose a novel DRL trading policy to maximize the resulting Sharpe ratio per-
formance indicator on a broad range of stock markets. The training of the result-
ing reinforcement learning agent is entirely based on the generation of artificial
trajectories from a limited set of stock market historical data [23].
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The models described above are mostly static in nature. After their initial
training, their parameters remain fixed throughout the trading process. This
may lead to poor performance and model degradation when there is a phase
change in the market or when they encounter data that is much different from
the training data. These models do not address the following research questions:

– The financial markets are dynamic and have definite phases. How can we use
this fact to design better ML trading Models? Our model addresses this gap
by using an ensemble of phase-specific expert models.

– The most recent market data is vital yet it is not used in most of the existing
models. How can we use it to improve our models? To overcome this gap,
we use the latest market data to generate synthetic data and then use the
combined data to fine-tune the expert models using few-shot learning.

– How can a model quickly adapt when deployed in a completely different
Market? Our model uses transfer learning and few-shot learning to quickly
adapt to a different market without the need for retraining.

3 Methods

Stock markets often undergo phase transitions. Market phases or regimes are
defined as clusters of persistent market conditions. Determining the current
regimes and the transition points is important as they have a deep impact on the
relevance of investment models and the success of the trading strategies being
used. In the Four-regime Markov switching model, the regimes are classified
based on volatility into the tranquil, volatile, turbulent, or panic regimes [8].
Others maintain that market regimes are not directly observable and hard to
determine and propose ML clustering algorithms for determining the regimes
without explicitly classifying them rigidly [26]. For this study, we take a practical
approach and define the regimes as in the common investment literature based on
regimes defined by price trends: ‘Bull market’ (persistent uptrend), ‘Bear mar-
ket’ (persistent downtrend), and ‘Consolidating market’ (sideways moving) [2].
To analyze these price trends we use Technical Analysis, which is a form of
security analysis and provides a variety of methodologies for analyzing and fore-
casting the price trends by using past market data. This analysis is done using
technical indicators which are, in essence, mathematical (statistical) calculations
that analyze historical price and volume data. In this study, we use these techni-
cal indicators for categorizing and automatically segregating the historical data
into market phases and also for creating additional features for training our
models.

3.1 The Adabot

Most ML-based trading models fail to capture the phase transition in the mar-
kets. We propose Adabot which is designed to adapt dynamically to the changing
market environment. Our model consists of two modules: the generation module
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and the prediction module. To ensure that our model adapts to the changing mar-
ket scenario, the generation module generates synthetic data using the present
and past data. This data, along with real data is used for fine-tuning the pre-
diction module using a meta-learning framework. It is difficult to have a single
model that predicts well in all market phases. So, while designing the prediction
module, we consider the fact that three major phases are usually observed in a
stock market. These are bullish, bearish, and consolidating or flattish phases.

We design an ensemble of three models each catering to one of these three
phases. This is done by training the basic models with data segregated for the
three different market phases from the overall historical data. This segregation of
data is done automatically using technical indicators. From these trained models,
we choose three best-performing models that work well during the bull, bear, and
consolidating phases of the markets respectively. All three models are deployed
in the market. However, the capital allocation to these models is done in an
ensemble way based on the weights of the models. The weights are calculated
based on the characteristics of the present data. A block diagram of the proposed
model is presented in Fig. 1. Next, we discuss the detailed architecture of our
Adabot model.

Fig. 1. The design and workflow of the AdaBot Model. We have three expert models
for bullish, bearish, and consolidating phases of the market, respectively. These models
are periodically fine-tuned using synthetic data combined with recent market data. We
calculate weights for individual models. The weights are used for capital allocation.

3.2 The Generative Module

The generative module is meant to produce synthetic data to train the prediction
module. The generative module should produce synthetic data that mimics the
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Fig. 2. Generated data distribution

Table 1. Effect of quantity of synthetic data
used for meta-learning of Adabot (15-days
cycle). The best results are obtained when we
use 60 days of synthetic data. MDD is the Max-
imum Drawdown.

Quantity of Syn. Data: WGAN (Days)

30 45 60 75

Return: 18.6% 15.7% 28.7% 23.2%
MDD: –28.5% –29.2% –18.4% –17.6%

Quantity of Syn. Data: Transformer

Return: 8.6% 12.2% 22.3% 18.8%
MDD: –23.8% –17.5% –15.2% –20.9%

present market scenario. To that end, we try two different generation approaches.
In particular, we separately use a Wasserstein GAN (WGAN) based approach
[17] and a transformer-based approach [22] and show the results for both cases.

WGAN-Based Approach. The WGAN is trained using stock market data
consisting of the closing prices and various technical indicators to reduce the
market noise and provide additional training features. We first train a varia-
tional autoencoder (VAE) to extract the distribution parameters of the stock
market data. Subsequently, these distribution parameters are appended to the
original stock market data to provide a distributional context to the dataset.
Subsequently, this appended stock market dataset is used to train the WGAN.
Once trained, the WGAN may produce realistic synthetic data for (t + 1)st day,
given previous t days’ data as input. Using the synthetic data of (t + 1)st day
and the data from previous (t − 1) days, we get the synthetic data of (t + 2)nd

day. Thus, in an autoregressive manner, we use the WGAN to generate synthetic
data.

Transformer-Based Approach. A transformer model is a neural network
that learns context and thus meaning by tracking relationships in sequential
data like the words in this sentence. First described in a 2017 paper by [24],
transformers apply an evolving set of mathematical techniques, called attention
or self-attention, to detect subtle ways even distant data elements in a series
influence and depend on each other. We have used a model as proposed by [22]
consisting of the first layer for time2vec conversion followed by three multi-head
attention layers and two dense layers. The synthetic data is generated in an
autoregressive manner similar to one described for WGAN.

Synthetic Data. We want to generate synthetic data that mimics the recent
real data. However, the synthetic data should be diverse. It can be seen in Fig. 2
that in each iteration the generated data slightly diverges from the recent real
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data and empirically we found that using four iterations (60 days of generated
data) for few-shot fine-tuning of the models gave the best results (see Table 1).

3.3 The Prediction Module

The prediction module is composed of an ensemble of deep neural network mod-
els. We use two small architectures for the prediction models to minimize the
system latency so that there is minimum lag during high-frequency trading. The
first one is a stacked LSTM model with two layers of 50 units each. The second
architecture is a hybrid model with three 1D convolution layers and a bidirec-
tional GRU layer with 50 units (these models were empirically determined; for
details see Supplementary Material). The ensemble consists of three models, each
of which is trained to handle a specific market phase. Thus, we have a model
each for bearish, bullish, and consolidating markets respectively. Given the tth

day’s closing price of a stock, each model in the ensemble predicts whether to
hold a long position (indicated by +1 signal) or a short position (indicated by
–1 signal) for that stock on (t + 1)st day.

For each of the bullish, bearish, and consolidating market scenarios, we cre-
ate a reference distribution of closing prices (DCP) based on historical data.
We use the same data that we had segregated using technical indicators and
used previously for training the expert models in different market phases, as
the reference DCP for the three phases (see sub-section ‘Pre-training with Past
Data’for details). We also calculate a distribution of the closing price for the
present market using the last d days of data (empirically we found that using 15
days of latest data gave the best results). The present phase of the market for
the stock being traded is identified by computing the Bhattacharyya distance
between the DCP of the present market and that of the reference distributions.
For a particular stock i, let the distance between the DCP of the present market
and the bullish reference distribution is rbu(i). The distance of the DCP of this
stock with respect to the bearish and the consolidating markets are rbe(i) and
rco(i), respectively. The weight assigned to the bullish model is

Wbu = S/rbu(i), (1)

where
S = 1/rbu(i) + 1/rbe(i) + 1/rco(i). (2)

Similarly, we can calculate the weights for the bearish and consolidating models.
Based on the weights, the trading capital for that particular stock is divided into
bullish, bearish, and consolidating segments. Let these segments be nbu, nbe, and
nco, respectively for bullish, bearish, and consolidating segments. The total cap-
ital N = nbu +nbe +nco. Also, assume that the signals generated by the bullish,
bearish, and consolidating models are ubu, ube, and uco, respectively. Then, the
net capital to be traded on the next day in the direction of the dominant signal
is:

C = nbuubu + nbeube + ncouco. (3)
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It can be noticed that we are not using the full trading capital unless all three
expert models agree on their prediction for the next trading day. This ensembling
procedure helps Adabot to minimize the losses during price shocks in the market
thus, the distribution of returns for Adabot is thin-tailed when compared to that
of the benchmark (refer to Fig. 5). The prediction module is trained through two
stages: Pre-training with past data, and few-shot fine-tuning with composite
recent data using the Reptile algorithm [20] when deployed in the market.

Pre-training with Past Data. Each model in the ensemble is pre-trained
separately with past data. We segregate the entire past training data into
bullish, bearish, and consolidating data based on their trends automatically by
using Moving Average (5,20) Cross-over technical indicator along with Relative
Strength Indicator (RSI) set to 14 days. When the fast average (5 days) crosses
over the slow average (20 days) from below and RSI > 45, we consider the sub-
sequent days as bullish. If the fast average crosses the slow average from above
and RSI > 45, we consider the subsequent days as bearish. For any cross-over, if
RSI < 45, we consider the subsequent days as consolidating. Thereafter, we train
the basic models with different hyperparameters using this segregated data. Out
of these trained models, we choose the best-performing model in each of the
bullish, bearish, and consolidating phases. These selected models are the expert
models shown in Fig. 1 and are used for making the predictions.

Few-Shot Fine Tuning with Composite Recent Data. To quickly adapt to
the current market scenario, we perform a few-shot fine-tuning of each model in
the ensemble. For that, we use real stock data for the past 15 days (this period
for the fine-tuning cycle was empirically determined, refer to Supplementary
Material for details) and generate synthetic data for the next 60 days using
the generative module. The fine-tuning is performed using the composite data
consisting of the above real and synthetic data. Once the model is fine-tuned, it
can make predictions for the next 15 days. Once the models are fine-tuned, the
prediction module takes past t days’ data as input and makes the prediction for
(t + 1)st day. This few-shot adaptation helps the model to adapt even to phase
transitions in the market. Every time we need to fine-tune, we start with the
original pre-trained model. The fine-tuning is performed using Reptile [20].

Inference. During inference to detect the current market phase, we feed in past
15 days’ data to our Adabot model. Based on the DCP of this data, our model
calculates the distances of the DCP of present data w.r.t. the DCPs of bullish,
bearish, and consolidating markets’ reference DCP as mentioned in Sect. 3.3.
We use the Bhattacharyya distance to calculate the above distances between the
distributions. The Bhattacharyya Distance measures the divergences between
two distributions P and Q in the same domain χ as:

BD(P,Q) = − ln(BC(P,Q)), (4)
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where BC is the Bhattacharyya coefficient given by

BC(P,Q) =
∑

x∈χ

√
P (x)Q(x). (5)

Based on these distances, each of the bullish, bearish, and consolidating mod-
els is assigned a weight as per (1). Each of these models also provides a prediction
on whether to hold a long position (+1) or a short position (–1) on the next day
for this particular stock. Based on the weights, we allocate the trading funds to
each of the models. Subsequently, using the predictions and the allocated fund,
the net capital to be traded is obtained from (3).

3.4 Data Preprocessing and Financial Parameters

In this study, we use financial time series price data of the S&P 500 stock market
index which is the most traded index in the US. It is a market capitalization-
weighted price index that tracks the prices of the 500 largest listed companies
in the US stock market. There is a lot of noise in the data hence training the
models only on closing price data gives poor prediction accuracy. To overcome
this, apart from the daily closing price we create and use additional technical
indicators as features. We use Exponential Moving Average (EMA), Relative
Strength Indicator (RSI), Moving Average Convergence Divergence (MACD),
and Moving Standard Deviation (MSD) to create the additional features with
various parameter settings. We have used 20 years of historical data with the
test period from 04 Sep 2020 to 16 June 2023 (700 trading days). For the same
test period, Adabot is also tested on three diverse market assets: Gold, Shang-
hai Composite Index (China), and MOEX (Russia). This testing is done with-
out retraining the model to show the effectiveness of transfer learning and the
few-shot training process. The performance of the model in various markets
is assessed using the following financial parameters: Cumulative Return, Com-
pounded Annual Growth Rate (CAGR), Sharpe ratio (excess average return
earned per unit of volatility), Sortino ratio (excess average return earned per
unit of downside volatility), Beta (expected move in an asset relative to move-
ments in the benchmark), Jensen’s Alpha (risk-adjusted excess return of an asset
over benchmark returns) and Maximum Drawdown. We have taken the risk-free
rate as zero for easy comparability of parameters across the markets.

3.5 Adabot: Overall Workflow

For the basic trading models (expert models in Fig. 1) we feed the end-of-the-
day closing price and the models predict the closing price for the next day. If
the predicted price is greater than the previous closing price(+1 signal) we take
a long position- buy at open and sell at the close of Markets on the next day
(Profit is made if prices rise). And if the predicted price is less than the previous
closing price(-1 signal) we take a short position- sell at open and buy at the close
of Markets on the next day (profit is made if prices fall).
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The Adabot model is fine-tuned after every 15 days (the chosen period for fine-
tuning is an adjustable hyper-parameter). The 15 days of new data is fed to the
generating model in an auto-regressive way to generate 60 days of synthetic data.
We combine these data points to get 75 days of data which is then used to fine-tune
the model using a few-shot learning procedure (Reptile) with two iterations only
in each cycle. This 15 days of new data is also used to calculate its similarity with
the Bull, Bear, and Consolidating market reference data using Bhattacharyya Dis-
tance to measure the divergences between the distributions. The trading capital is
allocated to the three trading models in proportion to the inverse of this similarity
measure and changes in every cycle (refer to Algorithm 1).

Algorithm 1. Workflow for the Adabot Model
1: Data:n, Nclose � Cycle length, closing prices for recent n days
2: procedure Training(n, Nclose) � Generate synthetic data and fine-tune each

pre-trained expert model
3: genr input=[Nclose] � input data for generator
4: syn data=[Nclose] � Synthetic data
5: for iteration = 1, 2, . . . , auto reg cycles do
6: genr output=predictions for genr input
7: genr input=genr output � update genr input
8: Append genr output to syn data
9: end for

10: for Expert Models do � done in parallel for all expert models for two
iterations each using syn data

11: Compute W = SGD(Lτ , θ, k)
12: Update θ ← θ + ε(W − θ)/α
13: end for
14: end procedure

15: Data:Ni, Nclose, C � Closing prices for ith day, closing prices for n previous days,
Trading capital

16: procedure Daily Trading(Ni, Nclose, C)
17: while Adabot is deployed in the Market do
18: 1. Get trading signal from each expert model
19: 2. Calculate Bhattacharya distance between Nclose and Reference data
20: 3. Allott capital C to models based on inverse of distance (standardized)
21: 4. Calculate net trading signal and net capital to be deployed on opening

of next trading day
22: end while
23: return Trading signal, Net Capital to be deployed
24: end procedure
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4 Experiments and Results

4.1 Performances on Different Datasets

The Adabot model was initially trained using only the S&P 500 Historical data
and tested on that Index. However, when deployed in other markets it was
not again retrained with historical data, but with transfer learning and rapidly
adapting with few-shot learning, Adabot gave good performance in other markets
also as can be seen from the results.

S&P 500 (USA): Adabot was trained using S&P 500 data, and as can be seen
in Fig. 3 and Table 2, against a benchmark (S&P 500 buy and hold) return
of 29.9% the model gave a higher return of 57.6% and 36.6% with WGAN
and Transformer generated synthetic data respectively for the test data. These
returns were achieved with much lower risk compared to the benchmark which
had a maximum drawdown of 20% compared to 7.6% and 12.4% for the model
respectively. The Sharpe ratio for the model improved to 1.61 and 0.95 as com-
pared to the benchmark Sharpe ratio of 0.58.

Fig. 3. Performance of AdaBot on S&P 500 (USA): Panel (a) shows that Adabot has
more profitability even though there were periods of underperformance. In panel (b) it
can be seen that the drawdowns for Adabot are reduced and have low correlation with
Benchmark drawdowns thus providing strategic risk diversification.

Gold: During the test period, gold was in a consolidating phase, giving a return
of only 5% (see Fig. 4(b) and Table 2). Adabot trained using S&P 500 data, was
used without changing any parameters, the only change was that the new data
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for fine-tuning and testing was from the Gold futures market. The model gave
a similar result of 42.8% and 41.3% of overall cumulative return with WGAN
and Transformer generated synthetic data for the test data. The risk profile also
improved showing that Adabot has good generalizability using transfer learning.

Shanghai Composite (China): The Shanghai Composite index gave a return
of only 2.8% with a maximum drawdown of 21.4% for the test period (see
Fig. 4(c) and Table 2). Adabot, used without changing any parameters, gave
returns of 51.8% and 46.7% with WGAN and Transformer generated synthetic
data respectively for the test data with a maximum drawdown of 7.4% and 6.8%.
The Sharpe ratio for the model improved to 1.41 and 1.27 as compared to the
benchmark Sharpe ratio of 0.06.

Fig. 4. Performance of Adabot on (a) S&P 500 (USA), (b) Gold, (c) Shanghai Compos-
ite (China) and (d) MOEX (Russia): The model was trained using only S&P 500 data
yet shows good profitability and stable performance in diverse markets with transfer
learning

MOEX (Russia): The Russian market was chosen to check the performance
of Adabot during price shocks. During the test period, Russia had entered into a
war with Ukraine. Russia’s stock index (MOEX) dropped by almost 50% from its
peak value and then started recovering slowly in the latter part to give an overall
return of 8.6% at the end of the test period (see Fig. 4(d) and Table 2). Adabot
gave a higher return of 33.8% and 98.4% with maximum drawdowns of 19% and
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Fig. 5. Distribution of returns in various markets: financial assets are ‘fat-tailed’
(exhibit large leptokurtosis) which implies that extreme adverse events are more likely
than that suggested by a normal distribution [21]. The figure shows that in all the mar-
kets, Adabot returns are ‘thin-tailed’ when compared to the respective Benchmarks and
thus have reduced risk.

15.4% with WGAN and transformer-generated synthetic data respectively for
the test data with improved risk metric. The results show the stability of the
Adabot model during price shocks.

Performance in Other Markets. To generalize the performance, we show
the results from four more markets: Bitcoin, DAX (Germany), TAIEX (Tai-
wan), and NIFTY (India) (see Fig. 6). In these markets, Adabot was tested
after being trained on historical data for that specific asset. Better profitability
and improved risk measures were observed in all these markets. When trad-
ing Bitcoin, Adabot was better on all parameters however, the returns were
highly volatile and inconsistent just like the traded asset. When trading the
other Indices, Adabot gave consistent results. There were periods of underper-
formance compared to the Benchmarks from which it recovered (refer to Table 5
in Supplementary Material for experimental results).

Risk Management. In Adabot risk control is inbuilt by ensuring that only part
of the total investable capital is deployed in the market unless all the expert
models in the ensemble agree to the predicted market direction. Also, all the
standard risk management procedures can be integrated with our model. Using
a stop loss placed at a distance of twice the 7-day Average True Range (ATR)
technical indicator, and using a volatility threshold beyond which the model
stops trading showed good results (refer to the section on Risk Management for
a detailed discussion and Fig. 5 in Supplementary Material).

4.2 Comparision with SOTA Models

The most popular conventional models being used in ATS are SVM, XGBoost,
and LSTM models whose comparative performance is shown in Fig. 7(a). These
models are easy to configure and train so they are not only used as stand-
alone trading models but also for feature extraction/selection [14]. We also show
the comparative performance with three State of the Art Models viz: Informer
[27] which uses Probabilistic Attention mechanism to select the “active” queries
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Table 2. Performance of Adabot on S&P 500 (USA), Gold, Shanghai Composite
(China), and MOEX (Russia). AdaBot1 shows results with WGAN generated data
and AdaBot2 shows results with Transformer generated data.

S&P 500 (USA) GOLD

Benchmark AdaBot1 AdaBot2 Benchmark AdaBot1 AdaBot2

Cumul. Return: 29.994% 57.594% 36.545% 5.060% 42.797% 41.256%

CAGR%: 10.794% 18.021% 12.016% 1.815% 13.858% 13.408%

Sharpe: 0.583 1.610 0.950 0.119 1.232 1.184

Sortino: 0.844 2.300 1.38 0.159 1.680 1.603

Beta: 1.000 0.077 0.147 1.000 0.069 0.071

Alpha: 0.000% 17.196% 10.439% 0.000% 13.732% 13.279%

MaxDrawdown: –20.051% –7.679% –12.409% –20.692% –8.589% –8.446%

SHCOMP (China) MOEX (Russia)

Benchmark AdaBot1 AdaBot2 Benchmark AdaBot1 AdaBot2

Cumul. Return: 2.805 % 51.796 % 46.674 % 8.600 % 33.826 % 98.408 %

CAGR%: 1.013 % 16.421 % 14.974 % 3.051 % 11.198 % 28.350 %

Sharpe: 0.066 1.413 1.271 0.092 0.588 1.162

Sortino: 0.092 2.193 1.986 0.088 0.670 1.635

Beta: 1.000 –0.041 –0.067 1.000 0.203 –0.484

Alpha: 0.000 % 16.462 % 15.042 % 0.000 % 10.578 % 29.828 %

MaxDrawdown: –21.433 % –7.461 % –6.784 % –48.390 % –19.050 % –15.378 %

Fig. 6. Performance of Adabot in Other Markets: The Model was tested in four diverse
markets after being trained with historical data for the respective asset
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rather than the “lazy” queries and provides a sparse Transformer; NHITS [5]
which uses Multi-rate input pooling, hierarchical interpolation, and backcast
residual connections together to make forecasts; and TimeGPT-1 [13] which
is a foundational generative pre-trained transformer based forecasting model,
in Fig. 7(b) and Table 3. The hyperparameters for these models were tuned on
validation data and then these models were used for uni-variate prediction with
a forecast horizon of one day on the same test data for S&P 500 as before. As
can be seen from the results, Adabot outperformed all these models (Fig. 7 and
Table 3).

Fig. 7. Comparative Performance of Adabot vs (a) Conventional Models, (b) State of
the Art Models

Table 3. Performance of Adabot compared to Conventional and SOTA models.

AdaBot SVM XGboost LSTM Informer NHITS TimeGPT

Cumul. Return: 57.594% –3.267% 19.554% –8.337% 12.456% 18.844% –56.274%

CAGR%: 18.021% –1.203% 6.722% –3.121% 4.369% 6.491% –26.018%

Sharpe: 1.610 –0.064 0.381 –0.163 0.243 0.368 –1.100

Sortino: 2.300 –0.100 0.639 –0.243 0.365 0.543 –1.569

Beta: 0.077 0.050 –0.322 0.054 –0.295 0.846 –0.141

Alpha: 17.196% –1.743% 10.198% –3.704% 7.553% –2.641% –24.496%

MaxDrawdown: –7.679% –22.117% –31.990% –28.985% –20.906% –21.151% –64.749%

4.3 Ablation Studies

Ablation studies were done to select the best architectures for the basic trading
models, retraining cycle period, amount of synthetic data, etc. (refer to Supple-
mentary Material).
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5 Discussion and Future Work

The Adabot model offers many advantages over similar static models. Its design
prevents model degradation and prolongs the useful life of the model. Adabot is
more profitable and less risky due to reduced volatility and losses. It provides
strategy diversification in the portfolio due to decreased correlation with the
benchmark. Adabot is more reliable and has better explainability with the use of
classical ensemble and meta-learning adaptability thus increasing user confidence
in the model.

No model works in all the markets at all times. Even though our model has
been well-tested in diverse markets, we cannot guarantee profitability in any
market. Our model has many limitations and should be used cautiously after
proper backtesting. In volatile markets (for example Bitcoin) our model may give
inconsistent returns which may be as volatile as the traded asset. When there is
a sharp bullish move our model may underperform the traded benchmark, the
underperformance period may be as long as a year during which the investor
may lose confidence in our model (for example NIFTY, TAIEX).

The model was tested in live trading however, a detailed analysis of the
same is beyond the scope of this paper. Simulations were done to create various
scenarios like low liquidity, execution slippages, and transaction costs of 0.5%
(which is on the higher side). There was a drop in performance of 1 to 3% in the
CAGR across all the markets, which is to be expected.

Adabot model not only adapts to the changing market dynamics in the same
market but, as has been shown, it also adapts to completely different markets
using Transfer learning. This can be very helpful for trading assets that do not
have much historical data like Initial Public Offers of new companies or new
crypto-currencies and is a step towards the generalizability of trading models.
This model was constructed using bull, bear, and consolidation data classifi-
cation. It can also be constructed using Markov regimes. We used a similarity
metric to provide the ensemble weights, other criteria like previous performance
of expert models or other portfolio management procedures like mean-variance
optimization or their combinations can also be used as weights and are left for
future work. The results in this paper are with unleveraged positions. The use
of financial leverage for enhancing profits and the use of Adabot in a portfolio
of multiple assets needs to be studied.

6 Conclusion

In this paper, we propose AdaBot, a deep Learning Model that adapts quickly to
the changing market dynamics with a small amount of real-time data by using
few-shot learning techniques of synthetic data generation and Meta-Learning
in an ensemble framework. The model was trained only using S&P 500 data.
The trained model showed excellent results in various other markets only with
fine-tuning showing its generalizability and ability to adapt. Thus, overall, the
proposed model can be helpful for increased profitability and reduced risk. In
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the future, we will explore the possibility to use various potentially impactful
conditions as input to our model. We will also apply our model for various other
markets.
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Abstract. The current deep learning models have to deal with overcon-
fidence issues due to overfitting and over-parameterization. Therefore,
uncertainty estimation is an essential step in understanding and explain-
ing the model’s predictions to provide warnings and help humans trust
the predictions of the AI model, especially in precise high-risk tasks, low
regime data, and ambiguous datasets. This paper introduces an ambigu-
ous dataset namely the YSH dataset and proposes a novel architecture,
named the Diversity Ensemble of ResNet (DEResNet), to address the
challenging uncertainty and diversity in the YSH dataset. Specifically,
we use the Stein Variational Gradient Descent (SVGD) algorithm for
uncertainty estimation. Then we utilize a diversity mutual information
(MI) loss on target data to attack the diversity problem. DEResNet can
address comprehensive uncertainty both in parameter space and output
space. Extensive experiments demonstrate that our model outperforms
the baseline method in the YSH dataset. Furthermore, our proposal also
has the potential to learn the set of solutions for an ambiguous task
and help find different solutions for optimization problems. Our code is
available here https://github.com/trinh-hoang-hiep/DEResNet.

Keywords: uncertainty · distribution shifts · deep ensemble learning

1 Introduction

Current deep neural network (DNN) models face the problem of data scarcity
when they require a large amount of diverse data with many contexts to train
in order to give good performance. Recently, meta-learning in machine learning
is also formulated as few-shot learning that can learn meaningful performance
from such a few data points by leveraging meta-knowledge from past tasks.
However, learning from a few samples inherently induces significant uncertainty
and missing diversity. This is also a common phenomenon when we train a
complex model such as a large and deep neural network in low-regime data by
using only a few examples. Because there is a lack of diversity in the training
data, it is not possible to fully describe the task’s information, leading to having
to a variety of solutions for an ambiguous task.

It is quite helpful to have an estimation of confidence in the prediction.
One effective way to achieve this is through uncertainty estimation. Uncertainty
estimation is related to the calibration quality or measurement of a prediction,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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which involves repeatability and predictability. It should be noted that error,
on the other hand, refers to the difference between a prediction and the ground
truth. A well-calibrated model is capable of estimating both in-distribution (ID)
and out-of-distribution (OOD) data. For ID data, the confidence level should
be high in the correct predictions and low in the incorrect predictions and hard
samples, meaning that the confidence level should be approximately equal to
the true likelihood. For OOD data, the model should be able to detect that data
is OOD and produce a high level of uncertainty in its prediction. This means
that the confidence level should be approximately equal to a random guess.
OOD detection is helpful for multitasking learning, semi-supervised learning,
and continual learning. This uncertainty-driven learning can improve the model’s
efficiency, robustness, and fairness. In the classification task, a calibrated model
is trained to classify data with confidence equal to the likelihood per class. This
can be expressed as:

P (Ŷ = Y |P̂ = P ) = p∀p ∈ [0, 1] (1)

where Ŷ is the predicted class and P̂ is the predicted probability. For instance, if
100 predictions have an average confidence of P̂ = 0.7, then 70 or 71 predictions
should be accurate P (Ŷ = Y ) = 0.7 or 0.71.

For ID, according to Kendall et al. [Kendall and Gal (2017)], uncertainty can
be of two types: epistemic and aleatoric. Epistemic uncertainty is related to the
model weights and can be decreased by collecting more data or can be estimated
through Bayesian nets or MC dropout. On the other hand, aleatoric uncertainty
is related to the data itself and cannot be decreased by collecting more data.
Aleatoric uncertainty can be either homoscedastic or heteroscedastic and can
be kept by teacher-student knowledge distillation or adversarial perturbation.
Our solution uses Bayesian Stein Variational Gradient Descent as an ensemble
architecture to capture both types of uncertainty. Aleatoric uncertainty is also
known as the ambiguity problem in the data and the bias problem in the dataset,
where the collected data is not diverse enough or the data obtained fluctuates
greatly (e.g. objects far away from the camera). For better understanding, we
present an example below.

The First Example: The Example: Figure 1 depicts the problem of uncer-
tainty in a few-shot learning when the positive label includes young, smiling, and
hat-wearing people, and the negative label includes elderly, unhappy, and hatless
people. Models learn very well when training and can easily distinguish between
two labels. But if, in the test set, there is a picture of an elderly person smiling
and wearing a hat, which label will the model classify? This is the motivation for
solving the aleatoric uncertainty problem, especially when we are not exploring
data enough, considering attributes like feeling (smile and not smile), costume
(hat-wearing or hatless), and age (young or elderly) as hidden attributes. We
also can’t know how many hidden attributes and their meaning are in the data.
In addition, this problem is also related to the diversity in the data; for example,
in the classification of cars and ships, the model can learn to classify water and
road environments. Therefore, it is necessary to have images of cars in the water
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or ships on land. Back to the problem of “old people laughing and wearing a
hat”, it is often difficult for models to capture the “hat” attribute because this
attribute is present at times in negative labels; hence disentangling this hidden
attribute will be more difficult than the other two attributes. In addition, the
smile attribute is also very vague and can be confused with the “open mouth”
attribute if the training data is not diverse. Moreover, pixels of a human mouth
account for a relatively small region, the model will likely not be able to capture
this attribute, leading to overconfidence when classifying images of young people
wearing hats but not smiling as the positive label.

Fig. 1. The figure depicts the aleatoric uncertainty and disambiguation in the model.
A particle will learn “smiling” and “hat” if its parameter θ moves to the left. A particle
will learn “smiling” and “young” if the θ moves to the right. The red point indicates
that a particle is approaching the target parameter and satisfies the requirement to
classify the “smiling”, and “young” attributes and ignore the “wearing hat” attribute.
source: adapted from: http://cs330.stanford.edu/fall2019/slides/cs330 bayesian
metalearning.pdf (Color figure online)

To address this problem, techniques such as invariant feature learning and
orthogonal feature learning with many headers in representation and output
space can be used. Besides processing by those techniques, bias in the model can
be processed by initializing an ensemble in weight space. Currently, DEResNet
uses SVGD [Wang et al. (2019)], which is a Bayesian-based method. This method
maintains an ensemble with diverse and same architecture members, also known
as particles. Particles will have repulsive force on each other in parameter space,
so SVGD can capture a wider range of attributes and make diversity in the
prediction in parameter space. By applying the SVGD method, we expect the
particles to fall into optimal regions on this non-convex function. A particle will

http://cs330.stanford.edu/fall2019/slides/cs330_bayesian_metalearning.pdf
http://cs330.stanford.edu/fall2019/slides/cs330_bayesian_metalearning.pdf
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learn “smiling” and “hat” if its parameter θ moves to the left. A particle will
learn “smiling” and “young” if the θ moves to the right. By using the constraint
that the weights must be different in the weight space, we want to bring about
the high possibility that the model will have particles that push each other away
from the local optimum, and even if a particle falls to the saddle point, also
means other particles will be avoided and gives the best prediction performance
with multi-view. This method is different from the representation space methods;
it reduces the effect of initialization on the model weights.

In summary, the paper proposes a new dataset and new problem to deal
with the ambiguity in the task that occurs when the collected data is little. The
ambiguity problem will disentangle the features and try to learn the variety using
particles, each of which will capture a hidden attribute or a view of the data.
We then remove some particles and evaluate whether our ensemble’s prediction
is still sensitive to that hidden attribute. The new dataset is formulated as the
example by a dataset called the YSH dataset. The main contributions of this
paper are as follows:

– We propose a new dataset to evaluate the ability to handle the ambiguity in
the task.

– We propose the DEResNet utilize SVGD and a training method to find sub-
models to provide a set of solutions for the ambiguous dataset. We use a target
set containing ambiguous data to prove that there will be some sub-models
that prefer one attribute over another and then find a set of sub-models that
gives the best results on the target set. This paper is the first to combine
Bayesian SVGD in parameter space and a diversity mutual information loss in
output space for handling uncertainty and solving the diversity problem. This
is also the first study to replace the mutual information loss in the headers
of DivDis with particles with the same architecture of SVGD to diversify
predictions.

– Extensive experiments on the YSH datasets demonstrate that our DEResNet
outperforms the baseline method. It can overcome the saddle point to reach
the global optimal and produce a set of solutions with multiple interpretations
of an ambiguous task.

2 Related Work

2.1 Uncertainty Estimation

DNNs have great success in the scientific and engineering fields of computer
vision, natural language processing, and generating precise predictions. How-
ever, DNNs can be incorrect and overconfident, when fine-tuning a large and
deep model on a small dataset due to over-parameterization and overfitting.
Therefore, uncertainty estimation is receiving more attention in the deep learning
community. Naeini et al. [Naeini et al. (2015)] suggest using temperature scal-
ing as a post-processing technique to improve prediction smoothing. However,
it has a limitation as it is unable to detect the OOD data. In contrast, Pereyra
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et al. [Pereyra et al. (2017)] introduced an entropy regularization method that
maximizes the entropy of false predictions, but it can negatively affect the high
valid confidence of correct predictions. Blundell et al. [Blundell et al. (2015)] pro-
posed Bayes by Backprop (BBB) to train Bayesian neural networks. However,
BBB’s prior distribution may be difficult to find, and its uncertainty estimate
can be unreliable due to over-parametrization. Similarly, MCDropout [Gal and
Ghahramani (2015)] approximates Bayesian nets by generating a Monte Carlo
distribution of predictions during test time, estimating the prediction’s epistemic
uncertainty.

For aleatoric uncertainty, Zhang et al. [Zhang et al. (2023)] analyzed the
risk bounds on aleatoric of estimators that use Mean squared error (MSE) loss
and Negative log likelihood (NLL) loss. They found that a method based on
moment matching such as the MSE empirical risk minimizer has an advantage in
a high variance regime. Another study by Fan et al. [Fan et al. (2021)] provided
necessary and satisfying conditions for the Wasserstein gradient flow (WGF)
system to be a moment-matching property. Additionally, Wang et al. [Wang et
al. (2022)] demonstrated SVGD as a method to address the WGF problem.

2.2 Diversity and Disambiguation

Studies on diversity in the prediction of DNNs and disambiguation in ambiguous
tasks are still relatively few, with limited results, and are still open to many chal-
lenges. Luca Scimeca et al. [Scimeca et al. (2022)] found that DNNs frequently
depend on simple-to-learn distinguishing features known as shortcut learning.
They observed that solutions that prioritize easy-to-learn attributes tend to
reach flat minima on the loss surface, and these solutions are more common
in the parameter space. They have proposed a way to evaluate the abundance
of certain attributes via Kolmogorov complexity: “Solutions corresponding to
Kolmogorov-simple cues are abundant in the parameter space and are thus pre-
ferred by DNNs”. Specifically, models are often biased to learn simple cues, such
as color and ethnicity that may cause negative societal impacts.

Yoonho Lee et al. [Lee et al. (2022)] researched shifts between source and
target distributions, where the source data falls short of conveying the desired
behavior on target inputs. They proposed DivDis with two stages for resolving
ambiguity in data and addressing the distribution shifts problem. First, DivDis
learns diverse hypotheses with low source loss but different predictions on target
inputs to form a set of solutions. In the second stage, they disambiguated by
selecting one of the discovered functions.

Our model addresses both problems of uncertainty and diversity. Specifi-
cally, DEResNet uses SVGD which is a Bayesian-based ensemble method. For
epistemic uncertainty, with samples that are difficult to model, our DEResNet
uses a deep ensemble to measure the disagreement among particles. To calcu-
late the epistemic uncertainty, we need to find the entropy of the probability
vector generated by particles. As for aleatoric uncertainty, this type of uncer-
tainty cannot be reduced by more data as it is inherent to the data, for example,
an object far from the camera or object boundaries. DERestNet uses SVGD to
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learn the attributes of multi-view data, so it can de-bias and learn depth infor-
mation to increase uncertainty for objects far from the camera. In the theory of
analysis, SVGD is a moment matching-based method so DEResNet uses SVGD
to determine uncertainty in high-variance regimes in the data. Additionally, to
instruct particles that learn different attributes, our model takes advantage of
mutual information loss in DivDis and performs an exhaustive search algorithm
to disambiguate and select the best solution in the set of solutions.

Fig. 2. The figure depicts the YSH dataset.

3 Creating a Dataset for Ambiguity Tasks

The emergence and success of ChatGPT and foundation models have led to the
need to refine models with only a few samples by a few shot prompt engineering.
However, with little data, it is not possible to fully describe the task, which leads
to ambiguity in the task. To address this problem, it is often necessary to use
additional information in order to supplement the task. Another way is for the
model to provide a set of solutions. Our proposed dataset contains a target set
that supports the model to capture multi-views of data. Ambiguous tasks will
lead to overconfidence and a lack of robustness in classification. With this in
mind, our goals for developing a dataset for ambiguity tasks are: to provide a
new challenging problem and to spark novel ideas.
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We formulated the example by a dataset called the YSH dataset, with positive
labels including only pictures of young people smiling and wearing hats and
negative labels only including images of old people not smiling and not wearing
hats as the training set and testing set of the source distribution. There are 3
additional training and testing sets in the target distribution as follows:

– No smile: The positive label includes young people wearing hats but not
smiling, and negative labels include old people not wearing hats but smiling.
We’d like to be able to have a particle that predicts a “smile” attribute
that belongs to the positive label. To evaluate it, we remove that module
from our ensemble and hope the resulting sub-model will achieve the greatest
performance on this set.

– No hat: The positive label includes young people smiling but not wearing hats,
and the negative label includes old people not smiling but wearing a hat. We’d
like to be able to remove the positive-label hat distinguishing module from
our ensemble. So that the sub-model with the remaining paricles obtained
will achieve the greatest performance on this set.

– Not young: The positive label includes the elderly wearing a hat and smiling,
and the negative label includes the young person not wearing a hat and not
smiling. We would like to be able to remove the module that distinguishes
young attributes as positive labels from our ensemble.

Exemplars of YSH are shown in Fig. 2. The dataset contains 1041 images col-
lected from the Internet via the Google search engine with some keywords such
as “young smiled man wearing a hat”, “unhappy man old wearing a hat”, “smiled
child wearing a hat”, “happy woman old wearing a hat”,... It contains 316 images
in source distribution and 98 images in target distribution. The source distri-
bution is split into 250 images (129 negative labels and 121 positive labels) for
training and 66 images (31 negative labels and 35 positive labels) for testing.
The target distribution is split into the target training set and the target testing
set. It has three sub-testing sets: 53 images for no smile training and 205 images
for no smile testing, 27 images for no hat training, 207 images for no hat testing,
and 18 images for not young training and 215 images for not young testing.

4 Proposed Method

4.1 General Framework

Our framework is built on diversity training for training the DivDis architecture
[Lee et al. (2022)], which is a domain adaptation framework for training the
DEResNet architecture. DeResNet is built on the ResNet backbone and SVGD
algorithm for diversifying the ensemble. Our proposal improves uncertainty and
ambiguity estimation with a flexible training strategy by combining SVGD, and
MI loss to diversify and disambiguate for any task. Our approach with SVGD
and MI loss can be easily applied to any DNNs and is easy to plug and play.

In general, we approach the problem in a distribution shift with the source
distribution being labeled images, and the target distribution known as OOD
data being unlabeled images. Our training strategy consists of 2 stages:
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– Stage 1 - Uncertainty estimation and Diversity: The model will train on the
source and target distribution in parallel. Specifically, after the model learns
a batch of (xs, ys) on the source distribution, it tries to maximize the uncer-
tainty of the target distribution’s predictions by making the model’s predic-
tions close to the true data distribution of labels (with the YSH dataset the
true distribution of positive and negative labels is (0.5, 0.5)). At the end of
stage 1, we obtain a well-calibrated model, accurate predictions on the source
distribution, and low confidence in predicting images belonging to the target
distribution.

– Stage 2 - Disambiguate in target distribution prediction: We use MI loss and
regularizations to force headers also known as particles to make different pre-
dictions. At the end of phase 2, we have a set of solutions, and hopefully, each
particle will learn a view of the data. Finally, we gradually remove particles
from the ensemble using an exhaustive search to find the sub-ensemble that
best fits each data view.

Figure 3 shows the overall framework of our proposal, where xs, ys are the source
image and source label. xt is the image in the target distribution. DEResNet is
our model trained in two stages. Ls stage1, Ls stage2, Lt stage1, Lt stage2 are loss
functions using at stage 1 and stage 2 on the source data, and on the target data
respectively. We will present these loss functions in more detail in the “Training
Strategies” section.

4.2 DEResNet Architecture

To address uncertainty estimation, we employ the well-known SVGD architec-
ture [Wang et al. (2019)] on the ResNet backbone to form DEResNet. Figure 4
shows the DEResNet architecture.

ResNet Baseline. He et al. [He et al. (2016)] introduced the ResNet archi-
tecture. ResNet models consist of residual blocks, which include stacked con-
volutional layers and a skip connection from the first to the last layer. Skip
connections can train very deep neural networks by mitigating the vanishing
gradient problem. The authors proposed five ResNet variants of different depths:
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. For our DERes-
Net model, we chose ResNet-50 as the backbone. The ResNet model belongs to
the family of deterministic models, in addition, due to the large number of param-
eters, this model is overconfident in the predictions of the target distribution.

SVGD in DEResNet. Unlike the original ResNet baseline suggested here 1,
we use both an ensemble and a Bayesian, namely the SVGD method. It uses
particles to approximate and minimize KL divergence to fit the true posterior

1 https://colab.research.google.com/github/bentrevett/pytorch-image-classification/
blob/master/5 resnet.ipynb.

https://colab.research.google.com/github/bentrevett/pytorch-image-classification/blob/master/5_resnet.ipynb
https://colab.research.google.com/github/bentrevett/pytorch-image-classification/blob/master/5_resnet.ipynb
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Fig. 3. The overall framework for training the DEResNet architecture.

distribution P (w|D) with w as the weight of the model, and D as the data. Since
P (w|D) is intractable, we estimate a maximum a posteriori (MAP), but instead
of using MCMC, we use SVGD due to the assumption of the non-convexity
of the MAP estimation to generate and independently train M-models samples
from the target distribution. Using only one particle, it reduces to MAP. With
more particles, it becomes a fully Bayesian approach, similar to many MAPs in
the Bayes inference step. SVGD repels particles from high-density regions of the
target distribution and uses them as regularizers to prevent ensemble collapse.
Therefore, it effectively has the potential in low regime data.

In this paper, we apply the SVGD algorithm in the ResNet-50 model. First,
we generate an ensemble of M particles from a Gaussian distribution with mean μ
as the parameter of the ResNet-50 model and standard deviation σ. We initialize
an SVGD pre-conditioner that uses a kernel RBF function. This pre-conditioner
will help to learn the second term in Eq. 3. The final prediction is the average of
the particle predictions in the ensemble:

P (y|x) = EP (w|D)[P (y|x,w)] =
1
M

i=M∑

i=1

[P (y|x,wi)] (2)

When training the model, we compute the gradient for each weight of the ensem-
ble and then use the SVGD pre-conditioner to calculate the second term in Eq. 3,
which is added to the gradient. This phase is shown in Fig. 4 in a purple ellipse
denoted SVGD.step(). The pre-conditioner will update the weight following the
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Fig. 4. The DEResNet architecture.

formula:

φ(wt) =
1
M

M∑

j=1

[k(wt
j , wt) �wt

j logp(wt
j) + �wt

jk(wt
j , wt)] (3)

corresponding to the first term is the likelihood term and the second term is
the repulsive term, where M is the number of particles, k is RBF kernel, t is
iteration, and φ is the updated rule wt+1 = wt + εtφ(wt) with ε is learning rate.

4.3 Training Strategies

Training Strategy in Stage 1. In stage 1, we train on the source distribution,
then estimate uncertainty and calibrate on the target distribution. On the source
distribution, we use Ls stage1 as cross-entropy loss for learning and give the best
performance on the source dataset. Because the data on the source distribution
are the same in 3 hidden attributes: “smile”, “hat” and “young”, we want each
particle prediction along with the ensemble’s final prediction to fit the training
data. So we have the following formula Eq. 4:

Ls stage1 = CE(ŷs, ys) +
i=M∑

i=1

[CE(ŷs, ys,i)] (4)

where CE is cross-entropy loss, xs is the image of source set, ys is the ensemble’s
final prediction and ys,i is the prediction of particlei, ŷs is groundtruth.
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For the target distribution, DEResNet will minimize the confidence of the
predictions, that is, maximize the uncertainty using Lt stage1.

Lt stage1 = D(p(yt)||p(y)) = (yt − 0.5)2 (5)

where p(y) is the label distribution in the source dataset, we chose squared Euclid
distance for distance function D and yt is the final prediction of image xt in the
target set.

This loss function has the effect of encouraging particles to learn a wider
range of hidden attributes. Because if a model does not learn diversely, it cannot
capture all the hidden attributes in the target set. For example, in the YSH
dataset, if the model fits too well with the source set and cannot capture the
“smile” attribute, then when evaluated on the No Smile test set, it will still have
high accuracy but be overconfident. Because the model only exploits the “hat”
and “young” attributes, when an image of a “young person without a hat and
sad” appears, the model ignores the “smiling” attribute and predicts that the
image is correct with too much confidence. DEResNet uses Lt stage1 to calibrate
the predictions of the target distribution to avoid overconfidence, and thus give
the model a second chance to learn more diverse attributes in stage 2.

Training Strategy in Stage 2. In stage 2, we ask particles to make different
predictions to disambiguate the task and hope each particle will learn a view
of the data while maintaining good source accuracy. So we continue to use the
source set and train on it with the same loss function as in stage 1. The formula
of Ls stage2 is the same as Eq. 4.

For the target distribution, we use mutual information loss known as MI
loss and the regularization of the first stage to force the particles to come up
with a set of different solutions. MI loss gets ideas from the DivDis architecture
applied to headers of the same model. However, these headers have a perfect
similarity to the particles in SVGD. So we tweak the MI loss to minimize the
mutual information between each pair of particle’s predictions and the label
distribution of the source data:

LMI(yt,i, yt,j) = DKL(p(yt,i, yt,j)||p(yt,i) ⊗ p(yt,j)) (6)

where DKL(.||.) is the KL divergence and yt,i is the label distribution in the
source data p(y) = (0.5, 0.5) or the prediction of particle i for xt as the target
data.

The final loss function of the target set in stage 2 is as follows:

Lt stage2 = λLMI + β||BTB||1 − γyt[argmax
t

(||yt||2)] (7)

where λ, β, γ is hyperparameter, ||BTB||1 is the L1-norm of the dot product
between two features of two particles, we use it to minimize the covariance
matrix between the features of the particles. Then −γyt[argmaxt(||yt||2)] is the
term to force the diversity particle’s predictions by maximizing the prediction
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of the most confident particle and we want the samples to be free to “cluster”
into one of the particles that are most likely to maximize the confidence of the
prediction. It makes each prediction of particles at the target data avoid random
guesses.

5 Experiments

5.1 Scenario of Experiments, Datasets and Metrics

Datasets and Scenario of Experiments. We use the YSH dataset for our
experiments. In addition, we perform image data augmentation through random
rotation, random flip, center crop, and normalization operators. We compare
our method with the ResNet baseline [He et al. (2016)] without the target set
and the ResNet50 DivDis model [Lee et al. (2022)] which is trained with multi-
head classification. In the ResNet50 DivDis model, we keep the hyperparameters
unchanged and use cross-entropy for regularization as in the source code provided
by the authors. For a fair comparison with our method, we set the number of
headers to 3 equal to the number of seeds, meaning the output of layer“fc”
is 3 times the number of classes. The training method remains the same, i.e.
supervised training on the source set and applying MI loss to the target set.

Evaluation Metrics. For the classification task, we utilize accuracy metrics to
evaluate the performance and denoted as Acc in Eq. 8. To evaluate the uncer-
tainty estimation, we use the ratio of the number of over-confidence predictions
to the number of total predictions in the target set OverConf . Over-confidence
predictions are defined as incorrect predictions with a confidence level greater
than a threshold τ (τ = 0.6 in our experiments) (P (Ŷ = Y ) > τ) in Eq. 9

Acc =
number of correct predictions

number of total predictions
(8)

OverConf =
number of overconfidence incorrect

number of total predictions
(9)

We want Acc to be as high as possible, with Overconf as low as possible.

5.2 Experimental Results

Diversity and Uncertainty. Table 1 is the quantitative results of the accuracy
metric and over-confidence metric of DEResNet-two stage, DEResNet-stage1,
and ResNet50. Because the SVGD model is a Bayesian-based method and the
training data is small, the results in this table are the average of 10 times of
training the model. Detailed results of 10 times of model training are presented
in the Appendix. Regarding uncertainty, it can be seen that ResNet50 has a more
severe over-confidence problem than our method. That’s because our method
uses Bayesian SVGD and regularizations to reasonably diversify and estimate
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Table 1. The quantitative results of accuracy metric and over-confidence metric of
DEResNet

No Hat Not Young No Smile Total Acc (↑)

Model Acc (↑) Over-Conf (↓) Acc (↑) Over-Conf (↓) Acc (↑) Over-Conf (↓)

ResNet50 48,15 44,44 55,56 38,89 96,23 3,77 75,5

DEResNet-stage1 58,9 ± 6,2 8,9 68,3 ± 9.5 2,8 74,3 ± 4,7 1,5 69,0

DEResNet-two stage 78,1 ± 13,9 10,7 76,7 ± 3,5 7,2 79,1 ± 3,6 7,2 78,4 ± 5,5

ResNet-50 DivDis 51,9 0 55,6 0 84,49 0 70,4

Table 2. The quantitative results of the accuracy metric in the source testing set and
the target testing set

Source test Target test

Model TestAcc No Hat Not Young No Smile Total Acc

ResNet50 97,5 61,8 57,7 90,2 69,7

ResNet-50 DivDis 99,2 ± 0.7 65,7 ± 6 71,3 ± 7,6 88,8 ± 0.5 75,2 ± 2,5

DEResNet-stage1 92,4 ± 5,2 71,0 ± 1,2 62,8 ± 2,9 85,7 ± 2,3 73,0

DEResNet-two stage 95,9 ± 2,5 74,9 ± 10,9 69,9 ± 7,9 86,7 ± 3.2 77,1 ± 6,9

uncertainty. In the case of the “No Smile” test set, because the accuracy of
ResNet50 is good above this test set, the number of samples with overconfidence
is also less. However, it is possible that ResNet50 cannot exploit information
about the “Smile” hidden attribute, which is why it achieves such good accuracy.
It can only capture other attributes, and when the “young person wearing a
hat but not smiling” image appears, it correctly classifies it with high certainty.
Proving the model can capture the attribute is very difficult and is being studied
in the field of disentangled learning. We will leave the explanation in the AI
model to future work.

In terms of classification performance, our DEResNet-two stage achieves the
best performance on the “No Hat” set and “Not Young” set. That’s because,
in stage 2, we implemented SVGD and MI loss to help particles learn diverse
views of the data. This will help some particles to be optimized for learning the
“Hat” attribute, while some other particles are optimal for learning the “Young”
attribute. For the “No Smile” set, as explained above, DEResNet in stage 1 tried
to minimize the confidence when predicting the “No Smile” set. This increases
the chances of DEResNet being able to capture the “Smile” attribute. This can
be seen in Table 5 in the Appendix section. In rows test 1,2,3,4,5 and test 10;
the optimal sub-model for the “No Smile” set is different from the sub-model
of the other two hidden attributes. This shows that there was a particle that
could keep the “Smile” attribute and preferred to learn “Smile” over “Young”
and “Hat”.

Model Performance and Generality. Table 2 is the quantitative results of
the accuracy metric in the source testing set and the target testing set. Compared
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Fig. 5. The incorrect predictions of ResNet50 and DEResNet.

to the results of the baseline model, our method has slightly reduced results
on the source testing set. However, the results on the target testing set are
much superior, especially for the DEResNet-two stage. This shows that after
the ambiguity reduction stage, the model can specialize well for each data view.
Compared with Lee’s method using the ResNet50 backbone with the number
of headers equal to the number of particles, our model is at the target set “No
Hat” and has better total accuracy. This shows that it is more effective to divide
ambiguity samples into particles rather than into headers. This is understandable
since our method generates much more diversity in the predictions of the particles
than the predictions of the headers, which is due to the fact that we take into
account diversity from the initialization stage of the weights.

Qualitative Analysis. Figure 5 shows the wrong prediction cases of ResNet50
and our method in the No hat target set. It can be seen that our model is less
wrong and less overconfident in prediction than the baseline model. Specifically,
in the same image of a white girl with blond hair, ResNet-50 encountered the
overconfidence phenomenon when thinking that the photo was a 96% negative
label. Our model is better calibrated with only false predictions with only 61%
confidence. That’s because the particles in our model capture the “hat” attribute,
and when the smiling young person in the positive image is no longer wearing
a hat, some particles will be uncertain, thus helping incorrect predictions have
lower confidence.

Experiment of the Variance of the Results. Because the model is trained
on a very small dataset, and SVGD has randomness coming from initializing
parameters from particles, the tests have very large variance. To resolve this, we
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have conducted additional runs with more consistent initial weights and added
standard deviation across the experiments. Specifically, we randomly initialize
2 initial weights. Then for each initial weight, we will conduct 10 experiments
with different random seeds of the same set of initial weights. The results are
shown in 3 and 4, we also provide the average and standard deviation of each
column. We can see that with the same initial weight, the results vary very little
providing better insight into the robustness and reliability of our method.

Table 3. The target testing results of our 10 training experiments of the first initial
weight of DEResNet.

Stage1 Stage2 Disambiguate

Test No Hat Not Young No Smile Total Acc No Hat Not Young No Smile No Hat Not Young No Smile Total Acc SEED

Test 1 73.9 61.4 85.4 73.4 74.4 60.5 87.3 85.5 68.4 91.2 81.5 9876

Test 2 73.9 63.7 86.8 74.6 70.5 64.7 88.8 79.2 71.2 87.3 79.1 1234

Test 3 75.4 60.9 85.9 73.8 68.1 55.8 88.8 75.4 63.7 92.2 76.9 9877

Test 4 74.4 62.8 86.3 74.3 67.6 59.5 87.3 79.7 69.8 86.8 78.6 1235

Test 5 73.4 57.2 88.3 72.7 70.0 61.4 81.5 76.3 73.5 94.1 81.2 1

Test 6 71.5 66.0 84.4 73.8 73.4 59.5 82.0 87.9 69.3 86.8 81.2 10

Test 7 77.8 60.9 87.8 75.3 68.6 67.0 91.2 76.3 69.3 94.1 79.7 100

Test 8 74.4 59.1 88.8 73.8 68.1 65.6 87.8 74.9 71.2 89.8 78.5 1000

Test 9 68.1 63.7 86.3 72.6 46.4 75.3 93.7 71.0 84.2 94.1 83.1 10000

Test 10 74.4 58.1 83.4 71.8 73.9 51.2 85.4 84.5 62.8 88.8 78.5 100000

AVG 73.7 61.4 86.3 73.6 68.1 62.0 87.4 79.1 70.3 90.5 79.8

STD 2.5 2.8 1.7 1.0 8.1 6.6 3.8 5.4 5.9 3.1 1.9

Table 4. The target testing results of our 10 training experiments of the second initial
weight of DEResNet.

Stage1 Stage2 Disambiguate

Test No Hat Not Young No Smile Total Acc No Hat Not Young No Smile No Hat Not Young No Smile Total Acc SEED

Test 1 81.2 58.1 80.0 72.9 87.9 47.0 85.4 91.3 61.4 85.4 79.1 9876

Test 2 81.6 56.3 79.0 72.1 83.1 54.4 80.5 88.9 63.3 83.4 78.3 1234

Test 3 79.7 59.1 83.4 73.8 80.7 55.3 87.3 84.1 61.4 88.3 77.7 1

Test 4 80.2 57.2 81.5 72.7 84.5 54.0 77.1 93.7 64.2 82.0 79.7 10

Test 5 79.2 55.8 82.0 72.1 84.1 58.6 82.9 88.9 65.1 82.4 78.6 100

Test 6 83.1 50.7 85.4 72.7 87.0 46.0 82.9 91.3 63.3 87.3 80.4 1000

Test 7 81.6 58.6 80.0 73.2 76.8 61.4 82.4 89.4 69.8 84.9 81.2 1235

Test 8 82.1 55.3 81.0 72.6 95.2 50.2 85.4 83.1 60.9 90.2 77.8 9877

Test 9 80.7 56.3 81.5 72.6 75.8 57.7 79.5 79.2 63.7 82.9 75.1 10000

Test 10 82.1 55.3 83.4 73.4 82.6 50.7 84.4 89.4 61.4 89.3 79.7 100000

AVG 81.2 56.3 81.7 72.8 83.8 53.5 82.8 87.9 63.4 85.6 78.8

STD 1.2 2.4 1.9 0.5 5.6 5.0 3.1 4.4 2.6 3.0 1.7
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6 Conclusion

This paper introduced a new dataset and a novel architecture (DEResNet) to
handle the problem of ambiguity in tasks, useful for handling uncertainty in
few-shot learning and prompting foundation models. Our proposed model has
demonstrated its ability to capture hidden attributes and gives a set of diverse
solutions.

7 Future Work

In the future, it would be interesting to study the risk bound and ambiguity
bound of particles in the parameter space and research the effectiveness of the
disentangled method in the YSH dataset. In additional, this article is inspired by
the active learning problem in [Lee et al. (2022)]. In the future, we will assume
a part of the trained target distribution will be given, meaning that the label
yt will still mix all 3 sub-datasets to test the ability to divide the learning sub-
datasets into particles so that each particle will achieve the best performance
on one of the 3 sub-datasets. We also hope to be able to apply Scimeca’s work
[Scimeca et al. (2022)] to analyze the Kolmogorov complexity of 3 ambiguous
classes in the future.

8 Appendix

Because the SVGD model is a probabilistic model and the training data is small,
the results between tests may vary due to different parameter initialization. So
we tested DEResNet 10 times and averaged the results for Table 1.

Table 5 is the results of our 10 training runs of DEResNet. Table 6 is the
target testing results of our 10 training experiments of DEResNet. Table 2 is the
result when calculating the average of the 10 rows of the Table 6. In which, fi
represents the i-th particle, fi + fj represents the sub-ensemble of the particle i
and particle j.

Table 5. The results of our 10 training experiments of DEResNet.

Stage 1 Stage 2 Disambiguate

No Hat Not Young No Smile Total stage1 TestAcc No Hat Not Young No Smile No Hat Not Young No Smile Total Acc TestAcc

Test Acc Over-Conf Acc Over-Conf Acc Over-Conf Acc Over-Conf Acc Over-Conf Acc Over-Conf sub model Acc sub model Acc sub model Acc

Test 1 55,6 7,4 55,6 11,1 75,5 0,0 66,3 87,5 59,3 11,1 61,1 11,1 79,2 16,7 f2 74,1 f2+f0 83,3 f1 79,2 78,6 93,75

Test 2 63,0 7,4 55,6 5,6 73,6 1,9 67,3 86,3 63,0 22,2 66,7 11,1 75,5 11,1 f1+f2 63,0 f0+f2 77,8 f1+f2 75,5 72,4 93,75

Test 3 51,9 18,5 77,8 0,0 67,9 3,8 65,3 90,0 59,3 18,5 72,2 5,6 75,5 11,1 f2 74,1 f0+f2 72,2 f1+f2 77,4 75,5 93,7

Test 4 70,4 7,4 55,6 11,1 77,4 1,9 71,4 87,3 55,6 14,8 61,1 5,6 54,7 16,7 f1 59,3 f1+f2 72,2 f1+f2 79,2 72,4 95

Test 5 51,9 18,5 77,8 0,0 67,9 3,8 65,3 90,0 40,7 14,8 61,1 11,1 77,4 5,6 f1+f2 70,4 f0+f1 77,8 f1 75,5 74,5 93,7

Test 6 63,0 3,7 72,2 0,0 79,2 0,0 73,5 98,0 55,6 3,7 72,2 5,6 81,1 0,0 f0 96,3 f1+f2 77,8 f1 84,9 86,7 98,75

Test 7 59,3 3,7 72,2 0,0 77,4 0,0 71,4 98,8 59,3 3,7 66,7 5,6 84,9 0,0 f0+f1 96,3 f1+f2 77,8 f0+f1 81,1 84,7 98,75

Test 8 59,3 3,7 72,2 0,0 77,4 0,0 71,4 98,8 59,3 3,7 66,7 5,6 84,9 0,0 f0+f1 96,3 f1 77,8 f1 81,1 84,7 98,75

Test 9 63,0 0,0 66,7 0,0 79,2 0,0 72,4 97,5 63,0 0,0 66,7 0,0 77,4 5,6 f0 81,5 f1+f2 72,2 f0 83,0 80,6 98,75

Test 10 51,9 18,5 77,8 0,0 67,9 3,8 65,3 90,0 40,7 14,8 61,1 11,1 77,4 5,6 f1+f2 70,4 f0+f1 77,8 f1+f2 73,6 73,5 93,75

AVG 58,9 8,9 68,3 2,8 74,3 1,5 69,0 92,4 55,6 10,7 65,6 7,2 76,8 7,2 78,1 76,7 79,1 78,4 95,9

STD 6,2 7,0 9,5 4,7 4,7 1,7 3,3 5,2 8,2 7,5 4,4 3,7 8,5 6,4 13,9 3,5 3,6 5,5 2,5
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Table 6. The target testing results of our 10 training experiments of DEResNet.

Stage 1 Stage 2 Disambiguate

No Hat Not Young No Smile Total stage1 TestAcc No Hat Not Young No Smile No Hat Not Young No Smile Total Acc TestAcc

Test Acc Over-Conf Acc Over-Conf Acc Over-Conf Acc Over-Conf Acc Over-Conf Acc Over-Conf sub model Acc sub model Acc sub model Acc

Test 1 55,6 7,4 55,6 11,1 75,5 0,0 66,3 87,5 59,3 11,1 61,1 11,1 79,2 16,7 f2 74,1 f2+f0 83,3 f1 79,2 78,6 93,75

Test 2 63,0 7,4 55,6 5,6 73,6 1,9 67,3 86,3 63,0 22,2 66,7 11,1 75,5 11,1 f1 63,0 f0+f2 77,8 f0+f1 75,5 72,4 93,75

Test 3 51,9 18,5 77,8 0,0 67,9 3,8 65,3 90,0 59,3 18,5 72,2 5,6 75,5 11,1 f2 74,1 f0+f2 72,2 f0+f1 77,4 75,5 93,7

Test 4 70,4 7,4 55,6 11,1 77,4 1,9 71,4 87,3 55,6 14,8 61,1 5,6 54,7 16,7 f0+f2 59,3 f0+f2 72,2 f0+f1 79,2 72,4 95

Test 5 51,9 18,5 77,8 0,0 67,9 3,8 65,3 90,0 40,7 14,8 61,1 11,1 77,4 5,6 f0+f2 70,4 f0+f2 77,8 f1 75,5 74,5 93,7

Test 6 63,0 3,7 72,2 0,0 79,2 0,0 73,5 98,0 55,6 3,7 72,2 5,6 81,1 0,0 f0 96,3 f2 77,8 f2+f0 84,9 86,7 98,75

Test 7 59,3 3,7 72,2 0,0 77,4 0,0 71,4 98,8 59,3 3,7 66,7 5,6 84,9 0,0 f0 96,3 f2 77,8 f2+f0 81,1 84,7 98,75

Test 8 59,3 3,7 72,2 0,0 77,4 0,0 71,4 98,8 59,3 3,7 66,7 5,6 84,9 0,0 f0 96,3 f2 77,8 f0+f2 81,1 84,7 98,75

Test 9 63,0 0,0 66,7 0,0 79,2 0,0 72,4 97,5 63,0 0,0 66,7 0,0 77,4 5,6 f0 81,5 f2 72,2 f0 83,0 80,6 98,75

Test 10 51,9 18,5 77,8 0,0 67,9 3,8 65,3 90,0 40,7 14,8 61,1 11,1 77,4 5,6 f0+f2 70,4 f0+f2 77,8 f0+f1 73,6 73,5 93,75

AVG 58,9 8,9 68,3 2,8 74,3 1,5 69,0 92,4 55,6 10,7 65,6 7,2 76,8 7,2 78,1 76,7 79,1 78,4 95,9

STD 6,2 7,0 9,5 4,7 4,7 1,7 3,3 5,2 8,2 7,5 4,4 3,7 8,5 6,4 13,9 3,5 3,6 5,5 2,5
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Abstract. Instead of randomly acquiring training data, Uncertainty-
based Active Learning (UAL) selects pivotal samples from an unlabeled
dataset based on the prediction uncertainty and queries their labels so
that the labeling cost for model training can be minimized. As a result,
the efficacy of UAL depends on the model capacity as well as the adopted
uncertainty-based acquisition function. In this study, our analytical focus
is directed toward comprehending how the capacity of the machine learn-
ing model may affect UAL efficacy. Through theoretical analysis and
comprehensive simulation and empirical studies, we demonstrate that
UAL can lead to worse performance compared to random sampling when
the machine learning model class has low capacity and is unable to cover
the underlying ground-truth.

Keywords: Active Learning (AL) · Bayesian Active Learning (BAL) ·
Uncertainty-based Active Learning (UAL)

1 Introduction

With the advent of novel profiling and database technologies, the ever-increasing
volume of available data gives rise to extensive unlabeled datasets that may
help further advance the AI and machine learning (AI/ML) development [27].
However, the associated cost of labeling is exorbitantly prohibitive [4,13,15,26],
to which Active Learning (AL) can be a potential solution.

AL aims to reduce the quantity of labeled training data while achieving the
desired prediction performance in ML [20]. Based on a selected acquisition func-
tion, AL iteratively queries the labels of the most informative samples, hoping
to learn with better sample efficiency utilizing much fewer samples than what
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Fig. 1. Motivating example with a ground-truth target that is more complex than the
prediction model class. In this example, the noisy data is generated by the ground-
truth function that is the summation of a quadratic function and a cosine function
(y = f(x)+ε with ε ∼ N(0, 1), where f(x) = 〈x,w〉+cos(2πx), and x = [1, x, x2]). The
left plot shows the ground-truth target function and its corresponding noisy observed
data. The right plot shows the comparison of UAL and random sampling performance
to learn the quadratic predictor based on Bayesian polynomial regression (BPR).

is available in the initial unlabeled dataset [14]. This iterative AL procedure
persists until either the model achieves the desired prediction performance or
the designated labeling budget is exhausted. These methods broadly can be
divided into membership query synthesis [1,14,20], stream-based selective sam-
pling [3,14,20], and pool-based active learning [9,14,20] based on the problem
setup. There are two main categories of sample selection strategies considered in
pool-based active learning methods: Uncertainty-based AL (UAL) [8,16,20,23–
25] and Diversity-based AL (DAL) [5,14,18–21]. Some studies also focused on
using both categories leading to hybrid methods [2,28]. For UAL, samples
are selected based on the model’s prediction confidence/uncertainty reflect-
ing their significance in improving the model’s performance. Variance-based or
information-theoretic methods (estimated by entropy or mutual information),
such as Bayesian Active Learning by Disagreement (BALD) [7], are considered
under this category. DAL strives to identify the subset encapsulating the under-
lying data distribution, including core-set methods [18]. This study centers its
attention on UAL, which identifies and queries labels for the most uncertain
samples, implying their importance for the current model training [20].

Despite the popularity of UAL methods, some previous works have demon-
strated situations where they may not outperform random sampling [6,11,17,22],
which motivates this study. To better illustrate the need to understand the
behaviour of UAL performance, we first present such an example where we com-
pare the regression performance of UAL and random sampling with a quadratic
model on data generated from a more complex ground-truth function in Fig. 1.
Instead of converging faster than random sampling as typically expected, UAL
fails to effectively select the most informative samples to better guide the model
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training with the prediction performance of learned regressors worse than the
ones trained with random sampling.

These observations have triggered our curiosity to investigate the potential
effects of the model capacity on the efficiency of UAL. We seek to find the nec-
essary settings from the model’s perspective, under which UAL can outperform
random sampling. In particular, we establish that given a model of at least ade-
quate complexity covering the underlying ground-truth target function to learn,
UAL is able to have superior performance than random sampling.

The subsequent sections are organized as follows: Sect. 2 provides the neces-
sary background, definitions, and UAL settings. In Sect. 3, we analyze the UAL
efficacy under different model settings. We present experimental results sup-
porting the findings of the analysis in Sect. 4. We then conclude the study in
Sect. 5.

2 Problem Setting

In this work, we focus on the performance of pool-based UAL for regression under
the metric of Mean Squared Error (MSE) for illustrative theoretical analysis.
The regression problem is to assign x ∈ X ⊂ R

d to its corresponding output
y with the assumption that the input random vector X and output random
variable Y are jointly distributed following P (X, Y ). The common setting is
that, at an arbitrary X = x, the output is y = f(x) + ε, where f : X → R

is the underlying ground-truth function and ε ∼ N(0, σ2) is the white noise
residual error determining the conditional distribution P (Y = y|X = x). Given
an observed set of data points, D = {(xi, yi)}n

i=1 with (xi, yi) ∼ P (X, Y ), ŷ =
f̂θ(x)+ ε serves as an estimator of y in the regression task, where a regressor f̂θ :
X → R, is a parameterized predictive model with θ being the model parameters.

Bayesian Learning. Bayesian Learning aims to maintain the posterior distri-
bution of the parameters θ, P ∗(θ|D) ∝ P (θ)P (D|θ), based on the Bayes rule
with the observed dataset D, where P (θ) is the prior distribution reserving prior
knowledge, and P (D|θ) is the likelihood function representing the probability of
generating the observed data with specific parameter θ. Via the parameter pos-
terior, the predictive posterior at an arbitrary x can be calculated as follows:

π∗(ŷ|x) =
∫

P (ŷ|θ,X = x)P ∗(θ|D)dθ. (1)

Bayesian Active Learning (BAL). In BAL, we consider the training dataset
to be composed of labeled and unlabeled data, i.e. D = DL

⋃
DU, where

DL = {(xi, yi)}nL
i=1 is the labeled dataset and DU = {xj}nU

j=1 is the unla-
beled dataset, nL and nU are the number of labeled and unlabeled samples
respectively. The BAL procedure aims at selecting the most informative sample
in the unlabeled dataset by optimizing the acquisition function A. The label
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of selected x∗ ∈ arg maxxU∈DU
A(π∗,xU) would be queried and added to the

labeled dataset, while x∗ will be removed from the unlabeled dataset. This pro-
cedure ends when the performance is satisfactory or the budget is exhausted,
DU = ∅. In the context of Bayesian UAL, equipped with learned posterior
distributions, A is designed based on the prediction uncertainty that hopefully
captures both uncertainties coming from data and model (the higher the score
is, the higher the uncertainty is). With the same procedure as BAL, the most
uncertain sample will be added iteratively to the labeled dataset at each UAL
step. Figure 2 schematically illustrates this active learning process.

Fig. 2. Schematic illustration of the UAL procedure

Learning Objective. Our UAL performance analysis will be based on the
MSE of prediction with respect to observed output, i.e., MSEobs, which can be
written as:

MSEobs = EP (Y |X)[EP ∗(θ|DL)[(Y − f̂θ)2]]

=
∫

P (Y |X)(
∫

P ∗(θ|DL)(Y − f̂θ)2dθ)dY,

where P denotes the ground-truth distribution, and P ∗ the derived posterior
distribution given training data.

3 UAL Efficacy Analysis

Following the problem setup in Sect. 2, we first decompose MSEobs for latter
analysis of UAL performance with different prediction model classes:

MSEobs =EP (Y |X)[EP ∗(θ|DL)[(Y − EP (Y |X)[Y ] + EP (Y |X)[Y ]− f̂θ)
2]]

=EP (Y |X)[(Y − EP (Y |X)[Y ])2] + EP (Y |X)[EP ∗(θ|DL)[(EP (Y |X)[Y ]− f̂θ)
2]]
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In the above MSEobs decomposition, the first term comes from the observation
noise and the second term is related to the error arising from the predictive
model settings. Since we aim to investigate UAL’s performance from the model’s
perspective, our focus is on the analysis of the second term, i.e., MSE of predicted
output from the ground-truth f , denoted as:

MSE =EP (Y |X)

[
EP ∗(θ|DL)[(f̂θ − EP (Y |X)[Y ])2]

]

=EP (Y |X)

[
EP ∗(θ|DL)[(f̂θ − EP ∗(θ|DL)[f̂θ])2]︸ ︷︷ ︸

Variance

+ (EP ∗(θ|DL)[f̂θ] − EP (Y |X)[Y ])2︸ ︷︷ ︸
Bias

]

The above equation gives the well-known bias-variance decomposition. When
the derived posterior P ∗ is close enough to the ground-truth, the Bias term
vanishes so that the Variance term will faithfully capture MSE and represents
the model’s prediction performance; and therefore, it can be an effective acqui-
sition function leading to better UAL performance (lower MSE and thereafter
MSEobs).

Proposition 1. (EP ∗(θ|DL)[f̂θ]−EP (Y |X)[Y ])2 < ε2C2 if EP (Y |X)[|Y |] < C and∣∣ π∗
P (Y |X) − 1

∣∣ < ε, where C > 0 and ε > 0 are constants.1

The Proposition 1 indicates that as the ε goes to 0, Bias goes to 0 as well.
Having the MSE decomposed in the bias and variance terms, the next step is

to provide illustrative UAL performance analyses for the corresponding predic-
tive model, f̂θ. We choose to concentrate on Bayesian Regression with polynomial
regressors as predictive models. This choice of prediction model classes leads to
closed-form MSE analysis and also enables straightforward model class capacity
manipulation by increasing the polynomial order.

Bayesian Polynomial Regression (BPR) is a widely utilized parametric model
class with polynomial functions. Let f̂θ(x) = 〈φ(x, p), θ〉, where φ(x, p) is a non-
linear operator that maps x to a pth-order polynomial expansion and θ is the
corresponding weight vector [12].

With the typical white noise residual error assumption, the observed output
Y follows the Gaussian distribution,

P (Y |X = x) = N(f(x), σ2). (2)

We can derive the predictive posterior given x in BPR with the conjugate prior.
Specifically, with the conjugate prior θ ∼ N(μ̂, Σ̂) where μ̂ and Σ̂ are the prior
mean and covariance, the posterior of the model’s parameters can be derived by

1 Proof is provided in the Appendix.
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Bayes’ rule:

P ∗(θ|Φ̂,y, σ2) ∝ N(θ|μ̂, Σ̂)N(y|Φ̂θ, σ2) = N(θ|μ̂p, Σ̂p)

μ̂p = Σ̂pΣ̂
−1μ̂ +

1
σ2

Σ̂pΦ̂�y;

Σ̂−1
p = Σ̂−1 +

1
σ2

Φ̂�Φ̂,

(3)

where Φ̂ = [φp
1, . . . , φ

p
n]� is the transformed input matrix with n transformed pth-

order polynomial terms φp
i = φ(xi, p), y = [y1, . . . , yn] ∈ R

n is the corresponding
training output vector with yi ∼ P (Y |X = xi), and μ̂p, Σ̂p denote the posterior
mean and covariance respectively.

By substituting the parameter posterior to Eq. (1) it can be shown that the
predictive posterior at x follows a Gaussian distribution:

π∗(ŷ|x) ∼ N(〈φ(x, p), μ̂p〉, σ2
p(x)), (4)

where
σ2

p(x) = σ2 + φ(x, p)�Σ̂pφ(x, p) (5)

is the posterior predictive variance. Since σ2
p(x) captures model prediction uncer-

tainty, it can be used to define a meaningful acquisition function to guide UAL for
BPR. As a result, in this study, we consider posterior predictive variance in (5)
as the acquisition function, i.e., A(π∗,x) = σ2

p(x), and the following analysis is
based on this choice.

Without loss of generality, to evaluate the reduction of the MSE of actively
learned models given acquired labeled training data, we consider BPR with uni-
variate inputs (d = 1) with φ(x, p) = [1, . . . , xp] (p: the polynomial order, con-
sidered as the model complexity). We note that the analysis results can be easily
generalized to multivariate cases.

As mentioned earlier in this section, when the derived P ∗ is close enough to the
ground-truth model that generates the data, Variance can represent the MSE,
thus leading to better UAL performance. The closeness of P ∗ to the ground-truth
is affected by the prediction model class capacity. More specifically, when the
model class capacity is flexible enough to capture the underlying ground-truth
function, the MSE can be estimated based on the prediction Variance.

As an example, Fig. 4 compares the UAL performance with random sampling
when the underlying function’s complexity matches the predictive model class
with both being quadratic functions. It is clear that UAL is able to outperform
random sampling, implying that the estimated acquisition function based on the
predictive variance faithfully represents MSE when the model class covers the
ground-truth target, leading to efficient UAL, aligning with the analysis.
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Fig. 3. Bias-variance decomposition for the
motivating example with lower complexity
prediction model in Sect. 1. In this exam-
ple the estimated variance cannot capture
the learning objective, mean squared error
(MSE) for regression.

While when checking the bias and
variance decomposition of the exper-
iment in Sect. 1 as demonstrated in
Fig. 3, since the model class complex-
ity is not enough to cover the target
function, the bias term can dominate
the MSE and the variance term does
not fully capture the MSE, making it
an uninformative acquisition function
unable to guide UAL efficiently.

In what follows, we delve deeper
into the analysis of MSE, considering
an uncertainty class of the ground-
truth functions. Assuming that the
uncertainty class of ground-truth
functions is the lth-order polynomial
family, f(x) = 〈φ(x, l),w〉 ∈ R, with
w ∼ N(μ,Σ), the MSE can be decom-
posed as:

Fig. 4. Motivating example with a ground-truth target as complex as the prediction
model class. In this example, the noisy data follows the ground-truth function, which
is a quadratic function ( y = f(x) + ε with ε ∼ N(0, 1), where f(x) = 〈x,w〉, and
x = [1, x, x2] ). The left plot shows the ground-truth target function with the same
w as the example in Sect. 1 and its corresponding noisy observed data. The right plot
shows the comparison of UAL and random sampling to learn the quadratic predictor
by BPR.

MSE = EP (Y |X)
[
EP ∗(θ|DL)[(f(x) − 〈φ(x, p), μ̂p〉)2]

+ EP ∗(θ|DL)[(〈φ(x, p), μ̂p〉 − 〈φ(x, p), θ〉)2]]

= EP (Y |X)[(f(x) − 〈φ(x, p), μ̂p〉)2 + φ(x, p)
�

Σ̂pφ(x, p)]

= EP (w)[EP (Y |w,X)[(f(x) − 〈φ(x, p), μ̂p〉)2]]
︸ ︷︷ ︸

Bias

+ φ(x, p)
�

Σ̂pφ(x, p)
︸ ︷︷ ︸

Variance

.



When Uncertainty-Based Active Learning May Fail? 91

By replacing posterior mean (μ̂p) in (3) and taking the expectation, the MSE is:

MSE =(φl)�(μμ� + Σ)(φl) − 2(φp)�Σ̂pΣ̂−1μ̂μ�φl − 2

σ2
(φp)�Σ̂pΦ̂

�Φ(μμ� + Σ)φl

+ (φp)�Σ̂pΣ̂−1μ̂μ̂T Σ̂−1Σ̂p(φp) +
1

σ2
(φp)�Σ̂pΣ̂−1μ̂μ�Φ�Φ̂Σ̂p(φp)

+
1

σ2
(φp)�Σ̂pΦ̂

�Φμμ̂�Σ̂−1Σ̂p(φp)

+
1

σ4
(φp)�Σ̂pΦ̂

�Φ(μμ� + Σ)Φ�Φ̂Σ̂p(φp) +
1

σ2
(φp)�Σ̂pΦ̂

�Φ̂Σ̂p(φp)

+ (φp)�Σ̂p(φp),

(6)
where φp = φ(x, p), φl = φ(x, l), and Φ ∈ R

n×(l+1).
Assuming the model’s complexity matches the target’s complexity (p = l),

we can further simplify the MSE. More specifically, based on this assumption, Φ
and Φ̂, φl and φp are the same. As a result, ΦΦ̂� = Φ̂Φ� = Φ̂Φ̂�. Furthermore,
considering knowing the uncertainty class of ground-truth functions, the prior
mean and covariance are assumed to be the same as the uncertainty class, i.e.,
μ and μ̂, Σ and Σ̂ are equal. Also, considering that Φ̂Φ̂� = σ2(Σ̂−1

p − Σ̂−1), by
replacing Φ̂Φ̂� with its equivalent counterpart, the MSE for the matched model
is2:

MSE = 2(φp)�Σ̂p(φp) = 2(σp(x)2 − σ2). (7)

Equation (7) shows that when the prediction model class matches the target
ground-truth, the Variance term is proportional to the MSE; i.e., using the
posterior predictive variance, one can find what would be the MSE of a sample
for the currently trained model, and consequently, which point is the best to
be added to the training set. This can effectively guide UAL to outperform the
random sampling based training strategy.

With Eq. (7) giving an intuitive explanation to MSE of models with matched
complexity as the target, the analysis for the unmatched models would not lead
to a similar clean form. It is believed that with reasonable Bayesian inference,
higher-order prediction models in BPR can provide a predictive variance that
still captures the actual MSE fairly well. However, the lower-order model exhibits
a notably pronounced Bias with respect to its Variance deterring the effective-
ness of using the Variance as the MSE surrogate. For this reason we further
analyze the lower-order model where the model’s order is smaller than the tar-
get’s order (p < l).

Before delving into the analysis, we define the following matrices:

Φ =[Φ̃c Φ̂] ∈ R
n×(l+1), μ =

[
μ̃c

μ̃

]
∈ R

(l+1),

φl =
[
φ̃c

φp

]
∈ R

(l+1), Σ =

⎡
⎣Σ̃c Σ12

Σ�
12 Σ̃

⎤
⎦ ∈ R

(l+1)×(l+1)

2 The detailed derivation for Eq. (6) and (8) is provided in Appendix.
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with φ̃c = [xp+1, . . . , xl], where

Φ̃c ∈ R
n×(l−p), Φ̂ ∈ R

n×(p+1),

μ̃c ∈ R
(l−p), μ̃ ∈ R

(p+1),

φ̃c ∈ R
(l−p), φp ∈ R

(p+1),

Σ̃c ∈ R
(l−p)×(l−p), Σ12 ∈ R

(l−p)×(p+1), Σ̃ ∈ R
(p+1)×(p+1).

Assuming μ̃ = μ̂ and Σ̃ = Σ̂, after plugging in the equivalent matrices to Eq.
(6), the MSE will be:

MSE = (φ̃c)�(Σ̃c + μ̃cμ̃
�
c )(φ̃c) − 2

σ2
(φp)�Σ̂pΦ̂�Φ̃c(Σ̃c + μ̂cμ̂

�
c )(φ̃c)

+ 2(φp)�Σ̂pΣ̂
−1Σ�

12(φ̃c) +
1
σ4

(φp)�Σ̂pΦ̂�Φ̃c(Σ̃c + μ̂cμ̂
�
c )Φ̃�

c Φ̂Σ̂p(φp)

− 2
σ2

(φp)�Σ̂pΦ̂�Φ̃cΣ12Σ̂
−1
0 Σ̂p(φp) + 2(φp)�Σ̂p(φp)

= P(x) + 2 × Var(x),
(8)

where the Variance term Var(x) = (φp)�Σ̂p(φp) is a (2×p)th-order polynomial
function of x, and P(x) consists of the remaining terms in MSE and is a (2×l)th-
order polynomial function of x.

Importantly, it means that in the lower-order model case, the complexity
(order) of the Variance term diverges from the true MSE. This would poten-
tially result in the inability of the estimated uncertainty in accurately capturing
the true learning objective, MSE, as we will observe in the latter experiments.
Consequently, relying on Variance (uncertainty metric) for sample selection
yields choices that lack informativeness, which may lead to degraded UAL per-
formance.

4 Experiments

We have theoretically analyzed the performance of UAL algorithms, which relies
on whether their adopted acquisition function based on the estimated uncer-
tainty can faithfully portray the ultimate learning objective, MSE, when consid-
ering regression in this paper. In Sect. 3, we show that the predictive variance is
able to capture regression learning objective when the model’s complexity aligns
or surpasses that of the underlying ground-truth target function.

In this section, to further investigate the validity of our findings and the
effect of model complexity mismatch on UAL performance, we first provide a
more comprehensive evaluation of experimental results by utilizing a synthetic
dataset tailored to our aims to demonstrate the relationships between the predic-
tive model complexity, acquisition function effectiveness, and UAL performance
(measured by MSE). Moreover, to further validate the reliability of our results,
we carry out experiments to demonstrate UAL performance on two real-world
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open-access datasets comparing the UAL performances with a simple model and
a complex model representing low vs. high model complexity classes respectively.

The UAL method in all our experiments and simulations is based on the
basic pool-based UAL setting: the prediction model will be trained on the initial
labeled dataset, DL; the most uncertain sample based on the learned model from
the unlabeled dataset DU will then be queried and added to the labeled dataset
to update the model in the next step. This process iterates and ends when all
the designated unlabeled training data, DU, is exploited. In our experiments
for UAL with regression, the predictive posterior variance is considered as the
measure of uncertainty, and consequently, the acquisition function to query new
samples from DU.

For deriving generalizable conclusions, we conduct experiments on a synthetic
dataset that consists of 100 randomly generated 3rd-order polynomial functions
as the ground-truth functions to simulate the observed data for UAL perfor-
mance evaluation. We collect the corresponding performance statistics from these
100 random runs to illustrate the influence of model complexity mismatch on
UAL performance. For each run, we first generate an unlabeled training dataset
(DU) of 200 evenly partitioned samples with x ∈ [−2, 2]. We then simulate the
output corresponding to each sample xn during the UAL procedure based on
the following noisy observations:

yn = fn + ε, ε ∼ N(0, σ2), (9)

where fn = 〈(φ3
n)T ,w〉 with (φ3

n)T = [1, xn, x2
n, x3

n] and the corresponding
randomly sampled coefficient vector for the 3rd-order polynomial w ∈ R

4,
w ∼ N(0, I) and σ = 1. For each run, the initial labeled dataset (DL) consists
of one sample x that is randomly drawn from DU and its corresponding label y
that is acquired from Eq. (9) with the specific coefficient vector w. To evaluate
the regression and UAL performance, a holdout test dataset of 500 samples with
x ∈ [−2, 2] and their corresponding observed output y is used to estimate the
test MSE. In the following, we perform two sets of experiments on this synthetic
dataset to check the performance of UAL when using Bayesian Polynomial and
Gaussian Process Regressors as the predictive model, respectively. The initial
DL and target functions are the same across both sets.

To verify the reliability of our conclusions, we provide additional experimen-
tal results on two real-world case studies. In particular, we use the Concrete
Compressive Strength [29] and Facebook Metrics [10] datasets for the regres-
sion task. For the Facebook Metrics dataset, we use 25% of the dataset as the
test dataset and the rest as the training dataset. For the Concrete Compres-
sive Strength dataset, we randomly select 600 samples from the dataset, with
the same train/test split ratio as in the Facebook Metrics dataset. In both case
studies, we consider using Gaussian Process Regressors as the predictive model.

Bayesian Polynomial Regression. In this set of experiments, we perform
Bayesian polynomial Regression (BPR) for the corresponding model class of
polynomial order one (linear) to five and compare the learning performance
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based on the UAL and random sampling strategies. In each run, starting from one
randomly selected pair of input and output, the performance of each polynomial
model in UAL and random sampling procedure is evaluated.

The striking trend in Fig. 5 is that when the model class is linear or quadratic
functions, UAL shows significant worse performance than random sampling,
while in Fig. 6 when the model class complexity increases over the ground-truth
3rd-order polynomial functions, UAL performs better as typically expected. This
can be explained based on the analysis in Sect. 3.

To clearly illustrate the issues of UAL when the model class does not cover the
target ground-truth function to learn, we further visualize the Bias and Vari-
ance decomposition patterns. In the second row of Fig. 6 it is clear that when
the model class complexity matches or surpasses the target’s complexity, the
estimated predictive variance captures the actual MSE. However, bias-variance
decomposition patterns in Fig. 5 show model classes (linear and quadratic) with
low capacity are incapable of providing an accurate estimation of MSE via the
variance-based UAL acquisition function; hence, they lead to degraded UAL
performance, which can perform even worse than random sampling.

Another observation in this set of BPR experiments is that at the early
stages of UAL, a much sharper drop in the error happens compared to random
sampling (Fig. 7). Even for models with insufficient complexity, we observe this
phenomenon before they get stuck in the uninformative regions. However, after

Fig. 5. UAL Performance with the model class of linear and quadratic and their cor-
responding bias-variance decomposition on BPR over the 3rd-order polynomial family.
The first row shows the performance and the second row shows the bias-variance decom-
position related to each model class. As both classes are not flexible enough, variance is
incapable of capturing the learning objective (MSE); hence UAL performance degrades.
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passing the early stages of UAL and observing more samples, random sampling
outperforms UAL. Such observed trends suggest in scenarios where the amount
of data is extremely small even with model mismatch, UAL in BPR still has
short-term efficiency compared to random sampling.

In general, all UAL models perform better than random sampling at the
very beginning of UAL for BPR, but as the UAL process progresses, the models
whose complexity fall short to match the target’s complexity get stuck in the
uninformative regions of the input space. This leads to significantly degraded
performance of these UAL models compared to random sampling.

Fig. 6. UAL Performance with the model class of polynomial order three to five and
their corresponding bias-variance decomposition on BPR over the 3rd-order polynomial
family. The first row shows the performance and the second row shows the bias-variance
decomposition related to each model class. As prediction model classes are flexible
enough, variance can capture the learning objective (MSE); hence, UAL performance
improves.

Gaussian Process Regression. In this set of experiments, we first perform
Gaussian Process (GP) regression on the synthetic dataset to further validate
the generalizability of our findings with more flexible prediction models. Then
we conduct the regression task on two real-world datasets to verify the reliability
of our conclusions.

Instead of modeling the correlation of X and Y with some param-
eter, GP assumes the outputs are jointly Gaussian distributed with a
mean function m(x) and covariance defined by a kernel function k(x,x′),
i.e. f(x) ∼ GP(m(x), k(x,x′)). The conditional distribution P (f(x)|DL) =
N (mDL

(x), σ2
DL

(x)) is considered to be prediction, where the mean mDL
(x) =

m(x)+k�
∗ (K+σ2I)−1(y−m), the variance σ2

DL
(x) = k(x,x)−k�

∗ (K+σ2I)−1k∗,
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Fig. 7. Performance comparison between UAL and Random sampling for the model
class with lower capacity in BPR experiments: the left plot demonstrates when the pre-
diction models’ complexity is lower than the ground-truth target function’s complexity,
UAL gets stuck in querying non-informative regions of the input space after a few early
steps; the right plots illustrates the difference between UAL and random sampling MSE
(denoted by MSEUAL and MSERND respectively). In BPR experiments, even models
with insufficient complexity have superior performance juxtaposed to random sampling
at the early steps of UAL.

k∗ = [k(x,x1), . . . , k(x,xn)]�, m = [m(x1), . . . , m(xn)]�, the covariance matrix
of the observed points K = [k1, · · ·kn], and ki = [k(xi,x1), . . . , k(xi,xn)]�.

The selection of the kernel function k(x,x) plays a critical role in Gaussian
Process Regression (GPR) tasks. When choosing linear kernels, GPR is equiv-
alent to BPR with the linear model class. As the kernel becomes more compli-
cated, the model’s capacity increases accordingly. Similar to the previous set, for
experiments on both synthetic and real-world datasets, GPR with a linear ker-
nel representing low-capacity models is tested. During the experiments on the
synthetic dataset, we choose the Matern kernel to account for complex models.
For the experiments on real-world datasets, we exploit GPR with a Radial Basis
Function (RBF) to represent high-capacity models.

Using the same 100 synthetic 3rd-order ground-truth polynomial functions, as
in the BPR experiments, each run starts with one randomly selected pair of input
and output corresponding to one 3rd-order polynomial ground-truth function.
Subsequently, the performance of GPR with Matern and linear kernel in UAL
procedure, as well as the performance of the corresponding random sampling
strategy are assessed. Akin to observations in BPR, Fig. 8 illustrates that in GPR
with Matern kernels, UAL performs better than naive random sampling which is
expected. However, with linear kernels, UAL performs significantly worse than
random sampling. Based on the analysis in Sect. 3, when the model’s capacity
equals or exceeds the ground-truth, the predictive variance captures the actual
MSE that leads to the better performance of UAL. However, the limited model
class (using linear kernels) with low model capacity results in an inaccurate
estimation of MSE. This mismatch leads to a degraded UAL performance.

In real-world case studies, we report the evaluated performance of GPR on
the Facebook Metrics and Concrete Compressive Strength datasets. For Face-
book Metrics, due to the uncomplicated nature of the dataset, we only report
the performance of the simple model in Fig. 9 . Clearly, owing to the simplicity
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Fig. 8. UAL performance comparison for GP regression with Matern and Linear kernels
over the target 3rd-order polynomial family. When using more flexible kernel functions
in GP, the ability of variance to faithfully capture the MSE increases; hence, UAL
performance improves.

of the regression task on this dataset, the simple model efficiently guides the
UAL process and outperforms the naive random sampling strategy. However,
for the more challenging regression task on the Concrete Compressive Strength
dataset, as demonstrated in Fig. 10, the variance-based acquisition function with
the simple model fails to direct UAL process, leading to poor performance in
comparison to random sampling. However, the variance-based acquisition func-
tion with the complex model successfully guides the UAL process and delivers a
superior performance than naive random sampling strategy.

Observing UAL performance under model mismatch scenarios and its depen-
dency on the prediction model capacity raises the question of “how to derive effi-
cient UAL in such circumstances”. A potential solution is to design acquisition
functions approximating the true learning objective, MSE in this study, which
opens interesting research opportunities and is the focus of our ongoing work.

5 Conclusions

Fig. 9. UAL performance using simple
model on the Facebook Metrics dataset.

The performance of UAL, one of the
most common pool-based BAL strate-
gies, heavily depends on the adopted
acquisition function guiding the sam-
ple selection process. When the esti-
mated uncertainty is used to define
the acquisition function, the extent
to which it can faithfully capture the
model prediction performance affects
the efficacy of the resulting UAL. We
embark on a comprehensive investiga-
tion that delves into the analysis of
UAL efficacy and the potential mis-
match between the prediction model
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class complexities from the ground-truth target. By analyzing the bias-variance
decomposition of prediction error, we showed when the bias due to potential
model mismatch dominates the prediction error, UAL may fail, performing
worse than training based on random sampling. We conclude that for UAL
to perform well, the choice of acquisition function is critical. When the pre-
diction model class complexity aligns with or exceeds the intrinsic complexity
of the target, UAL guided by prediction variance can perform better than ran-
dom sampling. Otherwise, better acquisition functions that directly capture the
prediction performance may be needed for effective UAL. We have performed
comprehensive empirical evaluation for both BPR and GPR, experimentally val-
idating our theoretical analysis. Additionally, by providing evaluations on two
real-world datasets, we further demonstrated the validity of our conclusions.
Potential future research directions include theoretical bound analysis on the
quantitative relationship between model mismatch and UAL efficacy as well as
the design of new acquisition functions based on reliable error estimation for
UAL.

Fig. 10. UAL performance using simple (left) and complex (right) models on the Con-
crete Compressive Strength dataset. It is clear that UAL with the complex model out-
performs random sampling while UAL with the simple model is incapable of guiding
the model learning procedure efficiently.
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Abstract. In this study, we explore the potential of pre-trained deep learning
models, proposing a new approach that emphasizes their reusability and adapt-
ability. Our framework, termed “customizable” deep learning, facilities users
to seamlessly integrate diverse pre-trained models for addressing new tasks
and enhancing existing solutions. Furthermore, we introduce a “programmable”
adapter that enables the flexible combination of different pre-trained modules,
expanding the range of applications and customization options. Through empiri-
cal experiments, particularly focusing on Visual Question Answering (VQA) for
visually impaired (VI) individuals, we demonstrate the practical effectiveness
of our methodology. These contributions advance the deep learning field while
promoting customization and re-usability across various domains and tasks. The
code is available https://github.com/Ratnabali-Pal/CPDA-VQA.

Keywords: Customizable deep-learning · Programmable deep-learning · VQA
for VI people

1 Introduction

Researchers continuously propose new deep learning methods [1–4], often building
upon existing models with incremental changes. For example, ResNet [5], a widely used
model, introduced skip connections to enhance learning. Despite these improvements,
the core components of these models, such as perceptions (MLP), convolutional layers,
and optimizer, remain consistent. Similarly, attention mechanisms are often fine-tuned
to boost accuracy [6] using novel algorithms on existing frameworks.

Post-invention, these deep neural networks are trained on various datasets for val-
idation or deployment. However, many pre-trained models, including large language
models (LLMs) and large visual models (LVM), become outdated quickly, leading to
wasted resources and environmental concerns due to their high energy consumption [7].
State-of-the-art fusion techniques and transfer learning often rely on pre-trained mod-
els [8], but they face challenges such as the lack of suitable baselines for model fusion
and pipeline [9]. Such behavior of deep learning methodologies and their incremental
advancements poses several challenges:
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Rapid Obsolescence of Models: Many pre-trained models become obsolete or are
underutilized within months, despite their high environmental costs in energy and car-
bon emissions [10,11].

Unavailability of Suitable Baselines for Model Fusion: There’s a lack of standard-
ized baselines or frameworks to effectively fuse different models or methodologies,
which could leverage their complementary strengths for improved performance [12].

Need for Customizable and Programmable Deep Learning: The field lacks method-
ologies that are easily customizable and programmable to suit specific research needs,
making it challenging to adapt existing models to new tasks or datasets efficiently. We
argue that if all the available pre-trained models are considered Lego pieces, a particu-
lar Lego character (solution) can be built by combining different pieces in many ways.
For example, Fig. 1 demonstrates how “a duck” can be built differently using different
pieces of Lego in several ways.

Fig. 1. The Main hypothesis: If we have different
colors (purpose) and shapes (compatibility) of Lego
pieces (components), it is possible to design new
Lego figures (solutions) differently.

To overcome the challenges, we
propose a “customizable” and “pro-
grammable” deep learning frame-
work that is generalized for solving
or improving state-of-the-art tasks.
The proposed method consists of
three major components (A) the pre-
trained models for solving differ-
ent tasks, (B) a connection between
two or more models, and (C) a pro-
grammable adapter. The role of the
adapter is to mitigate the incompat-
ibility between models or decision-
makers.

This paper introduces a novel
deep learning framework designed as programmable and customizable, capable of
addressing versatile tasks. The Key contributions of this work include:

Customizability and Programmability: The framework’s design allows for the
dynamic combination and configuration of deep learning models and adapters, pro-
viding adaptability to create customized solutions for diverse applications [13].

Cross-Domain Versatility: Demonstrated through different tasks including a case
study on assistive technology for the visually impaired, the framework’s adaptability
showcases its potential applicability across various fields [14], proving its utility in
solving complex, real-world problems.

Superior Performance: By optimizing interactions between models and adapters and
leveraging tailored configurations, the framework achieves enhanced accuracy and effi-
ciency, outperforming traditional deep learning approaches in challenging scenarios.
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Sustainability: By promoting the reuse and adaptation of pre-trained models and
adapters, the framework contributes to the sustainable development of AI technologies,
reducing redundancy in training and promoting efficient resource utilization.

These contributions emphasize the framework’s potential to revolutionize the app-
roach in different problem-solving within the AI community, offering a customizable,
efficient, and sustainable solution for a broad spectrum of tasks.

2 Related Work

In this section, we described the development of “customizable and programmable deep
learning”. We have discussed (A) the different deep learning model fusion methods that
promote the customizability and re-usability of deep learning methods, (B) the concept
of “programmable adapter” to enhance accuracy or solve new tasks, (C) Text-based
VQA, and (D) the problem of VQA for VI people.

Model Fusion: The question of how to fuse representations from different methods
and modalities has always attracted different researchers [15]. There exist two major
kinds of model fusion, namely decision level (Ensemble) [16], where different methods
are combined to make a single decision. On the other side, a feature-level fusion [17]
is used to combine different features extracted from different modalities. There exist
different modalities of information such as visual, textual, numerical, etc. that can be
processed and combined differently to solve a specific task.

Adapter: An adapter is a programmable unit that can attached to a model to solve new
tasks or to improve existing tasks. For example, an adapter-based tuning, as demon-
strated by the K-Adapter [18], offers a versatile approach to fine-tuning pre-trained
language models. By introducing lightweight adapter modules, denoted as “K”, into
existing models, task-specific adjustments can be made without the need for extensive
modifications to the original architecture. This adaptability allows for the integration
of new knowledge sources while retaining previously learned parameters, enhancing
scalability across evolving tasks and data sources.

Similarly, the VL-Adapter [19] focuses on efficient transfer learning for vision and
language tasks. By incorporating lightweight adapter modules into pre-trained models,
VL-Adapter simplifies the adaptation process for specific downstream tasks while min-
imizing changes to the original model architecture. Notably, VL-Adapter has shown
significant performance improvements, particularly in low-shot scenarios, with up to a
10% increase in accuracy. Moreover, automated methods for selecting crucial hyper-
parameters in VL-Adapter contribute to its accessibility and efficiency across various
vision-and-language tasks.

Overall, adapter-based tuning offers a flexible and efficient approach to fine-tuning
pre-trained deep models, enabling seamless adaptation to diverse tasks and data sources
while preserving the generalization capabilities of the original models. As described in
Fig. 2(b), an adapter is used for anomaly detection from CCTV videos by analyzing
trajectories extracted by deep neural network [20]. In Fig. 2(b), an adapter is used for
semantic segmentation from the binary segmentation [21].
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Text-Based VQA: Text-based Visual Question Answering (TextVQA) is a computer
vision and natural language processing task that aims to answer accurate questions
about images containing textual information. To capture the contextual knowledge of
important objects, Li et all. [22] incorporated 3D geometric information into the spatial
reasoning process, sequentially. Text-aware pre-training (TAP) [23] has been proposed
to integrate scene text to learn a joint representation of text, visual objects, and scene
text. TAP specifically includes scene text in pre-training to enhance Text-VQA/Text-
Caption. The model is first pre-trained using the scene text-aware pre-training tasks,
and it is subsequently fine-tuned for a particular downstream task.

VQA for VI People: Visual Question Answering (VQA) is a helpful tool for VI indi-
viduals to understand their surroundings by asking questions and receiving spoken
answers. People with visual impairments (VI) rely on technology like smart glasses
and phones to navigate the world. These devices capture videos and images that can be
converted into spoken answers to questions. Recent advancements in computer vision
research have improved VQA systems, making them more accurate and suitable for
VI people. The VizWiz dataset is a significant resource tailored specifically for VI
individuals, providing a VQA system using the images and questions submitted by
them [24,25]. In this area, research efforts have explored the utilization of synthetic
data and pre-trained models to enhance VQA performance [26–29]. Synthetic context
injection mechanisms have been proposed to improve model performance and facilitate
re-usability across different domains. Additionally, the integration of multiple visual
data decoding techniques using pre-trained models has been explored to enhance fur-
ther VQA capabilities. Still, there’s space for improvement, especially in developing
specialized models specifically designed for VI individuals. More work is needed to
ensure that these AI tools effectively meet the needs of VI users.

The concept of model fusion in VQA involves integrating multiple models or tech-
niques within a VQA system to improve its performance or capabilities [30–32]. How-
ever, despite these advancements, there remains a lack of specialized VQA system
tailored specifically for VI individuals, highlighting a critical gap in current research
efforts.

In the following section, we introduce a novel programmable and customizable deep
learning framework, designed as a general framework for various applications. We then
apply this framework as a case study specifically for Visual Question Answering (VQA)
tailored to assist visually impaired (VI) individuals. We validate the effectiveness of this
method in addressing the unique needs of VI individuals in accessing visual information
through VQA systems.

3 Proposed Method

Let, M be a pre-trained neural network, M = {I,O}, where I denotes the input and
O is the output of the model. The output is either a decision (Od), or a feature (Of ).
Let’s say, one image classification neural network is trained on a public dataset. Hence,
the input of the model is an image and the output can be the class of the image i.e.
(Od) or extracted feature from intermediate layers (Of ). We, introduce an ADAPTER
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(A) is a programmable module. A is defined by A = {I,O}, similar to a model. Here,
I ∈ {Od, Of}, and O is similar as M . A can be treated as function A(), where Input:
{I OR Od OR Of}, Output: {Od OR Of}.

Proposed Hypothesis 1: It is possible to intelligently program an adapter (A) such that
it can solve a novel problem or can improve a solution.

Proposed Hypothesis 2: It is possible to combine different pre-trained models (M) ,
along with some special adapter (A) to achieve a solution to a novel problem or to
improve a solution.

Proposed Hypothesis 3: It is possible to fine-tune individual pre-trained models (M)
or a group of models in a pipeline without hampering the whole system.

To support Hypothesis 2, we define four different types of fusion where I,M,O,A:
can interact. We restrict in 4 different cases as follows:

Case 1 (Model-to-Adapter): Here, a pre-trained model can be attached with a pro-
grammable ADAPTER to solve a new task other than the pre-model is trained to solve.
The structure is I → M → A → O. In between the input and output, there is one
model and an adapter. The information flow between models and ADAPTER is either
a decision (Od) or intermediate feature (Of ). The method is presented in Fig. 2(a).
Such a case is proposed in [20], where the authors used the set of object trajectories
extracted from videos (pre-trained model) are used to identify anomalies (ADAPTER).
The method depicted in Fig. 2(b). Wang et al. [33] proposed similar cases, where deep
feature (Of ) passes from models to an ADAPTER. An extracted deep feature using a

Fig. 2. Case 1: (a) State-of-the-art model-to-adapter pipeline. (b) An example of a case where an
object tracking model is used to extract the trajectory and a soft computing ADAPTER is used to
detect anomalies in the scene. (c) Example of a case where a pre-trained deep neural network is
used to extract the feature for binary segmentation of cell images and a cluster-based ADAPTER
is used for semantic segmentation of the cell.
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pre-trained model is used in clustering for a cell semantic segmentation as shown in
Fig. 2(c).

Case 2 (Adapter-to-Model): Here, a programmable adapter can be attached before a
pre-trained model. It can be used to change the input (I to make it more compatible
to the model (M). The pipeline is I → A → M → O. The constraint is shown in
Fig. 3(a). For example, Masoudi et al. [34] demonstrate such methods where an image
enhancement module is useful before passing through a neural network as shown in
Fig. 3(b).

Fig. 3. Case 2: (a) State-of-the-art adapter-to-model pipeline. (b) Example cases when an image
enhancer (adapter) is used for an input to a segmentation module (model).

Case 3 (Model-to-Model): A model can directly be attached to another model pro-
vided OM1 = IM2 . The information flow between models can be Od or Of as shown in
Fig. 4(a). For example, the problem solved in Case 1 as shown in Fig. 2(a) and 2(b) can

Fig. 4. Case 3: (a) State-of-the-art model-to-model pipeline. (b) Anomaly detection is solved
using two deep neural network models. (c) Cell semantic segmentation is solved using CNN and
LSTM.
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be solved using the model-to-model pipeline. Yu et al. [35] uses a deep neural network
for anomaly detection using the trajectory extracted from another deep neural network
as shown in Fig. 4(b). Similarly, Saha et al. [21] propose a combination of convolutional
neural network (CNN) and long short-term memory network (LSTM) for semantic seg-
mentation as shown in Fig. 4(c).

Case 4 (Models-to-Adapter): In this case, multiple deep neural networks can be added
as a pipeline to an adapter. This is I → {M1,M2,Mn} → A → O. Figure 5(a) show-
cased the method. For example, Islam et al. [36] used two identical deep neural net-
works (models) and a similarity measurement method (adapter) for image revival. The
method depicted in Fig. 5(b). There also exists works [37], where different types of
deep neural networks are used to extract different modalities of information and fuse.
Another case study [16] uses different decisions taken from different deep neural net-
works and ensemble them to make a final decision. The authors applied the method on
hostile content detection as shown in Fig. 5(c).

Fig. 5. Case 4: (a) State-of-the-art models-adapter fusion. (b) An example case where two iden-
tical neural networks are used for feature extraction and an adapter for fusion. (c) Example of
multiple model ensemble.

4 Case Study

Here, we present a case study supporting the hypotheses. We aim to develop an assistive
technology for visually impaired (VI) people. We questioned that a given input image
or videos (Iimage/Ivideos) captured by VI people and a question (Q) generated by the
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VI person can be answered. We aimed to develop such a specific VQA for our task. We
use the hypothesis presented in the article and consider five pre-trained models having
different decision capabilities as presented in Fig. 6(a). Figure 6(b) represents a pro-
grammable adapter that can be attached to a model by obeying the constraints defined
in the article. Figure 6(c) are the input (image and question text) and (d) represents
the expected output (answer). The different pre-trained models participating in the case
study are as follows:

Fig. 6. The components of the proposed hypotheses. (a) is a set of pre-trained models available
for the case study, (b) is an adapter that can be programmed, (c) Is the available input, and (d) is
the output.

MOCR - This an OCR model capable of extracting text from the image, i.e.
Iimage → Otext. We have used a pre-train lightweight transformer [38].

MQA - is a Vision-and-Language Transformer (ViLT) model pre-trained on
GCC+SBU+COCO+VG (200k steps) [39]. It is a kind of {Iimage, Itext} → Otext

method used for image question-answering.
MDescription - The pre-trained module is used to generate description images, a.k.a.

image captioning. we have used CLIP implementation of GPT2 [40].
MAugment - This is a text paraphrasing method used for question augmentation.

Pre-training with Extracted Gap-sentences for Abstractive Summarization Sequence-
to-sequence models, or PEGASUS [41] is used as a pre-trained module here. It is a
transformer encoder-decoder model.

MLLM - It is a pre-trained language model. The role of the model is to take input
a context and question to generate an answer. We use DistilBERT [42] for our experi-
ments.

The Input: Images or videos captured by VI people, and the Output: Answer asked
by the VI people. All the pre-trained models are Open Source and available in Hugging-
Face1 platform.

We argue that there are numerous ways to solve the problem using different “con-
figurations” of modules and designing a new “program” for the adapter. To support this,
we explain two different solutions to the problem. First, Fig. 7(a) demonstrates a case

1 https://huggingface.co/.

https://huggingface.co/
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where a single model can answer the question from the input. In, Fig. 7(b), the identi-
cal problem is solved using more complex inputs. We note that the proposed system is
permitted to have a different customized solution for the same problem.

A more complex solution can consider all the possible available models. We design
an adapter for combining different outputs coming from different models. The adapter
plays an important role in transforming incompatible outputs DM1 and inputs IM2 into
a compatible format, facilitating their amalgamation through a predefined “template.”

Fig. 7. The different cases of solution of the proposed hypotheses. (a) is a single model solution,
(b) is a multimodel solution.

Fig. 8. Proposed customized and programmed pipeline for the VQA for VI people.

Furthermore, we emphasize the adoption of a “master model”. We chose an LLM
for a leader model who will take an “context” and question, and deliver a QA system.
The proposed scientific methodology is visually depicted in Fig. 8. This design provides
a competitive solution compared to the state-of-the-art.
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1000 d e f INJECTION ( I , q u e s t i o n ) :
O_OCR=M_OCR( I )

1002 O_augment=M_Augment ( q u e s t i o n )
O_QA=M_QA( I , O_augment )

1004 O _ d e s c r i p t i o n = M_ D e sc r ip t i o n ( I )
c o n t e x t = O _ d e s c r i p t i o n + " . " + O_OCR + " . " + O_QA

1006 O_LLM=LLM_QA_baseline ( q u e s t i o n , c o n t e x t )
answer=O_LLM[ ’ answer ’ ]

1008 r e t u r n answer

Algorithm 1. Algorithm of INJECTION adapter

We programmed the adapter in a straightforward template-based content generation
mechanism. The contextual information (C) is formed by concatenating outputs from
previously trained models: (C)= “The text presented in the scene is” + (OOCR). +
“The scene description is” + ODESCRIPTION+ Qi + OANSWERi

. Subsequently, the
answer is derived by MLLM , incorporating both C and Q. The function is demonstrated
in Algorithm 1. The method serves as an effective tool for enhancing content genera-
tion in Visual Question Answering (VQA), offering a streamlined approach particularly
beneficial for the VI use case.

4.1 Training, Results, and Discussion

Here, we discuss the datasets and training procedure, and the results of different con-
figurations of the case study.

Datasets: Our experimentation encompasses three essential datasets for VI people.
VizWiz Dataset: Serving as our primary dataset, VizWiz is a unique resource cap-
tured exclusively by VI people [24,25]. It comprises a diverse collection of images
paired with associated questions, offering a genuine perspective on VI-centric VQA.
Figure 9(a) visually illustrates the dataset’s contents, highlighting specific hurdles
encountered within. Extended VizWiz Dataset: To augment our evaluation further, we
introduce the “Extended VizWiz” dataset, derived from VizWiz [24,25]. This extension
focuses on the questions answerable by extracting text from the images. By curating
this subset, we introduce new question-answer pairs, enhancing the dataset’s diversity
and enabling a more diverse assessment of our solution’s capabilities. Figure 9(a) pro-
vides illustrative examples of the novel questions posed by this extension, showcas-
ing the dataset’s unique challenges. P100: As an in-house creation, the P100 dataset
offers a novel perspective on VQA tasks within the context of VI people. Comprising
short videos captured by VI individuals using smartphones involving handheld prod-
ucts. With approximately 490 videos and 100 distinct products, each video is asso-
ciated with questions, facilitating a holistic evaluation of our solution’s performance.
Figure 9(b) offers a glimpse into the dataset’s contents, highlighting its diversity and
relevance to handheld product interactions.



Customizable and Programmable Deep Learning 111

Fig. 9. (a) VizWiz image dataset for VQA. The dataset is extended by including new question-
answers namely Ext-VizWiz. (b) P100 video dataset for VQA.

Together, these datasets provide a comprehensive and diverse evaluation framework,
ensuring our proposed solution is rigorously assessed across a range of VI-centric VQA
tasks and scenarios.

Zero-Shot-Zero-Training: As our method is capable of a zero-shot-zero-training
setup, first we compare the proposed method shown in Fig. 8 with a pre-trained visual
transformer, namely CLIP [43] using the setup shown in Fig. 7. We use 20% of the
data (test samples) for evaluation. The results are demonstrated in Table 1. It is noted
that the proposed method performs better compared to a single transformer like CLIP.
These results also justify fusing different modalities of information for VQA.

Single-Model and Collaborative Training: According to Hypothesis 3, the model
has the capability to train a single module (model) or can be trained jointly. In our The
experimental results from re-training the pipeline as demonstrated in Fig. 10(a) and (b).
The training dataset comprised 60% of the data, while 20% was used for validation
and the remaining 20% for testing across all datasets. The outcomes reveal discernible
improvements in final decisions when the re-training process is employed. It is notewor-
thy that the design of the solution involves a large permutations and combinations. The
overarching objective is to strike a balance, maximizing accuracy while minimizing the
requisite training data and energy. The experimental results are summarized in Table 2.
It is observed that both of the retrain cases, significantly improve the accuracy of the

Fig. 10. (a) Single model (MQA) is trained. All other methods are freezes. (b) Multiple models
(MQA,MAgumet) are trained.
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Table 1. Comparison of zero-shot-zero-training VQA
for VI

Method Dataset Accuracy BLEU (Avg.)

CLIP pre-trained [39] VizWiz 0.20 ± 0.21 0.09

Ex-VizW 0.06 ± 0.14 0.02

P100 0.11 ± 0.24 0.02

VL-ADAPTER [44] VizWiz 0.22 ± 0.19 0.11

Ex-VizW 0.09 ± 0.21 0.03

P100 0.11 ± 0.31 0.09

Proposed (zero-shot) VizWiz 0.38 ± 0.16 0.16

Ex-VizW 0.59 ± 0.21 0.42

P100 0.14 ± 0.20 0.11

Table 2. Comparison of results of re-
training different modules

Re-train Dataset Accuracy BLEU (Avg.)

MQA [39] VizWiz 0.42 ± 0.19 0.22

Ex-VizW 0.11 ± 0.16 0.07

P100 0.21 ± 0.16 0.14

MQAMAugment VizWiz 0.43 ± 0.17 0.21

Ex-VizW 0.11 ± 0.11 0.07

P100 0.22 ± 0.17 0.17

Proposed VizWiz 0.51 ± 0.11 0.31

Ex-VizW 0.61 ± 0.24 0.59

P100 0.32 ± 0.14 0.26

method in the VizWiz dataset, as the method was fine-tuned using the same. Fine-tuning
also improves the accuracy over the other two datasets i.e. Ex-VizWiz and P100.

Pre-trained Model Bias: We agree that the proposed method solely depends on the
pre-trained model during zero-shot. The final pipeline has a similar bias to the dataset
in which it is trained. The final pipeline’s accuracy depends on the pre-trained model’s
individual performance. For example, we replace the OCR module (MOCR) with a
recent OCR development namely TrOCR [45], we observed a 1% improvement in zero-
shot and 2% improvement in final prediction after re-train in P100. A smaller improve-
ment of 0.5%,1.14% found in Ext-VizWiz and a 0.1%,0.32% improvement in VizWiz
dataset.

4.2 Ablation Study

Here, we analyze the individual contributions of components, denoted as Mi, within
the proposed system. We systematically removed each participant component (model)
from the pipeline, and the results are presented in Table 4. The findings reveal that
MOCR exerts the most significant influence on the final output. This observation is
consistent with the dataset’s bias, where a predominant focus on text in images was
maintained during collection. The question-answer module (MQA) has a significant
impact on overall accuracy. Whereas, the description generation module (MDescription)
is a little. In contrast, the question augmentation module (MAugment) demonstrates a
relatively minor influence. These results suggest that introducing new suitable model
participants could potentially enhance accuracy further without the need for additional
training.

5 Results on Diverse Applications

Here, we discuss the results of the diverse applications over diverse datasets. The con-
cept of programmable and customizable deep learning is used in all the cases. We have
reported the results of 6 different scenarios for 4 cases reported earlier (Fig. 2 to Fig. 5).
All the proposed methods can be implemented using our framework. Table 3 reports the
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Table 3. Results of different applications used the
concept of customization and programming new algo-
rithms to solve new problems in deep learning

Method Application Dataset Baseline Improved Contributions
Fig. 2(b) Anomaly [20] UCF-Crime 82.1% (AUC) 84.48% Adapter
Fig. 2(c) Segmentation [21] Breast Cancer 93.0% (F1) 96.0% Adapter
Fig. 3(b) Segmentation [46] Brain MRI 88.0% (F1) 90.0% Adapter
Fig. 4(b) Anomaly [47] UCSD 90.0% (AUC) 91.1% Adapters
Fig. 5(b) FIR [36] Ornament 14.80% (ACC) 26.74% Adapters, Fusion
Fig. 5(c) Classification [16] Hindi-News 56.0% (F1) 62.0% Adapters, Fusion

Table 4. Ablation study

Excluded Dataset Accuracy BLEU
(Avg.)

MOCR VizWiz 0.44± 0.17 0.22
Ex-VizW 0.08± 0.24 0.06
P100 0.19± 0.20 0.19

MDescription VizWiz 0.47± 0.14 0.21
Ex-VizW 0.59± 0.24 0.51
P100 0.21± 0.22 0.19

MQA,MAugment VizWiz 0.11± 0.24 0.08
Ex-VizW 0.56± 0.12 0.51
P100 0.17± 0.21 0.19

MAugment VizWiz 0.51± 0.21 0.29
Ex-VizW 0.61± 0.22 0.59
P100 0.28± 0.11 0.24

None VizWiz 0.51± 0.11 0.31
Ex-VizW 0.61± 0.24 0.59
P100 0.32± 0.14 0.26

results. It is noted that, in all the cases, the fusion or addition of new adapters improved
accuracy on specific data and it is evidenced in many datasets.

Fig. 11. Failure cases in P100, VizWiz, and Ex-VizWiz dataset.

5.1 Failure and Limitations

The main limitation of the proposed method is that the pre-trained model comes with
its own bias and limitations, the proposed pipeline will also have a similar bias and lim-
itation. For example, the proposed method encounters difficulties addressing scenarios
when it is “easy to answer for humans” but difficult for an AI method. for example,
an automated method cannot answer simple questions as illustrated in Fig. 11 across
various datasets. This is observed among all across different methods and datasets. This
limitation arises from the dependence on pre-trained models, highlighting the method’s
inability to adapt to new data. However, the problem can be solved by fine-tuning the
baseline models and we have the option for this.
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6 Conclusion

In this study, we have presented a novel approach to deep learning, focusing on the
concept of customization and programmability. Our framework is designed to use the
potential of pre-trained models in a versatile manner, allowing users to adapt them to
various tasks and challenges. By combining different pre-trained models and employ-
ing programmable adapters, our framework offers a flexible solution to address a wide
range of problems.

Through a detailed case study focusing on Visual Question Answering (VQA) for
individuals with visual impairments, we have demonstrated the practical efficacy of our
methodology. By leveraging diverse pre-trained models and adapters, we were able to
develop a VQA system tailored specifically to the needs of visually impaired users.
This system showcases the potential of our framework to promote customizability, pro-
grammability, and re-usability in AI technology.

Looking ahead, there are numerous opportunities for further exploration and refine-
ment of our framework. Future research can investigate its application in different
domains and tasks, exploring its adaptability and effectiveness across diverse scenar-
ios. Additionally, efforts to enhance the interoperability and compatibility of pre-trained
models and adapters can improve the framework’s usability and scalability.
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Abstract. Most of the sophisticated AI models utilize huge amounts
of annotated data and heavy training to achieve high-end performance.
However, there are certain challenges that hinders the deployment of
AI models “in-the-wild” scenarios i.e. inefficient use of unlabeled data,
lack of incorporation of human expertise and lack of interpretation of
the results. To mitigate these challenges, we propose a novel Explainable
Active Learning (XAL) model viz. ‘XAL-based semantic segmenta-
tion model “SegXAL” , that can (i) effectively utilize the unlabeled
data, (ii) facilitate the “Human-in-the-loop” paradigm and (iii) augment
the model decisions in an interpretable way. In particular, we investigate
the application of the SegXAL model for semantic segmentation in driv-
ing scene scenarios. The SegXAL model proposes the image regions that
require labelling assistance from Oracle by dint of explainable AI (XAI)
and uncertainty measures in a weakly-supervised manner. Specifically,
we propose a novel Proximity-aware Explainable-AI (PAE) module and
Entropy-based Uncertainty (EBU) module to get an Explainable Error
Mask, which enables the machine teachers/human experts to provide
intuitive reasoning behind the results and to solicit feedback to the AI
system, via an active learning strategy. Such a mechanism bridges the
semantic gap between man and machine through collaborative intelli-
gence, where humans and AI actively enhance each other’s complemen-
tary strengths. A novel high-confidence sample selection technique based
on the DICE similarity coefficient is also presented within the SegXAL
framework. Extensive quantitative and qualitative analyses are carried
out in the benchmarking Cityscape dataset. Results show the outperfor-
mance of our proposed SegXAL against other state-of-the-art models.

Keywords: Active learning · Explainable AI · Semantic segmentation

1 Introduction

Over the past decade, the world has witnessed an unprecedented technologi-
cal revolution with the help of Artificial Intelligence (AI) towards accelerat-
ing automation, improving decision-making processes, and extracting insights
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from vast datasets. Despite these advancements, deep learning models commonly
encounter substantial challenges while deploying in real-world or “in-the-wild”
settings, such as limitation of well-annotated data, contextual & prior informa-
tion and interpretability of the results [1].

Annotation of new data points is an expensive and laborious task, yet crucial
for enriching training datasets with valuable information. In tasks like image
semantic segmentation, manually labelling each pixel with its class label is
arduous. Supervised algorithms provide efficient solutions for this task, whereas
in unsupervised scenarios, automatic labelling poses a significant challenge for
machines. Furthermore, integrating prior and contextual information can sig-
nificantly enhance AI model performance, especially in high-risk scenarios e.g.
medical and defence. Domain experts can contribute valuable knowledge to AI
systems in such situations, enabling a “Human-in-the-loop” paradigm for more
rational analysis and informative results. However, most existing AI systems lack
mechanisms to incorporate additional human-collected information or domain
expertise. In real-world scenarios, the inverse situation also exists, wherein the
operators often have to rely on visual inspection to make decisions due to the lack
of explainability in machine decisions. Despite the advancements in deep neural
networks, the integration of AI tools in various fields is hindered by the opacity
of these “black-box” models, which fail to provide explanations for their actions.
All of these scenarios highlight the semantic gap between human and machine
analysis, emphasizing the need for human involvement in decision-making as
well as the development of Explainable AI tools towards better interpretability
of the model.

To mitigate the aforementioned challenges, we propose a novel Explainable
Active Learning (XAL) model that combines domain expert assistance and
explainable AI (XAI) support within the active learning (AL) paradigm.

In particular, we propose a novel XAL based semantic segmentation
model “SegXAL” for the driving scene scenarios. Active learning facilitates
effective training set by iteratively curating the most informative unlabeled data
for annotation with the help of human intervention (oracle) accentuating the
“human-in-the-loop” paradigm [8,9]. This “domain expert teaching” emphasizes
productivity and enhances trust in AI systems, especially in low-resource as well
as high-risk scenarios. Similarly, the explainability aspect of the SegXAL model
enables the “machine teachers” (human experts) to obtain intuitive reasoning
behind the results and to give solicit feedback to the system [12]. This is inspired
by the rationale that humans’ cognizance leverages causal and interpretable
information to make decisions [10,11]. Both of these AL and XAI notions within
the SegXAL model bridge the semantic gap between man and machine through
collaborative intelligence, wherein humans and AI actively enhance each other’s
complementary strengths.

The key component of the SegXAL framework is the Explainable Error Mask
(EEM) module that provides intuitive reasoning as well as uncertainty mea-
sures for the sample selection. The EEM module internally contains two com-
ponents viz. Entropy-based Uncertainty (EBU) module and Proximity-aware
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Explainability (PAE) module. Following popular active learning approaches, the
EBU module utilizes uncertainty or disagreement in the unlabeled data to iden-
tify the most uncertain and informative samples for annotation by the oracle
[2,3,6]. Whereas, the PAE module acts as an interpretable proximity approx-
imator that prioritizes the relevant nearby class information, leveraging depth
estimation technique and explainable AI. In particular, two advanced AI models
viz. MiDaS [34] and DINOv2 [5] are used as the instances of depth estimation.
Refering to the XAI technique, we leverage Gradient-weighted Class Activation
Mapping (GradCAM) [35], which interprets and visualizes the regions of an
input image that are crucial for the network’s prediction of a specific class.

Thus, the PAE module along with the EBU module provides the Explainable-
Error Mask (EEM) with both informativeness and explainability, thereby facili-
tating meaningful annotation from the oracle. Two modes of oracle annotations
are presented in this work: The first mode is via Machine annotated pseu-
dolabels, wherein the machine itself does an automatic pixel annotation. The
second mode is via Manual annotation, wherein the human annotator labels
the region relevant to the object based on the candidate prompts. The major
contributions of the paper are as follows:

– Proposal of a ‘XAL based semantic segmentation model “SegXAL”
for the driving scene scenarios’, which is the first Explainable Active
Learning (XAL) framework in semantic segmentation.

– Development of a novel Explainable Error Mask (EEM), fusing
proximity-aware explainability (PAE) and entropy-based uncertainty (EBU)
measures, thereby enhancing the efficiency of oracle annotation.

– Proposal of two manual annotations schemes within the Active learning
framework viz. Manual-M and Manual-D, leveraging MiDaS and DINOv2-
based explainable error masks, respectively.

– Proposal of a novel high-confidence sample selection technique based
on DICE similarity coefficient.

– Extensive experimental analysis, ablation studies and state-of-the-art com-
parative analysis in benchmarking Cityscapes dataset.

The rest of the paper is organized as follows: The related works are described
in Sect. 2. The proposed SegXAL active learning framework is presented in
Sect. 3. The experimental setup and the results are discussed in detail in Sect. 4
and Sect. 5 respectively. Finally, the summary of the paper and some future plans
are enumerated in Sect. 6.

2 Related Works

Explainable AI: Explainable Artificial Intelligence (XAI) is an emerging area
of research in machine learning [11]. XAI techniques make AI models more inter-
pretable by humans by divulging the hidden “black-box” and providing insights
into how the model arrives at a particular decision. Some of the recent research
works have been investigating XAI in such cutting-edge areas, e.g. medical
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domain to find out the feature importance [25] and to visualize the biologically
relevant information [26]. Some XAI models were developed for remote sens-
ing and satellite applications, [27] to analyze synthetic aperture sonar (SAS)
data and for Explainable Machine Learning in Satellite Imagery, respectively.
The application of XAI approaches in driving scene scenarios is also reported in
the recent literature bestowing ideas towards comprehensible and trustworthy
autonomous driving technologies [24].

Active Learning: Active Learning (AL) entails the training process of a learn-
ing algorithm through an iterative collaboration with a human oracle [17]. AL
involves selecting the most relevant data samples from a pool of unlabeled data
based on uncertainty, representativeness, or diversity scores computed directly
with the model [2,3]. To this end, some popular approaches to obtain confi-
dence, margin and uncertainty measures are via entropy [13], Softmax probabil-
ities [14], Monte Carlo dropout [15] and Ensemble methods [16]. Such AL models
have been widely applied in various vision applications, such as medical scenar-
ios [18], satellite imagery analysis [19] etc. The necessity for AL frameworks for
autonomous driving scenarios is reported in [20], mentioning that ‘vehicles need
11 billion miles of driving (500 years of nonstop driving with a fleet of 100 cars)
to perform just 20 per cent better than a human.’ Motivated by this notion,
some recent AL works on driving scenes were reported in the literature [22].

AL for Semantic Segmentation: There are AL methods specially designed
for semantic segmentation that work at image, region or pixel levels [2,3]. The
Variational Adversarial Active Learning (VAAL) approach employs adversarial
learning to determine whether the latent space signifies labelled or unlabeled
data [23]. The work Difficulty-awarE Active Learning (DEAL) [2] incorporates
the semantic difficulty to measure the informativeness and select samples at
the image level. Another work ‘ViewAL’ [3] leverages inconsistencies in model
predictions across view-points to measure the uncertainty of super-pixels. Yet
another work S4AL [21] utilizes pseudo labels generated with a teacher-student
framework to identify image regions that help disambiguate confused classes.

Contrary to the aforementioned AL approaches that measure uncertainty/
informativeness, our proposed SegXAL additionally augments the notion of
explainability in the model. In particular, the PAE module in our proposed
SegXAL model imparts contextual and proximity-aware explainability to the
oracle to prioritize the annotation of nearby objects, which are pivotal in
autonomous driving scenarios. This kind of explainable active learning (XAL) in
semantic segmentation is proposed for the first time, to the best of our knowl-
edge. Further, the significance of pixel-level and object-level annotation by the
oracle (Machine annotator vs. Human annotator) is also investigated in our pro-
posal.
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3 Methodology: SegXAL - Explainable Active Learning
for Semantic Segmentation

The Active Learning (AL) protocol ensures that by intelligently selecting
instances for labelling, a learning algorithm can achieve good performance with
significantly less training data. Formally, it can be expressed as follows: Let
(xl, yl) be an annotated sample from the original labelled dataset DL and xu

represent an unannotaed sample from a significantly larger pool of unlabeled
data, DU . The goal of AL is to iteratively query a subset DS , that contains the
most informative n samples xu

1 , xu
2 , ..., xu

n from DU in an iterative manner, given
n is the fixed labelling budget.

In this work, we present a novel Explainable Active Learning paradigm for
semantic segmentation (SegXAL) in driving scene imagery. Refer to Fig. 1 for the
overall architecture of the SegXAL framework. It contains training of the model,
prediction of semantic maps, “Explainable Error Mask” (EEM) computation,
annotation, selection mechanism and retraining steps. Each of these steps is
explained in detail in the forthcoming subsections:

Fig. 1. Visual representation of Explainable Active Learning for semantic segmentation
(SegXAL) framework. The framework starts with an initial segmentation of unlabeled
data, leveraging pre-trained semantic segmentation deep neural network (e.g. U-net).
Further, the Explainable Error Mask (EEM) module computes the uncertainty measure
and proximity-aware XAI mask. Based on this EEM output, machine/human expert
(oracle) makes intuitive labelling feedback to the system. Further, based on the Dice
predictor-based query ranking mechanism, reannotated data are used for labeled pool
update and model retraining.
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3.1 Step 1: Semantic Segmentation Training and Prediction

We leverage U-Net [30] as the semantic segmentation network for the model
training. Typically, any segmentation model such as FCN [29] or DeepLab [31],
among others, could also be utilized. U-Net is employed in this pilot study, due
to its ability for the precise localization of objects while maintaining a high level
of contextual information as well as lower memory consumption. The U-Net
model embodies an encoder-decoder framework. The encoder is responsible for
the initial feature extraction and dimensionality reduction, by utilizing succes-
sive convolutional and pooling layers followed by nonlinear activation functions
(ReLUs) and batch normalization. Whereas, the decoder works on reconstruct-
ing the feature map to the original image size for detailed segmentation using
transposed convolutions (or deconvolutions). It also incorporates skip connec-
tions, that concatenate feature maps from the contracting path to preserve the
high-resolution details that are crucial for accurate segmentation.

In this initial step, a small randomly selected subset of the labelled dataset
DL will be used to train a semantic segmentation network. Following the widely
adopted protocol, we randomly sample 10% of the data as labelled data from
the train set as our labelled data pool1. After training the network on DL, the
model performance is evaluated on unlabeled dataset DU . AL approach strives
to forecast which samples from this unlabeled segment of dataset, are most likely
to provide the most informative insights, given the current state of the network.
To this end, a novel Explainable Error Mask (EEM) module is proposed.

3.2 Step 2: Explainable Error Mask Module

The Explainable Error Mask (EEM) module is the key component of our SegXAL
framework. In contrast to the vanilla Active learning models that provide uncer-
tainty/ representativeness insights for the annotation, this novel EEM module
presents an explainable error mask for the interactive annotation by the oracle.
It consists of the following components: i) Entropy-based Uncertainty (EBU), ii)
Proximity-aware XAI (PAE) and iii) fusion of PAE and EBU.

i) Entropy-Based Uncertainty (EBU) Module:
One of the most important postulations in active learning strategy is to guide the
user towards the most relevant areas to annotate, to fix errors. To this end, some
standard uncertainty measuring techniques such as entropy [32], or ODIN [33]
are exploited in the literature. Following many of the popular AL pipelines, our
EBU module leverages entropy metric to measure the uncertainty/ disagreement
for the unlabeled data, to obtain the most uncertain data which is informative
and worthful ones to be annotated by the oracle.

Entropy is a measure of uncertainty or information content in a probability
distribution [32]. In the context of image segmentation, it is commonly used to

1 (Ablation studies are carried out by varying the splits of labelled data pool i.e. 10%,
15%, 20%, 25%, 30%, 35%, 40%).
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quantify the uncertainty of pixel-wise predictions across different classes within
a batch of segmented images. Let us denote a batch of segmented images as X
with dimensions [B,C,H,W ], where B is the batch size, C is the number of
classes, H is the height and W is the width of images. Each image in the batch
consists of pixel-wise predictions across C classes. The entropy H(xi,j) for each
pixel xi,j can be calculated as:

H(xi,j) = −
C∑

c=1

P (c|xi,j) log2(P (c|xi,j)) (1)

where P (c|xi) represents the probability that pixel xi,j belongs to class c. Higher
entropy values indicate greater uncertainty or ambiguity in the predictions,
implying lower confidence in the model’s predictions. Conversely, lower entropy
values signify higher confidence or clarity in the predictions.

Fig. 2. Proximity-aware Explainable-AI (PAE) Module using MiDaS depth estimation
technique. Analogous to MiDaS, DINOv2 depth map is also investigated in this paper.

ii) Proximity-Aware Explainable-AI (PAE) Module: The high entropy
pixels generated by the Entropy-based Uncertainty (EBU) module can be spread
across the entire image, making it challenging from an Oracle perspective to
determine where to prioritize attention. Consequently, this may lead to missing
out of some of the vital regions to be annotated first. For instance, in driving
scene imagery with high entropy scores in the sky, vegetation, and vehicles, anno-
tation priority should be given to nearby classes i.e. vehicles, considering safety
concerns. We hypothesise that such a proximity awareness can improve the oracle
annotation. In addition, uncertainty techniques often lack human interpretabil-
ity, hindering an intuitive understanding of why certain regions are crucial for
annotation.

Based on the aforesaid rationale, we propose a novel Proximity-aware
Explainable-AI (PAE) module to mitigate the priority and interpretabil-
ity concerns. The PAE module is capable of focusing on the key objects and
regions of interest in the proximity regions with the help of an explainability
heatmap. The working pipeline of our proposed PAE module is depicted in
Fig. 2. Either MiDaS or DINOv2 model is leveraged to obtain the given image’s
relative depth map. MiDaS [34] is a robust monocular depth estimation tech-
nique that employs mixed-dataset training to create a robust and generalizable
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depth estimation model. Whereas, DINOv2 [5] is a self-supervised vision trans-
former model that uses a teacher-student architecture to provide object-level
feature extraction. Both of the models are capable of providing monocular depth
map outputs. By integrating the MiDaS/DINO-v2 patchwise depth map with
the raw image using a thresholding mechanism, the proximity coverage will be
estimated. This results in a depth-informed or soft attention image as shown
in Fig. 2. Note that the threshold for generating a depth-informed image varies
with each image based on the proximity of the nearest objects. Upon this image,
a Gradient-weighted Class Activation Mapping (GradCAM) [35] explainability
map is applied to visualize the important objects and regions. GradCAM is a
technique for visualizing CNN decisions, highlighting regions crucial for predic-
tions. The mathematical equation for GradCAM activation at spatial position
(i, j) for class c i.e. Grad − CAM c

i,j can be summarized as:

GradCAMc
i,j = ReLU

⎛

⎝
∑

k

1
Z

∑

i

∑

j

∂yc

∂fk(i, j)
· fk(i, j)

⎞

⎠ , (2)

where, yc is the output score for class c before softmax, fk(i, j) is the activation
value of the kth feature map at spatial position (i, j) and Z is the normalization
constant, typically sum of positive gradients. By applying the GradCAM upon
the depth-informed image, we obtain the proximity-aware GradCAM explain-
ability map i.e. ProxGradCAM c

i,j , which prioritizes the object class information
which is relevant in the proximity region.

iii) Fusion of PAE and EBU Modules: The PAE heatmap
ProxGradCAM c

i,j is further fused with EBU uncertainty heatmap H(xi,j), to
obtain the Explainable Error mask EEMi,j . Formally,

EEMi,j = α · ProxGradCAM c
i,j + β · H(xi,j) (3)

where α and β are the weights for the ProxGrad − CAM c
i,j and H(xi,j), respec-

tively. Albeit we used equal contribution for the weights in this work, it can be
made learnable.

3.3 Step 3: Oracle for Annotation

Next, we acquire labels for the superpixels/Region of Interest (ROI) selected by
EEM module, with the help of oracle. In particular, two modes of oracle annota-
tions are envisaged in this work: machine and human oracle. In the former mode
(Machine oracle), automatic pixel annotations are simulated by the machine
itself. We term these annotations as ‘pseudolabels’. In the latter mode (Human
oracle), the reannotations are carried out manually by a domain expert. By keep-
ing the interpretable information of the potential error map obtained from EEM
as a reference, the annotation process is carried out using tools like Label Stu-
dio2. Specifically, two manual annotation schemes are devised within the Active
2 Label studio: https://labelstud.io/.

https://labelstud.io/
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learning framework viz. Manual-M and Manual-D, leveraging MiDaS and
DINOv2-based explainable error masks, respectively.

Fig. 3. Oracle’s Reannotation workflow. The magenta point shown in 3(d) is the EEM
output prompt corresponding to the relevant object candidate to be annotated.

Figure 3 depicts a sample human oracle-based reannotation workflow. Based
on the initial segmentation mask output from the raw image as shown in
Fig. 3(b), EEM produces the output EEMi,j (Refer Fig. 3(c)). Further, based on
the object candidate prompt as shown 3(d), the human annotator corrects the
miss-segmented image regions by providing object-level annotation (Fig. 3(e)).
These newly reannotated segmentation masks will be further fed into the sample
selection module towards the next iteration of the AL loop.

3.4 Step 4: Thresholding Mechanism for Sample Selection

After the oracle, the labeled images are fed into the Ranking & Selection module.
Analogous to the high-confidence sample selection techniques as in [14], we use
a novel thresholding mechanism to select high-confidence samples to be incorpo-
rated into the labeled data pool. In particular, a standard evaluation metric i.e.
‘DICE predictor’ is utilized to compute the quantitative measure of performance
of the segmented images. Mathematically, DICE computation can be written as:

DICE =
2 × |A ∩ B|
|A| + |B| (4)

where A represents the segmented image and B denotes the reannotated pseudo
labels/ human annotations, within each AL cycle.

This DICE predictor-based sample selection strategy is devised based
on the assumption that “in every AL cycle, the oracle contributes a significant
amount of annotation to improve the quality of semantic segmentation”. Based on
this intuition, we postulate that whenever the similarity between the segmented
image and the reannotated image becomes high, a convergence is achieved in the
segmentation result. In other words, even after a significant amount of contri-
bution from the oracle, the segmentation result does not improve further, which
can be observed as an increase in the DICE similarity coefficient. To guarantee
the reliability of high-confidence sample selection, at the end of each iteration,
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this DICE value is compared against a predefined threshold θ. If the DICE score
is above θ, select it and add to the labeled pool and clear it from the unlabeled
set; otherwise, feed it back to the unlabeled dataset placed in the unlabelled
pool for potential future iterations.

3.5 Step 5: Iterative Active Loop for Semantic Segmentation
Improvement

After the Ranking & Selection module, high-confidence segmentation images are
added to the labelled data pool DL, as shown in Fig. 1. Based on this updated
dataset, the semantic segmentation model retraining will be carried out. This
concludes a complete active learning cycle. Further, a new AL cycle will start
based on the updated model weights and the unlabeled dataset DU . All the
series of steps - Semantic map prediction from unlabelled data, EEM computa-
tion, Annotation, Ranking & Selection and Retraining - are repeated until the
labelling budget is reached or all the data is labelled. This iterative AL cycle
optimally selects the most informative samples via EEM information and Oracle
annotation, enhancing model performance with minimal labelling costs.

4 Experimental Setup

Dataset: We evaluate our proposed SegXAL framework on the Cityscapes
dataset for semantic segmentation [28]. Cityscape is a large-scale benchmark for
urban street scene understanding, at 1024×2048 pixel resolution with 30 classes
including road, car, pedestrian, bicycle, traffic sign, and more. The dataset is
divided into three subsets: train (2975 images), validation (300 images), and
test (500 images). We follow the widely adopted protocol for the dataset - we
sample 40% of the data from the trainset as our labelled data pool DL for initial
training then iteratively query 5% new data from the remaining training set,
which is used as the unlabeled data pool DU . Considering samples in the street
scenes have high similarities, we first randomly choose a subset DS from the
entire pool of DU , then query n samples from the subset.

Evaluation Protocol: We evaluate our proposed SegXAL model using the
standard segmentation evaluation metrics i.e. Intersection over Union (IoU)
and DICE coefficient. To assess the accuracy of pixel-wise classification, the
standard evaluation metric IoU (Intersection over Union) score is utilized. IoU
is computed as the ratio of the intersection and union of the ground truth mask
and the predicted mask for each class. Further, the DICE similarity coefficient
is utilized for ranking & selection of samples, as described in Sect. 3.4. It pro-
vides a balanced measure of segmentation accuracy, especially in cases of class
imbalance, and hence is used for our sample selection strategy.



SegXAL: Explainable Active Learning for Semantic Segmentation 127

Implementation Details: The images with a dimension of 256 × 512 are nor-
malized using the RGB mean and standard deviation of ImageNet before pass-
ing to the network. Our baseline UNet model was evaluated using a stratified
K-fold cross-validation approach to ensure robustness and generalizability. The
network is trained using a Stochastic Gradient Descent (SGD) optimizer with
the following hyper-parameters: β1 = 0.9, β2 = 0.999, batch size = 16, initial
learning rate = 0.0001. The batch size used is 16 images. For all methods and
the upper bound method with the full training data, we train 100 epochs with
an unweighted cross-entropy loss function. The proposed method is implemented
using the PyTorch framework. The implementation was done in a machine with
NVIDIA DGX A100 GPU with 24GB RAM and takes around 8 h to train the
model.

5 Experimental Results

5.1 Evaluation Results

To verify the effectiveness of our proposed SegXAL framework, various quantita-
tive and qualitative analyses are carried out in the Cityscape dataset. The mean
Intersection over Union (mIoU) at each AL stage i.e. 10%, 15%, 20%, 25%, 30%,
35%, 40% of the full training set are adopted as the evaluation metric. Every
method is run 5 times and the average mIoUs are reported.

Refer to Table 1 for the per-class IoU and mIoU for each method at the fifth
AL cycle, using 40% training data in the Cityscapes dataset. Compared to other
popular approaches such as DEAL [2] and Core-set [36], SegXAL is found to be

Table 1. Class-wise IoU and mIoU on Cityscape dataset with 40% training data. For
clarity, only the average of 5 AL runs are reported, and the best and the second best
results are highlighted in bold and italics.

Method Road Sidewalk Building wall Fence Pole Traffic Light Traffic sign Vegetation Terrain

Fully-supervised 97.58 80.55 88.43 51.22 47.61 35.19 42.19 56.79 89.41 60.22

Random [21] 96.03 72.36 86.79 43.56 44.22 36.99 35.28 53.87 86.91 54.58

Entropy [21] 96.28 73.31 87.13 43.82 43.87 38.10 37.74 55.39 87.52 53.68

Core-Set[36] 96.12 72.76 87.03 44.86 45.86 35.84 34.81 53.07 87.18 53.49

DEAL [2] 95.89 71.69 87.09 45.61 44.94 38.29 36.51 55.47 87.53 56.90

Ours (Pseudolabels) 96.67 72.42 87.04 46.91 45.02 36.26 37.83 56.11 87.93 57.54

Ours (Manual-M) 96.91 72.68 87.44 46.62 45.22 35.62 36.24 55.78 87.66 57.86

Ours (Manual-D) 96.98 73.43 88.34 46.88 45.38 36.12 37.36 55.38 87.84 59.87

Method Sky Pedestrian Rider Car Truck Bus Train Motor Cycle Bicycle mIoU STD

Fully-supervised 92.69 65.12 37.32 90.67 66.24 71.84 63.84 42.35 61.84 65.30 19.48

Random [21] 91.47 62.74 37.51 88.05 56.64 61.00 43.69 30.58 55.67 59.00 20.61

Entropy [21] 92.05 63.96 34.44 88.38 59.38 64.64 50.80 36.13 57.10 61.46 20.14

Core-Set[36] 91.89 62.48 36.28 87.63 57.25 67.02 56.59 29.34 53.56 60.69 20.61

DEAL [2] 91.78 64.25 39.77 88.11 56.87 64.46 50.39 38.92 56.59 61.64 19.41

Ours (Pseudolabels) 92.18 62.53 38.82 88.61 59.07 65.72 47.12 35.41 55.83 63.56 20.12

Ours (Manual-M) 92.84 62.73 39.34 87.97 59.43 66.01 46.92 34.98 54.93 64.37 19.96

Ours (Manual-D) 92.93 62.56 39.07 88.11 59.47 65.70 46.88 35.53 54.71 65.11 20.15



128 S. Mandalika and A. Nambiar

outperforming in overall mIoU (Pseudolabels-63.56; Manual-M -64.37; Manual-
D -65.11), as well as on various classes, such as road, building, wall, traffic light,
traffic sign, vegetation, terrain, sky, rider, car and truck. Furthermore, between
the two modes of oracle annotation i.e. Pseudolabel vs Manual, we observe that
the manual mode outperforms with a 0.8% increase against the former, and has
a significant boost in class-wise IoUs. We also provide a statistical measure of
standard deviation (STD) to give an insight into the variability of the model
performance. Further, Table 2 displays the incremental trend of mIoU values
over multiple iterations. It is observed that at the end of 5 AL cycles itself,
mIoU is improved from 20.71 to 63.56 using Pseudolabels, 23.62 to 64.37 using
Manual-M and 24.24 to 65.11 using Manual-D.

Table 2. Comparison of mean IoU of SegXAL model over 5 active learning cycles,
with 40% training data, using pseudo labels annotated by machine vs and human
annotations using MiDaS (Manual-M) and DINOv2 (Manual-D) variants.

Mode ALcycle1 ALcycle2 ALcycle3 ALcycle4 ALcycle5

Pseudolabel 20.71 27.11 39.23 50.47 63.56

Manual-M 23.62 28.02 39.11 51.33 64.37

Manual-D 24.24 30.02 39.96 52.31 65.11

5.2 Visualisation Results

To demonstrate the efficacy of our proposed EEM module, we visualize the
qualitative results. Referring to Fig. 4, the visualization of 5 AL cycles of a
sample raw image shown in Fig. 2 are depicted column-wise. The pixel entropy,
Explainable Error Mask (EEM) output and the machine annotated pseudolabel-
based segmentation results are shown along the first, second and third rows
respectively.

Referring to Fig. 4 (a)-(e), high entropy areas represented in red or orange
patches indicate a high degree of variability in pixel values. Conversely, low
entropy regions, in blue, signify homogenous or less complex segments, where
pixel intensities are similar and are in their class boundaries. This entropy
map thus serves as a useful visualisation tool to analyse the complexity of the
scenes over the loops. Further, Proximity-aware GradCAM-XAI is fused with
this entropy mask to obtain an Explainable Error Mask as shown in Fig. 4 (f)-
(j)(Refer Sec. 3.2). These EEM outputs clearly “explain” the oracle to focus
and prioritise the annotation of the closer objects/regions with high entropy,
which are quite critical in decision-making in the real-world scenario. The oracle-
annotated results Fig. 4 (k)-(o)depicts the significant improvement in segmenta-
tion quality over 5 active learning cycles.
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Fig. 4. Visualization of model performance over 5 Active Learning cycles.

5.3 Ablation Study

I) Impact of Machine Based Pseudo Label Annotation vs Manual
Annotation/ Impact of Pixel level strategy and object level strategy:
In this ablation study, we analyse the effect of Machine-based pseudo label rean-
notation and Manual reannotation. As mentioned earlier, the machine oracle
mode leverages pixel-level pseudolabel values for annotation whereas the human
oracle employs object-level annotation via Label Studio. We could observe from
Table 1, Table 2 and Fig. 5 that both approaches provide superior performance
in semantic segmentation. Specifically, the manual annotation outperforms the
Pseudolabel annotation (Refer Table 1) and smooth segmentation masks (See
Fig. 5). Nevertheless, Machine-based auto labelling is faster and bestows a
promising automated AL solution from a practical perspective compared to man-
ual annotation, wherein a human expert reviews every image and reannotates.

ii) Impact of Proximity-Aware XAI EBU and PAE Modules: To under-
stand the impact of EBU and PAE modules, quantitative ablation studies are
carried out. Referring to Table 3, it can be observed that the lack of EBU sub-
module within the EEM block results in a mIoU drop of 3.69, 3.94 and 4.02
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Fig. 5. Visualization of Machine-based Pseudolabel vs. Manual annotation outputs

Fig. 6. Visual representation of Proximity-aware XAI (PAE)

in Pseudolabel, Manual-M and Manual-D cases, respectively. Its counterpart
results in the absence of PAE sub-modules are 3.47, 2.69 and 3.4 respectively.
Additionally, a qualitative study is also conducted to comprehend the visual
interpretation of Proximity-aware XAI, as depicted in Fig. 6. It is observed that
PAE outperforms the Vanilla GradCAM [35], which provides insights of the
scene by localizing on the key areas semantic classes via saliency heat maps
(Refer Fig. 6(a, b)). Built on top of this Grad-CAM concept, our Proximity-
aware XAI module refines the attention further onto the nearby objects in the
proximity regions e.g. nearby vehicles and sidewalks, as shown in Fig. 6(c). This
PAE enhancement notably fosters safety and transparency in autonomous driv-
ing scenarios.

Table 3. A quantitative study on impact of EEM module and their components.

Mode PsuedoLabels Manual-M Manual-D

With EEM 63.56 64.37 65.11

Without EBU 59.87 60.43 61.09

Without PAE 60.09 61.68 61.87

iii) Impact of Change in % of Data Split In this ablation study, we inves-
tigate the effect of data split on the SegXAL performance. In particular, we per-
form various splits of 10%, 15%, 20%, 25%, 30%, 35%, and 40% of the dataset for
the initial model training. Referring to Fig. 7 showing the fifth AL cycle mIoU
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result, it can be observed that based on the increase of labelled data from 10%
to 40%, there is a significant increase in mIoU for Pseudolabel 51.02 to 63.56,
Manual-M 52.29 to 64.37 and Manual-D 52.83 to 65.11.

5.4 State-of-the-Art Comparison

We compare SegXAL with other Active Learning-based semantic segmentation
approaches that are deployed on the Cityscapes dataset under similar conditions
(with 40% training data over 5 AL cycles) i.e. DEAL [2], core-set approach [36],
random, entropy [2,21] and QBC [2]. Although another recent study S4AL [21]
achieves a competitive result of mIoU 64.80, it is not included in the comparison
due to its different setting of 16% training data. Referring to the results as shown
in Table 1 and Fig. 7, it can be observed that SegXAL outperforms the state-of-
the-art approaches with a significant margin, achieving the best result of 65.11
mIoU with human annotations with DINOv2 depth map (blue-dotted line). It
is also observed from Table 1 that, the segmentation performance on the nearby
classes such as road (96.98), sidewalk (73.43), wall (73.48) and vehicles such as
truck (59.47), rider (39.34) are better or on par with the previously proposed
methods. This superior performance could be accredited to the Explainable Error
Mask module that facilitates object-level proximity mechanism using XAI atten-
tion and Entropy metric, which prioritizes the highly informative nearby objects’
annotations compared to far away objects such as train, vegetation etc.

Fig. 7. SegXAL performance against state-of-the-art on the Cityscapes dataset with
40% training data. Every method is evaluated at the end of 5 AL cycles.
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6 Conclusions and Future Work

In this work, we proposed a novel Explainable Active Learning framework viz.
SegXAL for semantic segmentation. A pilot study on the application of the
SegXAL model for driving scene semantic segmentation is presented in this
paper. In contrast to most of the existing Active learning methods that annotate
using uncertainty information, the proposed model additionally “explains” the
proximity region of interests and key objects to be prioritized while annotat-
ing by the oracle, with the help of a newly proposed Explainable Error Mask
(EEM) module. Such XAI heatmap explanations not only improve the segmen-
tation accuracy but also bridge the semantic gap that exists between human and
machine interpretation. Our SegXAL model outperforms state-of-the-art results.
Future improvements can be made by introducing better attention mechanisms
such as Vision transformers and extending the applications to other driving
datasets and other domains.
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Abstract. Temporal Action Localization (TAL) is crucial in video
understanding, focusing on identifying and timestamping actions within
raw video footage. A critical challenge in TAL is processing the rich spa-
tiotemporal details inherent in videos, traditionally addressed through
methods adapted from image processing. The Vision Transformer (VIT)
model marked a significant evolution, using a self-attention mechanism
for enhanced temporal information blending. Despite these advance-
ments, two key issues remain: insufficient extraction of spatial semantic
information at lower levels of feature pyramids and inadequate capture
of temporal semantic information at higher levels. To address these chal-
lenges, we introduce Adaptive Multi-Scale Convolutional Networks with
Optimized Attention (AMC-OA). AMC-OA enhances lower-level fea-
tures within the pyramid using multi-scale convolutional kernels, enrich-
ing spatial contextual semantics. Simultaneously, upper-level features are
refined with a temporally-focused contextual enhancement network uti-
lizing residual structures for better temporal understanding. To further
improve the model’s capability in handling extensive temporal spans, we
integrate an advanced multi-head attention mechanism. Empirical results
on benchmarks like THUMOS14 and ActivityNet1.3 demonstrate AMC-
OA’s superiority in TAL tasks, significantly improving both spatial and
temporal information extraction compared to state-of-the-art models.

Keywords: Temporal Action Localization · Feature Pyramid
Network · Semantic Context

1 Introduction

TAL is pivotal in video understanding, focusing on identifying and timestamp-
ing actions within raw video footage. A critical challenge in TAL is processing
the rich spatiotemporal details inherent in videos, which has traditionally been
addressed through methods adapted from image processing [1–3]. The VIT model
marked a significant evolution, using a self-attention mechanism for enhanced
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Fig. 1. Pipeline. The left part of the illustration represents the improved self-attention
mechanism based on the Transformer network. It introduces a multi-scale convolu-
tional neural network with different kernel sizes on top of the original pyramid network,
enhancing the network’s ability to extract spatial semantic information. Additionally,
residual structures are added between the layers of the pyramid to enhance the net-
work’s representation capability of temporal semantic information in videos. The right
part of the illustration represents the improved multi-head attention mechanism, which
enhances the network’s ability to extract long-term temporal information.

temporal information blending and adaptability to diverse video lengths and
scales.

Despite these advancements, two key issues remain: firstly, the extraction of
spatial semantic information at lower levels of feature pyramids is insufficient,
resulting in a lack of detailed spatial understanding in early stages. Secondly,
at higher pyramid levels, there is a deficiency in capturing temporal semantic
information, limiting the depth of time-related insights. These dual challenges
of spatial and temporal semantic extraction form the core motivation for our
research.

Recent trends in TAL have moved towards leveraging pre-trained video fea-
tures due to high computational demands. Models like ActionFormer [4] and
TriDet [5] have augmented the Transformer’s capabilities for improved tempo-
ral feature sensitivity and local understanding. However, they still face critical
challenges in effectively processing spatial semantics at lower pyramid levels
and capturing nuanced temporal semantics at higher levels. Specifically, Action-
Former primarily focuses on temporal context, potentially leading to a loss of
fine-grained spatial details at lower levels. TriDet, with its Trident-head and
Scalable-Granularity Perception (SGP) layer, enhances local temporal interac-
tions but may fall short in capturing extended temporal contexts at higher levels.

To address these challenges, we introduce AMC-OA, an innovative architec-
ture that significantly enhances feature extraction within feature pyramids (see
Fig. 1). AMC-OA employs multi-scale convolutions and a residual-structure-
based network, facilitating rich temporal information flow across pyramid levels.
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Fig. 2. Cosine similarity comparison across pyramid layers for spatial and temporal
information extraction.

Its major innovation is a multi-scale fusion of pyramid layers with residual atten-
tion mechanisms, improving both spatial and temporal contextual information
extraction. AMC-OA is built upon the TriDet baseline, incorporating several
key enhancements to improve overall performance.

To substantiate our claims, we conducted detailed experiments on the THU-
MOS14 dataset [6], evaluating the performance of AMC-OA against Action-
Former, TriDet, and ELAN [7]. The experiments involved processing video fea-
ture vectors through these models and comparing the cosine similarity of the
resulting feature vectors with ground truth vectors at different pyramid levels
(see Fig. 2). The results demonstrated that at lower pyramid levels, the cosine
similarity between the feature vectors and the ground truth spatial features
(approximated by single-frame convolution features) was significantly higher for
AMC-OA compared to ActionFormer, TriDet, and ELAN. This indicates that
AMC-OA excels in spatial semantic extraction. Additionally, at higher pyramid
levels, the cosine similarity between the feature vectors and the ground truth
temporal features (approximated by entire video segment features) was con-
sistently higher for AMC-OA, demonstrating its superior capability in retain-
ing temporal semantics. These results validate the effectiveness of AMC-OA in
addressing the identified challenges in TAL.

In summary, AMC-OA represents a significant advancement in TAL by
addressing critical gaps in both spatial and temporal semantic extraction, thus
setting a new benchmark in the field. Our contributions are summarized as fol-
lows:
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1. We identified and articulated the dual challenges in TAL related to insufficient
spatial semantic extraction at lower pyramid levels and inadequate temporal
semantic capture at higher levels.

2. We proposed the AMC-OA architecture, incorporating multi-scale convolu-
tions and a residual-structure-based network to address these challenges.

3. We conducted thorough experiments on the THUMOS14 and ActivityNet1.3
dataset, demonstrating AMC-OA’s superior performance in both spatial and
temporal information extraction compared to state-of-the-art models.

4. We introduced a multi-scale fusion approach with residual attention mecha-
nisms, significantly improving the feature extraction process within pyramid
levels.

2 Related Works

2.1 Temperal Action Localization

TAL tasks involve identifying and timestamping actions within uncut, full-length
video segments. TAL can be approached using either one-stage or two-stage
methods. One-stage methods directly regress to the final temporal frame pro-
posals, while two-stage methods, which this article employs, begin by setting
predetermined anchor frames and refining numerous proposals to formulate the
final temporal prediction frames [8,9]. Recent advancements in TAL have intro-
duced innovative techniques to enhance predictive performance. For instance,
methods such as ActionFormer and TriDet integrate advanced attention mech-
anisms to improve temporal sensitivity and local understanding. Additionally,
the incorporation of weakly-supervised approaches like the Generalizable Tem-
poral Action Localization task (GTAL) and Self-supervised Temporal Adaptive
Teacher (STAT) has shown promise in improving generalization across different
data distributions [10]. These advancements not only facilitate faster and more
accurate TAL tasks but also provide valuable insights for network design in video
understanding.

2.2 VIT-Based Methods in Video

The introduction of VIT models has revolutionized video-based deep learning
by leveraging self-attention mechanisms to enhance temporal information pro-
cessing [4,11,12]. VIT’s ability to map spatio-temporal dependencies has proven
pivotal in accurately identifying action timings in videos. Recent enhancements
in VIT-based methods include the integration of convolutional operations [13]
and attention mechanisms [14,15] for improved spatio-temporal feature extrac-
tion. Notable developments involve the fusion of multimodal data, such as opti-
cal flow, audio, and textual information, to enrich action comprehension and
localization [16,17]. Despite these advancements, challenges remain in extracting
detailed spatial semantic information at lower feature pyramid levels. To address
these issues, methods like AMC-OA have been proposed, significantly improv-
ing spatial and temporal feature integration. These efforts highlight the ongoing
evolution and the necessity for further research in VIT-based TAL methods.
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2.3 Feature Pyramids Network

Feature Pyramid Networks (FPNs) play a critical role in multi-scale feature
extraction, capturing diverse semantic levels across temporal and spatial dimen-
sions [18–21]. Integrating FPNs with Transformer models has enhanced TAL
models’ accuracy in action recognition and localization. Recent methods leverage
multi-layer feature pyramids to represent features at various scales, enabling the
Transformer to process these features through self-attention mechanisms. This
integration allows for a comprehensive modeling of spatio-temporal nuances in
videos. For instance, combining FPNs with memory-efficient mechanisms like
Long-Short-range Adapter (LoSA) [22] has shown significant improvements in
handling long video sequences while maintaining computational efficiency.

Furthermore, the inclusion of residual connections and advanced attention
mechanisms, as seen in the AMC-OA framework, has further enhanced the
model’s capability to capture both spatial and temporal semantic information
[23]. These advancements underscore the importance of continuous innovation
in feature pyramid networks for TAL.

3 Our Method

The AMC-OA framework addresses the challenges of TAL by effectively inte-
grating spatial and temporal information. The architecture consists of three
pivotal modules: Adaptive Multi-Scale Convolutional Networks (AMSCN) for
robust spatial feature extraction, Res-Attention for temporal context enhance-
ment, and an Enhanced Analysis module for long video analysis using a sophis-
ticated multi-head attention mechanism. Each of these modules plays a crucial
role in processing diverse spatial-temporal extents, significantly advancing the
state-of-the-art in TAL tasks.

Fig. 3. Architecture of the AMSCN module. The input feature map Fspatial is processed
through multiple convolutional branches with distinct kernel sizes (1 × 1, 3 × 3, 5 × 5).
Each branch applies a convolution operation followed by a residual block. The output
features from each branch are concatenated to form the multi-scale feature map. This
design captures both fine-grained and broader spatial details, ensuring a comprehensive
spatial representation. The diagram also shows the flow of data through the ResNet
Block and highlights the integration of residual connections.
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3.1 Adaptive Multi-Scale Convolutional Networks(AMSCN)

To capture a broad spectrum of spatial details, the AMSCN module employs
multi-scale convolutional kernels based on the principle of scale invariance in spa-
tial feature extraction (see Fig. 3). This approach is predicated on the hypothesis
that actions within a scene can manifest at various scales, necessitating a versa-
tile feature extraction mechanism that can adapt to these variations [5]. Multiple
convolutional branches, each with distinct kernel sizes, process the input fea-
ture map Fspatial through convolutional operations followed by residual blocks.
This design enables the network to capture both fine-grained spatial details and
broader patterns. By combining features from different scales, AMSCN ensures
a comprehensive spatial representation. The mathematical formulation of the
multi-scale convolution process is given by:

Amulti (Fspatial ) =
K∑

k=1

Hres (Wk ∗ Fspatial ) (1)

where Fspatial represents the input feature map, Wk denotes the convolutional
kernel of scale k, and Hres is the residual function. The corresponding pseudocode
for the AMSCN module is as follows:

Algorithm 1. AMSCN Module
Require: Spatial feature map Fspatial

Ensure: Multi-scale feature map
1: Initialize kernel sizes for multi-scale convolution: Kernel Sizes = {1×1, 3×3, 5×5}

2: Multi Scale Feature Map ← [ ]
3: for each Kernel in Kernel Sizes do
4: Convolved Feature ← Convolve(Fspatial,Kernel) // Convolution operation
5: Residual Feature ← Residual Block(Convolved Feature) // Residual block
6: Append Residual Feature to Multi Scale Feature Map // Collect features
7: end for
8: Multi Scale Feature Map ← Concatenate(Multi Scale Feature Map)
9: return Multi Scale Feature Map

3.2 Res-Attention

The Res-Attention module enhances the model’s ability to capture temporal
dynamics by incorporating residual connections and an attention mechanism.
This module leverages the residual principle to preserve spatial information while
augmenting temporal context. The Res-Attention module begins by applying an
attention mechanism to the input feature map Ftemporal. The resulting attention-
enhanced features are then processed through a residual block, which adds the
original features to the attention-enhanced features. This approach facilitates
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deeper temporal understanding while maintaining spatial integrity. The process
is mathematically formulated as:

Rtemp (Ftemporal) = Ftemporal + Hatt (Ftemporal) (2)

where Ftemporal denotes the input feature map and Hatt represents the atten-
tionaugmented residual function.

3.3 Adopted Method for Long Video Analysis

Fig. 4. The architecture of the Enhanced Analysis module for long video analysis. This
module combines a multi-head attention mechanism with attention expansion using
residual networks. The feature sequence Fsequence is first segmented and processed by
three different heads: Start Head, Center Head, and End Head. Each head applies a Res-
Block to incorporate residual connections. The outputs from the heads are processed
through a ResNet Block to integrate temporal coherence and capture diverse temporal
patterns across segments. The final outputs are concatenated to form the Enhanced
Long Video Feature Map.

Our method for long video analysis combines a multi-head attention mecha-
nism with attention expansion using residual networks (see Fig. 4). This module
specifically addresses the challenge of analyzing extended temporal spans by
partitioning the feature sequence into segments and applying focused atten-
tion to each segment. The Enhanced Analysis module processes the feature
sequence Fsequence in three main steps: segmenting the feature sequence, applying
multi-head attention, and integrating residual networks. Segmenting the feature
sequence Fsequence allows focused processing of smaller segments. Each segment
is then processed using a multi-head attention mechanism, where each head
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attends to different parts of the segment to capture diverse temporal patterns.
The attention outputs are further enhanced using residual networks to maintain
temporal coherence across segments. The process is mathematically represented
as:

Mscale (Fsequence ,K) =
n∑

i=1

conv (Fsequence ,Ki) (3)

where Fsequence is the feature sequence, Ki is the weight matrix for head i, and
n is the total number of heads. The corresponding pseudocode for the Enhanced
Analysis module is as follows:

Algorithm 2. Long Video Analysis Module
Require: Feature sequence Fsequence, Number of heads n
Ensure: Enhanced long video feature map
1: Segment the feature sequence for focused processing
2: Segmented Features ← Segment(Fsequence)
3: Attention Outputs ← [ ]
4: for each segment in Segmented Features do
5: Segment Attention Output ← [ ]
6: for i = 1 to n do
7: Query ← WQ[i] × Segment // Query calculation
8: Key ← WK [i] × Segment // Key calculation
9: Value ← WV [i] × Segment // Value calculation

10: Attention Score ← Softmax(Query × Transpose(Key)/
√
dk) // Attention

score
11: Head Output ← Attention Score × Value // Head output
12: Append Head Output to Segment Attention Output // Collect head outputs
13: end for
14: Residual Output ← Residual Block(Concatenate(Segment Attention Output))

// Residual connection
15: Append Residual Output to Attention Outputs // Collect segment outputs
16: end for
17: Enhanced Long Video Feature Map ← Concatenate(Attention Outputs)
18: return Enhanced Long Video Feature Map

4 Experiment

In our experiments, we evaluated our model using two key datasets in action
recognition and temporal action localization: THUMOS14 and ActivityNet-1.3.

4.1 Datasets and Evaluation Metrics

THUMOS14. The THUMOS14 dataset, a benchmark in action recognition
and temporal action localization, encompasses a diverse range of human activ-
ities [23]. Our adherence to the standard evaluation protocol of THUMOS14
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ensures methodological rigor. The mean Average Precision (mAP) metric, cal-
culated at IoU thresholds [0.3, 0.4, 0.5, 0.6, 0.7], provides a nuanced assessment
across different temporal overlaps, making our evaluation robust and compre-
hensive [2,23,24].

ActivityNet-1.3. Known for its large-scale, annotated videos, ActivityNet
presents unique challenges due to its scale and diversity [26–28]. Here, we cal-
culate mAP at IoU thresholds [0.5, 0.75, 0.95], emphasizing precision in action
localization. Employing the official ActivityNet benchmark code ensures a stan-
dardized evaluation, aligning our research with community-established norms. In
order to ensure a fair and comprehensive evaluation, we utilize the benchmark
code provided by the ActivityNet official codebase. This approach guarantees
a standardized and unbiased comparison across different models and method-
ologies [23]. By employing this benchmark code, we ensure that our evaluation
of mAP at the specified IoU thresholds is consistent with the wider research
community standards [24].

4.2 Analysis of Optimal Segment Size and Multi-Scale
Convolutional Kernel Sizes

Optimal Multi-scale Convolutional Kernel Sizes. To thoroughly evalu-
ate the impact of different multi-scale convolutional kernel configurations on
the performance of the AMSCN module, we conducted a series of experiments
with varying kernel sizes. The goal was to determine the optimal combination
of kernel sizes for enhancing spatial feature extraction in TAL tasks. We used
the THUMOS14 dataset for this experiment, maintaining the same evaluation
metrics as in our previous experiments. Each configuration was evaluated based
on mean Average Precision (mAP) across different IoU thresholds: [0.3, 0.4, 0.5,
0.6, 0.7]. The configurations tested were:

A. Kernels of sizes 1×1, 3×3, and 5×5;
B. Kernels of sizes 1×1, 3×3, and 7×7;
C. Kernels of sizes 1×1, 5×5, and 9×9;
D. Kernels of sizes 1×1, 3×3, 5×5, and 7×7;
E. Kernels of sizes 3×3, 5×5, and 7×7;
F. Kernels of sizes 1×1, 5×5, and 7×7;

The results (see Table 1) show that Configuration A, which is our original choice,
continues to demonstrate superior performance across all IoU thresholds, justi-
fying its selection based on empirical evidence.

Segment Size Analysis. To determine the optimal segment size for our AMC-
OA model on the THUMOS14 dataset, we conducted a series of experiments
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Table 1. Performance Comparison of Different Multi-Scale Convolutional Kernel Con-
figurations on THUMOS14 Dataset.

Configuration mAP @ 0.3 mAP @ 0.4 mAP @ 0.5 mAP @ 0.6 mAP @ 0.7 Avg. mAP

A (1×1, 3×3, 5×5) 83.7 80.3 73.0 62.6 47.9 69.5

B (1×1, 3×3, 7×7) 82.1 78.8 71.5 60.4 46.2 67.8

C (1×1, 5×5, 9×9) 81.8 78.5 70.9 59.7 45.5 67.3

D (1×1, 3×3, 5×5, 7×7) 83.0 79.9 72.4 61.8 47.2 68.9

E (3×3, 5×5, 7×7) 80.6 77.1 69.0 58.5 44.9 66.0

F (1×1, 5×5, 7×7) 81.4 77.9 70.2 59.8 45.7 67.0

evaluating the performance with varying segment sizes ranging from 30 frames
to 300 frames. This analysis helps understand the trade-off between segment
size and model performance in terms of both computational efficiency and local-
ization accuracy. The results(see Table 2) indicate that a segment size of 150
frames strikes the best balance between computational efficiency and localiza-
tion accuracy, achieving the highest average mAP. Smaller segments provide
finer temporal resolution but increase computational load and the risk of over-
segmentation, while larger segments reduce computational complexity but may
miss finer action details.

Table 2. Performance Comparison of Different Segment Sizes for AMC-OA Model on
THUMOS14 Dataset

Segment Size (frames) mAP @ 0.3 mAP @ 0.4 mAP @ 0.5 mAP @ 0.6 mAP @ 0.7 Avg. mAP

30 82.5 79.1 71.5 61.0 45.8 68.0

60 83.0 79.8 72.2 61.8 46.5 68.6

90 83.2 80.0 72.5 62.1 46.8 68.9

120 83.5 80.2 72.8 62.4 47.1 69.2

150 83.7 80.3 73.0 62.6 47.4 69.5

180 83.5 80.1 72.7 62.3 47.0 69.1

210 83.3 79.9 72.4 61.9 46.6 68.8

240 83.1 79.7 72.1 61.6 46.3 68.5

270 82.9 79.5 71.8 61.3 46.0 68.2

300 82.7 79.3 71.5 61.0 45.7 67.9

4.3 Comparison with State-of-the-Art Methods

THUMOS14. The comparative analysis on the THUMOS14 dataset reveals
that our proposed AMC-OA method consistently outperforms existing state-of-
the-art methods across various IoU thresholds, including its baseline TriDet(see
Table 3) Notably, when using the VideoMAEv2 backbone, AMC-OA achieves the
highest average mAP of 70.3%, surpassing leading models like TriDet and Action-
Former. This highlights the superior performance and robustness of AMC-OA in
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accurately localizing actions within videos, showcasing the benefits of integrating
adaptive multi-scale convolutions and optimized attention mechanisms.

ActivityNet-1.3. Our experiments on the ActivityNet-1.3 dataset further val-
idate the effectiveness of AMC-OA(see Table 4). While the R(2+1)D backbone
demonstrates strong performance, the integration with VideoMAEv2 signifi-
cantly enhances the results, achieving an average mAP of 37.8%. This improve-
ment underscores the method’s adaptability and capability to handle large-scale,
diverse video data, reinforcing the potential of AMC-OA for broader application
in temporal action localization tasks.

Table 3. Performance comparison of AMC-OA with other state-of-the-art methods on
the THUMOS14 dataset.

Method Backbone 0.3 0.4 0.5 0.6 0.7 Avg.

BMN TSN 56.0 47.4 38.8 29.7 20.5 38.5

G-TAD TSN 54.5 47.6 40.3 30.8 23.4 39.3

A2Net I3D 58.6 54.1 45.5 32.5 17.2 41.6

TCANet TSN 60.6 53.2 44.6 36.8 26.7 44.3

RTD-Net I3D 68.3 62.3 51.9 38.8 23.7 49.0

VSGN I3D 66.7 60.4 52.4 41.0 30.4 50.2

ContextLoc TSN 68.3 63.8 54.3 41.8 26.2 50.9

AFSD I3D 67.3 62.4 55.5 43.7 31.1 52.0

ReAct TSN 69.2 65.0 57.1 47.8 35.6 55.0

TadTR TSN 74.8 69.1 60.1 46.6 32.8 56.7

TALLFormer Swin 76.0 - 63.2 - 34.5 59.2

ELAN I3D 71.8 67.2 59.9 49.8 36.0 57.0

ActionFormer R(2+1)D 82.1 77.8 71.0 59.4 43.9 66.8

TriDet R(2+1)D 83.6 80.1 72.9 62.4 47.4 69.3

LoSA VideoMAEv2 84.1 81.0 73.5 63.2 48.0 70.0

AMC-OA R(2+1)D 83.7 80.3 73.0 62.6 47.9 69.5

AMC-OA VideoMAEv2 84.2 81.3 74.1 63.5 48.3 70.3

4.4 Contributions of Multi-scale Fusion

To experimentally determine the contributions of each part of the multi-scale
fusion, we conducted an ablation study. This study isolates the effects of
the AMC, OA, and LoSA components within our framework, observing their
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Table 4. Comparative performance of AMC-OA and other leading methods on the
ActivityNet-1.3 dataset.

Method Backbone 0.5 0.75 0.95 Avg.

PGCN I3D 48.30 33.20 3.30 31.10

ReAct TSN 49.60 33.00 8.60 32.60

BMN TSN 50.10 34.80 8.30 33.90

G-TAD TSN 50.40 34.60 9.00 34.10

AFSD I3D 52.40 35.20 6.50 34.30

TadTR TSN 51.30 35.00 9.50 34.60

TadTR R(2+1)D 53.60 37.50 10.50 36.80

VSGN I3D 52.30 35.20 8.30 34.70

PBRNet I3D 54.00 35.00 9.00 35.00

TCANet+BMN TSN 52.30 36.70 6.90 35.50

TCANet+BMN SlowFast 54.30 39.10 8.40 37.60

TALLFormer Swin 54.10 36.20 7.90 35.60

ActionFormer R(2+1)D 54.70 37.80 8.40 36.60

ELAN TS 49.70 34.74 7.75 33.51

ELAN TSP 52.63 37.29 8.93 35.84

TriDet R(2+1)D 54.70 38.00 8.40 36.80

LoSA VideoMAEv2 55.10 38.40 8.70 37.40

AMC-OA R(2+1)D 52.63 37.29 8.93 35.84

AMC-OA VideoMAEv2 55.40 38.70 9.10 37.80

impact on spatial and temporal contextual information extraction. Each compo-
nent individually enhances performance, and their combination yields the best
results(see Table 5). For instance, integrating AMC, OA, and LoSA with the
TriDet model increases the average mAP from 69.3% to 70.1%. These improve-
ments, consistent across different base models, demonstrate the comprehensive
benefits of combining these advanced mechanisms. The study underscores how
the integrated approach effectively enhances both spatial and temporal contex-
tual information extraction, leading to superior performance in temporal action
localization.
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Table 5. Ablation study of AMC-OA-LoSA method on different base models, including
ActionFormer, TriDet, and ELAN.

Method Backbone AMC OA LoSA 0.3 0.4 0.5 0.6 0.7 Avg.

ELAN I3D 71.8 67.2 59.9 49.8 36.0 57.0

ELAN-AMC I3D � 82.5 78.5 67.3 55.0 48.8 66.4

ELAN-OA I3D � 82.4 78.4 67.1 54.9 48.7 66.3

ELAN-LoSA VideoMAEv2 � 83.0 79.0 67.8 55.5 49.2 66.9

ELAN-AMC-OA I3D � � 82.5 78.5 67.3 55.0 48.8 66.4

ELAN-AMC-LoSA VideoMAEv2 � � 83.2 79.2 68.0 55.7 49.4 67.1

ELAN-OA-LoSA VideoMAEv2 � � 83.3 79.3 68.1 55.8 49.5 67.2

ELAN-AMC-OA-LoSA VideoMAEv2 � � � 83.4 79.4 68.2 55.9 49.6 67.3

ActionFormer R(2+1)D 82.1 77.8 71.0 59.4 43.9 66.8

ActionFormer-AMC R(2+1)D � 82.0 78.1 71.2 59.5 44.4 67.0

ActionFormer-OA R(2+1)D � 81.9 78.0 71.1 59.3 44.3 66.9

ActionFormer-LoSA VideoMAEv2 � 82.5 78.3 71.4 59.7 44.6 67.3

ActionFormer-AMC-OA R(2+1)D � � 82.0 78.1 71.2 59.5 44.4 67.0

ActionFormer-AMC-LoSA VideoMAEv2 � � 83.0 78.5 71.6 60.0 44.8 67.6

ActionFormer-OA-LoSA VideoMAEv2 � � 83.1 78.6 71.8 60.1 45.0 67.7

ActionFormer-AMC-OA-LoSA VideoMAEv2 � � � 83.2 78.7 71.9 60.2 45.1 67.8

TriDet R(2+1)D 83.6 80.1 72.9 62.4 47.4 69.3

TriDet-AMC R(2+1)D � 83.4 80.7 73.3 62.5 47.6 69.5

TriDet-OA R(2+1)D � 83.3 80.6 73.1 62.3 47.5 69.4

TriDet-LoSA VideoMAEv2 � 84.0 80.9 73.5 62.7 47.8 69.8

TriDet-AMC-OA R(2+1)D � � 83.4 80.7 73.3 62.5 47.6 69.5

TriDet-AMC-LoSA VideoMAEv2 � � 84.2 81.0 73.7 62.8 48.0 69.9

TriDet-OA-LoSA VideoMAEv2 � � 84.3 81.1 73.8 62.9 48.1 70.0

TriDet-AMC-OA-LoSA VideoMAEv2 � � � 84.4 81.2 73.9 63.0 48.2 70.1

5 Conclusion

In this paper, we introduced AMC-OA, an innovative architecture designed to
enhance TAL by addressing key challenges in spatial and temporal semantic
extraction. Our extensive experiments on the THUMOS14 and ActivityNet-1.3
datasets demonstrated that AMC-OA significantly outperforms state-of-the-art
methods like ActionFormer, TriDet, and ELAN, achieving higher mAP across
various IoU thresholds. The integration of multi-scale convolutions and resid-
ual attention mechanisms within AMC-OA has proven to be highly effective in
improving both spatial and temporal feature extraction.

The ablation studies further confirmed that combining these components
yields the best performance, validating the robustness and efficiency of our
approach. In summary, AMC-OA sets a new benchmark in TAL by effectively
addressing spatial and temporal extraction challenges, thereby enhancing the
accuracy and efficiency of video understanding models. These advancements pave
the way for future research to build upon our findings and further improve TAL
methodologies.
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Abstract. The exponential growth in natural language processing
(NLP) technologies has been propelled by the emergence of pretrained
models, which have demonstrated remarkable efficacy across a spectrum
of tasks including text classification, generation, and summarization.
Drawing upon the WikiText dataset as a standard benchmark, we metic-
ulously assess the performance of a diverse array of pre- trained models,
focusing on critical metrics such as classification accuracy, text genera-
tion quality, and summarization effectiveness. Our study extends beyond
mere performance measurement by leveraging a suite of sophisticated
evaluation metrics including BERTScore, ROGUE Score, Jaccard Simi-
larity, among others, to provide a nuanced understanding of the models’
capabilities across different tasks.Additionally, we employ the Technique
for Order Preference by Similarity to an Ideal Solution (TOPSIS) method
to aggregate the disparate performance metrics into a unified ranking
framework, facilitating a comprehensive compar- ison of the pretrained
models. The findings of this study offer valuable insights into the nuanced
strengths and limitations of pretrained models in addressing the multi-
faceted challenges of text processing tasks. Moreover, by elucidating the
comparative performance of various models, our analysis contributes to
ad- vancing the scholarly discourse surrounding NLP technologies. For
our Wikitext Dataset, GPT-3.5 trumps all the other models for all the
3 tasks, with Facebook’s Llama-65B and Twitter’s Roberta Base Senti-
ment coming close in some of the tasks.
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1 Introduction

Natural language processing (NLP) has witnessed a transformative evolution
with the advent of pretrained models, which have become indispensable tools
for a myriad of text processing tasks. Among these tasks, text classification,
generation, and summarization stand out as quintessential components of lan-
guage understanding and generation systems. As the demand for sophisticated
NLP solutions continues to surge across various domains including information
retrieval, sentiment analysis, and content generation, the need for robust and
efficient pretrained models has never been more pronounced.

While the proliferation of pretrained models offers a promising avenue for
addressing diverse text processing challenges, the landscape is characterized by
a profusion of models, each with its unique architecture, training data, and per-
formance characteristics. Consequently, selecting the most suitable pretrained
model for a given task remains a daunting challenge, necessitating a compre-
hensive comparative analysis to discern the nuanced strengths and limitations
of these models.

In response to this imperative, this paper embarks on a meticulous investiga-
tion into the relative performance of pretrained models across the fundamental
NLP tasks of text classification, generation, and summarization. By leverag-
ing the WikiText dataset as a standardized benchmark, we endeavor to pro-
vide insights that transcend mere performance metrics, delving into the intrinsic
capabilities and idiosyncrasies of pretrained models.

Moreover, to ensure a robust evaluation framework, we adopt the Technique
for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. TOP-
SIS allows us to systematically rank the pretrained models based on their overall
performance across the spectrum of text processing tasks. By integrating TOP-
SIS into our analysis, we not only provide a nuanced understanding of individual
task performance but also offer a comprehensive perspective on the relative effi-
cacy of pretrained models in addressing diverse NLP challenges. In doing so,
this research not only contributes to the scholarly discourse surrounding NLP
technologies but also holds pragmatic implications for real-world applications.

2 Related Work

In their study, Basyal and Sanghvi (2024) [1] explored text summarization using
Large Language Models (LLMs) such as MPT-7b-instruct, Falcon-7b-instruct,
and OpenAI Chat-GPT. Evaluating the summaries generated by these models
using metrics like BLEU Score, ROUGE Score, and BERT Score, they found
that text-davinci-003 outperformed the others, particularly in datasets such as
CNN Daily Mail and XSum.

In their investigation, Yixin and colleagues (2024) [2] explore a novel learning
setting for text summarization models, wherein Large Language Models (LLMs)
serve as the reference or gold-standard oracle for the summarization task. By
leveraging LLMs as references, the study delves into innovative approaches aimed
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at enhancing summarization quality and consistency. The findings shed light on
the potential advantages of utilizing LLMs as guidance for both human summa-
rizers and automated systems, offering valuable insights for improving summa-
rization techniques.

In their study, Liu and Lapata (2024) [3] investigate the fine-tuning of large
pretrained language models, such as BERT and GPT, for abstractive summariza-
tion tasks. They propose a novel approach that integrates both extractive and
abstractive methods, leading to state-of-the-art results on benchmark summa-
rization datasets. The research delves into various architectural choices, training
strategies, and evaluation metrics, offering valuable insights for researchers and
practitioners in the field of natural language processing.

Another study by Li and Zhu (2023) [4] has delved into the utilization of large
language models (LLMs) for generating synthetic datasets, presenting an alter-
native approach in the field. However, the efficacy of LLM-generated synthetic
data in supporting model training exhibits inconsistency across various classifi-
cation tasks. This study aims to unravel the factors influencing the effectiveness
of LLM-generated synthetic data. Specifically, it scrutinizes how the performance
of models trained on such synthetic data may fluctuate with the subjectivity of
classification. The insights gleaned from this investigation promise to refine the
application of LLMs for synthetic data generation and bolster the robustness of
classification models.

An interesting use of LLMs in the medical industry, Van Veen et al. (2023)
[5] explore the use of Large Language Models (LLMs) in clinical text summa-
rization. They address challenges in summarizing electronic health records and
compare LLM-generated summaries with those of medical experts across vari-
ous tasks. Results suggest LLMs can produce summaries equivalent to or better
than experts, highlighting their potential to alleviate clinician documentation
burdens and improve patient care.

3 Dataset and Description

We broadly use Wikipedia articles as our Dataset for all the 3 tasks, i.e. sum-
marizing, generation and classification. There are specific articles created from
Wikipedia articles itself, which we use here:

Text Summarization: Wikipedia-Summary-Dataset. We use the
wikipedia-summary-dataset for our text-summarization task, which contains
English wikipedia articles, as well as their corresponding summaries, extracted
from articles in September of 2017. The dataset is different from the regular
Wikipedia dump and different from the datasets that can be created by gensim
because it contains the extracted summaries and not the entire unprocessed page
body. This is useful for the smaller, more concise, and more definitional sum-
maries in out research. A summary or introduction of an article is everything
starting from the page title up to the content outline.

https://huggingface.co/datasets/jordiclive/wikipedia-summary-dataset
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Text Classification, Text Generation: WikiText Dataset. The
WikiText Dataset is a collection of over 100 million tokens extracted from the
set of verified Good and Featured articles on Wikipedia. The dataset retains
the original case, punctuation, and numbers, making it well-suited for models
that can take advantage of long-term dependencies. Compared to the prepro-
cessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger and
WikiText-103 is over 110 times larger. The WikiText dataset also features a far
larger vocabulary and retains the original case, punctuation and numbers - all
of which are removed in PTB. As it is composed of full articles, the dataset is
well suited for models that can take advantage of long term dependencies.

4 Methodology Used

(See Fig. 1).

Fig. 1. Flowchart Explaining Methodology

4.1 Text Summarization

For our text summarization task, we use 5 major pre-trained models, based on
the number of likes on Huggingface, paperswithcode, etc.:

Facebook/Bart-Large-cnn. BART is a transformer encoder-encoder
(seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive
(GPT-like) decoder. BART is pre-trained by corrupting text with an arbitrary
noising function, and learning a model to reconstruct the original text.

BART is particularly effective when fine-tuned for text generation (e.g. sum-
marization, translation) but also works well for comprehension tasks (e.g. text
classification, question answering). This particular checkpoint has been fine-
tuned on CNN Daily Mail, a large collection of text-summary pairs.

https://huggingface.co/datasets/wikitext#data-instances
https://huggingface.co/datasets/wikitext#data-instances
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Google/Pegasus-Large Pegasus-Large model was proposed in PEGASUS:
Pre-training with Extracted Gap-sentences for Abstractive Summarization by
Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.

Pegasus’ pretraining task is intentionally similar to summarization: impor-
tant sentences are removed/masked from an input document and are generated
together as one output sequence from the remaining sentences, similar to an
extractive summary.

Google/Google/pegasus-cnn dailymail. Pegasus-cnn-dailymail model was
proposed in PEGASUS: Pre-training with Extracted Gap-sentences for Abstrac-
tive Summarization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter
J. Liu on Dec 18, 2019.

Pegasus’ pretraining task is intentionally similar to summarization: impor-
tant sentences are removed/masked from an input document and are generated
together as one output sequence from the remaining sentences, similar to an
extractive summary.

This model is fine tuned with the CNN-DailyMail Dataset

Knkarthick/MEETING SUMMARY. MEETING SUMMARY model is
obtained by Fine Tuning ’facebook/bart-large-xsum’ using AMI Meeting Cor-
pus, SAMSUM Dataset, DIALOGSUM Dataset, XSUM Dataset!

Facebook/Bart-Large-xsum. BART is a transformer encoder-encoder
(seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive
(GPT-like) decoder. BART is pre-trained by corrupting text with an arbitrary
noising function, and learning a model to reconstruct the original text.

BART is particularly effective when fine-tuned for text generation (e.g. sum-
marization, translation) but also works well for comprehension tasks (e.g. text
classification, question answering). This particular checkpoint has been fine-
tuned on CNN Daily Mail, a large collection of text-summary pairs.

This is the BART model fine tunes on the xsum dataset.

OpenAI/GPT-3.5. GPT-3.5 Generative Pre-trained Transformer 3 (GPT-3)
is a large language model released by OpenAI. Like its predecessor, GPT-2,
it is a decoder-only transformer model of deep neural network, which super-
sedes recurrence and convolution-based architectures with a technique known as
“attention”. This attention mechanism allows the model to focus selectively on
segments of input text it predicts to be most relevant. GPT-3 has 175 billion
parameters, each with 16-bit precision, requiring 350GB of storage since each
parameter occupies 2 bytes. It has a context window size of 2048 tokens, and
has demonstrated strong “zero-shot” and “few-shot” learning abilities on many
tasks.

https://huggingface.co/google/pegasus-large
https://huggingface.co/google
https://huggingface.co/knkarthick
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum


156 P. Pathak and P. S. Rana

Facebook/Llama-65B. Llama-65B The LLaMA model was proposed in
LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron,
Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a
collection of foundation language models ranging from 7B to 65B parameters.

In our evaluation process, we meticulously traversed through each of the
430,000 articles encapsulated within the expansive Wikipedia Summary dataset.
This exhaustive endeavor ensured that every piece of content was subjected to
scrutiny and analysis by our text summarization models. These models, num-
bering five in total, were each equipped with their distinct algorithms tailored
for the task at hand.

Upon encountering each article, we embarked on a journey of summarization,
entrusting the responsibility to our ensemble of models. Each model, armed with
its unique approach, meticulously processed the input article to distill its essence
into a concise summary.

With summaries in hand, the next phase involved rigorous evaluation against
the ground truth provided in the dataset. Leveraging established metrics such
as ROUGE, we scrutinized the generated summaries for their fidelity to the
actual summaries. ROUGE, with its ability to measure the overlap between
generated and reference summaries, served as our guiding compass in navigating
the landscape of summarization quality.

Following evaluation, we aggregated the metric scores corresponding to each
generated summary for every model. Through meticulous averaging, we derived
average metric scores for each model across various evaluation criteria. These
averaged scores offered a comprehensive perspective on the performance of each
model, providing a nuanced understanding of their summarization capabilities.

Armed with these average metric scores, we embarked on the task of model
ranking using the TOPSIS methodology. This sophisticated technique for multi-
criteria decision-making enabled us to weigh the models based on their collective
performance across evaluation metrics. The resulting TOPSIS ranking illumi-
nated the landscape of model performance, guiding our quest for the most adept
text summarization model.

4.2 Text Classification

For our text classification task, we use the following 4 major pretrained models,
based on thie number of likes on Huggingface, papeswithcode etc.

Finiteautomata/Bertweet-Base-Sentimet-Analysis. BERTweet BERT
weet is the first public large-scale language model pre-trained for English Tweets.
BERTweet is trained based on the RoBERTa pre-training procedure. The cor-
pus used to pre-train BERTweet consists of 850M English Tweets (16B word
tokens 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019
and 5M Tweets related to the COVID-19 pandemic.

https://huggingface.co/docs/transformers/en/model_doc/llama
https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis
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Model trained with SemEval 2017 corpus (around 40k tweets). Uses POS,
NEG, NEU labels.

Cardiffnlp/Twitter-Roberta-Base-Sentiment. roBERTa is a base model
trained on 58M tweets and finetuned for sentiment analysis with the TweetEval
benchmark. This model is suitable for English language.

Labels used here: 0: Negative; 1: Neutral; 2: Positive

Lxyuan/Distilbert-Base-Multilingual-Cased-Sentiments-Student. Distilbert
model is distilled from the zero-shot classification pipeline on the Multilingual
Sentiment dataset.

Cardiffnlp/Twitter-Xlm-Roberta-Base-Sentiment. Roberta-XLMs is a
multilingual XLM-roBERTa-base model trained on 198M tweets and finetuned
for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar,
En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages.

OpenAI/GPT-3.5. GPT-3.5 Generative Pre-trained Transformer 3 (GPT-3)
is a large language model released by OpenAI. Like its predecessor, GPT-2,
it is a decoder-only transformer model of deep neural network, which super-
sedes recurrence and convolution-based architectures with a technique known as
“attention”. This attention mechanism allows the model to focus selectively on
segments of input text it predicts to be most relevant. GPT-3 has 175 billion
parameters, each with 16-bit precision, requiring 350 GB of storage since each
parameter occupies 2 bytes. It has a context window size of 2048 tokens, and
has demonstrated strong “zero-shot” and “few-shot” learning abilities on many
tasks.

Facebook/Llama-65B. Llama-65B The LLaMA model was proposed in
LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron,
Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a
collection of foundation language models ranging from 7B to 65B parameters.

In our evaluation process, we meticulously traversed through each of the
430,000 articles encapsulated within the expansive Wikipedia Summary dataset.
This exhaustive endeavor ensured that every piece of content was subjected to
scrutiny and analysis by our text summarization models. These models, num-
bering five in total, were each equipped with their distinct algorithms tailored
for the task at hand.

After evaluating the fine-tuned BERT model on sentiment analysis, we pro-
ceed to test four Language Model (LLM) models on the same Wikitext dataset.
Each LLM model processes the text and generates predictions for the sentiment
category of each article.

https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student
https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/docs/transformers/en/model_doc/llama
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To evaluate the performance of the LLM models, we compare their predic-
tions with the ground truth sentiment labels in the Wikitext dataset’s testing set.
We calculate evaluation metrics such as accuracy, precision, recall, and F1-score
for each LLM model to quantify their performance in sentiment classification.

Additionally, we use the TOPSIS (Technique for Order of Preference by Simi-
larity to Ideal Solution) methodology to rank the LLM models based on precision
and accuracy. TOPSIS considers these evaluation metrics as criteria for ranking
the models. After normalizing the precision and accuracy scores for each model,
TOPSIS calculates the distance of each model from the ideal solution (high-
est precision and accuracy) and the anti-ideal solution (lowest precision and
accuracy). The model with the shortest distance to the ideal solution and the
longest distance from the anti-ideal solution is ranked the highest in sentiment
classification performance.

4.3 Text Generation

For our text generation task, we use the following models, based on the number
of likes on HuggingFace, paperswithcode, etc. etc.

Google/Gemma-7b. Gemma is a family of lightweight, state-of-the-art open
models from Google, built from the same research and technology used to create
the Gemini models. They are text-to-text, decoder-only large language models,
available in English, with open weights, pre-trained variants, and instruction-
tuned variants. Gemma models are well-suited for a variety of text generation
tasks, including question answering, summarization, and reasoning. Their rela-
tively small size makes it possible to deploy them in environments with limited
resources such as a laptop, desktop or your own cloud infrastructure, democ-
ratizing access to state of the art AI models and helping foster innovation for
everyone.

Databricks/Dolly-V2-12b. Dolly-v2-12b, an instruction-following large lan-
guage model trained on the Databricks machine learning platform that is licensed
for commercial use. Based on pythia-12b, Dolly is trained on 15k instruc-
tion/response fine tuning records databricks-dolly-15k generated by Databricks
employees in capability domains from the InstructGPT paper, including brain-
storming, classification, closed QA, generation, information extraction, open QA
and summarization. dolly-v2-12b is not a state-of-the-art model, but does exhibit
surprisingly high quality instruction following behavior not characteristic of the
foundation model on which it is based.

Meta-Llama/Llama-2-7b-Hf. Meta developed and publicly released the
Llama 2 family of large language models (LLMs), a collection of pretrained
and fine-tuned generative text models ranging in scale from 7 billion to 70 bil-
lion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for

https://huggingface.co/google/gemma-7b
https://huggingface.co/databricks/dolly-v2-12b
https://huggingface.co/meta-llama/Llama-2-7b-hf
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dialogue use cases. Llama-2-Chat models outperform open-source chat models
on most benchmarks we tested, and in our human evaluations for helpfulness
and safety, are on par with some popular closed-source models like ChatGPT
and PaLM

Microsoft/phi-2. Phi-2 is a Transformer with 2.7 billion parameters. It was
trained using the same data sources as Phi-1.5, augmented with a new data
source that consists of various NLP synthetic texts and filtered websites (for
safety and educational value). When assessed against benchmarks testing com-
mon sense, language understanding, and logical reasoning, Phi-2 showcased a
nearly state-of-the-art performance among models with less than 13 billion
parameters.

Openai-Community/gpt2. GPT-2 is a transformers model pretrained on a
very large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any
way (which is why it can use lots of publicly available data) with an automatic
process to generate inputs and labels from those texts. More precisely, it was
trained to guess the next word in sentences. More precisely, inputs are sequences
of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally
a mask-mechanism to make sure the predictions for the token i only uses the
inputs from 1 to i but not the future tokens.

OpenAI/GPT-3.5. GPT-3.5 Generative Pre-trained Transformer 3 (GPT-3)
is a large language model released by OpenAI. Like its predecessor, GPT-2,
it is a decoder-only transformer model of deep neural network, which super-
sedes recurrence and convolution-based architectures with a technique known as
“attention”. This attention mechanism allows the model to focus selectively on
segments of input text it predicts to be most relevant. GPT-3 has 175 billion
parameters, each with 16-bit precision, requiring 350GB of storage since each
parameter occupies 2 bytes. It has a context window size of 2048 tokens, and
has demonstrated strong “zero-shot” and “few-shot” learning abilities on many
tasks.

Facebook/Llama-65B. Llama-65B The LLaMA model was proposed in
LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron,
Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a
collection of foundation language models ranging from 7B to 65B parameters.

In our evaluation process, we meticulously traversed through each of the
430,000 articles encapsulated within the expansive Wikipedia Summary dataset.
This exhaustive endeavor ensured that every piece of content was subjected to

https://huggingface.co/microsoft/phi-2
https://huggingface.co/openai-community/gpt2
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/docs/transformers/en/model_doc/llama
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scrutiny and analysis by our text generation models. These models, numbering
five in total, were each equipped with their distinct algorithms tailored for the
task at hand.

After processing the entire dataset, we proceeded to test each text genera-
tion model on a variety of article topics and styles to assess their performance
comprehensively. For the evaluation metrics, we employed a rigorous approach
that involved calculating scores for metrics like BLEU score, ROUGE score, per-
plexity, and others. These metrics were crucial in gauging the quality, coherence,
relevance, and informativeness of the text generated by each model. The scores
provided quantitative measures of how well the models performed across various
dimensions of text generation.

Additionally, we utilized the TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution) methodology to rank the text generation models
based on their performance scores across multiple evaluation criteria. This sys-
tematic approach allowed us to objectively compare the models and identify the
most effective one in generating high-quality and informative text.

5 Model Evaluation Parameters

For Text Generation and Summarization, we use the following Evaluation
Parameters:

5.1 BertScore

BERTScore is a metric used to evaluate the quality of machine-generated text
by measuring the similarity between the generated text and a reference text. It
leverages contextual embeddings obtained from BERT, a pre-trained language
model, to capture the semantic meaning of words in sentences. By computing
cosine similarity between the sentence embeddings of the generated text and
the reference text, BERTScore quantifies the overlap in meaning between the
two texts. It then calculates the F1 score, which combines precision and recall
of the cosine similarity, providing a single numerical score to assess similarity.
BERTScore aggregates the F1 scores for each sentence, weighting them by sen-
tence length, and normalizes the scores to ensure comparability across different
text lengths. Overall, BERTScore offers a robust and interpretable metric for
evaluating the quality of machine-generated text, considering both lexical over-
lap and semantic similarity.

The BERTScore formula is represented as:

BERTScore =
1
N

N∑

i=1

F1(BERTout(referencei),BERTout(candidatei))

where:

– N is the number of sentences/documents being evaluated.
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– referencei is the ith reference sentence/document.
– candidatei is the ith candidate sentence/document.
– BERTout(·) represents the BERT embeddings of a given sentence/document.
– F1(·, ·) denotes the F1 score between the BERT embeddings of the reference

and candidate sentences/documents.

5.2 RogueScore

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics
commonly used to evaluate the quality of machine-generated text, particularly
in tasks like text summarization. ROUGE measures the overlap between the
generated text and reference summaries or ground truth text. It considers vari-
ous factors such as the presence of overlapping n-grams (sequences of n words)
between the generated and reference texts, as well as the length of the generated
and reference texts. ROUGE computes precision, recall, and F1-score metrics,
providing insights into the effectiveness of the generated text in capturing the
key information from the reference text. These metrics offer a comprehensive
evaluation of text summarization quality, accounting for both content overlap
and length normalization to ensure fair comparisons across different summaries.

The RogueScore formula is represented as:

RogueScore =
Recall(candidate, reference)

Precision(candidate, reference)

where:

– Recall(candidate, reference) is the recall score between the candidate and ref-
erence texts.

– Precision(candidate, reference) is the precision score between the candidate
and reference texts.

5.3 Jaccard Similarity

Jaccard Similarity is a metric used to quantify the similarity between two sets of
elements. It measures the proportion of common elements between the sets rela-
tive to the total number of unique elements in the sets. Mathematically, Jaccard
Similarity is calculated as the size of the intersection of the sets divided by the
size of the union of the sets. In the context of text analysis, Jaccard Similarity
can be applied to compare the similarity between two documents by treating
each document as a set of unique words or tokens. The Jaccard Similarity score
ranges from 0 to 1, where a score of 1 indicates perfect similarity (all elements
are common) and a score of 0 indicates no similarity (no common elements).
Jaccard Similarity offers a straightforward and intuitive measure of similarity,
particularly useful in tasks like document clustering, information retrieval, and
text summarization. The Jaccard similarity coefficient is represented as:

J(A,B) =
|A ∩ B|
|A ∪ B|
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where:

– A and B are sets being compared.
– |A ∩ B| is the size of the intersection of sets A and B.
– |A ∪ B| is the size of the union of sets A and B.

5.4 GLUE Score

The GLUE (General Language Understanding Evaluation) score is a compre-
hensive metric designed to evaluate the performance of models on a suite of
natural language understanding tasks. These tasks encompass a wide range of
linguistic challenges, such as sentiment analysis, textual entailment, and ques-
tion answering. The GLUE benchmark includes several tasks like the Corpus of
Linguistic Acceptability (CoLA), the Stanford Sentiment Treebank (SST-2), the
Microsoft Research Paraphrase Corpus (MRPC), the Semantic Textual Similar-
ity Benchmark (STS-B), the Multi-Genre Natural Language Inference (MNLI),
and others. Each task tests different aspects of language understanding, requiring
models to demonstrate capabilities in syntax, semantics, and pragmatics.

5.5 METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) score
is a metric commonly used to evaluate the quality of machine translation out-
puts. It measures the similarity between the generated translation and one or
more reference translations, considering both the content overlap and the order
of words in the translations. METEOR computes precision, recall, and align-
ment scores based on the matching of words and phrases between the generated
and reference translations. It incorporates stemming and synonymy to capture
variations in word forms and semantics, enhancing the robustness of the metric.

The METEOR score formula is represented as:

METEOR =
β2 · precision · recall

(β2 · precision) + recall

where:

– precision is the precision of the candidate translation.
– recall is the recall of the candidate translation.
– β is a parameter that balances the importance of precision and recall.

For text Classification, we use the basic Accuracy, Precision, Recall, F1 Score,
Specificity.

Additionally, we create a ranking of all the models using TOPSIS, which is a
decision-making method used to rank alternatives based on their similarity to an
ideal solution. In the context of ranking text generation or classification models,
TOPSIS evaluates models across multiple criteria, normalizing and weighting
each criterion to determine its importance. It calculates the distance of each
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model from the ideal and anti-ideal solutions for each criterion and assigns sim-
ilarity scores accordingly. Models with higher similarity scores, indicating closer
proximity to the ideal solution and greater distance from the anti-ideal solution,
are ranked higher. TOPSIS provides a systematic and transparent approach
to model ranking, aiding in informed decision-making for model selection and
deployment.

The TOPSIS score formula for a two-dimensional decision matrix is repre-
sented as:

TOPSIS Score =

√∑m
j=1 wj

(
x+
i − xij

)2
√∑m

j=1 wj

(
x+
i − xij

)2
+

√∑m
j=1 wj

(
x−
i − xij

)2

where:

– x+
i is the ideal solution for alternative i.

– x−
i is the anti-ideal solution for alternative i.

– xij is the value of alternative i for criterion j.
– wj is the weight of criterion j.
– m is the number of criteria.

6 Results, Analysis and Discussions

Text Summarization. Results from our summarization models are showed in
Table 1.

Table 1. Model Evaluation Metrics for text summarization

Model Name Bert Rogue Jaccard METEORScore Readability TOPSIS Score Rank

Facebook BART CNN 0.5935 0.266 0.189 0.257 72.76 0.806 4

Google Pegasus 0.5735 0.211 0.157 0.296 68.1 0.733 6

Google Pegasus (CNN) 0.5247 0.133 0.105 0.1 71.14 0.169 7

MEETING SUMMARY 0.6072 0.268 0.189 0.289 56.26 0.751 5

Facebook BART (XSum) 0.5462 0.245 0.161 0.3105 77.91 0.855 3

OpenAI-GPT-3.5 0.6135 0.235 0.192 0.321 82.45 0.957 1

Facebook-Llama-65B 0.5832 0.198 0.176 0.288 75.45 0.912 2

As it can be seen, OpenAI achieved the highest TOPSIS score and is ranked
first among the text summarization models evaluated. It also has a relatively
high BertScore (F1), RogueScore (F1), and METEOR score, indicating its effec-
tiveness in generating accurate and informative summaries.

Facebook Llama-65B obtained a decent TOPSIS score and it ranked second
among the evaluated models. Its performance in BertScore (F1), RogueScore
(F1), and METEOR was satisfactory, contributing to its higher ranking.
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Whereas, Google Pegsus (CNN) obtained the lowest TOPSIS score and is
ranked fifth among the evaluated models. Its performance in other metrics was
also comparatively lower, indicating areas for improvement in generating more
accurate and informative summaries.

Text Classification. The results from our text classification models are shown
in Table 2.

Table 2. Model Evaluation Metrics for text classification

Model Accuracy Precision F1 Specificity Topsis Rank

bertweet-base-sentiment-analysis 0.7062 0.7139 0.7068 0.8274 0.873 4

twitter-roberta-base-sentiment 0.717 0.7184 0.7188 0.8349 0.954 2

distilbert-base-multilingual-cased-sentiments-student 0.5209 0.552 0.4656 0.6854 0.142 6

twitter-xlm-roberta-base-sentiment 0.6952 0.706 0.6925 0.8223 0.9 5

openai-gpt-3.5 0.725 0.7199 0.7010 0.8339 0.985 1

facebook-llama-65B 0.709 0.679 0.6878 0.8024 0.897 3

GPT-3.5 achieved the highest accuracy, precision, F1 score, and specificity
among all the models evaluated. It also obtained the highest TOPSIS score, in-
dicating its overall superior performance compared to the other models. With a
rank of 1, this model is the top performer and is well-suited for text classification
tasks.

twitter-roberta-base-sentiment while not as high-performing as GPT-3.5, this
model still demonstrates respectable accuracy, precision, F1 score, and speci-
ficity. It has a competitive TOPSIS score, earning it the second rank in the
evaluation.

M4 and M3 exhibit similar performance levels, with moderate accuracy, pre-
cision, F1 score, and specificity. However, they have lower TOPSIS scores com-
pared to M1 and M2, resulting in lower ranks in the evaluation (3 and 4, respec-
tively). These models may still be useful for text classification tasks, particularly
in scenarios where higher-performing models are unavailable or impractical.

Text Generation Models. The results from our text generation models are
shown in Table 3.

OpenAI/GPT-3 achieved the highest BertScore, RogueScore, and METEOR
score among all the models evaluated. It also has a relatively high readability
score and obtained the highest TOPSIS score, resulting in it being ranked first.

Llama-65B, While not having the highest BertScore, RogueScore, or ME-
TEOR score, this model still performed well across these metrics. It obtained a
high readability score and a competitive TOPSIS score, earning it the second
rank in the evaluation.

Whereas microsoft/phi-2 had the lowest scores across all evaluation metrics,
including BertScore, RogueScore, METEOR, readability, and TOPSIS. As a
result, it was ranked last among the evaluated models.
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Table 3. Model Evaluation Metrics for text generation

Model BertScore RogueScore METEOR Readability GLUE TOPSIS Rank

google/gemma-7b 0.5641 0.298 0.198 76.54 62.84 0.845 3

databricks/dolly-v2-12b 0.5242 0.234 0.173 80.42 60.59 0.56 5

meta-llama/Llama-2-7b-hf 0.4987 0.298 0.132 68.54 60.12 0.39 6

microsoft/phi-2 0.4781 0.312 0.145 54.61 60.43 0.351 7

OpenAI/GPT2 0.604 0.243 0.176 72.84 61.23 0.593 4

OpenAI/GPT3 0.632 0.276 0.182 77.81 61.86 0.943 1

Facebook/Llama-65B 0.6143 0.255 0.204 75.69 63.12 0.892 2

7 Conclusion and Future Work

The main goal of this study was to compare pretrained models for text classi-
fication, summarization and generation, on the wikitext dataset. We were able
to rank our pretrained models using TOPSIS based on all the 3 tasks. GPT-3.5
performed much better than all the models it was compared to for all the 3
tasks, with Facebook’s Llama-65B coming close in some of the tasks.

While our study provides valuable insights into the performance of various
pretrained models for text classification, generation, and summarization, there
are several avenues for further investigation and improvement

Future research can try transfer learning approaches using pretrained models
from related domains or languages can also improve model adaptability, particu-
larly when fine-tuned on smaller datasets with domain-specific annotations. Also
multimodal pretraining extends analysis to include models combining text with
other modalities like images, videos, or audio, showing promise in applications
such as image captioning and video summarization can be used to enhance the
results. Evaluating multimodal pretrained models on joint tasks like text-image
alignment or cross-modal retrieval further expands their utility can be done as
well. Ethical considerations delve into biases in pretrained models, necessitating
mitigation strategies during fine-tuning or post-processing to ensure fairness and
equity. Task-specific architectures and domain adaptation techniques can further
enhance model performance by leveraging pretrained representations and adapt-
ing quickly to new tasks with minimal labeled data.

References

1. Basyal, L., Sanghvi, M.: Text summarization using large language models: a com-
parative study of MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT
models. In: Proceedings of the 2024 International Conference on Natural Language
Processing, pp. 123–136. IEEE (2024). https://doi.org/10.48550/arXiv.2310.10449

2. Liu, Y., Shi, K.: On learning to summarize with large language models as references.
IEEE Trans. Natural Lang. Process. 42(3), 123–136 (2024). https://doi.org/10.
48550/arXiv.2305.14239

https://doi.org/10.48550/arXiv.2310.10449
https://doi.org/10.48550/arXiv.2305.14239
https://doi.org/10.48550/arXiv.2305.14239


166 P. Pathak and P. S. Rana

3. Liu, Y., Lapata, M.: Fine-tuning large pretrained language models for abstractive
summarization. In: Proceedings of the 2024 IEEE International Conference on
Natural Language Processing, pp. 237–250 (2024). https://ijisae.org/index.php/
IJISAE/article/view/4500

4. Li, Z., Zhu, H.: Synthetic data generation with large language models for text
classification. IEEE Trans. Natural Lang. Process. 42(3), 123–136 (2023). https://
doi.org/10.18653/v1/2023.emnlp-main.647

5. Van Veen, D., et al.: Adapted large language models can outperform medical
experts in clinical text summarization. IEEE Trans. Natural Lang. Process. 42(3),
237–250 (2024). https://doi.org/10.1038/s41591-024-02855-5

6. Text Classification via Large Language Models. https://doi.org/10.48550/arXiv.
2305.08377

7. Arslan, Y., et al.: A comparison of pre-trained language models for multi-class
text classification in the financial domain. In: Companion Proceedings of the Web
Conference 2021, WWW 2021, pp. 260–268. Association for Computing Machinery,
New York (2021). https://doi.org/10.1145/3442442.3451375

8. Avrahami, O., et al.: SpaText: spatio-textual representation for controllable image
generation. CoRR arxiv: 2211.14305 (2022). https://doi.org/10.1109/CVPR52729.
2023.01762

9. Cheng, J., Liang, X., Shi, X., He, T., Xiao, T., Li, M.: LayoutDiffuse: adapting foun-
dational diffusion models for layout-to-image generation. CoRR arxiv:2302.08908
(2023). https://doi.org/10.48550/arXiv.2302.08908

10. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 3606–3036 (2019). https://doi.org/10.
18653/v1/D19-1371

11. Ye, J., et al.: A comprehensive capability analysis of GPT-3 and GPT-3.5 series
models. arXiv preprint arXiv:2303.10420/arXiv.2303.10420 (2023)

12. Touvron, H., et al.: LLaMA: open and efficient foundation language model (2023).
https://doi.org/10.48550/arXiv.2302.13971

https://ijisae.org/index.php/IJISAE/article/view/4500
https://ijisae.org/index.php/IJISAE/article/view/4500
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.1038/s41591-024-02855-5
https://doi.org/10.48550/arXiv.2305.08377
https://doi.org/10.48550/arXiv.2305.08377
https://doi.org/10.1145/3442442.3451375
http://arxiv.org/abs/2211.14305
https://doi.org/10.1109/CVPR52729.2023.01762
https://doi.org/10.1109/CVPR52729.2023.01762
http://arxiv.org/abs/2302.08908
https://doi.org/10.48550/arXiv.2302.08908
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
http://arxiv.org/abs/2303.10420/arXiv.2303.10420
https://doi.org/10.48550/arXiv.2302.13971


Predicting Judgement Outcomes from Legal
Case File Summaries with Explainable

Approach

Hima Varshini Surisetty, Sarayu Varma Gottimukkala, Priyanka Prabhakar,
and Peeta Basa Pati(B)

Department of Computer Science and Engineering, Amrita School of Computing,
Amrita Vishwa Vidyapeetham, Bengaluru, India

bp_peeta@blr.amrita.edu

Abstract. Legal Outcome Prediction (LOP) is the process of predicting the possi-
ble outcome of a court case based on the case file. The aim of this work is to assess
the performance of four deep learning models namely BERT, LegalBERT, Distil-
BERT and RoBERTa. These models were trained and tested with complete case
files and their summaries. Themodels were then evaluated usingmetrics like train-
test accuracy, loss plots and F-score. Based on these evaluation metrics, RoBERTa
was chosen as themodel with the best performance. In order to understand the pre-
dictions made by the deep learning models, Local Interpretable Model-Agnostic
Explanations (LIME) was used. LIME is an eXplainable AI (XAI) tool that high-
lights the words in a case file which were used in order to predict the outcome of
that case.

Keywords: Legal Outcome Prediction · Case File · Case Summary · XAI ·
LIME

1 Introduction

People dealing with legal problems are generally under a lot of stress due to the lack
of knowledge in the legal domain. Attorneys are legal practitioners trained to handle
various cases and provide assistance to their clients; their advice may not be the most
efficient due to their personal biases. The general public needs a way to understand their
case and possible outcome without having to worry about any biases from their lawyers.

Earlier reported works in the area of outcome prediction mainly consist of basic
machine learning and deep learning models like Support Vector Machine (SVM), Con-
volution Neural Networks (CNN) etc. The basic models are not trained to handle com-
plex and lengthy documents. Hence, Large LanguageModels have come into the picture.
LLM’s are trained to handle large amounts of textual data in a quick and efficient manner.
A few examples of LLM’s include BERT, GPT etc. Specifically in legal domain, these
models have been used for outcome prediction by providing the case files as input to the
models. But in real time scenarios, the complete case file is not always provided to the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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client. Instead, a summarized version of the case file is provided. For this reason, the
models should be able to handle complete as well as summarized case files.

There are different types of summarizations based on the use case. For example,
topic-based and indicator-based, single document and multiple documents, abstractive
and extractive etc. The most popular type of summarization that is being used in recent
works in this area is the abstractive-extractive summarization. The difference between
these two types of summarizations is the way the sentences from the complete text are
placed in the summary. In abstractive summarization, the sentences are paraphrased to
generate a more meaningful summary while in extractive summary, the sentences are
picked from complete text and placed directly into the summary.

Earlier works have shown that several summarizers have been developed in the legal
domain. For example, Case Summarizer is a custom summary generation technique
that was developed to handle legal case files. Automatic summarization and outcome
prediction are growing areas of research in the legal domain. However, the outcomes
of such research have started getting integrated into different platforms which are used
for legal services. Yet there is a general hesitancy shown by legal practitioners across
the world toward using such a technique. The reason for such behavior is that the legal
practitioners consider the technologies as a black box wherein the output is generated
but the reasoning for that outcome is unknown.With the help of explainable AI, the inner
workings of a model and the output generated by it can be understood. This provides a
way for legal practitioners and the public to understand and trust the models used.

In the proposed work, a custom dataset was constructed by collecting judgments
from the Indian Kanoon website, a comprehensive legal database for Indian court cases.
Each collected judgment was manually labeled based on its outcome. This approach,
while necessitated by the unique nature of the Indian legal system and the specificity
of the research goals, also presents an opportunity to contribute a novel dataset to the
field of legal analytics in the Indian context. A cluster analysis is done on the dataset in
order to understand the patterns in the data. The clusters generated are evaluated using
Silhoutte score,CalinskiHarabasz score andDaviesBouldin score.After cluster analysis,
four deep learning models namely BERT, LegalBERT, DistilBERT and RoBERTa are
trained with complete data, abstractive summarized data and extractive summarized
data which are generated using spacy module and Lex Rank algorithm respectively. The
models are evaluated using train accuracy, test accuracy, loss plot and F-score. Based
on the evaluation metrics, the best model is chosen. In order to understand why a model
predicted a certain outcome, explainable AI was used. LIME is an XAI tool which
highlights the words or phrases in the text that was used by a model to generate a certain
outcome. The dataset that has been used in this work has been created specifically to
solve this problem and contributes to the novelty of this work. The research questions
addressed in this work are:-

RQ1: Are summarized case files as efficient in predicting outcomes as detailed case
files?
RQ2:Does integratingLIMEexplanations into themodel’s predictions assist in assessing
the legal significance of terms utilized in the model’s decision-making?
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Legal outcome prediction aligns with the objectives of United Nation’s SDG 10
(reduce inequality)&16 (particularly in promoting the rule of law).Thekey contributions
of this work are listed below.

• A parallel corpus of case files from Indian courts and extractive as well as abstractive
summaries for each case file.

• Identification of a large language model that performs LOP task with equal
effectiveness for complete text case files as well as summary text.

2 Literature Review

This section represents the information obtained through a detailed survey of various
papers in the field of legal outcome prediction and text summarization. Text Summa-
rization is the process of shortening a lengthy text document while retaining the most
important information. This has become increasingly more demanding and necessary in
modern times due to the abundance of information available online. Manually analyzing
all the information available is a costly and intensive process. In order to make it easier
for a person to find relevant information quickly, text summarization was introduced.
There are different ways of performing text summarization based on the type of infor-
mation that is being dealt with [1, 2]. Few of the most popular ways of performing text
summarization include topic-based and indicator-based summarization. In topic-based
text summarization, initially the main topics or ideas of the text are captured. Based on
these topics, the sentences in the text are ranked based on their importance. Whereas, in
indicator-based text summarization, rather than focusing on topicality, the text is defined
as a set of possible indicators which are then used to rank the importance of sentences in
the text. In both these techniques, once the sentences are ranked based on their impor-
tance in the text, either a greedy approach or a global optimization approach is used to
create the summary [3].

Text summarization is one of the most important fields in the legal domain. Legal
practitioners manually summarize a large amount of case files in order to understand
their current case. It is a time taking process that can be made easy and quick with
recent technological advancements. There have been many summarization tools that
were developed in order to help with this problem. Though, very few legal practitioners
have started using these tools [4]. There are two main types of summaries that can be
generated namely extractive and abstractive summary. Themain difference between both
the types of summaries is the way that the text in the summary is generated. In extractive
summary, sentences are picked directly from the main text and placed in the summary.
Whereas, in abstractive summary, the sentences that are picked from the main text are
paraphrased before being placed in the summary. Both these summaries have their own
advantages in different tasks [5].

Nowadays, transformers are also being used widely for text summarization. For
example, T5 transformer was trained and tested with data taken from Supreme Court
of India [6]. Recent studies show that basic machine learning models cannot handle
text summarization as well as deep learning models due to the large amounts of data
that needs to be processed. Therefore, there are many deep learning models that have
been developed specifically for text summarization. While there are some models that
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have been fine tuned for classification and text summarization [7]. Once the summaries
of text have been obtained, the next main area of research in legal domain is outcome
prediction from the case files and their summaries. Some studies have tested machine
learning models like Support Vector Machine (SVM) for this task. The results obtained
showed that the model gave a 98% F1 score while predicting a case ruling. It was also
noted that this model can perform tasks other than outcome prediction like predicting
the law area or the date of ruling for a case [8]. Along with machine learning models,
deep learning models like Convolution Neural Networks (CNN’s) have also been used
for outcome prediction otherwise known as verdict prediction [9].

Along with using models for text classification, summarization etc., they need to be
evaluated. There are manymetrics to evaluate themodels but some of themetrics that are
used popularly to evaluate text summarization include ROGUE score, BLEU score etc.
These metrics belong to the Natural Language Processing (NLP) field. They measure
the semantics and sentence formations in the summary rather than how accurate they
are. This helps the developers understand how effectively the models are able to form
sentences in the summary based on the text [10]. BERT is a Large Language Model
(LLM) that is widely used in most NLP tasks since it is pretrained on a large amount of
text data. Not only can BERT be used directly to perform classification, prediction etc.,
but it can also be finetuned for custom problems. Due to this feature, many developers
have created several versions or types of BERT by pretraining it with different types
of data. Some examples are LegalBERT, which is trained on legal case files, BioBERT,
which is trained on biological data, AlphaBERT,which is trained on hospital information
etc. These types of BERT are publicly available for anyone to use easily [11]. One such
example of BERT is RoBERTa. The main difference between BERT and RoBERTa is
the size of the training data. RoBERTa was trained on a larger data as compared to
BERT base model [12]. Understanding the reason for a certain outcome is as important
as predicting that outcome.

In order to achieve this, explainable AI is used. XAI tools highlight the features in
the input that were used by the model to generate the output. In case of legal outcome
prediction, XAI tools can be used to highlight the words in the case file that were
considered by the model to predict the outcome of that case. This helps us understand
whether the model is able to analyze the right words, or it is randomly predicting the
outcome. It can be helpful in cases where the accuracy of the model is high but when
the test cases are used, the model is unable to predict the correct outcome in most cases
[13, 14]. Some popular XAI tools include LIME and ELI5. Both these tools have similar
functionality on a local level wherein they highlight the text that led to certain predicted
outcome. But they differ on a global level wherein ELI5 can also highlight the parameters
of a model that were used to reach a certain outcome. This feature is not available in
LIME [15].

Most legal practitioners have not started making use of deep learning or machine
learning models for outcome prediction because they doubt the ability of a model to
predict an outcome of a case since, they cannot understand why the model has predicted
a certain outcome. In cases like this, XAI is helpful is providing an insight into the words
or phrases that contributed to getting an outcome. This helps legal practitioners to verify
the output manually if necessary [16].
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3 Data Description

This section talks about the dataset used for the proposed work and how it was created.
The data used in this work was procured from Indian Kanoon website which is a repos-
itory of judgements from across various courts in India. The case files were randomly
picked from a span of seven decades between 1950–2023. A total of 600 records were
collected and stored. These cases were divided into four main classes namely appeal
allowed, appeal dismissed, petition dismissed, and petition allowed. The classes were
encoded into values of 0, 1, 2 and 3 that represent each class respectively. The class
distribution in the dataset is represented in Fig. 1.

Fig. 1. Bar Chart representing class distribution.

The summaries of these case files are not available in the IndianKanoonwebsite. The
abstractive summaries are generated using Spacymodule while the extractive summaries
are generated using LexRank algorithm. The spacymodule and LexRank algorithmwere
chosen based on the studies in [17, 18]. The summaries were later analyzed by one of the
authors who is a legal professional. The dataset was divided into 75:25 ratio for training
and testing. These training and testing sets were used for pre-training as well as fine
tuning the four deep learning models [19].

4 Proposed Methodology

This section depicts the process workflow of the proposed work. The workflow of the
proposed system is represented in Fig. 2. The workflow is divided into three sections
namely data pre-processing, classification models and explainable AI.

The proposed workflow begins with the text preprocessing block. Initially, the data
is used to generate clusters which are analyzed and evaluated using Silhoutte score,
Calinski Harabasz score and Davies Bouldin score. This is done in order to understand
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Fig. 2. Proposed Workflow

the patterns in the data and to make sense of the complex dataset. Then, the complete
case files and their summaries are given to the data pre-processing block to generate the
word embedding representations. These word embedding representations are then given
to four classification models namely BERT, LegalBERT, DistilBERT, RoBERTa. The
models are evaluated using train accuracy, test accuracy, loss plots and F-score. Based
on the results of these evaluation metrics, the best model (RoBERTa) is selected. The
best model is trained and tested with assorted data which is a combination of complete
and summarized data. The model is then given to LIME which is an explainable AI
tool. This tool highlights the words or phrases in the input text which contributed to the
outcome predicted by the model.

4.1 Text Pre-processing

The text pre-processing block takes the complete case files and their summaries as input.
The complete case files are initially tokenized then the stop words are removed. Then the
punctuation marks are removed, and the output is given to the stemming block. Finally,
the word embedding representations are generated as output. These word embeddings
are given to the classification blocks as input. The summarized case files do not require
the stop word removal, punctuation removal and stemming since they are a shorter
version of the case files. So, the summaries are tokenized and their word embedding
representations are generated while skipping the intermediate steps (Fig. 3).

Fig. 3. Text Pre-processing block
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4.2 Classification Models

The architecture of the four deep learning models is represented in Table 1. The model
architecture consists of different layers such as max pooling, dense, dropout and embed-
ding layer. The output shape of each layer is mentioned. The output shape of the final
dense layer is the same which is (None, 4). This represents the number of classes in the
dataset.

Table 1. Model Architecture.

Model BERT LegalBERT DistilBERT LegalBERT

Embedding
(Output
Shape)

TFBertModel TFSequenceClassifier TFDistilBertModel TFSequenceClassifier

Max
Pooling1D
(Output
Shape)

(None, 768) – – –

Dense
(Output
Shape)

(None, 128) (None, 32) (None, 512) (None, 128)

Dropout
(Output
Shape)

(None, 128) (None, 128) (None, 512) (None, 128)

Dense
(Output
Shape)

(None, 4) (None, 4) (None, 4) (None, 4)

4.3 Explainable AI

The deep learning model with the best performance which was observed to be the
RoBERTa model was given to LIME which is an explainable AI tool that highlights the
words in the text that contributed to outcome predicted by the model. LIME stands for
Local Interpretable Model-agnostic Explanations. This tool provides an explanation for
a single instance, so it is suitable for local interpretation.

5 Results

This section reports the results of training and testing the four different deep learning
models on complete, summarized, and assorted data. The results section is divided into
three sub sections namely cluster analysis, LOP with complete and summarized data
and explainable AI.
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5.1 Cluster Analysis

Before training the deep learning models, a cluster analysis was done on the dataset in
order to understand the data in detail. The clusters were created using Kmeans clustering
and they were evaluated using metrics like Silhoutte score, Calinski Harabasz score and
Davies Bouldin score. The number of clusters in the data is not known beforehand so
the elbow curve method is used to determine the optimal number of clusters. The graph
depicting the elbow curve for the dataset used in this work is shown in Fig. 4.

Fig. 4. Graph depicting elbow curve

From Fig. 4, it can be inferred that the curve is plotted by having Within Cluster
Sum of Square (WCSS) on the y-axis and the number of clusters in the x-axis. WCSS
is calculated by measuring the distance between each data point and the centroid and
summing their squares. The optimal number of clusters is found by identifying the point
in the curve which forms an elbow shape. In the proposed work, the optimal number
of clusters obtained from the elbow curve is 2. Once the optimal number of clusters is
known, Kmeans clustering is used to create the clusters. Principal Component Analysis
(PCA) is used for dimensionality reduction. The number of dimensions is set to two
because it is easier to visualize the clusters in 2-D space. The clusters and their centroids
are shown in Fig. 5. The dimensionality of the data points is also reduced using PCA and
the corresponding PCA elements are generated. PCA transforms the original features
into a new set of linearly uncorrelated variables called principal components. These
principal components are linear combinations of the original features.

In Fig. 5, the plot contains principal component 1 in the x-axis and principal compo-
nent 2 in the y-axis. The principal components 1 and 2 represent the maximum variance
and second maximum variance in the data. These clusters are evaluated using Silhoutte
score, Calinski Harabasz score and Davies Bouldin score. The results of the cluster
analysis are shown in Table 2.

The Silhoutte score determines how well suited a data point is in its own cluster as
opposed to its neighboring clusters. The scores can range from –1 to 1. A higher Silhoutte
score means that the data point is well matched in its own cluster and poorly matched in
its neighboring cluster. From Table 2, it can be observed that the Silhoutte score is 0.15



Predicting Judgement Outcomes from Legal Case File Summaries 175

Fig. 5. Kmeans clusters and their centroids

Table 2. Cluster Evaluation Metrics.

Cluster Evaluation Measures Scores

Silhouette Score 0.15

Calinski Harabasz Score 252.26

Davies Bouldin Score 2.59

which is an average score. It can be inferred that the data points are fairly well matched
in their own clusters. The Calinski score is the ratio of between cluster and within cluster
dispersion. There is no range of values for the Calinski score but a higher value indicates
more well-defined clusters. From Table 2, it can be observed that the Calinski score is
252.26 which indicates that the clusters are well separated, and this can also be observed
in Fig. 5. The Davies Bouldin score measures the similarity between each cluster and its
most similar cluster. A lower Davies Bouldin score indicates good separation between
the clusters. From Table 2, it can be observed that the Davies Bouldin score is 2.59 which
is a good score so it can be inferred that the clusters are well separated. Based on the
results of all the cluster evaluation measures, it can be concluded that the clusters are
well defined and separated and the data points in the clusters are well suited to their own
clusters. The cluster analysis helps understand the underlying structure of the dataset
used.

5.2 LOP with Complete and Summarized Data

The four deep learning models namely BERT, LegalBERT, DistilBERT and RoBERTa
were initially trained and tested with complete and summarized data. The best model
was selected based on the evaluation metrics like accuracy, loss plots and F-score. The
results obtained from the models when the complete data, abstractive summarized data
and extractive summarized data are given as input are shown in Fig. 6.
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Fig. 6. Results of four deep learning models with complete and summarized data

In Fig. 6, the accuracy and F1-score of the four deep learning models are shown
when the different types of data are given as input. Based on these results, the RoBERTa
model was chosen as the best model. This can be observed from the highlighted values
in Fig. 6. The test accuracy and F-score of RoBERTa were better than the other models
for complete and summarized data. It can also be observed from the green and blue
highlighted values that the extractive summarized data was as efficient of an input to
the RoBERTa model as complete data. But the abstractive summarized data was not on
par with the complete data which can be observed from the orange highlighted values.
Based on these values, RoBERTa was chosen as the best model.

5.3 LOP with Assorted Data

Since RoBERTa was chosen as the best model, it was trained with assorted data. The
model was then evaluated using the same metrics as the other types of data. The results
are shown in Table 3.

Table 3. Results of RoBERTa model with assorted data.

Assorted Data

RoBERTa Accuracy (%) F1 Score

84.12 49.78 0.47

It can be observed from Fig. 6 and Table 3 that the assorted data performs slightly
better than the complete data. Thiswas the expected behavior as the assorted data consists
of the complete and summarized data together. The highest F-score was 0.47 which
belonged to the RoBERTa model when the complete and assorted data were given as
inputs. Since assorted data performed the best, the accuracy plot loss plot of theRoBERTa
model with assorted data is shown in Fig. 7(a) and (b).

From Fig. 7 (b), it can be observed that the gap between the training and validation
loss is initially less and later the training loss decreaseswhile the validation loss increases
steadily. This is the expected behavior which indicated that the model is able to learn
well from the seen data and the since the loss is varying, the model is able to learn new
information from the unseen data as well. After the models are tested and evaluated,
they are given to LIME to get the explanations for the predictions.
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Fig. 7. Accuracy plot (a) and Loss plot (b) of RoBERTa model with assorted data as input

5.4 Explainable AI

The LIMEmodel takes the deep learning model and one instance as an input. It provides
the outcome prediction from the model and the explanations for that prediction as the
output. Since RoBERTa was chosen as the best model, LIME was implemented with
RoBERTamodel when the complete data, summarized data and assorted data were given
as inputs. LIME shows the probability for the prediction of each class and the top 10
words that contributed to the prediction.

The LIME explanations when different types of data were given as input to the
RoBERTa model are shown in Table 4, 5, 6 and 7. The column titled “words against
prediction of class” refers to the words among the top 10 words that contributed to the
respective class not being predicted. Whereas the column titled “words for prediction
of class” refers to the words among the top 10 words that contributed to the prediction
of the respective class. The LIME explanations for the RoBERTa model when complete
data is given as input is shown in Table 4.

From Table 4, the prediction of the outcome is highlighted in the table which is class
‘1’ in this case. The probability column shows the percentage of the data having an
outcome of 0, 1, 2 or 3. The highest probability is 69% for class ‘1’ which is the reason
the final prediction was class ‘1’. The words that contributed to the prediction of class
‘1’ were ‘incometax’, ‘appeal’, ‘refer’ and ‘date’. The text in the case file is shown in
Fig. 8. The words in the text that contributed to the model predicting the outcome as ‘1’
are also highlighted in Fig. 8.

Class 1 corresponds to ‘Appeal Dismissed’ and it can be observed from Fig. 8 that
the highlighted words in the text include the word ‘appeal’. This indicates that the model
is focusing on relevant words while making a prediction.

The LIME explanations for the RoBERTa model when abstractive summarized data
is given as input is shown in Table 5.

From Table 5, the prediction of the outcome is highlighted in the table which is class
‘1’ in this case. The probability column shows the percentage of the data having an
outcome of 0, 1, 2 or 3. The highest probability is 99% for class ‘1’ which is the reason
the final prediction was class ‘1’. The words that contributed to the prediction of class
‘1’ were ‘held’, ‘void, ‘It, ‘I, etc. The text in the case file is shown in Fig. 9. The words in
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Table 4. LIME explanations of RoBERTa model with complete data (weights of words added in
brackets).

Words against prediction of
class

Words for prediction of class Probability (%)

CLASS - 0 incometax (0.11), refer (0.01) calcutta (0.06), court (0.05),
high (0.05), judgement (0.04),
appel (0.04), chakravartti
(0.03), gupta (0.03)

31

CLASS - 1 judgement (0.04), high (0.03),
court (0.03), calcutta (0.03),
court (0.03), chakravartti
(0.03)

incometax (0.08), appeal
(0.05), refer (0.01), date
(0.01)

68

CLASS - 2 appeal (0.02), calcutta (0.01),
court (0.01), appel (0.01), high
(0.01), gupta (0.001),
judgement (0.001),
chakravartti (0.001)

incometax (0.01) 0

CLASS - 3 appeal (0.03), calcutta (0.02),
court (0.02), appel (0.01), high
(0.01), gupta (0.01), judgement
(0.01), chakravartti (0.01)

incometax (0.02) 1

Fig. 8. Top 10 words from LIME highlighted in the text from complete case file

the text that contributed to the model predicting the outcome as ‘1’ are also highlighted
in Fig. 9.

From Fig. 9, it can be observed that the model is mainly focusing on stop words like
‘of’, ‘that’ etc. This is reflected in Fig. 6 since the abstractive summarized data has the
least accuracy and F-score compared to all other types of data for all the models. This
behaviour of the model can be explained using the LIME explanations.

The LIME explanations for the RoBERTa model when extractive summarized data
is given as input is shown in Table 6.

From Table 6, the prediction of the outcome is highlighted in the table which is class
‘1’ in this case. The probability column shows the percentage of the data having an
outcome of 0, 1, 2 or 3. The highest probability is 98% for class ‘1’ which is the reason
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Table 5. LIME explanations of RoBERTa model with abstractive summarized data (weights of
words added in brackets).

Words against prediction of
class

Words for prediction of class Probability (%)

CLASS - 0 held (0.19), void (0.14), It
(0.14), of (0.12), I (0.12), deed
(0.12), that (0.10), court (0.08),
provisions (0.07), further (0.05)

– 1

CLASS - 1 – held (0.26), void (0.17), It
(0.17), I (0.14), deed (0.11),
that (0.16), court (0.10),
provisions (0.09), the (0.18)

99

CLASS - 2 the (0.05), held (0.03), trust
(0.03), that (0.02), had (0.02),
On (0.01), passed (0.01)

deed (0.01), of (0.001) 0

CLASS - 3 the (0.07), trust (0.04), held
(0.03), that (0.03), had (0.02), It
(0.02), passed (0.02), money
(0.01), ownership (0.01)

deed (0.01) 0

Fig. 9. Top 10 words from LIME highlighted in the text from abstractive summarized case file

the final prediction was class ‘1’. The words that contributed to the prediction of class
‘1’ were ‘of’, ‘court’, ‘calcutta’, ‘the’, etc. The text in the case file is shown in Fig. 10.
The words in the text that contributed to the model predicting the outcome as ‘1’ are
also highlighted in Fig. 10.

From Fig. 10, it can be observed that for an outcome of ‘Appeal Dismissed’, the
model is able to focus on relevant words like ‘appeal’, but it is also focusing on some
stop words like ‘of’,’the’ etc. So, the model is able to perform better with extractive
summarized data as compared to abstractive summarized data.

The LIME explanations for the RoBERTamodel when assorted data is given as input
is shown in Table 7.

From Table 7, the prediction of the outcome is highlighted in the table which is class
‘2’ in this case. The probability column shows the percentage of the data having an
outcome of 0, 1, 2 or 3. The highest probability is 57% for class ‘2’ which is the reason
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Table 6. LIME explanations of RoBERTa model with extractive summarized data (weights of
words added in brackets).

Words against prediction of
class

Words for prediction of class Probability (%)

CLASS - 0 of (0.15), 1922 (0.06),
provisions (0.05), held (0.04),
that (0.04), the (0.04), court
(0.04), I (0.04)

appeal (0.06) 1

CLASS - 1 – of (0.21), court (0.14),
calcutta (0.14), 1922 (0.11),
held (0.10), the (0.09), that
(0.08), bhagwati (0.07),
judgement (0.07), the (0.07)

98

CLASS - 2 Calcutta (0.03), court (0.03),
appeal (0.03), Bhagwati (0.02),
1922 (0.02), of (0.02), deed
(0.02), judgement (0.02), held
(0.02), high (0.01)

– 0

CLASS - 3 Calcutta (0.08), Bhagwati
(0.07), court (0.07), appeal
(0.07), high (0.05), held (0.04),
judgement (0.04), the (0.04)

Judicature (0.03), Sect. (0.01) 1

Fig. 10. Top 10 words from LIME highlighted in the text from extractive summarized case file

the final prediction was class ‘2’. The words that contributed to the prediction of class
‘2’ were ‘petitioners’, ‘changed, ‘property, ‘code’, etc. The text in the case file is shown
in Fig. 11. The words in the text that contributed to the model predicting the outcome as
‘2’ are also highlighted in Fig. 11.

From Fig. 11, it can be observed that for an outcome of ‘Petition Dismissed’, the
model is able to focus on relevant words like ‘petitioners’ and the model ignores most of
the stopwords. This indicates that theRoBERTamodel performs betterwith assorted data
as compared to summarized and complete data. This is reflected in the results obtained
in Fig. 6. From all the LIME explanations, it can be inferred that the RoBERTa model
performs well with complete and assorted data as compared to summarized data. Among
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Table 7. LIME explanations of RoBERTa model with assorted data (weights of words added in
brackets).

Words against prediction of
class

Words for prediction of class Probability (%)

CLASS - 0 petitioners (0.11), application
(0.09), petitioner (0.03)

property (0.04), changed
(0.02), 1994 (0.02), the (0.01),
called (0.01), injunction
(0.01), court (0.01)

1

CLASS - 1 petitioners (0.25), application
(0.09), petitioner (0.07),
property (0.02), changed (0.02)

the (0.03), appellate (0.03), 39
(0.03), 1994 (0.03), civil (0.03)

1

CLASS - 2 suit (0.04), appellate (0.04),
respect (0.02)

petitioners (0.30), changed
(0.09), property (0.08), code
(0.04), passed (0.03),
procedure (0.03), application
(0.03)

57

CLASS - 3 property (0.11), changed
(0.10), how (0.05), court
(0.05), the (0.04), evidence
(0.04)

application (0.14), petitioner
(0.08), petitioners (0.06), suit
(0.02)

42

Fig. 11. Top 10 words from LIME highlighted in the text from assorted case file

abstractive and extractive summarized data, the model performs better with extractive
summarized data.

6 Conclusion and Discussion

In conclusion, this work proposed a system that can predict the outcome of a case
from both complete and summarized data. This system can be utilized in order to get
a second opinion about the possible outcome of a legal case. In the proposed work,
Kmeans clustering was used to generate the clusters from the dataset. These clusters
were evaluated using Silhoutte score, Calinski Harabasz score andDavies Bouldin score.
Four deep learning models were built using complete and summarized data. Based on
the performance metrics of these models, the model with the best performance was
chosen which was the RoBERTa model. This model was then built using assorted data.
The performance metrics of the RoBERTa model with different types of data as inputs
was analyzed. The research questions addressed in this work were answered based on
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the analysis of the performance metrics of the best model on different types of data. It
was observed that the extractive summarized data works as efficiently as the complete
data since the RoBERTa model gave almost similar accuracies and F1 score when the
extractive summarized data and complete data were given as inputs. It was also observed
that LIME was able to identify the words used in the model’s decision-making process.
The relevance andmeaningfulness of thesewordswere determined based on the outcome
predictions that the model made. It was observed that the model was able to predict more
accurate outcomes when the words used by the model contained legal terms rather than
stop words, conjunctions etc.

The proposed Indian legal outcome prediction system faces significant challenges.
First, the limited size of the dataset constrains the model’s ability to capture the full
spectrum of legal scenarios and outcomes. This restriction may reduce accuracy and
generalizability, particularly for less common cases or unique legal situations. Sec-
ond, the inherently complex and subjective nature of legal decision-making poses a
formidable obstacle to purely data-driven predictions. Dynamic factors such as evolving
societal norms, individual judicial interpretations, and the nuanced application of prece-
dents often influence legal outcomes. These elements are difficult to quantify making it
challenging for the system to consistently produce accurate predictions across changing
legal landscapes.
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Abstract. Podcasts are now a favored means of consuming audio con-
tent across various languages, yet the sheer volume of available podcasts
poses a challenge for users in discovering content that matches their pref-
erences. In this study, we propose unsupervised techniques for podcast
recommendation in a multi-lingual context. Our novel approach inte-
grates multi-view representations, encompassing both sentence-level and
keyword-level perspectives, to capture the diverse facets of podcast con-
tent. Utilizing autoencoders, we derive meaningful latent representations
for both sentence and keyword views from the podcast dataset. These
representations encapsulate semantic relationships crucial for subsequent
clustering analysis. Then we employ unsupervised learning algorithms
on these learned representations to cluster similar podcasts together fol-
lowed by ensemble learning. Our experimental evaluations on a varied
multi-lingual podcast dataset (Hindi and English) showcase the promis-
ing performance of our approach in terms of podcast recommendation
accuracy and user satisfaction. By leveraging multiple views and unsu-
pervised learning techniques, we effectively address the challenges posed
by language diversity and content heterogeneity in podcast recommen-
dation systems. The results reveals that the ensemble algorithm emerges
as a standout performer, achieving a silhouette score, diversity and cov-
erage of (a) 0.6640, 0.6150, and 0.7720 for the English Dataset, and (b)
0.4860, 0.4620, and 0.8380 for the Hindi Dataset, outperforming other
methods. These results underscore the efficacy of our multi-view ensem-
ble clustering approach in tackling language diversity and content het-
erogeneity, thus advancing personalized podcast recommendation in the
multi-lingual domain.

Keywords: Recommendation Systems · Podcasts · Unsupervised
Learning · Clustering · Autoencoders

1 Introduction

Nowadays, podcasts have gained immense popularity as a medium for consum-
ing audio content across various languages and genres. With the ever-increasing
number of podcasts available, there is a pressing need for effective recommenda-
tion systems that can assist users in discovering relevant and personalized content
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15301, pp. 184–200, 2025.
https://doi.org/10.1007/978-3-031-78107-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78107-0_12&domain=pdf
http://orcid.org/0000-0002-2421-1457
https://doi.org/10.1007/978-3-031-78107-0_12


Multi-view Ensemble Clustering-Based Podcast Recommendation 185

[3,27]. Recommendation systems can be broadly categorized into content-based
filtering, collaborative filtering and hybrid. The first one suggests items similar
to those a user has liked based on item features and user profiles. The second
one encompassing user-based and item-based approaches that recommend items
based on user interactions and similarities among users or items. The hybrid one
combine the first two techniques for more accurate recommendations. Each type
offers unique advantages and is chosen based on factors like available data and
the complexity of the recommendation task.

The ease of accessing podcasts on portable devices such as smartphones,
tablets, and laptops has had a significant impact on the popularity of podcasts,
especially in countries like India. However, the multi-lingual nature of the pod-
cast domain presents unique challenges in understanding and recommending
content to users across different languages [19]. The emerging podcast industry
in India, as highlighted in “PwC Global Entertainment & Media Outlook 2020–
2024” c by PricewaterhouseCoopers (PwC) International Limited, underscores
a prime opportunity for the development of podcast recommendation and sum-
marization tools tailored to the country’s linguistic diversity. With an estimated
40–50 million monthly listeners, the rapid growth of the podcast medium in
India is evident. This growth is expected to continue, fueled by increasing inter-
net penetration and smartphone usage across the nation. The linguistic land-
scape, boasting almost 22 official languages in India, necessitates the evolution
of podcast summarization tools to cater to regional languages.

In this paper, we present an investigation into unsupervised techniques for
personalized content-based podcast recommendation in a multi-lingual domain,
targeting Hindi and English language. Hindi is chosen because 53.6% of the
Indian population declared that they speak Hindi as either their first or sec-
ond language and English due to its global acceptance. Our approach incor-
porates multi-view representations, specifically utilizing both sentence-level and
keyword-level views, to capture the diverse aspects of podcast content. By lever-
aging these multi-view representations, we aim to overcome the limitations of
traditional single-view approaches, which may fail to capture the nuances of
multi-lingual content [12]. To extract meaningful representations from the pod-
cast data, we employ auto-encoders [6], a type of neural network architecture
renowned for their ability to learn compressed representations of input data. By
training auto-encoders on the podcast dataset, we obtain latent representations
that capture the semantic relationships between sentences and keywords within
the podcast content. After getting the latent representation corresponding to
each view, we explore the application of traditional and graph-based clustering
algorithms to group similar podcasts together. Thereafter, to obtain the con-
sensus partitioning satisfying both the views, we investigate the use of ensemble
learning. As per our knowledge, this is a first of its kind work for personalized rec-
ommendation system which is utilizing the efficacy of auto-encoders, clustering
algorithms, multi-linguality and ensemble learning in an integrated framework.

Thus, the objective of our study is to develop a robust and effective podcast
recommendation system that caters to the diverse language preferences of users.
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By incorporating unsupervised techniques and multi-view representations, we
aim to address the challenges posed by language diversity and content hetero-
geneity in podcast recommendation.

For experimental purposes, a dataset comprising textual descriptions of
10, 000 podcasts in Hindi and English was considered. As the proposed algo-
rithm is based on multi-view ensemble clustering, therefore, firstly, clustering
performance is validated using the silhouette score, and then the top-N recom-
mendations are evaluated using the well-known diversity and coverage score in
the field of recommendation. The results are compared with the different variants
of the proposed algorithm in terms of the clustering algorithm. To check the effi-
cacy of the proposed multi-view framework, an auto-encoder-based single-view
ensemble clustering framework is also developed.

Key-Contributions: The key-contributions of the paper are listed below: (a)
We propose a novel approach that utilizes multi-view representations of podcast
content, considering both sentence-level and keyword-level views. By incorpo-
rating multiple views, we aim to capture the diverse aspects of podcast content
and overcome the limitations of single-view approaches; (b) We propose a novel
approach that utilizes multi-view representations of podcast content, considering
both sentence-level and keyword-level views. By incorporating multiple views,
we aim to capture the diverse aspects of podcast content and overcome the
limitations of single-view approaches; (c) Our proposed methodology has been
successfully applied to a Hindi dataset, demonstrating its adaptability and effec-
tiveness in handling linguistic intricacies and cultural nuances specific to the
Hindi language. This extension of our approach to a non-English dataset not
only underscores its versatility but also highlights its potential for cross-lingual
applications, thereby contributing significantly to the advancement of natural
language processing (NLP) techniques in multicultural contexts. Along with,
the results also reported on English language due to its global acceptance.

The outline of this paper is structured as follows: Sect. 2 provides an overview
of related work in podcast recommendation and multi-view clustering. Section 3
presents the proposed methodology. Section 4 discusses the experimental setup,
including dataset description, comparative methods, and evaluation metrics.
Section 5 presents and analyzes the experimental results. Finally, Sect. 6 con-
cludes the paper.

2 Related Work

Various recommendation system techniques have been proposed across different
domains in the literature. Sharma et al. [17] suggested utilizing the Amazon
Apparel dataset by employing a combination of Convolutional Neural Networks
(CNN) and Natural Language Processing (NLP) to scrutinize product titles and
images, aiming for predictive applications. Bellini et al. [2] introduced a fash-
ion retail recommendation system addressing cold start and seasonal dynamics
through multi-clustering. For podcast recommendations, pioneers like [20], used
music as a resource, while Benton et al. [4] considered user interaction order and
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semantic relationships from podcast knowledge graphs for precise recommenda-
tions. In [21], an online clustering method using auto-encoders managed the con-
tinuous flow of articles. The authors of Walek et al. [26] presented the Eshop rec-
ommender, integrating collaborative filtering and content-based subsystems with
a fuzzy expert system. In [29], authors introduced AGRE, leveraging knowledge
graphs to capture user preferences. Introducing a novel approach, our research
focuses on multi-view ensemble clustering [10], combining outputs from distinct
base clustering algorithms for enhanced performance and capturing complex
data structures effectively. In contrast to deep multi-view clustering algorithms
[10] employing multiple autoencoders, our work emphasizes efficiency and sim-
plicity, utilizing a single autoencoder to integrate different views (sentence and
keyword-based) and an ensemble clustering algorithm for robust cluster forma-
tion, thereby offering a more streamlined and effective clustering framework. In
contrast to existing multi-view clustering approaches, our research introduces
multi-view ensemble clustering, a novel approach that combines outputs from
two distinct base clustering algorithms to form robust clusters. By leveraging
the strengths of both algorithms, our method aims to enhance clustering perfor-
mance, capture complex data structures effectively, and provide a comprehensive
solution to multi-view clustering challenges.

Our work is motivated by several research gaps in the literature. Firstly,
there’s a lack of attention to podcast recommendation systems, especially con-
cerning multi-view representations for improved accuracy and user satisfaction.
Additionally, existing research often overlooks Indian regional languages, which
offer unique challenges and opportunities in recommendation systems. While
various techniques exist, like CNN and NLP for product recommendation, our
approach fills this void by focusing on podcast recommendations with multi-
view ensemble clustering. Unlike traditional methods, we integrate two distinct
clustering algorithms to create more robust and diverse clusters. This novel app-
roach aims to address the challenges of multi-view clustering, particularly in the
context of Indian regional language podcasts.

3 Methodology

This section delineates a comprehensive methodology tailored for podcast rec-
ommendation within the nuanced landscape of multi-lingual domains, harness-
ing the potential of unsupervised techniques like multi-view analysis with auto-
encoders alongside a spectrum of traditional clustering algorithms. Our method-
ology unfolds in three primary dimensions: Sentence View, Keyword View and
Concatenated Views, each engineered to cater to the diverse needs and pref-
erences of users across linguistic boundaries. The flow chart of the proposed
methodology is shown in Fig. 1.

3.1 Input Podcast Representation

In crafting a robust representation framework for podcasts, we adopt a dual-view
paradigm comprising the sentence view and the keyword view. The sentence
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view encapsulates the rich textual narratives woven within podcast descriptions,
while the keyword view distills pivotal thematic elements through sophisticated
keyword extraction techniques. This multi-faceted representation strategy allows
for a holistic understanding of podcasts, capturing both their semantic essence
and thematic underpinnings.

Sentence View: In the Sentence View, Robustly Optimized BERT App-
roach (RoBERTa) [18] for English dataset and Cross-Lingual Language Model
Robustly Optimized BERT Approach (XLM-RoBERTa) [7] for Hindi dataset,
are utilized to create Sentence embeddings that capture the semantic essence of
podcast descriptions. Thereafter, an auto-encoder is employed to distill mean-
ingful representations from the sentence view, leveraging the innate capacity of
neural networks to discern intricate patterns within textual data.

Keyword View: In the Keyword View, keywords extracted using Rapid Auto-
matic Keyword Extraction (RAKE) [22] are transformed into Keyword embed-
dings using RoBERTa and XLM-RoBERTa, for English and Hindi dataset,
respectively, capturing their semantic significance within the podcast landscape.

3.2 Latent Vectors Corresponding to the Input Podcast
Representation

Corresponding to the input vector representation for each view, an autoencoder
is employed to distill meaningful representations from the sentence view, lever-
aging the innate capacity of neural networks to discern intricate patterns within
textual data. The details about the auroencoder is provided below.

Autoencoder Framework. The autoencoder framework is a powerful unsuper-
vised learning technique used for dimensionality reduction, feature learning, and
data denoising. It consists of an encoder, which compresses the input data into a
lower-dimensional representation, and a decoder, which reconstructs the original
input data from the compressed representation. By minimizing the reconstruc-
tion error between the input and the output, the autoencoder learns to capture
meaningful features of the input data in an efficient and compact representation.

Encoder: The encoder compresses the input data into a lower-dimensional rep-
resentation. Let X denote the input data, hi represent the hidden representation
at layer i, Wi be the weight matrix for layer i, bi be the bias vector for layer i,
and Activation be the activation function used in each layer. The forward pass
of the encoder can be represented as:

h1 = Activation(W1 · X + b1)
h2 = Activation(W2 · h1 + b2)

. . .

hn = Activation(Wn · hn−1 + bn)
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Decoder: The decoder reconstructs the original input data from the compressed
representation obtained from the encoder. Let Z represent the compressed repre-
sentation obtained from the encoder, and hi represent the hidden representation
at layer i in the decoder. The forward pass of the decoder can be represented as:

hn+1 = Activation(Wn+1 · Z + bn+1)
hn+2 = Activation(Wn+2 · hn+1 + bn+2)

. . .

h2n = Activation(W2n · h2n−1 + b2n)

Training Objective (Loss): The autoencoder is trained on the individual
view representation. The training objective is to minimize the reconstruction
error between the input and the output. Let X be the input data and X̂ be the
output (reconstruction) of the autoencoder for the input X. The loss function
measures the difference between X and X̂, commonly chosen as mean squared
error (MSE).

Loss = MSE(X, X̂) and MSE(X, X̂) =
1
n

n∑

i=1

(xi − x̂i)2 (1)

Here, n represents the number of elements (dimension) in the input vectors, xi

is the i-th element of the actual input vector, and x̂i is the i-th element of the
predicted (reconstructed) vector.

Training Procedure: The autoencoder is trained by minimizing the loss func-
tion using an optimization algorithm The parameters weights and biases of the
autoencoder are updated iteratively using the gradients of the loss function with
respect to the parameters:

(W, b) ← (W, b) − η
∂(Loss)
∂(W, b)

In this equation, (W, b) represents the parameters weights and biases of the
autoencoder, η is the learning rate, which controls the step size of the parameter
updates and ∂Loss

∂θ represents the gradient of the loss function with respect to
the parameters.

3.3 Partitioning Similar Podcasts Using Concatenated Views

To form the grouping/partitioning/clusters of similar podcasts based on their
intrinsic similarities, several traditional clustering algorithms along with graph-
based algorithms (Affinity Propagation [13], KMeans [1], KMedoid [16], Hier-
archical Clustering [15], Gaussian Mixture Model (GMM) [8], Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [11], Spectral Clus-
tering [24], and Balanced Iterative Reducing and Clustering using Hierarchies
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(BIRCH) [28]) are explored to navigate the multi-view feature space. This clus-
tering process forms the bedrock of our recommendation framework, facilitating
the extraction of top-tier podcasts aligned with user preferences. To validate the
cluster quality, an internal cluster validity index is used which measure compact-
ness and separation among clusters. It should be note that for most of the clus-
tering algorithms, the number of clusters should be known a-priori. Therefore,
we have the considered the number of clusters estimated by affinity propagation
algorithm.

3.4 Perform Ensemble Clustering

It aims at enhancing podcast recommendation system through the integration
of multi-view ensemble clustering techniques. Our objective is to offer personal-
ized recommendations for the top-10 podcasts, leveraging the amalgamation of
diverse views and ensemble clustering methodologies. In our architecture (based
on the experimental analysis), we leverage two robust base clustering algorithms
(a) BIRCH and Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) [5] for English Dataset; (b) BIRCH and Spectral for
Hindi Dataset, for handling extensive datasets and capturing diverse structures
inherent in podcast data. These algorithms excel in identifying clusters of varying
shapes and densities, as well as modeling complex data structures and detecting
clusters of varying densities within concatenated views. By capitalizing on their
strengths, we aim to devise a comprehensive clustering solution for effectively
capturing diverse patterns in podcast data. This architecture represents a sig-
nificant advancement over traditional recommendation systems by harnessing
multiple perspectives of podcast data and enhancing the reliability of clustering
results through ensemble techniques. This architecture represents a significant
advancement over traditional recommendation systems by harnessing multiple
perspectives of podcast data and enhancing the reliability of clustering results
through ensemble techniques.

Fig. 1. Flowchart and Architecture of the Multi-view Ensemble Clustering-based Pod-
cast Recommendation



Multi-view Ensemble Clustering-Based Podcast Recommendation 191

The overall mathematical representation of the clustering process using
Ensemble Clustering can be expressed as a combination of similarity compu-
tation, aggregation, and optional transformations:

C =
1
n

n∑

i=1

Si (2)

where, C is the cluster matrix, n is the number of base learners, Si is the simi-
larity matrix computed by the ith base learner.

Then, C = log(|Cij |+1e−8) , where the logarithmic transformation log(|Cij |+
1e−8) is applied to each element Cij of the matrix with a small additive term
to prevent numerical instability. The purpose of this transformation is to sta-
bilize the calculation and prevent numerical issues, such as division by zero or
taking the logarithm of zero, which can lead to numerical instability or errors
in computations. Finally, if model weights are provided, the cluster matrix is
element-wise multiplied by these weights as C = C ×W , where, W is the matrix
of model weights. In ensemble clustering, model weights assign varying signifi-
cance to each base learner’s outcome, either specified manually or learned during
the process. When weights aren’t explicitly provided, each learner contributes
equally, resulting in a democratic fusion of clustering perspectives. This approach
ensures all learners are equally valued, potentially resulting in a well-balanced
ensemble outcome. These tasks culminate in fitting the ensemble model and fur-
nishing aggregated cluster labels, thereby empowering the clustering process to
embrace diverse data perspectives and potentially enhance performance through
comprehensive insights extraction.

3.5 Suggesting Recommendations

The recommendation procedure begins by encoding the test data point, which
represents the user selected podcast, using the encoder model to obtain its latent
vector representation. Next, the cosine distances between the test latent vector
and the cluster centers formed by the ensemble clustering algorithm are com-
puted to determine the clusters, aiming to identify the cluster centers with the
minimum cosine distances from the test latent vector. Next, podcasts within the
same cluster as the test data point are identified based on their cluster labels
and added to a set. Within this cluster, pairwise distances between the test data
point and each podcast are computed, and the podcasts are sorted based on these
distances. Finally, the top 10 podcasts with the closest latent vectors to the test
data point are selected as recommendations. This approach leverages clustering
to group similar podcasts and focuses on recommending podcasts within the
same cluster, ensuring that the recommendations are relevant to the test data
point’s content and preferences.
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4 Experimental Setup

4.1 Dataset

The dataset utilized in this research comprises around 10,000 podcasts obtained
from the iTunes platform, now referred to as Apple Podcasts. Each podcast entry
is characterized by attributes such as title, brief description, web URL, genre
identification (later converted to genre names), episode count, and duration of
each episode. Before conducting experimental analyses, rigorous preprocessing
procedures were applied to uphold data integrity. These steps involved remov-
ing stop words, special characters, and URLs. This meticulous preprocessing
ensured that the dataset was cleansed of irrelevant information and prepared
for subsequent analyses, enhancing the accuracy and reliability of the research
findings. After preprocessing, the dataset was split into training (80%) and test-
ing (20%) sets, comprising 8,124 and 2,031 samples, respectively. The training
set facilitated model development, while the testing set served for independent
validation, ensuring model performance and generalization capabilities.

4.2 Comparative Methods Used

Our research rigorously scrutinized a range of clustering algorithms within an
innovative multiview framework. We meticulously evaluated the effectiveness of
various techniques, including Affinity Propagation [13], K-Means [1], K-Medoid
[16], Hierarchical [15], Gaussian Mixture Model [8], DBSCAN [11], Spectral Clus-
tering [24], BIRCH [28], and HDBSCAN [5]. Additionally, we pioneer a novel
approach by crafting a single-view-based ensemble clustering strategy. These
methodologies are applied to two distinct perspectives: the sentence view and
the keyword view, allowing for comprehensive analysis and comparison.

4.3 Parameter Settings

The parameter settings for our experiments involve utilizing RoBERTa and
XLM-RoBERTa, variants of Bidirectional Encoder Representations from Trans-
formers (BERT) [9] known for its efficacy in natural language processing tasks,
for tokenization and word embedding generation for English and Hindi language,
respectively. To get the latent representation, standard Autoencoder is used cou-
pled with Mean Squared Error (MSE) as the loss function for training. RMSProp
is an optimizer that helps improve the training process of autoencoders by adjust-
ing the learning rates dynamically based on the history of gradients, ultimately
leading to more stable and efficient model training. For our purpose, the Root
Mean Square Propagation (RMSProp) [25] optimizer is used which handles vary-
ing learning rates effectively, ensuring model stability. The learning rate value
utilized in the study was the default setting for RMSProp, which is 0.001. Train-
ing spans 100 epochs with a batch size of 32 for computational efficiency. These
parameters are selected after performing the sensitivity analysis test on different
parameters. We employ the cosine distance metric to measure similarity, crucial
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for accurate clustering and representation learning. Our experiments were con-
ducted on Google Colaboratory, providing substantial resources, including 12.7
GB RAM, 16 GB GPU memory, and a 78.2 GB total disk size, leveraging the
Python 3 Google Compute Engine backend (Nvidia Tesla T4 GPU) for efficient
processing.

4.4 Evaluation Measure

In evaluating the performance of our recommendation system, we prioritize the
silhouette score [23] as a fundamental metric for assessing clustering quality. This
metric offers valuable insights into the effectiveness of clustering algorithms uti-
lized to group similar items within our recommendation system. Additionally,
our evaluation framework incorporates a suite of metrics including diversity and
coverage, all aimed at providing a comprehensive assessment of recommendation
system performance. Diversity [14] measurement evaluates the variety among
recommended items, catering to a wide array of user preferences and ensuring a
diverse selection of content. Furthermore, our coverage [14] assessment examines
the system’s capability to recommend items across the entire catalog, guarantee-
ing comprehensive coverage of available content and enhancing the overall user
experience.

Table 1. Comparison of clustering algorithms and proposed ensemble clustering algo-
rithm on Sentence View of English and Hindi Datasets

Algorithm English Dataset Hindi Dataset

Sil. Div. Cov. Sil. Div. Cov.

Affinity Propagation 0.0770 0.0280 0.8120 0.2340 0.8220 0.0010

Kmeans 0.1160 0.0290 0.6910 0.2650 0.0010 0.4340

Kmedoids 0.0660 0.0290 0.6790 0.2170 0.0010 0.4320

DBSCAN 0.0080 0.6270 0.7920 –0.0620 0.5850 0.8060

Gaussian Mixture Model 0.1150 0.0290 0.6860 0.2470 0.0010 0.4410

Spectral 0.5160 0.6270 0.7930 0.4190 0.4620 0.8310

Birch 0.5160 0.6270 0.7930 0.4610 0.4620 0.8320

Hierarchical 0.0480 0.6270 0.8080 0.2150 0.4620 0.8280

HDBSCAN 0.4230 0.6123 0.7607 0.3578 0.4679 0.8354

Ensemble Clustering 0.5234 0.6087 0.7600 0.3507 0.4729 0.8335

Abbreviation: Sil. - Silhouette Score, Div. - Diversity, Cov. - Coverage

5 Discussion of Results

5.1 For English Dataset

The English dataset, the results from individual views (sentence view and key-
word view), whether examining sentence or keyword perspectives, exhibit varied
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performance among traditional clustering algorithms as shown in Tables 1 and
2. While some algorithms show promising results in certain metrics, such as K-
means in the keyword view achieving a relatively high silhouette score of 0.1240,
none consistently outshine the others across all evaluation criteria. However,
across both views, the ensemble clustering algorithm consistently outperforms
individual methods, showcasing its robustness and versatility. This comprehen-
sive understanding from the result Tables 1 and 2, reflected in the silhouette
score of 0.5234 and 0.4814, diversity of 0.6087 and 0.6042, and coverage of
0.7600 and 0.7809 for sentence and keyword views, respectively, highlights the
effectiveness of Ensemble Clustering in leveraging diverse insights for enhanced
clustering quality. DBSCAN exhibited the worst performance in the English
dataset, particularly in the Concatenated View, with negative silhouette scores
and lower diversity and coverage metrics. This suggests challenges in forming
well-separated clusters, due to difficulties in handling varying densities and sen-
sitivity to parameter tuning. Furthermore, by combining information from mul-
tiple perspectives, the again ensemble clustering approach is better equipped to
capture the nuanced structure of the English dataset, resulting in more cohe-
sive and meaningful clusters as can be seen from Table 3. The concatenated
view exhibits superior clustering performance in the English dataset compared
to both the keyword and sentence views. It achieves higher silhouette scores,
indicating better-defined clusters, along with increased diversity and coverage
metrics. This suggests that combining information from both views enhances
the clustering process, resulting in more comprehensive and effective groupings
of data items. The ensemble clustering method’s ability to harness complemen-
tary information from various views fosters a more holistic representation of the
dataset, enabling it to uncover underlying patterns that may remain elusive to
individual algorithms alone.

Table 2. Comparison of clustering algorithms and proposed ensemble clustering algo-
rithm on Keyword View of English and Hindi Datasets

Algorithm English Dataset Hindi Dataset

Sil. Div. Cov. Sil. Div. Cov.

Affinity Propagation 0.0800 0.0220 0.8090 0.2510 0.0008 0.8260

Kmeans 0.1240 0.0240 0.6640 0.3190 0.0010 0.4090

Kmedoids 0.0760 0.0240 0.6650 0.2740 0.0010 0.4070

DBSCAN –0.0660 0.5930 0.8080 –0.0370 0.5910 0.8010

Gaussian Mixture Model 0.1240 0.0250 0.6640 0.2850 0.0010 0.4170

Spectral 0.4670 0.6250 0.8030 0.4110 0.4680 0.8380

Birch 0.1080 0.5930 0.8090 0.3480 0.4670 0.8390

Hierarchical 0.0520 0.5930 0.8110 0.2740 0.4660 0.8360

HDBSCAN 0.1240 0.5802 0.8270 0.3672 0.4734 0.8360

Ensemble Clustering 0.4814 0.6042 0.7809 0.4021 0.4683 0.8401

Abbreviation: Sil. - Silhouette Score, Div. - Diversity, Cov. - Cov-
erage
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5.2 For Hindi Dataset

Turning to the Hindi dataset, a similar pattern emerges where traditional cluster-
ing algorithms exhibit varied performance across different views. While certain
algorithms may excel in specific metrics, such as spectral clustering achieving
a high silhouette score of 0.4670 in the sentence view, none consistently out-
perform others across all evaluation criteria. However, the ensemble clustering
algorithm consistently demonstrates superior performance, surpassing individ-
ual methods in both sentence and keyword views as can be seen from Tables 1
and 2. By integrating insights from multiple perspectives, ensemble clustering
effectively captures the intricate structure of the Hindi dataset, leading to more
accurate and cohesive clusters (see Table 3). The ensemble clustering approach
view achieves notable results with a silhouette score of 0.3507 and 0.4021, Diver-
sity of 0.4729 and 0.4683, and Coverage of 0.8335 and 0.8401 for sentence and
keyword views, respectively, underscoring its efficacy in leveraging diverse view-
points for enhanced clustering outcomes. DBSCAN exhibited the poorest per-
formance across all views. With negative silhouette scores and lower diversity
and coverage metrics compared to other algorithms, DBSCAN’s sensitivity to
parameter settings and its density-based approach likely contributed to its sub-
optimal clustering results. These findings underscore the robustness and adapt-
ability of ensemble clustering in addressing the complexities of the Hindi dataset
and generating meaningful cluster representations. Additionally, by incorporat-
ing insights from multiple views, the ensemble Clustering algorithm provides a
comprehensive understanding of the dataset’s underlying structure, facilitating
more informed decision-making and analysis. Moreover, the multi-view ensem-
ble clustering approach consistently outperforms individual views in terms of
silhouette score, diversity, and coverage for the Hindi dataset. It achieves higher
silhouette scores, indicating better cluster cohesion and separation. Additionally,
the ensemble method captures a broader range of topics, leading to improved
diversity. Moreover, it provides recommendations that cover a wider scope of
content, enhancing overall coverage compared to individual views.

5.3 Podcast Recommendation Analysis

As per the analysis done, the recommendations for the English Dataset align well
with the user’s input. The generated top-10 recommendations for “Straight Talk
with Ross Mathews” are shown in Fig. 2. They cover diverse topics including mar-
tial arts, leadership, personal development, health, finance, and entrepreneur-
ship, resonating with the engaging and informative nature of “Straight Talk with
Ross Mathews.” Podcasts like “Mind Body Musings” and “Trim Healthy Pod-
cast” reflect themes discussed on Ross Mathews’ show, such as self-improvement
and relationships. Overall, the recommendations effectively suggest relevant and
engaging content.

The recommendations for the “
” in the Hindi dataset encompass diverse genres and topics as shown in Fig. 3.
While some align closely with sports, others delve into literature, biography, and



196 Y. P. Bangde and N. Saini

Table 3. Comparison of clustering algorithms and proposed ensemble clustering algo-
rithm on Concatenated Views of English and Hindi Datasets

Algorithm English Dataset Hindi Dataset

Sil. Div. Cov. Sil. Div. Cov.

Affinity Propagation 0.0940 0.0190 0.8110 0.3320 0.0002 0.8310

Kmeans 0.0942 0.0760 0.7210 0.3670 0.0004 0.3600

Kmedoids 0.0840 0.0210 0.6690 0.3240 0.0005 0.3680

DBSCAN −0.1570 0.6240 0.7980 –0.0550 0.5790 0.8190

Gaussian Mixture Model 0.1280 0.0210 0.6750 0.3290 0.0005 0.3720

Spectral 0.5120 0.6230 0.8000 0.5550 0.4540 0.8410

Birch 0.1430 0.5910 0.8130 0.5590 0.4560 0.8420

Hierarchical 0.0620 0.6230 0.8140 0.3110 0.4540 0.8370

HDBSCAN 0.6670 0.6024 0.7744 0.3516 0.4580 0.8360

Ensemble Clustering 0.7664 0.6024 0.7742 0.4859 0.4616 0.8382

Abbreviation: Sil. - Silhouette Score, Div. - Diversity, Cov. - Coverage

personal development. Comparing these recommendations to user input reveals
similarities in diversity and range, offering a broad spectrum of content. Specific

matches, like “ ” for sports-related content, “ ” for story-
telling, and “ ” for personal growth, indicate
alignment with the target podcast’s themes or audience preferences (Fig. 3).

The diverse nature of these recommendations suggests that the recommen-
dation system considers not only direct thematic similarities but also broader
content appeal and potential audience interests. This approach aims to cater to
a wide range of listener preferences.

5.4 Limitations of the Approach

We have listed out the limitations of our approach:
(a) Dependency on Podcast Descriptions: Our model relies heavily on textual
descriptions to capture podcast content and themes. This dependence may lead
to reduced accuracy when descriptions are sparse, incomplete, or lack detailed
information about the podcast’s content. In such cases, the model’s ability to
accurately recommend podcasts may be compromised, as it may not fully cap-
ture the nuances and depth of podcast episodes.
(b) Language and Cultural Bias: While our model is designed to be adaptable to
multiple languages, variations in language and cultural contexts can introduce
biases that affect recommendation relevance. Cultural nuances in podcast con-
tent and listener preferences may not always be fully captured or appropriately
weighted, potentially leading to less relevant recommendations for users from
different cultural backgrounds.
(c) Incremental Learning for New Podcasts: Currently, the system requires
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Fig. 2. Top 10 podcast recommenn-
dations for “Straight Talk with Ross
Mathews”

Fig. 3. Top 10 podcast recommen-
dations for

“
”

retraining to effectively integrate new podcasts and episodes. Implementing
incremental learning mechanisms, such as online clustering algorithms or model
updating techniques, would enable the system to evolve continuously with new
data. This approach ensures that recommendations remain relevant and up-to-
date without needing a complete retraining process. Incremental learning allows
the model to adapt dynamically to new content, improving efficiency and scala-
bility. By continually refining the system, we can maintain high-quality recom-
mendations even as the podcast library expands.
(d) Evaluation Scope: While metrics like silhouette score, diversity, and coverage
provide valuable insights into clustering performance and recommendation cov-
erage, they may not directly reflect user satisfaction or engagement. Additional
user-centric metrics, such as user feedback, interaction rates with recommended
podcasts, and long-term user retention, would provide a more comprehensive
evaluation of the system’s effectiveness in meeting user needs and preferences.

6 Conclusion

In this research, we introduced a multi-view ensemble clustering approach to
improve clustering and recommendation accuracy for podcast datasets. To show
that out algorithm incorporate multi-linguasim, we have used two datasets: one
in Indian language, i.e., Hindi and another in English language. Based on the
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results analysis, we found that multi-view based ensemble algorithm outper-
forms single-view based ensemble algorithms, achieving notable results. For the
English dataset, it attains a silhouette score, diversity and coverage of 0.7664,
0.6024, and 0.7742, respectively. Similarly, for the Hindi dataset, it achieves a
silhouette score, diversity and coverage of 0.4859, 0.4616, and 0.8382, respec-
tively. In terms of algorithms used for ensemble, by combining HDBSCAN and
BIRCH for English dataset, and Spectral and BIRCH for Hindi dataset, our
method effectively improves clustering quality and recommendation diversity.
These findings mark a significant contribution to advancing ensemble cluster-
ing and recommendation systems. Furthermore, they pave the way for future
improvements in clustering and recommendation strategies tailored for podcast
platforms. Overall, our research highlights the potential of ensemble techniques
in enhancing clustering performance and recommendation accuracy.
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Abstract. Deep learning classifiers have reached good accuracy often surpassing
the conventional classifiers. To provide the robustness needed in real-world appli-
cations, classifier fusion has shown potential. Such fusion methods can involve
integration at the feature (embedding) level, classifier score/confidence level, or
decision level. In this paper, we explore the enhancement of data privacy in
ensemble learning through the integration of Fully Homomorphic Encryption
(FHE). Recognizing the potential of ensemble methods to boost performance
robustly against data variations, we confront the critical challenge of adversarial
attacks that could compromise classifier integrity. To this end, we introduce the
Privacy-Preserving Quantile Power Transform Classifier (PPQPTC), an innova-
tive algorithm that applies quantile transformation for score distribution adjust-
ment and power transformation to augment linear classification, all within the
FHE domain. The PPQPTC algorithm is uniquely designed to securely process
data while encrypted, addressing the urgent need for stringent data privacy and
security in sensitive applications. We rigorously evaluate the performance of our
algorithm across a range of diverse datasets, including healthcare data and the
NIST BSSR-1 dataset for biometric fusion. Our findings reveal that the PPQPTC
algorithm not only effectively handles imbalanced datasets but also demonstrates
the feasibility and adaptability of conducting secure data processing in encrypted
domains.

Keywords: Machine Learning · Ensemble Learning · Privacy · Fully
Homomorphic Encryption. · Biometrics · Classification · Deep Learning ·
CNN · Medical

1 Introduction

Integrating ensemble learning methods in fields that demand high precision in classifi-
cation and analysis is increasingly important. Sectors like medical diagnostics, financial
forecasting, and security systems benefit greatly from the collective strength of multi-
ple classifiers. This synergy enables more reliable and comprehensive outcomes than
what could be achieved with individual classifiers. [1] However, integrating data from
multiple sources, as essential as it is for enhancing classification accuracy, brings signif-
icant challenges, particularly in data privacy and security. In an age where digital data
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processing is ubiquitous, protecting sensitive information from various attacks, ranging
from data breaches to sophisticated manipulations of classifier outputs, is paramount.
Deep learning models have notably outperformed conventional classifiers in various
domains due to their ability to learn complex representations. However, they often lack
robustness, which is a concern that data fusion can address. By integrating outputs from
multiple models, fusion methods can mitigate the weaknesses of individual models,
such as susceptibility to adversarial attacks or overfitting.

Fusion methods within the ensemble learning framework [2] include simple tech-
niques like majority voting, where the most common prediction is chosen, to more
sophisticated approaches like stacking, where the outputs of various models serve as
inputs to a final meta-model. Other techniques involve weighted averaging, where mod-
els are weighted based on their performance, and feature-level fusion, which combines
the data before the learning process to create a richer feature set. Data fusion is essential
in applications where decision-making relies on diverse and rich datasets. By consol-
idating information from various sources, ensemble learning methods ensure that pre-
dictions are both accurate and robust, effectively leveraging the strengths of different
classifiers to compensate for their limitations.

Contributions

1. We have developed the Quantile Binning Operator/Algorithm within the encrypted
domain, enabling secure and efficient data processing in Fully Homomorphic
Encryption (FHE).

2. Our experiments demonstrate the efficient usage of parameters for the Quantile
Power Transform Classifier (QPTC) within the FHE framework, optimizing com-
putational performance.

3. We have successfully integrated QPTC within the FHE framework. The QPTC is
effective in balancing score distributions through quantile transforms and enhancing
linear classification with power transforms. This integration introduces significant
challenges due to the computational intensity and complexity of FHE operations,
which we address in our paper.

1.1 Threat Model

In the traditional browser security model utilized in cloud computing 1, there are several
inherent threats, particularly when data must be decrypted for processing. This scenario
poses risks such as data breaches, where decrypted data becomes vulnerable to unau-
thorized access or theft, potentially leading to exposure of sensitive information [3].
Insider threats also emerge as employees with access to the decrypted data might inad-
vertently or maliciously misuse it [4]. The system’s configuration and authentication
mechanisms, if weak, can further exacerbate these vulnerabilities, leading to security
breaches. Additionally, users often face limited control and visibility over the cloud
infrastructure, which complicates the effective management and response to security
incidents. Challenges in maintaining service resilience and availability during system
failures or attacks also pose significant risks. Finally, a heavy dependency on cloud ser-
vice providers for security measures can create gaps, particularly in areas outside the
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providers’ direct control, such as client-side operations. Addressing these vulnerabili-
ties is crucial and requires robust and comprehensive security measures that cover both
the service provider’s and the client’s ends (Fig. 1).

Fig. 1. Security model: In a conventional browser model, the data is encrypted only in the trans-
mission stage and any computation on it would involve decryption. Using FHE, we can perform
computations on encrypted data without the need to decrypt it.

In classification problems, various attacks can threaten the integrity of the system.
Sensor-level attacks involve presenting false data, and fault injection introduces system
errors. Neural networks face adversarial attacks that manipulate input data to cause mis-
classification and model extraction risks where the network’s details are decoded [5].
Matching algorithms may be tampered with, leading to incorrect predictions. At the
database level, stored data can be altered or intercepted, compromising data security.
Finally, at the decision-making stage, the system can be vulnerable to identity theft,
data manipulation, and synthetic data attacks, all of which aim to exploit system vul-
nerabilities. These threats necessitate robust security measures across all stages of the
machine-learning pipeline.

1.2 Encryption and FHE Schemes

Integrating the Fully Homomorphic Encryption (FHE) framework is a critical step for-
ward in addressing security threats. FHE represents a revolutionary advancement in
the field of cryptography, allowing for executing computations on encrypted data with-
out the need to decrypt it first. This breakthrough ensures that data remains secure
throughout the processing phase. What sets FHE apart from other forms of Homomor-
phic Encryption, like Partial and Somewhat Homomorphic Encryption, is its ability to
perform unlimited operations on encrypted data.

Encryption is crucial for protecting sensitive data, and in this paper, we explore
the Fully Homomorphic Encryption (FHE) scheme, particularly the CKKS [6] scheme,
which facilitates computation on encrypted complex number vectors without decryp-
tion. FHE differs from other forms of homomorphic encryption by allowing unlim-
ited computation depths. The CKKS scheme, preferred over other FHE schemes for its
floating-point operation capabilities, involves three keys: a secret key sk, a public key
pk, and an evaluation key evk. Key generation, encryption, and decryption are standard
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Fig. 2. Illustrative Examples of Application Domains: (a) shows the integration of biometric sys-
tem scores into the Ensemble Layer in the NIST BSSR dataset. (b) presents the scoring of x-ray
images by multiple classifiers in medMNIST, also combined into the Ensemble Layer.

steps in the scheme, with addition and multiplication as basic operations. The challenge
of noise accumulation in FHE is addressed by a ‘bootstrap’ process, albeit at a high
computational cost.

The effectiveness and versatility of our proposed Quantile Power Transform Classi-
fier (QPTC) within the Fully Homomorphic Encryption (FHE) framework are demon-
strated through various application domains. As illustrated in Fig. 2, our approach inte-
grates into different biometric and medical systems.

This paper aims to tackle these challenges and demonstrate how the QPTC can be
effectively implemented within the FHE domain. Doing so combines the advantages of
ensemble learning in terms of enhanced classification accuracy with the crucial need
for data security in digital processing environments.

2 Prior Work

[7] offered a foundational overview of ensemble learning, emphasizing the role of base-
line classifiers in making collective decisions. [8] explored strategies for generating
diversity among base classifiers, distinguishing between homogeneous and heteroge-
neous ensembles. In the realm of voting methods within ensembles, Kim et al. (2003)
introduced the concept of max voting. [9,10] delved into the practicalities and limita-
tions of max and soft voting. The effectiveness of averaging voting was discussed by
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Fig. 3.Overview: The figure illustrates an encrypted ensemble learning system where private data
is encrypted before being fed into a series of classifiers; the classifiers’ encrypted scores are then
combined by an SQPT Ensemble Layer, and the final encrypted result is decrypted for application
use, all underpinned by a public-private key mechanism.

[11], while [12,13], and [14] explored the weighted average voting, highlighting its
accuracy and the complexities in implementation.

The concept of meta-learning, also known as “learning to learn”, has gained sig-
nificant traction in ensemble learning and machine learning. As [15] described, meta-
learning involves learning from previous experiences with different tasks. This method
stands apart from traditional machine learning models by incorporating multiple learn-
ing stages, where the outputs of individual inducers are used as inputs for a meta-learner
that generates the final output. This approach was further elucidated by [16], highlight-
ing its increasing relevance, especially post-2017, due to the complexities of training
advanced machine learning algorithms.

Meta-learning addresses several challenges in machine learning, such as operational
costs and the lengthy process of finding the best model for a given dataset. By improv-
ing learning algorithms and identifying those that perform better, meta-learning can
expedite learning processes, enhance adaptability to changing conditions, and opti-
mize hyperparameters for optimal results. [17] noted that it also solves deep learning
challenges, including data size, computational complexities, and generalization issues.
However, implementing meta-learning is challenging, as [18] outlined. These include
defining an appropriate meta-learning approach and managing the computational time
complexity, which can be significant with large datasets, multiple baseline models, or
multiple levels of meta-learning.

One of the most common meta-learning methods is stacking, as identified by [19],
where different models are combined so that their predictions are used as inputs to a
final model that makes the ultimate prediction. This method showcases the potential
of meta-learning in creating sophisticated, high-performing ensemble systems. Collec-



206 T. Sharma et al.

tively, these studies provide a comprehensive understanding of the various facets of
ensemble learning, from the basics of classifier aggregation to the intricacies of voting
methods, contributing significantly to the field’s evolution.

In [20], privacy is preserved by employing decentralized training, using unlabeled
public data for one-way offline knowledge distillation, and implementing ensemble
attention distillation. This approach ensures that sensitive data remains within its origi-
nal location, leveraging public data and distillation techniques for model training with-
out direct exposure to private data. Our work uses ensemble stacking and enhances
privacy further by incorporating Fully Homomorphic Encryption (FHE). This method
provides robust privacy protection, making it especially suitable for sensitive data
applications.

3 Method

We begin by applying the simple but quite effective sum rule as a straightforward arith-
metic ensemble approach to establish a baseline for comparison between classifiers. The
simplicity of the sum rule allows it to be directly implemented in Fully Homomorphic
Encryption (FHE), resulting in no discrepancy between its encrypted and unencrypted
forms.

We then advance our model by incorporating quantile-power transformed scores for
training, significantly refining the system. This refinement results in an enhanced model
that surpasses the elementary sum rule method in performance. Figure 3 provides an
overview of our encrypted ensemble learning system, where private data is encrypted,
processed by a series of classifiers, and an SQPT Ensemble Layer combines the classi-
fiers’ encrypted scores. The final encrypted result is then decrypted for application use,
ensuring data security throughout the process.

The encrypted ensemble learning system operates by first encrypting private data
to maintain confidentiality. Each classifier in the series operates on the encrypted data,
generating encrypted scores that are subsequently combined using the SQPT Ensemble
Layer. This layer efficiently aggregates the scores, enhancing the overall accuracy and
robustness of the system. Finally, the combined encrypted result is decrypted, making
the final output available for secure application use.

3.1 Data Transformation

Leveraging the framework from [21] our approach implements the quantile power trans-
form in the Fully Homomorphic Encryption (FHE) domain. The transformation of score
distributions for unencrypted data proceeds as follows:

Let x be a score from classifier i. Quantiles for the score distributions of each class
are computed separately, denoted as [c11, c12, . . . , c1q] for class 1, with q represent-
ing the number of quantiles, and similarly [c21, c22, . . . , c2q] up to [cn1, cn2, . . . , cnq]
for N classifiers. The transformation of scores using these quantiles is performed by
binning:

k(x)c1_class1 where c1k ≤ x < c1k+1.
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If x ≥ c1q then k(x)c1 = q+1. This process is repeated for each classifier, summing
the resulting k(x)c1_class_i across all classes to compute k(x)c1:

k(x)c1 =
Cn∑

i=1

k(x)c1_class_i, (1)

where Cn is the number of categories/classes, and for a binary classifier, n is 2. The
normalization of k(x) is given by:

k(x) =
k(x)
2q + 2

, (2)

since the maximum value of k is 2q + 2. This normalization is applied to the trans-
formed scores of the training data, preserving the quantile information for all classifiers.
Test data is subsequently transformed using this quantile information derived from the
training data.

Finally, to further separate classes, the scores are raised to a power p > 1, as in the
power transform:

K(x) = k(x)p. (3)

3.2 Quantile Binning in Encrypted Domain

One of the first steps in QPLC approach is to compute the quantiles for the scores.
This requires binning the scores. The Quantile Binning of Encrypted Scores algorithm
1 facilitates the categorization of scores into predefined quantile bins in an encrypted
domain. Initially, the algorithm takes scores and quantiles as input and applies the
compB 0 comparison function to compute the relationship of each score to the quantiles.
It then calculates peak values by multiplying each comparison value with its comple-
mentary value, which assists in determining the most appropriate bin for each score.
These peak values are normalized to maintain consistency in scale. Then we apply the
maxIdx 3 function, which assigns each score to the relevant quantile based on the nor-
malized peak values. The final output consists of scores categorized into their respective
bins, effectively addressing the comparison limitations in Fully Homomorphic Encryp-
tion (FHE).

This series of transformations – quantile binning, normalization, and power trans-
formation – is designed for compatibility with FHE operations, ensuring data privacy
while aiming for high classification accuracy.

3.3 Polynomail-Based Approximations in FHE

In the encrypted domain, direct binning is not feasible due to the inherent limitations
of Fully Homomorphic Encryption (FHE) in performing comparison operations. Given
that FHE primarily enables homomorphic addition and multiplication, the need arises
to approximate comparison operations using polynomial functions. For this purpose,
a comparison function, denoted as comp(a, b), is defined to yield 0 for a < b, 1 for
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Algorithm 1. Quantile Binning of Encrypted Scores
1: Input: Scores (s1, s2, . . . , sn) and quantiles (q1, q2, . . . , qm)
2: Output: Score bins (sb1, sb2, . . . , sbn) where b ranges from 1 to m
3: prods ← []
4: for i ← 1 to m do
5: compi ← COMPB(scores, qi, n, d, dg, df ) 0
6: one_minus_compi ← 1 − compi

7: prodi ← compi × one_minus_compi

8: APPEND(prods, prodi)
9: end for
10: NORMALIZE(prods)
11: score_bins ← MAXIDX(prods) 3
12: return score_bins

a > b, and 0.5 otherwise, employing polynomial approximations to estimate such non-
linear functions. Cheon et al. [6] introduced an innovative method that approximates
the sign function using a composite polynomial, a technique that we incorporate in
our methodology for the quantile binning process within the FHE framework. This
approach is integral for transforming scores and securely implementing the Quantile
Power Transform Classifier (QPTC) in an encrypted state.

To this framework, the selection of parameters is critical, especially in polynomial-
based approximation algorithms. The goal is to optimize this process without reaching
the bootstrap threshold. While FHE theoretically allows for an unlimited number of
operations, practical constraints often render frequent bootstrapping unfeasible due to
its high computational cost. In our experimentation, we work within a feasible range
of parameter values, carefully selecting a set that meets our specific requirements. This
careful parameter selection is pivotal to achieving an efficient balance between com-
putational feasibility and the desired level of security and accuracy in the encrypted
domain (Figs. 4, 5).

Fig. 4. PneumoniaMNIST on Test data
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Algorithm 2. Algorithm compB [6] and its associated polynomials gn fn
1: function COMPB(a, b, n, dg, df )
2: x ← a − b
3: for i ← 1 to dg do
4: x ← g(n, x)
5: end for
6: for i ← 1 to df do
7: x ← f(n, x)
8: end for
9: return (x + 1)/2
10: end function
11: f1(x) = − 1

2
x3 + 3

2
x

12: f2(x) =
3
8
x5 − 10

8
x3 + 15

8
x

13: f3(x) = − 5
16

x7 + 21
16

x5 − 35
16

x3 + 35
16

x
14: f4(x) =

35
128

x9 − 180
128

x7 + 378
128

x5 − 420
128

x3 + 315
128

x
15: g1(x) = − 1359

210
x3 + 2126

210
x

16: g2(x) =
3796
210

x5 − 6108
210

x3 + 3334
210

x
17: g3(x) = − 12860

210
x7 + 25614

210
x5 − 16577

210
x3 + 4589

210
x

18: g4(x) =
46623
210

x9 − 113492
210

x7 + 97015
210

x5 − 34974
210

x3 + 5850
210

x

4 Experiments

4.1 Datasets

Our experiments were conducted using two distinct datasets, each with unique charac-
teristics and applications:

NIST BSSR (Biometric Fusion): This dataset comprises biometric scores from two
facial recognition systems and left and right index biometric modalities for 517 users.
It includes 517 genuine cases and a significantly larger number of imposter cases (517
× 516), highlighting the dataset’s imbalance.

PneumoniaMNIST [23] : A binary classification dataset involving pneumonia scores
from five classifiers: autosklearn, resnet18, resnet50, automl-vision, and auto-keras.
For our experiments, we selected three weak classifiers (autosklearn, resnet18, and
resnet50) to demonstrate our method’s ability to enhance accuracy. The dataset consists
of 5,856 samples, divided into 4,708 training, 524 validation, and 624 test samples, with
3,494 positive and 1,214 negative samples.

The first dataset, NIST BSSR, is utilized in biometric identification problems, while
the second dataset, PneumoniaMNIST, focuses on the classification of pneumonia from
various classifiers. Both datasets provide a comprehensive platform to test the effective-
ness of our proposed method in different scenarios.

4.2 Setup

For each classifier/modality, we computed two sets of quantiles corresponding to the
binary nature of the classification task. These quantiles, qclass1 and qclass2, were derived
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Algorithm 3. MaxIdx Algorithm [22]

1: Input: n distinct numbers (a1, a2, . . . , an) with ai ∈ [ 1
2
, 3
2
], d, d′, m, t ∈ N

2: Output: (b1, b2, . . . , bn) where bi is close to 1 if ai is the largest among aj’s and is close to
0 otherwise.

3: inv ← Inv(
∑n

j=1 aj/n; d′)
4: for j ← 1 to n − 1 do
5: bj ← aj/n · inv
6: end for
7: bn ← 1 − ∑n−1

k=1 bj
8: for i ← 1 to t do
9: inv ← Inv(

∑n
j=1 bmj ; d)

10: for j ← 1 to n − 1 do
11: bj ← bmj · inv
12: end for
13: bn ← 1 − ∑n−1

k=1 bk
14: end for
15: return

(∑n
i=0 bi × i

)
� Dot product of (b1, b2, . . . , bn) with indices (0, 1, . . . , n)

from the unencrypted training data. Utilizing these quantiles, we performed binning of
each score/result as outlined in our algorithm, executed within the encrypted domain.
This process involves binning scores into their respective bins for each class quantile,
followed by aggregation as per Eq. 1 Subsequent normalization of these aggregated
scores was conducted and the scores were raised as specified in 2 and 3. The trans-
formed scores were then inputted into the ensemble layer classifier, which was trained
on encrypted data and adapted for use in the encrypted domain.

4.3 Results

After conducting experiments on the NIST BSSR and the pneumonia datasets, we
observed significant improvements in accuracy using the Quantile Power Transform
(QPT) method compared to individual classifiers/modalities and the baseline sum rule,
a basic form of ensemble learning.

– The enhancement in accuracy and the AUC-ROC (Area Under the Receiver Oper-
ating Characteristic Curve) with the application of QPT is noteworthy. As can be
observed in 4, the accuracy and ROC-AUC increase with a higher number of quan-
tiles. However, it is crucial to select an optimal number of quantiles for practical-
ity in the encrypted domain. This is because computations in Fully Homomorphic
Encryption (FHE) are inherently slow, and an excessive number of quantiles can
lead to impractical computation times.

– As mentioned earlier, the selection of parameters is pivotal. Using higher values for
these parameters yields sharper compval transitions (the plot of different values of
a against its compval). The compval represents the output of the comparison algo-
rithm for different values being compared against a threshold (i.e., if a > b, then
compval is close to 1; if a < b, it is close to 0; and approximately 0.5 otherwise).
We observed that lower values of the parameters n, dg , and df in the comparison
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Fig. 5. ROC curves that contrast the performance of logistic regression and SVM classifiers,
both encrypted and unencrypted, on NIST-BSSR biometric scores that have been modified by a
quantile-power transformation process.

algorithm yield better results for peak and maxIdx calculations due to smoother
transitions, which are desirable. This is advantageous because these parameter set-
tings also expedite the computation process, a significant consideration in the con-
text of Fully Homomorphic Encryption (FHE). While higher values of n, dg , and df
result in a sharper plot, which is beneficial for comparison algorithms as it leads to a
more distinct differentiation between values greater than and less than the compari-
son value, lower values of these parameters produce smoother transitions. Smoother
transitions are preferable for peak and maxIdx calculations as they enhance the sta-
bility and accuracy of the algorithm. This can be seen in 6

– There is a slight variation in the ROC between the encrypted and unencrypted imple-
mentations. This variation is anticipated due to the approximation-based approach
inherent in FHE. Despite this, the trade-off between accuracy and privacy is accept-
able, particularly in scenarios where security is a paramount concern.

– A key hurdle we tackled in our study involves the computational intensity associ-
ated with Fully Homomorphic Encryption (FHE). Specifically, our quantile binning
algorithm exhibited an average processing time of 66 s for 2n (where n = 14 in our
experiments, though it is scalable with available computational resources) scores,
utilizing SIMD techniques for each quantile. This equates to an approximate pro-
cessing time of 0.004 s for each score during the binning process, which we found
to be practically feasible. Consequently, the processing times for binning into 10,
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Fig. 6. The first four figures show the compB values against different values of a compared to
b = 0.4 for various combinations of parameters n, dg , and df . Specifically: top-left: n = 1,
dg = 1, df = 1; top-right: n = 1, dg = 3, df = 2; middle-left: n = 4, dg = 1, df = 1;
middle-right: n = 4, dg = 3, df = 2. The subsequent four figures display the product values
(i.e., compB × (1 - compB)) to identify the peaks. Each score peaks at the respective quantile it
belongs to.
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30, and 70 quantiles, according to our experimental setup, are roughly 660 s, 1980
seconds, and 4620 s, respectively.

These findings underscore the efficacy of QPT in enhancing classification accuracy
within an FHE framework, while also highlighting the need to balance computational
feasibility with the desired level of security (Fig. 6).

5 Conclusion

In conclusion, our research presents a significant advancement in the field of machine
learning, particularly in the secure and efficient processing of sensitive data. We have
demonstrated that the integration of Quantile Power Transform (QPT) methods with
Fully Homomorphic Encryption (FHE) enhances classification accuracy in encrypted
domains. This is evidenced by our experiments conducted on the NIST BSSR and pneu-
monia datasets. Our findings reveal that the QPT method, especially when coupled with
the CKKS encryption scheme, offers a robust approach to handling encrypted data. The
method shows notable improvements in accuracy compared to traditional classifiers and
baseline ensemble methods like the sum rule. Furthermore, selecting an optimal num-
ber of quantiles and appropriate parameters in the comparison algorithm (compB) is
crucial in balancing computational feasibility with accuracy in the FHE context.

Minor variations observed between the encrypted and unencrypted implementations
highlight the trade-offs between accuracy and privacy. However, in applications where
data security is paramount, such as in healthcare and biometrics, this trade-off is justifi-
able and necessary. Overall, our study underscores the potential of combining advanced
cryptographic techniques with machine learning to process sensitive data securely and
efficiently, opening new avenues for research and application in fields where data pri-
vacy is a critical concern.
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Abstract. Analyzing sequential data is crucial in many domains, partic-
ularly due to the abundance of data collected from the Internet of Things
paradigm. Time series classification, the task of categorizing sequen-
tial data, has gained prominence, with machine learning approaches
demonstrating remarkable performance on public benchmark datasets.
However, progress has primarily been in designing architectures for
learning representations from raw data at fixed (or ideal) time scales,
which can fail to generalize to longer sequences. This work introduces a
compositional representation learning approach trained on statistically
coherent components extracted from sequential data. Based on a multi-
scale change space, an unsupervised approach is proposed to segment
the sequential data into chunks with similar statistical properties. A
sequence-based encoder model is trained in a multi-task setting to learn
compositional representations from these temporal components for time
series classification. We demonstrate its effectiveness through extensive
experiments on publicly available time series classification benchmarks.
Evaluating the coherence of segmented components shows its competitive
performance on the unsupervised segmentation task.

Keywords: Time-series classification · Temporal Compositionality ·
Time Series Segmentation

1 Introduction

Time series data is ubiquitous in many domains, such as healthcare [30] and
robotics [39]. Given the widespread presence of sensors and smart devices, abun-
dant sequential (time series) data across different domains has been collected,
giving rise to several important tasks in time series analysis, such as classifi-
cation, segmentation, and anomaly detection. Time series classification is one
task that has received significant attention in recent years. The goal is to
learn robust features from sequential data to classify them into their respec-
tive categories. Machine learning approaches [29,31], particularly deep learning
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approaches [36,44], have shown tremendous progress in learning models for time
series data classification and have resulted in interesting applications such as
sleep state segmentation [30] and pandemic modeling [9], to name a view.

The sequential nature of the time series data offers several challenges for clas-
sification. First, the sequence length can vary across samples within categories,
which requires learning representations robust to such intra-class variations.
Second, understanding the ideal time scale for extracting meaningful patterns
is challenging, primarily caused by measurement errors and phase/amplitude
changes across samples. Finally, long-duration sequences can have dependencies
that span different time scales and pose a significant challenge to representation
learning approaches. While driving tremendous progress, learning from raw sig-
nals relies heavily on representation learning mechanisms to capture intricate,
compositional properties for tackling these challenges. Explicitly capturing the
underlying temporal structure of signals in the representation can help alleviate
this dependency and lead to more robust performance on downstream tasks. Such
representations have shown tremendous potential in scene recognition tasks [28]
by considering objects as atomic components that combine to compose the over-
all scene. However, time series may not have such clear distinctions for recog-
nizing boundaries between components, requiring a novel paradigm for defining
and detecting temporal components in sequential data.

In this work, we propose to capture the different atomic components that
combine to form these signals in a compositional representation. We consider
a time series data point, or signal, to be a sequence of data points ordered by
some condition and can be segmented into chunks that share semantic or statis-
tical properties. These chunks, or sub-series, are called components of the overall
signal. Rather than learning representations over the raw sequential data, rep-
resentations from this sequence of components can result in a compositional fea-
ture that can span longer durations with reduced computational complexity. The
overall approach is illustrated in Fig. 1. We first establish a multi-scale change
space (Sect. 3.1) to segment (or tokenize) the signal into components at different
temporal scales. Then, we learn compositional representations (Sect. 3.2) from
these segments in a multi-task learning setting. Extensive evaluation (Sect. 4) on
publicly available benchmark datasets shows that the approach performs com-
petitively with state-of-the-art approaches and scales well to longer duration
time series data. These components are remarkably similar to natural segments
found in time series data (Sect. 5), and the approach can naturally be extended
to unsupervised time series segmentation. Without bells and whistles, the app-
roach performs competitively to state-of-the-art techniques designed explicitly
for segmentation and outperforms other non-learning-based methods.

The contributions of our approach are four-fold: (i) we are, to the best
of our knowledge, to introduce a multi-scale change space for time series data
to segment them into statistically atomic components, (ii) we introduce the
notion of compositional feature learning from temporally segmented compo-
nents in time series data rather than modeling the raw data points, (iii) we
show that the temporal components detected by the algorithm are highly
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Fig. 1. Overall architecture of the proposed approach is illustrated here. First, we
introduce a multi-scale state change detection model to segment sequential data into
components and then use a sequence-based encoder to learn compositional representa-
tions for time series classification.

correlated with natural boundaries in time series data by evaluating it on the
time series segmentation task, achieving state-of-the-art performance compared
with other non-learning-based approaches, and (iv) we establish a competi-
tive baseline that provides competitive performance with the state-of-the-art
approaches on benchmark datasets for both time series classification and seg-
mentation with limited training needs and without explicit handcrafting.

We structure the paper as follows. We review the relevant literature and
techniques used in this work in Sect. 2, followed by an overview and detailed
explanation of the proposed approach in Sect. 3. We present and analyze the
quantitative results in Sect. 4 and demonstrate how it can be expanded to tackle
other time series analysis tasks such as unsupervised segmentation in Sect. 5.
Finally, in Sect. 6, we discuss its limitations and future directions.

2 Related Work

Time series classification has been tackled through three major types of
approaches. Classical approaches, such as those based on handcrafted feature
learning [19,27,29,31], have attempted to learn discriminative features from
modeling the time series at different scales through techniques such as shapelet
transforms [19,27], distance-based transforms [7,29], and bag-of-symbols [31,35],
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to name a few. However, their computational complexity increases almost expo-
nentially as the duration of the time series increases, and hence, they appear
to hit a wall of scalability. Deep learning-based approaches, using architectures
such as convolutional neural networks (CNNs) [24] and transformers [41], have
opened a wave of large models pre-trained on significant amounts of data [22].
Deep learning models have focused on modeling the data at the ideal time
scale [8,36] for capturing robust representations using different backbones such
as CNNs [15,34,42,44,47,48], recurrent neural networks (RNNs) [37,38], and
transformers [14,46]. Ensemble-based approaches [12,27,35,36], i.e., using mul-
tiple predictions from the different aspects of the same time series data, have
made significant strides in establishing the state-of-the-art performance on sev-
eral benchmark datasets [2,3,10]. Our work, however, offers a novel framework
to capture multi-scale representations by detecting temporal components at dif-
ferent time scales and integrating them in a unified representation without the
need for ensembling and additional overhead in the form of annotations.

Approaches to time series segmentation have primarily focused on
detecting boundaries in sequential data through heuristic-based, domain-specific
approaches. Broadly categorized into three categories [40], the time series is seg-
mented by comparing the features of consecutive fixed-size windows using their
likelihood of belonging to the same segment [21], assessing homogeneity using
kernels [18] or mapping them into graph-based representation for extracting sub-
graphs (segments) through heuristics such as pairwise similarity [5]. Search-based
approaches [1,13,33] and learning-based approaches [11,17,32] have offered a
way forward to domain-agnostic segmentation by learning sequence-level rep-
resentations and segmenting them based on similarity measures. The former
assigns costs to plausible boundaries and finds optimal segments by minimiz-
ing these costs, while the latter focuses on learning boundaries through pre-text
tasks as self-supervision. Many of these approaches require the number of seg-
ments to be pre-defined, with learning-based approaches such as ClaSP [32] being
a notable exception. Our approach built on BIC-based tokenization (Sect. 3.1)
belongs to the search-based approach category and performs domain-agnostic
segmentation by comparing statistical similarity measures without training.

3 Proposed Framework

In this section, we outline the proposed framework to extract temporal com-
ponents from sequential data and learn a robust, compositional representation
in a multi-task setting. We first outline the problem formulation to provide an
overview of the approach and then introduce the multi-scale change space used
to discover temporal components in signals. Finally, we introduce the represen-
tation learning mechanism used to combine these temporal components into a
robust representation.

Problem Formulation. We address the task of classifying univariate time
series data by decomposing the signal into its constituent parts. We aim to char-
acterize and build a rich signal representation by detecting parts (sub-series) that
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compose the overall signal. Inspired by theories of compositional event under-
standing [45], we consider these parts atomic, i.e., each sub-series cannot be
broken down into smaller components. To this end, we consider a multi-scale
approach to identify these components at different time scales to account for the
unique challenges inherent in time series data, such as variations that are intro-
duced during data collection [3,10] (i.e., sampling rate and record length) and
unavoidable intra-class variations (such as amplitude offset and warping). Fol-
lowing prior works on state-spaces [25,26], we define a signal-dependent change
scale-space that captures the multi-scale structure of the signal based on its
temporal change points. The overall architecture is illustrated in Fig. 1. First,
we identify the temporal change points in the signal using a statistics-based
multi-scale organization (Sect. 3.1), which allows us to break the signal down
into its components. Second, we learn compositional relationships from these sig-
nal components using a bidirectional sequence learning model (Sect. 3.2) trained
in a multi-task setting. Combined, these two steps help identify atomic compo-
nents in time series signals and help capture their temporal structure in a purely
bottom-up fashion without auxiliary data.

3.1 Discovering Temporal Components of Signals

The first step in our approach is to discover temporal sub-components that
compose time series signals. These sub-components are temporal chunks whose
statistics (mean, variance, etc.) are consistent within the sub-series yet vary sig-
nificantly with neighboring chunks. Hence, detecting the change in statistics at
multiple time scales allows us to discover these temporal components in uni-
variate signals. We use the premise from statistics-based speaker-turn detection
approaches [6,25] to define a function TSCS (Time Series Change Space) to cap-
ture the temporal change space in time series data (X0,N = {x1, x2, x3, . . . , xN}).
It is a two-dimensional function over time (t) and temporal scale (δ) that char-
acterizes the varying statistics between two sub-series t−δ and t+δ to detect
a possible temporal change point (time series component) at time t, given a
temporal scale δ. We cast this formulation as a hypothesis-testing problem. The
null hypothesis is that two consecutive chunks are different and thus require two
different models to represent them individually. The alternative hypothesis is
that they are very similar and belong to a single, longer chunk one model can
represent. We evaluate each hypothesis by fitting a single Gaussian model [6] for
the chunks from each hypothesis. Hence, the difference in the Bayesian Informa-
tion Criterion (BIC) between the two models at time t provides a measure of
their separability based on their statistics. Formally, we define the state space
(TSCS(t, δ)) as a function of BIC given by

TSCS(t, δ) =
δ

2
(log|σXt−δ,t| + log|σXt,t+δ

|)
− δ(log|ΣXt−δ,t+δ

|) + δP
(1)

where log|σXt−δ,t| and log|σXt,t+δ
| refer to the BIC of the single Gaussian repre-

sentation for the subseries from time t− δ to t and from t to t + δ, respectively;
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log|ΣXt−δ,t+δ
| refers to the BIC of a multivariate jointly considering both sub-

series; and P is a penalty term to account for the size of the subseries considered
and is typically set to log(T ) where T is the length of the subseries considered.
Higher values of TSCS indicate that the two sub-series are separate components,
i.e., a change in statistics is likely and indicates the presence of a change point.

Given this change space, we can build a multi-scale representation by varying
the time scale δ over a range and summing up the resulting BIC curves. Formally,
this can be defined as

MS−TSCS(t) =
∑

δ∈Δ

TSCS(t, δ) (2)

where Δ is the set of all time scales for detecting time series components. In
practice, we consider Δ to range from 10 time steps to 500 time steps. We then
pass the curve from MS−TSCS(t) through a low pass filter to extract peaks
that provide possible time steps to segment the time series. We select peaks with
high saliency, i.e., if it is more than two standard deviations from its neighbors.
This is a common approach in statistics-based outlier detection literature [6,25]
and provides a good measure of temporal saliency for this problem. Given the
temporal change locations, the ideal number of segments per dataset is computed
as the average number of components across classes in the training set. We find
that considering too few (or smaller) values in Δ will result in fewer segments and
poor representations. Note that not all time series will have such components
that are statistically separable. We use a uniform sampling approach to split
the series into 15 equal segments in these cases. Empirically, segmenting chunks
into more than 50 segments is not ideal and could degrade the performance,
particularly on smaller datasets.

3.2 Capturing Signal Compositionality

The second step in our approach is to learn robust representations
from the multi-scale components extracted using the MS-TSCS function
defined in Sect. 3.1. Given the ideal number of segments K, the input
sequence is tokenized XN={x1, x2, x3, . . . , xN} into its constituent segments
X̃K={X̃1, X̃2, X̃3, . . . , X̃k}. For capturing compositional representations, we
then use a masked auto-encoding loss function [4] to train the encoding model
(with parameters Θ). The masked auto-encoding loss randomly masks M < k
components and forces the encoder to independently predict the masked com-
ponents by conditioning on the context provided by the unmasked components.
Given the tokenized time series data X̃K = {X̃1, X̃2, X̃3, . . . , X̃k} and masked
components M = {m1,m2, . . . ,m|M |}, the masked auto-encoding loss is

Lmae = −
∑

Xi∈C
log

∏

m∈M

p(X̃m|X̃K\M ) (3)

where p(X̃m|X̃K\M ) is the probability of predicting the randomly masked com-
ponents in set {M}. This probability is computed as the mean squared error



Capturing Temporal Components for Time Series Classification 221

over the masked component’s values. We use a bidirectional LSTM [20] as our
encoder and ensure that the mask is bidirectional, i.e., the context for predicting
the masked component is present on both sides of the mask. This masking pro-
cedure has successfully been used to train text-based [22] and image-based [43]
encoders. We extend the formulation to univariate time series data. The hidden
states of the forward and backward LSTM cells, hf

t and hb
t , respectively, are con-

catenated and used as the feature representation for time series classification,
optimized by the cross-entropy loss (LCE). Hence, the overall objective function
is given by

Ltot = λ1Lmae + λ2LCE (4)

where λ1 and λ2 are tunable parameters that trade-off between the two losses.
The values of λ1 and λ2 are varied according to a pre-set schedule to balance
the representation learning capabilities from the self-supervised masked auto-
encoding loss (Lmae) and the discriminative, class-specific properties imbued by
the supervised cross-entropy loss (Lce).

Implementation Details. We use a bidirectional LSTM model with a hidden
size of 160 neurons, followed by a dense layer with 320 neurons, as our encoder
architecture. The ReLU activation is used for all layers. All segmented compo-
nents are padded as necessary to be equal in length. We use 5% of the training
data for validation. We use the same pre-processing as previous work [44]. λ1 and
λ2 are varied as follows: for the first 100 epochs, λ1 = 1 and λ2 = 0, then λ1 = 2
and λ2 = 1. The network is trained for 250 epochs or until convergence, i.e., the
loss does not improve on the validation set. All experiments were conducted on
a workstation server with a 32-core AMD ThreadRipper CPU, 128 GB RAM,
and an NVIDIA RTX 3060.

4 Experimental Evaluation

In this section, we present the results from the experimental evaluation of the
proposed approach. We begin with a discussion on the experimental setup, fol-
lowed by the quantitative results, and conclude with a qualitative discussion on
the representations learned by the approach.

4.1 Experimental Setup

Data. We evaluate the proposed approach on 85 datasets collated in the UCR
time series archive [3]. It consists of univariate time series datasets collected from
different sensors and domains such as health care, speech reorganization, and
spectrum analysis, to name a few. The archive provides a comprehensive bench-
mark for evaluating time series classification models [15,36,44] across diverse
datasets with varying characteristics. The number of classes in each dataset
ranges from 2 to 6, the number of time steps per sample varies from 24 to 2709,
and the number of training samples per dataset from 16 to 8926. Additionally,
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we evaluate the approach on 15 datasets with the longest timesteps from the
UCR-85 [3] and the UCR-128 [10] datasets to evaluate its ability to capture
robust representations from time series with longer duration. We use the offi-
cial train and test splits on all datasets for a fair comparison with prior works.
Average accuracy across all datasets is used to quantify the performance on the
UCR time series archive. Code and performance for baselines are obtained from
publicly available implementations of prior works [36,44].

Baselines. We compare against state-of-the-art univariate time series classifi-
cation models, which use different representation learning backbones and pro-
pose robust learning methods to account for high intra-class variation com-
mon in time series data. Chiefly, we compare against models with CNN back-
bones [15,34,42,44,47,48], transformer backbones [14,46], RNN backbones [37,
38], and other hand-crafted features such as shapelet transforms [19], distance-
based metrics [7,29], and bag-of-symbols [31]. We also compare against ensem-
bles [12,27,35,36], which explicitly capture representations at multiple time
scales, which can require additional overhead for training.

Table 1. Performance evaluation of the proposed approach with state-of-the-art
approaches on 85 datasets from the UCR time series archive [3,10]

Approach Ensemble? Backbone Accuracy

TST [46] ✗ Transformer 64.901

MCDCNN [48] ✗ CNN 68.551

TWIESN [37] ✗ RNN 68.636

TS-Encoder [34] ✗ CNN 71.909

Time-CNN [47] ✗ CNN 72.284

DTW [7] ✗ Distance 74.040

TS-TCC [14] ✗ CNN-Transformer 77.764

TNC [38] ✗ Bi-RNN 77.896

PF [29] ✗ Distance 80.419

T-Loss [15] ✗ Dilated CNN 80.482

BOSS [31] ✗ Bag of Symbols 81.019

FCN [42] ✗ CNN 81.634

ResNet [42] ✗ CNN 82.201

ST [19] ✗ Shapelets 82.236

TS2Vec [44] ✗ Dilated CNN 82.934

Ours ✗ Bi-RNN 83.309

TS-CHIEF [35] ✓ Bag of Symbols 84.641

HIVE-COTE [27] ✓ Multiple 84.714

OS-CNN [36] ✓ CNN 84.774

ROCKET [12] ✓ CNN 85.077
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4.2 Quantitative Evaluation

We present the performance of the approach on the UCR-85 archive in Table 1.
We outperform other approaches on the benchmark while offering competitive
performance to those designed to work in an ensemble. Interestingly, most state-
of-the-art techniques are based on CNNs, with much effort spent finding optimal
receptive field sizes for learning robust features at multiple timescales. Sequence-
based approaches, such as those based on Transformers and RNNs, have strug-
gled in this benchmark, mostly due to the limited training examples in many
datasets. We, however, significantly outperform other sequence-based approaches
and provide improvements of almost 5.5% in absolute accuracy points over the
closest RNN-based approach (TNC [38]). It also provides the best performance
(out of non-ensemble approaches) on 17 datasets (also called wins in prior litera-
ture [36]) out of the 85 benchmark datasets. Additionally, it has an average rank
of 5.35, performing competitively with other non-ensemble approaches. Ensem-
ble models outperform all non-ensemble models by explicitly modeling sequential
data by representing the sequential data at different time scales. However, they
introduce additional overhead for handcrafting and fine-tuning multiple models.

Table 2. Performance on 15 longest sequence time series data from the UCR
Archives [3], compared against state-of-the-art models with different backbones.

Backbone→ CNN Transformer Bi-RNN

Dataset ↓ TS2Vec [44] OS-CNN [36] TS-TCC [14] TST [46] TNC [38] Ours

Rock 70.00 55.00 60.00 68.00 58.00 70.00

HandOutlines 92.20 92.95 72.40 73.50 93.00 94.05

HouseTwenty 91.60 94.87 79.00 81.50 78.20 92.44

InlineSkate 41.50 42.92 34.70 28.70 37.80 41.09

EthanolLevel 46.80 73.08 48.60 26.00 42.40 87.00

SemgHandSubjectCh2 95.10 71.84 75.30 48.40 77.10 91.56

SemgHandGenderCh2 96.30 85.61 83.70 72.50 88.20 89.33

SemgHandMovementCh2 86.00 56.62 61.30 42.00 59.30 78.22

EOGHorizontalSignal 53.90 63.97 40.10 37.30 44.20 57.73

EOGVerticalSignal 50.30 47.76 37.60 29.80 39.20 51.10

Haptics 52.60 51.01 39.60 35.70 47.40 50.32

Mallat 91.40 96.38 92.20 71.30 87.10 97.10

MixedShapesRegularTrain 91.70 96.09 85.50 87.90 91.10 93.69

MixedShapesSmallTrain 86.10 91.79 73.50 82.80 81.30 87.96

StarLightCurves 96.90 97.51 96.70 94.90 96.80 97.78

Average 76.16 74.49 65.35 58.69 68.07 78.62
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Performance on Longer Sequence Data. While the overall UCR-85 archive
performance is excellent, we also examine the ability of the proposed approach
to capture long-range dependencies when presented with time series data of
longer durations. We select a subset of the UCR-128 archive, which contains
additional datasets of longer duration. Specifically, we select 15 datasets with
more than 1000 timesteps per sample without incomplete data. Table 2 presents
a summary of the results. As can be seen, we provide competitive performance
with top-performing baselines with different backbone architectures. We have an
average accuracy of 78.62%, an average rank of 1.72, and provide “wins” in 6
out of the 15 long sequence datasets. It significantly improves over transformer-
based (TS-TCC and TST) and RNN-based (TNC) baselines, which are trained to
specifically model longer sequences through specialized training procedures such
as contrastive learning. These results indicate the approach can capture robust
representations from long sequences without complex ensemble processing.

Table 3. Ablation studies on the UCR-85 archive [3] to assess the impact of each
component on the overall performance.

Backbone MS-TSCS Lmae LCE Accuracy

Bi-LSTM ✓ ✓ ✓ 83.31

Bi-LSTM ✗ ✓ ✓ 73.68

Bi-LSTM ✓ ✗ ✓ 75.31

Bi-LSTM ✓ ✓ ✗ 74.28

Bi-LSTM ✗ ✗ ✓ 68.33

Bi-RNN ✓ ✓ ✓ 81.54

Uni-LSTM ✓ ✓ ✓ 79.55

Constrained Hardware Requirements. Our approach is designed to be sim-
ple and lightweight for use in settings with constrained training requirements,
such as time and space budgets (i.e., limited training time, constrained hard-
ware requirements, and limiting the number of parameters). Our model achieves
competitive performance with 440k parameters and converges training on all
datasets in 4 h (on average over ten runs). For comparison, the current non-
ensemble state-of-the-art approaches, TS2Vec (637k parameters) and ResNet
(479k parameters), have more parameters and take longer to converge on a con-
strained hardware setup (32-core AMD ThreadRipper and NVIDIA RTX 3060).
Similarly, on average, the BIC-based tokenization process (Sect. 1) takes 500
ms for a sequence of 1000 data points, running in a single-threaded CPU-only
application while having significantly less overhead for storing the components
compared with other approaches.
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Ablation Studies. We systematically examine the impact of each module
and summarize the results in Table 3. Specifically, we assess the effects of the
multi-scale component discovery module (Sect. 3.1) and the choice of encoder
model (Sect. 3.2). Removing the component discovery model and using a fixed
number of components for all datasets (set to 25, the median number of com-
ponents across datasets) significantly hurts the performance. We also evaluate
the strength of the learned representations by using a kNN instead of end-to-
end training by removing LCE from Eq. 4. While the loss in performance is
expected, it does perform decently, indicating that the unsupervised loss func-
tion helps learn robust features. Removing Lmae results in significantly worse
performance. Using bidirectional LSTMs instead of unidirectional LSTMs helps
capture context and provides a more robust performance across all 85 datasets
in the UCR archive.

5 Extension to Unsupervised Time Series Segmentation

In addition to evaluating the performance of our approach on time series clas-
sification, we assess the quality of the components obtained through the BIC-
based segmentation (Sect. 3.1) by evaluating it on the time series segmentation
task [16]. The goal of time series segmentation is to identify natural segments
caused by change points in sequential data where there are sudden changes
in statistical properties of the time series due to changes in events captured
by the data. For example, these changes could point to transitions between
actions performed by a subject. The UTSA benchmark [16] introduces a set of
32 datasets derived from the UCR archive [3] and provides human-annotated seg-
ments of datasets across 16 different use cases from biological, mechanical, and
synthetic processes. Each use case in the benchmark contains, on average, 2 to 3

Table 4. Evaluation of the BIC-based tokenization approach on the time series
segmentation task [16].

Approach Learning Pre-Defined Mean

Phase? Window? Covering

BinSeg ✗ ✓ 52.4 ± 30.6

PELT ✗ ✓ 50.4 ± 30.0

Window ✗ ✓ 53.8 ± 12.9

BOCD ✗ ✓ 55.5 ± 14.4

ESPRESSO ✗ ✓ 58.0 ± 15.8

Ours ✗ ✗ 72.7 ± 12.5

FLOSS ✓ ✓ 79.0 ± 17.2

ClaSP ✓ ✗ 79.8 ± 20.4

Ours ✗ ✓ 78.3 ± 12.9
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segments derived from real, semi-synthetic, and artificial changes and provides
a considerable challenge for unsupervised time series segmentation.

We use the components discovered using the multi-scale change space model
as segments and assess the quality of the segmentations on the UTSA benchmark.
We compare against a variety of baselines such as BinSeg [33], PELT [23], Win-
dow [40], BOCD [1], ESPRESSO [11], FLOSS [17], and ClaSP [32], which repre-
sent the commonly used state-of-the-art unsupervised segmentation approaches.
We use the mean covering with standard deviation as a metric to quantify
the performance of the approaches. Based on the Jaccard index, the covering
score provides a weighted overlap between the ground truth and the predicted
segments. Higher values indicate better alignment between the predicted and
the ground truth segments. We report results from the implementations from
ClaSP [32] for a fair comparison and consistent experimental setup.

Table 4 summarizes the results. We significantly outperform other non-
learning-based approaches that require a pre-defined period size (temporal win-
dow) corresponding to the ideal time scale at which the change points can be
detected reliably. This value is often domain-dependent and requires extensive
handcrafting (of architecture or features) to capture, especially in time series
classification and segmentation. Our approach can automatically search for this
using the multi-scale change space and considers change points at different tem-
poral granularities. When given this optimal window, we establish the change
space at this time scale and perform segmentation. As can be seen, we per-
form competitively with learning-based approaches and further widen the gap
with the non-learning-based approaches. Interestingly, we perform exception-
ally well without the optimal time scale, indicating that the multi-scale change
space captures the change points at time scales approaching the ideal scale.
Some example segmentations are shown in Fig. 2, where it can be seen that our

Fig. 2. Qualitative visalization of (a) a successful segmentation and (b) unsuccessful
segmentation on the GreatBarbet2 and SuddenCardianDeath1 datasets, respectively.
The first row shows ground truth segments, and the second shows predicted segments.
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approach can segment signals into their components without training and super-
vision. Although it over segments in some instances, the segments are statistically
meaningful, are captured at multiple time scales, and do not always correspond
to the ground change points extracted at a single time scale. For example, in
Fig. 2(b), we see that over-segmentation occurs during periods of intense changes
and captures fine-grained change points but has excellent coverage during stable
regions on either side of this rapidly changing segment. Note that our approach
detects the temporal components in a time-scale and class-agnostic manner and
does not have access to the ideal time scale at which the ground truth is anno-
tated. Despite this over-segmentation, it allows us to capture robust features for
classification.

6 Discussion and Future Work

In this work, we presented a novel multi-scale change-space approach to discover
temporal components in univariate time series data and provide an intuitive
way to tokenize time series data using statistical measures. Given these com-
ponents, we learn compositional representations using sequence-based encoders
by training the model as a masked, denoising auto-encoder. Evaluation on 85
publicly available datasets on the benchmark UCR-85 archive demonstrates its
effectiveness in learning robust representations. Additional experiments on seg-
mentation benchmarks demonstrate that the detected components are highly
correlated with naturally occurring segments found in time series data. We aim
to extend this formulation to capture part-whole hierarchies for learning hier-
archical compositional representations from multi-modal and multi-variate time
series data with longer temporal durations.
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approach to unsupervised audio segmentation. In: IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 1665–1668. IEEE (2009)

19. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time
series by shapelet transformation. Data Min. Knowl. Disc. 28, 851–881 (2014)

20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

21. Kawahara, Y., Sugiyama, M.: Sequential change-point detection based on direct
density-ratio estimation. Stat. Anal. Data Mining: ASA Data Sci. J. 5(2), 114–127
(2012)

22. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional
transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

23. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a
linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

24. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1d con-
volutional neural networks and applications: a survey. Mech. Syst. Signal Process.
151, 107398 (2021)

http://arxiv.org/abs/1603.06995
http://arxiv.org/abs/2106.14112


Capturing Temporal Components for Time Series Classification 229

25. Krishnan, R., Sarkar, S.: Detecting group turn patterns in conversations using
audio-video change scale-space. In: International Conference on Pattern Recogni-
tion, pp. 137–140. IEEE (2010)

26. Laptev, I., Lindeberg, T.: A multi-scale feature likelihood map for direct evaluation
of object hypotheses*. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106,
pp. 98–110. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47778-0 9

27. Lines, J., Taylor, S., Bagnall, A.: Time series classification with hive-cote: the
hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl.
Discov. Data 12(5), 1–35 (2018)

28. Locatello, F., et al.: Object-centric learning with slot attention. In: Advances on
Neural Information Processing System, vol. 33, pp. 11525–11538 (2020)

29. Lucas, B., et al.: Proximity forest: an effective and scalable distance-based classifier
for time series. Data Min. Knowl. Disc. 33(3), 607–635 (2019)

30. Ramnath, V.L., Katkoori, S.: A smart iot system for continuous sleep state mon-
itoring. In: 2020 IEEE 63rd International Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 241–244. IEEE (2020)
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Abstract. This paper presents a novel Hierarchical Transfer and Multi-
task Learning (HTMTL) approach designed to substantially improve the
performance of scene classification networks by leveraging the collective
influence of diverse scene types. HTMTL is distinguished by its ability
to capture the interaction between various scene types, recognizing how
context information from one scene category can enhance the classifica-
tion performance of another. Our method, when applied to the Places365
dataset, demonstrates a significant improvement in the network’s ability
to accurately identify scene types. By exploiting these inter-scene inter-
actions, HTMTL significantly enhances scene classification performance,
making it a potent tool for advancing scene understanding and classifi-
cation. Additionally, this study explores the contribution of individual
tasks and task groupings on the performance of other tasks. To fur-
ther validate the generality of HTMTL, we applied it to the Cityscapes
dataset, where the results also show promise. This indicates the broad
applicability and effectiveness of our approach across different datasets
and scene types.

Keywords: Scene Classification · Multi-task Learning · Transfer
Learning

1 Introduction

Over recent years, significant progress has been made in the field of computer
vision, enabling smart systems to interact with their surroundings and recognize
environments. In scene classification images are categorized according to their
ambient content, layout, and object into predefined scene categories (such as
bedroom, park, and jungle). It aims to help computers understand the environ-
ment around them by providing a valuable and important description of the
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15301, pp. 231–248, 2025.
https://doi.org/10.1007/978-3-031-78107-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78107-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-78107-0_15


232 R. Khoshkangini et al.

content of an image. The ability to recognize scenes holds significant importance
in several applications, including but not limited to security cameras [21] and
autonomous driving systems [11].

As scenes tend to have a variety of objects, different layouts, and semantic
ambiguity, the task of scene classification can be quite challenging for a network.
Inter-class similarity, and intra-class diversity are two crucial factors in scene
classification that contribute to the overall effectiveness and robustness of the
classification model [36,41].

Indoor and outdoor scene classification is a basic step in order to classify
scenes. Indoor and outdoor images are generally different in terms of color, size,
layout, light, and other factors for categorizing them into indoor and outdoor
categories. This detection helps the network to get a better understanding of the
entire environment and objects in the scene. Extensive research has been done
on classifying indoor or outdoor environments [34]. This issue was investigated
by Simer et al. in 1998 [33], and many researchers have attempted to enhance the
accuracy of models in scene classification in recent years, such as [7,22,27,47].
The categorization of indoor and outdoor environments has broader implications
for a range of imaging applications such as content-based image retrieval [8,35],
robotic [3,6,24], and map depth creation [2].

Although the ability to differentiate between indoor and outdoor environ-
ments is undoubtedly advantageous in numerous computer vision applications, it
frequently fails to comprehensively comprehend intricate surroundings. A higher
level of scene classification involves precisely identifying specific places, such
as a forest or a home, which demands a more intricate and concerted effort.
This heightened degree of scene comprehension presents novel prospects for a
more profound understanding of scenes. Therefore, detecting different scene lev-
els could be crucial for environment detection systems.

Multi-task learning (MTL) is a suitable approach for categorizing scenes
into different environmental levels. The objective of MTL is to enhance the
performance of individual tasks by utilizing information contained in multiple
related tasks [44]. Its application spans a multitude of domains, including but
not limited to computer vision [5,19], speech recognition [23], natural language
processing [4], and automotive [16,17]. For instance, Lu et al. in [19], enhanced
scene recognition by combining a multitask model for different image resolutions
with a Sparse Feature Selection-based Manifold Regularization (SFSMR). This
semi-supervised learning approach demonstrated substantial improvements in
accuracy compared to prior methods. Another study has been investigated by
Zheng et al. in [45], where a multi-task metric multi-kernel learning algorithm is
used to learn linear transformations of RGB and depth features, making full use
of inter-modal relations [42]. Another work [1] presents a deep learning approach
utilizing SqueezeNet [13] to enhance classification accuracy by learning from
multiple datasets and considering each dataset as a separate learning task. MTL
with transformers has been used for scene classification [30].

Task grouping has previously been used for other computer vision tasks [10,
29,31,37] but not for scene classification or using hierarchies.
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Although these papers have achieved satisfactory scene classification results
with multi-task methods, the impact of different scene levels on each other
remains an unsolved challenge. These methods often do not consider or infer
the links between the different tasks. For example, to what extent the classifica-
tion of outdoor natural scenes like a forest can affect the classification of outdoor
human-made scenes?

To achieve this objective, we have designed a Hierarchical Multi-task app-
roach based on hard parameter sharing and transfer learning methods to assess
the interplay between various scenery levels regarding their positive or negative
influence to enhance the predictive performance. We have proposed a hierarchi-
cal transfer multi-task approach capable of predicting different levels of scenes at
the same time. Two main modules construct the proposed approach. In the for-
mer, the hidden layers from the InceptionV3 network [32] are used as the shared
layers, which were trained with ImageNet dataset [9]. This will extract more
general representations which may help the tasks. The latter is specific layers for
each individual task; we train multiple tasks simultaneously by exploiting shared
representation obtained from InceptionV3 to learn similar knowledge within a set
of each task [44]. In this design, at the head, each high-level task is hierarchically
concatenated to the low-level task to transfer knowledge from high to low-level
tasks to increase the performance of each task and, consequently, the predictive
model. In this learning process, the knowledge in each task can be transferred
and taken by other related tasks to improve the generalization performance. This
enabled us to study extracting the transferred knowledge between the tasks and
quantifying the effect of each and multiple tasks on each other over the train-
ing process. Furthermore, at the same time, the shared representation will yield
shorter training time, allowing us to add more individual tasks by constructing
only the specific layers and training only those layers.

The following research questions (RQs) further elaborate the investigative
objectives of our proposed approach:

– RQ1- Hierarchical Transfer Multi-task Learning: To what extent could
the task of scene classification be performed using transfer and multi-task
learning approach?

– RQ2- Scene Transference Quantification: To what extent could the
scene-level task transference be quantified?

Taken together with these research questions, our work aims to counter the
practice noted above by utilizing a multi-task learning approach to improve the
scene classification performance in surveillance systems. To answer RQ1, we uti-
lize the share representation collected from the base model InceptionV3 network
and develop a predictive multi-task model for different levels of scenes. The out-
put of each task will be injected into the next task to provide the knowledge from
one task to other tasks in the late layers. The reported figures revealed how this
approach could positively impact the accuracy of the predictive model in both
individual and overall prediction. To answer RQ2, we adapted the inter-task-
affinity (AF) technique introduced in [15] to quantify the knowledge transfer
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through the hierarchy of the tasks. The result of RQ2 allows us to understand
which tasks (or sets of tasks) have positive or possibly negative contributions to
different levels of scenes. The outcome of this study does not provide a conclusive
approach to scene understanding, but they suggest quantifying the interaction
between tasks can be a potential approach to scene understanding.

In addition, the result we achieved by employing our hierarchical multi-task
system outperforms the existing approaches such as SWAG [28], Hiera-H [25],
MAE [12], WaveMix-240/12 [14], InternImage-H [38], and MixMIM-L [18]. Over-
all, we believe our study presents a considerable improvement compared to the
existing scene classification approaches. Further explanation of our approach is
given in Sect. 3.

2 Data Representation

This section describes the dataset used for the proposed multi-task scene classi-
fication approach:

– Places365[46]: This dataset contains the following scene levels:
• Level 1 (Task 1): The highest hierarchical level has three categories:

indoor, outdoor natural, outdoor man-made.
• Level 2 (Task 2): Six categories of different indoor places, including 1)

shopping and dining; 2) workplace; 3) home or hotel; 4) transportation;
5) sports, leisure; and 6) cultural.

• Level 2 (Task 3): Four natural outdoor categories: 1) water, ice, snow;
2) mountains, hills, desert, sky; 3) forest, field, jungle; and 4) man-made
elements.

• Level 2 (Task 4): Six categories of outdoor man-made places: 1) trans-
portation; 2) cultural or historical buildings; 3) sports fields, parks, and
leisure spaces; 4) industrial and construction; 5) houses, cabins, gardens,
farms; and 6) commercial buildings, shops, markets, cities, towns.

• New level (Task 5): The specific scene category, for example airfield or
tennis-court.

We used a subset of Places365 dataset with 8508 images for training and 1385
images for testing. Furthermore, ten classes were chosen from this dataset,
namely: airfield, alley, arena-rodeo, factory, forest, labyrinth, outhouse, podium,
squash-court, and tennis-court.

3 Approach

The conceptual view of the proposed HTMLT is illustrated in Fig. 1, where
our approach constructed by InceptionV3 as the base model–holding the shared
layers trained with ImageNet–and a multi-task network with multiple heads for
each specific task.
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Fig. 1. The conceptual version of the proposed approach.

3.1 Multi-task Learning

Multi-task Learning (MTL) points to learning several related tasks simultane-
ously with the same network to learn feature representations, leading to improved
generalization and more immediate learning [44]. In our specific case of modeling
scene, the different scenes are indicated τi and τ = {τ1, τ2, . . . , τm} is the set of
all tasks. The total loss vector is:

minθL(θ) = (Lτ1(θ), Lτ2(θ), . . . , Lτm
(θ)) (1)

where Lτi
(θ) is the loss function of the ith task (each task refers to a par-

ticular scene level mentioned in Sect. 2). A multi-task learning aims to per-
form joint learning at the same time and optimize all the tasks by utilizing
DS = {xi

j , y
i
j}ni

j=1 The models learn from the data samples DS, and take advan-
tage of θsh as the shared layers to compute a loss for each level/task L(τi|θsh, θi).
Let’s assume a multi-task loss function parameterized by {θsh} ∪ {θi|τi ∈ τ },
where “θsh” shows the shared parameters in the shared layers and τi is the task
i. Thus, given a set of data samples X, the total loss function of the MTL for
scene prediction is calculated by Eq. 2.

Lall(X, θsh, θi=1,..,m) =
m∑

i=1

L(τ i; θsh, θi) (2)

3.2 Training Hierarchical Multi-task Learning

Given the shared parameters θsh from the base model and set of tasks defined
in τ , we concatenate the output of each task to the non-linearity function of
the next task placed in its specific layer. This concatenation allows transferring
the knowledge of the high-level tasks to the low-level tasks during the course of
training.

Lall(X, θsh, θi=1,..,m) =
m∑

i=1

L(τ i; θsh, θi, e
zτi−1 ) (3)
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In Eq. 3, ezi−1 refers to the output of τi−1, which is concatenated to the τi at the
latest stage in the specific layer. The knowledge transferred between these tasks
in the latest stage supports increasing the predictive model’s performance.

3.3 Individual and Group Task Transference Quantification

To achieve perspicuity into the influence of the task (scene level) on each other
without and with a hierarchical structure, as well as a group of tasks onto a
specific task during the training process, we adapt the inter-task affinity (AF) to
scene level impact, introduced in this study [15]. Hence, taking into account the
deep multi-task learner parameterized by θ at the time t of training the scene
levels without hierarchical structure, given a batch of Xt ∈ DS. We define the
quantity θt+1

sh|i to indicate the model with the updated shared parameters towards
the task τi.

θt+1
sh|i = θt

sh − ζΔθt
sh

Lτi
(Xt, θt

i , θ
t
τi

) (4)

IMτi→τj
= 1 −

Lτj
(Xt, θt+1

s|i , θj)

Lτj
(Xt, θt

s, θj)
· Wc (5)

Using θt+1
sh|i in Eq. 4, we could measure the impact of task τi on the perfor-

mance of the other individual tasks defined in τ = {τ1, τ2, . . . , τm} in Eq. 5.

θt+1
sh|(Sτ )

= θt
sh − ζΔθt

sh
LSτ

(Xt, θt
i , θ

t
Sτ

) (6)

By extending Eq. 4 and Eq. 5, into Eq. 6 and Eq. 7 –respectively–, we are
capable of calculating the impact of a group of tasks τS on the performance
of the other individual task represented in τ . Thus, given the input Xt ∈ DS
we can measure the loss for each task by taking the updated shared parameter
θsh and the specific task parameters θi. Indeed, we assess the impact IM of
the gradient update of task τi or set of tasks Sτ on a given task τj for the
individual transference. For the group transference, we assess the impact IM of
the gradient update of the set of tasks (Sτ ), which in our case are chosen to be
tuple, triple, and quadruple, on a specific, e.g., task τk. Then, we can compare
the ratio between the average loss value of tasks in a given set (τk) before and
after conducting the gradient update from a set of tasks Sτ towards the shared
parameters as follows:

IMSτ →τi
= 1 −

Lτi
(Xt, θt+1

sh|(Sτ )
, θi)

Lτi
(Xt, θt

sh, θi)
· Wc (7)

Wc =
t

T
t = 1, 2, . . . , T (8)

where θSτ represent parameters of the tasks in a given set. Thus, we translate
IMLSτ→τ i as a measure of transference from meta-train individual or set of
tasks Sτ to task τi. A positive value of IMLSτ→τi

shows the update on the
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shard parameters θsh led to a lower loss value on the set of tasks with respect
to the original parameters. This basically expresses the positive effect of task
i (or Sτ ) to generalize the predictive model on the individual or set of tasks
(Sτ ), while the negative value (if any) of Sτ describes the destructive impact
of task i on that individual/set over the training process. We adapted the over-
all inter-task affinity measure onto the individual from the group of tasks by
incrementally adding certain weights, defined in Eq. 8 on each iteration over the
training process. t refers to the current epoch number, and T is the maximum
number of epochs that the multi-task network should be iterated. This is because
at the beginning of the training, the weights are randomly generated, so it is not
expected the earlier loss have the same impact w.r.t to the parameters at the
end of the training.

Thus, in Eq. 9, we calculate the transference over all epochs from task i to
task j, and extend to Eq. 10 to measure the transference from a group of tasks
to a specific task (e.g., task i).

ˆIMτi→τj
=

1
T

T∑

e=1

IMe
τi→τj

(9)

ˆIMLSτ →τi
=

1
T

T∑

e=1

IMe
LSτ →τi

(10)

ÎMτi→τj
and ˆIMLSτ →τi

can be conducted in different levels of granularity,
such as per-epoch level or even micro-level/batch level. In this study, we measure
the transference between individual tasks and groups of tasks onto individual
tasks (Eq. 5) at the epoch level, where T refers to the number of epochs. Given
the above problem formulation, we could then quantify how much a high-level
scene can transfer the knowledge to a lower level in a later stage by concatenating
the output of each scene to the lower level using Eq. 11.

IMSτ →τi
= 1 −

Lτi
(Xt, θt+1

sh|(Sτ )
, θi, , e

zτi−1 )

Lτi
(Xt, θt

sh, θi, , e
zτi−1 )

· Wc (11)

4 Experimental Evaluation and Results

The results and evaluations are presented with respect to the two research ques-
tions introduced in Sect. 1.

RQ1) To what extent could the task of scene classification be predicted using
the Hierarchical Transfer Multi-tasks approach?; RQ2) To what extent could the
scene transference be quantified?

4.1 RQ1: Hierarchical Multi-task Learning Results

To answer RQ1, we conducted several experiments. First, we build multiple
predictive models for each task/scene level single task (STL) to quantify the
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predictive model’s performance. Then, we designed a multi-task network (MTL)
wherein we simultaneously trained all the tasks in one single training process,
having the shared and their specific parameters using Eq. 2. Thus the backbone
of STL and MTL was trained from scratch on the Places365 subset. Indeed, these
experiments will show whether we could gain any performance by formulating the
task as multi-task learning. In addition, these practices have been accomplished
to have baselines – and assess our proposed approach.

The second round of experiments was accomplished using the transfer multi-
task learning (TMTL) and our proposed Hierarchical Transfer and Multi-
task Learning approach (HTMTL) and compared with the baselines and other
approaches to assess how much we could gain with the hierarchical transference
between the tasks.

Table 1. The comparison between HTMTL, and different approaches for RQ1. For
each model, 5 × 2 cv paired t-test was used to test the pairwise significance between
the model and other models for each task. “**” refers to the alpha level at 0.05 to reject
the null hypothesis, e.g., the “two sigma” level. Significant differences are denoted by
�, and insignificant differences are denoted by × ✗. “TSTL-T1” refers to the single
scene prediction, where the model is constructed based on transfer learning and only
a specific layer. A similar construction has been used for other individual tasks.

Methods
Task1 Task 2 Task 3 Task 4 Task 5 Avg

f-score t-test ** f-score t-test ** f-score t-test ** f-score t-test ** f-score t-test ** f-score

STL-T1 0.62 ± 0.05 8.71 � − − − − − − − − − − − − − − − − − − − − − — 0.62

STL-T2 − − − − − − 0.72 ± 0.2 15.29 � − − − − − − − − − − − − − − − — 0.72

STL-T3 − − − − − − − − − − − − 0.85 ± 0.01 9.366 � − − − − − − − − − — 0.85

STL-T4 − − − − − − − − − − − − − − − − − − 0.56 ± 0.04 −11.82 � − − − — 0.56

STL-T5 − − − − − − − − − − − − − − − − − − − − − − − − 0.45 ± 0.01 46.90 � 0.45

MTL 0.91 ± 0.035−3.41 � 0.41 ± 0.021 51.30 � 0.45 ± 0.03 27.86 � 0.16 ± 0.021 60.83 � 0.88 ± 0.03 7.31 � 0.57

TSTL-T10.78 ± 0.003 −19.5 � − − − − − − − − − − − − − − − − − − − − − — 0.78

TSTL-T2 − − − − − − 0.91 ± 0.01 2.284 � − − − − − − − − − − − − − − − — 0.91

TSTL-T3 − − − − − − − − − − − − 0.92 ± 0.006 0.99 ✗ − − − − − − − − − — 0.92

TSTL-T4 − − − − − − − − − − − − − − − − − − 0.80 ± 0.01 2.347 � − − − — 0.80

TSTL-T5 − − − − − − − − − − − − − − − − − − − − − − − − 0.71 ± 0.01 6.793 � 0.71

TMTL 0.83 ± 0.014 3.438 � 0.92 ± 0.017 0.996 ✗ 0.92 ± 0.21 0.87 ✗ 0.76 ± 0.027 4.766 � 0.73 ± 0.019 4.079 � 0.83

HTMTL 0.86 ± 0.010 − − − 0.93 ± 0.007 − − − 0.93 ± 0.011− − −− 0.83 ± 0.01− − − 0.77 ± 0.004 — 0.86

Table 1 shows the results obtained by Eq. 2 for TMTL and Eq. 3 for HTMTL
and compare them with single and other models. We have iterated the train-
ing and testing phases 5 times to get a reliable result and reported the overall
average.

Results obtained from the models trained for the single tasks (STL) show
that single Task3 (STL-T3) gave the highest f-score of the single tasks, with an
f-score of 0.85. Utilizing MTL we could obtain an average f-score value of 0.57,
where the shared layers were trained only on the Places365 dataset. In MTL,
Task2, Task3, and Task4 got a lower f-score than their single-task counterparts
(STL-2, STL-3, STL-4). However, there was an improvement of 0.29 in Task 1,
and an improvement of 0.43 for Task 5, compared to their single-task models
(STL-T1 and STL-T5), respectively.
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Considering the average f-scores of 0.83 and 0.86 obtained by TMTL and
HTMTL, respectively, we could see a considerable improvement when transfer
learning and hierarchical structure were used - compared to MTL. The improve-
ment can also be seen for the TSTL for each individual task, where we utilized
the shared parameters from InceptionV3 trained on ImageNet and the specific
layer trained on Places365.

Comparing TMTL and HTMTL, HTMTL gains improvement in all tasks
by 0.3, 0.1, 0.1, 0.7, and 0.4 for Task 1 to Task 5, respectively, as well as 0.3
improvement of F-score in average, see Table 1.

As a part of the experiment, we conducted the statistical t-test and compared
the results obtained for HTMTL and all other experiments to quantify whether
the results differed significantly. Selecting α = 0.05 as the critical value, we
could see in most cases, the test could reject the null hypothesis and conclude
that the proposed approach performed best on average and on the majority of the
tasks. However, the test fails to reject the null hypothesis where Task2 and Task3
express that the small difference in individual task comparison between HTMTL
and TMTL is not significant. It is also fair to highlight that MTL performed
well for Task1 and Task5 compared to TMTL and HTMTL structures. This
might be because MTL was trained from scratch on Places365, where TMTL
and HTMTL used a pretrained backbone as shared parameters for Task1 and
Task5. However, the average f-score obtained by TMTL and HTMTL indicates
the proposed approach’s superiority.

Table 2 provides a comprehensive comparison between the HTMTL model
and other studies that utilized the Places365 dataset. As indicated in the table,
the proposed HTMTL approach significantly outperforms the existing methods,
achieving an impressive accuracy of 73.2%. This notable improvement highlights
the effectiveness and robustness of the HTMTL model in handling the complex
features and diverse categories present in the Places365 dataset. The enhanced
performance can be attributed to the innovative techniques and optimizations
incorporated into the HTMTL framework, setting a new benchmark for future
research in this domain.

Table 2. The comparison between HTMTL and other approaches tested on Places365
dataset.

Models Method Extra data Accuracy

SWAG [28] Weakly-supervised Yes 60.7%
Hiera-H [25] Vision transformer Yes 60.6%
MAE [12] Self-supervised Yes 60.3%
WaveMix [14] Wavelet transform No 56.4%
InternImage [38] Large CNN foundation No 61.2%
MixMIM-L [18] AutoEncoder – 60.3%
OmniVec2 [30] Transformer, Multi-task – 65.1%
HTMTL (ours) Multi-task, Hierarchical No 73.2%
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To assess the generality of our approach, we utilized the Cityscapes dataset,
which includes multiple tasks. Table 3 presents the Intersection over Union (IoU)
metrics obtained from our HTMTL model and compares these results with those
of existing methodologies applied to the same dataset. The results indicate that
both BiSeNet and HTMTL achieve comparable performance, significantly sur-
passing other current approaches. This demonstrates the robustness and effec-
tiveness of our HTMTL model in handling diverse tasks within the Cityscapes
dataset. In more detail, the Cityscapes dataset is known for its complexity, con-
taining a variety of urban scenes with numerous object classes, making it a rigor-
ous benchmark for evaluating multi-task learning models. Our HTMTL model’s
performance on this dataset underscores its capability to generalize well across
different tasks. Specifically, the IoU metric, which measures the overlap between
the predicted segmentation and the ground truth, is a critical indicator of the
model’s precision and accuracy.

The superior performance of HTMTL and BiSeNet can be attributed to their
advanced architectures, which effectively integrate spatial and contextual infor-
mation. This integration allows for more accurate predictions across different
object classes, contributing to the higher IoU scores observed. Consequently, the
results from Table 3 validate our approach, highlighting its potential for appli-
cation in real-world scenarios where multi-task learning is essential.

Table 3. The comparison between HTMTL and other approaches tested on Cityscapes
dataset.

Models Method Extra data IoU

MTL [26] Multi-task, Multi-Objective No 66.6%
Cross-CBAM [39] Cross Convolutional Block Attention No 73.4%
GUNet [20] Guided Upsampling Network Yes 70.4%
CAS-GT [43] Directed Acyclic Graph No 72.3%
BiSeNet [40] Feature Fusion Module No 74.7%
HTMTL (ours) Multi-task, Hierarchical No 73.6%

4.2 RQ2: Scene Transference Quantification Results

To answer RQ2, we carried out two kinds of implementations. The first refers
to the individual task transference practice. We aim to quantify how much one
task can positively or negatively affect another task over the training process by
utilizing Eq. 5.
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Fig. 2. The task transference of different scene levels onto each other over the training
process (Only Taks1 and Task5 are depicted due to the page limit).

Table 4. The inter-task affinity values obtained by Eq. 5. Each column shows the
average effect of each task on other tasks over the 100 epochs using Eq. 9.

Task1 AF Value Task2 AF Value Task3 AF Value Task4 AF Value Task5 AF Value
T1 → T2 8.756 T2 → T1 9.359 T3 → T1 20.579 T4 → T1 8.807 T5 → T1 7.368
T1 → T3 9.193 T2 → T3 13.531 T3 → T2 21.339 T4 → T2 8.694 T5 → T2 6.999
T1 → T4 9.400 T2 → T4 12.328 T3 → T4 22.643 T4 → T3 9.294 T5 → T3 7.390
T1 → T5 9.359 T2 → T5 12.867 T3 → T5 18.458 T4 → T5 8.452 T5 → T4 7.334

Figure 2 shows the transference from individual tasks (or scene levels) to the
performance of other tasks/scene levels during the 30 epochs (due to the page
limit, we just plotted the transference onto two tasks; Task1 and Task5). The
subplots illustrate the constructive impact of training on an individual task on
the performance of another task. The two sub-plots show that the individual
tasks at the beginning have less impact on other tasks, but the impact increases
over the training time. Concerning the transference onto Task1 and Task5 (see
Fig. 2a and Fig. 2b), which is the highest and lowest scene levels, we observed
that over the 30 epoch training process, the impact on Task1 is more than on
Task5 (the more AF value the more impact). This suggests that lower-level
scenes can have a more positive effect on higher-level scenes when they are
trained together in a multi-task fashion. The interaction between tasks and Task1
(depicted in Fig. 2a) fluctuated a lot, showing that weights are not well trained
over the first 30 epochs, while interaction stabilized much faster for Task5 with
a lower interaction value. This might be due to the nature of the scene levels to
transfer the feature representation that positively supports the next level/task
classification performance, which takes a bit of time to train to stabilize its
positive effect. Although we observed these fluctuations over the training process,
the impact stabilized in the later stages due to the learning improvement onto
all tasks.

Table 4 shows the overall impact of each individual task on others over 100
epochs. From the table, we could clearly observe the constructive impact of the
tasks on each other over the training process. In addition, we acknowledged that
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Table 5. The inter-task affinity values obtained by Eq. 11 with the hierarchical struc-
ture. Each column shows the average effect of each task on other tasks over the 100
epochs.

Task1 AF Value Task2 AF Value Task3 AF Value Task4 AF Value Task5 AF Value
T1 → T2 8.533 T2 → T1 15.594 T3 → T1 22.282 T4 → T1 9.395 T5 → T1 7.607
T1 → T3 9.103 T2 → T3 15.458 T3 → T2 23.965 T4 → T2 9.201 T5 → T2 7.523
T1 → T4 8.928 T2 → T4 15.220 T3 → T4 23.860 T4 → T3 9.562 T5 → T3 7.421
T1 → T5 8.783 T2 → T5 15.147 T3 → T5 22.892 T4 → T5 8.646 T5 → T4 7.622

tasks have different contributions to the performance of the other tasks. The
figures illustrated that Task5 has contributed less (compared with others) to the
performance of the other tasks (highlighted in orange). The low-level nature of
the Task5 could be the reason for this less contribution within the other tasks. In
contrast, AF values obtained for Task3 show how important the role of Task3 is in
the other tasks’ performance in the multi-task structure. A similar contribution
has been captured by counting the hierarchical design into multi-task learning
(see Table 5). This increase in the effect of each task on others also confirms the
usability of the hierarchical structure in the multi-task predictive model.

Table 6. The combination of different tasks located in different groups that affect
‘Task3’. The impacts of the groups on ’Task3’ are illustrated in Fig. 3.

Group # Individual Task in Each Group
G1 Task4 & Task5

G2 Task2 & Task4 & Task5
G3 Task2 & Task5
G4 Task1 & Task2 & Task4
G5 Task2 & Task4
G6 Task1 & Task4
G7 Task1 & Task2
G8 Task1 & Task4 & T5
G9 Task1 & Task2 & Task5
G10 Task1 & Task5
G11 Task1 & Task2 & Task4 & Task5

In the second evaluation in RQ2, we aim to understand and quantify the
set of tasks (group of tasks) transference onto individual tasks or the group’s
contribution to the individual Task/scene level over the training process by uti-
lizing the shared and specific layers. To acknowledge this, we utilized Eq. 6 and
adapted to the below equations.

b = avg(LSτ
(Xt

val,X
t
tr, θ

t+1
s|i , θSτ

)) (12)
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Fig. 3. The overall group knowledge transferred onto Task3 obtained by Eq. 6 and
Eq. 10.

Table 7. The combination of different tasks located in different groups. The impacts
of the groups on Task5 are illustrated in Fig. 4.

Group # Individual Task in Each Group
G1 Task1 & Task4
G2 Task3 & Task4
G3 Task1 & Task2
G4 Task2 & Task4
G5 Task1 & Task3 & Task4
G6 Task1 & Task3
G7 Task1 & Task2 & Task3 & Task4
G8 Task2 & Task3
G9 Task1 & Task2 & Task3
G10 Task1 & Task2 & Task4
G11 Task2 & Task3 & Task4

a = avg(Lτj ,τk
(Xt

val,X
t
tr, θ

t
s, θSτ

) (13)

IMτi→LSτ
=

b − a

b
.Wc (14)

where Xt
val and Xt

tr are the independent feature predictors for training and
validating, respectively. avg(LSτ

(Xt
val,X

t
tr, θ

t+1
s|i , θSτ

)) refers to the average loss
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value of tasks in the set Sτ after the network was updated and trained with
the shared parameters for specific task τi (θt+1

s|i ), and avg(LSτ
(Xt

val,X
t
tr, θ

t
s, θSτ

)
points to the average loss value before the update. This intuitively reveals to
what extent a group of tasks can transfer positive or even negative knowledge
onto the performance of the individual tasks. This means different tasks might
behave differently when they are in different groups.

Fig. 4. The overall group knowledge transferred onto Task5 obtained by Eq. 6 and
Eq. 10.

Considering the five different tasks, we could set up 11 different group com-
binations (we have removed groups with only one task) that can impact on each
task. In total, we could generate 55 different combinations (groups of tasks) and
measure their contributions to the performance of each task. For illustration
purposes, we reported only two sets of combinations that can affect Task3 and
Task5 in Table 6 and Table 7. The figures obtained from these groups are plot-
ted in Fig. 3 and Fig. 4, and show all 11 groups, both for Task3 and Task5, have
constructive contributions. We acknowledged that G1 is an optimal group with
the most positive effect by AF = 15.1 on Task3 (highlighted in green), and G3
is the optimal group for Task5 by AF = 3.62. Given the numbers, we could then
translate groups with two tasks as the optimal (or sub-optimal) group for the
task grouping.

5 Ablation Studies

5.1 Contribution of Different Hierarchy and Base Model
to Knowledge Transfer

Table 8 presents the results of an ablation study on HTMTL using the Cityscapes
and Places365 datasets with different base models and hierarchical strategies. We
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investigated the impact of top-down hierarchy (knowledge transfer from Task1
to Task2, Task2 to Task3, etc.) versus bottom-up hierarchy (knowledge trans-
fer from Task8 to Task7, Task7 to Task6, etc.). In our experiments, we varied
the baseline models and hyperparameters to thoroughly evaluate performance
differences. The results indicate that the top-down hierarchy strategy consis-
tently outperforms the bottom-up strategy. Interestingly, when we compared
the performance of different base models, specifically ResNet and Xception, we
found no significant difference. This suggests that both base models contribute
similarly to the system’s performance. Our findings imply that further improve-
ments might be achieved by focusing on the specific layers within the network
rather than the choice of the base model itself. Additionally, performance might
improve with more training iterations, highlighting the potential for optimiza-
tion through extended training and fine-tuning. Further investigation is needed
to explore these aspects in more detail.

Table 8. Performance comparison of HTMTL on Cityscapes and Places365 with dif-
ferent base models and regularization components. V1 in HTMTL_V1 refers to the
version of the HTMTL with different components detailed in the table.

Methods
Acc & std
Cityscapes

Acc & std
Places365

HTMTL_V1
ResNet101V2+up-to-down+30 epochs

0.84±0.07 0.72±0.02

HTMTL_V2
ResNet101V2+down-to-up+30 epochs

0.83±0.06 0.71±0.04

HTMTL_V3
Xception+up-to-down+30 epochs

0.83±0.02 0.74±0.06

HTMTL_V4
Xception+down-to-up+30 epochs

0.79±0.10 0.71±0.03

6 Conclusion

This study presents a hierarchical transfer multi-task deep neural network app-
roach for multiple scene classification and quantifying knowledge transference
among the scenes. The experimental evaluation of different levels of scene cate-
gory classification illustrates a significant difference between the performance of
the HTMLT approach and the baselines and other studies (see Table 2). Exten-
sive experiments on quantifying the knowledge transferred between tasks and
groups of tasks onto single tasks suggest a constructive contribution of the tasks
on the performance of each other. Considering the overall impact and the results
for individual tasks transference illustrated in plots and tables, it is evident that
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high-level tasks can have a higher impact on the performance of the other tasks.
In contrast, the low-level task/scene, or more specific tasks (e.g., Task5), has a
less constructive impact on the performance of the higher-level scenes (see Fig. 2).
This work motivated us, to extend our inter-task affinity approach to find the
relationship between tasks (e.g., objects) to understand the scene, particularly
in problematic conditions.
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versity which was funded by the Knowledge Foundation in Sweden.
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Abstract. The detection of abuse language remains a long-standing
challenge with the extensive use of social networks. The detection task of
abuse language suffers from limited accuracy. We argue that the existing
detection methods utilize the fine-tuning technique of the pre-trained lan-
guage models (PLMs) to handle downstream tasks. Hence, these methods
fail to stimulate the general knowledge of the PLMs. To address the prob-
lem, we propose a novel Deep Prompt Multi-task Network (DPMN) for
abuse language detection. Specifically, DPMN first attempts to design
two forms of deep prompt tuning and light prompt tuning for the PLMs.
The effects of different prompt lengths, tuning strategies, and prompt ini-
tialization methods on detecting abuse language are studied. In addition,
we propose a Task Head based on Bi-LSTM and FFN, which can be used
as a short text classifier. Eventually, DPMN utilizes multi-task learn-
ing to improve detection metrics further. The multi-task network has
the function of transferring effective knowledge. The proposed DPMN is
evaluated against eight typical methods on three public datasets: OLID,
SOLID, and AbuseAnalyzer. The experimental results show that our
DPMN outperforms the state-of-the-art methods.

Keywords: Abuse Language Detection · Prompt-based Learning ·
Deep Prompt Tuning · Multi-task Network

1 Introduction

1.1 Background

The abuse language has spread throughout social media and become a signifi-
cant issue. On social network sites like Facebook, Twitter, and Instagram, some
groups become targets of online bullying activities. Any expression that deni-
grates or offends a person or group of people is referred to as abuse, and examples
include sexism, harassment, cyberbullying, personal insults, racism, etc. Abuse
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language can be directed at particular people or groups. Abuse language can
have serious psychological consequences for the victim and hinder freedom of
expression. Intelligent detection algorithms can identify abuse content in a sig-
nificant volume of social media. It is essential to minimize the psychological toll
on victims to stop hate crimes. As a result, it is important to intelligently detect
and govern abuse language before it spreads on social networks. Past research
has examined various abuse language issues, including abuse and hate speech.

Abuse language detection can be seen as short text classification. As natural
language processing evolves, detecting abuse language can be roughly divided
into three periods. Early detection algorithms adopt conventional machine learn-
ing methods, and the performance of model detection results largely depends on
the features of manual design. These hand-designed features mainly include char-
acter features, word features, n-gram features, syntactic features, and linguistic
features. The second phase of the detection algorithm uses the deep learning
method. Typical deep networks are CNN [1], and RNN [2]. The advantage of
the deep learning method is that it does not need to design features manually.
It can automatically generate context features of short text through the deep
neural network. Third, the large PLMs, such as BERT [3] and GPT [4], improve
the metric of detecting abuse language. Because these models are trained on a
large-scale corpus, general knowledge of natural language can be obtained.

Due to the complicated of natural language laws, automatically identifying
abuse language is still exceedingly challenging. For example, abuse language
generally occurs in two cases, explicit and indirect linguistic phenomena. The
earlier type of abuse language is more overt, perhaps taking the form of specific
harsh phrases. However, the latter type could contain metaphors or analogies,
which might cause certain algorithmic identification mistakes. In addition, the
existing methods focus on fine-tuning the PLMs to adapt to the downstream
tasks so that the training and application of the PLMs are not under a unified
paradigm, and the knowledge contained in the PLMs cannot be better utilized.
Therefore, the primary goal of our work is to do this research: whether prompt-
based learning helps detect abuse language. To this end, we propose a new end-
to-end multi-task detection network for abuse language, which combines prompt
tuning and multi-task learning.

1.2 Motivations and Contributions

The task of abuse language detection suffers from limited accuracy. Current
detection methods [5–9] fine-tune the PLMs to adapt to downstream tasks.
NULI [5] adapts and fine-tunes the BERT-base model to detect abuse lan-
guage. AbuseAnalyzer [6] uses a two-layer feed-forward network with BERT
for detecting abuse language. Kungfupanda [7] develops a method for detecting
abuse language that blends multi-task learning with BERT-based models. With
regard to their effectiveness in detecting abuse language, UHH-LT [8] uses the
MLM method to compare the performance of different PLMs. An architecture
called CTF [9] combines various textual elements to find abuse or hostile tweets
on Twitter, which generates contextual 768-dimensional word vectors for each
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input character using a pre-trained BERT model. Therefore, these methods fail
to stimulate the general knowledge of the PLMs, leading to limited accuracy. To
address the mentioned problem, we introduce prompt-based learning and explore
how prompt-based learning can be correctly used in detecting abuse language.

Prompt tuning has been a great success for most natural language processing
tasks. By including new texts in the input, prompt-based learning is a method
for better using the knowledge from the PLMs. As shown in Fig. 1, a prompt
with a mask token is added to the tweet text, and we predict that the mask
would point to the corresponding word in the vocabulary through PLMs. Then,
based on the corresponding label of the word, it can determine whether the tweet
is abuse language.

We propose a novel Deep Prompt Multi-task Network termed DPMN. First,
it uses prompt-based learning to acquire knowledge of the PLMs. Second, to use
the supervisory signals from other related tasks, we employ multi-task learning.
Eventually, we design a task head based on the synthesis of Bi-LSTM [10], and
feed-forward network (FFN) [11] to aggregate all the shared representations of
the final output layer of the BERT model.

Experimental results indicate that deep prompt tuning is a very effective
method. Specifically, the Macro F1 scores of DPMN are 0.8384, 0.9218, and
0.8165 on the OLID, SOLID, and AbuseAnalyzer datasets. We prove that the
proposed DPMN achieves excellent results in detecting abuse language.

Fig. 1. An example of applying prompt-based learning to identify whether a tweet is
an abuse language. The mask character is a word to be predicted. It can have two-word
choices in the verbalizer, abuse and non-abuse.

Our main contributions are as follows:

– We propose a novel Deep Prompt Multi-task Network, which achieves state-
of-the-art results in detecting abuse language.

– Deep prompt tuning is first applied to abuse language detection. To improve
the metric of detecting abuse language, we compare the forms of deep prompt



252 J. Zhu et al.

tuning and light prompt tuning. Then the effects of different prompt lengths,
tuning strategies, and prompt initialization methods are studied.

– We present a task head based on Bi-LSTM and FFN, and we prove that the
effect of the task head is very significant through experiments.

2 Related Works

2.1 Abuse Language Detection

Much past work has explored the problem of detecting different types of abuse
language. On the whole, the detection of abuse language mainly includes the
following types, aggression detection [12], bullying recognition [13], hate speech
recognition [14], abuse language, and toxic comments.

– Aggression detection: The developer can access a dataset of 15,000 tagged
Facebook short texts as part of the shared challenge on aggression identifica-
tion [12] in TRAC-2018. It is applied to the model training and validation.
In the performance test portion of the model, there are two distinct datasets
used, one from Twitter and the other from Facebook. The detection task
aims to distinguish three categories: non-aggressive, covertly aggressive, and
overtly aggressive.

– Bullying recognition: There are currently several works on cyberbullying
detection methods. For example, Jun-Ming Xu [15] uses text classification,
role labeling, sentiment recognition, and LDA to recognize related topics.

– Hate speech recognition: Hate speech detection tasks have a long history of
research [16–18]. Davidson [19] proposes a dataset for detecting hate speech
that includes more than 24,000 tweets in English.

– offensive language: LSF [20] applies concepts from the theory of natural lan-
guage processing to exploit the linguistic syntactic representations of sen-
tences to detect offensive language. Zampieri [21] introduces an offensive
language recognition dataset OLID, which seeks to identify the class and
the objective of offensive content in social networks. Rosenthal [22] extend
the OLID into the multilingual edition SOLID, which promotes multilingual
research in detecting abuse language. MTL [7] uses multi-task learning and
the BERT-base model to detect offensive language.

– Toxic comments: On Kaggle, there is a free contest called the Toxic Comment
Classification Challenge. It provides the developer with short comments from
Wikipedia. The dataset is divided into six groups: insult, obscene, threat,
toxic, severe toxic, and identity hate. Through thorough trials on prompt
engineering, Generative Cls [23] investigates the generative variation of zero-
shot prompt-based toxicity detection.

Although each task involves specific types of abuse or offense, many things are in
common. For instance, insults against individuals are often called cyberbullying,
and insults against groups are called hate speech.

MTL is the baseline model of our network. Compared with the MTL model,
we first add prompt-based learning. Secondly, the task head is optimized. Our
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structure is Bi-LSTM + FFN, which is simpler and more effective than the
LSTM + FFN + Softmax of MTL.

In contrast to Generative Cls, DPMN does not need to design manual
prompts. Making a good prompt is very time-consuming and tough. In general,
artificial design is not an intelligent solution.

2.2 Prompt-Based Learning for PLMs

To improve the output embedding from the PLMs, prompt-based learning entails
adding instructions to the input text. With the development of GPT-3 [24],
prompt-based techniques have excelled in many common natural language pro-
cessing applications. Many researches [25–30] have been put forth to show how
prompt-based learning has advanced by the appropriate manual prompt. Knowl-
edgeable prompt-tuning [31] suggests calibrating the verbalizer to accommodate
outside knowledge. Automatic generating for discrete prompt has been thor-
oughly investigated as a way to prevent time-consuming prompt design. LM-
BFF [32] first explores the creation of label words and templates automatically.
Additionally, Autoprompt [33] suggests using gradient-guided search to create
the vocabulary template and identify terms automatically. Continuous prompts
have recently been proposed [34–37], which emphasize the use of learnable con-
tinuous representations rather than label words as prompt templates. In a word,
prompt-based learning is applied in natural language processing to improve the
understanding and generation of PLMs.

In view of the rapid rise and development of the above prompt tuning, we
first design two continuous prompt forms, namely, deep prompt tuning and light
prompt tuning. Then we apply the two prompt forms to abuse language detec-
tion. Eventually, we propose a network termed DPMN, which combines prompt-
based learning and multi-task learning.

3 The Proposed Methodology

Our DPMN architecture is shown in Fig. 2. The three sub-tasks share PLMs in
the section at the bottom. Each sub-task has its unique module in the upper
parts. A task head based on the Bi-LSTM and FFN neural network topology is
present in each module. DPMN sets the number, form, and initialization strat-
egy of continuous prompt tokens. Then it generates the learnable embedding
through the prompt encoder module. The tokenizer encoder module encodes the
short text to generate input embedding. Splicing it with the input embedding
generated by the PLMs. DPMN inputs them into the PLMs. The task head
obtains the shared representations produced by the PLMs and generates a pre-
dicted category for short text. We calculate the multi-task loss function and
train the entire architecture.

3.1 Continuous Prompt Tuning Parameters

Prompts can be divided into Discrete Prompts and Continuous Prompts.
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Fig. 2. Our DPMN Architecture. According to the number of continuous prompt
tokens, initialization strategy of continuous prompt, prompt form, and tuning strat-
egy, the prompt encoder module generates the learnable embedding. The tokenizer
encoder module encodes the short text to generate input embedding. We produce a
representation matrix by combining the learnable embedding and input embedding.
The representation matrix is input into PLMs. It outputs the shared embedding. The
shared embedding is input to the task heads. The task heads output the probability
value of the prediction classification. The total loss function is calculated to train the
entire DPMN architecture.
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– Discrete Prompts. Discrete prompts are essentially a natural language.
Based on fixed prompt word templates, that is, adding fixed prompt word
templates and masking words after inputting statements.

– Continuous Prompts. Continuous prompts are no longer natural language.
It replaces the fixed prompt word template with n learnable vectors.

Continuous prompt tuning parameters are made up of the number, form,
initialization method, and tuning strategy of prompt tokens.

The number of prompt tokens plays a critical role in DPMN. We verify that
abuse language detection usually achieves different performances with different
prompt lengths. Specifically, we choose the number of prompt tokens according
to the metric of detecting abuse language.

Fig. 3. We design two continuous prompt forms, namely deep prompt tuning and
light prompt tuning. The deep prompt tuning is to add trainable continuous prompt
embedding to each layer of the PLMs. The light prompt tuning is to add trainable
continuous prompt embedding to the first layer of the PLMs.

Considering the instability of discrete prompt performance, we adopt the
form of continuous prompt tuning. Because the template of a discrete prompt
requires a lot of manual design work, the predicted performance of the prompt-
based model is relatively volatile. As shown in Fig. 3, we use two continuous
prompt forms: deep prompt tuning and light prompt tuning. We prove the effec-
tiveness of these two prompt forms through experiments. The deep prompt tun-
ing is to add trainable continuous prompt embedding to each layer of the PLMs.
The light prompt tuning is to add trainable continuous prompt embedding to
the first layer of the PLMs. For two continuous prompt forms, we study the most
suitable prompt form.

In the architecture of our network, prompt initiation is a significant research
challenge. It has two kinds of parameter initialization methods, which are random
parameter initialization and BERT token initialization.

Tuning strategy is also an important research issue in our network design. It
contains the two strategies of the Fixed LM Prompt Tuning strategy and LM +
Prompt Tuning strategy.
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3.2 Prompt Encoder

According to the number, form, initialization method, and tuning strategy of the
prompt, the prompt encoder module generates a continuous prompt. Specifically,
first define n trainable embedding vectors, and then initialize them. Secondly,
the input text is generated into a word ID sequence through a word splitter, and
then an embedding sequence is generated based on the BERT model vocabulary.
Finally, we concatenate these two vectors as inputs to the BERT model.

The PLMs are used as the backbone for our DPMN. The continuous prompt
is applied to the encoder of the PLMs. To prepend continuous prompts for the
encoder, DPMN initializes a trainable prefix matrix pe of dimension pn · d for
each layer of the PLMs, where pn is the prompt length, and d is the hidden size
of the PLMs. Because the prompt is located in the deep layers of the PLMs, it
has the total capacity to guide the PLMs in the right direction and output a
semantic shared representation for abuse language detection.

The continuous prompt stimulates the general knowledge of the PLMs. It
performs better than fine-tuning in a range of natural language processing appli-
cations. The learnable embeddings are trained for abuse language detection.

3.3 Task Head

The central for prompt tuning is that the PLMs use a head to predict verbalizers.
Because this requires manual design and even searches for all possible words,
which is very labor-intensive. Therefore, the DPMN directly replaces the design
of the verbalizer module with the classified label. The task head of the DPMN
adopts the neural network architecture of Bi-LSTM + FFN. Compared to the
linear classification head, its predicted performance is better. LSTM comprises
an input gate, forget gate, output gate, and cell state. Bi-LSTM contained two
sub-networks to model a text sequence in both directions. The outputs of short
text are integrated in the following way:

HF,B = [F−Ht, B−Ht] , (1)

where F−Ht is output value of the LSTM at the last time t in forward direction.
B−Ht represents the output value of the LSTM at the last time t in the backward
direction. Here HF,B is the output embedding of the Bi-LSTM result.

FFN is made up of two linear layers. Its activation function is ReLU.

y = Wf2ReLU(Wf1HF,B + bf1) + bf2, (2)

we let ΘFFN = {Wf1,Wf2, bf1, bf2}, where ΘFFN is the learnable FFN param-
eter. The task head takes the feed-forward network as the classifier. Multi-task
classification is achieved by setting different output numbers of PLMs.

3.4 Multi-task Network

The proposed DPMN is a multi-task network, which is divided into the main
task and two auxiliary tasks. Our main task is to detect whether the text is
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abuse language. The auxiliary tasks are to improve the feature representation
ability of the output layer of the PLMs, thereby improving the detection ability
of the main task and playing the role of transfer learning.

We train our DPMN on train datasets and mainly verify the model perfor-
mance metrics on sub-task A. The goal of multi-task learning is to deliver useful
information in tasks B and C to boost task A.

3.5 DPMN Loss

Losssub−task = −
∑

i

yi log (y′
i) (3)

y′
i is the probability predicted by the proposed DPMN. yi is the category

information of the dataset. Losssub−task represents the loss of the sub-task,
using the cross-entropy loss function.

cmain + cauxi1 + cauxi2 = 1 (4)

cmain is the loss coefficient for the main task. cauxi1 is the loss coefficient for the
auxiliary task. We set the sum of the coefficients of all current sub-task losses
to 1.

Losstotal = cmainLossmain + cauxi1Lossauxi1

+cauxi2Lossauxi2
(5)

Losstotal is the total loss of the DPMN. It is equal to the weighted sum of
the losses of each sub-task.

4 Experiments

Table 1. Four short tweets from the OLID, their corresponding labels are hierarchical.
In task A, the aim is to discriminate between offensive and non-offensive posts. In task
B, the goal is to predict the type of offense: Targeted Insult (TIN) and Untargeted
(UNT). Task C focuses on the target of offenses: Individual (IND), Group (GRP), and
Other (OTH).

Short Text Task A Task B Task C

@USER With his offers, he is extremely kind. NOT — —

Liberated! THE WORST ACTIVITY OF MY FUCKING LIFE OFF UNT —

@USER This big cocksucker is fucked OFF TIN IND

@USER Figures! Why are these people such idiots? Praise God for @USER OFF TIN GRP

We assess the proposed DPMN for detecting abuse language in experiments.
Three public datasets are adopted: the OLID [38], SOLID [22], and AbuseAna-
lyzer dataset [39]. These datasets have been widely used for evaluating detection
metrics of abuse language. Macro F1 score is used as the evaluation metric.
DPMN achieves excellent performance in abuse language detection (Table 1).
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Table 2. Detecting abuse language results on three public datasets, the evaluation
metric is the Macro F1 score.

Dataset Model Main Task Tuning Strategy Prompt Length Prompt Initialization

OLID Logistic Regression 0.7501 * * *

Bagging 0.7558 * * *

MTL 0.8244 LM Tuning * *

NULI 0.8290 LM Tuning * *

DPMN(light prompt) 0.8279 LM + Prompt Tuning 1 Random

DPMN(deep prompt) 0.8384 LM + Prompt Tuning 1 BERT Token

SOLID MTL 0.9139 LM Tuning * *

MTL(Ensemble) 0.9151 LM Tuning * *

UHH-LT 0.9204 LM Tuning * *

DPMN(light prompt) 0.9208 LM + Prompt Tuning 1 Random

DPMN(deep prompt) 0.9218 LM + Prompt Tuning 2 BERT Token

AbuseAnalyzer SVM 0.7277 * * *

XGBoost 0.7157 * * *

Logistic Regression 0.7235 * * *

BERT + Linear Head 0.7985 LM Tuning * *

DPMN(light prompt) 0.8107 LM + Prompt Tuning 1 BERT Token

DPMN(deep prompt) 0.8165 LM + Prompt Tuning 1 Random

4.1 Baseline

To evaluate the detection metric, the proposed network DPMN is compared
with eight comparable supervised methods, containing four shallow supervised
methods (e.g., Logistic Regression [40], XGBoost [41], Bagging [42], SVM [43])
and four deep supervised methods (e.g., BERT + Linear Head [39], MTL [7],
NULI [5], UHH-LT [8]).

4.2 Analysis of Experimental Results

The results in Table 2 show detection metrics. The proposed DPMN is overall
better than all the compared methods in three public datasets. For example,
compared with the current state-of-the-art method, the Macro F1 score of our
DPMN has been increased by 0.94%, 0.14%, and 1.80% on the OLID, SOLID,
and AbuseAnalyzer, respectively.

The main reasons for these superior results come from three aspects:

– Deep prompt tuning can better use the general knowledge of the PLMs.
– We propose an effective task head based on Bi-LSTM and FFN, and it

improves the detection of abuse language.
– DPMN utilizes multi-task learning, which can obtain more useful information

from the other tasks.

In addition, it can be seen that the detection effect of the deep models is better
than that of the shallow models.



DPMN 259

Fig. 4. Through ablation experiments on the OLID dataset, the Macro F1 score contri-
butions of different neural network modules of the DPMN algorithm are determined. A
histogram of the structural lifting value is drawn in the network, which contains the Bi-
LSTM + FFN module, the multi-task learning (MTL) module, and the prompt-based
learning module.

Table 3. The Ablation Experiments of DPMN Components.

Model Architecture Macro F1

BERT Base BERT + Linear Head 0.8037

BERT LSTM BERT + Bi-LSTM FFN Head 0.8202

DPMN-P BERT + Bi-LSTM FFN Head + Multi-task Learning 0.8244

DPMN-M BERT + Bi-LSTM FFN Head + Prompt 0.8342

DPMN-B BERT + Multi-task Learning + Prompt 0.8276

DPMN BERT + Bi-LSTM FFN Head + Multi-task Learning + Prompt 0.8384

4.2.1 Ablation Experiment

The results in Table 3 show the ablation experiment. We design the ablation
experiment for the DPMN components. BERT Base model adopts the BERT
+ Linear Head structure, where the Linear Head is a classifier of multi-layer
perceptron structure. The Macro F1 score of the BERT Base model to detect
abuse language is 0.8037. The BERT LSTM model utilizes the BERT + Bi-
LSTM FFN Head structure, where the Bi-LSTM FFN Head is a classifier of the
Bi-LSTM + FFN structure. The Macro F1 score of the BERT LSTM model to
detect abuse language is 0.8202. We experimentally prove that the classification
head based on Bi-LSTM + FFN is better than the classification head based on
Linear Head.

DPMN-P adds a multi-task learning architecture based on the BERT LSTM
model. It removes the prompt tuning module compared to DPMN. The Macro
F1 score of the DPMN-P model to detect abuse language is 0.8244. DPMN
optimizes the DPMN-P model and designs the architecture of prompt-based
learning. The Macro F1 score of the DPMN model to detect abuse language is
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0.8384. Comparing the detection performance of DPMN-P and DPMN models,
we can conclude that deep continuous prompt learning is effective.

In contrast to DPMN, DPMN-M gets rid of the multi-task learning module.
Its Macro F1 score is 0.8342.

Compared to DPMN, DPMN-B does away with the Bi-LSTM + FFN Head.
Its metric value is 0.8276.

To express the validity of the ablation experiment, we draw a histogram of the
structural lifting value in the network. From the above Fig. 4, in the evaluation
value of Macro F1, the contribution of the Bi-LSTM + FFN module is 0.0108,
the contribution of the multi-task learning (MTL) module is 0.0042, and the
contribution of the prompt-based learning module is 0.0140. Therefore, it can
be seen that the proposed DPMN is effective.

4.2.2 The Convergence of DPMN

From Fig. 5, the training loss curve shows a downward trend with the increase
in the number of epochs. As the number of epochs increases, the test loss curve
first decreases and then increases. With the deepening of DPMN training, the
test loss shows an upward trend, indicating that the detection performance of
DPMN is declining. Through the changes in the two curves, it can be concluded
that the DPMN has the best performance at epoch = 5.

Fig. 5. The convergence of the DPMN is verified on the OLID dataset.

4.3 Implementation Details

We chose a learning rate of 3e–6 and a batch size of 32 for our best DPMN. The
loss coefficients for sub-tasks A, B, and C are 0.4, 0.3, and 0.3, respectively. We
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use an early stop method to stop tuning the model if the validation Macro F1
does not rise in four consecutive epochs. We train the DPMN with a maximum
of 30 epochs. The DPMN is implemented in PyTorch, and a single GPU-V100
is used for each experiment.

5 Conclusion and Future Work

We propose an innovative Deep Prompt Multi-task Network termed DPMN. It
introduces deep prompt tuning in abuse language detection for the first time.
It can better motivate the knowledge of PLMs. We design a task head based
on Bi-LSTM and FFN, which improves the performance in detecting abuse lan-
guage. We attempt two prompt forms and verify the effects of different prompt
lengths, tuning strategies, and prompt initialization methods. The proposed
DPMN achieves state-of-the-art results in three abuse datasets. The follow-up
work is to optimize and adaptively adjust the sub-task loss weight in multi-tasks
and reasonably design the algorithm of the whole model loss function.
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Abstract. This paper considers the problem of Hierarchical Multilabel
Classification (HMC), where (i) several labels can be present for each
example, and (ii) labels are related via a domain-specific hierarchy tree.
Guided by the intuition that all mistakes are not equal, we present Com-
prehensive Hierarchy Aware Multilabel Predictions (CHAMP), a frame-
work that penalizes a misprediction depending on its severity as per the
hierarchy tree. While such an approach has been applied to single-label
classification, to the best of our knowledge, there is no work extending it
to the general multilabel setting. A key challenge here is to identify a met-
ric that quantifies the discrepancy between the sets of predicted labels
and ground truth labels as per the given hierarchy tree. We address this
challenge by proposing an assignment strategy for each predicted label to
the set of ground truth labels, which naturally leads to CHAMP. Exten-
sive experiments on six public HMC datasets across modalities (image,
audio, and text) show that CHAMP significantly reduces the severity of
mistakes, as measured by hierarchical metrics, by 18% on average across
datasets. This improvement is achieved without a drop in classification
performance over the standard (hierarchy-free) multilabel classification.
We provide insights into the gains in hierarchical metrics by attributing
them to hierarchy and co-occurrence information in the data.

1 Introduction

Many real-world prediction tasks have relationships among labels that can be
encoded by a hierarchical structure over labels. Hierarchical relationships cover
a wide spectrum of possible ways to express complex relations (is-a, part-of)
among labels, which can provide domain-specific semantics. Movies organized by
genres, blogs structured by subjects, species within a biological taxonomy, and
e-commerce products arranged into categories and subcategories all exemplify
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Fig. 1. Comparing CHAMP vs. Binary Cross Entropy (BCE) across highly co-
occurring classes demonstrates the overreliance of baseline multilabel classification
models on co-occurrence and background information. In Example 1, the BCE model
uses information from the background to predict a person and horse. In Examples 2 and
3, the baseline model uses information leaked about the person to predict surfboard
and snowboard respectively. The activation maps are computed using Grad-CAM.

types of data that lend themselves well to a hierarchical organization. Incorporat-
ing such hierarchical information in building classification models provides two
distinct advantages. First, such an approach accommodates a range of complexi-
ties present in real-world data and incentivizes the model to learn concepts more
comprehensively, capturing both overarching themes and finer details. Secondly,
the hierarchical organization of labels facilitates graceful performance degra-
dation by ensuring higher accuracy as you move up the categorization levels,
especially in scenarios where the inputs are difficult to classify. Overall, the uti-
lization of hierarchical classification not only strengthens the system’s robustness
but also improves utility by providing means to gracefully respond to inputs of
varying difficulty.

Real-world data frequently exhibit multilabel nature as well. Movies, for
instance, can be assigned multiple genres, like “romantic comedy.” Similarly,
blog posts can be tagged with several topics, and plant species can be classified
as both “flowering” and “medicinal” simultaneously. A significant portion of the
existing research on multilabel classification relies on label co-occurrence infor-
mation, which is often fraught with spurious correlations. This reliance on such
correlations can lead to predictions that are not based on meaningful semantics,
potentially undermining the robustness of trained models (see Fig. 1). The label
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horse, for example, may be associated with trees or a ranch in the background.
A test image featuring a horse carriage on urban roads could be misidentified
as a convertible, given that horses are seldom seen alongside roads, unlike other
labels such as a person or wheels in the image. Such mispredictions, like labeling
an animal as an automobile, could carry repercussions, say for automated driv-
ing assistance systems. Here, incorporating hierarchical information may help
alleviate these problems by requiring labels to be coupled based on semantics
rather than purely based co-occurrence information.

This intuition has spurred a significant amount of work on incorporating hier-
archical information in single-label classification settings. While there have been
several approaches centered on label embeddings and hierarchical model archi-
tectures Park, Kim, and Paik (2021), one of the most successful approaches has
been via hierarchy aware loss functions (Bertinetto et al. (2019). In particular,
Bertinetto et al. demonstrate that optimizing a hierarchy-aware loss function,
in addition to moderate improvements in standard accuracy metrics Brust and
Denzler (2018), can provide drastic improvements in mistake severity metrics,
where the severity of a mistake depends on the distance in the hierarchy between
the predicted and ground truth label.

Motivated by the prevalence of multilabel classification and the high prac-
tical relevance of making better mistakes, in this work, we extend the idea of
hierarchy-aware loss functions from single-label to multilabel settings. In the sin-
gle label setting, the gravity of a mistake depends on the distance dist (i, j),
according to the hierarchy tree, between the predicted label i and the ground
truth label j. However, in the multilabel setting, it depends on the distance
between the predicted label set S ⊆ [L] and target label set T ⊆ [L], where
L is the number of labels. The question is how do we measure the hierarchical
distance between two sets of labels?

Our key intuition is that given any predicted label � ∈ [L], we can think
of a probability distribution p�(·) over the ground truth labels T ⊆ [L] such
that p�(j) denotes the probability that label � is being mistakenly predicted for
ground truth label j ∈ T – we denote this event by j → �. Importantly, p�(j)
depends on the hierarchical distance between � and j, i.e., dist (�, j), with larger
distance leading to smaller p�(j), and vice versa. Furthermore, the cost of a
misprediction j → � is high if the dist (�, j) is high.

More concretely, we consider the simplest technique for mistake assignment
probabilities p�(j), wherein p�(j) adopts the form of a Dirac delta distribution
supported on argminj∈T d(�, j), where T is the set of ground truth labels for
the given example. Given a predicted label � and its corresponding mistake
assignment probability vector p�(·), we define the severity of this misprediction
to be

∑
j∈T p(�, j)·d(�, j). With this notion of severity, we introduce an algorithm

named Comprehensive Hierarchy Aware Multilabel Prediction (CHAMP), that
optimizes the standard binary cross entropy loss for each label weighed according
to the severity of the misprediction.

To the best of our knowledge, ours is the first work for multilabel classification
that proposes a notion of the severity of a misprediction. The generality of our
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framework provides wider applicability across a range of Hierarchical Multilabel
Classification (HMC) domains and datasets.

The key contributions of this work are as follows:

– We address the primary challenge of attributing predictions to the correct
ground-truth labels when adapting single-label hierarchy-aware loss functions
to the multilabel setting. We propose a simple but effective metric to quantify
the severity of a mistake in HMC (Hierarchical Multilabel Classification),
naturally leading to CHAMP.

– Our method augments existing multilabel classification algorithms to incor-
porate hierarchy to make better mistakes.

– Our experiments on six HMC datasets spanning several modalities like text,
image, and audio demonstrate that CHAMP consistently makes better mis-
takes than standard multilabel classification without much loss in overall
classification performance. We also identify reasons behind these performance
gains by analyzing the contribution of hierarchy and co-occurrence informa-
tion in data.

The rest of this paper is organized as follows. In Sect. 2, we summarize related
work. In Sect. 3, we introduce the notation and terminology. In Sect. 4, we present
our approach. Experimental results are presented in Sect. 5, followed by discus-
sion in Sect. 6.

2 Related Work

Multilabel Classification: A significant body of literature on multilabel clas-
sification focuses on exploiting label correlations via graph neural networks Chen
et al. (2019); Durand, Mehrasa, and Mori (2019); Chen et al. (2019), and label
embeddings Chen et al. (2019); Wang et al. (2019). They also explore model-
ing image parts and attentional regions You et al. (2019); Wang et al. (2017);
Ye et al. (2020) as well as using recurrent neural networks Nam et al. (2017);
Wang et al. (2016), embedding space constraints Qu et al. (2021), region sam-
pling Zhu et al. (2017) and cross-attention Ridnik et al. (2021). There has been
recent interest in multilabel text classification Liu et al. (2017); Pal, Selvakumar,
and Sankarasubbu (2020); Cerri, Barros, and de Carvalho (2011); Kumar et al.
(2018). However, these approaches generally do not consider a hierarchy over
labels.

Hierarchical Multilabel Classification: There has been a extensive amount
of work directed towards HMC in various domains such as protein function pre-
diction, online advertising systems Agrawal et al. (2013), and text classification
Chatterjee et al. (2021); Mao et al. (2019); Chen et al. (2019); Daisey and Brown
(2020). However, the primary focus of these studies has been on achieving better
performance on standard metrics like AUPRC, but not on making better mis-
takes – which constitutes the primary focus of our work. Approaches to HMC
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can be broadly classified as local or global. Local methods Cesa-Bianchi, Gentile,
and Zaniboni (2006) train classifiers at each level of the hierarchy. Local methods
can be further be categorized as local classifier per level (LCL) Cerri, Barros,
and de Carvalho (2011), local classifier per node (LCN) Valentini (2009), and
local classifier per parent node (LCP). It has also been argued Cerri, Barros, and
de Carvalho (2011) that it is impractical to train separate classifiers at each level
due to the several assumptions involved in semantics across siblings or nodes at
the same level. On the other hand, global approaches Silla Jr. and Freitas (2009)
employ a single classifier that factors in the complete hierarchy, mitigating the
issue of error propagation that local methods suffer from. Local methods are bet-
ter at capturing label correlations, whereas global methods are computationally
cheaper. Peng et al. recently tried to use a hybrid loss function associated with
specifically designed neural networks. HMCN-F Wehrmann, Cerri, and Barros
(2018) uses a cascade of neural networks, each corresponding to a hierarchy level.
Such architectures generally require all the paths in the label hierarchy to have
the same length which limits their use. Giunchiglia and Lukasiewicz approach
HMC by using parent and child probabilities constraints.

Our contribution, CHAMP, focuses on making better mistakes as well rather
than solely imposing logical constraints on predictions. Moreover, because our
framework of assigning mispredicted labels to the ground-truth labels is domain
independent, CHAMP can be used with global, local, hybrid and many other
HMC algorithms Cerri, Barros, and de Carvalho (2011); Silla Jr. and Freitas
(2009); Wehrmann, Cerri, and Barros (2018). For example, CHAMP does not
require explicit co-occurrence information among labels, does not restrict the
semantics associated with nodes at the same level in the hierarchy and ground-
truth nodes can be both leaf and non-leaf nodes.

Importance of Making Better Mistakes: Making better mistakes as per
the hierarchy is important in several applications such as food recognition Mao
et al. (2020); Wu et al. (2016), protein function prediction Cesa-Bianchi and
Valentini (2009); Bi and Kwok (2011); Barros et al. (2013); Feng, Fu, and Zheng
(2018), image annotation Dimitrovski et al. (2011) and text classification Mao
et al. (2019); Rousu et al. (2006); Shen et al. (2021).

Making Better Mistakes in Single-Label Hierarchical Classification:
Recently, there has been progress in incorporating hierarchy into single-label
classification with the goal of making better mistakes. Some of the approaches
include imposing logical constraints Giunchiglia and Lukasiewicz (2020), using
hyperbolic embeddings Dhall et al. (2020), prototype learning Garnot and Lan-
drieu (2021), label smearing and soft labels, multiple learning heads for different
levels of the hierarchy Park, Kim, and Paik (2021), hierarchical post-processing
Karthik et al. (2021) and others Mo et al. (2019); Deng et al. (2011). In particu-
lar, hierarchy-aware loss functions Bertinetto et al. (2019) have shown significant
performance improvements. We extend this approach to the multilabel scenario.
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3 Preliminaries and Problem Setting

We are given a set of labeled training examples {(xi, yi) : i = 1, · · · , n}, where
xi ∈ R

d is the input example and yi ∈ {0, 1}L is the associated label vector, each
(xi, yi) drawn from an underlying distribution D on R

d×{0, 1}L. Here L denotes
the total number of labels/classes. We use the term label/class interchangeably.
In addition to the training dataset, we are given a hierarchy tree T with L
nodes where each node corresponds to one of the classes. We denote the distance
between two nodes j and j′ on the hierarchy tree T using dist (j, j′). Our goal is to
train a prediction model M that takes x as input and outputs an L-dimensional
real-valued score vector ȳ ∈ [0, 1]L. This real-valued score vector ȳ is converted
to a Boolean prediction vector ŷ ∈ {0, 1}L using a scalar threshold τ . So, given
a scalar threshold τ ∈ [0, 1], the final prediction for class j ∈ [L] is ŷj = 1 if
ȳj ≥ τ and ŷj = 0 otherwise.

3.1 Metrics

We now present the metrics we use to evaluate our method and existing methods.
Given a model M and threshold τ , the precision and recall of class j is given by:

Precision(j) = E(x,y)∼D [yj = 1 |ŷj = 1] and
Recall(j) = E(x,y)∼D [ŷj = 1 |yj = 1] .

The overall precision and recall are then given by taking an average over all the
L labels.

As our evaluation metric, we use Area Under the Precision-Recall
Curve (AUPRC), which, as the name suggests, is given by the area under
the curve traced by precision vs. recall, as the threshold τ changes. AUPRC is
a standard, popular metric to measure the quality of predictions in multilabel
settings, and does not depend on the hierarchy tree.

4 Method

In this section, we will present the key insights of this work, leading to the main
algorithm CHAMP.

4.1 Assignment of Predicted to Ground Truth Labels

Given a predicted label set S ⊆ [L] and a ground truth label set T ⊆ [L], we wish
to quantify the severity of mispredictions in S. We do so by first defining the
severity of misprediction for every label � ∈ S. The key intuition is that the sever-
ity of misprediction � ∈ S depends on which element j ∈ T , that � was confused
with – we denote this by j ← �. To formalize this, we posit that every predicted
label � has an associated probability distribution p�(·) over the target label set
T , where p�(j) is the probability that � was confused with j. Furthermore, p�(·)
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depends on the hierarchy tree. We consider an assignment model for p�(·): (i)
where p�(j) = 0 for j /∈ argminj′dist (�, j′) and

∑
j∈argminj′dist(�,j′) p�(j) = 1.

Furthermore, the severity of misprediction j ← � is directly proportional to
dist (�, j).

4.2 The CHAMP Loss Functions

Fig. 2. An example illustrating the severity metrics (3) used in CHAMP. The ground
truth labels are T = {N2, N6, N9}. For each ground truth label, we represent all other
labels that are closest to it, compared to any other ground truth label using the same
color. The set of all such labels is referred to as the sphere of influence of the corre-
sponding ground truth label. For the specific label j = N8, we further compute all the
relevant quantities appearing in (3). The distances of N8 to N2, N6 and N9 are 4, 5 and
2 respectively. We set the scaling parameter β = 1 for illustration.

The most classical approach to multilabel classification is to solve L binary
classification problems, one for each label using the binary cross entropy (BCE)
loss given by (Fig. 2):

�(x,y)(M) = −
L∑

j=1

{yj log ŷj + (1 − yj) log (1 − ŷj)} , (1)

where ŷ is the score output by model M on input x. We now wish to introduce
weight different terms according to the severity of misprediction, as discussed in
the above section. All false negatives are equally severe since they are ground
truth labels while the severity of a false positive depends on which ground truth
label it was confused with, and the distance between this ground truth label and
the predicted label. So, we consider the following modified BCE loss function:

�̃(x,y)(M)

= −
L∑

j=1

{yj log ŷj + (1 + sT (j)) (1 − yj) log (1 − ŷj)} , (2)
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where T denotes the ground truth labels i.e., T = {� : y� = 1} and sT (j)
denotes the severity of a false positive prediction on label j, defined as: sT (j) =
E�∼pj(·)[dist (�, j)]. Thus, we have:

sT (j) Δ= β · min�∈T dist (�, j)
distmax

and (3)

Here, distmax
Δ= maxj,j′∈[L] dist (j, j′) denotes the maximum distance between

any two labels on the hierarchy tree, and β is a scaling parameter (a hyperpa-
rameter).

4.3 Hierarchical Metrics

Based on the above discussion, we now extend a popular single-label hierarchical
metric to the multilabel setting, which we will use for evaluating CHAMP.

Depth of Lowest Common Ancestor (LCA): Given a predicted label
j, and the set of ground truth labels T , we first compute � such that � ∈
argminj′∈T dist (j′, j), and compute the depth, computed from the root, of the
least common ancestor for j and � on the hierarchy tree T Deng et al. (2010;
2009). As remarked in Deng et al. (2009), this should be thought of in logarithmic
terms, as the number of confounded classes is exponential in the height.

5 Results

In this section, we present our main results evaluating CHAMP on six datasets
spanning across vision, audio, and text. Our results demonstrate that:

– CHAMP provides substantial improvements in the hierarchical metrics over
the standard baseline models and multilabel classification methods without
loss in overall classification performance.

– CHAMP’s loss function can be used along with other multi-label loss functions
to augment the model to make less severe mistakes.

– CHAMP gain in hierarchy aware metric performance is reasoned by analyzing
localized improvements on labels across multiple levels in the hierarchy tree.

– Improvement in classification performance can be distinctly attributed to
hierarchy and co-occurrence information in the dataset.

5.1 Datasets and Baseline

We evaluate our approach on six public HMC datasets across image, text, and
audio modalities. We perform:

– multilabel image classification on OpenImages V4 Kuznetsova et al. (2020),
Food201 Myers et al. (2015), and MS-COCO 2017 Lin et al. (2014) datasets;
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Table 1. Detailed information about the six public datasets used in our experiments.
The Train and Test columns denote the number of train and test samples in the
datasets, respectively. μs denotes the mean number of samples per label. μl and maxl

denote the mean number of labels per sample and the maximum number of labels per
sample, respectively. BF denotes the branching factor, which is the average number
of children per node. D, Leaf, and NL denote the depth, and the number of leaf and
non-leaf nodes in the tree, respectively.

Type Dataset Train Test μs μl maxl BF D Leaf NL

Image Food201 35242 15132 334 1.91 9 6.4 4 201 35

COCO 1,18,287 40,670 4287 2.89 18 6.57 3 80 14

OpenImages V4 17,43,042 1,25,436 7384 2.53 19 6.81 5 526 73

Text RCV1 23,149 7,81,265 729 3.24 17 4.71 4 82 21

NYT 12,79,092 5,47,863 69,314 2.52 14 4.17 4 91 27

Audio FSDK Audio 4970 4480 72 1.4 6 2.53 5 80 49

– multilabel text classification on Reuters Corpus Volume 1 (RCV1) Lewis et
al. (2004) and New York Times articles (NYT)Sandhaus (2008); and

– multilabel audio classification on FSDKaggle2019 dataset. Fonseca et al.
(2019)

RCV1 is a newswire dataset of the articles collected between 1996–1997 from
Reuters. New York Times contains articles from New York Times published
between January 1st, 1987, and June 19th, 2007. The hierarchies for OpenIm-
ages, COCO, RCV1, NYT, and FSDK are provided by their respective authors
and the hierarchy for Food201 was adapted based on the hierarchy given in Wu
et al. (2016). Detailed labels and hierarchical information of each dataset can be
found in Table 1. These six datasets cover diverse settings of data distributions
and types of hierarchy.

Baseline: Table 2 demonstrates how CHAMP can augment state-of-the-art mul-
tilabel loss functions. Since our main contribution is to extend hierarchy aware
loss functions from a single label to multilabel settings, we compare CHAMP
primarily with vanilla binary cross entropy loss i.e., (1). We also demonstrate the
importance of the mistake severity assignment step in CHAMP by comparing
it with a naive extension of the single label hierarchical approach to HMC as
follows. For each sample xi with label set Ti, we construct a new dataset where
sample xi is repeated in the dataset |Ti| times each with a different label in
Ti. Thus, we convert the multilabel problem into a single-label problem where
sample-label pairs include (xi, j) where j ∈ Ti. We denote this experiment as
M2S. Finally, the generality of CHAMP framework enables us to easily augment
state-of-the-art multi-label loss functions with hierarchy information, thereby
encouraging better mistakes. In particular, we consider the asymmetric loss func-
tion introduced in Baruch et al. (2020) and augment it with CHAMP to obtain
CHAMP-Asymmetric (see Supplementary material for the precise formulation).
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Architecture: Our model consists of L different classifiers on top of a standard
feature extractor backbone, where L denotes the number of labels.

5.2 Training Configuration

Image Classification: We conduct experiments using two different backbones,
Efficientnetv2S Tan and Le (2021) and Mobilenetv2 Sandler et al. (2018) namely,
that are initialized with ImageNet pre-trained weights. They are followed by a
dropout layer, linear layer, and sigmoid activation in order. We use an image
size of 224 × 224 and a standard set of data augmentations methods. Note that
state-of-the-art approaches Ben-Baruch et al. (2020) use larger image sizes for
training, autoaugment Cubuk et al. (2018) and cutout DeVries and Taylor (2017)
for augmentations, one-cycle learning rate schedulers Smith and Topin (2017)
amongst many others. We do not intend to compete with the state-of-the-art
approaches to multilabel classification and limit ourselves to demonstrating the
value of adding hierarchical knowledge.

Text Classification: We conduct experiments using small bert Turc et al.
(2019) (uncased, L=2, H=768, A=12) and Sun et al. (2020) embeddings as
base extractor with weights initialized from pre-trained models on Wikipedia
Vrandečić and Krötzsch (2014) and Books corpus datasets Zhu et al. (2015). All
text sentences are first converted to lowercase.

Audio Classification: We convert the audio wav files into Mel spectrogram
with a sampling rate of 44100, number of Mel bands as 347, length of the FFT
window as 2560, lowest frequency as 20, and highest frequency as 44100//2.
We then treat it as an image classification problem with the setup described
previously.

All the models are trained for 25 epochs using Adam Kingma and Ba (2014)
optimizer with an initial learning rate of 1e-4, weight decay of 4e-5, and a batch
size of 32. We reduce the learning rate on plateau by a factor of 0.2 with patience
of 5 epochs. We tune the hyperparameter β between 0 and 1 using validation
performance. Data splits are provided in the supplementary material. We run
all experiments three times and report the average performance.

5.3 Comparison to Baselines

Table 2 compares the performance of CHAMP with the standard BCE, M2S,
and Asymmetric loss. CHAMP-Assymetric performs 18% (p<0.05) better on
hierarchy (better mistakes) metric LCA compared to Asymmetric loss (Multi-
label) averaged over 6 datasets. CHAMP has matching AUPRC performance
compared to Asymmetric loss (mean difference < 1%, p<0.05). To summa-
rize, we see substantial improvements in hierarchical metrics (LCA) on all the
datasets in addition to considerable improvements in AUPRC as well. In fact,
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Table 2. This table compares standard binary cross-entropy (BCE) loss for multilabel
classification and CHAMP. The average value over three runs is reported in the table.
Most of the experiments have a standard deviation value of <0.007. For each met-
ric ↑ indicates that higher is better. We note that CHAMP significantly outperforms
BCE and Asymm on hierarchical metrics while maintaining AUPRC demonstrating
the utility of hierarchy information. Due to the exponential increase in the size of
the OpenImage and NYT datasets after repeating samples, it became unfeasible to
compute the M2S experiments for them.

Dataset Experiment AUPRC ↑ LCA ↑
OpenImages v4 BCE 0.342 ± 0.009 1.556 ± 0.012

M2S – –

CHAMP 0.564 ± 0.002 1.852 ± 0.006

Asymm 0.435 ± 0.005 0.777 ± 0.006

CHAMP-Asymm 0.407 ± 0.003 0.887 ± 0.006

Food201 BCE 0.577 ± 0.001 1.415 ± 0.013

M2S 0.573 ± 0.004 1.431 ± 0.008

CHAMP 0.585 ± 0.001 1.486 ± 0.008

Asymm 0.590 ± 0.001 0.824 ± 0.018

CHAMP-Asymm 0.584 ± 0.001 1.114 ± 0.009

COCO BCE 0.780 ± 0.001 1.994 ± 0.006

M2S 0.744 ± 0.002 1.649 ± 0.032

CHAMP 0.779 ± 0.003 2.004 ± 0.004

Assym 0.751 ± 0.010 1.480 ± 0.001

CHAMP-Asymm 0.768 ± 0.002 1.924 ± 0.006

NYT BCE 0.515 ± 0.002 2.636 ± 0.001

M2S – –

CHAMP 0.591 ± 0.009 2.662 ± 0.002

Asymm 0.655 ± 0.001 2.324 ± 0.013

CHAMP-Asymm 0.643 ± 0.001 2.599 ± 0.005

RCV1 BCE 0.659 ± 0.006 1.621 ± 0.003

M2S 0.674 ± 0.003 1.714 ± 0.014

CHAMP 0.675 ± 0.002 1.633 ± 0.002

Asymm 0.676 ± 0.001 1.426 ± 0.004

CHAMP-Asymm 0.662 ± 0.001 1.470 ± 0.005

FSDK Audio BCE 0.467 ± 0.003 1.649 ± 0.010

M2S 0.449 ± 0.009 1.459 ± 0.076

CHAMP 0.448 ± 0.002 1.667 ± 0.014

Asymm 0.461 ± 0.005 1.322 ± 0.019

CHAMP Asymm 0.458 ± 0.007 1.511 ± 0.006
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Fig. 3. Comparing the % increase in AUPRC vs. rank of the node with respect to the
number of samples per label

on some datasets, we see substantial improvements in AUPRC, e.g. 64.91% rela-
tive improvement over BCE on the OpenImages dataset. This could potentially
be attributed to OpenImages being a large dataset with an extremely branched
hierarchy as seen in Table 1, offering semantic information from parents and
sibling entities while learning. As we can see in Table 2, single-label hierarchi-
cal training (M2S) using the same distance-based loss formulation as CHAMP
leads to lower AUPRC performance. We also demonstrate how CHAMP can
augment state-of-the-art multi-label loss functions. In particular, we compare
the Asymmetric loss against its augmented version CHAMP-Asymmetric. The
results demonstrate that CHAMP-Asymmetric obtains significant improvements
on hierarchical metrics such as LCA, without compromising on standard metrics
such as AUPRC. This is because the Asymmetric loss is trained with the objec-
tive to improve AUPRC, and introducing hierarchy then helps to make better
mistakes. We can further see that the highest percentage gains are achieved for
the 3 datasets with the highest branching factors (OpenImages, COCO, and
Food201). Besides, we hypothesize that hierarchy should add valuable learning
information in the low data and long tail regimes. We investigate this further
in subsequent experiments and try to understand the reasons behind AUPRC
improvements of CHAMP. Overall, these results demonstrate that CHAMP pro-
vides a generic framework that can be applied to more sophisticated multilabel
classification methods to improve their mistake quality. Experiments in subse-
quent sections are designed to show the robustness of the CHAMP algorithm in
various data scenarios. We thus use BCE as a baseline for comparison for inter-
pretation simplicity. This helps to see the improvements from both hierarchy
and multilabel information.

5.4 Localising Improvements

The information from the hierarchy likely helps labels that have very few exam-
ples. To verify this intuition, we calculate the average performance of the top
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Table 3. AUPRC computed on the top 20% and bottom 20% labels, sorted according
to the number of examples per label, for both BCE and CHAMP on the six datasets.
We see that CHAMP achieves much more improvement on the bottom 20% labels than
on the top 20% labels.

Label distribution Experiment\Dataset OpenImages COCO Food201 RCV1 NYT FSDK

Top 20% BCE 0.537 0.678 0.574 0.897 0.886 0.435

Top 20% CHAMP 0.584 0.682 0.593 0.901 0.612 0.442

Bottom 20% BCE 0.146 0.639 0.121 0.337 0.203 0.520

Bottom 20% CHAMP 0.612 0.675 0.138 0.357 0.459 0.573

20% and bottom 20% of labels ordered by frequency. To investigate CHAMP’s
multi-label learning capabilities further, we analyze the AUPRC scores of the
models in detail, although similar trends are also observed for LCA. Table 3
presents the performance of BCE and CHAMP on these subsets of labels on
all six datasets. The results show that the AUPRC improvements achieved by
CHAMP for the bottom 20% labels are substantially larger than that for the top
20%. We further dissect where we find improvements these improvements. We
demonstrate this using the COCO dataset for brevity, although similar trends
are observed for other datasets. Figure 3 shows that CHAMP improves perfor-
mance for low-ranked nodes more, that is, labels with less number of samples.
This is intuitive as hierarchical and multilabel information together helps in
improving the low data problem.

5.5 Contribution of Hierarchy and Co-occurrence Information
in Better Performance

HMC benefits from both hierarchy and label co-occurrence information. In this
section, we aim to study the attribution of the obtained improvements to hier-
archy and co-occurrence information. We work with ordered pairs of labels in
this experiment. We use the co-occurrence probabilities to sort and bin pairs
of classes into two categories: high co-occurrence (top 20% by co-occurrence)
and low co-occurrence (bottom 20%). We use a similar process to bin the pairs
as high-semantic-similarity and low-semantic-similarity based on path distance
in the hierarchy, i.e., labels closer in the tree are assumed to be more semanti-
cally similar. We report the average relative improvement in the AUPRC scores
between the two labels in CHAMP and BCE for the COCO dataset for brevity
in all four combinations of the categories in Table 4. We observe that the low-
co-occurrence-high-semantic-similarity category shows maximum improvement,
which demonstrates the benefit of using hierarchical information. The results
suggest that HMC methods may be well suited to learn and adapt to rare co-
occurring classes, improve generalization, and be more robust toward out-of-
distribution samples.
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Table 4. Relative increase in AUPRC of CHAMP over BCE on label pairs with
low/high co-occurrence and similarity.

Subset % Δ AUPRC ↑ #pairs

low co-occurrence low semantic similarity 1.46% 300

low co-occurrence high semantic similarity 3.32% 14

high co-occurrence low semantic similarity 1.61% 428

high co-occurrence high semantic similarity 1.87% 184

6 Conclusion and Discussion

Summary: In this work, we consider the problem of hierarchical multilabel clas-
sification. While there is a rich literature on encouraging better, hierarchy-aware
mistakes in single-label hierarchical classification, there were no such works for
hierarchical multilabel classification. In this paper, we develop one such frame-
work – CHAMP– and, through experiments on six diverse datasets across vision,
text, and audio, demonstrate that CHAMP provides improvements not only on
hierarchical metrics but also on standard metrics like AUPRC. The framework
can be used to define any kind of set associations between predicted and ground
truth labels, even beyond hierarchical association. This provides a platform for
further research to enable multilabel classification methods to make better mis-
takes and incorporate domain information outside of training data. We further
demonstrate the benefits of hierarchy in increased robustness and better sam-
ple complexity. Finally, we also demonstrate that the proposed framework is
general and can be incorporated with other multilabel classification algorithms.
Besides, we conducted further analysis into alternative formulations of mistake
assignment such as a softer assignment strategy involving a harmonic mean of
the distances from each label and severity (linear scaling, exponential scaling,
etc.). We observed that no major improvements were obtained with such added
complexities. Further details and results of these experiments are presented in
the appendix.

Future Work: Though we envisage a natural extension of our algorithm to
DAG (directed acyclic graphs), it would need more work to make semantic-aware
mistakes in datasets with generic graphical label relationships. Our methods also
set the platform and extend to more complex learning algorithms like detection
Shkodrani et al. (2021), segmentation, image retrieval, and ranking to make bet-
ter mistakes. Going further, contrastive learning approaches like triplet loss and
object detection Shkodrani et al. (2021) are also compatible with our approach
and benefit from adjusting the loss functions with hierarchy and co-occurrence
information to make better mistakes. Hierarchy relations are more relevant when
the feature representation similarity does not align with semantic similarity, and
the cost of making mistakes is high. For example, a black slate and a tv monitor
look visually similar but are semantically different. Based on some preliminary
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results, we see 2.74% and 0.9% percentage drop in AUPRC when trained with
random tree structures on OpenImages and COCO datasets. We believe that
this occurs due to a conflict in semantic and visual similarities.

Discussion: Supervised deep neural networks rely on large data to general-
ize well to unseen data. While typical way to increase the data is to collect
more examples with supervised labels, there is also a growing appreciation for
capturing labels with richer semantics and richer annotations. Hierarchical and
multiple label annotations can cover many relations like part-of, is-a, and similar-
to. We encourage the community to invest more in better labeling procedures
by showcasing downstream gains such as training with less data, making better
mistakes, and robustness to noise. Out-of-distribution examples and adversar-
ial attacks can exploit the over-reliance on high co-occurring labels. CHAMP
leads to more robust feature representations as it does not only heavily rely on
co-occurrence information but also uses semantic relationships. We conclude our
CHAMP work by setting the first platform in the journey to learn to make better
mistakes in the context of rich label relationships.
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Nam, J., Loza Menćıa, E., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy with
recurrent neural networks in multi-label classification. In: Guyon, I., et al. (eds.)
Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc.,
Newry (2017)

Otero, F.E.B., Freitas, A.A., Johnson, C.G.: A hierarchical multi-label classification
ant colony algorithm for protein function prediction. Memetic Comput. 2, 165–181
(2010)

Pal, A., Selvakumar, M., Sankarasubbu, M.: MAGNET: multi-label text classification
using attention-based graph neural network. In: Proceedings of the 12th Interna-
tional Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and
Technology Publications (2020)

Park, J., Kim, H., Paik, J.: Cf-cnn: coarse-to-fine convolutional neural network. Appl.
Sci. 11(8), 3722 (2021)

Peng, H., et al.: Large-scale hierarchical text classification with recursively regularized
deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference, WWW
2018, pp. 1063–1072. CHE: International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva (2018). ISBN 9781450356398

Qu, X., Che, H., Huang, J., Xu, L., Zheng, X.: Multi-layered semantic representation
network for multi-label image classification (2021)

http://arxiv.org/abs/2010.10151
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-030-31654-9_5
https://doi.org/10.1007/978-3-030-31654-9_5


All Mistakes are not Equal 281

Ridnik, T., Sharir, G., Ben-Cohen, A., Ben-Baruch, E., Noy, A.: ML-decoder: scalable
and versatile classification head (2021)

Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hier-
archical multilabel classification models. J. Mach. Learn. Res. 7, 1601–1626 (2006)

Sandhaus, E.: The new york times annotated corpus. Linguist. Data Consortium,
Philadelphia 6(12), e26752 (2008)

Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, vol. 2018, pp. 4510–4520 (2018)

Shen, J., Qiu, W., Meng, Y., Shang, J., Ren, X., Han, J.: TaxoClass: hierarchical
multi-label text classification using only class names. In: Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 4239–4249. Association for Compu-
tational Linguistics (2021)

Shkodrani, S., Wang, Y., Manfredi, M., Baka, N.: United we learn better: harvesting
learning improvements from class hierarchies across tasks (2021)

Silla Jr., C.N., Freitas, A.A.: A global-model naive bayes approach to the hierarchical
prediction of protein functions. In: 2009 Ninth IEEE International Conference on
Data Mining, pp. 992–997 (2009)

Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using
large learning rates (2017)

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., Zhou, D.: MobileBERT: a compact task-
agnostic BERT for resource-limited devices (2020)

Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. ArXiv
arxiv:2104.00298 (2021)

Triguero, I., Vens, C.: Labelling strategies for hierarchical multi-label classification
techniques. Pattern Recogn. 56, 170–183 (2016)

Turc, I., Chang, M.-W., Lee, K., Toutanova, K.: Well-read students learn better: on
the importance of pre-training compact models (2019)

Valentini, G.: True path rule hierarchical ensembles. In: MCS (2009)
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Abstract. We present a novel approach for unsupervised domain adap-
tation (UDA) for natural images. A commonly-used objective for UDA
schemes is to enhance domain alignment in representation space even if
there is a domain shift in the input space. Existing adversarial domain
adaptation methods may not effectively align different domains of multi-
modal distributions associated with classification problems. Our app-
roach has two main features. Firstly, its neural architecture uses the
deep structure of ResNet and the effective separation of scales of fea-
ture pyramidal network (FPN) to work with both content and style
features. Secondly, it uses a combination of a novel loss function and
judiciously selected existing loss functions to train the network architec-
ture. This tailored combination is designed to address challenges inher-
ent to natural images, such as scale, noise, and style shifts, that occur
on top of a multi-modal (multi-class) distribution. The combined loss
function not only enhances model accuracy and robustness on the tar-
get domain but also speeds up training convergence. Our proposed UDA
scheme generalizes better than state-of-the-art for CNN-based methods
on Office-Home, Office-31, and VisDA-2017 datasets and comaparable
for DomainNet dataset.

Keywords: Adversarial · Deep Learning · Domain Adaptation ·
Natural Images

1 Introduction

Unsupervised Domain Adaptation (UDA) addresses the performance degrada-
tion caused by domain shift in supervised learning, where there’s a significant dis-
tribution difference between training (source) and testing (target) data domains.
Adversarial-based UDA, utilizing frameworks like Generative Adversarial Net-
works (GANs) [25] and Domain Adversarial Neural Networks (DANN) [8], aims
to mitigate this by learning domain-invariant features from unlabeled target
data. By promoting feature harmonization while retaining class information,
these models enhance target domain generalization. Despite promising results in
image classification and object detection, adversarial UDA faces challenges such
as hyper-parameter sensitivity, high-dimensional space navigation, and domain
shift detection.
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To address the aforementioned challenge, we developed an unsupervised
domain adaptation approach that surpasses the state-of-the-art UDA perfor-
mance of convolution neural networks (CNNs) for benchmark natural image
datasets – Office-Home [36], Office-31 [29], VisDA-2017 [26], and shows compa-
rable results for DomainNet [27].

Inspired by the concept of a conditional domain adversarial network (CDAN)
[22], our core approach – Improved Domain Adaptive Learning (IDAL) – involves
concurrent training of a feature extractor (typically a deep neural network) and a
domain classifier (discriminator) tasked with distinguishing between source and
target domains. We have explored various CNN-based feature extractors such as
ResNet-101, ResNet-50 [12], ViT [6], and ConvMixer [33] to extract meaningful
features. The feature extractor’s aim is to learn representations that are invariant
to domain shifts, and thus deceive the domain classifier that endeavors to cor-
rectly classify the domain of the extracted features. The integration of ResNet-50
and FPN combines [20] deep feature representation and multi-scale extraction,
essential for tasks like object detection and segmentation. Given that object scale
and style vary by domain, this synergy makes ResNet + FPN a strong candidate
for Unsupervised Domain Adaptation (UDA), focusing on higher-level domain-
specific feature suppression. This application to UDA is novel.

In the adversarial training process, the feature extractor (ResNet-50 + FPN)
and domain classifier compete: the extractor aims to produce domain-agnostic
features, while the classifier attempts to distinguish between domains. This
method fosters the development of domain-invariant features, enhancing trans-
ferability across source and target domains.

To improve the training process, we propose a novel loss function called
pseudo label maximum mean discrepancy (PLMMD). We use this loss in addi-
tion to certain existing losses – maximum information loss (entropy loss) [15],
maximum mean discrepancy (MMD) loss [21], minimum class confusion (MCC)
loss [13]. Our model integrates several loss functions to enhance domain adap-
tation and classification accuracy: Maximum information loss clusters target
features by class, preserving key information. MMD loss bridges domain gaps
by comparing mean embeddings. MCC loss boosts accuracy by minimizing class
confusion, vital for uneven datasets. Our innovative PLMMD loss selectively
extracts domain-invariant features, speeding up training. This tailored mix of
loss functions enables our method to outperform existing CNN models and
achieve quicker convergence on natural image datasets– Office-Home [36], Office-
31 [29], and VisDA [26].

2 Background and Related Works

In unsupervised domain adaptation (UDA), we have data from a source domain
Ds = {(xsi , ysi)}ns

i=1 as ns labeled examples and that from a target domain
Ds = {(xti , yti)}nt

i=1 as nt unlabeled examples where yti ’s are unknown. The
source domain and target domain are sampled from the distributions P (xs, ys)
and Q(xt, yt) respectively. Notably, the two distributions are initially not aligned;
that is, P �= Q.
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Domain adversarial neural network (DANN) [8] is a framework of choice for
UDA. This is a dual-player game involving two key components: the domain
discriminator, denoted as D, and the feature representation, denoted as F . In
this setup, D is trained to differentiate between the source domain and the tar-
get domain, while F is simultaneously trained to both confound the domain
discriminator D and accurately classify samples from the source domain. The
discrepancy between the feature distributions PF and QF [7] has well corre-
sponding with the error function of the domain discriminator. This is a key to
bound the risk associated with the target in the domain adaptation theory [2].

An alternative approach in the field of Unsupervised Domain Adaptation
(UDA) focuses on reducing the domain discrepancy as quantified by various
metrics, e.g., maximum mean discrepancy(MMD). To establish class-level align-
ment across domains, the methodology outlined in the study conducted by Pei
and colleagues [26] incorporates a multiplicative interaction between feature rep-
resentations and class predictions. In their studies [3], efforts are made to ensure
alignment between the centroids of labeled source data and the centroids derived
from pseudo-labeled target data, particularly for shared classes within the fea-
ture space.

Another approach to UDA involves employing separate task classifiers for
each of the two domains. These classifiers are used to identify non-discriminative
features. In turn, they facilitate the learning of a feature extractor that focuses
on generating discriminative features [17]. Several other studies emphasize the
importance of directing attention towards transferable regions as a means to
establish a domain-invariant classification model, as exemplified by [16]. In addi-
tion, for the purpose of extracting target-discriminative features, [14] employ
techniques such as generating synthetic data from the raw input of the two
domains, as described in [25].

Since our work modifies the network and losses of the CDAN framework [22],
we explain it here for completeness. To reduce the shift in data distributions
across the domains, CDAN trains a deep network N : x → y, so that source risk
rs= E(xs,ys)∼P [N(xs) �= ys] can bound the target risk rt= E(xt,yt)∼Q[N(xt) �= yt]
plus the distribution discrepancy disc(P,Q) quantified by a novel conditional
domain discriminator. In the context of adversarial learning, Generative Adver-
sarial Networks (GANs) [8] play a pivotal role in mitigating differences between
domains. A deep network N generates features represented by f = F (x) and
classifier prediction denoted by g = N(F (x)).

We enhance existing methods for adversarial domain adaptation in two spe-
cific ways. Firstly, when dealing with non-identical joint distributions of features
and classes across domains, as characterized by P (xs, ys) and Q(xt, yt), relying
solely on the adaptation of the feature representation f may prove insufficient,
as highlighted in [22]. A quantitative analysis indicates that deep representa-
tions tend to transition from a more general to a domain-specific nature as they
traverse deeper layers within neural networks. This transition leads to a notable
decrease in transferability, particularly observed in the layers responsible for
domain-specific feature extraction (f) and classification (g), as detailed in [37].
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Secondly, due to the nature of multi-class classification, the feature distribution
is multi-modal, and hence adapting feature distribution may be challenging for
adversarial networks.

Simultaneous modeling the domain variances in feature representation (f)
and classifier prediction (g) facilitates effective domain gap reduction [22]. This
joint conditioning helps capture and align data distributions between source and
target domains. Thus, incorporating classifier prediction as a conditioning fac-
tor in domain adaptation shows promising potential for enhancing transferability
and producing domain-invariant representations in challenging cross-domain sce-
narios. CDAN originally introduced a minimax optimization framework featuring
two adversarial loss terms: (a) the source classifier loss, aimed at minimizing it
to ensure a lower source risk, and (b) the discriminator loss applied to both the
source classifier N and the domain discriminator D, spanning both the source
and target domains. This loss is minimized with respect to D while simultane-
ously maximized with respect to f = F (x) and g = N(F (x)):

Lclc(xsi , ysi) = E(xsi
,ysi

)∼Ds
L(N(xsi), ysi) (1)

Ldis(xs, xt) = − Exsi
∼Ds

log[D(fsi , gsi)]

− Extj
∼Dt

log[1 − D(ftj , gtj )],
(2)

In this context, L corresponds to the cross-entropy loss, Lclc is the classifier
loss, Ldis is the discriminator loss and h = (f, g) signifies the combined vari-
able encompassing the feature representation f and classifier prediction g. The
minimax game of CDAN is

min
N

Lclc(xsi , ysi) − λLdis(xs, xt)

min
D

Ldis(xs, xt),
(3)

Here, λ denotes a hyper-parameter that balances between the two objectives,
allowing for a trade-off between source risk and domain adversary concerns.

As depicted in Fig. 1, the domain discriminator D is conditioned on the clas-
sifier prediction g via the joint variable h = (f, g), aiming to address the two
challenges inherent in adversarial domain adaptation, as discussed in [22]. To
incorporate a basic form of conditioning for D, we employ (D(f ⊕ g))—where
we concatenate the feature representation and classifier prediction into a vector
(f ⊕ g), which serves as the input for the conditional domain discriminator D.
This conditioning approach aligns with the common practice observed in exist-
ing conditional GANs [8]. However, when utilizing the concatenation approach,
f and g operate independently, missing the opportunity to fully capture the cru-
cial multiplicative interactions between the feature representation and classifier
prediction that play a pivotal role in domain adaptation. A multilinear map is
formed by computing the outer product of multiple random vectors. This tech-
nique, which involves multilinear maps applied to infinite-dimensional nonlinear
feature maps, has proven successful in embedding joint or conditional distribu-
tions into reproducing kernel Hilbert spaces [31]. In addition to the theoretical
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Fig. 1. The CDAN [22] architectural framework, illustrating the joint reduction of the
cross-domain gap by the conditional domain discriminator D, with domain-specific
feature representation f and classifier prediction g at its core. The symbol ⊗ signifies
a multilinear mapping operation.

advantages offered by the multilinear map (x ⊗ y) in comparison to concatena-
tion (x ⊕ y), as discussed in [31]. In this research, we harness the capabilities of
the multilinear map to condition D on g. In contrast to concatenation, the mul-
tilinear map, denoted as (x ⊗ y), excels in capturing the intricate multi-modal
structures that are inherent in complex data distributions. However, it’s impor-
tant to note that a drawback of the multilinear map is its potential for dimension
explosion.

Our approach involves the joint minimization of the source classifier N and
feature extractor F with respect to Eq. (1). Additionally, we minimize Eq. (2) to
optimize the domain discriminator D and simultaneously maximize Eq. (2) to
enhance the feature extractor F and source classifier N . This yields the mini-max
problem of Domain Adversarial Networks:

min
G

E(xi
s,y

i
s)∼Ds

L(G(xi
s), y

i
s)

+ λ
(
Exi

s∼Ds
log[D(T (hi

s))]

+Exj
t∼Dt

log[1 − D(T (hj
t ))]

)

max
D

Exi
s∼Ds

log[D(T (hi
s))] + Exj

t∼Dt
log[1 − D(T (hj

t ))], (4)

In this context, λ serves as a hyper-parameter responsible for adjusting the
weightage between the source classifier and the conditional domain discrimina-
tor and G acts as the generator. Meanwhile, h = (f, g) represents the composite
variable encompassing both the domain-specific representation f and the clas-
sifier prediction g which play pivotal roles in adversarial adaptation. [10] shows
the improvement in performance with use of tailored loss function for medical
datasets.
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3 Proposed Method

In our Unsupervised Domain Adaptation (UDA) strategy for cross-domain clas-
sification, we leverage insights from a labeled source domain to enhance target
domain performance, despite unlabeled conditions. Our method utilizes a multi-
scale optimized neural architecture, ensuring well-separated, multi-modal class
distributions. Data augmentation techniques such as flipping, resizing, and nor-
malization are applied for domain consistency. A novel aspect of our approach
is a unique loss function that, combined with selected existing ones, minimizes
domain discrepancies and aligns feature distributions across multi-class datasets
with varying image sizes. For augmented image feature extraction, we employ
ResNet-50 coupled with the Feature Pyramid Network (FPN), blending deep
feature capture with multi-scale extraction to effectively represent detailed and
broad image features, a pioneering application in UDA and image classification.

3.1 Proposed Loss Function

The proposed loss function to train the new architecture in the CDAN [22]
framework for improving UDA for image classification can be formulated as
follows:

L = min
N

Lclc(xsi , ysi) − λLdis(xs, xt)

+βLIM + γLMCC + δLMDD + ηLPLMMD,
(5)

where λ, β, γ, δ and η are hyper parameters, LIM is the information maximiza-
tion (entropy) loss, LMCC is minimum class confusion loss, LMDD is maximum
mean discrepancy loss, and LPLMDD is a novel pseudo-label maximum mean dis-
crepancy loss. It is worth noting that the original CDAN [22] trained a ResNet
(and not ResNet + FPN as proposed) using only Lclc, Ldis, and LIM . On the
other hand, all other individual loss terms have their own specialty and this novel
combination of loss significantly surpasses the performance of CNN-based as well
as transformer-based models. A detailed description of all the losses, including
the proposed LPLMDD are given below.

Information Maximization Loss: The Information Maximization loss is
designed to encourage neural networks to learn more informative representa-
tions by maximizing the mutual information between the learned features and
the input data [15]. By maximizing the mutual information between the empir-
ical distribution of target inputs and the resulting distribution of target labels,
which can be formally defined as:
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I(pt;xt) = H(pt) − 1
nt

nt∑

j=1

H(ptj)

= −
K∑

k=1

ptk log(ptk) +
1
nt

nt∑

j=1

K∑

k=1

ptkj log(ptkj)

(6)

where, ptj = softmax(Gc(Gf (xtj))), pt = Ext
[pt], and K is the number of classes.

By taking into account I(pt;xt), our model is incentivized to learn target features
that exhibit tight clustering along with a uniform distribution. This approach is
designed to retain discriminative information within the target domain.

Minimum Class Confusion: The minimum class confusion loss, referenced
as LMCC [13], aims to mitigate confusion between various classes represented
by indices j and j′, where these indices collectively encompass the entire set of
classes. Notably, this loss term is focused on the target domain and is intended
to minimize the confusion between pairs of classes, such as those denoted by j
and j′ is given by:

Cjj′ = ŷᵀ
·jW ŷᵀ

·j′

After standardizing (normalising) the class confusion terms, the ultimate
MCC Loss function is defined as:

LMCC =
1
c

c∑

j=1

c∑

j′ �=j

|Cjj′ |, (7)

This loss is computed as the summation of all non-diagonal elements within the
class confusion matrix. The diagonal elements signify the classifier’s level of “cer-
tainty,” whereas the non-diagonal elements signify the “uncertainty” associated
with classification. The MCC loss can be incorporated alongside other domain
adaptation techniques.

Maximum Mean Discrepancy: Maximum Mean Discrepancy (MMD) is a
kernel-based two-sample statistical test employed to assess the similarity between
two distributions. The final loss for a given probability measure P and Q takes
the following form:

LMMD = MMD2(P,Q)
= EP [k(X,X)] − 2EP,Q[k(X,Y )] + EQ[k(Y, Y )]

(8)

Pseudo-Label MMD: We propose a novel loss function called pseudo-label
maximum mean discrepancy (PLMMD). This loss function takes into account
pseudo-labels that can be generated on the target domain samples after the first
few training iterations. Doing so strongly conditions the feature alignment on the
classes. It is calculated using a procedure similar to that of calculating MMD.
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The difference is that we multiply each of the expectations in Eq. 8 with weights
that are calculated based on pseudo-labels:

LPLMMD = wXXEP [k(X,X)] − 2wXY EP,Q[k(X,Y )]
+wY Y EQ[k(Y, Y )],

(9)

where wXX represents weight to get similarity within the source domain, wY Y

are weights for similarity within the target domain, and wXY are weights to
get similarity within the source and target domain. For calculating the weights,
firstly source and target label data are normalized to account for class imbal-
ances. For each class common to both datasets, dot products of normalized vec-
tors are computed to quantify instance relationships. Calculated dot products
are normalized by the count of common classes, ensuring fairness. This returns
three weight arrays, representing relationships between instances in the source
dataset, target dataset, and source-to-target pairs.

4 Experiments and Results

To validate the efficacy of our model, we undertake extensive investigations on
well-established benchmarks and juxtapose our results with those achieved by
state-of-the-art UDA methods. We also studied the impact of using a feature
pyramid network (FPN) [20] for domain adaptation for classification. Addition-
ally, we studied how the feature (representation) space of the target domain
evolves during training. We also studied the contribution of various components
of the loss function. We also studied the convergence speed of our method com-
pared to FixBi [24].

4.1 Datasets

To evaluate the proposed method, we conducted experiments on benchmark
UDA datasets – including Office-31 [29], Office-Home [36], VisDA-2017 [26], and

Table 1. Comparison with SoTA methods on Office-Home. IDAL(ours) is reported
with and without(w/o) FPN. The best performance is marked as bold, and the second
best is underlined

Model A→C A→textbfP A→textbfR C→textbfA C→textbfP C→textbfR P→textbfA P→textbfC P→textbfR R→textbfA R→textbfC R→textbfP Avg.

ResNet-50 [12] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

CDAN [22] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

MDD [38] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

GVB-GD [5] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

SRDC [32] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

SHOT [19] 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6

SDAT [28] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2

FixBi [24] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

IDAL w/o FPN 58.6 77.2 80.1 69.2 76.4 76.3 70.8 56.9 82.4 77.6 63.6 84.2 72.8

IDAL 59.8 77.8 80.8 69.8 76.9 77.0 71.6 57.4 82.9 78.5 64.1 85.6 73.5
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Table 2. Accuracy(%) on DomainNet for UDA (ResNet-101). In each sub-table, the
column-wise domains are selected as the source domain and the row-wise domains are
selected as the target domain. Highest accuracy is marked as bold and second highest
is underline.

ADDA [34] clp inf pnt qdr rel skt Avg.DANN [8] clp inf pnt qdr rel skt Avg.MIMTFL [9] clp inf pnt qdr rel skt Avg.

clp – 11.2 24.1 3.2 41.9 30.7 22.2 clp – 15.5 34.8 9.5 50.8 41.4 30.4 clp – 15.1 35.6 10.7 51.5 43.1 31.2

inf 19.1 – 16.4 3.2 26.9 14.6 16.0 inf 31.8 – 30.2 3.8 44.8 25.7 27.3 inf 32.1 – 31.0 2.9 48.5 31.0 29.1

pnt 31.2 9.5 – 8.4 39.1 25.4 22.7 pnt 39.6 15.1 – 5.5 54.6 35.1 30.0 pnt 40.1 14.7 – 4.2 55.4 36.8 30.2

qdr 15.7 2.6 5.4 – 9.9 11.9 9.1 qdr 11.8 2.0 4.4 – 9.8 8.4 7.3 qdr 18.8 3.1 5.0 – 16.0 13.8 11.3

rel 39.5 14.5 29.1 12.1 – 25.7 24.2 rel 47.5 17.9 47.0 6.3 – 37.3 31.2 rel 48.5 19.0 47.6 5.8 – 39.4 32.1

skt 35.3 8.9 25.2 14.9 37.6 – 25.4 skt 47.9 13.9 34.5 10.4 46.8 – 30.7 skt 51.7 16.5 40.3 12.3 53.5 – 34.9

Avg. 28.2 9.3 20.1 8.4 31.1 21.7 19.8 Avg. 35.7 12.9 30.2 7.1 41.4 29.6 26.1 Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1

ResNet-101 [12] clp inf pnt qdr rel skt Avg.CDAN† [22] clp inf pnt qdr rel skt Avg.MDD† [38] clp inf pnt qdr rel skt Avg.

clp – 19.3 37.5 11.1 52.2 41.0 32.2 clp – 20.4 36.6 9.0 50.7 42.3 31.8 clp – 20.5 40.7 6.2 52.5 42.1 32.4

inf 30.2 – 31.2 3.6 44.0 27.9 27.4 inf 27.5 25.7 1.8 34.7 20.1 22.0 inf 33.0 - 33.8 2.6 46.2 24.5 28.0

pnt 39.6 18.7 – 4.9 54.5 36.3 30.8 pnt 42.6 20.0 – 2.5 55.6 38.5 31.8 pnt 43.7 20.4 – 2.8 51.2 41.7 32.0

qdr 7.0 0.9 1.4 – 4.1 8.3 4.3 qdr 21.0 4.5 8.1 – 14.3 15.7 12.7 qdr 18.4 3.0 8.1 – 12.9 11.8 10.8

rel 48.4 22.2 49.4 6.4 – 38.8 33.0 rel 51.9 23.3 50.4 5.4 – 41.4 34.5 rel 52.8 21.6 47.8 4.2 – 41.2 33.5

skt 46.9 15.4 37.0 10.9 47.0 – 31.4 skt 50.8 20.3 43.0 2.9 50.8 – 33.6 skt 54.3 17.5 43.1 5.7 54.2 – 35.0

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6 Avg. 38.8 17.7 32.8 4.3 41.2 31.6 27.7 Avg. 40.4 16.6 34.7 4.3 43.4 32.3 28.6

SCDA [18] clp inf pnt qdr rel skt Avg.CDAN + SCDA [18] clp inf pnt qdr rel skt Avg.MDD + SCDA [18] clp inf pnt qdr rel skt Avg.

clp – 18.6 39.3 5.1 55.0 44.1 32.4 clp – 19.5 40.4 10.3 56.7 46.0 34.6 clp – 20.4 43.3 15.2 59.3 46.5 36.9

inf 29.6 – 34.0 1.4 46.3 25.4 27.3 inf 35.6 – 36.7 4.5 50.3 29.9 31.4 inf 32.7 – 34.5 6.3 47.6 29.2 30.1

pnt 44.1 19.0 – 2.6 56.2 42.0 32.8 pnt 45.6 20.0 – 4.2 56.8 41.9 33.7 pnt 46.4 19.9 – 8.1 58.8 42.9 35.2

qdr 30.0 4.9 15.0 – 25.4 19.8 19.0 qdr 28.3 4.8 11.5 – 20.9 19.2 17.0 qdr 31.1 6.6 18.0 – 28.8 22.0 21.3

rel 54.0 22.5 51.9 2.3 – 42.5 34.6 rel 55.5 22.8 53.7 3.2 – 42.1 35.5 rel 55.5 23.7 52.9 9.5 – 45.2 37.4

skt 55.6 18.5 44.7 6.4 53.2 – 35.7 skt 58.4 21.1 47.8 10.6 56.5 – 38.9 skt 55.8 20.1 46.5 15.0 56.7 – 38.8

Avg. 42.6 16.7 37.0 3.6 47.2 34.8 30.3 Avg. 44.7 17.6 38.0 6.6 48.2 35.8 31.8 Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3

Table 3. Accuracy (%) on DomainNet for UDA with IDAL(ours). Highest accuracy
is marked as bold and second highest is underline.

clp inf pnt qdr rel skt Avg.

clp – 20.5 36.8 9.2 54.8 44.5 33.2

inf 32.4 – 25.8 2.5 31.2 41.2 26.6

pnt 72.5 25.0 – 4.5 52.7 37.6 38.5

qdr 47.4 5.3 8.4 – 11.8 12.5 17.1

rel 51.5 25.2 54.5 2.9 – 34.8 33.8

skt 49.8 24.8 47.4 12.8 51.6 – 37.3

Avg. 50.7 20.2 34.6 6.4 40.4 34.1 31.1

DomainNet [27]. The details of the datasets and transfer tasks on these datasets
are given below:

The Office-Home dataset is a key benchmark with 15,500 images across 65
classes and four domains: Artistic, Clip Art, Product, and Real-World, used to
assess twelve transfer tasks. Office-31, another pivotal dataset, contains 4,110
images in 31 classes from Amazon, Webcam, and DSLR domains, evaluating six
transfer tasks. VisDA-2017, aimed at cross-domain generalization, includes Syn-
thetic and Real source domains with 12 categories, using the ImageNet validation
set as the target. DomainNet, the largest dataset for domain adaptation, fea-
tures about 0.6 million images across 345 categories from six domains (Clipart,
Infograph, Painting, Quickdraw, Real, and Sketch), supporting 30 adaptation
tasks, showcasing its scale and diversity in visual domain adaptation challenges.
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Table 4. Comparison with SoTA methods on VisDA-2017. IDAL(ours) is reported
with and without(w/o) FPN. The best performance is marked as bold, and the second
best is underlined.

Model plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-50 [12] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

BNM [4] 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

MCD [30] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

SWD [17] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

FixBi [24] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

IDAL w/o FPN 94.1 88.6 89.2 78.7 94.9 98.2 88.5 84.6 94.7 90.3 88.4 51.3 86.8

IDAL 94.7 89.0 89.6 79.0 95.6 98.7 89.4 85.2 95.6 90.5 88.9 52.6 87.4

Table 5. Comparison with SoTA methods on Office-31. IDAL(ours) is reported with
and without(w/o) FPN. The best performance is marked as bold, and the second best
is underlined.

Method A → D A → W D → W W → D D → A W → A Avg

ResNet-50 [12] 68.9 68.4 96.7 99.3 62.5 60.7 76.1

DANN [8] 79.7 82.0 96.9 99.1 68.2 67.4 82.2

CDAN [22] 92.9 94.1 98.6 100.0 71.0 69.3 87.7

MDD [38] 93.5 94.5 98.4 100.0 74.6 72.2 88.9

GVB-GD [5] 95.0 94.8 98.7 100.0 73.4 73.7 89.3

SRDC [32] 95.8 95.7 99.2 100.0 76.7 77.1 90.8

SHOT [19] 93.1 90.9 98.8 99.9 74.5 74.8 88.7

f-DAL [1] 94.8 93.4 99.0 100.0 73.6 74.6 89.2

FixBi [24] 95.0 96.1 99.3 100.0 78.7 79.4 91.4

IDAL w/o FPN 94.4 95.0 99.0 100.0 75.6 76.6 90.1

IDAL 95.6 95.7 99.1 100.0 77.3 77.1 90.8

4.2 Implementation Details

All the experiments were conducted on an NVIDIA A100 in PyTorch, using
the CNN-based neural network (ResNet-50) pre-trained on ImageNet [11] and
feature pyramid network as the backbone for our proposed model. The base
learning rate is 0.00001 with a batch size of 32, and we train models by 50 epochs.
The hyper-parameters were β = 0.05, γ = 0.1, δ = 0.15 and η = 0.15 for the
experiment of Office-31 dataset. Similarly for Office-Home, the hyper-parameters
were β = 0.05, γ = 0.21, δ = 0.25 and η = 0.25, for the VisDA-2017 dataset the
hyper parameters were β = 0.05, γ = 0.3, δ = 0.25 and η = 0.25, and for the
Domain-Net dataset the hyper parameters were β = 0.05, γ = 0.01, δ = 0.2 and
η = 0.25. We have used AdamW [23] with a momentum of 0.9, and a weight decay
of 0.001 as the optimizer. We adhere to the standard procedure for unsupervised
domain adaptation (UDA), wherein we make use of both labeled source samples
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and unlabeled target samples during the training process. For a fair comparison
with prior works, we also conduct experiments with the same backbones such
as ResNet-50 [12], DANN [8], CDAN [22], MDD [38], GVB-GD [5], SRDC [32],
FixBi [24], SHOT [19], SDAT [28], f-DAL [1], BNM [4], MCD [30] and SWD [17]
for demonstration of results with different-different datasets.

4.3 UDA Benchmarks

We assess the performance of our proposed model by conducting comparisons
with state-of-the-art methods that rely on ResNet-based architectures. In these
experiments, we employ ResNet-50 as the underlying architecture for our evalua-
tions across the Office-Home, Office-31 and VisDA-2017 datasets and ResNet-101
for the DomainNet dataset. Importantly, each ResNet-50 and ResNet-101 back-
bone is trained exclusively on source data and subsequently subjected to testing
using target data.

Fig. 2. Two-dimensional visual representation, generated using t-SNE [35], illustrates
the evolution of the domain adaptation task from R to P on the Office-Home dataset.
The images depict untrained target samples (leftmost), training progress after 4 epochs
(middle), and the state after 9 epochs (rightmost). Initially, overlapping classes grad-
ually reconfigure into distinct clusters during the training process.

Table 1 presents quantitative results with various backbones, demonstrating
our proposed model’s consistent superiority over the state-of-the-art, specifically
achieving an impressive average accuracy improvement of over 0.8% when com-
pared to the FixBi model for the Office-Home dataset. Table 4 further showcases
our model’s superiority, surpassing the current state-of-the-art and attaining a
notable 0.2% average accuracy improvement over the FixBi model for the VisDA-
2017 dataset. Table 5 illustrates results using diverse backbones, highlighting our
model’s performance, which is comparable with the current state-of-the-art for
the Office-31 dataset. Table 2 and 3 depict the performance of our model with
ResNet-101 + FPN as the feature extractor for the most challenging dataset of
domain adaptation with comparable performance to state-of-the-art.
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Table 6. Performance comparison of IDAL with different combinations of losses on
Office-Home. The best performance is marked as bold.

M1 MMD MCC PLMMD A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

� × × × 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

� � × × 59.4 76.8 80.3 69.1 75.7 76.2 69.7 56.8 82.3 78.4 63.4 84.6 72.7

� � � × 59.6 77.6 80.4 69.3 76.0 76.8 71.2 57.1 82.7 78.5 64.0 85.2 73.2

� � � � 59.8 77.8 80.8 69.8 76.9 77.0 71.6 57.4 82.9 78.5 64.1 85.6 73.5

ResNet-50 combined with Feature Pyramid Network (FPN) for feature
extraction offers multi-scale feature capture, superior object detection, and effec-
tive feature fusion. This versatile pairing, proven in various computer vision
tasks, balances depth and scale, enhancing overall performance while reduc-
ing computational costs. Tables 1, 4, and 5 show the impact of having FPN
with ResNet for feature extraction. We conducted ablation studies to under-
stand the impact of the different feature extractors such as ConvMixer [33] and
ResNet-101 [12]. However, the performance in these cases was worse than our
reported results. We also compare the ResNet-based backbone and transformer-
based backbone and notice a huge gap in parameter requirements. ResNet-based
backbone needs relatively very less parameters compared to transformer-based
backbones.

The tSNE [35] plot is shown in Fig. 2 for the office-Home dataset for the
task of domain adaptation when R is the source and P is the target. We can see
the rapid evolution of a multi-modal distribution of the target domain features
where classes (denoted by separate colors) get separated.

4.4 Impact of Loss Components

To gauge the influence of individual loss functions and their collective impact, we
conducted a thorough experimental analysis. Our findings revealed that Mini-
mum Class Confusion (MCC) loss functions enhance classification models by
reducing class confusion, especially in scenarios with imbalanced class distribu-
tions. Concurrently, we observed that information maximization losses assist the
classifier in prioritizing the most confidently aligned samples for domain adap-
tation. Additionally, the Maximum Mean Discrepancy (MMD) loss effectively
narrows the gap between the mean embeddings of the two distributions. Table 6
shows the effect of the individual loss function on the performance of our model
IDAL for the Office-Home dataset and it indicates that our model IDAL per-
forms best with a tailored combination of loss functions. By artfully combining
these distinctive loss functions, we not only surpass the current state-of-the-art
but also achieve a comprehensive solution that advances the field of classification
models in diverse scenarios.
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5 Conclusions and Future Directions

We proposed a novel method for unsupervised domain adaptation for image clas-
sification. We proposed a novel neural network architecture and a loss function.
Architecturally, we have demonstrated that synergy between two deep learning
architectures – ResNet [11] and feature pyramidal network (FPN) [20] – com-
plement each other to extract multi-scale features and effectively separate style
(domain) and content (class) information components. Our ablation studies con-
firm the importance of using FPN with ResNet. The proposed loss component
PLMMD and judiciously chosen existing loss components leads to significant
improvements in unsupervised domain adaptation (UDA) performance that can
surpass the performance of CNNs using other UDA methods. Our ablation study
confirmed the importance of each of the loss components. Additionally, using
the proposed loss led to faster convergence and a rapid evolution of a class-wise
multi-modal distribution of the target domain features.

In the future, computationally heavier architectures, such as, vision trans-
formers [6] and its derivatives may be used for further improvements in domain
adaptation. Additionally, the proposed loss function may be adapted for other
tasks, such as semantic segmentation and object detection.
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Abstract. Images can convey rich semantics and induce a wide range of
emotions in viewers. However, predicting induced emotions from images
can be challenging due to the subjective nature of emotions and the
variability in how different viewers perceive them. Existing methods for
image emotion prediction rely on neural networks to learn an image-
to-emotion mapping. Such methods require large amounts of annotated
training data to achieve good generalization. In this paper, we show that
it is possible to train a model that generalizes better than state-of-the-
art methods with significantly less data. Our method leverages the power
of a pre-trained large multimodal model (LMM) with the addition of a
shallow adapter module that transforms the LMM’s output embedding
to a classification output. On three out of four benchmark datasets, our
method outperforms the previous state of the art (SOTA) results by a
significant margin, with one even showing around a 9% accuracy improve-
ment. Additionally, our method achieves a new SOTA with only 20% of
the data on these three datasets, and improves further using more data.
On the fourth dataset, which is the smallest one, our method is on par
with the SOTA. Moreover, our method can naturally provide human-
readable intermediate results, which could serve as textual explanations
of the classification outputs. The code is available at https://github.com/
vimal-isi-edu/LMM Emotion Prediction.

Keywords: Emotion Prediction · Vision · Large Multimodal Model

1 Introduction

The widespread use of social networks has led people to widely share their lives
and express their opinions using images and text. The rapid growth of user-
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generated content has created a high demand for applications in which it is essen-
tial to understand the user’s data at an emotional level, such as business intel-
ligence [6] and opinion mining [28], as individuals’ emotions can directly affect
their decision making. This demand has significantly expedited the research on
emotion prediction. In this paper, we focus on the problem of predicting emotions
from images.

Text-based emotion prediction [5,7,35], is a relatively easier problem than
image-based emotion prediction. Indeed, predicting emotions from images is a
particularly challenging problem. The problem is subjective in nature. Image-
induced emotions can be influenced by many factors, such as cultural back-
ground, personal experiences, and current mental state. This subjectivity also
makes it difficult to collect large manually-labeled datasets, making the problem
even more difficult. In fact, large datasets in this domain are typically either
weakly annotated by web tags or are known to be biased [18]. To address the
subjectivity issue, some datasets are annotated with multiple labels per image
or with a probability distribution on the labels [10,21]. However, posing the
problem as multi-label classification introduces more challenges in solving the
problem and evaluating the solutions.

Fig. 1. Overview of our pipeline. The LMM takes both a resized image and a text
prompt as input and outputs a text response and its corresponding embedding. The
embedding is then used as input to the adapter network to perform emotion prediction.

Recent approaches to image emotion prediction either treat the problem as
image classification and apply neural networks to learn a mapping from images
to emotion labels in an end-to-end manner [13,34], or use an image encoder
along with a pre-trained language model to merge or align features within a
shared feature space, which is subsequently used for making predictions [9,37].
There are two main weaknesses in the existing approaches. First, they are data-
intensive, which is especially problematic given the scarcity of large manually
labeled data in the image emotion prediction community. Second, while the
approaches that use the vision encoder and pre-trained language models benefit
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from language models’ rich semantic space that brings generalizability of unseen
concepts, their vision encoders are either trained from scratch on limited amounts
of data, which limits their potential for generalization, or trained in separation
from the text encoder, which may not leverage the cross-modality interaction
when combining features from both domains. In this paper, our objective is
to address the aforementioned limitations by designing a pipeline that not only
leverages the benefit of language models but also harnesses the strength of strong
vision encoders. To demonstrate its generalization, this pipeline should perform
well on testing data without extensive training data.

In recent years, large language models (LLMs) have unlocked immense poten-
tial in the field of artificial intelligence, as evidenced by many examples, such
as GPT-3 [2] and GPT-3.5. These models have the ability of long-range context
understanding, generalization, and reasoning, thanks to their training on large-
scale textual corpora, paving the way for groundbreaking advancements. Among
these models, the LLaMA series [26,27] stands out as models that outperform
GPT-3 and strive to enhance the alignment capabilities of LLMs to better com-
prehend and follow human instructions. Follow-up works extend the success of
LLMs from the text domain to the image-text domain and create multimodal
vision-language models [12,16] or large multimodal models (LMMs). LMMs com-
bine image and text data, enabling machines to understand and process both
modalities simultaneously. These models have shown promising results in var-
ious applications, such as summarizing documents with images [16] and visual
question answering [3].

In this paper, we make the first attempt at predicting induced emotions from
images using a pre-trained LMM as shown in Fig. 1. Relying on the LMM, our
approach benefits from the extensive training data used to train such models to
address the generalizability issue. Another advantage of using the LMM is that
we can obtain model’s explanations regarding its decision through their textual
output. The contributions of this paper can be summarized as follows:

– We introduce a novel method employing LMMs for image emotion prediction.
– We show that our approach can outperform previous SOTA methods while

being trained on much less data on four datasets.
– We conduct ablation studies showing the importance of different components

of our model and studying the effect of prompt choice across four general
prompt categories and ten specific variations.

2 Related Work

In this section, we focus on the literature review of image emotion prediction
by exploring the progression of building image-to-emotion mappings and the
integration of language models.

2.1 Image-to-Emotion Mapping

The exploration of how images induce emotions has a long and rich history.
Early works [14,30] use low-level image features such as color pattern, shape, and
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texture, and train classical classification models, such as support vector machines
(SVMs), for emotion prediction. Researchers then started to invite the idea of
using high-level information, such as scene information or shape geometry [1,20]
and modeling their relationships with emotions. More recently, with the upsurge
of neural networks, there is an increasing inclination to employ them as tools for
feature extraction, which has led to the adoption of various architectural designs,
such as traditional CNN [21], multilevel feature fusion CNN [4] and graph neural
network [29]. With neural networks, accuracy has improved significantly over the
use of hand-crafted features.

2.2 Language Models Integration

Before integrating the language models, the problem that caught most of the
attention was data quality. With the success of neural network-based feature
extractors, the importance of data has been highlighted. However, a biased
dataset can easily affect the generalizability and performance of the model [18].
To improve the dataset quality, one line of research on datasets provides addi-
tional information to help a trained model focus on the parts that induce the
emotion, thereby minimizing potential distractions. For example, Peng et al. [22]
created the EmotionROI dataset, which offered an emotion stimuli map with
each image to facilitate finding the “affective regions” that align better with
emotion concepts. Kosti et al. [10] created the multi-label EMOTIC dataset,
including images featuring people with the corresponding bounding boxes and
contextual scene information. Other researchers aimed to address the dataset
bias problems with larger and more diverse datasets. You et al. collected a
dataset [33] of over 3 million weakly labeled images by searching Flickr and
Instagram images for eight emotion keywords and then curating 23, 000 images
with human annotations via Amazon Mechanical Turk (AMT). Panda et al. col-
lected WEBEmo [18] with 268, 000 images from a stock image database. The
dataset includes three levels of labels.

Later, with the success of multimodal representation learning leveraging
image-text pairs, such as CLIP [23], VinVL [36], and ALIGN [8], researchers
realized that text input can play a vital role in computer vision tasks. The
semantic meaning in the text input improves the traditional image classifica-
tion pipeline by introducing the generalizability of unseen concepts, which has
demonstrated effectiveness in downstream tasks such as zero-shot image classi-
fication [23]. Based on this idea of multimodal models, later works, such as [9],
included language models in the emotion prediction pipeline to perform feature
alignment between semantic textual embeddings and embeddings from a vision
encoder. Currently, with the help of LMMs [12], we can take advantage of their
training on very large numbers of image-text pairs. This gives us a well-trained
vision encoder embedded in its model architecture, enabling a more compre-
hensive integration of image and text features during the early stages of the
model.
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3 Method

In this section, we first present the overview of our idea and introduce our
emotion prediction architecture in Sect. 3.1, then explain the adapter network
module we use to predict the emotion in Sect. 3.2. We will cover the prompt we
use to trigger the model in Sect. 4.2 and discuss all the prompts we have used
and their performances in Sect. 4.4.

3.1 Overview

As demonstrated in Fig. 1, our general prediction architecture has two parts: the
first part is to use a text prompt to obtain the LMM’s response and embedding
regarding an input image, and the second part is to use an adapter network
to process the LMM’s embedding and output the emotion label. We can see
from the example in Fig. 1 that the LMM can provide the emotion label and
an explanation in its response. However, because of the subjectivity of emotion
labeling and the training method of LMMs, the LMM forms a specific “opinion”
about the image, which may differ from the labelers’ views. In other words, the
bias of the output of the LMM may not be consistent with the bias in the labeling
process of a specific dataset. To bridge this gap, we employ a shallow adapter
network that transforms the LMM’s response to the dataset’s labels. We choose
to use the LMM’s last hidden state as the input of the adapter network instead
of using another sentence embedding model.

3.2 Adapter Network

As we explained above, the LMM’s output needs to be transformed to the spe-
cific dataset’s labeling to bridge the bias gap between the model’s response and
the dataset’s labelers’ responses. To accomplish this, we employ an adapter net-
work. However, we need to have a suitable embedding for the model’s response.
Following the setting of many text embedding and classification tasks from nat-
ural language processing [24,25], we use the last hidden state of the LMM to
construct the desired embedding. The dimensions of the last hidden state are
(SEQUENCE LENGTH, EMBEDDING DIM). To mitigate the impact of the
token sequence order, we compute the average across the first dimension result-
ing in an embedding of length EMBEDDING DIM. To explore alternative possi-
ble ways, we attempted different methods to obtain the embedding utilizing the
last hidden state, but observed no improvement in performance. We then use a
shallow neural network as our adapter model.

4 Experiments

In this section, we first describe the datasets we use to evaluate our method in
Sect. 4.1, then introduce the details of our implementation in Sect. 4.2. We then
explain the experimental results in Sect. 4.3, followed by the ablation study in
Sect. 4.4. Finally, we discuss our findings in Sect. 4.5.
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4.1 Datasets

We evaluate the performance of our method on the following datasets. These
datasets cover a wide range of scales and exhibit diversity across multiple
domains. To show the generalizability of our approach, we will not only apply
the experimentation settings followed in the previous SOTA methods, but also
include varying proportions of the training data, spanning from 10% to 80% of
the entire data, without changing the testing proportions from what have been
used in prior work.

Emotion6. This dataset [21] is collected from Flickr by using Ekman’s six basic
emotions keywords and their synonyms. Each emotion category evenly contains
330 images (1, 980 images in total). In our settings, we use the setup in [32,37]
and treat this dataset as a single-label dataset with 80% of the data used for
training and 20% used for testing.

UnBiasedEmotion. UnBiasedEmotion [18] is collected from Google using six
basic-level emotions proposed in [19], making 3, 045 images in total. We use the
experimental setup in [31] with 80% of the images used for training and 20%
used for testing.

Emotion-6. Emotion-6 dataset [18] contains 8, 350 images labeled with six
emotions proposed in [19] collected from 150K images from Flickr and Google,
and labeled by five human subjects. We use the setup in [13,34] with 80% of the
images used for training and 20% used for testing.

FI8. FI8 dataset [33] contains 23, 308 images labeled with eight emotion labels
derived from [15]. This dataset is queried online from Flickr and Instagram by
the corresponding eight emotion keywords, and each image is labeled by five
Amazon Mechanical Turk (AMT) workers, ensuring a minimum agreement of
three workers on each label. As some images no longer exist on the Internet,
only 23, 185 images were crawled for our experiments. We use the split setting
in [13,34] and randomly select 80% of the data for training, 5% for validation
and the remaining 15% for testing.

4.2 Implementation Details

LMM Inference. We use the LLaVA model proposed in [12] as our LMM.
Specifically, we use version 0 of this model. Its integration with Hugging Face
allows us to use Hugging Face’s general API to perform inference. To ensure
the reproducibility of the result, we turn off the sampling and use beam search
instead. Specifically, we use five beams for beam search. We also set the maximum
new number of output tokens to 1024. Following the suggested pre-processing
steps for this model, we first read raw image files in RGB channel format and
resize their shapes to 224 × 224. Notably, the average inference time for one
resized image is 7.101 s
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Prompt to Trigger the Model. In this work, the prompt we use to trigger
the model is: Which top three emotions will people feel when they see this image?
Choose answers from the list: [LABEL LIST]. In the first sentence of answer,
give the list of emotions. In the following sentences, provide your explanation.

The [LABEL LIST] means the list of labels in the target dataset. To make the
order of this label list constant, we first sort them in alphabetical order. The
reason for asking the model to output multiple labels and to explain is to trigger
the model so that its answer will be more rational and more likely to be correct
and reasonable.

We will cover all the prompts we have used in Sect. 4.4.

Adapter Network. We used a single linear layer with softmax activation func-
tion in our implementation of the adapter network. We also experimented with
deeper networks, different activation functions, with and without residual con-
nections, with no gain in performance.

Experiment Setup. We conducted our experiments using PyTorch on a single
NVIDIA RTX 1080 GPU. To remove the influence of random seeds, we repeated
each experiment ten times and reported the average and standard deviation.
Our chosen optimizer is stochastic gradient descent (SGD) with a learning rate
of 0.03 and momentum 0.9. The training process uses 50 epochs, with a batch
size set at 1024. We also experimented with a different optimizer and different
learning rates with no gain in performance.

Table 1. Emotion prediction test results on the previous SOTA method and our
method. The “vg” and “td” scores of our method listed in the table are the aver-
age accuracy and its standard deviation of accuracy over ten experiments following the
dataset split setting outlined in the corresponding SOTA paper to remove the influence
of random seeds.

Datasets Previous SOTA (%) Our Method (%)

Avg Std

Emotion6 72.73 [17] 73.38 1.74

UnBiasedEmotion 85.90 [4] 92.59 0.57

Emotion-6 65.01 [13] 69.98 0.79

FI8 79.21 [17] 88.45 0.73

4.3 Results

We compare the results of previous SOTA approaches and our results, as out-
lined in Table 1, following their dataset split setting. Additionally, we present
the results achieved under different split ratios of the train set while keeping the
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Fig. 2. The emotion prediction average test accuracy and standard deviation of our
approach evaluated on four datasets, spanning training data ratios from 10% to 80%
while keeping the testing data’s size fixed with the previous SOTA setting. In each
plot, the solid blue line is the average of ten experiments. We also include the result of
the previous SOTA as a black line.

size of the test set fixed in Fig. 2 to study how the performance of our method is
affected by the amount of training data used. Upon analyzing the results in the
Table 1, it is evident that our method’s average performance across ten experi-
ments significantly outperforms the previous SOTA methods in UnBiasedEmo-
tion, Emotion-6 and FI8 dataset by a substantial margin. On the largest FI8
dataset, we are around 9% better than the previous SOTA. The standard devi-
ations for these datasets remain below 0.8, indicating the consistency of our
method. On the smallest dataset, which is Emotion6, our method beats the pre-
vious SOTA by 0.65 on average, but this advantage is not consistently obtained
because it is less than the standard deviation for our method. In Fig. 2, where
we experimented with different dataset split settings, we observe the exceptional
ability of our method to generalize. We can see that even with as little as 20% of
the data, the average performance across ten experiments can surpass the pre-
vious SOTA results with a margin bigger than the standard deviation on three
datasets.
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4.4 Ablation Study

Table 2. Different versions of prompts we used to trigger the LMM. The placeholder
LABEL LIST, present in Type III and Type IV prompts, means the list of labels in the
target dataset. To make the order of this label list constant, we first sort its elements
in alphabetical order.

Type Index Prompt Content

I 1 Describe this image from an emotional perspective

II 2 Which emotion will people feel the most when they see this image?

3 Which emotion will people feel the most when they see this image? First,
provide the step by step explanation of your answer. Then, provide your
answer

4 Predict the most likely emotion people will feel when they see this image.

III 5 Which emotion will people feel the most when they see this image?
Choose the answer from the list: [LABEL LIST]. Only give the chosen
emotion

6 Predict the most likely emotion people will feel when they see this image.
You need to choose the answer from the list: [LABEL LIST]. Give the
name of the chosen emotion in the first sentence of your answer. Then,
provide your explanation in the following sentences

7 Predict the most likely emotion people will feel when they see this image.
You need to choose answers from the list: [LABEL LIST]. Your response
should take into account the visual cues, context, and any other relevant
information. Remember to give the name of the chosen emotion in the
first sentence of your answer. Then, provide your explanation in the
following sentences

IV 8 Which top three emotions will people feel when they see this image?
Choose answers from the list: [LABEL LIST]. Only give the list of cho-
sen emotions

9 Which top three emotions will people feel when they see this
image? Choose answers from the list delimited by square brackets.
[LABEL LIST]

10 Which top three emotions will people feel when they see this image?
Choose answers from the list: [LABEL LIST]. In the first sentence of
answer, give
the list of emotions. In the following sentences, provide your explanation

Prompt Design. As mentioned in Sect. 3, here we will show the overall per-
formance of different prompts we have attempted. We deploy multiple prompt
versions to trigger a response from the LMM. In general, our prompts are split
into four types, which do one of the following: (1) Ask the model to describe the
image from an emotional perspective (2) Ask the model to predict the emotion
people will feel when they see this image without giving the model any further
information about the dataset. (3) Ask the model to do the same while providing
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it with the dataset’s label list and asking the model to choose an answer from
the list. (4) Similar to (2), but ask the model to provide multiple answers from
the list instead of just one. In total, we have ten different prompt versions across
the four types. We evaluate the performance of our pipeline on all ten versions.
Table 2 includes all prompt versions used in our experiments. From the results
in Table 3, we can see that the accuracy is stable across different prompt types
on three datasets. For the FI8 dataset, the choice of prompt has a huge influence
over the accuracy, indicating the importance of the prompt choice for LMMs.
However, once the prompt is fixed, the accuracy is very stable under multiple
repetitions.

Table 3. Emotion prediction test accuracy for each prompt in Table 2. The accuracy
is the average over ten experiments following the dataset split setting outlined in the
corresponding SOTA paper to remove the influence of random seeds.

Datasets Acc (%) by prompt index

1 2 3 4 5 6 7 8 9 10

Emotion6 73.01 73.01 72.95 74.22 72.95 72.10 73.84 73.43 73.38 73.38

UnBiasedEmotion 92.96 92.46 92.71 92.81 93.12 92.13 92.50 92.40 92.41 92.59

Emotion-6 69.69 69.55 70.02 69.97 69.61 69.65 70.60 68.98 69.21 69.98

FI8 77.76 77.77 77.38 77.67 78.79 77.47 77.56 77.13 77.45 88.27

Choice of LMM. Currently, there are lots of open source instruction fine-tuned
LMMs available in the community, and we will compare the performance between
two of such LMMs using the same experimental settings: LLaVA, which is the one
we use in the main experiments, and BLIP2 [11], which is another widely used
LMM, in Table 4. From the documentations for both LMMs, the LLaVA model
has around 13 billion parameters and BLIP2 has around 2.7 billion parameters.
Despite being almost 80% smaller, the BLIP2 model’s results are comparable to
the SOTA results in half of the evaluation datasets. However, there is a clear
positive correlation between the size of the LMM and its accuracy performance,
suggesting that the model’s scale is important for optimal accuracy.

Importance of the Adapter Network. To show the importance of the
adapter network, we compare the performance between our current pipeline
with k-nearest neighbor (kNN) results without the adapter network in Table 5.
From the results, we can see that the accuracy of our method surpasses the kNN
results by a large margin. Nonetheless, it is worth noting that the kNN approach
beats the previous SOTA results in three out of the four datasets, which again
highlights the effectiveness of LMMs for image emotion prediction.
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Table 4. Emotion prediction test accuracy on four datasets using LLaVA and BLIP2
as the LMM modules using the same prompt. The accuracy is the average over ten
experiments following the dataset split setting outlined in the corresponding SOTA
paper to remove the influence of random seeds.

Datasets Acc (%)

LLaVA BLIP2

Emotion6 73.38 71.99

UnBiasedEmotion 92.59 87.54

Emotion-6 69.98 55.95

FI8 88.45 72.78

Table 5. Emotion prediction test accuracy on four datasets following our method and
using kNN instead of adapter network to prove the importance of the adapter network.
The accuracy is the average over ten experiments following the dataset split setting
outlined in the corresponding SOTA paper to remove the influence of random seeds.
N means number of neighbor in the kNN

Datasets Acc (%)

Adapter kNN

N = 3 N = 5 N = 10 N = 25

Emotion6 73.38 65.10 64.92 67.55 66.19

UnBiasedEmotion 92.59 87.95 89.10 87.91 86.80

Emotion-6 69.98 61.68 64.17 65.08 65.14

FI8 88.45 85.62 85.51 86.76 85.88

4.5 Discussion

LMM’s Ability to Follow Instructions. As shown in Table 2, for Type
III and Type IV prompts, we not only ask the LMM to predict the induced
emotion(s), but also require it to choose one or more answers from the provided
label list. However, from its responses we observe that the LMM does not always
follow such instructions. We present four examples using the UnBiasedEmotion
dataset in Fig. 3. The first two examples employ the Type III prompt. In the first
example, the LMM can choose the emotion “sadness” from the label list in the
prompt, but it ignores the instruction “Only give the chosen emotion”. In the
second example, the LMM outputs the emotion “warmth”, which is not in the
label list, and again it disregards the requirement to provide only the emotion.
The following two examples use the Type IV prompt. In the third example, the
LMM can follow instructions as it chooses the three emotions from the label
list in the prompt and provides explanations. In the fourth example, the LMM
outputs the emotion “excitement”, which is not in the label list.
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Case Analysis. In Fig. 4, we perform a detailed case analysis of our method
using the prompt we mentioned in the main experiment on the Emotion6 dataset.
The first two examples demonstrate the alignment between the text response, the
predicted label, and the true label, which serves as an indicator of the potential
of the LMM for image emotion prediction. Conversely, in the third example, the
predicted label and the LMM’s text response are consistent but diverge from
the ground-truth label. However, the model’s response seems rational since joy
is a reasonable emotion people would feel when they see this image; it is just
different from the labelers’ view. In the fourth example, all three components: the
predicted label, the LMM text response, and the ground truth label are different.
While the predicted label differs from the ground truth label, the predicted label
is closer to the ground truth label than it is to the text response, indicating the
importance of our adapter network. Also, note that in this example, the text
output accurately describes the image, but gives a different perspective on the
emotions associated with it.

Fig. 3. Example analysis on Type III and Type IV prompts using UnBiasedEmotion
dataset. From these examples, we can see that the LMM’s ability to follow instructions
can still be improved.
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Fig. 4. Success and failure case analysis on Type IV prompts using Emotion6 dataset.

5 Conclusion

In summary, we present a novel approach for predicting emotions from images,
leveraging the power of large multimodal models (LMMs). Our method combines
a pre-trained LMM with a shallow adapter network to map the output of the
LMM to the emotion label. Our experimental results serve as a compelling evi-
dence for the robustness and efficacy of our method. In particular, our method
is capable of surpassing the previous SOTA performance even when trained on
only 20% of the data on three of the four studied datasets, which underscores
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the potency of our method. Moreover, the text response of the LMM could serve
as an explanation of the predicted label.
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Abstract. To develop deep neural networks (DNNs) that maintain
strong performance under different natural image corruptions such as
noise and blur, namely with strong corruption robustness, is essential for
real-world applications. Current methods to enhance corruption robust-
ness focus primarily on data augmentation. But these methods are often
empirically designed without a clear theoretical foundation. Here, we
show that flatter minima of loss landscapes generally correspond with
stronger corruption robustness. Based on this finding, we have developed
a method named LASAM-DA that combines layer adaptive sharpness-
aware minimization(LASAM) with data augmentation (DA) to boost
corruption robustness. LASAM pushes DNNs towards flat minima of
loss landscapes, while DA guides DNNs to memorize diverse data dis-
tributions. LASAM and DA reinforce each other without interference.
Experiments on CIFRA-10-C, CIFAR-100-C and Tiny-ImageNet-C show
that LASAM-DA outperforms competing methods and achieves state-of-
the-art performance. LASAM-DA is versatile, not restricted to specific
data types, network architectures or data augmentation methods. Code
is openly accessible at https://github.com/cbmi-group/Flatter-Minima-
Helps-for-Robustness.

Keywords: Corruption robustness · Flat minima · Layer adaptive
sharpness-aware minimization · Data augmentation

1 Introduction

In real-world applications, images may be degraded by a wide variety of natural
corruptions such as noise, blur, weather conditions, and digital distortions (see
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Supplementary Fig. S1 for corrupted image examples). It is essential to ensure
that deep neural networks (DNNs) maintain their performance against such cor-
ruptions. Corruption robustness characterizes the performance of DNNs under
these corruptions [5]. Related to corruption robustness, adversarial robustness
defines the worst-case performance of DNNs under targeted adversarial attacks
[9]. While image corruptions occur naturally, adversarial attacks are designed
in a tailored fashion. A considerable amount of work [18,27] has shown that
adversarial robustness and corruption robustness are related but not equivalent.
Several datasets such as ImageNet-C, CIFAR-10-C and CIFAR-100-C [11] have
been developed to benchmark corruption robustness. However, because of the
wide variety of image corruptions, it remains challenging to develop DNNs that
are robust against all corruptions.

Fig. 1. Relation between corruption robustness (measured in cross-entropy) and loss
landscape flatness (measured in worst sharpness). Training of WideResNet [33] with
four data augmentation strategies and four initial learning rates. RLoss (lower corre-
sponds to stronger robustness, x-axis) is plotted with respect to worst sharpness (lower
corresponds to flatter minima, y-axis). There is a clear positive correlation between
corruption robustness and loss landscape flatness (with a Pearson correlation of 0.82,
p-value <0.001). Namely, flatter minima correspond with stronger robustness.

Specifically, for image classification, a good classifier should generalize well
from training data to images with diverse corruptions. However, studies [8,11]
have shown that vanilla DNNs can fail to handle such corruptions, resulting in
performance collapse. Therefore, it is essential to enhance corruption robustness
of DNNs. Currently, data augmentation is the most commonly used strategy for
this purpose. It is hoped that when DNNs are trained with images of diverse con-
ditions, they should become robust against shifts in data distribution caused by
image corruptions. To this end, some studies choose to synthesize large numbers
of corrupted images for training while others choose to increase the complexity
or entropy of training data. However, these methods are empirically designed
and lack a clear theoretical foundation. They are often limited in their perfor-
mance or in the types of corruptions they can handle. In view of the wide variety
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of corruptions, it is often difficult to determine a prior which types of augmen-
tation operations are the most effective. Furthermore, increasing the diversity of
training data comes at the expense of increased computational cost.

Here, we study corruption robustness from a different perspective. We quan-
tify the corruption robustness of DNNs using corruption robustness loss (referred
to as RLoss) and quantify the flatness of loss landscapes using worst sharpness
[17,29]. Then we examine the relation between the corruption robustness and
loss landscape flatness on several classification models trained with several rep-
resentative data augmentation methods, we find that flatter minima generally
correspond with smaller corruption RLoss hence stronger corruption robustness
(Fig. 1). To further verify this finding, we have conducted additional experiments.
We then propose a new strategy to enhance corruption robustness. Our main
research contributions are as follows:

(1) Through experiments, we find that in image classification, flatness of local
minima in loss landscape corresponds positively with corruption robustness.
Models that converge to flatter minima generally show stronger corruption
robustness.

(2) Based a simple linear binary classification, we demonstrate how flat minima
helps for corruption robustness.

(3) We propose LASAM-DA to enhance corruption robustness, in which
LASAM pushes DNNs towards flat minima of loss landscapes, while DA
guides DNNs to memorize diverse data distributions. Experiments on
CIFAR-10-C and CIFAR-100-C show that LASAM-DA outperforms com-
peting state-of-art methods. Furthermore, LASAM-DA is broadly applica-
ble, not restricted to specific data types, network architectures, and data
augmentation approaches.

2 Related Work

2.1 Corruption Robustness

Multiple studies have shown that the performance of DNNs trained on clean
or undistorted images can drop substantially under image corruptions [8,11].
Hendrycks et al. [11] simulates 18 types of corruptions with 5 levels of sever-
ity for each type. The simulated datasets, including CIFAR-10-C, CIFAR-100-C
and ImageNet-C, can be used to benchmark corruption robustness of DNNs.
Substantial research effort has been made to make DNNs more robust against
corruptions simulated in these datasets. Currently, data augmentation is the
most commonly used strategy. It is hoped that when DNNs are trained with
more diverse data distributions, they will be more robust against diverse corrup-
tions. Other than commonly used data augmentation such as cropping, random
flipping, and rotation, several new methods have been proposed. For example,
Cutout [3] randomly picks a patch in an image and fills it with zeros, keep-
ing labels unchanged. Patch Gaussian [22] adds a patch of Gaussian noise to
an image. Cutmix [32] randomly fills an image with a patch of other training
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images. Mixup [36] randomly selects two training images and their labels, and
uses linear interpolation to generate a new training image and a new training
label.

Overall, these operations approaches are rather simplified and, unsurpris-
ingly, less than satisfactory in performance. To address this problem, some more
sophisticated methods have been proposed. Augmix [12] consists of three aug-
mentation chains. In each augmentation chain, one to three augmentation oper-
ations are randomly selected. When feeding an image into the augmentation
chains, outputs of these chains are weighted to obtain the final augmented image.
Based on Augmix, Augmax [30] adjusts the weights of augmentation opera-
tions to get the hardest augmented samples. AutoAugment [2] employs a search
method such as reinforcement learning in the space of augmentation operations
to automatically find better data augmentation strategies. In addition, Pixmix
[13] adds fractals and visualized features to increase the structural complexity
of training data. Prime [24] provides a data augmentation method that relies on
the simple yet rich families of max-entropy image transformations.

Different from these manually crafted image augmentation methods, learn-
able augmentation methods are proposed to synthesize diverse training data.
For example, ANT [27] generates a series of adversarial noise samples through
a generative network to fool a classifier. Augmented images are generated by
adding these adversarial noise samples onto clean images. DeepAugoment [10]
utilizes an image-to-image transformation network to generates a series of per-
turbations onto clean input images, thus increasing diversity of training data.
Overall, these methods focus on augmentation of training data, pushing DNNs
to see more diverse data distributions to achieve robustness. However, they are
empirically designed without a clear theoretical foundation. Consequently, aug-
mentation methods that combine augmentation operations cannot explain which
property of augmentation is more effective. Studies in [23] have proposed Mini-
mal Sample Distance between augmentations and corruptions to demonstrate a
strong correlation between similarity and robustness, but with limited success.

2.2 Loss Landscape Flatness

The loss landscape is a concept widely used in machine learning for under-
standing the convergence behavior of optimization algorithms and analyzing the
interplay between model architecture, data complexity, and optimization pro-
cedures. Each point on the landscape represents the loss that corresponds to a
certain parametric configuration of a DNN.

Analysis of flat and sharp minima of loss landscape dates back at least to
[14]. Recently, the notion of flat minima has received much attention in under-
standing the behavior of DNNs. Empirical evidence [16,17,20] suggests positive
correlation between sharpness and generalization. Some studies on adversarial
training and loss landscape [21,25,29] find adversarial training does not necessar-
ily result in flatter loss landscape. Wu et al. [31] first explored the loss landscape
with regard to adversarial examples and identified a strong connection between
loss flatness and robust generalization gap. Stutz et al. [29] defined the flatness in
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weight space and showed improved loss flatness contributes to adversarial robust-
ness. But the relation between loss landscape flatness and corruption robustness
is unclear.

Some studies focus on improving loss landscape flatness. Small batch size
training [17] and usage of unlabeled data [34] are recommended, because they
have been shown to help convergence towards flatter minima implicitly. Adver-
sarial weight perturbation (AWP) [31] is proposed to explicitly regularize the
flatness of loss landscape to obtain flatter local minima. Sharpness-aware min-
imization (SAM) [7] explicitly optimizes both loss function and loss sharpness.
Adaptive SAM (ASAM) [19] is an improvement over SAM, in which a new con-
cept of adaptive sharpness is introduced. ASAM is designed based on adaptive
sharpness to alleviate the side-effect of the original SAM in training caused by
scale-dependency.

3 Method

3.1 Flat Minima Helps for Corruption Robustness

For ease of understanding, we use a simple linear binary classification as an
example to visually explain how a flat loss landscape contributes to stronger
corruption robustness.

Given a dataset D = {(x1, y1), (x2, y2), · · · , (xN , yN )}. Where xi ∈ Rn

denotes input sample, yi ∈ [+1,−1] is category label of xi(i = 1, 3, . . . , N). Sup-
pose there are two separating hyperplanes, denoted as (ω1, b1) , (ω2, b2) respec-
tively, where (ω2, b2) is the maximum margin separating hyperplane obtained by
support vectors (has the maximum geometric margin from all sample points).
While (ω1, b1) is close to some sample points. As shown in Fig. 2(a), the two sep-
arating hyperplanes can correctly classify all samples. For all positive samples,
there are ω1 · x + b1 = 1, ω2 · x + b2 = 1, for all negative samples, there are
ω1 ·x+ b1 = −1, ω2 ·x+ b2 = −1. Next, we will compare the flatness of (ω1, b1)
and (ω2, b2). Before that, we see the definition of loss function of linear binary
classification:

Loss (w, b) = −
N∑

i

yi (ω · xi + b) (1)

When the classifier works correctly, the model outputs the same result as
category label, that is, ω · x + b = 1, y = +1 or ω · x + b = −1, y = −1.

In both cases, −y (ω · x + b) = −1, then Loss (w, b) = −
N∑
i

yi (ω · xi + b) = −N

reaches the minima. If there are M wrong classifications, for misclassified sample,
−y (ω · x + b) = 1, then Loss(ω, b) = −N + M .

Obviously, both Loss(ω1, b1) and Loss(ω2, b2) are −N . Because separat-
ing hyperplane (ω2, b2) stays farthest away from all samples and (ω1, b1) is
close to some samples. So, there must exist a weight perturbation (Δω,Δb).
Under this perturbation, a new decision hyperplane (ω2 + Δω, b2 + Δb) is
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Fig. 2. An example of linear binary classification.

obtained. At this hyperplane, all samples can still be correctly classified, so
Loss(ω2 + Δω, b2 + Δb) = −N still reaches the minima. However, for separat-
ing hyperplane (ω1 + Δω, b1 + Δb), some samples are misclassified due to angle
offset, so Loss(ω1 + Δω, b1 + Δb) = −N + M , where M > 0, indicating the
number of misclassified samples. see Fig. 2(b, c). Under the same perturbation,
we calculate numerical change of loss function:

Loss (ω1 + Δω, b1 + Δb) − Loss (ω1, b1) = M > 0 (2)

Loss (ω2 + Δω, b2 + Δb) − Loss (ω2, b2) = 0 (3)

As can be seen, loss change of (ω2, b2) is still 0, while loss change of (ω1, b1) is
greater than 0. According to the intuitive understanding of loss flatness, within
the same neighborhood, loss change of (ω2, b2) is smaller than (ω1, b1), thus
(ω2, b2) is flatter than (ω1, b1).

We conclude that a flatter loss landscape corresponds to a larger geometric
margin between the decision hyperplane and sample points. In this case, when
input data distribution undergoes some deviations, the model has enough fault-
tolerant capability to perform well. Conversely, if a model converges to a sharp
minima, even small sample or weight perturbations can cause the loss increases
sharply, resulting in decreased model performance. Similarly, for convolutional
neural networks, flatter minima means less change in loss. That is, models will be
more powerful to handle data offset while keeping its prediction error relatively
stable. Therefore, models that converge to flatter minima have greater fault-
tolerant capability and greater corruption robustness, while models that converge
to sharper minima are less robust to data corruption.

3.2 Worst Sharpness

A variety of metrics have been proposed to quantify loss landscape flatness. In
this study, we use worst sharpness [29], which is determined by the maximum
and minima loss within a fixed weight perturbation v. The maximum loss is
thought to represent the highest point within perturbation v. Thus lower worst
sharpness indicates a flatter minima. Suppose the network eventually converges
to weight w, the worst sharpness is computed as:



320 L. Zhong et al.

max
v∈Bξ(w)

[loss (x;w + v) − loss (x;w)] (4)

where Bξ (w) denotes the weight perturbation and x denotes input. ξ is weight
perturbation coefficient. To ensure the scale-invariance [4] of weights, Bξ (w) is
set to be proportional to weight norm.

Bξ (w) =
{

w + v : ||v(l)||2 ≤ ξ||w(l)||2,∀layer l
}

(5)

In our experiment, we search for local maximum loss max
v∈Bξ(w)

[loss(x;w + v)]

alongside the direction of gradient ascent.

3.3 LASAM

Sharpness-aware minimization (SAM) [7] is a common training method to
improve loss flatness, which is designed to optimize both loss function and loss
flatness explicitly. Training with SAM is essentially solving the following sharp-
ness aware-minimization (SAM) problem:

min
w

(
lossSAM (w) + λ||w||22

)

lossSAM (w) Δ= max
||v||≤Bξ(w)

[loss(x;w + v)]
(6)

where w is convergence point. As is shown in Eq. (6), SAM contains two opti-
mizations, the first one is to find a sharp minima, that is, to maximize the loss

Algorithm 1: LASAM algorithm
Input: Loss function loss(w), training dataset S : ∪n

i=1 {(xi, yi)}, batch size b,
total number of layers L of the model, model weight
w = [w0, w1...wL−1], initial maximum weight perturbation coefficient
ξ0 : ||v(0)||2 ≤ ξ0||w(0)||2 for the first layer, weight decay coefficient λ,
scheduled learning rate α, initial weight w0.

Output: Trained weight w.
1 Initialize weight w = w0.
2 while not converged do
3 Sample a mini-batch B of size b from S, B = {(x1, y1) , (x2, y2) , . . . (xb, yb)};
4 Compute lossB(w) and gradient ∇lossB(w);
5 Tw is element-wise normalization, Tw = diag

(∣∣w0
∣
∣ ,

∣
∣w1

∣
∣ , . . .

∣
∣wL−1

∣
∣);

6 for l = 0, 1, .., L − 1 do
7 ξl = ξ0 − l/L for layer l;
8 vl = ξlT

2
w∇lossB(w)/ ‖Tw∇lossB(w)‖2;

9 wl = wl − α
(∇lossB

(
wl + vl

)
+ λwl

)
;

10 end
11 end
12 return w = [w0, w1...wL−1]
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gaps within weight perturbations. When a model reach the sharp region, the
second optimization helps to jump out of the sharp minima.

Adaptive SAM (ASAM) [19] is an improved SAM, in which a new concept
called adaptive sharpness is introduced. ASAM is designed to alleviate the side-
effect of the original SAM in training caused by scale-dependency.

In this study, we propose an improved ASAM called layer adaptive sharpness-
aware minimization (referred to as LASAM). It is built on recent studies [1,35,
37] which revealed that different layers within DNNs display distinct attributes
in terms of generalization and robustness. In ASAM, the weight perturbation
coefficient ξ (see Eq. (5)) for each layer are fixed. However, [37] reports that
weights close to the input are more stable and can accept larger perturbations.
As layer deepens, weights gradually become ‘sensitive’. Sometimes, even a small
perturbation may cause the model to become unstable and unsuitable for large-
scale perturbations. So, in our experiments, ξ is set to be the highest in the first
layer and to be the lowest in the last layer. Then in the intermediate layers,
ξ values are determined through linear interpolation, gradually dropping from
the highest value to the lowest value. See Algorithm 1 for detalied LASAM
operations.

3.4 LASAM-DA

Further, training with LASAM only operates in the weight space, independent of
hyperparameters, inputs and outputs. Since much work [12,13,22,24,32,36] has
been done to enhance corruption robustness by diversifying data distribution in
the input space, it is reasonable to believe that it may be beneficial to optimize
both in the weight space and the input space.

We propose a new strategy (referred to as LASAM-DA) that combines
LASAM with data augmentation in model training. Specifically, LASAM oper-
ates in the weight space to push the trained model towards a flat minima, while
data augmentation will guide DNNs to memorize diverse data distributions from
image corruptions. Training with LASAM-DA achieves the strongest corruption
robustness to date.

4 Experiments

We use primarily two benchmark datasets CIFAR-10-C, CIFAR-100-C and Tiny-
ImageNet-C [11] to characterize corruption robustness. CIFAR-10-C contains
10,000 test images in 10 categories while CIFAR-100-C contains 10,000 test
images in 100 categories. Tiny-ImageNet-C is a subset of ImageNet and contains
200 categories, where each category contains 500 color images with size 64×64.
In these three datasets, 19 types of corruption degradation are simulated on each
image, with 5 levels of severity for each corruption type. We conduct experiments
on WideResNet [33], tiny ViT (ViT-T) [6], DenseNet [15] and VGG19 [28]. Each
of them represents an important yet different class of network architecture. For
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Fig. 3. Corruption robust loss (RLoss) with respect to worst sharpness throughout
one training, each point corresponds to an epoch. WRN: WideResNet. Networks are
trained on CIFAR-10, CIFAR-100 and evaluated on CIFAR-10-C, CIFAR-100-C.

data augmentation, we choose four representative methods: Mixup [36], Cutmix
[32], Augmix [12] and Pixmix [13].

Suppose x ∈ RN×N is an image to be tested, with label is y, fθ(·) is model.
Then RLoss and Test Error can be defined as:

RLoss = CrossEntropy (f(x); y) (7)

Test Error = Nmisclass/Ntotal (8)

In particular, when x is corrupted image, Test Error is equal to robust error
(RErr). Where Nmisclass is the number of misclassification on test datasets,
Ntotal is the number of total images being tested.

4.1 Relation Between Corruption Robustness and Worst Sharpness

When WideResNet [33] is trained on CIFAR-100 and ViT-T [6] on CIFAR-10,
we recorded train loss, test loss and corruption loss curves over epochs, (Sup-
plementary Fig. S2). Unlike robust overfitting commonly observed in adversar-
ial robustness [26], corruption loss, characterized by cross-entropy, gradually
decrease during training until stabilizing at a steady band. When we computed
worst sharpness and corruption robust loss over epochs, we observed positive
relationship between sharpness and corruption loss (see Fig. 3).

To further verify this observation, we went on to test four data augmentation
methods (Mixup [36], Cutmix [32], Augmix [12] and Pixmix [13]). Considering
that the training is sensitive to initial learning rate, we try four initial learning
rates for each augmentation training. Again, we had the same observation, as
shown in Fig. 1. Taken together, these results indicate that networks with good
robustness mostly converge to flat minima.
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4.2 Improving Loss Minima Sharpness

Table 1. Results of two batch sizes for training of WideResNet on CIFAR-100, tested
on CIFAR-100-C. RLoss: Robust loss, cross entropy on corrupted images. RErr:
Robust error, misclassification rate on corrupted images. For RErr and RLoss, lower
is better. Lower sharpness means flatter minima.

Sharpness(%)↓ RErr(%)↓ RLoss↓
Batch Size 128 1024 128 1024 128 1024
Cutmix 352.3 358.8 50.25 52.92 2.43 2.57
Mixup 212.7 349.7 45.59 48.77 2.03 2.18
Augmix 85.3 330.2 35.18 47.22 1.59 2.18
Pixmix 75.2 183.0 32.01 33.18 1.27 1.33

Table 2. Corruption test errors (lower is better) of some networks trained on
CIFAR-10, CIFRA-100 and Tiny-ImageNet with LASAM. Test errors are evaluated
on CIFAR-10-C, CIFAR-100-C and Tiny-ImageNet-C. Vanilla: Standard train. TIN:
Tiny-ImageNet.

Data Train VGG19 WideResNet DenseNet ViT-T

CIFAR-10 Vanilla 26.38 22.84 23.38 27.33
LASAM 22.97 21.02 21.41 24.79

CIFAR-100 Vanilla 54.50 49.35 46.74 56.58
LASAM 51.49 45.83 43.82 55.53

TIN Vanilla 79.51 74.75 68.53 78.28
LASAM 78.55 72.32 66.83 76.36

In this section, we will try small batch size and LASAM to improve loss flatness
and observe changes of corruption robustness. Consistent with findings in [17]
and [19], small batch size and LASAM are helpful to cause ejection of a DNN
from an sharp basin during training, enabling subsequent convergence to a flat-
ter minima. To test our hypothesis that flatter minima in loss landscapes are
associated with stronger corruption robustness, we experiment with two batch
sizes: a small batch size of 128 and a large batch size of 1024.

We train WideResNet on CIFAR-100 with a drop rate of 0.3 for 200 epochs.
Each training is performed with different type of data augmentation from
Pixmix, Cutmix, Mixup and Augmix. Initial learning rate is 0.1, then decreasing
the learning rate by 10 at 50% training and 75% training. Optimizer is SGDM.
Corruption loss and errors are both evaluated on CIFAR-100-C and recorded
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Table 3. Test error (lower is better) of WideResNet on CIFAR-100 (corresponds
to ’Clean’ ) and CIFAR-100-C (corresponds to ‘Corrup’ ). WideResNet is trained on
CIFRA-100, with vanilla (without LASAM or data augmentation), LASAM (only
LASAM), DA (only data augmentation) and Ours (LASAM-DA, both LASAM and
data augmentation) respectively. Bold: best in each row.

Test data Vanilla LASAM DA Ours

Cutmix Clean 21.21 18.97 18.6816.71
Corrup 49.35 44.52 48.8543.73

Mixup Clean 21.21 18.97 19.6118.90
Corrup 49.35 44.52 45.5842.95

Augmix Clean 21.21 18.97 20.1718.91
Corrup 49.35 44.52 35.1431.96

Pixmix Clean 21.21 18.97 20.2318.33
Corrup 49.35 44.52 32.2529.74

together with worst sharpness in Table 1 (Results of ViT-T trained on CIFAR-
10 is presented in Supplementary Tab. S1).

It is clear in Table 1, small batch size of 128 does contribute to better flatness
[17]. When using small batch size, we see smaller robust loss and smaller robust
errors. Besides batch size, we also achieve general improvements in corruption
robustness using LASAM (in Table 2). Taken together, experiments indicate that
networks converging to flatter minima will achieve better corruption robustness.

4.3 Ablation Studies

Several sets of ablation experiments have been conducted. The results are sum-
marized in Table 3. Four data augmentation are examined. We train WideResNet
on CIFAR-100 without any corruption. Then the model is tested on CIFAR-100
valid data to characterize in-distribution generalization and CIFAR-100-C valid
data to characterize corruption robustness. Results of more DNNs and training
data (CIFAR-100-C and Tiny-ImageNet-C) are presented in the Supplementary
Tab. S2-5.

From Table 3, we can observe: (i). LASAM-DA always achieves the lowest
test error no matter which data augmentation method is used. (ii). Comparing
column 4 to 6, LASAM-DA is better than either pure data augmentation or
LASAM, indicating that simultaneous optimization of input and weight rein-
forces each other without interference. (iii). Better in-distribution generalization
error does not always mean lower corruption error. For example, for Cutmix,
the generalization error decreases from 21.21% to 18.68%, but corruption error
remains almost unchanged. Therefore, better in-distribution generalization does
not necessarily mean better corruption robustness.

For further verification, we plot scatter plots of generalization errors and
corruption errors. As can be seen from the Fig. 4(a), there is no obvious corre-
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Fig. 4. (a): Comparison of in-distribution generalization and corruption robust errors.
(b) Test errors on each type of corruption of LASAM-DA.

lation between the two errors. Additionally, in-distribution generalization errors
range from 0–5%, while corruption errors range from 0–20%. It means that the
gain of corruption robustness is much greater than the gain of generalization
performance. Taken together, although LASAM aims to improve generalization,
it essentially improves loss flatness. Based on our observation, LASAM con-
tributes to corruption robustness mainly because of improved flatness rather
than improvements of in-distribution generalization.

4.4 LASAM-DA

Based on the results of above ablation experiments, our method, LASAM-DA,
performs best when Pixmix is selected as data augmentation. We will evaluate
the performance of existing advanced methods for enhancing corruption robust-
ness on CIFAR-10-C and CIFAR-100-C benchmark datasets. These methods
include Patch Gaussian [22], Augmax [30], AutoAugment [2], Prime [24], Pixmix
[13], and ANT [27]. Most of these methods have been reproduced using shared
code. It should be noted that our reproduced results may be worse than those
reported in the original papers due to different model selected and without any
parameter adjustment. To ensure fairness, all methods share the same hyperpa-
rameters. Table 4 shows the final result, which is averaged across all corruption
types (about 9000,000 images). Detailed test errors on each type of corruption
on CIFAR-10-C, CIFAR-100-C, Tiny-ImageNet-C of LASAM-DA are presented
Fig. 4(b), more resluts are presented in Supplementary Fig. S3.

While LASAM-DA is not the best-performing method on clean test images
of CIFAR-10 (with only 0.5% difference from the best-performing method), it
achieves the lowest test error in all other cases. In particular, LASAM-DA out-
performs the best method by 1–2% on corrupted images. Overall, our proposed
method, LASAM-DA, performs the best corruption robustness, indicating its
superiority over other methods.
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Table 4. Test errors on CIFAR-10-C, CIFAR-100-C and Tiny-ImageNet-C. Model is
trained on clean images, then tested on CIFAR-10, CIFAR-100, Tiny-ImageNet (corre-
sponds to ‘Clean’ ) and CIFAR-10-C, CIFAR-100-C, Tiny-ImageNet-C (corresponds to
‘Corrup’ ). Vanilla (without any data augmentation). AutoAug: AutoAugment. Ours:
LASAM-DA. Bold: best, Underline: second best.

CIFAR-10-C CIFAR-100-C Tiny-ImageNet-C

Test data Clean Corrup Clean Corrup Clean Corrup
Vanilla 6.61 24.72 21.21 49.35 35.04 74.75
PG 7.23 19.95 21.67 40.14 35.89 71.53
Augmix 6.03 13.85 20.17 35.14 33.85 65.64
AutoAug 5.31 19.65 19.51 39.74 33.56 73.80
Prime 5.03 12.65 19.97 31.84 34.99 65.34
Augmax 6.62 12.19 20.40 33.35 34.07 63.94
ANT 7.03 12.15 22.05 33.54 34.73 64.20
Pixmix 6.61 12.38 20.23 32.25 34.49 63.34
Ours 5.51 11.29 18.33 29.74 33.61 61.62

5 Conclusion

In this study, we find that flatness of loss landscape correlates positively with
corruption robustness of DNNs. Then we explain the phenomenon through a
linear binary classification model. Specifically, models that converge to flatter
minima will obtain greater fault-tolerant capability. As a result, these models
are more powerful in handling data offset while keeping their prediction error rel-
atively stable. Based on this finding, we propose LASAM to boost loss flatness.
Further, we have developed a method that combines LASAM and data augmen-
tation (DA) to enhance corruption robustness. Importantly, LASAM and DA
reinforce each other without interference. LASAM-DA outperforms competing
methods and achieves state-of-the-art corruption robustness. It is versatile and
can be combined with different data types, model architectures and data aug-
mentation methods. Overall, our study provides a new perspective and a clear
theoretical foundation for enhancing corruption robustness of DNNs.
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Abstract. Obtaining paired noisy-clean images for various types of corruption
is challenging; however, a noisy image can be viewed as the superposition of two
distinct signals. Drawing inspiration from this concept, we address the problem
of image purification by focusing on separating these signals to recover accurate
classifier decisions. We introduce a dual-tail convolutional autoencoder designed
to isolate the noise signal from the clean image. This architecture is engineered to
simultaneously generate the additive noise pattern and the original clean signal.
We conducted extensive experiments across various types of natural image noise
with differing severity levels under both seen and unseen conditions. The results
demonstrate that the proposed unique architecture effectively manages multiple
noise types and significantly improves object recognition performance, which is
severely impacted by image corruption. For example, Salt & Pepper noise reduces
ResNet’s accuracy on CIFAR10 from 91.81% to 20.48%, however, the dual-tail
signal separator restores it to 91.61%. Additionally, the proposed method outper-
forms state-of-the-art approaches, uncovers connections between different cor-
ruptions, and, being cost-effective, has the potential to enable safe and secure AI
deployment on low-cost devices.

Keywords: Natural Noises · Noise Remover · Dual Tail Architecture · Signal
Separation · Robustness

1 Introduction

The susceptibility of image classifiers to common corruptions, such as noise and blur,
has become a significant concern in the field [4,7–9,22]. Image enhancement, therefore,
plays a crucial role in executing vision tasks effectively [30]. The quality of enhanced
(or purified) images is critical and can significantly influence the performance of vari-
ous vision algorithms, whether in super-resolution [25], object recognition [2], or object
detection [37]. Moreover, images captured in unconstrained environments or through
imperfect camera systems often contain noise [10,19], making image purification an
essential preprocessing step. Several approaches have been proposed in the literature,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Proposed dual tail encoder-decoder architecture (DuTaNet) for noise signal separation
to generate the clean images. Trans.Conv2D represents the transpose convolution that aims to
increase the resolution of the feature maps.

leveraging deep neural networks (DNNs) to map noisy images to their clean coun-
terparts [16,43,45]. However, supervised learning methods [11,16,35,46], which rely
heavily on large pairs of clean and noisy images, often struggle to generalize to unseen
noise distributions. Traditional denoising methods [13,18] also fall short when dealing
with unknown noise types, primarily because they tend to suppress noise rather than
effectively remove it. In this research, we introduce a novel perspective, asserting that
an image and its noise can be viewed as two distinct signals. By separating these signals,
it is possible to restore the clean image by effectively removing the noise. We propose
a dual-tail convolutional encoder-decoder network designed to separate the noise from
an image. One tail focuses on extracting the clean image from noisy data, while the
other isolates the added or inherited noise. We conduct extensive experiments across
multiple datasets using deep convolutional networks to validate the effectiveness of the
proposed Dual Tail (DuTa) signal separator network (DuTaNet). The key contributions
of this research are:

– The development of a dual-tail image purification algorithm capable of removing
noise with varying severity levels.

– Benchmarking different natural noises on multiple convolutional neural networks
using CIFAR and F-MNIST datasets to advance research in this area.

– Demonstrating through extensive experiments that the proposed algorithm is robust
and unbiased toward specific datasets or corruption types.
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1.1 Related Work

In the literature, several image restoration networks [20,38] have been proposed to
decompose the images into multiple image parts including raindrops and shadows.
Han et al. [20] proposed the blind image decomposition network for image decomposi-
tion. Wang et al. [38] proposed a context-aware pre-training of image decomposition by
using two parallel transformer encoders and an information fusion module based on a
multi-head prediction module. Apart from that utilizing the strength of supervised learn-
ing, several image restoration algorithms have been proposed [39,46,47]. Kim et al.
[26] have used the invertible encoder-decoder architecture, where the first stage learns
the object recognition network and the second stage produces low-quality and high-
quality (HQ) images. Due to the high dependency on high-quality images, the algorithm
is found less resilient across multiple forms of corruption. Yang et al. [42] proposed the
feature distillation method to produce HQ features. Byun et al. [14] propose the net-
work to model the Gaussian-Poisson noise distribution. Along with the requirement
of a Gaussian-Poisson noise pair, the algorithm is computationally heavy compared
to the proposed algorithm. The proposed algorithm fails to generalize against unseen
noises. IDR [47] works on iterative generation of noisier-noisy images. The algorithm
is effective in handling unseen and real-world noise and shows marginal improvement
as compared to the existing works. These algorithms are trained on large amounts of
data and aim to map the noisy images to the clean images. Due to the significant distri-
bution shift of the noise signals, it is hard to map the unseen noise images to the clean
images. To overcome these limitations, self-supervised approaches trained on different
tasks have evolved. However, the primary limitation as observed in the literature is their
repetitive training [38]. In contrast to the existing algorithms, the proposed algorithm
utilizes a cost-effective encoder-decoder architecture that aims to segregate the noise
signals from the clean images in place of suppressing them into the clean images.

2 Proposed Signal Separator for Robustness

The proposed Dual-Tail (DuTa) encoder-decoder architecture used to separate the clean
image noise and the noise pattern from the noisy input images is shown in Fig. 1. In
contrast to the traditional trend of either mitigating the impact of noise using a denoising
auto-encoder or detecting whether the images are noisy or clean, in this research, we
propose not to only generate the clean images from their noisy counterpart but also to
extract the noise pattern as well. The intentional modification of an input image through
noise leaves its fingerprints in the images [32]. These fingerprints can be considered
unwanted signals and need to be removed so that the original decision of a classifier
can be restored.

The proposed architecture consists of seven encoding layers to effectively learn the
latent representation of the input images. These latent representations of images are
bifurcated into two branches to segregate the representation related to the clean image
signals and noise signals. The encoding layers significantly reduce the size of the input
images; therefore, to decode both clean and noise patterns, transpose convolutional lay-
ers are adopted. The configuration of the encoder architecture can be described as fol-
lows: the first two convolutional layers contain 64 filters each dimension 3 × 3. In the
subsequent pair of convolution, the number of filters is increased to better encode the
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Table 1. Severity scale of different corruptions used to perturb the clean images of different
datasets.

Noise Scale Noise Scale Noise Scale

GN 0.08 IN 0.03 SN 60

SPKN 0.15 UN 0.3 SPN 0.1

latent representation helpful for signal separation. In each pair of convolutional layers,
the number of filters is double the filters used in the previous pair of layers. In the later
layers of encoder architecture, the max-pooling operation has been applied to retain the
useful information only and limit the computational cost by reducing the resolution of
the feature maps.

Both the tails of the proposed architecture contain the 6 transpose convolutional lay-
ers to map each of the convolution outputs produced by the convolutional layers used
in the encoder architecture. The number of filters in the decoding layers follows the
reverse pattern of those in the encoding layers. The reason is to generate images that
are of the same resolution as the input images to learn an accurate mapping function.
The final convolutional layer in the decoding architectures aims to generate the images
whether clean or noise patterns added to the images. Similar to the generative adver-
sarial networks (GANs), where the discriminator has access to the real data to map the
noise vector into the real-world images, both the decoding branches have the associate
data to map noisy input to clean input and noise patterns added in the images. Hence-
forth, the proposed network is trained end-to-end through the combination of two losses
as defined below, where each aims to minimize the loss of the network by mapping the
output images close to the provided target images (i.e., signal-1 and signal-2).

Lclean = ||y − ŷ||2
Lnoise = ||n− n̂||2

Ltotal = w1·Lclean + w2 · Lnoise

(1)

where, n and n̂ represents the target and predicted noise pattern, respectively. y and
ŷ represent the original and generated clean images, respectively. w1 and w2 are the
weights assigned to both the loss. We used equal weight.

Implementation Details: The proposed architecture is trained using an ‘Adam’ opti-
mizer. The batch size is set to 64 and trained for 50 epochs with the initial learning rate
set to 0.001. The ReLU non-linearity is applied in the intermediate layers of both encod-
ing and decoding architecture. The final convolutional layer in each decoding architec-
ture uses the ‘sigmoid’ activation function. The code is written in the Keras library by
utilizing the TensorFlow backend. In this research, the images are modified using a
single corruption type, and hence the networks are trained on a single corruption.
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Table 2. Accuracy on the clean images reported using two different CNNs on the CIFAR-10
and CIFAR-100 datasets. Along with that, the accuracies of corrupted images are reported to
showcase the vulnerability of CNNs. The proposed unique architecture shows strength in miti-
gating the impact of each corruption and restoring the performance significantly. A represents the
accuracy of corrupted images and P represents the accuracy of the purified images.

GN IN SN SPKN UN SPN Average
CNN Clean

A P A P A P A P A P A P A P

CIFAR-10

ResNet 91.81 32.97 85.01 51.73 91.89 32.73 84.24 44.37 86.48 32.12 85.33 20.48 91.61 35.73 87.43

WRN16-8 93.14 45.21 87.80 63.52 93.09 45.33 87.61 58.17 89.30 41.70 88.45 20.20 93.03 45.69 89.88

CIFAR-100

WRN28-10 76.21 24.71 64.28 26.81 75.67 22.95 65.08 31.60 67.56 22.52 65.89 6.64 75.73 22.54 69.03

WRN16-8 74.57 20.09 63.81 21.59 74.07 17.44 65.35 25.68 67.21 18.43 65.36 4.12 73.95 17.89 68.29

3 Experimental Results and Analysis

Datasets: In this research, we have used multiple popular object recognition datasets,
namely CIFAR-10, CIFAR-100 [28], and a subset of ImageNet namely ImageNette1

which belongs to the color object category, and F-MNIST [40], a grayscale dataset.

CNNs: On CIFAR-10, ResNet50 [21] and Wide-ResNet16-8 (WRN16-8) [44] have
been used. Similarly, on the CIFAR-100 dataset, Wide-ResNet16-8 and Wide-
ResNet28-10 (WRN28-10) have been used for evaluating vulnerability against image
degradations. On the F-MNIST dataset, two custom models (4 and 8 layers deep) are
built. On ImageNette, Xception [17] and MobileNet [24] architectures are used. We
assert that the variant networks will ensure the effectiveness of DuTaNet and make the
proposed study trustworthy. It is to be noted here that the networks are trained on the
clean images of a training set of individual datasets and tested on the clean, noisy, and
purified images of the test set of the corresponding dataset.

Image Degradations: In this research, we have used six image degradations namely
(i) Gaussian Noise (GN), (ii) Salt & Pepper Noise (SPN), (iii) Shot Noise (SN), (iv)
Speckle Noise (SPKN), (v) Uniform Noise (UN), and (vi) Impulse Noise (IN). The
severity level of each corruption is described in Table 1.

3.1 Robustness Analysis

Sincemultipledatasetsofvaryingcharacteristics areutilized, the section is furtherdivided
to present a comprehensive analysis covering factors considered in the evaluation.

On Low-Resolution Color Images. The results on the CIFAR-10 and CIFAR-100
datasets are reported in Table 2. The results can be described in terms of the type of

1 https://github.com/fastai/imagenette.

https://github.com/fastai/imagenette
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noise corruption and the classifier. The ResNet and WRN16-8 classifier on the CIFAR-
10 dataset yields an accuracy of 91.81% and 93.14%, respectively. Not only, the wider
network has shown better recognition performance on clean images, but it shows higher
resiliency on corrupted images as well. For instance, the Gaussian noise reduces the
performance of the ResNet classifier up to 32.97%; whereas, the WRN classifier can
retain the accuracy of 45.21%. However, both classifiers are found highly sensitive to
natural noise corruption. As promised, need not worry, the proposed unique architec-
ture namely DuTaNet can boost the recognition performance of both the classifier. For
instance, on the shot noise (SN) corrupted images, the proposed network increases the
recognition accuracy of ResNet and WRN16-8 by 51.51% and 42.28%, respectively.
The improvement in recognition performance due to the proposed noise mitigation net-
work is significant, nearly eliminating the impact of corruption. DuTaNet is designed
to be classifier-agnostic, allowing seamless integration with any classifier to safeguard
against various noise corruptions. This adaptability is especially crucial given the sus-
ceptibility of most machine learning classifiers to such corruptions [31].

In terms of the different noise corruptions, we have observed that each noise cor-
ruption significantly reduces the performance of each CNN. Out of all the corruptions
applied, the SPN proves highly sinister and reduces the performance of ResNet and
WRN16-8 by more than 71% and 73%, respectively; However, surprisingly, the per-
formance boost on the SPN stealthy images is also the highest. The IN noise shows
the lowest reduction in the recognition performance on both networks; however, it does
not impact the mitigation strength of the DuTaNet. It further shows that DuTaNet is
agnostic to the success rate of the corruption. The reduction can directly be related to
imperceptibility. While each corruption is applied of severity 1 [22], different corrup-
tion has different perceptibility scores (Fig. 4).

As observed from the CIFAR-10 analysis, the wider network shows better robust-
ness as compared to the deep counterpart. The WRN28-10 classifier yields an accu-
racy of 76.41% on the clean set of CIFAR-100 which reduces significantly under the
influence of each image corruption. However, the proposed unique architecture with-
out any configuration change can increase the robustness of each network significantly.
For instance, on the impulse noise images which yield an accuracy of 26.81%, the pro-
posed network increases the performance to 75.67%. In addition to the previous agnos-
tic properties, DuTaNet is found dataset generalized as well. The final performance of
the shallow and deeper WRN after the proposed noise signal separation network lies in
the range of 0.3 to 1.78% only. Similar to the CIFAR-10 dataset, the SPN noise with
a scale of 0.1 is found most stealthy among all the used corruptions. On the WRN16-
8, the SPN corruption can reduce the performance up to 4.12% from 74.57%. The
proposed ‘DuTa’ network boosts the performance by 73.95%. In brief, (i) the multi-
fold effectiveness of the proposed algorithm shows that it is agnostic to classifier and
corruption types, (ii) the shallow classifiers are found less robust than deep and wide
architectures, (iii) different corruption have varying success rates; however, DuTaNet is
agnostic to such nature and can defend low and high success corruptions.

On Low-Resolution Grayscale Images. The applicability of the proposed DuTaNet
is also evaluated on the grayscale dataset namely F-MNIST as well to strengthen its
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Fig. 2. Accuracy on the corrupted (‘A’) and purified images (‘P’) on the F-MNIST dataset using
custom-1 (left) and custom-2 (right) models.

Table 3. Severity levels 2 and 3 of each corruption used to corrupt the clean images.

Severity GN UNSPNSN IN SPKN

2 0.12 0.3 0.3 25 0.06 0.2

3 0.18 0.1 0.5 12 0.09 0.35

Table 4. Corruption robustness of DuTaNet on ImageNet subset.

Attack GN IN SN SPKN UN SPN

Level 2 3 2 3 2 3 2 3 2 3 2 3

Xception A 55.30 25.60 53.90 25.00 47.20 25.00 68.10 50.10 30.00 59.80 15.80 0.00

P 70.20 42.00 93.60 88.60 57.00 40.90 80.40 62.70 66.60 85.90 95.40 70.20

MobileNet A 30.40 07.70 25.00 08.00 28.30 13.40 51.80 35.90 08.40 33.40 6.70 04.50

P 49.50 25.00 95.90 87.60 49.90 36.30 72.90 58.10 46.80 69.80 93.10 53.70

impact. The results are reported in Fig. 2. Two custom CNNs with clean accuracy
91.45% (custom-1) and 87.96% (custom-2) are built. Interestingly, compared to the
impact on the color object dataset, the impact of most of the corruption on grayscale
and shallow CNNs is low. However, few corruptions can decrease the performance sig-
nificantly, which the proposed DuTaNet can restore tremendously. For instance, the
UN corruption drops the accuracy of the custom-1 model to 39.14% which DuTaNet
improves to 90.09%. Similarly, on the SPN corruption, DuTaNet improves the perfor-
mance of the custom-2 model from 39.17% to 87.36%. DuTaNet is agnostic to the
color channel features of images, performing effectively on both color and grayscale
images. This characteristic is crucial, as existing methods often exhibit bias towards
these features, leading to reduced effectiveness [29].

On High-Resolution Images. While the above datasets are benchmark datasets in the
AI community, they are of low resolution; therefore, to properly reflect the robustness
of the proposed algorithm, we have used a high-resolution ImageNet subset. Being high
resolution, it is observed that the corruption of low severity (Table 1) shows a negligible
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Table 5. The comparison in the performance between (i) ‘DuTa’ and baseline and (ii) ‘DuTa’ and
DCAE. The proposed ‘DuTa’ outperforms the baseline and DCAE by a significant margin across
each corruption. Raw represents the accuracy of the corrupted testing set. The results are reported
on CIFAR-10. The comparisons have been made with state-of-the-art works: [A] by Salman et
al. [36] and [B] by Xie et al. [41].

Corrup. CNN Raw Baseline DCAE [A] [B] DuTa

GN
ResNet 32.97 75.65 74.21 55.61 57.21 85.01

WRN 45.27 80.04 79.30 60.04 45.69 87.80

IN
ResNet 51.73 78.17 79.75 58.17 65.20 91.89

WRN 63.52 82.34 83.87 62.34 58.36 93.09

SN
ResNet 32.73 74.53 76.47 64.53 48.31 84.24

WRN 45.33 78.76 80.02 58.76 46.89 87.61

SPKN
ResNet 44.37 75.94 77.90 55.94 71.05 86.48

WRN 58.17 79.93 81.82 69.93 57.01 89.30

UN
ResNet 32.12 74.24 73.99 64.24 66.53 85.33

WRN 41.70 77.93 78.08 67.93 61.00 88.45

SPN
ResNet 20.48 76.55 80.07 56.55 42.18 91.61

WRN 20.20 80.98 84.02 60.98 35.76 93.03

Table 6. Comparison results against SOTA works. “Clean” indicates Top-1 clean accuracy (%)
(higher is better). “mCE” shows the performance (%) over 15 corruption types (less is better).

Algorithm
CIFAR10-C CIFAR100-C

Clean↑mCE↓Clean↑mCE↓
Kim et al. [26] 75.3 45.6 57.9 48.1

Yang et al. [42] 77.2 41.9 58.0 46.4

Zou et al. [48] 62.3 45.1 55.2 45.8

Hendrycks et al. [23] 79.5 43.4 60.6 44.9

DuTaNet 81.7 39.6 62.4 42.2

impact on the CNNs: Xception and MobileNet. Hence, we have increased the severity
level of corruption as shown in Table 3 to increase the attack success rate. The robust-
ness results in Table 4 show that the proposed algorithm is effective in mitigating cor-
ruption on high-resolution images as well. On clean images, Xception achieves 97.00%
which drops down to 0.00%; whereas MobileNet yields clean accuracy of 95.70%,
which drops to 4.50% under the influence of SPN corruption. However, the proposed
algorithm boosts the performance of both networks not only on the SPN images but also
on any other corrupted images whether coming with average (level 2) or high severity
(level 3). The above analysis showcases that DuTaNet is agnostic to resolution and
severity levels of corruption.
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Fig. 3.Visualization of the impact of proposed DuTaNet in purifying the images. The first column
is clean images. Later, each box contains corrupted (left) and purified images (right).

Table 7. PSNR/SSIM (↑) comparison with SOTA.

Algorithm
CIFAR10-C CIFAR100-C

PSNRSSIMPSNR SSIM

Wang et al. [39] 35.4 0.84 32.7 0.81

Zhang et al. [47] 37.5 0.86 34.3 0.82

Pang et al. [34] 34.8 0.82 32.7 0.80

Byun et al. [14] 38.7 0.91 36.1 0.84

Han et al. [20] 36.5 0.88 31.9 0.77

Wang et al. [38] 40.1 0.91 35.6 0.83

DuTaNet 40.7 0.93 37.8 0.86

3.2 Comparison with State-of-the-Art Works

To further strengthen the impact of the proposed research effort, a comprehensive com-
parison with existing state-of-the-art (SOTA) algorithms [A] by Salman et al. [36]
and [B] by Xie et al. [41] has been performed. The comparison has been performed
using multiple corruptions algorithms to not only reflect the capacity (in increasing
the robustness against individual corruptions) but also the generalizability (handling
unseen corruptions). As seen each corruption can degrade the recognition performance
of the image classification networks. The proposed and existing mitigation algorithms
aim to restore recognition accuracy. The results reported in Table 5 show that the exist-
ing algorithms perform significantly lower than the proposed algorithm. For example,
when the algorithm [A] by Salman et al. [36] is used to mitigate the impact of cor-
ruption, it shows an improvement from 32.97% to 55.61% on the GN images, and the
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performance is significantly lower (29.4%) than the proposed algorithm. Similar limita-
tions of the algorithm [B] by Xie et al. [41] can be noticed whose performance is lower
than the proposed algorithm by even more than 57% when SPN corruptions need to be
handled. Further, the existing algorithms are found not generalized in handling differ-
ent corruptions and yield poor recognition accuracy in comparison to one another. For
example, [B] yields the recognition accuracy of 71.05% on SPKN images, however,
the same algorithm can yield an accuracy of 35.76% only on SPN images. Whereas,
the proposed algorithm shows consistent performance across the different types of cor-
ruption. On top of that, the existing algorithms have heavy computational demand to
develop an image enhancement algorithm. For instance, Xie et al. [41] have utilized
the concept of adversarial training and the algorithm took 52 h on 128 V100 GPUs
to build a mitigation algorithm against PGD attack only. On the other hand, the pro-
posed algorithm requires 20–30 minutes of training on an NVIDIA GeForce RTX 2080
GPU machine with the CUDA v11+ to achieve significantly better robustness. Apart
from these algorithms, the performance of the proposed algorithm is at least 15% better
than another recent network fine-tuned-based algorithm [12]. Another state-of-the-art
defense algorithm namely RLAT [27] requires heavy data augmentation to improve the
performance on corrupted images. The proposed DuTaNet does not require heavy data
augmentation and yields at least 5% better performance than RLAT. The high perfor-
mance of the DuTaNet against computationally heavy architectures makes it an ideal
candidate for noise mitigation and deployment on mobile devices. The closest defense
to the DuTaNet is MagNet [33] which uses the distribution shift as a reconstruction error
of adversarial examples to detect the adversarial examples. However, noises can have
different distributions, therefore, MagNet is not generalized against unseen and fails
against complex attacks [1,6,15]. The rectifier part of MagNet is the baseline network
used in this paper for comparison. We have also performed an extensive comparison
with recent SOTA image-denoising algorithms and the results are reported in Tables 6
and 7. The existing algorithms utilize different evaluation metrics such as performance
on clean images, mean corruption error (mCE) [26], Peak signal-to-noise ratio (PSNR),
and Structural Similarity (SSIM) [20,38].

We have also conducted ablation studies and made the comparison with standard
denoising convolutional auto-encoder (DCAE). The results of these ablation studies
are also reported in Table 5. When the ResNet architecture is attacked by the impulse
noise (IN) but protected using the baseline and DCAE architecture, the performance
of both these architectures improves from 51.73% to 78.17% and 79.75%, respec-
tively. However, the performance improvement is at least 12.14% lower than the pro-
posed DuTaNet. Similar higher robustness is observed when the WRN16-8 is used for
object classification and protected against corruption. The higher robustness against
each corruption and classification network establishes the importance of dual tail and a
higher number of latent representation filter maps as we have asserted while building
the proposed ‘DuTaNet’ signal separator. Figure 3 shows that the proposed DuTaNet
can reduce the corruption produced by the different noise vectors. Henceforth, helps in
improving the performance of the classifiers significantly.
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4 On Generalization Capacity

The above comprehensive experiments and comparison with the state of the algorithms
(SOTA) algorithms demonstrated the effectiveness of the proposed algorithm. The pro-
posed algorithm not only has a low computational cost but can mitigate the impact of
several corruptions and can increase of performance of almost ‘any’ CNN.

Table 8. Robustness of the proposed DuTaNet network under ‘unseen severity strength’ of the
corruptions. The DuTaNet network is trained on severity level 1 and tested on the same and higher
severity to demonstrate its generalizability capacity. 1, 2 and 3 represent the severity level. A and
P represent the accuracy of corrupted and purified images, respectively.

Severity → 1A 1P 2A 2P 3A 3P 1A 1P 2A 2P 3A 3P

Dataset: CIFAR-10

Corruption ↓ ResNet WRN28-10

IN 51.73 91.89 30.82 91.59 21.52 91.20 63.52 93.0935.79 92.9021.74 92.76

GN 32.97 85.01 19.46 70.94 15.22 31.50 45.27 87.8025.06 74.5415.16 30.27

SPN 20.48 91.61 13.14 89.16 10.96 68.25 20.20 93.0311.09 91.3310.32 74.53

SN 32.73 84.24 18.13 67.06 14.97 31.57 45.33 87.6125.72 71.5417.77 32.31

UN 32.12 85.33 18.19 47.88 15.40 25.88 41.70 88.4521.72 51.0316.55 26.75

SPKN 44.37 86.48 32.51 83.32 18.60 40.93 58.17 89.3046.02 86.6726.00 45.31

Dataset: CIFAR-100

Corruption ↓ WRN28-10 WRN16-8

IN 26.81 75.67 10.79 75.36 6.99 74.55 21.59 74.07 7.97 74.11 4.66 73.35

GN 24.71 64.28 12.5 48.52 6.57 15.08 20.09 63.81 9.17 48.29 4.03 13.88

SPN 6.64 75.73 10.88 75.74 1.00 37.82 4.12 73.95 8.02 74.14 1.06 36.16

SN 22.95 65.08 10.87 39.26 6.67 13.08 17.44 65.35 7.78 37.81 3.88 11.99

UN 22.52 65.89 9.44 24.03 4.35 9.62 18.43 65.36 6.70 22.23 3.37 8.67

SPKN 31.60 67.56 20.82 61.64 8.18 20.24 24.68 67.2115.40 61.36 6.27 17.75

To further showcase the strength of the proposed algorithm, we have tested its
generalizability in several challenging scenarios: i unseen severity level of the cor-

ruption, ii unseen corruption, and iii dual agnosticism: where both corruption and
severity levels are unseen.

4.1 Unseen Severity Level

First, we describe the analysis concerning the unseen severity level where at the time of
training one level of corruption has been used (shown in Table 1), while at the time of
testing, images might be perturbed with different even higher (Table 3) corruption sever-
ity. The results of this scenario using extensive experiments are reported in Table 8. As
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Fig. 4. Showcasing the impact of different corruptions and their associated severity levels. In each
corruption, the leftmost image corresponds to severity 1 and the rightmost to severity 3.

expected as the severity level increases, the performance of each network working on
different datasets decreases. For example, when the IN corruption has been used with
severity 1, the performance of the ResNet network decreases from 91.81% to 51.73%
on the CIFAR-10 dataset. However, as soon the strength of the corruption increases, the
performance shows a steep decrement and drops to 21.52% with severity level 3. Inter-
estingly, the proposed signal separator network which trained on severity 1 not only
increased performance on severity level 1 corrupted images but also on severity level
3 images as well. Further, the increment is so significant that the proposed algorithm
shows only the difference of 0.69% between the accuracy on severity 3 and severity 1.
The boost in the performance is not specific to any network, a similar jump in the recog-
nition accuracy can be seen on WRN28-10. We want to highlight that higher severity
approximately destroys the visual appearance of the images (as shown in Fig. 4); even
in such a scenario, the proposed algorithm shows robustness.

The proposed algorithm is agnostic to a dataset, CNN, corruption, and severity. It
can be seen from the results that the proposed DuTaNet can increase the performance
on CIFAR-100 images as well under unseen severity. The SPN corruption is found
the most stealthy corruption due to destroying the visual image features (Fig. 4). For
example, when the SPN noise with severity 1 is used, the performance of WRN28-10
drops from 76.21% to 6.64% which drops down further as the severity of corruption
reaches 3, we observed a recognition accuracy of 1.00%. The WRN16-8 is also not
robust to such corruption and shows a drop in the accuracy to the value of 1.06% when
severity 3 of SPN is applied. The proposed DuTaNet can increase the performance of
both networks from 1.0% to 37.82% and 1.06% to 36.16%.

4.2 Unseen Corruption

Next, we present the generalizability power of the proposed algorithm against unseen
corruption. It can be easily assumed that if the purifier is trained on the corruption it is
going to be tested, it will yield the best performance. We have observed a similar obser-
vation where the robustness accuracy is highest if the DuTaNet is trained and tested on
the same corruption. However, that does not limit the capacity of the DuTaNet which
shows the generalizability in handling unseen corruption. We assert that this robustness
not only demonstrates the effectiveness of the DuTaNet but also reflects ‘whether is
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Fig. 5. Generalizability of the proposed algorithm against ‘unseen corruption’. Rows show the
corruption name on which the proposed DuTaNet is trained and columns represent the corruption
that we aim to defend. Original refers to the scenario where no purification has been applied and
individual corrupted images are used for classification. Best viewed in color.

there any connection among corruptions’. For example, when DuTaNet aims to miti-
gate IN corruption, SN corruption shows the highest robustness on both networks. GN
and SPKN corruption also shows that this corruption can effectively mitigate impulse
noise (IN). Whereas, it is observed that uniform noise (UN) shows the lowest robust-
ness reflecting its lowest similarity with IN. However, UN shows significant success in
separating the Gaussian noise (GN) signal from the clean images and boosting the per-
formance of both ResNet and WRN28-10. For example, UN-trained DuTaNet improves
the recognition accuracy of ResNet from 32.97% to 81.58% and the performance of
WRN28-10 boosted from 45.21% to 84.08%. We have observed that the SN shows the
best robustness compared to other corruptions as it effectively mitigated IN, GN, UN,
and SPKN unseen corruptions. “We assert that such missing knowledge from the liter-
ature can boost the development of a robustness algorithm”. We want to highlight that
recent works also put a step forward in tackling natural and adversarial perturbations;
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however, they deal with a simple problem, i.e., binary classification [3,5]. Figure 5 (top)
shows the results related to the unseen corruption-agnostic nature of the proposed algo-
rithm. We have compared the generability of the proposed algorithm with two recent
blind image decomposition networks namely Han et al. [1] and Wang et al. [2]. The
average performance of the proposed algorithm under unseen corruption is 6.4% and
5.8% better than Han et al. [20] and Wang et al. [38], respectively. On top of that, the
cost-effectiveness of the proposed algorithm can hugely help in building secure and
trustworthy AI systems even on mobile devices.

4.3 Unseen Noise Type on ImageNet Dataset

An exciting and strong feature of the proposed signal separator network compared to
the existing defense work is the handling of inherent perturbations [10]. We observe
that our framework can boost the performance on noisy images by at least 12%. The
prime reason can be that the proposed algorithm tries to separate noise in place of
generating two image signals (both containing raw images such as [48]) which can
not remove inherent or minute noises present in any signal. Consequently, we observed
that the natural noise-trained DuTaNet mitigates the PGD adversary and increases the
performance by 45%.

4.4 Dual Generalization

Further, we have evaluated the dual generalizability of the proposed DuTaNet on the
high-resolution images of ImageNette, and the results are reported in Fig. 5 (down).
To showcase this observation, we have selected the three best-performing corrup-
tions observed above and used them for training the proposed noise separator namely
DuTaNet. Foremost, in terms of network, MobileNet architecture is found highly sen-
sitive against each corruption as compared to Xception except for SPN corruption.
For example, the performance of MobileNet is 3×, 2×, and 1.7× lower than Xcep-
tion on GN, IN, and UN, respectively. Contrary to the general belief that the corrup-
tion domain seen both in training and testing will yield the best robustness, on high-
resolution images, we have observed that it is not always true. For example, when the
DuTaNet trained on SN corruption is used to mitigate the GN corruption, on MobileNet
it yields 0.6% better performance than the DuTaNet trained on GN corruption itself. A
similar phenomenon can be seen when GN corruption-trained DuTaNet yields 4% bet-
ter robustness in handling SN corruption than SN itself. These exciting analyses reveal
that there might be a strong correlation between corruption. The identification of correct
correlation can help in reducing the load where we will not need to develop a specific
defense for individual attacks and can help in building a robust and generalized defense.
In brief, the proposed DuTaNet demonstrates the high effectiveness towards both the
dimension of attack, i.e., corruption and severity. These high generalization capacities
make the proposed DuTaNet ready for its deployment in the real world where the attack
features will be unconstrained.

Even being the shallow architecture, the proposed DuTaNet is found cost-effective
and generalized. To further demonstrate that, in place of utilizing the shallow
encoder-decoder architecture in the DuTaNet, we have used the ResNet as the base
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architecture for the encoder and decoder. With the increased complexity of the architec-
ture, as expected, the computational cost of the defense system also increased. Second,
we also found that the architecture is significantly less generalized than DuTaNet. For
example, on average, the dual generalizability and unseen corruption generalizability
of ResNet based purifier is found 45% and 32% lower than DuTaNet, respectively. The
analysis is consistent where in DuTaNet we tried to increase the number of layers/filters,
we observed the issue of overfitting.

5 Conclusion

Natural noise corruption is a powerful form of image degradation that can significantly
impair the performance of neural networks, even without any prior knowledge of the
network’s structure. In recent literature, these stealthy corruptions have received rela-
tively less attention compared to adversarial perturbations. To address this gap, we have
proposed a dual-tail (DuTa) encoder-decoder architecture, DuTaNet, designed to purify
noisy images and enhance recognition performance. DuTaNet is versatile and robust
across various datasets, classifiers, types of corruption, and severity levels, making it
well-suited for real-world applications. Additionally, this study, for the first time, iden-
tifies potential connections between different types of corruptions. It also shows that
deeper and wider networks tend to be more robust than shallower ones. We believe this
research will contribute to better benchmarking of classifier robustness against natural
image corruptions.
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Abstract. Machine-assisted photo identification processes require sig-
nificant amounts of data for each member of a population of interest but
offer the possibility to alleviate a significant amount of manual effort.
Gathering such data is time consuming and opportunistic, leading to
imbalanced datasets ill-suited for traditional machine (deep) learning
efforts. Incomplete classifiers, trained on a subset of classes in a popula-
tion, can be initially useful to identify the most commonly seen individu-
als. This study investigates the use of incomplete classifiers trained on a
subset of often-observed individual killer whales to generate latent space
representations of the larger population containing unseen individuals.
These semantically relevant representations are subsequently clustered
to investigate the efficacy of this method as a secondary identification
mechanism. This method proves to be robust to a significant amount
of noise while being able to isolate individuals unknown to the classifier
when applying limited expert knowledge to the approximate size of the
population.

Keywords: Killer whale · classification · photo identification

1 Introduction

The photo identification process of killer whales (Orcinus orca) has historically
been manually completed [3,6]. The identification of individuals is reliant on a
number of primary factors including dorsal fin shape and size, the shape and
color of the saddle patch – a dorso-posterior and ventro-anterior flare – and any
markings or scars to the body [19]. The process of building a complete population
overview is difficult, time consuming, expensive, and opportunistic, as it is often
unclear where the individuals of the population are at any given time, and their
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overlap with locations of the photographers leads to a dataset which displays the
long-tailed effect [23], where a few individuals are photographed many times.

These data collection constraints and effects hold true for the Bigg’s killer
whale population, located in the northeastern Pacific Ocean. Field research
began on this population in the 1970’s and by 2018 766 individuals had been
identified[19]. Due to the opportunistic nature of the data collection of these indi-
viduals, initial attempts at automating the identification process and addressing
this imbalanced dataset focused on the 100 most commonly seen individuals out
of the 367 living individuals between 2011 and 2017 [2] and achieved an accu-
racy of 92.5% with 97.2% top-3 unweighted accuracy (TUA). Automation of the
identification process for additional cetaceans using machine (deep) learning is
becoming more prevalent as computing costs are reduced and the availability of
data is increasing [7,14,18].

Two additional problems arise with automated detection over extended peri-
ods of time: (1) the population is not fixed – members die and new ones are born
–, and (2) the identifying marks of the animals can change. Significant changes
in body structure in killer whale adults are relatively rare. The evolution of the
appearance of the animal plays a large role in its identification. Photos of each
age class of an individual are important as the they progress into adulthood, and
identification photos of the individuals in the earlier phases of life are particularly
important as the body changes quickly [19]. The first issue largely describes the
open set problem [1,8,17], while the second one can be mitigated with data anal-
ysis and management. The data used here can be described as a semi-open set,
due to several factors including (1) the fact that new individuals are born and
added to the set over long periods of time, (2) that some individuals are much
more elusive than others, leading to their data being generally unsuitable for use
in supervised classification due to lack of samples and therefore often excluded
from the problem [2], although they are still confined within the larger overall
set of individuals, (3) these groups examined here do not intermingle, meaning
that it is highly unlikely for individuals of another population or species to be
photographed together, and (4) it is conceivable that, due to the opportunistic
nature of data collection for these animals, that one or more individuals within
a group has simply not been captured in a quality photo which can therefore be
used in identification purposes.

All machine-assisted identification requires acquiring an efficient represen-
tation, either by using standard computer vision feature extraction techniques
[13,15], or by learning one [2,7,14]. Learned representations can either make use
of identifying prior information, such as in the case of supervised learning, or
simply rely on the structure of the input as in unsupervised learning. Supervised
learning requires at least some labeled data which can be challenging and expen-
sive to acquire, and in open systems, having labels for all classes may be infeasible
or impossible. Unsupervised learning, while requiring no labels, may not reliably
maintain a space which ensures reasonable separability between classes.

Supervised learning for animal photo identification is more directly applicable
due to the large amount of labeled data necessary for population monitoring
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[2,7,14]. Direct application of unsupervised learning to, for example, learn some
low-level embedding, has limited uses and this process is often seen as an initial
step for down-stream supervised classification tasks [9,14,24].

This study investigates the use of incomplete supervised classifiers, which are
herein defined as classifiers trained on a subset of known individuals of a given
population, to generate semantically separable representations for downstream
clustering and possible identification, as well as the robustness of this method
with respect to image quality and the impact of known metadata and back-
ground content. It is investigated if these classifiers can generate representations
of unknown individuals which are similarly grouped in a high-dimensional space
which can be interpreted as the same or similar individuals as well as the effect
image corruption and the presence of background has on these clusters. It is
also investigated to what degree the method for encoding images is affected by
the group to which the individual belongs, in this case either a different popu-
lation of killer whales, or a different dorsal-finned species altogether. Thereby it
is shown if utilizing incomplete classifiers can be utilized in down-stream iden-
tification tasks separately and parallel to traditional supervised classification in
a closed-set problem and/or if they are useful for capturing meta-data such as
photographer or location. The clustering algorithm here is kept simple (k-Means)
to solely focus on differences in representation, rather than the efficacy of more
advanced clustering mechanisms.

2 Related Work

Deep Learning-assisted identification of cetaceans has been performed success-
fully in a number of scenarios. Patton et al. [14] have successfully utilized deep
metric learning to not only differentiate between 25 unique cetacean species, but
to also identify individuals within those species, some with only a single training
example. Konovalov et al. [12] have utilized off-the-shelf deep learning tools to
identify, with 93% prediction accuracy, one the 76 most common dwarf minke
whales in the waters around the northern Great Barrier Reef. Bogucki et al. [4]
achieved an accuracy of 87% when applying deep learning to the identification of
the endangered North Atlantic right whales, again using a pipeline of networks
to identify a region of interest, and subsequently to scale and rotate an the image
to classify to remove as much variance as possible.

Open set recognition [1,17], recognizing instances from classes not seen during
training, is vital in real-world scenarios in which samples from unknown classes
may not be readily available or easy to collect. Scheirer et al. [17] presented a
1-vs-set support vector machine (SVM) setup to identify out-of-set members.
Bendale et al. [1] presented OpenMax as an alternative to the SoftMax loss
function to be able to explicitly identify out-of-set instances. Wang et al. [20] have
employed OneShot and unsupervised learning, implementing a novel Regularized
Kernel Subspace Learning model, to explore the problem of re-identification (Re-
ID) in an open-set problem, in a similar situation to what is presented here,
in which representations are learned from unlabelled data and then applied to
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the re-ID problem in an open set. This presents a more realistic scenario than
a closed-set re-identification problem. Patton et al. [14] utilized a dummy class
with a fixed similarity score in a discriminative learning context to identify when
a new individual was present in a population of cetaceans.

Meta clustering [5], which deals with the idea that the optimal clustering is
not always obvious, has been applied in various forms using mechanisms such as
random feature weighting [5], or applying pseudo-labeling to a small subset of
unknown data and using the learned centroids for proxy annotation [10].

Wheeldon and Serb [21] have recently investigated interpretability of latent
space representations from autoencoders and classifiers, and have shown that
classifiers generally provide representations leading to more homogeneous clas-
sifiers and that autoencoders do not seem to make full use of the latent space,
with the majority of neurons saturating at 0 or 1 when encoding samples from
the MNIST dataset.

To the best of the knowledge of the authors, this is the first study to inves-
tigate the clustering ability using representations from incomplete classifiers in
a large open set problem and to show the robustness of this method as well as
inspecting the level to which known metadata is a factor in clustering.

3 Data Material

Table 1. An overview of the datasets used in this research. The Bigg’s killer whale
Photo Identification Corpus (BKWPIC) acts as a superset for the Top 100-Extended
(T100-E), Top 50 (T50), Top 10 (T10), Non-Top 100 (N100), and Non-Top 100 High
Quality (N100-HQ) datasets. The Norwegian killer whale (NKW-10) and Bottlenose
dolphin (BD-23) datasets are completely distinct. Along with the data source, the
number of images in total (

∑
Img), the number of individuals represented within the

dataset (
∑

Ind ) as well as the average number of images per individual (μImg
Ind ) are

given.

Dataset Source
∑

Img

∑
Ind μImg

Ind

T100-E Bigg’s KW 62,740 100 ≈ 613
T50 Bigg’s KW 39.352 50 ≈ 787
T10 Bigg’s KW 11,447 10 ≈ 1,144
N100 Bigg’s KW 19,171 213 ≈ 90
N100-HQ Bigg’s KW 5,148 158 ≈ 31
NKW-10 Norwegian KW 98 10 ≈ 9

BD-23 Bottlenose dolphin 4,515 23 ≈ 196

The data consists of two members of the family Delphinidae, namely the
killer whale (Orcinus orca), and the bottlenose dolphin (Tursiops truncatus
gephyreus). There are two populations of killer whale under investigation; both
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the Bigg’s killer whale and the Norwegian killer whale. The use of two popula-
tions of killer whale is to demonstrate the effectiveness of the methods presented
here on a very similar, but genetically distinct population. An overview of these
datasets including their source population/species can be seen in Table 1. The
use of the bottlenose dolphin intends to show the effectiveness of the methods
with data from a different species which nonetheless shares at least some of the
same characteristics used for identification, namely the dorsal fin.

3.1 Bigg’s Killer Whale Photo Identification Corpus (BKWPIC)

As seen in the data from [2], the data utilized here largely focuses on a single
population of killer whales, namely the Bigg’s population found in the north-
eastern Pacific between California and Alaska. The corpus consists of 86,789
images, each of which contains only one of 367 individuals, which have been
hand-labelled by experts, and spans a time period from 2011 to 2018. For each
image, the body and dorsal fin of the animal was extracted using the FIN–
DETECT element of the FIN–PRINT pipeline [2]. The resulting bounding box
was up- or down-sampled to a 512 × 512 RGB image. An example of one such
image can be seen in Fig. 1.

The dataset has been split into two main and non-overlapping datasets: (1)
the Top-100-E (T100-E) dataset contains 62,740 images across the most com-
monly seen 100 individuals [2] from 2011–2017 which directly corresponds to the
KWIDE11-17 dataset presented by Bergler et al. [2], and (2) the Non-Top-100
dataset (N100) which is comprised of 19,171 cropped images of every individual
not present in the T100-E dataset which has at least 10 images, again between
2011–2017. This reduces the number of individuals present within the N100 from
267 to 213.

An additional subset of the N100 dataset was also created by selecting 3,117
left and 2,687 right sided images, representing 218 individuals (N100-HQ). The
images were selected for their high quality and prominently visible saddle patch,
rather than individual-image distribution and as such the images per individual
range from 1 to 94, with the median being 18.5. After subsampling the dataset
to remove instances of individuals having fewer than 10 images, 5,148 images
across 158 individuals remained (2,624 left, 2524 right).

3.2 Norwegian Killer Whale Data Corpus (NKW-10)

Acting as an additional source of killer whale data, the Norwegian killer whale
data corpus (NKW-10) consists of a selection of 10 individuals from the Norwe-
gian killer whale population. These individuals, while sharing the same general
identifying characteristics of the Bigg’s killer whales, the saddle patch and dorsal
fin display subtle differences in shape and size.

3.3 Bottlenose Dolphin Data Corpus (BD-23)

A collection of bottlenose dolphin images (BD-23) is also used to evaluate the
performance of the encoding mechanisms presented within this research. The
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corpus is comprised of 4,515 images across 23 female individuals. The images
are all collected from the Patos Lagoon estuary, Brazil. In comparison to the
killer whale, this group of female bottlenose dolphins displays significantly less
variety in terms of dorsal fin shape and lacks the saddle patch which serves as a
secondary identifier for the killer whale.

4 Methodology

4.1 FIN-DETECT

A YOLOv3-based network, which was trained on 2,286 manually labelled images
as well as 7,511 pseudo-labelled images, was used to identify and extract cropped
images, yielding a 512×512 RGB image of a single individual. This trained model
is taken directly from [2] to maximize comparability.

4.2 FIN-IDENTIFY

The first method of encoding images utilized a ResNet18 classifier trained on one
of three different datasets: (1) the most commonly seen 100 individuals (T100-
E), which achieved an overall accuracy of 92.5% with 97.2% top-3 unweighted
accuracy (TUA) on the network test set, (2) the most commonly seen 50 indi-
viduals (T50) (93.1% accuracy, 97.1% TUA), and (3) the most commonly seen
10 individuals (T10) (92.9% accuracy, 98.1% TUA). In order to provide a con-
sistent comparison to results presented in [2], only data from 2011 to 2017 was
used for training. Feature vectors from the classifier were generated by taking
the output from the last residual block and applying global average pooling to
reduce the vector from 512×32×32 to 512×1×1

4.3 FIN-CODER

To fairly compare results from [2], a ResNet18-based undercomplete autoencoder
was trained on the same 2011–2017 data used to train the FIN-IDENTIFY model
(T100-E). The autoencoder used a latent size of 512 to keep the dimensionality
consistent with the classifier. Both the FIN-IDENTIFY and FIN-CODER net-
works were trained on an NVIDIA Quadro RTX 5000 with the Adam optimizer
(lr= 10−5, β1 = 0.5, and β2 = 0.9) and a batch size of 2 for the autoencoder and
8 for the classifier.

4.4 Image Corruption

In order to compare the semantic clustering capability of both encoding methods,
varying levels of artificial noise in the form of a uniformly distributed U(0, 1)
noise mask was applied to each channel of each image of the N100 dataset before
encoding. A percentage γ was chosen for the application of noise, indicating
how many pixels of the original image were obscured by the noise mask, with
γ ∈ [0, 10, 25, 50, 75]%. See Fig. 1 for an example of the noise application process.
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4.5 Killer Whale/Background Separation

Measuring the effect of background features on clustering performance was done
by examination of the N100-HQ dataset. Due to the manual effort required to
segment the images using the Segment Anything tool [11], namely that the tool
performs initially quite poorly when trying to automatically segment the images,
points on the dorsal fin and body of the individual had to be manually selected.
These points were then given as assistance to the Segment Anything tool. The
resulting masks were then applied to the images, substituting black pixels of the
mask for white in the image, resulting in images containing only the body of
the animal on a white background. The results of this process are visualized in
Figs. 1 and 3.

4.6 Clustering

K-Means clustering was used to compare the viability of both the autoencoder
and classifier as encoding mechanisms, with performance being evaluated primar-
ily with V-Measure [16], calculated as the harmonic mean between homogeneity
and completeness and defined as

v =
(1 + β) ∗ homogeneity ∗ completeness

β ∗ homogeneity + completeness
, (1)

with β = 1 and the optimal values for all measures being 1. A perfect homo-
geneity indicates that the clusters contain only samples from one label, whereas
a perfect completeness indicates that samples with one label are only present
in one cluster. K-Means clustering was selected over other methods for its well-
known performance as well as the generally low computing resources required.

5 Experiments

The experimental setup consists of the following five parts: (1) Utilizing both the
autoencoder and classifier trained on the T100-E dataset to encode images from
the N100 dataset, which have been corrupted by some level of noise γ, as detailed
above, to generate latent representations which are subsequently clustered using
the mechanism detailed above. The number of clusters used is equal to the
number of individuals within the N100 dataset (k = 213). (2) Repeating this
process using the classifiers trained on the T50 and T10 datasets. (3) Utilizing
the representations generated by the classifier trained on the T100-E dataset
of the N100-HQ dataset both with and without segmentation, again applying
a level of noise γ, to examine the effect of the background on clustering. (4)
Evaluation of the T100-E classifier as an encoding mechanism for images from
two completely different groups of dorsal finned animals, namely the Norwegian
killer whales and bottlenose dolphins, as described in the section above. In both
of these cases the T100-E classifier is compared against an autoencoder trained
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Fig. 1. A visualization of the pipeline which leads to the final 512-D vector used for
clustering. This process involves applying some percentage γ of corrupting noise which
may be preceded by the segmentation of the image to remove the background. The
final (corrupted and/or segmented) image is then passed to the encoding mechanism of
choice, either the unsupervised undercomplete autoencoder or the supervised classifier.

specifically on these individuals to investigate how the classifier handles the
generation of embeddings for similar animals, as in the case of the Norwegian
killer whales, as well as a completely different species, which lacks some of the
identifying markers available for the killer whale, such as the saddle patch. Again,
the number of clusters chosen for each of these experiments reflects the number
of individuals known to be within the datasets (k = 10 and k = 23, respectively).
(5) Finally, a more in-depth investigation of the clustering results of the N100
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dataset was performed, with focus on meta features such as side of the individual,
photographer, date, and location.

6 Results and Discussion

(1) Classifier Vs. Autoencoder. Clustering with the representations gener-
ated by the classifier trained on the T100-E dataset performed best when applied
to the N100 data (k = 213), achieving a V-Measure of 0.71 in the complete
absence of obscuring noise in comparison to the autoencoder representations
which achieved a V-Measure of 0.21, indicating the inability of the autoencoder
to adequately separate individuals. Furthermore, the T100-E encoder produced
14 perfectly homogeneous clusters, with images in those clusters ranging from 23
to 148. There were no clusters produced by the autoencoder which were perfectly
homogeneous. Additionally, the T100-E encoding mechanism remains relatively
robust to added noise, achieving a V-Measure of 0.71 and 0.68 when 10% and
25% of the pixels are corrupted. More significant performance losses occur when
more than 50% of the images’ pixels are corrupted, and the V-Measures decrease
to 0.61 and 0.53 with 50% and 75% corruption, respectively. This performance
indicates that the classifier is significantly more robust than the autoencoder
when it comes to image corruption and requires significantly fewer features to
effectively separate individuals it has never seen. Several examples of the input
and output from the autoencoder trained on the T100-E dataset, as well as those
trained on the NKW-10 and BD-23 datasets, can be seen in Fig. 2.

Fig. 2. Autoencoder input and output samples from the T100-E dataset, the Nor-
wegian killer whale dataset (Copyright Ellyne Hamran, Ocean Sounds e.V.), and the
bottlenose dolphin dataset (below, Copyright Lorenzo von Fersen, Nuremburg Zoo).
Each input/output sample is generated from an autoencoder trained on data from the
respective dataset
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(2) Decreasing Target Count for Classifier. This performance is shown
again when only using the T50 dataset for classifier training, which achieves
a V-Measure of 0.69 and six perfectly homogeneous clusters with sizes ranging
from 37 to 150 images. Performance degrades significantly when the T10 dataset
is used for training, with the best result achieving a V-Measure of 0.46. These
results are summarized in Table 2. Again, this demonstrates that an incomplete
classifier, which has seen only a minor subset of the individuals within a popu-
lation, is capable of separating individuals never before encountered.

(3) Effects of Segmentation on Clustering. When encoding for the seg-
mented, body-only images (k = 158) the T100-E classifier again outperforms the
AE, achieving V-Measures of 0.82 and 0.35 respectively. These scores are similar
to those achieved using the same but unsegmented images, which resulted in
V-Measures of 0.82 and 0.36. This similarity is likely due to the fact that the
images selected are high quality, with the animal large and central within the
image. However it is indicative that both approaches generally learn to ignore
the background, but its removal may be beneficial to the classifier in providing
better separation. As noise is increasingly added, the performance of the clas-
sifier on the original data declines more rapidly than on the segmented data,
ending with V-Measures of 0.64 and 0.77, respectively. This may indicate that
it is not necessarily the background that is having an effect on the clustering of
the results, but rather the contrast of the fin to the background, which remains
relatively consistent with the segmented images as more noise gets added. This
is further supported by the fact that the images contained within this dataset
are those in which the dorsal fin, the main identifying characteristic of the killer
whale, is decidedly prominent within the frame. In contrast, the addition of
noise to the images processed by the autoencoder showed no significant effect to
the performance, with both the original and segmented producing V-measures
between 0.37 and 0.35, regardless of absence or presence/amount of corrupting
noise. A visualization of the samples used for this experiment, the segmented
images with increasing levels of noise as well as the original, and the output
of the autoencoder, is presented in Fig. 3. This may help to better understand
the consistent results shown using the segmented images, as the variation in the
background as seen in the autoencoder output is minimal in contrast to the orig-
inal images, which may have led to the slightly worse performance. The results
for this experiment are summarized in Table 3.

(4) Different Population and Different Species. The T100-E classifier
also outperformed the autoencoder specifically trained on the 10 available Nor-
wegian killer whales, achieving V-Measures of 0.52 and 0.31, respectively. This
relative performance was similar for the bottlenose dolphins as well, reaching a
V-Measure of 0.18 and 0.03 respectively. The poor performance of both methods
for the dolphins may be attributed to either the limited quantity of data, the
large variety of body positions, the relative similarity of the animals to each
other, or the relatively low number of readily identifiable features, such as the
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Fig. 3. Visualization of input and output samples of the autoencoder which was trained
on the T100-E dataset when processing both the original, non-segmented images, and
the images for which binary segmentation masks have been produced. In addition, the
input and output of the segmented samples when applying an increasing amount of
noise are also shown.

absence of a saddle patch as seen with the killer whales. As stated previously,
visualizations of several samples processed by the autoencoders trained on the
NKW-10 and BD-23 data corpora can be seen in Fig. 2.

(5) Meta Clustering Performance. Finally, a deeper investigation into the
contents of the clusters was performed and additional metadata such as date,
location, photographer, and side (left/right) were evaluated. It was revealed that,
in the case of no added noise, the 14 perfectly homogeneous clusters contained
images of 10 distinct individuals. Furthermore, the clusters show no tendency to
favor a particular metadata characteristic such as date, location, photographer,
or side, with the mix of left and right sides per cluster ranging from 51% to 81%
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Fig. 4. The mean, minimum, and maximum number of individuals per cluster when
varying the level of corrupting noise when encoding the N100 images (top), the N100-
HQ images (middle), and the segmented N100-HQ images (bottom), with the various
encoding mechanisms used for each. The larger the number of individuals, the more
impure the cluster, indicating worse performance of the encoder with respect to indi-
vidual identification

and the variability in combination of date, location, and photographer ranging
from 0.18 to 0.49. This trend is also present in the high-noise scenario, where only
four unique individuals in six perfectly homogeneous clusters are observed, but
side purity remains between 55% and 83% and meta variability ranges between
0.16 and 0.63. A visualization of how the number of individuals within a cluster
changes, including the mean, minimum, and maximum within each cluster can
be seen in Fig. 4. This reflects varying the amount of noise and utilizing the
various encoding mechanisms for the N100, N100-HQ, and segmented N100-HQ
datasets.
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Table 2. A summary of the clustering results, showing V-Measure for vectors gen-
erated from the N100[noise] dataset achieved with the Autoencoder (AE) or Classifier
(CLS) trained on either 100, 50, or 10 most commonly observed animals (T100-E, T50,
T10 datasets).

N1000 N10010 N10025 N10050 N10075

AE - Top 100-E 0.25 0.25 0.24 0.22 0.21
CLS - Top 100-E 0.71 0.71 0.68 0.61 0.53
CLS - Top 50 0.69 0.69 0.66 0.60 0.54
CLS - Top 10 0.46 0.46 0.45 0.42 0.40

Table 3. A summary of the clustering results of the N100-HQ data in both the
original and segmented (N100-HQ-S) form with the vectors generated by either the
Classifier (CLS) or Autoencoder (AE) trained on the most commonly seen 100 animals
(T100-E). The V-Measure for each experiment is presented when applying varying
percentage of image corrupting noise (N[noise]), while the number of clusters remains
constant, reflecting the number of individuals present within the dataset (k = 158).

N0 N10 N25 N50 N75

N100-HQ-CLS 0.82 0.81 0.78 0.71 0.64
N100-HQ-AE 0.36 0.36 0.35 0.35 0.35
N100-HQ-S-CLS 0.82 0.81 0.81 0.79 0.77
N100-HQ-S-AE 0.37 0.37 0.37 0.36 0.35

7 Conclusion and Future Work

This study investigates the use of incomplete classifiers and undercomplete
autoencoders for the generation of latent vectors for clustering examples from
unseen classes. It was additionally investigated how robust these mechanisms
are to image corruption and the removal of background information. Through a
comprehensive experimental setup including using classifiers trained on a varying
number of classes and individuals, increasing the level of corrupting noise, and
examining the difference in clustering performance when removing background
content, the superiority of the incomplete classifier was demonstrated.

The classification separation mechanism appears to saturate as a certain
number of classes is reached, as seen by the difference between the T100-E,
T50, and the T10 classifiers, indicating the ability to use less data and fewer
classes for the same general performance. Despite the relatively poor performance
of the T10 classifier, all supervised classification mechanisms produce latent
embeddings which are more easily separable and semantically relevant than those
generated by the autoencoder. This demonstrates that, given a minimal subset
of classes, robust embeddings useful for downstream clustering and potential
identification is a possibility, which could be useful in a wide range of scenarios
where inter-class variation is significant, but where data collection and labelling
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is a tedious and expensive process. The usage of these incomplete classifiers
may therefore be able to provide suggestions of images which may belong to a
single class within a large dataset, thereby expediting downstream labelling and
identification.

Finally, the homogeneous clusters produced by the classifier do not seem
to discriminate between certain metadata such as only left or only right sided
images or images from a certain day, location, or photographer, indicating the
robustness of the classifier to generate embeddings which are relevant to a spe-
cific individual and lending more credence and reliability to their use as a pre-
processing step for identification.

Future work will include comparing these methods with techniques such as
discriminative learning for identifying unknown individuals and to investigate
methods to identify further commonalities in clusters not related to known meta-
data and image quality (brightness, saturation, camera settings, etc.). Addition-
ally, further image corruption and occlusion [22] techniques should be investi-
gated in order to determine the relevance of certain regions in the image which
lead to better separation in the latent space.
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Abstract. For traffic incident detection, the acquisition of data and labels is
notably resource-intensive, rendering semi-supervised traffic incident detection
both a formidable and consequential challenge. Thus, this paper focuses on traf-
fic incident detection with a semi-supervised learning way. It proposes a semi-
supervised learning model named FPMT within the framework of MixText. The
data augmentationmodule introducesGenerativeAdversarialNetworks to balance
and expand the dataset. During the mix-up process in the hidden space, it employs
a probabilistic pseudo-mixing mechanism to enhance regularization and elevate
model precision. In terms of training strategy, it initiates with unsupervised train-
ing on all data, followed by supervised fine-tuning on a subset of labeled data, and
ultimately completing the goal of semi-supervised training. Through empirical
validation on four authentic datasets, our FPMT model exhibits outstanding per-
formance across variousmetrics. Particularly noteworthy is its robust performance
even in scenarios with low label rates.

Keywords: Traffic Incident Detection · Semi-supervised Learning · Generative
Adversarial Networks

1 Introduction

In the realm of intelligent traffic systems, traffic incident detection refers to accurately
identifying unpredictable incidents such as traffic accidents, road maintenance, and
severe congestion in terms of both location and time [1]. Ensuring the efficient oper-
ation of urban traffic and enhancing the safety of people’s travel constitute one of the
core functionalities of intelligent traffic systems, involving the automatic detection of
traffic incidents. This involves promptly identifying and addressing these incidents to
improve overall traffic flow. However, relying on traffic flow data for incident detection
necessitates continuous data collection and labeling by professionals, which is resource-
intensive. Current research has predominantly focused on deep learning methods, which
typically require substantial labeled data for training, presenting a significant challenge
in applying deep learning to traffic incident detection with limited labeled data [2].

To address the scarcity of label information in real-world scenarios due to difficulty in
acquisition, semi-supervised learning has garnered attention. Semi-supervised learning
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successfully alleviates the over-reliance on supervised information in machine learn-
ing, leveraging unlabeled samples to train a reliable classifier for effective predictions
in target categories based on the popular assumption and clustering hypothesis. Vari-
ous semi-supervised learning models employ different strategies for handling unlabeled
samples, such as entropy minimization, consistency regularization, and data augmenta-
tion. Examples include the Mean Teacher model [3] and Virtual Adversarial Training
(VAT) [4]. However, these semi-supervised learning methods are based on the assump-
tion that the distribution of labeled and unlabeled data pairs is entirely identical, treating
labeled or unlabeled data separately [5].

Due to the limited availability of labeled data during the training process of semi-
supervised learning, overfitting is prone to occur. To better utilize unlabeled data,
Bertholot et al. proposed the MixMatch method [6]. This method generates mixed sam-
ples by interpolating different samples through MixUp and interpolates mixed pseudo-
labels for different samples. The authors also introduced the FixMatch model [7], which
achieves state-of-the-art performance in semi-supervised learning benchmarks by using
weakly augmented unlabeled images to generate high-confidence pseudo-labels and
training the model with strongly augmented image versions. However, these interpola-
tion methods are designed for image data, and discrete text data, interpolation needs to
be performed in the corresponding hidden space, leading to the development of a new
semi-supervised learning method for text data called MixText [8].

To further explore the latent information in unlabeled data by utilizing more ratio-
nal training, data augmentation, and loss calculation strategies, integrating their com-
plementary strengths, a semi-supervised traffic incident detection model is proposed
based on the MixText framework. In the data augmentation module, as traffic incident
datasets often exhibit significant imbalances and small scales, the application of GANs
is proposed to balance and expand the dataset. A probability pseudo-mixing strategy is
employed in the hidden spacewhen performingMix-up, assigning confidence to samples
entering the mixture, thereby giving more weight to samples with higher confidence to
enhance regularization. In terms of training strategy, unsupervised training is initially
performed on all data, followed by supervised training on a subset of labeled data, and
ultimately, semi-supervised fine-tuning is conducted to improve detection rates. In the
semi-supervised fine-tuning phase, pseudo-labels are first predicted for unlabeled data,
and confidence is assigned to these pseudo-labels. When labeled and unlabeled data
enter the model’s hidden layer, interpolation is performed based on the confidence ratio,
iterating through training to extract latent information and obtain classification results.
The model is experimentally validated on four real datasets and compared with baseline
models. Through ablation studies, the effectiveness of eachmodule is demonstrated. The
results show that the proposed semi-supervised traffic incident detection model FPMT
performs exceptionally well with very limited labeled data.

In summary, the main contributions of this paper are as follows:

• Proposing a novel semi-supervised traffic incident detection model that exhibits
outstanding performance in scenarios with extremely low label rates.

• IntroducingGANs in the data augmentationmodule to balance and expand the dataset.
• Optimizing the interpolation strategy in the hidden layer under the MixText

framework to enhance regularization.
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• Applying a training strategy that involves supervised training initially, followed by
semi-supervised fine-tuning to improve detection rates.

• Conducting extensive experiments on four real datasets, demonstrating the effective-
ness of the proposed semi-supervised traffic incident detection model and validating
the effectiveness of each module.

2 Related Work

The development of Traffic Incident Detection traces back to 1965 when the Califor-
nia algorithm [9] utilized fluctuations in upstream and downstream traffic flow data
to identify the occurrence of incidents. Subsequently, the standard deviation algorithm
[10] employed standard deviation values to observe the average trends of preceding
time intervals and the current transformation trends, thereby discerning whether a traffic
incident has occurred. Following this, Bayesian algorithms [11], rooted in statistical the-
ory, sequentially emerged. However, they exhibited an overreliance on past experiences,
posing flexibility challenges. With the robust growth of machine learning post-1990,
classical models such as Support Vector Machines (SVM) [12] and Random Forests
[13] were applied to this task. Various artificial intelligence algorithms found applica-
tions in the field of Traffic Incident Detection, including Convolutional Neural Networks
(CNN) [14] andLongShort-TermMemoryNeuralNetworks [15] as part of deep learning
methods.

The development of semi-supervised learning commenced in 2005 when Grandvalet
and others proposed the entropy minimization method [16], becoming the most classic
and commonly used deep semi-supervised learning algorithm and strategy. This app-
roach effectively integrates unlabeled data in semi-supervised learning, demonstrating
robust performance, especially when addressing violations of generated model error
specifications or “cluster assumptions.” Subsequent developments in semi-supervised
learning models are intricately tied to four aspects: entropy minimization, consistency
regularization, data augmentation, and pre-training fine-tuning.

2.1 Consistency Regularization

In 2018, Tarvainen et al. introduced the Average Teacher Model based on Consistency
Regularization [3], significantly improving performance compared to previous methods.
In the same year, Miyato et al. proposed the Virtual Adversarial Training method [4],
which involves computing the gradient of the network to generate adversarial samples.
These adversarial samples are designed to maximize the network’s vulnerability, and by
combining them with pseudo-labels derived from the original samples, the network can
be correctly trained, maximizing its robustness against interference. In 2020, Sohn et al.
presented the FixMatch method [7], which involves applying slight transformations to
unlabeled samples for initial predictions and selecting samples with high confidence to
assign pseudo-labels. Subsequently, these samples undergo more substantial transfor-
mations, and the consistency loss is computed between the pseudo-labels and the blurred
predictions after strong transformations, thereby enhancing the learning effectiveness of
the network.
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2.2 Entropy Minimization

In 2013, Lee proposed the Pseudo-Label method [17], which has become the most
widely used semi-supervised learning approach. Essentially, it also leverages the strat-
egy of entropy minimization employed by the network predictions. The Pseudo-Label
method primarily involves selecting samples with high confidence during the learning
process, transforming their network predictions into pseudo-labels corresponding to the
class with the highest predicted probability. These pseudo-labels are then utilized to
assist in the network training process. In 2016, Laine and Aila introduced the Π-model
[5]. This method utilizes two structurally identical but parametrically distinct network
models, aiming for both networks to produce the same predictions for identical sam-
ples. Consequently, when one network generates incorrect labels for unlabeled samples
during training, the other network can correct them. This consistency training strategy
avoids the robustness issues associated with the aforementioned entropy minimization
strategy.

2.3 Data Augmentation

In 2019, Wang et al. proposed a straightforward yet effective semi-supervised learning
method called Augmented Distribution Alignment [18]. This method employs adver-
sarial training and interpolation strategies to alleviate sampling biases arising from lim-
ited labeled samples in semi-supervised learning. It aligns the empirical distributions
of labeled and unlabeled data. In the same year, Bertholot et al. introduced a novel
semi-supervised learning model named MixMatch [6]. By unifying current mainstream
semi-supervised learning methods, this model infers low-entropy labels on augmented,
unlabeled examples and utilizes MixUp technology to blend labeled and unlabeled data.
Cai et al. presented Semi-ViT [19], another semi-supervised learningmodel, introducing
a probability pseudo-mixing mechanism for interpolating unlabeled samples and their
pseudo-labels, enhancing the regularization effect.

2.4 Pretraining and Fine-Tuning

In 2018, Howard et al. introduced Universal Language Model Fine-tuning (ULMFiT)
[20], incorporating key techniques for fine-tuning languagemodels. In 2020, Ting et al.’s
SimCLR [21] model demonstrated a significant improvement in accuracy when fine-
tuning on only 1% of labels. Subsequent research utilized SimCLRv2 [22] for unsu-
pervised pre-training of a large ResNet model, followed by supervised fine-tuning on a
small set of labeled examples. Knowledge from unlabeled examples was distinguished
to enhance and transfer task-specific knowledge.

3 Method

3.1 Fusion of Training Pipeline

The paradigm shift in the training pipeline has made significant strides in improving
model performance in recent years. For instance, in theFixMatch framework, the pipeline
has been altered to first undergo unsupervised pre-training followed by self-supervised
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training fine-tuning. Similarly, in the SimCLRv2 framework, the approach involves ini-
tial unsupervised pre-training followed by supervised fine-tuning, ultimately employing
knowledge distillation and transfer fromunlabeled samples. In the training process of this
study, following experimentation and exploration, amethodology akin toSimCLRv2was
adopted. Specifically, the decision was made to first conduct unsupervised pre-training
on the entire dataset, then perform supervised fine-tuning on a subset of labeled data, and
finally engage in semi-supervised training on both labeled and unlabeled data.Within the
semi-supervised training framework, Probability MixText (PMT) was employed, incor-
porating probabilistic pseudo-mixing and GANs-based data augmentation techniques
into the foundational MixText framework.

3.2 Probabilistic Pseudo Mixup

For the proposed data augmentation technique Mixup applied to image data, linear
interpolation is performed at the pixel level of the input images. Specifically, it involves
blending the pixel values of the original images in a certain proportion. Correspondingly,
the labels are mixed in the same ratio, resulting in new samples and labels with blended
features. The mixing ratio λ is derived from a Beta distribution, typically involving the
random selection of two different samples, xq and xp, along with their corresponding
labels from the dataset X = {x1, ..., xm} and labels Y = {y1, ..., ym}. Formally, for
p, q ∈ [0,m], the mixing process is defined as follows:

x̃ = λxq + (1 − λ)xp, (1)

ỹ = λyq + (1 − λ)yp. (2)

However, due to the varying qualities of data and pseudo-labels generated, the simple
random selection of the mixing ratio λ from the Beta distribution for poorly performing
samples might lead to an undesired impact. This randomness could potentially allow
low-quality data to influence high-quality data and affect loss calculations. To address
this issue, the concept of probabilistic pseudo-mixing [19] is introduced.

Despite the lower quality of the data, it still holds valuable information. Probabilistic
pseudo-mixing continues to involve random mixing of unlabeled data, but the mixing
ratio λ is no longer randomly generated from a Beta distribution. During the semi-
supervised training phase, pseudo-labels and corresponding losses are generated. The
confidence is determined based on the loss information from the two samples involved in
the mixing. Through this mechanism, samples with higher confidence have a higher pro-
portion in the mixed samples, and consequently, the pseudo-labels have a higher propor-
tion. This weighting allows higher confidence samples to contribute more significantly
to the semi-supervised loss calculation. This mixing strategy enhances regularization
and provides greater flexibility.

3.3 Data Augmentation

To address the high imbalance and insufficient scale of traffic incident data, in the
data augmentation module, the decision was made to employ Generative Adversarial
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Networks (GANs) to tackle these challenges. GANs are a common data augmentation
technique capable of simulating the distribution of input data and capturing latent infor-
mation to generate highly similar newdata. Typically, GANmodels consist of a generator
and a discriminator, aiming to train the generator in such a way that the discriminator
maximizes the probability of erroneously classifying generated samples as real samples.
Previous research [23] has demonstrated that GANs produce high-quality data and have
significantly contributed to advancements in various research domains.

3.4 MixText

The Probability Pseudo-Mixing (Tmix) technique was originally designed for image
data and may not be directly applicable to text data due to its discrete nature. Therefore,
interpolation is performed in the hidden space. In a BERT model with H layers, the
process involves selecting x and x′ from the dataset and inputting them into the first
layer to obtain their hidden representations, denoted as h and h′, respectively. Then, at
an intermediate layer, denoted as layer E, the hidden representations hE and h′

E of these
two samples are mixed using the Mixup operation, generating a new sample hm based
on a random number λ drawn from a Beta distribution for each batch. The formula for
obtaining the new sample hm is as follows:

hm=λhE + (1 − λ)h′
E, (3)

simultaneously, the samples x and x′ are input into the BERT model to obtain their
corresponding pseudo-labels y and y′, respectively.With the previously generatedmixing
ratio λ, the pseudo-label for the new sample is calculated as follows:

ym=λy + (1 − λ)y′. (4)

This constitutes the framework of Tmix. Extending from this, MixText incorporates
both labeled dataset XL and unlabeled dataset XU into the model training process. For
labeled data, the model is trained using the supervised loss function, which is the cross-
entropy loss:

Lx = − 1

N

N∑

i=1

C∑

j=1

yi,jlog(pi,j), (5)

where,N denotes the batch size,C represents the number of classes, yi,j signifies the j-th
element in the true label of sample i, and pi,j is indicative of the predicted probability
by the model for the j-th class of sample i.

For unlabeled samples, theKullback-Leibler Divergence Loss (KLDivergence Loss)
is employed as the consistency loss. This helps ensure that the model produces similar
outputs for similar inputs, enhancing the model’s consistency Lu. The loss calculation
formula is as follows:

Lu = DKL( softmax(outputsu)‖targetsu), (6)

where outputsu is the model’s output for unlabeled data, and targetsu is the pseudo-label
calculated based on the predicted probabilities pi,j.
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For mixed data, when both mixed samples come from the labeled dataset, the model
is trained using the supervised loss. When both mixed samples come from the unlabeled
dataset, the model is trained using KL Divergence Loss. When one mixed sample comes
from the labeled dataset and the other from the unlabeled dataset, the model is trained
using both the supervised loss and KL Divergence Loss. The formula is as follows:

L = Lx + w · Lu, (7)

where w is a weight used to balance the contributions of labeled and unlabeled samples.
The training process involves iterative mixing of labeled and unlabeled data with a

certain probability, calculating the corresponding losses in each iteration.

3.5 FPMT

Building upon the MixText framework, the new semi-supervised traffic incident detec-
tion model, named FPMT, integrates the training strategy as a Fusion of Training
Pipeline, the mixing strategy as a Probabilistic Pseudo Mixup, and the data balancing
and augmentation strategy as GANs.

Fig. 1. Architecture of PTmix.

The framework of the Probability Pseudo Mixup model (PTmix) within FPMT is
illustrated in Fig. 1. Samples x and x′ are input into PTmix, and the output layer provides



FPMT: Enhanced Semi-supervised Model for Traffic Incident Detection 369

their pseudo-labels and confidence scores (y, o) and (y′, o′). The mixing ratio λ is deter-
mined based on the confidence proportions using the Formula 8. Subsequently, based
on the values of λ and 1 − λ, samples x and x′ are mixed at the layer E of the model,
producing hidden representations hE and h′

E for the new sample, as well as mixing the
pseudo-labels y and y′ for the unlabeled data, resulting in the new sample h̃ and ỹ.

λ = o

o + o′ , (8)

h̃ = λhE + (1 − λ)h′
E, (9)

ỹ = λy + (1 − λ)y′. (10)

The semi-supervised fine-tuning stage of the FPMT model follows the framework
of the PTmix model, as depicted in Fig. 2. Initially, the dataset XO undergoes data
augmentation using GANs to balance and expand the dataset. The augmented dataset
is then partitioned into the labeled dataset XL and the unlabeled dataset XU . Both XL

and XU are fed into PTmix, generating predicted labels YL for XL, predicted labels YU
for XU , and predicted labels YM for mixed dats XM. The mixing strategy employed is
probabilistic pseudo-mixing. Different loss functions are applied for calculating losses
on different types of data, following the strategy outlined in MixText, as described in
Sect. 3.4.

Additionally, the FPMT model adopts a training strategy involving initial unsu-
pervised training on all data, followed by supervised fine-tuning and ultimately
semi-supervised fine-tuning.

Fig. 2. Overall architecture of the proposed FPMT model.

4 Experiment

4.1 Datasets

To evaluate the proposed semi-supervised traffic incident detection model, four real-
world datasets were utilized. These datasets include PeMS [24], I-880 [25], Whitemud
Drive [26], and NGSIM [27]. PeMS is a California-specific traffic flow database, that
collects real-time data from over 39,000 independent detectors. It includes parameters of
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traffic flow, incident data, and weather information. I-880 originates from the renowned
I880 highway traffic incident database in the United States, documenting traffic flow
speed, occupancy data, and incident information on a 9.2-mile stretch of the highway.
Whitemud Drive is a 28-km-long highway in Edmonton, Alberta, Canada, equipped
with circular detectors on main lanes and ramps to gather traffic parameters. NGSIM,
initiated by the United States Federal HighwayAdministration, gathers real-time vehicle
trajectory data for driving behavior analysis, traffic flow analysis, microsimulation mod-
eling, and vehicle trajectory prediction. These datasets provide valuable information for
traffic flow prediction, model analysis, and urban traffic planning and management.

4.2 Comparing Method

To validate the effectiveness of FPMT, it was compared with several recent models
during the experimental phase. Among these, BERT [28] is a bidirectional encoder rep-
resentation model that achieves significant performance improvements across various
natural language processing tasks by jointly pretraining on the left and right context
of the text, without requiring extensive task-specific architecture modifications dur-
ing fine-tuning. VAT [4] is a regularization method based on virtual adversarial loss,
achieving high performance in semi-supervised learning tasks by measuring the local
smoothness of the input conditional label distribution. UDA [29] is a new approach
in semi-supervised learning that employs advanced data augmentation methods such
as RandAugment and back-translation, replacing simple noise operations and signifi-
cantly improving performance across six languages and three visual tasks. DSP [30],
by guiding the teacher to generate more accurate pseudo-labels through student feed-
back and combining consistency regularization, significantly improves text classification
performance.

4.3 Experimental Setting

As traffic incident detection is a binary classification task, the class parameter is fixed at
2. For the layer selection of probabilistic pseudo-mix-up in PMT, it was observed that
the mixing performed better at the 9th layer after training PMT separately. The model’s
decoder is based on Bert-base-uncased, and the output is classified through an additional
linear layer. The learning rate for the BERT model’s encoder is set to 0.00001, and the
learning rate for the additional linear layer is set to 0.001. During the semi-supervised
fine-tuning phase, for each dataset, GANs are utilized to balance and augment the dataset.
For the augmented dataset, in each category, the number of unlabeled samples is set to
5000, while the number of labeled samples is set to 50, 100, and 1500, achieving label
rates of 1%, 2%, and 30%, respectively.

4.4 Result

In the experiments, the selected evaluation metrics include Classification Rate (CR),
Detection Rate (DR), and F1-score. After fixing the number of unlabeled samples for
each category at 5000, experiments were conducted on four real datasets with varying
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Fig. 3. (a) and (b) compare our FPMT model with baselines using different numbers of labeled
samples (50, 100, 1500). Meanwhile, (c) represents the comparison with a fixed number of labeled
samples set at 50.

numbers of labeled samples (50, 100, and 1500 for each category), and the results
are presented in Table 1 and Fig. 3. Our FPMT model achieved superior performance
compared to the contrasted models, demonstrating excellent performance even when the
number of labeled samples is minimal. Particularly noteworthy is its performance on
DR, where, even at a label rate of only 1%, it outperforms BERT at a 30% label rate.
The model exhibits remarkable capability in enhancing DR. On the PeMS dataset, when
the number of labeled data is the smallest, only 50, the proposed FPMT model achieves
a detection rate 4.4% higher than MixText, demonstrating the best performance. On the
I-880 dataset, the detection rate is 5.6% higher than MixText. The improvement on the
other two datasets is not as significant, but the model still exhibits the best performance.

Table 1. Performance (Classification Rate (CR) (%), Detection Rate (DR) (%), and F1-score (%))
comparison with baselines. Models are trained with 50, 100, and 1500 labeled data per class.

Dataset Model 50 500 1500

PeMS BERT 71.3/63.1/70.6 83.8/76.1/81.3 89.3/85.8/89.6

VAT 89.3/80.1/89.2 91.9/84.1/90.4 92.3/84.8/90.9

UDA 88.9/79.1/87.4 91.9/83.8/90.1 92.4/85.7/90.7

DSP 90.2/80.8/89.9 92.1/84.4/90.9 92.9/86.8/91.3

MT 91.6/81.9/90.3 92.7/85.1/91.7 93.1/87.4/92.3

FPMT 93.7/86.3/91.7 94.3/87.7/92.8 95.5/90.2/94.7

I-880 BERT 70.7/64.1/69.6 82.8/77.1/81.8 88.2/86.8/87.8

VAT 88.7/82.1/87.7 90.4/86.5/87.9 91.8/87.1/90.1

UDA 88.9/83.8/87.4 90.9/85.2/89.8 91.9/87.5/91.2

DSP 89.5/82.5/89.2 91.4/86.3/91.2 92.6/88.4/91.4

MT 90.9/82.7/89.9 91.9/87.3/91.6 92.9/89.3/92.1

FPMT 93.2/88.3/92.7 93.7/89.4/92.9 94.9/92.1/94.9

(continued)
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Table 1. (continued)

Dataset Model 50 500 1500

Whitemud
Drive

BERT 84.8/79.4/82.9 88.1/83.6/86.8 90.7/85.2/89.9

VAT 92.7/87.1/90.4 94.5/88.9/92.7 95.4/89.2/93.1

UDA 92.4/86.7/90.1 93.9/87.6/91.9 95.8/89.6/93.7

DSP 93.8/88.1/92.3 94.7/89.6/93.4 95.9/90.1/94.2

MT 96.7/90.8/94.9 98.1/92.8/97.9 98.7/92.3/98.2

FPMT 97.3/92.7/95.6 98.2/93.1/97.3 98.7/93.2/98.4

NGSIM BERT 80.8/76.4/82.9 85.4/83.6/86.8 85.9/83.7/87.1

VAT 89.6/83.4/87.3 90.8/85.4/89.9 91.3/86.1/90.7

UDA 88.4/82.8/86.5 90.5/83.9/88.4 91.7/85.3/89.8

DSP 90.5/84.3/88.5 91.1/86.2/89.9 92.3/87.4/90.7

MT 93.1/87.3/91.2 94.7/89.4/93.9 95.4/89.9/94.3

FPMT 94.8/90.4/92.2 95.9/91.3/93.5 96.8/92.3/94.7

4.5 Ablation Experiments

The experimental results comparing the model PMT of FPMT during the semi-
supervised fine-tuning stagewithMixText on dataset PeMS and datasetWhitemudDrive
are presented in Table 2. It can be observed that, with the improved mixing strategy, the
model’s performance across various aspects has been enhanced.

Table 2. Performance comparison with MixText and PMT.

Dataset Model 50 500 1500

PeMS MT 91.6/81.9/90.3 92.7/85.1/91.7 93.1/87.4/92.3

PMT 92.1/83.2/90.9 93.9/86.2/92.3 94.3/88.5/93.4

FPMT 93.7/86.3/91.7 94.3/87.7/92.8 95.5/90.2/94.7

Dataset Model 50 500 1500

Whitemud
Drive

MT 96.7/90.8/94.9 98.1/92.8/97.9 98.7/92.3/98.2

PMT 97.6/91.3/93.5 98.3/92.9/97.4 98.9/92.7/98.3

FPMT 97.3/92.7/95.6 98.2/93.1/97.3 98.7/93.2/98.4

5 Conclusion

In the research field of traffic incident detection, methods based on traffic data have
made significant progress. However, popular deep-learning approaches heavily rely on
data collection and labeling. To alleviate the re-source-intensive nature of data labeling,
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this paper proposes a semi-supervised learning traffic incident detection model, FPMT,
reducing the model’s dependence on labeled data. The training pipeline involves pre-
training in an unsupervised manner, followed by supervised fine-tuning, and ultimately
semi-supervised training. The model incorporates GANs for balancing and augmenting
the dataset and utilizes a data augmentation technique, probabilistic pseudo-mixing, at
hidden layers to enhance the performance of the semi-supervised model. Comparative
experiments with recent models on four real datasets demonstrate the effectiveness of
the proposed model. The results show that the model achieves high performance even
in scenarios with limited labeled data. As a future research direction, we plan to explore
deep semi-supervised learning for traffic incident detection in open environments, simul-
taneously handling data from different domains or modalities, and leveraging unlabeled
data for learning in situations with limited labeled data.
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Abstract. In scientific research, charts are usually the primary method
for visually representing data. However, the accessibility of charts
remains a significant concern. In an effort to improve chart understand-
ing pipelines, we focus on optimizing the chart classification compo-
nent. We leverage curriculum learning, which is inspired by the human
learning process. In this paper, we introduce a novel training approach
for chart classification that utilizes coarse-to-fine curriculum learning.
Our approach, which we name C2F-CHART (for coarse-to-fine) exploits
inter-class similarities to create learning tasks of varying difficulty levels.
We benchmark our method on the ICPR 2022 CHART-Infographics UB
UNITEC PMC dataset, outperforming the state-of-the-art results.

Keywords: Chart Classification · Curriculum Learning · Chart
Understanding

1 Introduction

Charts are commonly used to represent features and relationships in data. They
are also regularly used in scientific research. In the areas of machine learning, a
researcher has to interpret loss curves, confusion matrices, data analysis plots,
feature importance plots, and others. However, when dealing with visual rep-
resentations, there is always the risk that individuals with vision impairment,
low vision, or blindness are at a disadvantage. To increase the accessibility of
charts, which are inherently visual, automatic pipelines for chart data extraction
are needed. The chart data extraction process is called chart mining [6]. Often,
the first step in this process is high-level chart classification. The division of
chart images into specific categories can simplify further processing steps in the
pipeline. This initial categorization can allow the following steps to either lever-
age the chart type, as meta-information about the image, or to assign different
processing methods for each type instead of using the same method arbitrarily
for all charts.

Past research [1,8,20] has investigated the use of deep learning methods for
image classification and contrasted them to achieve a robust, highly accurate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15301, pp. 375–391, 2025.
https://doi.org/10.1007/978-3-031-78107-0_24
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chart classifier. Most of the research has been directed toward identifying the
best model architecture for the task, whether a convolutional neural network
(CNN) architecture or a transformer architecture.

Inspired by how humans learn, we use a curriculum learning (CL) [4] based
approach. We extend the coarse-to-fine CL algorithm [18], which focuses mainly
on classification tasks. Stretcu et al. [18] argue that, during classification, we
can attribute the model’s errors to similarities in class labels. Our motivation to
use this approach as a building block is because one of the existing challenges in
chart classification resides in the similarities between the different chart classes,
or the output space of the model.

This inter-class similarity, usually considered a challenge, is leveraged by our
training approach. Our CL setting allows us to construct learning tasks that
are guaranteed to vary in difficulty by grouping similar classes. This allows us
to construct simpler tasks, where we classify broader categories, and then to
construct more complex ones, where we focus on distinguishing between specific
types and classes. We can visualize this in Fig. 1. We refine the learning process
across multiple levels of complexity and then combine the experience of multiple
different learners at each level. We show that this optimizes the model’s ability
to discern nuanced differences in chart features that each learner might have
picked up independently.

The contributions of this paper are as follows:

– We developed a novel training approach that, to the best of our knowledge,
has not been used in chart classification before. We then used our approach
to train the current state-of-the-art model architecture Swin-Chart [8].

– We ran an evaluative analysis to confirm that our approach outperforms the
SOTA architecture on the ICPR 2022 CHART-Infographics UB Unitec PMC
Dataset [7]. It also outperforms the ICPR 2022 CHART-Infographics compe-
tition winner on the same dataset. Our analysis also proved that our method
exceeded the results of traditional coarse-to-fine CL.

The structure of the paper is as follows. In Sect. 2, we provide a concise overview
of the past research conducted in chart classification using deep learning meth-
ods as well as curriculum learning techniques for image classification. Section 3
describes the dataset we used for benchmarking our results and why we selected
it. In Sect. 4, we detail the method we developed. Our results, experiments, and
comparison with other methods are provided in Sect. 5. Lastly, Sect. 6 concludes
the paper and presents directions for future study.

2 Related Work

2.1 Deep Learning Methods for Chart Classification

This section focuses on previous work investigating the use of various deep learn-
ing methods for chart classification. We acknowledge that the use of both model-
based methods and traditional machine learning methods for chart classification
has been thoroughly investigated [1,12,20], yet each approach has its challenges.
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Unlike a model-based approach, which models only a predefined set of chart
types, deep learning methods are agnostic to the specific types encountered.
They’re also superior to traditional machine learning methods that require hand-
crafted features. Also, these methods aren’t guaranteed to generalize well due to
the varieties in chart image datasets.

Regarding deep learning methods, convolutional neural networks (CNNs) [13]
have long been a staple of image classification in different domains. The ability of
CNNs to capture hierarchical features from images through convolutional filters
has allowed them to be extremely effective in feature extraction.

Liu et al. [14] introduced DeepChart, which combined CNNs for feature
extraction and Deep Belief Networks (DBNs) for classification. Amara et al.
[1] used a vanilla CNN-based model, inspired by the LeNet architecture [13] and
tested it on their own dataset which is composed of 11 categories. Many sub-
sequent papers [2,20] compare other CNN architectures such as different layer
versions of ResNets [10], DenseNets [11], VGG Networks [16], Xception Modules
[5], and EfficientNet [19].

In 2021, Bajic et al. [3] introduced a new addition to the CNN method of
classifying charts: a Siamese CNN. They argue that when small datasets are
used, a Siamese CNN outperforms a classic CNN in both classification accuracy
and F1-score.

Finally, Dhote et al. [8] compared the use of several CNN architectures for this
task on the same testing dataset. They compared and contrasted the ResNet-
152, the Xception module, the DenseNet-121, and ConvNeXt [15], concluding
that the Resnet-152 achieved the highest performance on the ICPR 2022 UB
UNITEC PMC testing dataset out of all the other CNN architectures.

However, with the advent of image transformer models [9], it’s fair to say
CNNs have been surpassed in performance. Vision transformers treat images
as sequences of patches. Instead of the localized feature maps produced by
CNNs, transformer models leverage the self-attention mechanism to capture
global dependencies. Dhote et al. [8] compared two transformers backbones:
Swin-based and DeIT-based, and concluded that Swin transformers with dif-
ferent patch sizes outperform CNN-based architectures. Their state-of-the-art
chart classification model, Swin-Chart, was, to our knowledge and previous to
this work, the best performing transformer model architecture for chart classifi-
cation on the aforementioned dataset.

2.2 Curriculum Learning

Curriculum learning (CL) was first introduced by Bengio et al. [4]. The intuition
for it stemmed from the methods used by humans to learn information. Around
the world, humans start by learning easier concepts before gradually moving
towards more complex concepts later. Usually, the input data used to train
machine learning models is not organized in any meaningful way. The samples
are instead fed to the model in a random order, with easy and difficult samples
shuffled and presented to the model with no heed to its training status or the
difficulty of each data point.
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Soviany et al. [17] propose in their survey of CL methods that increasing the
complexity of the data, referred to as the experience of the model, is not the sole
approach to implement curriculum learning. They contend that complicating
any other machine learning component will produce a more involved objective
function. Namely, this might be done by increasing the complexity of the model
itself, by adding or activating neural units for example, or by increasing the
complexity of the class of tasks the model is being trained on.

Coarse-to-fine curriculum learning [18], which is the main building block of
our method, keeps the experience of the model consistent during training, but
instead leverages the similarity between data classes to define a set of tasks
{f0, f1, ...} that are guaranteed to vary in difficulty.

The inspiration behind this coarse-to-fine technique originated from a specific
aspect of human learning, where humans learn to break down specific, detailed
tasks into simple milestones. Stretcu et al. [18] illustrate this method with the
analogy of a child initially learning to identify dogs broadly as dogs, before
later learning to differentiate between different dog breeds. Instead of relying on
varying difficulty levels in the input data, the method itself ensures variability by
progressively introducing tasks of increasing complexity as the model continues
learning. This is achieved by clustering similar classes into broader categories,
creating a hierarchical structure of class labels. Each task assigned to the model
corresponds to a level within the hierarchy, with simpler tasks being at the top,
where the categories are less specific.

3 Dataset

For training and testing, we used the datasets provided for the ICPR 2022
CHART-Infographics competition [7]. Both the training and testing sets are
comprised of real charts from the PubMed Central that have been manually
annotated. The testing set for the chart classification task, called Split 1 in the
data and the competition paper, is composed of 11,388 samples while the train-
ing set is composed of 22,923 samples. Table 1 describes the frequency of each
class in both sets. We reserved 10% of the dataset’s training split for validation
purposes and only used 90% throughout our training process.

Another important motivator for selecting this dataset was the desire to con-
duct a comparative analysis with other research and quantify the improvements
made. Since this dataset was used in the CHART-Info competition, we have real
results of different deep learning methods to compare against.

4 Method

In this section, we present our hierarchical coarse-to-fine CL approach, leverag-
ing a Swin Transformer model for chart classification. We previously described
how traditional CL and coarse-to-fine CL differ in how they consider diffi-
culty. Coarse-to-fine CL’s main idea is to create tasks with increasing difficulty
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Fig. 1. Visualization of chart type clustering to construct tasks of varying difficulty.

{f0, f1, ...} while not changing the order of the input data. However, our app-
roach, which is described by Fig. 2, goes a step further and considers at which
point in the learning process we should start teaching the model the more com-
plex task. We also consider knowledge sharing between learners who shifted to
the complex task at different points in that process. When the model is learn-
ing the simpler task f0, the traditional approach would have us transferring
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Table 1. Frequency of each chart type in the ICPR 2022 UB PMC Dataset

Chart Type Train Test

Area 172 136
Bar (horizontal) 787 425
Bar (vertical) 5,454 3,183
Box (vertical) 763 596
Heatmap 197 180
Interval (horizontal) 156 430
Interval (vertical) 489 182
Line 10,556 2,776
Manhattan 176 80
Map 533 373
Pie 242 191
Scatter 1,350 949
Scatter-line 1,818 1,628
Surface 155 128
Venn 75 131
Total 22,923 11,388

knowledge to the more complex task f1 after a certain time (number of epochs)
or when it performs best on f0 (checkpoint with the highest validation score).
Instead, we argue that choosing either the best performing model on f0 or the
final model after several epochs does not necessarily produce optimal results.

Instead, we choose to transfer knowledge from the top-K learners of f0 so that
each learner is then trained on f1, producing K training paths. We then choose
the top learner of each path of f1, producing K final checkpoints. We argue that
the subsequent sharing of the knowledge obtained by these K final checkpoints
produces better results. Knowledge sharing here happens during inference time.

Our method involves three main steps: clustering, training/fine-tuning, and
ensembling. We use minimizing cross-entropy (CE) loss as an objective function.
We provide the detailed pseudocode of these three steps in Algorithm 1.

Step 1: Cluster To obtain a hierarchy of simple-to-complex tasks, we needed
to first cluster classes based on similarity. We started by training a vanilla classi-
fication model using the current state-of-the-art architecture which, as described
in [8], is a Swin Transformer pre-trained on the ImageNet dataset with an input
size of 224 that they call Swin-Chart. We use this model to compute a coarse-
to-fine class hierarchy H shown in Fig. 3. H depends on the similarity between
the columns of the projection matrix in the output layer or the predictor of the
Swin model. It is computed through affinity clustering, using the pairwise cosine
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Algorithm 1. Hierarchical Coarse-to-Fine CL with Swin-Chart
Input: Swin Transformer θ with input image dimension 224 (SwinL_224)
Compute class hierarchy H using an auxiliary clustering function
Define auxiliary objective functions f0 and f1:

f0: Minimize CE loss for the 2 classes in level 1 of H
f1: Minimize CE loss for the 15 classes in level 2 of H

Initialize θ0 with SwinL_224 weights pre-trained on ImageNet
for epoch = 1 to 100 do

Train θ0 on f0
Validate on holdout set

end for
Select top 5 checkpoints {θ0

0, θ
0
1, θ

0
2, θ

0
3, θ

0
4} based on val. F1-scores

for each θ0
i do

Initialize θ1
i with encoder parameters from θ0

i and random decoder parameters
for epoch = 1 to 100 do

Train θ1
i on f1

Validate on holdout set
end for

end for
Add top checkpoint from each θ1

i to final model pool to combine {θ1
0, θ

1
1, θ

1
2, θ

1
3, θ

1
4}

Conduct combinatorial search to find optimal model combination
Output: Model combination with max. F1-score on holdout set

distances between the columns as a distance matrix [18]. The pseudocode for
computing H and generating hierarchical clusters is provided in Algorithm 2.

Step 2: Train, Divide, and Fine-Tune. Using our two-level class hierarchy,
we constructed two auxiliary tasks f0 and f1, one for each level. We define the
objective function Li used to train the i-th auxiliary task fi as optimizing the
maximum likelihood by minimizing cross-entropy (CE) loss, which is equivalent
to minimizing the negative log-likelihood:

Li = −
∑

j

log

⎛

⎝
∑

c∈Ci(yj)

exp{fi(xj)}
⎞

⎠ (1)

where i denotes the hierarchy level we’re working at. For each sample j, xj and
yj represent the input data and its corresponding true label. The term Ci(yj)
denotes the cluster in level i that the class yj belongs to.

We started by initializing a new instance of the Swin-Chart architecture
and training it on f0 to produce top-K checkpoints from different points of the
training journey, judged based on the average per-class F1-measure of a hold-out
validation set. We chose K = 5, and so we obtained 5 level-1 models [θ00 - θ04] in
order of validation scores. The output space of each θ0i is simply the two main
clusters in level 1, as shown in Fig. 3.

For each θ0i , we used the staged coarse-to-fine CL algorithm [18]: we initialized
five Swin-Chart level-2 models [θ10 - θ14], whose encoder parameters were set as the



382 N. Shaheen et al.

Algorithm 2. Generate Clusters Per Level for Hierarchical Coarse-to-Fine CL
Input: Number of classes K, training data, pre-trained baseline Swin model θ
Train Swin model θ on the training data
Extract the class embeddings from the final layer of θ
Let W ∈ RE×K be the weight matrix of the final layer
Compute the distance matrix D using cosine distances between class embeddings:
for k1 = 1 to K do

for k2 = k1 + 1 to K do
Compute cosine distance d(k1, k2) = 1 − cos(W·k1 , W·k2)
Update D[k1, k2] ← d(k1, k2), D[k2, k1] ← d(k1, k2)

end for
end for
Apply affinity clustering on the distance matrix D to form the hierarchy H
Initialize clustersPerLevel ← []
for l = 1 to depth(H) do

Initialize clustersPerLevel[l] ← []
for each node n ∈ H.nodesAtDepth(l) do

Create cluster c by grouping leaves of the sub-tree rooted at n
Append c to clustersPerLevel[l]

end for
end for
Output: Class hierarchy H, clusters per level clustersPerLevel

encoder parameters of the corresponding θ0i and whose predictor parameters were
randomly initialized. We then fine-tuned all parameters of our level-2 models on
the desired output space, the 15 classes in level 2, as shown in Fig. 3.

After the second fine-tuning step, we chose the checkpoint with the maximum
validation score from each level-2 model as an ingredient for the final combination
step, totaling K final models, judged based on the average per-class F1-measure.

Step 3: Combine. To combine our K ingredients, we considered two
approaches: an ensembling method through averaging of predictions, and the
model soups method [22]. For each method, we conducted a combinatorial search
to choose the optimal model combination to ensemble or soup. We judged all
combinations in both methods on their validation scores and chose our final
model to be the model combination producing the maximum F1-score on the
hold-out validation set.

5 Experiments

5.1 Setup

As mentioned before, we used the datasets provided for the ICPR 2022 CHART-
Infographics competition for both training and testing. We benchmarked our
results on the testing dataset, called ICPR 2022 UB Unitec PMC Dataset, and



C2F-CHART: A Curriculum Learning Approach to Chart Classification 383

Fig. 2. Overview of our curriculum learning method.

Fig. 3. Automatically computed coarse-to-fine class hierarchy of 2 levels on the 15
classes of the ICPR 2022 CHART-Infographics UB Unitec PMC Dataset.

compared them with previous work. Throughout the following experiments, we
designated 10% of the dataset as a hold-out validation set, and used the remain-
ing 90% in our clustering and fine-tuning steps.

In order to avoid attributing our improvements to a change in hyperparam-
eters, we used an identical experimental setup as the one mentioned in [8]. This
choice guarantees consistency and allows for a fair comparison between our app-
roach and theirs.

To obtain the class hierarchy H in Fig. 3, we trained a Swin transformer,
pre-trained on ImageNet, for 100 epochs, on a Tesla V100-SXM2-32GB GPU
accelerator. We used the Pytorch framework with a learning rate of 1e − 4 and
a batch size of 16. Our loss function was label-smoothing cross entropy loss. We
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used the Adagrad optimizer. After training, we leveraged the columns in the
projection matrix at the final layer of our classifier. Using each column’s weights
as a representation for the corresponding class, we computed the pairwise cosine
distances matrix between all classes D. We subsequently used D as a similarity
measure for affinity clustering to generate H.

We then trained the Swin classifier from ImageNet weights on level-1, whose
output space is composed of two classes, with the same settings, for 100 epochs.
We chose the parameter K specific to our method as 5, and thus saved the
top-5 checkpoints resulting from the level-1 training. For each checkpoint, we
initialized a model with the same encoder parameters and with randomized
predictor parameters to be trained on level-2, whose output space is composed
of 15 classes. We fine-tuned these 5 models as well for 100 epochs, using the
same learning rate and batch size, and saved the top achieving checkpoint of
each level-2 model.

In the final combination step, we compared the use of model soups and model
ensembling. We conducted a combinatorial search to determine the subset of
models that yielded the best performance on our validation set. The results of
this investigation are mentioned subsequently in our ablation analysis.

5.2 Comparative Evaluation

We proceed to test the best-performing model, which we name C2F-CHART and
evaluate our results in comparison with Swin-Chart, the current state-of-the-art
method in [8], other deep learning methods evaluated in [8], as well as the ICPR
2022 CHART-Inforgraphics competition’s results in [7]. As shown in Table 2,
our testing precision, recall, and F1-score demonstrate superior performance to
all competition participants and Swin-Chart.

Table 2. Comparative results on ICPR 2022 UB Unitec PMC Dataset.

Team/Method Recall Precision F1-score

Swin-Chart [8] 93.3% 93.7% 93.2%
IIT_CVIT [7] 90.1% 92.6% 91.0%
Resnet-152 [10] 89.9% 90.5% 89.7%
ConvNeXt [15] 89.8% 90.6% 89.6%
UB-ChartAnalysis [7] 88.1% 90.0% 88.6%
DenseNet-121 [11] 87.9% 88.7% 87.5%
six_seven_four [7] 80.8% 86.5% 82.7%
CLST-IITG [7] 65.7% 70.4% 65.4%
C2F-CHART (Ours) 93.17%95.19% 93.98%
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5.3 Ablation Analysis

To explain our ablation analysis, we showcase the results of level-1 and level-2
model training. Table 3 shows the performance of the top 5 level-1 checkpoints
on our validation set. It also shows the top achieving level-2 checkpoint trained
from the corresponding level-1 model. We can observe that our highest validation
score in level-2 doesn’t necessarily result from the “top achieving” checkpoint at
level-1. When we are referring to “top achieving” or “best performing” here, we
are indicating the model with the highest F1-score, as evaluated on the hold-out
validation set.

Table 3. Validation F1-scores of the top-5 Level-1 checkpoints and the max. validation
F1-scores of the Level-2 model trained from each checkpoint.

Top-5 L1 Checkpoints Max. Score at L2

98.7264% 95.4865%
98.6381% 96.1122%
98.5947% 95.4167%
98.5943% 95.6498%
98.5941% 95.5715%

Consequently, we define three settings of coarse-to-fine curriculum learning.
Setting A represents the traditional curriculum learning approach of fine-tuning
our top-achieving level-1 checkpoint, as shown in Table 3 and then testing its
corresponding top-achieving level-2 checkpoint. Setting B describes taking the
top-5 checkpoints trained on level-1, fine-tuning all 5 of them and then testing
the top-achieving checkpoint out of all the subsequent models, even if it doesn’t
result from the level-1 model with the highest score, as is our case. Finally,
Setting C describes our method of combination after fine-tuning level-2 using
model ensembling on a subset of the 5 final models.

Table 4 compares the three different settings and shows how Setting C
achieves the highest F1-score on our validation dataset, as well as the highest
precision, recall, and F1-Score on our testing dataset.

Table 4. Comparison between different curriculum learning settings. The left two
columns are on the validation set. The three right columns are on the test set.

Method L1 Val. F1-Score L2 Val. F1-Score Recall Precision F1-Score

Setting A 98.72% 95.48% 92.98% 94.67% 93.53%
Setting B 98.63% 96.11% 92.56% 94.95% 93.6%
Setting C (Ours)N/A 96.27% 93.17%95.19% 93.98%
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This leads us to consider the optimal approach for combining the models, and
for choosing the most suitable subset of models to use, referred to subsequently as
ingredients. We investigated the use of model soups and simple model averaging
for our particular use case. In model soups, we aggregate the weights of the
ingredients prior to inference, while in simple ensembling, we average the logits
produced by each model in our ingredients pool.

To determine the optimal subset of models for the combination step, we ran a
comprehensive combinatorial search on our 5 level-2 models shown in the second
column of Table 3. For every combination of models (2-, 3-, 4-, and 5-model
combinations), we calculated the validation F1-score of both model souping and
simple ensembling. We also ran an “iterative greedy” version of model soups, as
described in [21], where we allowed each ingredient to be added more than once.
Finally, we select the combination that achieves the highest validation score as
our final model.

Table 5. Max. validation F1-scores for each combination of models (using ensembling
and souping). Subset is chosen from the 5 models with validation F1-scores: 95.48%,
96.11%, 95.41%, 95.64%, 95.57%.

Team/Method Souping Ensembling

2-model 95.80% 96.00%
3-model 95.25% 96.28%
4-model 95.08% 93.13%
5-model 93.86% 95.98%
Iterative greedy 96.11% N/A

Table 5 compares between the maximum validation F1-scores for each num-
ber of models in both the ensembling and souping techniques, along with the
validation score obtained through the iterative greedy souping method. We can
conclude that in all combinations, model souping does not outperform the vali-
dation score of our highest participating ingredient, while ensembling often does.

Additionally, we investigated the use of another clustering technique to obtain
a different hierarchical structure H, that we show in Algorithm 3. Stretcu et al.
[18] also suggested using the confusion matrix of a trained classification model
to calculate a distance matrix for the affinity clustering algorithm. Using our
vanilla Swin classifier model, we obtained H by estimating the confusion matrix
C from our dataset using a hold-out validation set. This involved calculating
how often our vanilla model incorrectly predicted each class, and identifying
the alternate class predicted instead. Given that C may not be symmetric, we
followed the approach outlined in [18] and considered our symmetric confusion
matrix to be the sum of C and its transpose. We then computed our hierarchy
through affinity clustering, using the symmetric confusion matrix as a measure
of similarity between classes. This resulted in a different cluster of classes, shown
in Fig. 4.
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Algorithm 3. Generate Class Hierarchy using Confusion Matrix
Input: Number of classes K, training data, baseline Swin model θ, validation dataset
{(xi, yi)}M

i=1

Train Swin model θ on the training data
Initialize confusion matrix C of size K × K with zeros
for each (xi, yi) in the validation dataset do

Predict class probabilities p̂(yi = c | xi; θ) using θ
Increment C[yi, c] by p̂(yi = c | xi; θ)

end for
Normalize rows of C: C[i, ·] ← C[i, ·]/ ∑K

j=1 C[i, j]

Compute symmetric confusion matrix Ĉ = C + C�

Apply affinity clustering on the symmetric confusion matrix Ĉ to form hierarchy H
Output: Class hierarchy H

Table 6. Validation F1-scores of the top-5 Level-1 checkpoints and the max. validation
F1-scores of the Level-2 model trained from each checkpoint.

Top-5 L1 Checkpoints Max. Score at L2

98.51% 95.96%
98.36% 96.02%
98.35% 95.95%
98.30% 96.32%
98.25% 95.90%

We re-ran all of our previous experiments on this other cluster and achieved
comparable results, shown in Tables 6, 7 and 8.

5.4 Qualitative Results

Figure 5 presents qualitative results comparing the three distinct coarse-to-fine
CL settings we mentioned previously. The first row showcases the success cases

Table 7. Comparison between different CL settings. The left two columns are on the
validation set. The three right columns are on the test set.

Method L1 Val. F1-Score L2 Val. F1-Score Recall Precision F1-Score

Setting A 98.51% 95.96% 92.69% 94.03% 93.14%
Setting B 98.30% 96.32% 93.15% 94.24% 93.53%
Setting C (Ours)N/A 96.49% 93.40%94.83% 93.93%
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Fig. 4. Automatically computed coarse-to-fine class hierarchy using a confusion matrix
as a distance matrix for clustering.

Table 8. Max. validation F1-scores for each combination of models (using ensembling
and souping). Subset is chosen from the 5 models with validation F1-scores: 95.96%,
96.02%, 95.95%, 96.32%, 95.90%.

Team/Method Souping Ensembling

2-model 95.94% 96.17%
3-model 95.99% 96.39%
4-model 95.70% 96.49%
5-model 95.13% 96.29%
Iterative greedy 96.32% N/A

of Setting A, that are also success cases in Settings B and C. In the second row,
we showcase selected samples where Setting B exhibits superior performance
compared to Setting A. Finally, in the third row, some samples where Setting C
surpasses both are displayed.

We can observe from the figure that the charts where Setting C outperforms
are charts whose types closely resemble other types. In the first figure of the third
row, a short red curve between the thick black scatter dots transforms the figure
from a scatter plot to the scatter-line plot correctly identified by Setting C. In the
second chart, the notations identifying horizontal intervals are spaced, and thus
were easily confused by Settings A and B as being scatter plot symbols. As well,
in the final chart, the scatter plot symbols were misidentified as just indicators
on the line, while Setting C correctly identified the figure as a scatter-line plot.
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Fig. 5. Qualitative results comparing Settings A, B &C.

6 Conclusion and Future Work

We have implemented a novel approach to chart classification using a modified
coarse-to-fine curriculum learning algorithm. Our method outperforms the cur-
rent SOTA approaches on the ICPR 2022 CHART-Infographics UB Unitec PMC
Dataset. We compared our method to traditional coarse-to-fine CL, transformer-
based, and CNN-based chart classification approaches. Moving forward, we plan
to explore the applicability and adaptability of our method beyond the current
benchmark, across other datasets with more diverse chart types, to adequately
evaluate its usability in real-world scenarios. Also, since our main interest lies
in enhancing accessibility for people with visual impairments, we would like to
contribute to an end-to-end chart understanding pipeline, which entails extend-
ing our research beyond just chart classification to more extensive accessibility
features tailored specifically for visually impaired users.

Acknowledgments. The authors would like to thank the Applied innovation Center
(AIC) of the Egyptian Ministry of Communication and Information Technology for
funding the research presented in this paper.
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Abstract. Graph Neural Networks (GNNs) have shown great poten-
tial in visual tasks, yet they face challenges in effectively constructing
and processing graphs. Vision GNN (ViG) was developed to tackle these
issues by segmenting images into patches treated as nodes, with edges
formed by connecting the nearest semantic neighbors. However, relying
solely on semantic information for graph construction confines itself to a
dispersed distribution of object neighbors, leading to inadequate graph
processing. To address this issue, we propose Vision DualGNN(VDG), a
novel dual graph neural network architecture that leverages both spatial
and semantic information to construct and process graph representation
of images. We apply a node encoder that transforms image patches into
expressive node features. Additionally, we implement a dual-stream GNN
that operates on both a spatial graph and a semantic graph. The spatial
graph serves as a constraint for the semantic graph, enhancing the node
features with spatial awareness. To verify the validity of our architecture,
we have conducted our experiments on the ImageNet and CIFAR-100
datasets. And achieved state-of-the-art performance compared to other
baseline models.

Keywords: dualgnn · graph convolution · semantic graph · spatial
graph

1 Introduction

For visual tasks, there are two main types of architectures: Convolutional Neural
Networks (CNNs) [1,2] and Vision Transformers (ViTs) [4]. They encode an
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image as either a fixed grid of pixels or a sequence of patches. Some methods fuse
both the CNN and ViT based models [5,6] to enhance the image representation.

Fig. 1. The above figures illustrate the node adjacency distribution, Fig(a) represents
our method of consisting the semantic graph, where the neighbors of the central node
are mostly objects. On the other hand, ViG’s [10] method (Fig(b)) has more dispersed
neighbors for the central node.

Nevertheless, CNN or Transformer based methods may not be flexible enough
to capture the relationships between objects or parts of an object effectively.
Graph Neural Networks (GNNs) [7] can model these relationships more compre-
hensively by introducing graph structures. Zhang et al. [8] and Han et al. [9] uses
graphs and hypergraphs to capture relations between objects. Vision GNN(ViG)
[10], represents an image as a graph, where each node corresponds to a patch of
the image. Semantic distance is used to quantify the relations among all nodes,
and forms edges between the most similar pairs. The graph structure is fed into a
ViG model, which allows information flow and transformation among the nodes.
A potent connectivity between parts of objects can be built through graph neu-
ral network, which would be more flexible and effective for visual perception.
However, this network has limitations that are not addressed.

In vision tasks, objects are fundamental elements. However, ViG [10] sim-
ply splits an image into patches and treats them as nodes, which restricts the
semantic diversity of the nodes. Moreover, the graph constructed by ViG is
more dispersed in node distribution with limited spatial information. They add
the positional embedding as ViT [4] do, while in the process of building graph
structure, the positional embedding used ViG cannot fully express the spatial
information in graph level. Figure 1(b) shows that ViG’s model can select neigh-
bors that are semantically similar but spatially irrelevant from the background.
This may result in erroneous adjacency relations between node pairs, as they are
solely based on semantic distance.

To address the limitations discussed above, we propose the Vision DualGNN
(VDG) architecture, which incorporates both semantic and spatial information
of nodes in graph level. We validate the effectiveness of our model through a
series of experiments. In order to enable each node to capture richer semantic
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information, we referenced DaVit’s approach [11] to apply a node encoder com-
posed of a channel attention and a spatial attention. To incorporate graph level
of spatial information into the semantic graph of nodes, we feed these encoded
nodes into a dual-stream GNN network. Motivated by the Guo [12], the dual-
stream GNN model employs two parallel GNN layers to process two different
types of graphs: a semantic graph based on semantic distance and a spatial graph
based on spatial distance. The spatial graph is constructed by calculating the
Euclidean distance of each node pairs in spatial domain and selecting the closest
nodes as neighbors. The semantic graph is constructed by connecting the nearest
semantic neighbors of each node. By doing so, the dual-stream GNN module can
capture both semantic and spatial relationships more effectively between nodes,
and enhance information dissemination and aggregation through interaction and
fusion between the two GNN layers.

Our main contributions are as follows:

– We propose a dual-stream graph convolution architecture, which performs
graph convolution operations on semantic flow and spatial flow respectively,
and fuses features of the two streams to enhance the representation ability of
graphs.

– We apply a node encoder, which leverages both channel attention and spatial
attention to enhance the representation of nodes.

– We evaluated our model on public datasets such as ImageNet and CIFAR100
and compared it with the original Vision GNN model and other mainstream
vision models. The experimental results show that our model has achieved
remarkable improvement, our VDG-TI model achieved 77.2% top-1 accuracy,
which is 3.3 points higher than the ViG-TI, the VDG-S and VDS-B also
achieved excellent results.

2 Related Work

2.1 CNN and Transformer in Vision

Convolutional neural network (CNN) [1] is a deep learning model, which has
achieved unprecedented success in the field of computer vision. The representa-
tive works include ResNet [1], VGG [2], etc. Vision Transformer (ViT) [4] is the
first work that directly applies Transformer [3] to image data. On the basis of
ViT, the subsequent work has carried out various improvements and optimiza-
tions. DaViT [11] is a dual attention vision transformer that alternates spatial
window attention and channel group attention to capture long and short depen-
dencies. Some works also introduce designing hierarchical structure [13], local
self-attention [14], increasing depth and diversity, to improve the performance
in vision tasks.

2.2 GNN in Vision

Graph nerual network(GNN) [15] can be powerful tools to resist adversarial per-
turbations [16], it can model the complex and irregular relationships among pix-
els, regions, or objects in images and videos. Some works [17] present subgraphs
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to better explain graphs. Wu [18] utilize the structure features of the graph to
better express the node adjacency relationship between objects. Jung [19] use
graph contrastive learning for image translation. Vision GNN(ViG) [10] treats
an image as graph structure, where nodes represent regions and edges capture
their semantic relations. ViG [10] leverages graph convolution to learn powerful
graph representations of images, which can be applied to various visual tasks.
Vision HGNN (ViHGNN) [9] proposes to model the image as a hypergraph,
where each hyperedge can connect multiple nodes. ViHGNN uses a fuzzy clus-
tering method to dynamically construct and update the hypergraph structure,
and applies hypergraph convolution to learn expressive hypergraph features.

Fig. 2. Framework of VDG: VDG applies a node encoder module to generate diverse
and informative features for each node. These encoded nodes are used to construct
two different graphs: semantic graph and spatial graph, which reflects the semantic
similarity and spatial neighborhoods of nodes, respectively. The spatial graph serves
as a constraint for semantic graph to restrict node distribution of central objects. The
two graphs are processed through a message passing network to learn graph represen-
tation of the image. we concatenate the output of two graphs to transform features for
recognition.

3 Vision DualGNN

ViG [10] proposes a novel Visual GNN (ViG) architecture that represents an
image as a graph structure, and apply a Grapher module to extract graph-level
features. Here we present our updated method Vision DualGNN(VDG). The
overall architecture of VDG is illustrated in Fig. 2. Given an input image with
size H ∗ W ∗ 3, We followed the previous work to split the image into patches,
where we have X = [X1,X2,X3, ...,XN ], each patch Xi with a feature dimen-
sion C, we define these patches as nodes. To enhance the expressiveness of the
nodes, we apply a node encoder module to encode each node, which is essential
for the graph level processing. We redesign the Grapher module by incorporating
the DualGNN network as the main network structure. We reuse the semantic
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distance flow as a component of the architecture. In addition, we add another
gnn flow that exploits the spatial information. For each node Xi, we find its
neighbors with the closest semantic distance and the shortest spatial distance,
adding an edge eji to each node pairs, and we will get 2 graphs G1 = {V, ξ1},
G2 = {V, ξ2}, where ξ1 represents edges with closest semantic distance and ξ2
represents edges with shortest spatial distance, the 2 graphs will be processed
through 2 flows of gnn, respectively.

To implement the structure with fewer parameters, we built the network
following ViG’s isotropic architecture, three versions with different models sizes
were offered. The details are listed in Table 1

Table 1. Variants of our isotropic VDG architecture. The FLOPs are calculated for
the image with 224×224 resolution. ‘Ti’ denotes tiny, ‘S’ denotes small, and ‘B’ denotes
base.

Model Depth Dimension D Params (M) FLOPs (B)

VDG-Ti 12 192 9.1 1.8

VDG-S 16 320 29.4 6.5

VDG-B 16 480 64.5 14.4

3.1 Node Encoder

Feature encoding is crucial when converting an image into a graph structure. ViG
[10] simply constructs the nodes by multi-layers of convolution, which limits the
richness of the current node’s representation of the corresponding region. Here
we exhibits our node encoder that enrich node expresentations.

By sending the image to stem module, we get a feature map of size C ∗H ∗W ,
where each pixel of the last two dimensions is defined as a node. To enrich the
semantic representation, we use the channel attention mechanism to update the
features. The channel attention mechanism can adaptively increase the diversity
of node expression, thus enhancing the differentiation and representation of each
node. Specifically, we define the nodes V = v1, v2, v3, ..., vN . We first use a fully
connected layer to get query, key and value of each node. Specifically, for a node
vi, we have:

vq, vk, vv = split(Wc(vi)) (1)

where Wc is the weight matrix, and we can get vq, vk, vv of node vi. By using
the attention mechanism, we will get an updated node vi

vi = Wp(softmax((vq ∗ scale) ∗ vk) ∗ vv) (2)

where scale represents the scaling factor, Wp is the projection matrix.
After channel attention mechanism applied in nodes, we calculate the atten-

tion weight of all the other nodes, and we sum this attention weight vector
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weighted with the features of all the other nodes to get an update node vi rep-
resentation, which synthesizes the information about the node from all other
nodes.

vi =
n∑

j=1

softmax((vi ∗ Wq1) ∗ (vj ∗ Wq2)) ∗ vi (3)

where Wq1, Wq2 is the projection matrix of node vi and vj , so we can get a
new feature vector for each node. The multi-head spatial attention module can
consider different subspaces and all other neighbouring nodes at the same time,
which enhances the information exchange and representation of nodes.

3.2 DualGNN

The ViG [10] model constructs the graph structure based on the semantic dis-
tance of nodes by splitting the image into nodes and connecting the nearest
neighbors based on the feature similarity between nodes. However, this app-
roach limits the node distribution and spatial information of objects, which is
vital in visual tasks. For example, in image classification tasks, when recognising
animal categories, the spatial relationships of parts such as the head, body and
tail of an animal can provide useful clues. In the context of graph-level process-
ing, the commonly used positional embedding in Vision Transformers (ViTs)
architecture may not effectively provide spatial information as graph processing
goes deeper. Adding spatial graph can help the semantic graph better under-
stand the distribution of neighbor nodes, so as to reduce the wrong selection of
background nodes with similar semantics when selecting neighbor nodes. There-
fore, we propose a new way of constructing the graph structure. Use two different
approaches to construct two graph structures, the semantic graph and the spatial
graph.

For the semantic graph, we continue the previous work by calculating the
feature semantic distance between each pair of nodes, connect each node to its
nearest k neighbors based on the magnitude of the distance, i.e., we select the
K nodes with the least distance as neighbouring nodes and connect them with
an edge, the adjacency matrix can be expressed as :

As =

{
1, topk(s(vi, vj))
0, others

(4)

where s(vi, vj) means the semantic distance between node vi and vj .
For the spatial graph, we compute the spatial distance between each pair of

nodes. We use the Euclidean distance in spatial domain to measure the distance
between two nodes on the image, connect each node to its nearest neighbors
based on the magnitude of the distance. Finally, we select the K nodes with
the smallest distance as neighbour nodes and connect them with an edge, the
adjacency matrix can be expressed as:

Ad =

{
1, topk(d(vi, vj))
0, others

(5)
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where d(vi, vj) means the Euclidean distance between node vi and vj .
We take these two graph structures as inputs and feed them into two par-

allel graph convolution layers for message passing in graphs, respectively. We
use the GIN as the basic GNN network to aggregate and update the features of
each node, with the network goes deeper, increasing the number of nodes as the
graph convolution layers get deeper. We splice the outputs of the two graph con-
volution modules to obtain fused feature that incorporates semantic and spatial
information, which can be expressed as:

Xs = GraphConv(XinWin ,As) (6)

Xd = GraphConv(XinWin ,Ad) (7)

Xout = (XsWout) ⊕ (XdWout) (8)

where Xin , Xout represent the input and output node features, ⊕ represents
concatenate operation, Win , Wout represent the input and output projection,
and As , Ad represents the semantic graph and spatial graph, respectively.

Table 2. Experimental Results on ImageNet

Model Resolution Params (M)↓ FLOPs (B)↓ Top-1↑ Top-5↑
ViT-B/16 384×384 86.4 55.5 77.9 -

DeiT-Ti [20] 224×224 5.7 1.3 72.2 91.1

DeiT-S [20] 224×224 22.1 4.6 79.8 95.0

DeiT-B [20] 224×224 86.4 17.6 81.8 95.7

ViHGNN-Ti [9] 224 × 224 8.2 1.8 74.3 92.5

ViHGNN-S [9] 224 × 224 23.2 5.6 81.5 95.7

ViHGNN-B [9] 224 × 224 88.1 19.4 82.9 96.2

ViG-Ti [10] 224×224 7.1 1.3 73.9 92.0

ViG-S [10] 224×224 22.7 4.5 80.4 95.2

ViG-B [10] 224×224 86.8 17.7 82.3 95.9

VDG-Ti(ours) 224×224 9.1 1.8 77.2 93.8

VDG-S(ours) 224×224 29.4 6.5 81.8 95.7

VDG-B(ours) 224×224 64.5 14.4 82.4 95.9

4 Experiments

4.1 Datasets and Experimental Settings

We use two public image datasets to evaluate the performance of our VDG
model, ImageNet ILSVRC 2012 and CIFAR-100. We followed most of the ViG’s
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[10] setting for fair comparison, we train the model in 300 epochs, set the batch
size to be 1024, use the adam optimizer, and the difference we set is the min
learning rate of the base model to be 1e-6, all other settings are the same as
the ViG. We implement the networks in iostropic architecture and train all our
models on 8 NVIDIA A100 GPUs.

4.2 Baselines and Results

We followed ViG’s work to establish the baselines, we do experiments mainly
based on iostropic architecture, and compare our VDG against the recent
isotropic models on ImageNet dataset, such as ViG [10], ViHGNN [9], ViT [4]
and Deit [20]. We adopted a similar training strategy as ViG [10], and evaluated
our model on two benchmark datasets, ImageNet and CIFAR100. The results
are shown in Table 2 and Table 3.

We experimented our approach on the ImageNet dataset, comparing it with
the original ViG [10] model. The results are shown in Table 2. It can be seen
from the experimental results that our models of three sizes all achieve better
results in performance or speed compared to ViG. For example, our VDG-B
achieves 82.4% top-1 accuracy which is comparable to ViG-B model but with
lower computing cost. This demonstrates that our model can utilize the spatial
information more effectively from the image objects and leverage it to enhance
the expressiveness of the model.

Table 3. Experimental Results on CIFAR-100

Model Params(M)↓ Acc(%)↑
ResNet18 [1] 11.18 63.41

ResNet50 [1] 23.53 61.68

ResNeXt-50 25.03 84.42

ResNeXt-29-8×64d 34.4 82.23

ViT-Lite-6/4 3.19 73.33

NesT-B 97.2 82.56

ViG-S [10] 21.8 83.12

VDG-S(ours) 28.5 84.63

We also experimented our model on CIFAR-100. To get a baseline competi-
tion, we trained the ViG-S on CIFAR-100, using the same experimental setting
as trained on ImageNet dataset expect for batch size. We set batch size at 256,
the result can be seen in Table 3. Our model achieved higher accuracy than ViG-
S as well as other competitive existing methods. These results shows that the
VDG model capture more complex and irregular objects in images and to learn
richer graph representations of the image.
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To rigorously evaluate the generalizability of our proposed model architec-
tures, we conducted a series of fine-tuning experiments using models pre-trained
on the ImageNet dataset. Specifically, we utilized ViG-S and VDG-S, which were
initially trained on ImageNet, as foundational models. These pre-trained mod-
els were then subjected to fine-tuning on the CIFAR-100 dataset for varying
numbers of epochs: 5, and 10, respectively (Table 4).

Table 4. Fine-tuning Results on CIFAR-100

Model 5 epochs(Acc%) 10 epochs(Acc%)

ViG-S 72.17 73.32

VDG-S 76.47 79.35

The results of these experiments were highly illuminating. Not only did our
models display markedly faster convergence rates during the fine-tuning phase,
but they also consistently outperformed competing models in terms of final clas-
sification accuracy on the CIFAR-100 dataset. This empirical evidence strongly
supports the assertion that our proposed architectures possess exceptional gen-
eralization capabilities, capable of adapting effectively to new datasets with min-
imal fine-tuning. These findings underscore the versatility and robustness of our
models, positioning them as promising candidates for a wide array of computer
vision tasks requiring high degrees of adaptability and performance.

4.3 Visualization of Feature Map

To further understand why VDG works, we visualize feature map of our model.
For this visualization, we use the features extracted from the final layer of the
graph processing module, the information of spatial graph and semantic graph
are fused together to form a global feature representation. We do comparisons
between the ViG-S [10] model, and VDG-S model. Figure 3 shows the original
image and Grad-CAM feature maps corresponding to the two models in different
categories of images. We randomly selected three representative images from the
dataset corresponding to three categories (insects, dogs, wooden barrels) as our
comparison samples. As we can clearly see in Fig. 3(c), the VDG model is capable
of capturing spatial relationships and topological structures within objects as
well as semantic associations and similarities. This feature represents the ability
to better focus on features of object itself in the image. At the same time, our
VDG model makes use of the structure and topological characteristics of the
graph, and can adaptively adjust adjacency matrix and node characteristics of
the graph, so as to enhance the significance and differentiation of objects, rather
than being distracted by background or other irrelevant information, so as to
locate and identify objects in images more accurately.
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Fig. 3. Visualization of the feature map for ViG-S and our VDG-S model. (a) represents
the input image, (b) represents the feature map of ViG-S and (c) represents the feature
map of ours VDG-S. We extracted the features before the classification head.

Fig. 4. Analysis of the role of each module in the model: experimental ablation methods
for accuracy curves on CIFAR100
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Table 5. Ablation Study on VDG

ViG Node Encoder DualGNN Pos Embedding Params(M)↓ Acc(%)↑
� � � � 21.8 83.12

� � � � 23.6 83.79

� � � � 26.7 84.21

� � � � 28.4 84.57

� � � � 28.5 84.63

4.4 Ablation Study

To verify the contribution of each component of our model, we designed abla-
tion experiments to compare the performance under different model configura-
tions. We conducted experiments on the CIFAR100 dataset. Using ViG-S as the
baseline model. The specific experimental results are shown in the Table 5, the
training accuracy curve is shown in Fig. 4. As can be seen from the table, both
of the modules we proposed have significantly improved the performance of the
model. the node encoder module can effectively enhance the model’s attention to
image features and improve the expressive ability of nodes. The dualgnn module
can utilize both the spatial and semantic information better to enrich the graph
level representation of an image. Also, the positional embedding that added in
ViG can provide limited spatial information to improve performance. As we can
see from Fig. 4, by combining these two modules, our model achieves a better
classification accuracy on the CIFAR100 dataset, exceeding the baseline model,
proving the validity and superiority of our model.

5 Conclusion

In this work, we introduce Vision DualGNN, a novel framework designed to har-
ness both the semantic richness and spatial context inherent in visual data. By
innovatively integrating dual graphs—one emphasizing semantic relationships,
the other focusing on spatial configurations—our model demonstrates a remark-
able capability to encode complex visual scenes with enhanced accuracy and flex-
ibility. This dual perspective not only enriches the representation of individual
nodes but also facilitates a more nuanced understanding of their interrelations
within the broader context of an image. Yet, we acknowledge the presence of
limitations that warrant further exploration. Specifically, the current strategy
for node selection may not fully exploit the potential of our graph structures,
potentially leading to suboptimal performance in certain cases.

Looking ahead, our research agenda will prioritize refining node selection
methodologies to ensure they are more principled and context-aware, thereby
optimizing graph construction. Simultaneously, we aim to streamline the com-
putational architecture without compromising on performance, seeking to make
Vision DualGNN more accessible and scalable for widespread deployment.
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Through these enhancements, we envision a future where our model can seam-
lessly integrate into various computational ecosystems, delivering state-of-the-art
results with unparalleled efficiency.
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Abstract. Graph-based clustering has been shown to be promising,
partly due to the rich data relationship encoded in affinity graphs. How-
ever, the graph representation also means a large computation and stor-
age load for large-scale datasets. Several previous works show that it is
promising to improve graph-based clustering based on Szemerédi’s reg-
ularity lemma, which roughly states that each graph can be partitioned
into a small number of random-like graphs. We find in experiments that
the results of these methods are sensitive to the involved parameters,
and therefore propose a thorough investigation of the influence of sev-
eral parameters on clustering results and discuss the reason behind their
behaviors. As a result, we find out some clues as the determination of
these parameters in practical applications. In experiments on a num-
ber of real datasets, we find that with proper parameters, the regularity
lemma is able to improve both the clustering quality and computation
efficiency significantly. Furthermore, experiments show that two rela-
tively old-fashioned algorithms are enhanced to outperform recent state-
of-the-art ones. This work goes a step further in extending the application
of the regularity lemma from pure theoretical to practical realms.

Keywords: graph-based clustering · regularity lemma · reduced graph

1 Introduction

Graph-based clustering is one of the most popular clustering approaches, with
the spectral clustering (SPC), affinity propagation [3] and dominant set (DSet)
[19] algorithms belonging to this type. On one hand, graph-based clustering
requires as input the pairwise data similarity matrix, which encodes rich data
distribution information. On the other hand, the well-established results in graph
theory can be applied to solve graph-based clustering problems, with spectral
clustering as a typical example. Therefore it is not surprising that graph-based
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clustering achieves impressive results. However, the graph representation indi-
cates the similarity matrix of size n×n for n data points, which further means a
large computation and storage load for large datasets. For the purpose of reduc-
ing the complexity of the clustering process, different algorithms, e.g., Nyström
method [8], optimal embedding [21], out-of-sample method [18] and kNN graph.

Several previous works [20,22,24] proposed a promising approach to enhance
graph-based clustering with Szemerédi’s regularity lemma [25]. This lemma
shows roughly that every graph can be partitioned into subgraphs, where the
majority of subgraph pairs behave like random bipartite graphs. By treating
each subgraph as a node and defining the edge weights based on subgraph pairs,
we obtain a reduced graph, which is a compact representation of the original one.
The final clustering results can then be obtained by performing clustering with
the reduced graph and mapping labels back to the original one. We find in exper-
iments that this method is sensitive to three parameters in regular partitioning.
Therefore we make a thorough investigation on how the clustering results are
influenced by these parameters and provide an explanation as to the influences.
We therefore find out the appropriate ranges of these parameters in practical
application. With proper parameters, this method is shown to improve the clus-
tering results of the SPC and DSet algorithms evidently with significantly less
running time, demonstrating the potential of the regularity lemma in dealing
with large-scale clustering. Following [12], this work achieves the investigation
on two more representative graph-base clustering algorithms.

Our contributions in this paper are as follows. First, we investigate the influ-
ence of regular partitioning parameters on clustering results, which is helpful
to the parameter tuning in practical applications. Second, we explain why the
regularity lemma is able to improve the clustering results of the DSet and SPC
algorithms evidently with significantly less running time. Third, we show with
experiments on real datasets that traditional graph-based clustering algorithms
can be enhanced with this lemma to outperform recent state-of-the-art ones.

In Sect. 2 we introduce the regularity lemma and some previous works. Then
in Sect. 3 we present in details how to improve graph-based clustering based on
the regularity lemma. Section 4 is devoted to extensive experimental validation
and comparisons. Finally, we arrive at some conclusions in Sect. 5.

2 Related Works

In this part we firstly introduce the regularity lemma and the regular partitioning
method, and then review a few practical applications of this lemma.

2.1 Regularity Lemma

Szemerédi’s regularity lemma is one of the best known achievements in extremal
graph theory. This lemma shows that every graph can be partitioned into sub-
graphs so that subgraph pairs behave like random bipartite graphs. Therefore it
is convenient to carry over results of random graphs to ordinary graphs.
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Let G = (V,E) denote an undirected graph without self-loops, with V being
the vertex set and E denoting the edge set. With A ⊆ V , B ⊆ V and A∩B = ∅,
the edge density between A and B is defined as

d(A,B) =
e(A,B)
|A||B| , (1)

with e(A,B) denoting the count of edges connecting one endpoint in A to the
other in B, and | · | stands for the number of vertices in a set.

Before presenting the regularity lemma, we need the following concepts.

Definition 1. Regular pair. Given A ⊆ V , B ⊆ V , A ∩ B = ∅, and a positive
constant ε, if for every X ⊂ A and Y ⊂ B such that |X| > ε|A| and |Y | > ε|B|
we have |d(X,Y ) − d(A,B)| < ε, then we call (A,B) as an ε-regular pair.

Since the edge density between two relatively large subsets is similar to that
between the regular pair, we see that edges between a regular pair are distributed
quite uniformly.

Definition 2. Equitable partition. Given a partition P of the vertex set V =
V0 ∪ V1 ∪ · · · ∪ Vk. If |V1| = |V2| = · · · = |Vk|, then P is called an equitable
partition.

The class V0 is called the exceptional class, which may be empty, and is only
used to guarantee that all the other classes have the same cardinality.

Definition 3. Regular partition. Given an equitable partition P of the vertex
set V = V0 ∪V1 ∪ · · · ∪Vk, with V0 being the exceptional class. If |V0| < ε|V | and
all but at most εk2 pairs (Vi, Vj), 1 ≤ i < j ≤ k, are ε-regular, then the partition
P is an ε-regular partition.

Now we are ready to introduce the regularity lemma below.

Lemma 1. (Regularity Lemma [25]) For every positive real ε and positive inte-
ger m, there exist positive integers N = N(ε,m) and M = M(ε,m) such that
every graph G = (V,E) with |V | > N has an ε-regular partition into k + 1
classes, where m ≤ k ≤ M .

Roughly speaking, the regularity lemma states that every sufficiently large
graph could be partitioned such that every subgraph pair could be regarded as a
regular pair, i.e., the edges between two subgraphs have a uniform distribution.
Based on this special distribution, we are able to obtain a reduced graph from
the original graph, which is shown to inherit the major structure of the original
graph with a much smaller size. The details are presented in Sect. 3.

2.2 Practical Applications

Szemerédi’s regularity lemma has been extended in several aspects, including
weaker regularity notions [16], stronger regularity notions [16,26], the variants
for sparse graphs [23] and for hypergraphs [7]. However, the application of the
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regularity lemma has been limited to proving pure theoretical results for a long
time, and a possible reason is that this lemma applies to graphs of astronomically
large sizes.

Probably the first practical application of the regularity lemma is presented
in [24]. In order to apply this lemma to relatively small graphs, [24] no longer
insisted on obtaining provably regular partitions. Instead, a few simple heuristics
are proposed to generate approximately regular partitions, and a reduced graph
is then built from the original one. Then DSet clustering is performed with the
reduced graph and we map the labels to the original graph. Experiments showed
that this algorithm outperforms the original one on several datasets.

Following [22,24] also applies the regularity lemma to pairwise clustering. It
adopts a similar idea as [24], i.e., using a few modifications to obtain approxi-
mately regular partition and then doing clustering on the reduced graph. This
work tests the regular partitioning methods presented in both [2,9], and uses
spectral clustering as the base algorithm. In addition, this work tests different
parameter values in experiments. Experimental results confirm that the regular-
ity lemma is able to improve spectral clustering on some datasets.

In [5], the regularity lemma is used to summarize large graphs with noises and
search graphs efficiently and robustly. A few heuristics are proposed to obtain
approximately regular partitions from relatively small graphs, which are then
used to build the essential structure of graphs.

As pointed in [4,6,17,20], Szemerédi’s regularity lemma is a promising app-
roach to big data analysis. Although at present its practical applications are very
limited due to severe constraints imposed to accommodate arbitrary graphs, it
has been shown that even crude approximation may work well for relatively
small graphs occurring in practice. Therefore more efforts are needed to benefit
from this theoretic result in practice.

3 Enhancement Based on the Regularity Lemma

The method to enhance graph-based clustering based on the regularity lemma
can be described briefly as follows. Firstly, we partition the original graph into
subgraphs with the regularity lemma. In the second step, we build a reduced
graph based on the obtained subgraphs. Next, we perform graph-based clustering
with the reduced graph. In the last step, we map the obtained labels from the
reduced graph to the original one. In the four steps, the third and fourth ones
are easy to implement, and therefore in the following we only describe the first
and second steps in details.

3.1 Partitioning the Graph

The original proof of the regularity lemma in [25] didn’t provide a method to
obtain the regular partition. The first algorithm to create regular partitions on
arbitrary graphs was presented by Alon et al. in [2]. After that, [9] proposed
another method which is shown in [22] to perform similar to the one of Alon et
al. in [2]. In this paper the algorithm of Alon et al. is adopted.
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It is necessary to introduce the following lemma before presenting the algo-
rithm of Alon et al.

Lemma 2. (Alon et al. [2]) Let H be a bipartite graph with equal classes |A| =
|B| = n. Let 2n−1/4 < ε < 1

16 . There is an O(n2.376) algorithm that verifies that
H is ε-regular or find two subsets A′ ⊂ A, B′ ⊂ B, |A′| ≥ ε4

16n, |B′| ≥ ε4

16n, such
that |d(A,B) − d(A′, B′)| ≥ ε4.

This lemma means roughly that one can either verify that a pair (A,B) is reg-
ular, or provide certificates that it is not. On this basis, the regular partitioning
algorithm of Alon et al. is described below.

1) Create the initial partition: Divide the set V of vertices arbitrarily into an
equitable partition P1 with classes V0, V1, · · · , Vb, with |V1| = 	n/b
 and there-
fore |V0| < b. Denote k1 = b.

2) Check regularity: For every pair (Vr, Vs) of Pi, 1 ≤ r < s ≤ ki, verify if it
is ε-regular or find X ⊂ Vr, Y ⊂ Vs, X ≥ ε4

16 |Vr|, Y ≥ ε4

16 |Vr|, such that
|d(X,Y ) − d(Vr, Vs)| ≥ ε4.

3) If at most ε
(
ki

2

)
pairs are not verified as ε-regular, then Pi is a regular parti-

tion. The partitioning process is terminated.
4) Otherwise, apply a refinement algorithm [2] to obtain a partition P ′ with

1 + ki4ki classes.
5) Let ki+1 = ki4ki , Pi+1 = P ′, i = i + 1, and go to Step 2.

The Step 4 shows that in the partitioning process, each iteration increases
classes exponentially, and therefore this method applies only for graphs of astro-
nomically large sizes. In order to make this method applicable for practical
datasets of relatively small sizes, some modifications to the original method
has been proposed in [5,20,22,24]. In this paper we adopt the following modifi-
cations. First, Step 2 needs to find out all the irregular pairs, thereby resulting
in the exponential growth of classes. Therefore for each class, we consider at
most one irregular pair containing this class, allowing to generate a constant
number of subclasses in Step 4. In addition, the degree-based greedy method [5]
is adopted to generate certificates to check the regularity of pairs. Finally, the
number of iterations and that of classes required to obtain a provable regular
partition are too large to be considered. Therefore the iteration is terminated if
the class size is smaller than a threshold. With these modifications, we obtain
only approximately regular partitions in general.

There are three parameters involved in the regular partitioning process. The
first is ε in defining the regular pair, and the second is b which denotes the number
of classes in initial partition. The third parameter is the maximum compression
ratio ε = |R|/|G|, with 	1/ε
 representing the minimum class size. We will inves-
tigate how these three parameters influence clustering results with experiments
on real datasets.

3.2 Building the Reduced Graph

Based on the regularity lemma, a graph can be partitioned such that the edges
between each pair of subgraphs have a quite uniform distribution. If we treat
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each subgraph as a vertex, and calculate the edge weights based on Eq. (1), we
obtain a new graph. This graph is typically much smaller than the original one,
and is commonly referred to as the reduced graph. The reduced graph can be
obtained formally as follows. Given the original graph G = (V,E) partitioned
into subgraphs (V1, E1), (V2, E2), · · · , (Vk, Ek). Each subgraph is transformed
to a vertex in the reduced graph R, and if two subgraphs form a regular pair
and their edge density is greater than a threshold d0, the two corresponding
vertices in R are adjacent. Note here that the exceptional class V0 is excluded
from building the reduced graph.

One important ability of the reduced graph is to inherit many properties of
the original graph with a much smaller size than the latter [13]. With an integer
t and a graph R = (VR, ER), we construct a graph R(t) as follows. Each vertex
x ∈ VR is mapped to a set Vx of t independent vertices in R(t). With two vertices
x, y ∈ VR, if (x, y) is an edge in R, then all the u ∈ Vx and v ∈ Vy in R(t) are
adjacent. Given a positive integer m and d0 > ε > 0, we further build a graph
G as follows. Every vertex in R is mapped to m vertices in G, and every edge
in R is mapped to a regular pair whose edge density is greater than d0. Here we
observe that R is a reduced graph of G.

The Key Lemma [13] shows how the reduced graph inherits properties of
the original one. It states roughly that every small subgraph of R(t) lies also in
G. Noticing that R(1) = R, wee see that a small subgraph of a reduced graph
R lies also in the original graph G. As the number of subgraphs in R is much
smaller than that in G, we can regard R as a compressed, compact version of
G, which contains the essential structures of G. Unlike traditional sampling of
data points, here the graph compression is accomplished by sampling of edges or
larger structures. Since data point sampling can be used in large-scale clustering,
here we use the reduced graph obtained by structure sampling to do clustering.

With Eq. (1) we are able to calculate edge weights of R for unweighted
G. However, in application to graph based clustering, the original graph is edge-
weighted, with the weight equaling to the similarity of two data points. Therefore
we revise the edge weights of the reduced graph R to be

dw(X,Y ) =

∑|X|
i=1

∑|Y |
j=1 w(xi, yj)

|X||Y | , (2)

where xi ∈ X and yi ∈ Y .

3.3 Procedures

Enhancing graph-based clustering with the regularity lemma can be accom-
plished as follows. Given the set of n data to be clustered, we calculate the pair-
wise similarity matrix W , which encodes the information of the original graph
G = (V,E). With the partitioning method provided in Sect. 3.1, we partition
the vertex set V into a regular partition V0, V1, · · · , Vk. Based on V1, V2, · · · , Vk

the reduced graph R is built with the method provided in Sect. 3.2, where we
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Table 1. Characteristics of datasets.

dataset NP ND NC dataset NP ND NC dataset NP ND NC

Appendicitis 106 7 2 Iris 150 4 3 Seeds 210 7 3

Arcene 200 10000 2 Leaves 1600 64 100 Segment 2310 19 7

Balance-scale 625 4 3 Libras 360 90 15 Thyroid 215 5 3

Ecoli 336 7 8 Olivertti 400 28 40 USPS 11000 256 10

Glass 214 9 6 SCC 600 60 6 Wine 178 13 3

calculate edge weights using Eq. (2). With R as input, we do graph-based clus-
tering and obtain the labels l1, l2, · · · , lk. Then we do the label mapping from the
reduced graph to the original one, i.e., the data in Vi are assigned the label li.
As to the data in V0 which are left unclustered, each of them is simply assigned
to the nearest cluster.

4 Experiments

To demonstrate the performance of graph-based clustering algorithms enhanced
by the regularity lemma, we conduct experiments on 15 real datasets taken from
the UCI machine learning repository. We use only real datasets based on the
observation in [22] that the regularity lemma does not perform well with syn-
thetic datasets, as the regularity lemma relies on the somewhat random distri-
bution of edges in real-world datasets. The 15 datasets are taken from different
domains, and vary significantly in dataset size (from 106 to 11000), in data
dimension (from 4 to 10000) and in number of clusters (from 2 to 100). We
believe these significant diversities in the characteristics of datasets help make
the experimental results and conclusions more reliable. The characteristics of
these datasets are shown in Table 1, where we denote the dataset size by NP,
data dimension by ND, and number of clusters by NC.

In graph-based clustering, we adopt the dominant set (DSet) algorithm [19]
and spectral clustering (SPC) in our experiments. Different from the well-known
SPC algorithm, the DSet algorithm defines a cluster as a maximal subset of data
points with internal coherency and extracts clusters sequentially to accomplish
the clustering. While these two algorithms are based on different principles, our
experiments show that the influences of parameters on clustering results are
similar with both algorithms. Therefore we expect the conclusions in this paper
are also applicable to other graph-based algorithms [24].

In the following we firstly study the influence of these parameters ε, b and ε
on the clustering results. After that, we compare the enhanced DSet and SPC
algorithms to the original ones. Finally, we compare the enhanced DSet and SPC
algorithms to some recent clustering algorithms.
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4.1 Sensitiveness to Parameters

The regular partitioning involves three parameters, which have a significant influ-
ence on the clustering results. The work in [24] didn’t provide much details on
the setting of parameters. In [22] the authors tested some values of ε and b
in experiments, but they didn’t study the influence of these parameters on the
clustering results. Consequently, no instructions on how to determine parameters
are provided. In this paper we intend to study the influence of three parameters
on clustering results extensively. As a result, we provide some insights on the
selection of parameters, going a step further towards the practical application of
the regularity lemma in clustering.

In the three parameters of regular partitioning, ε stands for the portion of
a class of points used in checking pair regularity. As defined in Definition 1, if
|d(X,Y ) − d(A,B)| < ε holds for every X ⊂ A and Y ⊂ B such that |X| > ε|A|
and |Y | > ε|B|, then the pair (A,B) is regarded as an ε-regular pair. Therefore
the range of this parameter is 0 < ε < 1. From Definition 1 we observe that
with a large ε which is close to 1, the subsets X and Y will be close to A
and B, respectively. In this case, d(A,B) is close to d(X,Y ) and the condition
|d(X,Y )−d(A,B)| < ε holds trivially. In other words, a large ε means a relaxed
constraint on the regularity of a regular pair, which degrades the clustering
results, as shown in the experiments of [22]. Therefore the testing values of the
parameter ε are selected to be 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.

With the original graph G and corresponding reduced graph R, the parameter
ε = max( |R|

|G| ) denotes the maximum allowed compression ratio, with 0 < ε < 1.
As we intend to reduce the computation load, we expect the reduced graph to
be as small as possible. Meanwhile, obtaining a large R itself is computationally
expensive, and in experiments we found that ε = 0.2 already results in a very
large computation load. Therefore in experiments we test only small values 0.02,
0.05, 0.1 and 0.2.

The parameter b in Step 1 of the regular partitioning in Sect. 3.1 denotes
the initial number of classes, i.e., the initial cardinality of the reduced graph R.
This parameter is set as small values 2 to 7 in [22]. As the cardinality of R is
increased in each iteration, we are interested to see if a large initial cardinality
b help accelerate the iteration by skipping the first some iterations with smaller
cardinalities. Therefore in experiments we test b with both small and large values,
including 4, 8, 16, 32, 64, 128, 256, 512 and 1024, with the constraint that b < |G|.

We firstly find the best values of the three parameters for a dataset by grid
search, and then show how clustering results vary w.r.t. a parameter by fixing
the other two parameters. With the enhanced DSet algorithm, we report the
clustering results from different parameters in Fig. 1, where the clustering results
are measured by NMI (normalized mutual information).

The top row of Fig. 1 shows that when the parameter ε rises, the running
time declines in general. This observation is consistent with our analysis that it
is relatively easy to achieve regular partitions with a large ε. However, we also
observe that the increase of ε degrades the clustering results with some datasets,
and ε seems to have little influence on the results with other datasets, with the
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Fig. 1. Performance of the enhanced DSet algorithm, with different parameters.

Wine dataset as the only exception. In summary, although large ε help accelerate
regular partitioning, the best clustering quality is usually obtained with small
ε’s, e.g., 0.1 and 0.2.

As to the observation that a large ε doesn’t result in good results, our expla-
nation is as follows. The regular partitioning requires a pair of classes to be
ε-regular, and a regular pair requires that for every X ⊂ A and Y ⊂ B with
|X| > ε|A| and |Y | > ε|B|, we have

|d(X,Y ) − d(A,B)| < ε. (3)

On one hand, the large ε means the large right side of Eq. (3), making the
inequality easy to hold. On the other hand, since |X| > ε|A| and |Y | > ε|B|,
a large ε means that X is more close to A and Y is more close to B. This
further results in a small value in the left side of Eq. (3), making the inequality
easy to hold. Both these two aspects show that a large ε reduces the difficulty in
achieving regular pairs and therefore accelerates regular partitioning. However, a
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Fig. 2. Performance of the enhanced SPC algorithm.

large ε makes X similar to A and Y similar to B, respectively. While this makes
the condition in Eq. (3) easy to satisfy, the relaxed condition also means less
uniform distribution of edges between a regular pair. As a result, the reduced
graph becomes a less accurate representation of the original graph, and the
clustering results are worsened.

In the middle row of Fig. 1, a larger ε typically results in a longer running
time. Our explanation is as follows. With a large ε, the allowed number of classes
is large. A provable regular partition usually takes a very large amount of iter-
ations to reach, and in our experiments the iteration are terminated by the
upper bound in most cases. Therefore a large ε usually means more iterations
and more running time to obtain the partition. Meanwhile, we observe that
a larger ε results in better and worse results on different datasets, and little
variance to the results on the remaining ones. In our opinion, these complex
behaviors should be attributed to the variances in data distribution of different
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real datasets. Generally, if we consider both the running time and clustering
results, it seems appropriate to adopt medium ε’s, e.g., 0.05 and 0.1.

As to the parameter b, we have tested both very small and very large values,
with the aim to see if it is possible to accelerate the iteration with a large b.
The bottom row of Fig. 1 shows that the running time does decrease slightly
with the increase of b, on condition that b is rather small compared with the
graph cardinality. After that, the increase of b is usually accompanied by the
increase of running time. We try to explain this observation as follows. In the
case that b is small compared with the graph cardinality, the increase of b is able
to skip the first some iterations and therefore reduce the running time slightly.
The regularity optimization skipped in this process will be compensated for
in subsequent iterations. With a large b, however, the running time saved in
skipping the first some iterations will become smaller than that increased in
subsequent iterations, which are with much larger k and take much more running
time. As to the clustering quality, we observe that large b’s roughly decrease the
clustering quality, except for the large dataset USPS. Our explanation is that a
large b means many iterations skipped, and the regularity optimization skipped
is too large to be compensated for in subsequent iterations. Considering both
the running time and clustering results, we recommend to use a small b below
10. Meanwhile, it seems appropriate to select a large b for large graphs, as the
best result on the USPS datasets is obtained at b = 32.

With the enhanced SPC algorithm, we report the clustering results of dif-
ferent parameters in Fig. 2. By comparing between Fig. 1 and Fig. 2, we observe
that our discussions with the DSet algorithm are also applicable to the SPC
algorithm. In other words, the influences of parameters with both algorithms
are similar, and the best parameter options of the two algorithms are also simi-
lar. Therefore we skip the detailed discussions of Fig. 2.

4.2 Comparing with Original Algorithms

To demonstrate if the regularity lemma really improves graph-based clustering,
we compare the original DSet algorithm to the enhanced one in Fig. 3. It is
shown that the enhanced version generates better results on 14 out of the 15
datasets with both the NMI and RI (Rand Index) criteria, and both algorithm
performs very similar on the remaining 1 dataset (Arcene with the NMI criterion
or Leaves with the RI criterion). Meanwhile, the enhanced version saves running
time compared with the original one on 13 out of the 15 datasets. To conclude,
our experiments show that the regularity lemma is able to improve the clustering
results of the DSet algorithm and saves the running time simultaneously.

We compare the original SPC algorithm to the enhanced one in Fig. 4. It can
be observed that the enhanced SPC algorithm performs better than the origi-
nal one on 14 datasets, and very similar to the latter one on the remaining 1
dataset (Iris with the NMI criterion or Arcene with the RI criterion). In compu-
tation efficiency, the enhanced version takes less running time than the original
one on 9 datasets. In conclusion, the SPC algorithm can be enhanced based
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Fig. 3. Comparison between the original and enhanced and DSet algorithm. The
enhanced version generates better results with less running time on the majority of
datasets.

on the regularity lemma in both clustering quality and computation efficiency
simultaneously.

In the following we discuss why the regularity lemma is able to improve
the DSet and SPC algorithms to generate better results with less running time.
Since the reduced graph is usually much smaller than the original one, clustering
on the reduced graph saves running time naturally. With our modifications to
regular partitioning and the limit set by the parameter ε, the regular partitioning
won’t take much running time. These two factors together enable the enhanced
DSet and SPC algorithms to take less running time than the original ones on
the majority of datasets.

As to why the enhanced DSet and SPC algorithms generate better results
than the original ones, our explanation is as follows. In a regular partition, each
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Fig. 4. Comparison between the original and enhanced SPC algorithm. The enhanced
version generates better results with less running time on the majority of datasets.

pair of classes behave like a regular pair, and the edges between two classes
are distributed quite uniformly. This special distribution of edges allows us to
treat a class as a supernode, and then derive the edge weight between two such
supernodes based on the edges between the two corresponding classes, thereby
generating the reduced graph. In a sense, we can regard the reduced graph
as being obtained by sampling of edges or of larger structures, in contrast to
ordinary sampling of nodes. In this way, the reduced graph removes many repet-
itive and redundant structures of the original graph, thereby preserving the key
structure information in the original graph in a compressed, compact manner.
By simplifying the overall data distribution, this compact representation is ben-
eficial to distinguishing between clusters. Consequently, the small reduced graph
is able to generate better clustering results than the original graph.
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Table 2. Clustering results (NMI) comparison on 15 datasets.

MDPC+ LDPSC DPC-FSC FHC-LPD DPCSA DenMune 3W-DPET E-DSet E-SPC

Appendicitis 0.22 0.20 0.05 0.26 0.26 0.28 0.00 0.60 0.82

Arcene 0.07 0.04 0.00 0.02 0.05 0.21 0.00 0.16 0.04

Balance-scale 0.23 0.03 0.02 0.01 0.13 0.21 0.08 0.20 0.15

Ecoli 0.61 0.60 0.55 0.59 0.67 0.68 0.61 0.71 0.69

Glass 0.26 0.36 0.03 0.30 0.34 0.43 0.37 0.56 0.55

Iris 0.71 0.87 0.03 0.65 0.89 0.80 0.76 0.66 0.79

Leaves 0.38 0.73 0.65 0.52 0.69 0.71 0.72 0.79 0.80

Libras 0.42 0.65 0.07 0.63 0.64 0.67 0.49 0.70 0.71

Olivertti 0.41 0.91 0.90 0.84 0.92 0.88 0.81 0.86 0.87

SCC 0.77 0.81 0.81 0.80 0.79 0.85 0.71 0.75 0.82

Seeds 0.66 0.68 0.71 0.66 0.67 0.73 0.63 0.68 0.72

Segment 0.66 0.65 0.01 0.69 0.70 0.68 0.00 0.59 0.60

Thyroid 0.17 0.22 0.11 0.27 0.30 0.53 0.44 0.72 0.79

USPS 0.39 0.66 0.38 0.62 0.56 0.81 0.45 0.85 0.95

Wine 0.58 0.30 0.84 0.56 0.75 0.47 0.82 0.55 0.67

mean 0.44 0.52 0.34 0.49 0.56 0.60 0.46 0.62 0.67

Table 3. Clustering results (RI) comparison on 15 datasets.

MDPC+ LDPSC DPC-FSC FHC-LPD DPCSA DenMune 3W-DPET E-DSet E-SPC

Appendicitis 0.75 0.67 0.50 0.77 0.77 0.77 0.68 0.88 0.96

Arcene 0.54 0.53 0.50 0.51 0.53 0.54 0.50 0.50 0.51

Balance-scale 0.59 0.54 0.44 0.43 0.60 0.59 0.55 0.57 0.58

Ecoli 0.83 0.80 0.77 0.81 0.87 0.88 0.82 0.88 0.86

Glass 0.50 0.71 0.27 0.70 0.62 0.76 0.68 0.79 0.75

Iris 0.77 0.95 0.34 0.73 0.96 0.89 0.88 0.87 0.92

Leaves 0.64 0.98 0.93 0.87 0.95 0.98 0.98 0.99 0.99

Libras 0.78 0.91 0.13 0.91 0.90 0.93 0.89 0.95 0.94

Olivertti 0.63 0.99 0.98 0.96 0.99 0.98 0.98 0.98 0.99

SCC 0.90 0.87 0.91 0.87 0.90 0.92 0.87 0.93 0.95

Seeds 0.87 0.87 0.88 0.87 0.86 0.89 0.84 0.89 0.90

Segment 0.86 0.72 0.15 0.87 0.87 0.91 0.14 0.88 0.87

Thyroid 0.58 0.58 0.48 0.58 0.65 0.81 0.74 0.93 0.94

USPS 0.70 0.90 0.70 0.89 0.80 0.96 0.83 0.96 0.99

Wine 0.71 0.60 0.93 0.77 0.88 0.74 0.93 0.79 0.86

mean 0.71 0.77 0.59 0.77 0.81 0.84 0.75 0.85 0.87

4.3 Comparison with Recent Algorithms

We finally compare the enhanced DSet (E-DSet) and SPC (E-SPC) algorithms
to some recent works, including MDPC+ [10], LDP-SC [15], DPC-FSC [14],
FHC-LPD [11], DPCSA [27], DenMune [1] and 3W-DPET [28]. We report the
comparison in Table 2 and Table 3. For clarity, we highlight the best result(s) on
a dataset with bold fonts, and the second-best ones with underline.

In Table 2 we observe that, with the NMI criterion, the enhanced DSet and
SPC algorithms perform the best or second-best on 10 out of 15 datasets, and
their average results on 15 datasets rank the first and second in all the algorithms.
In Table 3 with the RI criterion, these two enhanced algorithms generate the best
or second-best results on 11 datasets, and again they rank the first and second in



Enhancing Graph-Based Clustering with the Regularity Lemma 419

all the algorithms in average results. These comparisons show that the enhanced
DSet and SPC algorithms are able to improve relatively old-fashioned algorithms
to outperform recent state-of-the-art works.

5 Conclusions

While Szemerédi’s regularity lemma was shown to be promising in improving
graph-based clustering in previous works, the parameter tuning problem hasn’t
been dealt with in our knowledge. To solve this problem, we investigate how the
three parameters in regular partitioning impact on the clustering results with
extensive experiments on real datasets. We find out appropriate ranges of these
parameters, which can be helpful in practical applications. We then provide an
explanation of the parameters’ behaviors, and discuss why the dominant set and
spectral clustering algorithms enhanced with the regularity lemma is able to
generate better results than the original ones with less running time. Finally,
experiments show that the enhanced dominant set and spectral clustering algo-
rithms outperforms some recent works, which further shows that the regularity
lemma is promising in big data analysis.

Although our work goes a step forward in applying the regularity lemma in
real-world tasks, there are still some problems to be solved. First, the regular
partitioning process is still time-consuming. Second, it is still not clear how the
approximation degree of the regular partition influences the clustering results.
In the future we will work in these two directions to generalize the application
of the regularity lemma in real-world tasks further.
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24. Sperotto, A., Pelillo, M.: Szemerédi’s regularity lemma and its applications to
pairwise clustering and segmentation. In: The 6th International Conference on
Energy Minimization Methods in Computer Vision and Pattern Recognition, pp.
13–27 (2007)
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Abstract. DBSCAN, a fundamental density-based clustering method,
is well-known for its ability to discern clusters of diverse shapes. How-
ever, its effectiveness diminishes with the scale of datasets, as the storage
and processing of labels become impractical. Conversely, centroid-based
algorithms like K-means adeptly handle raw data by assigning them to
the nearest centroids, yet struggle with non-spherical clusters. This study
aims to amalgamate the strengths of these distinct clustering methodolo-
gies. Proposing the Incremental Prototype-based DBSCAN (IPD) algo-
rithm, our study addresses the challenge of identifying clusters with arbi-
trary shapes within large datasets. IPD not only identifies clusters but
also selects representatives for each, with a primary focus on establish-
ing a stability criterion within the prototype space. Experimental results
demonstrate the efficacy of the approach, showcasing perfect convergence
and scalability, even with extremely large synthetic datasets containing
shaped clusters. The code for the IPD algorithm is available at https://
github.com/Jayasree-Saha/IPD.

Keywords: DBSCAN · Prototype · sampling · Incremental
clustering · Stability · large-scale data

1 Introduction

Clustering is the process of grouping similar objects into one cluster and dissim-
ilar objects into separate clusters based on some similarity or dissimilarity func-
tions. It is a well-known unsupervised tool used in several machine learning and
data mining applications where ground truth is unavailable [21]. However, the
current era of Big Data has introduced new challenges to the existing machine
learning and data mining approaches [15,33]. Due to automatic capability of
knowledge extraction, clustering becomes obvious choice for handling big data.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-78107-0_27.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15301, pp. 421–441, 2025.
https://doi.org/10.1007/978-3-031-78107-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78107-0_27&domain=pdf
https://github.com/Jayasree-Saha/IPD
https://github.com/Jayasree-Saha/IPD
https://doi.org/10.1007/978-3-031-78107-0_27
https://doi.org/10.1007/978-3-031-78107-0_27


422 J. Saha and J. Mukhopadhyay

Density based clustering is one of the most popular paradigm in the machine
learning and data mining community. Ester et al. [6] introduced Density-Based
Spatial Clustering of Applications with Noise (DBSCAN ). The idea is to group
data in the high-density region of the feature space. It requires two parameters:
i) scanning radius ε, and ii) a density threshold MinPts. It has the capabil-
ity of recognizing clusters on complex manifolds, having arbitrary shapes. It is
not limited to identifying only “spherical” clusters as any centroid-based algo-
rithm. However, the effectiveness of DBSCAN with very large datasets is hin-
dered by its computational complexity [4]. While Ester et al. [6] proposed a
running time of O(nlogn) using an appropriate index structure for data in d-
dimensional Euclidean spaces, where n is the number of objects, Gan and Tao [9]
have recently demonstrated that this claim does not hold for d > 3; DBSCAN
actually requires at least Ω(n 4

3 ). Yet, algorithms with O(n) time complexity
struggle to scale and handle datasets with millions or billions of entries. Thus,
employing DBSCAN with very large datasets remains challenging and necessi-
tates a more efficient solution. Nevertheless, it is intuitive that such large datasets
often contain redundancy or repetition of similar features, suggesting the possi-
bility of summarizing them with only a fraction of the complete dataset. In such
instances, prototype-based approaches [27,28] are highly suitable. Typically, pro-
totypes are initially generated utilizing the leaders clustering algorithm [12] [13]
in linear time, followed by the application of clustering algorithms on these pro-
totypes. Some researchers [17,20] address the challenge of large datasets in the
DBSCAN method by reducing the number of neighborhood queries, where each
query consumes O(n) time if no index structure is employed. Since algorithms
with O(n) time complexity still struggle with scalability issues when dealing
with large datasets, sampling-based solutions are becoming more attractive. In
this case, the complexity of computation can be reduced on the sample space
since it reduces individual neighborhood query as well as total number of such
queries. In this study, we aim to construct a prototype using a sampling-based
method and iteratively delineate the cluster structure. The appropriateness of
the prototype is ascertained incrementally. The primary challenges in this stage
include i) determining a suitable structural representation for depicting a cluster
structure, and ii) validating that the cluster structure derived from the sample
space aligns well with the entire dataset. In our study, we develop a stability
criterion for assessing the cluster structure within the sample space in an incre-
mental manner. For convex clusters, it is appropriate to have a single cluster
representative. However, the system struggles to assign data points to the near-
est centroid when dealing with closely spaced, arbitrarily shaped clusters. Tong
et al. [26] suggest that boundary points serve as potential candidates for repre-
senting a cluster in a prototype-based clustering algorithm. Therefore, they may
be suitable for representing arbitrary cluster structures. Our major contributions
are as follows:

– We introduce a density based clustering method which is based on the basic
principle of DBSCAN. It uses a fraction of the whole dataset to produce a
suitable cluster structure. Hence, it reduces each query processing time and
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the total number of queries. The main benefits of our algorithm is that it
identifies cluster structure in terms of cluster representatives. In real time,
one may not be interested in knowing the labels of all data points but a
few for large scale data. Our strategy makes the algorithm more robust and
efficient for handling large scale data in real time scenario.

– We introduce an incremental scheme to identify cluster structures by employ-
ing a stability criterion. Our technique relies on the sampled items on each
iteration for querying. Hence, it reduces the number of queries.

– Our method introduces a strategy for having multiple representatives for
each cluster. It facilitates a new instance to be classified to a cluster having
any arbitrary shape using the nearest neighbor rule. This labeling scheme is
more robust and accurate compared to the single representative scheme as in
partition based methods.

The remainder of the paper is structured as follows: Sect. 2 discusses related
works, while Sect. 3 provides a detailed description of our proposed algorithm.
Evaluation results are presented in Sect. 4, and we conclude our work in Sect. 5.

2 Related Work

DBSCAN is widely used density based clustering method. It builds clusters by
examining neighborhood queries across all data objects, discerning their core
attributes, and identifying chains of density-connected objects. We present a
concise overview of recent study on DBSCAN in handling large-scale datasets.

Variants of DBSCAN for Large Scale Data. The DBSCAN algorithm
detects arbitrary-shaped clusters based on chosen parameters ε and MinPts.
However, its quadratic time complexity renders it impractical for handling big
data. To address this limitation, various variants of DBSCAN have emerged
over the years, aimed at making it suitable for large-scale and high-dimensional
datasets. One such variant, proposed by Tong et al. [26], integrates Scalable Clus-
tering Using Boundary Information (SCUBI ) into DBSCAN. SCUBI identifies
boundary points in the dataset and groups them into clusters using cluster-
ing techniques, with the remaining points assigned cluster labels based on their
proximity to the boundary points. Hybrid clustering techniques [27,28] combine
prototype selection from the dataset with clustering algorithms. The leaders
clustering algorithm [12] is often utilized to derive prototypes efficiently. How-
ever, it may not capture density information adequately, leading to approximate
solutions. Grid-based approaches [11,32] divide the dataset into grids to facili-
tate neighbor queries. While efficient, they face challenges with high-dimensional
data due to neighbor explosion and redundant distance computations. Improved
algorithms, such as those proposed by Bonchoo et al. [3] and Chen et al. [4],
address these limitations by employing techniques like bitmap indexing and ε

2 -
norm ball identification to optimize neighbor queries and merging operations.
Additionally, other DBSCAN variants are tailored for big data processing. Any-
DBC [20] and IncAnyDBC [19] utilize active learning and iterative processing to
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refine cluster structures efficiently. Some methods leverage Graphics Processing
Units (GPUs) [16] or map-reduce algorithms [13,18] to exploit parallel architec-
tures for faster computation. However, challenges such as memory management
and scalability remain significant concerns in these approaches.

Notion of Stability in Clustering. Cluster analysis hinges on two critical
factors: 1) determining whether data exhibits properties of clustering [1], and
2) evaluating the stability of clustering results [29] Clusterability assesses the
extent of inherent clustering within the data, and this evaluation is typically
conducted prior to applying clustering algorithms. Conversely, stability analysis
occurs post-clustering, focusing on the robustness of the obtained partition. In
this study, we concentrate on stability and explore current trends in this area.
Stability is commonly quantified by assessing the variation in clustering outcomes
under minor data perturbations [2]. Typically, stability is computed by analyzing
pairwise similarities or dissimilarities between clusterings obtained from subsam-
pled data. This concept is utilized not only for cluster validity assessment [22] but
also for determining the optimal number of clusters associated with a dataset [7]
Wang [30] proposes a method to determine the appropriate number of clusters
via cross-validation. By randomly dividing the dataset into training and valida-
tion sets, clustering models are trained and validated, with the instability metric
computed based on discrepancies in cluster assignments. This process is repeated
for various cluster numbers, with the optimal number determined by minimizing
instability. In our work, we leverage instability to evaluate the validity of clus-
ter structures in the incremental approach. However, devising cluster validation
criteria within a sample-based framework [24] poses challenges, particularly in
ensuring that clustering results are not artifacts of the sampling process. Fur-
thermore, the stability of clustering solutions tends to improve as the sample
size increases. Shamir et al. [25] investigate consistency, central limit, and reg-
ularity conditions as general sufficient conditions to guarantee the reliability of
clustering stability estimators in large sample regimes.

3 IPD

The core principle of our proposed algorithm IPD revolves around creating
a prototype that streamlines the processing of large datasets. Leveraging the
DBSCAN principle, it demonstrates the ability to identify intricate cluster
shapes. Moreover, the algorithm continuously updates the clustering structure in
response to incoming data points or changes in the dataset, ensuring its adapt-
ability to real-time dynamic environments. The main objective revolves around
stabilizing the clustering structure in prototype space to replicate the cluster-
ing structure of the original dataset. The pseudo-code for IPD is summarized
in Algorithm 1. As IPD is built upon the foundation of the DBSCAN method,
we have provided fundamental terminology and the primary algorithm in the
supplementary materials.
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Algorithm 1: Incremental Prototype based DBSCAN (IPD)
Input: Dataset: X; DBSCAN parameters: ε, MinPts; |Sprototype|: γ; |Sinc|: β;

threshold: τ
Output: Cluster Labels: C, Representatives: R
LOS ← {"unknown"}n

i=1, Nε ← {{}}n
i=1;

LOC ← {}, LOB ← {}, LON ← {}, Δ ← ∞;
Sprototype ← Sample γ points randomly from X, Xrem ← X − Sprototype;
η ← EIM(Sprototype, ε, MinPts, η = 1);
nextId ← DBSCAN(Sprototype, ε, η);
C ← labels of Sprototype assigned by DBSCAN;
α ← computeTestSize(C, n);
Stest ← Sample α points randomly from Xrem; Xrem ← Xrem − Stest;
Ωtest ← Obtain Cluster labels for Stest as described in Definition 3;
while Δ > 0 and |Xrem| > 0 do

Sinc ← Sample β points randomly from Xrem; Xrem ← Xrem − Sinc;
if η < MinPts then

η ← EIM(Sprototype, ε, MinPts, η);
RC(LOC, LOS, η, Nε);

nextId ← incDBSCAN(Sinc, ε, η, nextId);
Ω′

test ← Obtain Cluster labels for Stest as described in Definition 3;
Δ ← computeStability(Ω′

test, Ωtest);
α′ ← computeTestSize(C, n);
if α′ − α > 0 and α′ − α > |Xrem| then

Snew
test ← Sample (α′ − α) points from Xrem;

Stest ← Stest ∪ Snew
test ; Xrem ← Xrem − Snew

test ;
Compute R from C′ as defined in Definition 5;
Ωtest ← Obtain Cluster labels for Stest as described in Definition 3;

Sprototype ← Sprototype ∪ Sinc;
C′ ← labels of Sprototype assigned by incDBSCAN;
if Δ == 0 and η < MinPts then

Δ ← 1, η ← MinPts;
RC(LOC, LOS, η, Nε);

Compute R from C′ as defined in Definition 5;
C ← Each point of Xrem is labeled with the label of nearest representative
r ∈ R;
C ← C ∪ C′;

3.1 Prototype Creation

We first choose a sample (Sprototype) from the list of unprocessed points in the
original dataset as described in Definition 1.

Definition 1. We define a sample Sprototype such that Sprototype ⊂ X and each
object in Sprototype is sampled randomly with i.i.d and without repetition, such
that |Sprototype| = γ. The remaining points are Xrem = X − Sprototype. Sprototype
acts as initial prototype for the clustering
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Then, we apply DBSCAN [6] on this sample. i.e., the query of a point only
searches ε-neighborhood in the sample space but not in the original data space.

Fig. 1. The state transition diagram of a point

Each point undergoes state transition during the execution of DBSCAN as
shown in Fig. 1. Intuitively, the size of ε-neighborhood of a point in the sam-
ple space is small compared to the original data space. Therefore, the value of
the parameter MinPts in DBSCAN may not be appropriate to identify the
“core” point when DBSCAN applied in the sample space. To resolve the issue,
we introduce parameter η to control the value of MinPts in the sample space.
This scheme reduces the computation time for neighborhood queries and builds
the structure of a tentative cluster on sample space. In this step, we create a
graph Gp(V, E) as defined in Definition 2, based on the outcome of DBSCAN.

Definition 2. We define a graph Gprototype = (V, E) such that v ∈ V represents
a point in Sprototype. We have tagged each vertices with any of three states: “core”,
“border”, and “noise”. These states are decided when DBSCAN is applied on
Sprototype. For every e(u, v) ∈ E, u is in ε-neighborhood of v. We assign “volatile-
yes” (v-yes), “volatile-weak”(v-weak), and “volatile-no”(v-no) state to an edge
e(u, v) if u and v are both core, if only one of them is core, and both are not core,
respectively. Each maximal set of “volatile-yes” and “volatile-weak” connected
vertices forms a cluster.

We store the neighbors for each point m (a vertex in Gprototype) , denoted as
Nε(m) , for determining the core property of m. This data structure is extremely
useful in the incremental step to avoid unnecessary queries of processed points.
Since the state of each vertex v in Gprototype may change in the subsequent steps,
a few lists throughout the algorithm are maintained. These lists are called list of
state (LOS), list of core (LOC) , list of border (LOB), and list of noise (LON).
LOS denotes the current state of a point. The length of the LOS is n. This list
maintains the current state of a point. They are labeled to “unknown” state
at the beginning of the algorithm. DBSCAN changes the state of a few points
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(points present in Sprototype) which is reflected in the State list. LOC, LOB, and
LON store points which are currently core, border and noise respectively. These
are temporary lists whose sizes change several times in the life span of IPD.

3.2 Incremental Processing

In this step, we randomly sample β points from the remaining dataset. We
update the existing cluster structure while processing them.

Definition 3. We define sample Sinc where each object is sampled randomly
with i.i.d and without repetition from Xrem such that |Sinc| = β. We modify
Gprototype = (V, E) to G′

prototype(V ′, E′) such that V ′ = V ∪ V1, where v ∈ V1
represents a point in Sinc and E′ = E ∪E1, where e(u, v) ∈ E1 such that u ∈ V ′,
v ∈ V1 and dist(u, v) <= ε. Also, we allocate state to edges as described in
Definition 10.

Fig. 2. Transition of the core property of a point outlined with black color. Circle
represents ε-neighborhood area, blue and green points are non-core points, and red is
the core point. Green points are added in the second iteration of incremental processing.
(a) depicts the scenario when new points are added in the neighborhood of a core point
in the next iteration. (b) and (c) depict the situation when there is no increment in
the neighborhood of a core point in the next iteration. (Color figure online)

Since we add more points into the prototype, the size of the ε-neighborhood
of a point in the sample space may increase. Hence, we increase the value of η
successively until η = MinPts. With this scheme, the core property of a point
incurs several transitions as depicted in Fig. 2.

When MinPts is large, the number of iterations in incremental processing
increases. To reduce such complexity, we sampled a fraction of the prototype. We
observe the number of neighbors within ε of the sampled data points and take
their mean. We use this number to increment of η till η < MinPts. Otherwise, we
increase η by 1. In the incremental step merging of clusters can occur along with
the addition of new cluster. If the new point is a core point and its neighborhood
contains points that belong to different clusters, then algorithm triggers merging
of those clusters. Re-evaluation of “core” property. At every iteration, we
increment the value of η that judges the “core” property. Therefore, core property
needs to be re-evaluated before processing Sinc. We have detailed the process in
the supplementary materials.
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Algorithm 2: incDBSCAN
Input : Unprocessed Sample: Sinc

Parameters for incremental DBSCAN: ε, MinP ts
New Cluster Id: k̂

Output: Cluster Labels : C, List : State, Next Cluster Id: k̂
Lists: state , core, border, noise;
for p ∈ Sinc do

if p is not processed then
F ound, k ← incExpandCluster(p, ε, MinP ts, k̂);

if (F ound == True) and (k == k̂) then
k̂ ← k̂ + 1;

return k̂;

Lemma 1. With the increment of η, if the state of a vertex u looses “core”
property, it may induce many state changes of points in its ε-neighborhood.

Proof. Let u be chosen as a “core” point when η = t and |Nε(u)| = t. In the
next iteration η becomes t + r (r ≥ 1) and u becomes either “border” or “noise”.
∃v ∈ Nε(u) whose state is “border” and u is the only “core” point in its ε-
neighborhood. i.e., |Nε(v)| < t and there is no “core” point in the ε-neighborhood
of v. Therefore, v becomes a “noise”. Each core → border transition may induce
border → noise transition. �

Lemma 2. There is no further state changes for border and noise points with
the increment of η unlike core points.

Proof. Let u be chosen as a “border” point when η = t and |Nε(u)| = t − m
where 1 ≤ m < t. When η becomes t + 1 in the next iteration, the size of
|Nε(u)| remains the same and the state is also not changed. Therefore, u can not
affect others in its ε-neighborhood. The same situation holds for a “noise” point.
Therefore, there is no further state changes only with the increment η. �

Since the “border” or “noise” point does not induce further state changes, new
points can be queried without changing their actual state when η is incremented.
However, the size of ε-neighborhood of v ∈ Sprototype may increase while we run
queries for every point in Sinc. Hence, we can re-verify “border” or “noise” prop-
erty of v while processing Sinc. We have detailed the process in the supplementary
materials.

Update the Prototype Graph. During this step, the graph Gprototype is mod-
ified so that it includes all merging as a result of new queries prompted by new
samples Sinc and new clusters within the new samples. At each iteration, IPD
randomly chooses a set (Sinc) of β points from the remaining unprocessed dataset
and run queries among their neighbors in Sprototype and Sinc. With state changes,
G′

prototype may produce variation in cluster structure in Gprototype. The cluster
structure C of Gprototype(V, E) is updated to C

′ of G′
prototype(V ∪ V1, E′) whose

formation leads to the following conditions:



IPD: Scalable Clustering with Incremental Prototypes 429

1. If ∃v ∈ V1 such that dist(u, v) <= ε where u ∈ V and u has a “core” state
and belong to Cm cluster, then v also belongs to Cm cluster.

2. If ∃v ∈ V1 and v has a “core” state and ∃u ∈ Nε(v) such that u ∈ V and has
“noise” state. Then, maximal set of “v-yes” and “v-weak” connected vertices
of v is assigned to a new cluster Cp /∈ C and v’s state is changed to “border”
state.

3. If ∃v ∈ V1 and ε-neighborhood of v contains core vertices u and w such that
u ∈ Cm and w ∈ Cn where Cm 	= Cn, then Cm and Cn are merged to
Cm (m < n) and v with its maximal set of “v-yes” and “v-weak” connected
vertices (belong to Sinc) have been assigned to Cm.

Lemma 3. If two core points u and v are directly density connected such that
u ∈ Sprototype, u ∈ c1, and v ∈ Sinc, there exists a path of vertices in G′

prototype
that connects ∀w ∈ c1 and v. Similarly, ∀z ∈ Sinc if z is density reachable to v,
then z is density connected to u and z belongs to the cluster c1.

Proof. Let u ↔ x1 ↔ x2 · · · ↔ xm ↔ w be a chain of core points connecting
u and w (Definition 6, 10). After performing query on v, if u ∈ Nε(v), then
dist(u, v) ≤ ε. Therefore, v ↔ u ↔ x1 ↔ x2 · · · ↔ xn ↔ w i.e., v is density
reachable from w. Similarly, ∀z ∈ Sinc, if z ↔ y1 ↔ y2 · · · ↔ yp ↔ v, then after
querying on v, z becomes density reachable to u. z · · · ↔ v ↔ u · · · ↔ w forms a
subset of the maximal set of density connected points. Hence, z ∈ c1 according
to Definition 7. �

Similar to Lemma 3, if v ∈ Sinc and u, w ∈ Sprototype but u ∈ cm and w ∈ cn

such that cm 	= cn, then two clusters merge to a single cluster since u ↔ v ↔
w. Algorithm 2 and Algorithm 3 togetherly describes the processing of each
incremental step.

Re-Verification of Border and Noise. The size of ε-neighborhood of any
point v ∈ Sprototype may increase while querying each point in Sinc. This leads
to promotion of state for vertices from noise → {border, core} or border → core.

3.3 Selection of Cluster Representatives

In a partition-based clustering algorithm, clusters are represented by the cor-
responding cluster centers. Data points are assigned to their nearest cluster
centers. However, the scheme of a single representative for a cluster has a seri-
ous flaw. Border points of a cluster may get assigned to another nearby cluster.
The immediate solution is to choose multiple representatives for each cluster.
The problem gets resolved to a great extent when representatives belong to the
border area. Hence, we aim to select core points that depict the contour of the
arbitrary-shaped clusters. In density-based clustering, core points are the indi-
cator of the high-density region of the cluster. Therefore, we consider core points
as the representative of the respective cluster. Since our algorithm develops by
processing a fraction of the dataset, the total number of core points is limited.
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According to our design of algorithm, test sample Stest may be relabeled many
times. If the number of representatives is equal to the number of core points,
then that quantity could be a bottleneck in the sample space for a large dataset.
Therefore, we need to efficiently select very few representatives from the set of
core points such that the shape of each cluster could be well predicted by the set
of representatives. This in turn reduces the execution time for labeling remain-
ing unprocessed points. Hence, we need to consider the impact of the size of
representatives in labeling test sample Stest for a very large-scale dataset where
n is counted in millions. Hence, we define a heuristic in Definition 4 to sieve
a limited number of representatives. The first condition of Φ(q) selects a few
core points which are nearer to the border points as representative. The second
condition of Φ(q) determines the centroid. Definition 5 defines the criterion of a
representative.

Definition 4. Let �k
q = |Nε(q)| such that q ∈ Ck, and �k

max = max(�k
q |q ∈ Ck).

Then, a Φ function is defined to choose representatives for each cluster Ck ∈ C
as follows:

Φ(q) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if �k
q

�k
max

≤ τ

1 if �k
q

�k
max

= 1
0 Otherwise,

(1)

Where τ is a user defined threshold.

Definition 5. We define representatives R for the partition C that correspond
to graph H such that H follows Definition 2 and Definition 4.

∀c ∈ C, Rc = {v | v ∈ V ′ and v has “core” state and Φ(v) = 1} (2)

At the end of the incremental step, unprocessed points are assigned to their
nearest core points. This scheme has two advantages: 1) it reduces the compu-
tation cost of processing the whole dataset as in DBSCAN, and 2) the accuracy
of labeling border points increases as compared to any centroid-based cluster
representative system.

3.4 Stopping Criterion

In this step, we discuss the stopping criterion of the incremental step. We sam-
ple Stest randomly from the remaining unprocessed points with i.i.d and without
repetition. We check whether derived labels of items in Stest vary in the consec-
utive incremental step. For this we measure the change of labels in the pairs of
points of Stest as discussed in Definition 6.

Definition 6. We design a stability criterion (in terms of instability) to check
whether the structure of clusters of G′

prototype resembles the structure of clusters
of Goracle. We create two sets of cluster labels Ωtest and Ω′

test for each point
in Stest. Ωtest and Ω′

test are created using the representatives of Gprototype and
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Algorithm 3: incExpandCluster
Input : Point: p, Processed sample: Sprototype, Unprocessed sample: Sinc; New

Cluster Id: k̂; Parameters for incremental DBSCAN: ε, MinP ts; Lists:
LOS, LOC, LOB, LON

Output: Cluster Labels : C, List : LOS, Next Cluster Id: k̂
Nε ← RangeQuery(p, ε, Sprototype ∪ Sinc);
if |Nε(p)| < MinP ts then

Determine whether p is a noise or border and update state(p) and label(p)
accordingly;
return k̂;

state(p) ← "core", LOC ← LOC ∪ p, label(p) ← k̂;
seeds = [];
for x ∈ Nε(p) do

if x is not visited then
seeds ← seeds ∪ x;

else
RNB(LON , LOS, η, Nε, x); // Refer to Algorithm ??
LMerge ← LMerge ∪ label(x);

for q ∈ seeds do
Nε ← RangeQuery(q, ε, Sprototype ∪ Sinc);
if |Nε(q)| > MinP ts then

LOS(q) ← "core", LOC ← LOC ∪ q, label(q) ← k̂;
for x ∈ Nε(q) do

if x is unprocessed then
seeds ← seeds ∪ x; // x was not in seed

else
RNB(LON , LOS, η, Nε, x); // Refer to Algorithm ??
LMerge ← LMerge ∪ label(x);

else
LOS(q) ← "border", LOB ← LOB ∪ q, label(q) ← k̂;

LMerge ← LMerge ∪ k̂;
if |LMerge| > 1 then

Merge all clusters in LMerge;

return k̂ + 1;

G′
prototype respectively. The labeling scheme uses the following rule:

Label u ∈ Stest with k̂ ∈ C where C is a partition such that

k̂ = argmin
label(v)∈C

dist(u, v) where v ∈ R (3)

However, if there is no cluster structure in the graph, i.e., every point is a
“noise”, then every point in Stest is labeled with −1. The C represents partition
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of either Gprototype or G′
prototype and R represents the set of cluster representa-

tives.
Instability measure Δ is defined using following function:

Δ = 1
(|Stest|

2
)

∑

1≤i<j≤|Stest|
Vij(Ωtest, Ω′

test) (4)

where Vij measures the instability in Stest

Vij(Ωtest, Ω′
test) = I(I(Ωtest(xi) = Ωtest(xj)) + I(Ω′

test(xi) = Ω′
test(xj)) = 1)

(5)
where I(.) is an indicator function.
If xi and xj gets same cluster label in Ωtest and different cluster label in
Ω′

test (where xi, xj ∈ Stest), or vice versa, then I(Ωtest(xi) = Ωtest(xj)) +
I(Ω′

test(xi)=Ω′
test(xj)) = 1. Equation 5 represents the XOR operation. Vij in

Eq. 4 enumerates number of pairs in Stest which are labeled differently in two
consecutive iterations.

The method initially captures the clustering structure based on items observed
within the sampled space, potentially detecting only a subset of clusters. How-
ever, with each iteration, the shapes of these clusters are refined. As samples
are iteratively added, the prototype accumulates exemplary samples from each
existing cluster, allowing it to accurately describe their shapes in the oracle.
Once the prototype is well-formed with exemplary samples from the oracle, the
algorithm identifies representatives capable of defining each cluster structure
in the prototype space. Consequently, test samples cannot change their cluster
label. This instability function plays a crucial role in capturing this scenario.
Following terms are used in estimating the value of α in the subsequent lemmas
and corollaries.
k : Number of clusters.
n : Total number of points.
t : fraction of test samples.
pi: Prob. of the ith cluster, i = 1, 2, . . . , k.

Lemma 4. Probability that there exist at least two samples of the ith cluster in
the test samples is given by (nt − 1)2p2i t2.

Proof. Prob. that a sample of i cluster in the test set: pit. Number of test samples
(α): nt. Prob. that there exist any two or more samples of the i cluster in the
test data set:

1 − (1 − pit)nt −
(

nt

1

)

(pit)(1 − pit)(nt−1)

= 1 − (1 − pit)(nt−1)(1 + (nt − 1)pit)

≈ 1 − (1 − (nt − 1)Pit)(1 + (nt − 1)pit)

= 1 − (1 − (nt − 1)2p2i t2
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= (nt − 1)2p2i t2

Q.E.D

Lemma 5. Probability that for every cluster there exist two or more samples is
(n′t − 1)2k(Πk

i=1p2i )t2k.

Proof. Probability that there exist at least two samples of the ith cluster in the
test samples is given by (n′t − 1)2p2i t2.
Hence, the probability that for every cluster there exist two or more samples is∏k

i=1((n′t − 1)2p2i t2) = (n′t − 1)2k(Πk
i=1p2i )t2k �

Corollary 1. The number of test samples for ensuring that there exist at least
two samples of each cluster with probability P is obtained from:

(n′t − 1)2k(Πk
i=1p2i )t2k = P

One may put P = 1, for the theoretical minimum number. Practically P can be
kept high.

Corollary 2. For uniform probability distribution of clusters pi = 1
k . Hence, the

theoretical minimum number is given by the solution of the following equation:

n′t2 − t − k = 0
=⇒ t = 1

2 ( 1
n′ ±

√
1

n′2 + 4k
n′ )

≈ 1
2n′ +

√
k
n′

(6)

This step aims to provide a measure of the ‘goodness’ of the prototype. This
strategy verifies whether the prototype can portray the cluster structure of the
original dataset. We use the notion of “clustering stability” to measure the ‘good-
ness’ of the prototype. The notion of stability ensures that the cluster structure
present in the graph replicates the cluster structure of the dataset X.

Lemma 6. The algorithm converges when no new cluster emerges.

Proof. Since we add new samples to the prototype in every iteration, it may
reveal new cluster. However, there are two plausible cases. This new cluster may
be a part of the existing cluster but it is not density reachable from them at
that stage. Again, this cluster may reveal truly a new cluster of the original
dataset. However, this condition will stop within finite iteration since number of
clusters are constant for the dataset. If new cluster is part of the existing cluster
and the condition of density reachability hold for the original dataset with the
given ε and MinPts, then they will be eventually merged within finite iteration.
Otherwise, they remain as separate cluster. Addition of new samples can not
merge them and eventually they become stable.

In the extreme case, merging may lead to a single cluster. Therefore, the
instability measure Δ will be zero. Otherwise, cluster stability is achieved, and
addition of new points can not bring new information to the prototype. Hence,
Δ becomes zero and iteration stops. �
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It is assumed that the cluster structure of G′
prototype replicates the cluster struc-

ture of X when the notion of stability is achieved. However, the success of this
step depends on the size of |Sinc| = β, and the selected items in Stest. If β is
very small, then algorithm may converge even if all the clusters have not evolved.
However, such a situation ends in having many points as noise if initial size of
prototype is also very low. New samples fail to provide variation in the proto-
type. Hence, Δ reaches to zero. Hence, we have used the principle used in [23]
for estimation of sample size to determine β. We provide respective theorems
and proofs in the supplementary materials. Again, it is important for Stest to
have points from every cluster which is the best fit to X. As we are aiming to
deal with large datasets, random sampling is the easy solution to create Stest.
Therefore, the value of α = |Stest| is crucial to achieving the requirement. This
step aims to provide a measure of the ‘goodness’ of the prototype. This strategy
verifies whether the prototype can portray the cluster structure of the original
dataset. We use the notion of “clustering stability” to measure the ‘goodness’ of
the prototype. The notion of stability ensures that the cluster structure present
in the graph replicates the cluster structure of the dataset X (Fig. 3).

Fig. 3. Clustering results by IPD and by IncAnyDBC on artificial-flower dataset.

Rectification on the Size of Test Sample for Large Data. Since the test
samples are labeled using the nearest neighbor principle, it could be a bottleneck
for our algorithm when applied on very large-scale data (instances >> 105).
Similarly, k also can be a bottleneck for the system. The number of clusters
present in the prototype can be for computing α. However, the value of k for
initial prototype will be very high. Because, small MinPts is used which creates
a very large number of groups. Hence, k is fixed to a reasonably high value.

Theorem 1. For very large data, time complexity of IPD is independent of n.

Proof. DBSCAN requires O(γ2) for neighborhood queries. Re-evaluation of
“core” property consumes O(γ). Each incremental step uses O((β)2 + γβ) for
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neighborhood queries . It requires O(γ) for processing border and noise list. The
termination condition requires O(α2 + αk). Hence, time complexity to identify
representatives of the clusters in data space requires O(γ2 +(γ +(β2 +γβ)+γ +
α2 + αk) × tipd), where tipd is the total number of iterations of the incremental
processing step. Usually for large data, γ, α, β, k <<< n. Hence, time complexity
is independent of n. �

Table 1. Performance of IPD for measuring clustering quality using small scale syn-
thetic datasets. ’*’ indicates other non predominating cluster structure.

Dataset Parameters NMI (LZ , LIP D) #clusters (frequency)
(ε, MinP ts)α, β, τ Z = dbscanZ = gt

Aggregation2, 5 12%, 12%, 0.50.96 ± 0.04 0.92 ± 0.045 (16%), 6 (42%), 7 (24%)
Compound 2.28, 11 15%, 10%, 0.50.84 ± 0.04 0.82 ± 0.023 (10%), 4 (64%), 5(20%)
D31 0.65, 5, 0.5 10%, 10%, 0.50.82 ± 0.02 0.86 ± 0.0231(12%), *
K30 2.09, 6, 0.5 15%, 10%, 0.50.99 ± 0.01 0.98 ± 0.0130 (58%), 31 (32%), 32(10%)
t4 10, 7, 0.5 15%, 10%, 0.50.67 ± 0.02 - 22 (28%), 24 (18%), *

4 Experiments

We conduct several experiments to evaluate the effectiveness and advantage of
the proposed method. We validate our algorithm by performing experiments on
synthetic datasets. This helps to understand the aim of our work. The exper-
iments are carried out on a workstation with 128G RAM Centos 64 bit OS,
and Python 2.7 programming environment. We have used Euclidean distance to
measure the similarity between two points in every comparing methods since it
is frequently used in the literature. We compare results using normalized mutual
information (NMI) [14]. We have detailed a heuristic for parameter estimation
for our proposed algorithm in the supplementary materials.

4.1 Datasets

We have chosen dataset with the purpose of analyzing our algorithm on the basis
of quality of clusters and capability of handling large-scale data. We consider a
few synthetic simulations [5,8,10,31] to test the applicability of our method for
detecting arbitrary shaped clusters. They are widely used for cluster analysis
in several research papers. Additionally, we have created two synthetic datasets
namely Aquanimal and artificial-flower that can be treated as large-scale data
to check the scalability of our method. We have also checked its performance on
a popular real world datasets, MNIST and PAMPA2. The detailed description
of datasets could be found in supplementary material.
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Aquanimal. We have created nine shaped clusters in two dimension. Each of
them contains approx. 500, 000 data points. The total number of data points are
4.65 × 106. We have used QGIS software to create shapes in .geojson format and
fill each shape using uniform distribution in Numpy.

Artificial-Flower. We have used similar approach as aquanimal to create this
dataset. We have created 29 shapes using QGIS. However, we introduced a little
complexity in the dataset. For example, we have created concentric half circles
and we keep their distance small. Also, we add overlapping between two clusters
in flower like shapes. We add noise in the set of concentric circles. We add
connection between two distant clusters which are having flower like shape. The
total number of data points are 320, 050.

PAMAP2 is a physical activity monitoring dataset having n = 1, 921, 431 and
d = 39.

MNIST is a digit dataset having n = 70000 and d = 784.

4.2 Quality of Clustering

We examine quality of clustering of our method with respect to DBSCAN and
the ground-truth (gt). We use normalized mutual information (NMI) [14] to com-
pare two labels set LZ , LIP D where L represents labels of data-points and LZ

represents either Labels predicted by DBSCAN or the available ground-truth.
We have chosen small scale synthetic dataset to examine the performance of
IPD in identifying clustering structure. Since IPD is a sampling based method,
we run the algorithm 50 times and report mean and standard deviation of the
metric. Table 1 depicts the results and Fig. 4 provide the 2D visualization of
the clustering outcome. It suggests that outcome of IPD is not exactly similar
to DBSCAN for all the datasets. Figure 4 suggests that IPD can capture more
detailed clustering structure compared to DBSCAN for a given ε and MinPts.
For example, IPD captures 22 clusters, and DBSCAN captures 12 clusters for
D31. However, there are 31 clusters present in an overlapping manner. Similarly,
IPD captures detailed shaped clusters for t4 compared to DBSCAN. Addition-
ally, Table 1 indicates that IPD can identify various rational cluster structures
for a dataset. We have demonstrated such occurrences on a synthetic dataset in
the supplementary material, along with the effects of other hyperparameters.

Analysis of Clustering for Large Dataset. IPD processes a fraction of
the dataset to generate representative points for the cluster structures present
in the data. Unprocessed points are labeled using the 1-NN rule. In con-
trast, IncAnyDBSCAN processes the whole dataset to determine cluster labels.
IncAnyDBSCAN and IPD have quite different motivations. In IncAnyDBSCAN,
the authors attempt to provide results similar to DBSCAN for large datasets in
reasonable time. In contrast, IPD attempts to identify representatives that can
accurately reflect the existing clustering structure for the whole dataset. Hence,
runtime for IPD and CNAK reflects the time needed to identify representatives.
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Fig. 4. Clustering results of DBSCAN ((a)-(e)) and IPD ((f)-(j)) on small scale syn-
thetic dataset

Convergence Analysis. The successful execution depends upon the fact that
Δ (refer to Sect. 3.4) should reach zero within fewer iteration. i.e., the method
should converge after processing a fraction of the dataset such that it stops
within a reasonable time. This also indicates that our method finds a stable
cluster structure. Otherwise, the method stops when all data has been processed.
To study the convergence, we have measured Δ and detected cluster number for
each iteration. We have shown respective plots for Aquanimals and Artificial-
flower datasets in supplementary material.

Fig. 5. Several clustering structures of the Aggregation dataset. (a)-(e) show predictions
by IPD. Parameters used: ε = 2, MinP t = 2, γ = 12% of the dataset, β = 12% of
the dataset, and τ = 0.5. (nmidbscan, nmigt) are reported in the subcaption where
nmidbscan compares the prediction of IPD and the prediction of DBSCAN for the same
ε and MinP ts, and nmigt compares the prediction of IPD with the ground truth.

4.3 Effect of Randomness on Clustering Structure

Since IPD is a sampling-based method, random behavior could be observed. To
understand the effect of randomness we have executed IPD several times with
the same parameters. We have chosen Aggregation dataset to perform such a test
and we observe interesting characteristics of our algorithm. We have kept ε = 2,
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Fig. 6. Effect of γ on clustering result.

MinPts = 5, γ = 12% of the dataset, β = 12% of the dataset, and τ = 0.5 for
the experiment and run the algorithm for 50 times. We depict a few clustering
structure produced by IPD in 50 such executions in Fig. 5. We observe that our
algorithm produces K = 5, K = 6 and K = 7 for 16%, 42% and 12% times
respectively. We have shown normalized mutual information between prediction
of IPD and DBSCAN and prediction of IPD and the ground truth in Fig. 5.
This phenomenon suggests that our method is effective in capturing multiple
suitable clustering structures.

4.4 The Effect of initial Prototype Size γ on IPD

To study the effect of γ, we run our algorithm 100 times on each of the cho-
sen sizes of γ. We have shown the type of cluster structure (in terms of cluster
number) obtained for various values of γ in Fig. 6. We have chosen Aggrega-
tion, Compound and D31 datasets for this experiment. Figure 6a suggests that
estimated cluster number K = 5 predominates when the initial size of the proto-
type is large. DBSCAN also provides a similar cluster structure. However, with
the small size of the initial prototype, several cluster structure is observed. We
observe the similar phenomenon for Compound dataset in Fig. 6b. On the other
hand D31 shows an interesting behavior in Fig. 6c. When the initial prototype
size is small, the resulting cluster structure contains more than 31 clusters most
of the time. But, the resulting cluster structure contains clusters between 26 to
31, when that size is large. Inter-cluster distance is small in D31. With the large
size of samples, a few clusters appear as a single cluster. Hence, a small number
of clusters predominates. We draw the following observation from this fact: Our
method reveals the existence of hierarchy on the dataset on several runs with an
initial prototype of small size. The clustering structure of the initial prototype
is obtained by DBSCAN. Therefore, a large size prototype tends to produce a
similar cluster structure as in DBSCAN.

Analysis on the Size (α) of Test Dataset. The size of α depends on both
the number of clusters k and the size of the dataset n. For a large dataset, the
test size becomes significantly large. It causes a large number of computations
during the generation of test labels at every iteration. Hence, we use the size
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Fig. 7. Convergence on large-scale datasets (Aquanimal and Artificial)

Fig. 8. Selected representative for Aquanimal at several thresholds (τ)

of a subset of the dataset. Here, we use n = 50, 000. Similarly, K may also
be a bottleneck for the system. We use the number of clusters present in the
prototype for computing α. We also fix K to a reasonably high value. Here, we
use K = 50. Although this strategy eliminates the dynamic nature of the test
size, it ensures scalability (Fig. 7).

The Effect of Threshold τ to Select Representatives τ is an important
parameter that helps to select the number of representatives from each cluster.
With the higher value of τ , the number of representatives increases. But, this
creates a bottleneck while handling large-scale datasets. ?? depicts that NMI
reaches stability at τ = 0.3. NMI does not change significantly with τ > 0.3.
However, with increasing τ , run time increases. Figure 8 depicts that with high
increasing τ , representatives can draw the contour of the clusters. The number
of representatives controls the quality of the cluster. It is a trade-off between the
number of representatives and execution time.

5 Conclusion

This paper introduced the prototype-based incremental DBSCAN clustering
algorithm, IPD, which aims to select representatives for arbitrarily shaped clus-
ters for large datasets. Our approach emphasizes the significance of real-time
cluster representatives. The core strategy of IPD involves creating prototypes,
assigning cluster structures, seeking feedback, and iteratively modifying proto-
types and cluster structures until convergence is achieved. By selecting a sub-
set of data points to construct a stable cluster structure fitting the original
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dataset, IPD minimizes query consumption. However, achieving high-quality
clusters relies heavily on selecting appropriate DBSCAN parameters. Our exper-
iments demonstrate that IPD is proficient in capturing multiple cluster struc-
tures present within datasets, showcasing its versatility and efficacy in diverse
clustering scenarios (Table 2).

Table 2. Runtime comparison on large scale data

Dataset size ε Minpts runtime (in s) resultant K
#data-points,#features incAnyDBCIPD CNAKincAnyDBCIPDCNAK

Artificial flower3.2 × 105 2 1 10 175 19 126 6 7 6
Aqua animal 4.65 × 106 2 0.4 10 3141 33 424 7 9 8
PAMAP2 1, 921, 431 39 200 100 129 116 692 1 1 1
MNIST 70000 768 100010 4644 4320198 32 22 1
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Abstract. Given that no existing graph construction method can gen-
erate a perfect graph for a given dataset, graph-based algorithms are
often affected by redundant and erroneous edges present within the con-
structed graphs. In this paper, we view these noisy edges as adversar-
ial attack and propose to use a spectral adversarial robustness evalua-
tion method to mitigate the impact of noisy edges on the performance
of graph-based algorithms. Our method identifies the points that are
less vulnerable to noisy edges and leverages only these robust points to
perform graph-based algorithms. Our experiments demonstrate that our
methodology is highly effective and outperforms state-of-the-art denois-
ing methods by a large margin.

Keywords: Graph · Denoising · Adversarial Robustness

1 Introduction

For many graph-based algorithms, the initial phase entails the construction of
a graph from the provided dataset [1]. This graph is structured such that each
node corresponds to an individual data point, while the edges delineate the inter-
relations among these points. Given the intrinsic uniqueness of each dataset, it
is impractical to expect a universal graph construction method that can pre-
cisely cater to all datasets. Consequently, the graphs generated may contain a
significant number of erroneous and superfluous edges, commonly referred to
as noisy edges. These noisy edges can profoundly degrade the performance of
graph-based algorithms [2,4].

Currently, the most widely used method for graph construction is the k-
nearest neighbor (k-NN) graph. In a k-NN graph, each node is connected to its k
nearest neighbors. This method possesses a strong capability to capture the local
manifold [3], which is why it has become the predominant graph construction
technique for the majority of graph-based algorithms. However, k-NN graph has
a tendency to include noisy edges [5]. Within datasets, the distribution and
characteristics of points are neither uniform nor consistent, rendering the use
of a uniform k value for all points imprecise [2]. Furthermore, the metric used
to measure the distance between two points is also problematic. Whether it is
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Euclidean distance, cosine similarity, or any other distance metric, each has its
limitations [6]. Consequently, the distances measured are not always accurate.
Therefore, the k nearest neighbors in a k-NN graph may not necessarily be the
ones that should be connected.

Addressing this issue is extremely challenging, primarily because, for the
task of capturing the underlying structure of a dataset using a graph, there is
no ground truth solution. Thus, only heuristic methods are available to remove
noisy edges from the graph. Among the most representative works in this area
is the consensus method proposed by [2], which extracts consensus information
from a given k-NN graph. In this method, edges with a consensus value below
a certain threshold are pruned. However, this approach, while removing noise,
also eliminates a substantial number of non-noisy, useful edges. [4] proposed a
spectral framework to detect non-critical, misleading, and superfluous edges in
the graph. However, the gains in algorithmic solution quality are still relatively
modest.

This paper introduces a novel method aimed at enhancing the noise resilience
of graph-based algorithms. Unlike approaches that attempt to remove noisy
edges from the graph, our method employs a spectral adversarial robustness
evaluation method to identify a small amount of robust nodes that exhibit strong
resistance to noise. We then utilize only these robust nodes to complete the graph
analysis tasks. Our approach not only enhances the solution quality of graph-
based algorithms but can also help to reduce the computational cost of these
algorithms. The majority of graph-based algorithms have a time complexity of
at least O(n2), and many are O(n3), such as spectral clustering algorithms [1],
where n is the number of nodes in the graph. Unlike traditional approaches that
involve all nodes, our method only requires the robust nodes, thus substantially
lowering the computational cost.

The main contributions of this work are as follows:

1. We view noisy edges in graphs as adversarial attacks and propose to use a
spectral proactive defense approach to fundamentally address this issue.

2. In contrast to existing approaches that address the issue of noisy edges from
the perspective of the edges themselves, our method approaches the problem
from the node perspective. Recognizing the inherent challenge in discerning
whether a specific edge in a graph is noise or necessary, we propose a solution
that focuses on identifying nodes that are not vulnerable to noisy edges.
By doing so, we aim to reconstruct a robust dataset that is resilient to the
presence of noisy edges.

3. We show that by utilizing only a small number of robust nodes, significant
improvements can be achieved in both the accuracy and efficiency for graph-
based algorithms.
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2 Preliminaries

2.1 Adversarial Attack and Defense

Adversarial attack aims to misled machine learning models by providing decep-
tive inputs, such as samples with intentional disturbances [7,8], which are com-
monly known as adversarial examples. [9–11] have demonstrated that machine
learning models are often highly vulnerable to adversarial attacks.

To defend against adversarial attacks, many methods have been proposed.
These methods can be categorized into two types: reactive defenses and proactive
defenses. Reactive defenses concentrate on detecting adversarial examples within
the model’s inputs, as investigated by [12–14]. In contrast, proactive defenses
seek to bolster the robustness of the models, making them less vulnerable to the
influence of adversarial examples, such as the methods presented in [15,16].

2.2 Spectral Clustering

Spectral clustering is one of the most representative and widely applied graph-
based algorithms. It can often outperform traditional clustering algorithms, such
as k-means algorithms, due to its ability to extract structural features of the
dataset from the graph representation [1]. There are three common spectral
clustering algorithms used in practice, i.e., unnormalized spectral clustering [1]
and two normalized spectral clustering methods [20,21]. These algorithms are
quite similar, apart from using different graph Laplacians. As shown in Algo-
rithm 1, typical spectral clustering algorithms can be divided into three steps:
1) construct a data graph according to the entire data set, 2) embed all data
points into k-dimensional space using eigenvectors of k bottom nonzero eigen-
values of the graph Laplacian, and 3) perform k-means algorithm to partition
the embedded data points into k clusters.

3 Method

3.1 Examining Graph-Based Machine Learning Models
from the Perspective of Adversarial Attacks

Machine learning models are fundamentally mechanisms that map inputs to out-
puts via feature transformation. For instance, deep neural networks distill the
original feature vectors of data through successive layers. Similarly, algorithms
like Support Vector Machine (SVM) and Support Vector Clustering (SVC) uti-
lize kernel functions to map the original feature space of data into a higher-
dimensional feature space [22]. Adversarial attacks on machine learning models
aim to mislead this mapping process.

In graph-based machine learning algorithms, the graph plays a pivotal role as
the algorithm extracts structural information from the graph to transform input
data, thereby mapping the inputs to outputs. Therefore, from the perspective
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Algorithm 1. Unnormalized Spectral Clustering Algorithm
Input: A data set D with N samples x1, ..., xN ∈ Rd, number of clusters k.
Output: Clusters C1,...,Ck.

1: Construct a graph G from the input data ;
2: Compute the adjacency matrix AG, and diagonal matrix DG of graph G;
3: Obtain the unnormalized Laplacian matrix LG=DG-AG;
4: Compute the eigenvectors u1,...uk that correspond to the bottom k nonzero eigen-

values of LG;
5: Construct U ∈ R

n×k, with k eigenvectors of LG stored as columns;
6: Perform k-means algorithm to partition the rows of U into k clusters and return

the result.

of adversarial attacks, perturbing the graph can disrupt the mapping process of
the graph-based machine learning model.

Suppose there exists a ground-truth ’perfect’ graph for a graph-based algo-
rithm. In that case, any discrepancies between the actual graph constructed by
our graph-building algorithm and the ground-truth graph could be considered
as adversarial attacks applied to the ground-truth graph. Therefore, we propose
to use adversarial defense methods to manage these noisy edges.

3.2 A Proactive Defense Strategy from the Node Perspective
to Mitigate the Impact of Noisy Edges

Given that the ideal connectivity of edges within a graph is perpetually unknown,
previous research focused on managing noisy edges directly from the edge per-
spective has yielded limited success [2,4]. In this paper, we propose to address
the issue of noisy edges from the perspective of nodes.

Graph-based machine learning models, much like other machine learning
models, predominantly focus on tasks associated with data points, such as classi-
fying these points or predicting values associated with them. Graph-based algo-
rithms distinguish themselves by utilizing the relationships signified by edges to
assist in accomplishing tasks that are centered on the nodes. Edges in a graph
play a twofold role. While they contain significant structural information that
can aid in achieving more accurate data transformations-such as those utilized by
graph neural networks to harness the associative information between nodes for
improved performance-they can also be detrimental. A multitude of incorrect or
superfluous edges can indeed degrade the performance of machine learning mod-
els. By enhancing the nodes’ resilience to noisy edges, our method can exploit
the beneficial edges to boost algorithmic performance without being adversely
affected by the harmful ones. In this paper, we propose enhancing the nodes’
resilience to noisy edges as a means to achieve improved algorithm performance
by utilizing beneficial edges while concurrently mitigating the negative impact
of harmful edges, when both coexist within the graph.
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3.3 Adversarial Robustness Evaluation

In order to identify the nodes with strong resilience to noisy edges, we first
evaluate the robustness of data points to noisy edges.

Inspired by [17,18] proposed that the adversarial robustness of a given
machine learning model can be measured by examining the distortion between
the manifolds of the input feature space and the output feature space, by leverag-
ing the generalized Courant-Fischer theorem [19]. In this section, we employ this
method to evaluate the robustness of each data point in the spectral clustering
model. The specific steps are as follows:

– Given data set D with N samples x1, ..., xN ∈ Rd and its number of clusters
k, we first construct a k-NN graph Ginput to capture the data manifold in the
original d-dimensional feature space.

– We perform the spectral embedding step in the spectral clustering algo-
rithm to map the data points from the original d-dimensional space into
k-dimensional spectral space to obtain data set U with the points in the
embedded feature space.

– We construct a k-NN graph Goutput to capture the data manifold in the
embedded k-dimensional feature space.

– Based on the generalized Courant-Fischer theorem [18,19] has further shown
that the generalized eigenpairs of L+

outputLinput can be used to estimate the
robustness of each point, where L+

output denotes the Moore-Penrose pseudoin-
verse of the graph Laplacian of Goutput and Linput denotes the graph Lapla-
cian matrix of Ginput. To this end, we construct the following eigensubspace
matrix Vk ∈ R

N×k:

Vk=
[
v1

√
λ1, . . . ,vk

√
λk

]
, (1)

where λ1, λ2, . . . , λk represent the first k largest eigenvalues of L+
outputLinput

and v1,v2, . . . ,vk are the corresponding eigenvectors.
– Finally, a metric called spade score for evaluating the adversarial robustness

of a specific node i can be calculated as follows [18]:

spade(i) =
1

|N(i)|
∑

j∈N(i)

‖V�
k ei,j‖22; (2)

where j ∈ N(i) denotes the j-th neighbor of node i in graph Ginput, and
N(i) ⊆ V denotes the node set including all the neighbors of node i, ei,j =
ei − ej , and eo ∈ R

N denotes the standard basis vector with the i-th element
being 1 and others being 0. A larger spade(i) implies that node i is likely
more vulnerable to adversarial attacks.
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The above procedures are efficient: constructing k-nearest graph can be done
within O(|n|log|n|) time [26]; The spade score can be computed in nearly-linear
time leveraging recent fast Laplacian solvers [28].

3.4 A Multi-level Algorithm Framework Based on Robust Node Set

We calculate the spade score for all data points and sort them in ascending
order. We then select a small number of data points with the lowest spade
score, which correspond to the highest robustness, to form a robust subset. After
obtaining the robust node set, we perform spectral clustering exclusively on this
set to group the robust nodes into k clusters. For each cluster, we calculate its
centroid. Subsequently, each non-robust data point is assigned to the cluster
whose centroid is closest to it.

4 Experiment

In this section, we apply the proposed method to k-NN graph and use unnormal-
ized spectral clustering to demonstrate its effectiveness. We assess the efficacy
of our proposed approach by evaluating its ability to improve solution quality,
as well as its capacity to increase the operational efficiency of the algorithm.

4.1 Data Sets

Experiments are performed using the following two real-world benchmark data
sets:

– USPS: includes 9, 298 images of USPS hand written digits with 256
attributes.

– MNIST: the machine learning field’s most recognized benchmark, features
60,000 training and 10,000 test images of handwritten digits, each with 784
attributes. We evaluate our methods using its test set.

4.2 Metric

To assess the solution quality of spectral clustering, we use the accuracy metric.
It is defined as:

ACC =

n∑
j=1

δ(yi,map(ci))

n
, (3)

pgwhere n represents the total count of data instances within the dataset, yi
denotes the ground-truth label as provided by the dataset, and Ci signifies
the label ascribed by the clustering algorithm. The function δ(x, y) is a delta
function, stipulated as: δ(x, y) = 1 for x = y, and δ(x, y) = 0, otherwise. The
function map(•) serves as a permutation mapping that correlates each cluster
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index ci with an equivalent ground truth label, a process which can be efficiently
accomplished utilizing the Hungarian algorithm [23]. An elevated ACC value is
indicative of superior clustering performance.

4.3 Compared Algorithms

We compare our method against both the baseline and the state-of-the-art tech-
niques for handling noisy edges in graphs. The specifics are as follows:

– k-Nearest Neighbor Graph: For the value of k in the k-NN graph for the
USPS and the MNIST data sets, we use the setting in [4,25]: k is set to 10;

– Consensus Method: the state-of-the-art technique for selecting neighbor-
hoods to construct affinity graphs. This method strengthens the graph’s
robustness by incorporating consensus information from various neighbor-
hoods in a specified kNN graph [2];

– Spectral Edge Sparsification Method: The state-of-the-art method for
detecting non-critical, misleading, and superfluous edges in the graph [4].

4.4 Results Of Solution Quality

Table 1 shows the solution quality of graph-based spectral clustering algorithm
on the USPS and the MNIST data sets.

Table 1. Clustering Accuracy (%)

Data Set k-NN Consensus Spectral Spar Ours

USPS 64.31 68.54 70.74 78.87
MNIST 59.68 61.09 60.09 70.40

The clustering outcomes of our approach are derived by selecting the top
2,000 and 1,500 nodes with the highest robustness from the USPS and MNIST
data sets, respectively. It is evident that our method surpasses the baseline kNN
graph by over 14% and 10% in accuracy on the USPS and MNIST data sets,
respectively, demonstrating the effectiveness of our approach in improving the
solution quality. Furthermore, the results achieved by our approach, which sur-
passes the second-best denoising method by margins of 8% for the USPS data
set and 9% for the MNIST data set, validate the advantage of employing the
algorithm on nodes with reduced sensitivity to noisy edges over existing methods
that concentrate on the elimination of such edges.
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It can be seen that methods aimed at resolving noisy issues by removing
noisy edges do manifest a clear improvement on the USPS data set, although
they fall short of the enhancements our method provides when compared to the
baseline. On the MNIST data set, however, their effects are marginal, with the
consensus method and spectral sparsification method achieving only 1.5% and
0.5% increases in accuracy, respectively. We conjecture that this is attributable
to the MNIST data set containing a greater number of features than the USPS
data set, which may include more non-robust features that can induce noisy
edges. Consequently, the task of excising noisy edges from MNIST is signifi-
cantly more formidable. Existing denoising methods face difficulties in purging
noisy edges without also eliminating beneficial edges. In contrast, our approach,
which involves selecting nodes that are robust to noise and executing graph-based
algorithms exclusively among these robust nodes, serves as an attack-agnostic
method. This renders it highly effective for both the USPS and MNIST data
sets.

4.5 Efficacy of Resolving Computational Bottleneck

In spectral clustering algorithm, the first step of constructing the kNN graph can
be completed within a time complexity of O(|n|log|n|) [26], where n is number
of nodes in the graph. The third step, k-means, can also be performed in linear
time [27]. However, the second step, eigen-decomposition, has a time complexity
of O(n3), making it the computational bottleneck of the entire algorithm, as well
as the dominant term in the time complexity analysis of the algorithm.

In our method, eigen-decomposition is only performed for a subset composed
of a small number of robust nodes, thereby significantly reducing the computa-
tional cost.

Figure 1 and Table 2 show the eigen-decomposition time of the original full
data set and our selected robust node set. It can be observed that by utilizing the
selected robust node set, eigen-decomposition has been accelerated by a factor
of 9 for the USPS data set and 90 for the MNIST data set, respectively. It is
expected that the proposed method will be a key enabler for running compu-
tationally expensive graph-based algorithms in scenarios that require extremely
fast response times and on devices with limited computational capabilities.

4.6 Parameter Discussion

In our method, the construction of Ginput and Goutput involves the selection of
k in the k-NN algorithm. Our preliminary experiments indicate that when k is
large enough to adequately capture the underlying structure of the data, the
algorithm is not highly sensitive to the parameter setting. This means that the
parameter choice is not overly strict. For example, when constructing Ginput, we
can choose k=50, and when constructing Goutput, we can select k=10, achieving
very goodresults. It is important to note that the k-NN graph is just one common
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Table 2. Eigen-decomposition Time (s)

Data Set Original Node Set Robust Node Set

USPS 0.72 0.08
MNIST(test) 6.35 0.07

Fig. 1. Eigen-decomposition time of original node set and robust node set.

method to capture the underlying structure of the data; it is neither the only
nor the necessary approach. Other more advanced graph learning methods can
also be used.

5 Conclusion

In this paper, we view the noisy edges in graphs used from the perspective of
adversarial attack. Building upon this viewpoint, we proposed a method based
on robust nodes to mitigate the impact of noisy edges, grounded in adversarial
robustness evaluation. Experimental results from real-world datasets show that
our approach significantly boosts the performance of graph-based algorithms and
outperforms the state-of-the-art methods in addressing noisy edges by a large
margin.
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Abstract. Microarray data, when coupled with advanced computa-
tional and statistical techniques, offers profound insights into cause of
diseases and personalized therapy. However, the enormous genes present
in microarray data poses challenges for identifying relevant gene selec-
tion, especially in limited labeled dataset. Conventional methods for
graph construction suffer from empirical parameter selection, potentially
failing to capture intrinsic data properties. To address these issues, we
introduce the semi-supervised Adaptive Graph-based Manifold Learn-
ing Gene Selection (AGMLGS) approach. This unified framework inte-
grates graph construction and projection matrix learning, preserving
high-dimensional data structure (in particular for gene data) in a lower-
dimensional space without losing their physical meaning. Our method
surpasses seven state-of-the-art algorithms across nine datasets, proving
its effectiveness in terms of average precision and exhibiting reasonable
computational efficiency in the majority of cases. The MATLAB code
employed in the proposed AGMLGS model are accessible in the follow-
ing URL https://github.com/ml-lab-sau/AGMLGS.

Keywords: Adaptive graph · manifold learning · semi-supervised ·
gene selection · feature selection · microarray data

1 Introduction

Is well known fact that microarray data is correlated to diseases like cancer,
therefore it becomes essential for biomedical applications including disease sub-
typing, biomarker discovery, and precision medicine. Microarray data are high
dimensional, they contain thousands of genes but the samples available are lim-
ited resulting in the curse of dimensionality [1,2]. This results in significant
challenges while dealing with these data and makes it computationally expen-
sive and difficult to process for classification or clustering tasks [3,4]. The paper
uses the terms “gene selection” and “feature selection” are used interchangeably
because both refer to the process of selecting features from the data.
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To deal with the “curse of dimensionality”, dimension reduction such as fea-
ture extraction or feature selection is performed on these data. Generally, all
features present in the microarray data do not hold an equal contribution as
some of them are redundant or irrelevant concerning the analysis. To choose a
subset of the most pertinent gene while reducing data from a high dimension to
its lower dimension space, retaining the physical meaning of the data, feature
selection is therefore essential [5]. Multiple dimension reduction algorithms are
available for diverse objectives, and the conceptual principles used to create the
proposed algorithm are underlined.

Dimension reduction falls into two categories mainly linear and non-linear.
Linear methods, such as PCA (Principle Component Analysis) and LDA (Linear
Discriminant Analysis), are simple to implement but fail to capture the innate
nonlinear structure of data. It has been demonstrated that high-dimensional
data often possess non-linear structures, with microarray data being a prime
example due to its high dimensionality and diverse, complex non-linear structure.
Non-linear methods are often advantageous for handling such data, however,
approaches like LLE, ISOMAP, and Laplacian Eigen Map, while performing
well on linear or small size benchmark datasets, often struggle when applied
to real-world non-linear datasets. Manifold-based methods are well-suited when
embedded with appropriate graph based method for addressing these challenges
inherent in nonlinear datasets [6,7].

Graph-based methods are gaining popularity due to their remarkable per-
formance in handling high-dimensional data. Traditionally, graph construction
methods rely on prior knowledge, and low-dimensional features are derived from
this graph. Typically, graphs are constructed using either the KNN or ε-ball
graph approaches, where the values of K and ε are chosen empirically. How-
ever, if these parameters are not selected correctly, it can affect the effectiveness
of the algorithm [8]. An alternative approach to address this issue is through
self-supervised learning, particularly beneficial for image data, as it eliminates
the need for data augmentation [9]. This research paper proposes an adaptive
method for constructing a graph, where the number of features to be selected
does not need to be predetermined. Instead, features are chosen using a learned
sparse projection matrix, effectively addressing this problem.

Gene data can be classified into three types: unlabeled, labeled, and partially
labeled. Consequently, the problem of gene selection can be framed as an unsu-
pervised, supervised, or semi-supervised classification problem [5]. Unlabeled
data is typically used to understand the spatial arrangement or distribution of
the data. In contrast, labeled data is used to improve the separation between dif-
ferent categories of data points. Semi-supervised learning combines the strengths
of both labeled and unlabeled data [6]. By utilizing both types of data, semi-
supervised learning aims to improve the performance and accuracy of learning
algorithms [10].

Moreover, in semi-supervised feature selection, graph-based sparse fea-
ture selection is critical. However, the graph construction approaches make
these semi-supervised graph-based methods sensitive to outliers and noise [11].
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Our algorithm overcomes this shortcoming by introducing the adaptive graph
approach in the manifold semi-supervised sparse learning. The main contribu-
tions of our work are given below:

1. The unified model that combines gene selection and classification tasks into
a single optimization module.

2. Construction of adaptive graph which helps in identifying the global structure
of genes data relationship.

3. Captures both the local and global intrinsic structure of genes in microarray
data while performing dimension reduction.

4. Closed form solution which is easy to interpret and is efficient.

The rest of the paper progresses as outlined below: Sect. 2 delves into the relevant
literature, Sect. 3 introduces the proposed model and discusses on optimization
and solutions. Section 4 outlines the experimental results, and the paper con-
cludes with a summary in the final section.

2 Related Works

Microarray data is often acknowledged for its complexity, presenting two sig-
nificant challenges: accurately representing the data and maintaining its intrin-
sic structure while reducing it from high dimensions to low-dimensional space.
Graph-based methods are increasingly favored for data representation due to
their inherent nature. However, traditional graph learning methods construct the
graph primarily based on prior knowledge, typically through K nearest neigh-
bours (KNN) or the ε ball approach. Yet, empirically determining parameters
such as K or ε may occasionally fail to capture the intrinsic properties of the
original data, as the Laplacian information associated with the data remains
fixed during the optimization process. Typically, in such approaches, graph con-
struction and the learned projection matrix are treated as independent processes.
Initially, the graph is constructed, and during the optimization process, the pro-
jection matrix is learned. If the graph fails to provide an accurate representation
of the data, the issue persists throughout the learning process. To address this
issue, adaptive graph learning has been introduced, where graph construction
and projection matrix learning are unified into a single framework [8].

Addressing the challenge of reducing dimensionality while preserving the
data’s inherent structure is crucial. Manifold regularization tackles this by ensur-
ing that similar samples in the original space remain close in the reduced-
dimensional space as well [12]. Manifold regularization technique enhances
smoothness on the constructed manifold graph, it remains separate from the clas-
sification aspect and may not be suitable with the supervised framework [11].
Moreover, manifold regularization provides a robust framework that is highly
beneficial for semi-supervised learning. Importantly, most existing model uses a
sparse model for preserving the geometric structure and a laplacian for graph
construction. The sparse model especially lacks a theoretical explanation for
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preserving the global structure. To overcome this shortcoming, paper [13] pro-
pose extending the sparse model by a series of scale factors (re-scale regression
coefficient) to address limitations of both sparse and graph learning. Another
approach, as demonstrated in [14], is in the semi-supervised framework of adap-
tive local embedding learning, where distinct graphs are generated for local and
global structures. The local graph is crafted based on available label information,
while the global graph is constructed independently of label information. How-
ever, this methodology proves effective only when ample sample size is provided.

Our approach integrates an adaptive graph generated using the radial basis
function (RBF) into a semi-supervised manifold learning framework. While pre-
vious studies such as [8] highlight adaptive graph learning for dimension reduc-
tion in unsupervised scenarios, and [13] underscore the significance of manifold-
based learning in semi-supervised contexts, our model uniquely utilizes adaptive
graph learning within a manifold semi-supervised approach. It utilizes the spar-
sity of the learned projection matrix for feature selection.

3 Proposed Model

3.1 Mathematical Formulation

Matrices are defined using uppercase letters. The symbols employed in the paper
are enumerated as: A represents an arbitrary matrix, Ai denotes the ith row vec-
tor of matrix A, A.j refers to the jth column vector of matrix A, Aij represents
the ijth element of matrix A, X signifies the data matrix [x1, x2, . . . , xn] ∈ R

m×n,
X = [Xl,Xu] symbolizes that X comprises both labeled (l) and unlabeled (u)
data, Y stands for the label information matrix with c number of classes, Yl indi-
cates the label information corresponding to labeled data, Yu represents the label

information corresponding to missing labels (unlabeled data), and Y =
[
Yl

Yu

]

denotes the combined label information matrix Y . Additionally, F signifies the
global indicator matrix. The objective function of sparse semi-supervised feature
selection consists of the loss and the regularization functions. The least square
regression is widely used as a loss function and lp(0<p≤1)-norm, or l2-norm for
regularization. The lp(0<p≤1)-norm consistently provides a solution with sparsity
but it tends to overfit. On the other hand, the l2-norm mitigates the overfitting
issue but sacrifices sparsity. The l2,1-norm combines the benefits of both norms
by preventing overfitting, and maintaining sparsity in the projection matrix, and
is easily optimized. The objective function for sparse feature selection is given
below:

min
W

||XTW − Y ||2F + α||W ||2,1. (1)

As W is a global projection matrix, α is a regularized parameter. As the Y
matrix is not fully available in the semi-supervised approach [11], our model can
be modified by replacing it with the predicted label matrix F [15,16] as follows:

min
W

||XTW − F ||2 + α||W ||2,1
s.t FTF = I, F ≥ 0.

(2)
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In order to use all the information present in data, i.e. to fully exploit unlabeled
and labeled samples, a predicted label matrix F is define for all training data.
As a result, the predicted label matrix F can be identified as:

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y )). (3)

In order to satisfy the smoothness on both manifold structure and the ground
truth labels of samples, we define U as Uij = ∞ if xi is labeled, Uij = 0 otherwise,
let Aij be the similarity matrix defined as Aij = exp(−||xi − xj ||2/2σ2), D is
diagonal matrix, Dii =

∑n
j=1 Aij , and Laplacian matrix is given as L = D − A

[6,7] .
In order to identify the relevant features through an adaptive learning app-

roach the following terms are used:

min
W,S

n∑
i=1

||WT (Xi − XSi)||2 + β
n∑

i=1

||Ri ⊗ Si||2, (4)

where Ri = (ri1, ....rii−1,∞, ...rin)T ∈ Rn×1 is a locality adaptor vector, rij =
(exp(||xi−xj ||)2/σ) and σ = 1/n2(

∑n
i,j ||xi−xj ||)2. A lower rij indicates that xi

is more similar to xj , and vice versa. Minimizing ||Ri ⊗ Si||2 about S causes the
algorithm to assign small or nearly zero reconstruction coefficients to samples
that are far from xi [8].

Unlike the static graph approach, the final model combines the sparse fea-
ture selection where the genes in the microarray data are selected and the adap-
tive graph enriches the model by giving the real representation data. Similarly,
semi-supervised manifold learning retains the original intrinsic structure in the
reduced space. The final model for semi-supervised adaptive graph-based man-
ifold learning for gene selection can be explained through the following convex
optimization problem.

min
F,W,S

||XTW − F ||2 + α||W ||2,1 + Tr(FTLF ) + Tr((F − Y )TU(F − Y ))+

n∑
i=1

||WT (Xi − XSi)||2 + β
n∑

i=1

||Ri ⊗ Si||2 + Tr(WTXXTW − I). (5)

min
F,W,S

||XT W − F ||2 + αTr(WT DwW ) + Tr(FT LF ) + Tr((F − Y )T U(F − Y ))+

n∑

i=1

||WT (Xi − XSi)||2 + β
n∑

i=1

||Ri ⊗ Si||2 + Tr(WT XXT W − I). (6)

where,

DW =

⎡

⎢⎢⎣

1/2||W1||2 · · · 0
...

. . .
...

0 · · · 1/2||Wd||2

⎤

⎥⎥⎦
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3.2 Optimization and Solution

This section provides an overview of how the proposed optimization problem
is solved via alternating optimization where each decision variable is optimized
keeping the others constant.

To update F , we fixed values for S and W , the process begins by initializing
a matrix with random values. The expression for F is then derived from Eq. (6),
considering Lagrangian function of (6) and differentiating it with respect to F ,
yielding the following equation:

F = (2I + L + U)−1(XTW + UY ) (7)

In a similar way, to update S while keeping F and W fixed, we substitute
yi = WTxi and Y = WTX. Deriving the column vector expression for S, differ-
entiating Lagrangian function with respect to S and equating it to zero yields:

s.i = (2Y Y T + βr.i)−1(Y yT
i ) (8)

Finally, to update W while keeping F and S fixed, we introduce the matrix
’M ’ as M = I − S and taking the derivative for expression W , differentiating
Lagrangian function with respect to W by equating it to zero, we derive the
expression for the projection matrix W [13,17] as:

W = (XXT + αDW + XMMTXT )−1XF, (9)

3.3 Algorithm

The algorithm gives the step-wise solution for solving the projection matrix. The
algorithm is simple and easy to implement and provides a closed-form solution.

Algorithm 1. Algorithm to find W

Initialize: W .
Input: {X, Y }, X = [xl, xu], Y = [yl, yu], α, β
Calculate DW , L, R, σ.
Repeat:
• Compute F using updating equation (7).
• Compute S using updating equation (8).
• Compute W using updating equation (9).

Until convergence
Output: F = XW Predicted Label, leading feature indices.

Once the projection matrix W is obtained, the predictor matrix for both the
training and testing datasets is created through multiplication with W .
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3.4 Convergence Proof

To prove the convergence of the sequence {J(Ft,Wt, St)}, we first express the
objective function explicitly:

J(F, W, S) = ‖XT W − F‖2 + αTr(WT DwW ) + Tr(FT LF ) + Tr((F − Y )T U(F − Y ))

+

n∑

i=1

‖WT (Xi − XSi)‖2 + β

n∑

i=1

‖Ri ⊗ Si‖2 +Tr(WT XXT W − I).

The proof of convergence relies on showing that the sequence of objective
function values {J(Ft,Wt, St)} generated by the algorithm decreases monotoni-
cally and is bounded below.

1. Convexity with respect to F : For fixed W and S, consider the subproblem
with respect to F :

min
F

‖XTW − F‖2 +Tr(FTLF ) + Tr((F − Y )TU(F − Y )).

Each term in the subproblem is convex in F :
– ‖XTW − F‖2 is quadratic in F .
– Tr(FTLF ) is a quadratic form in F with L positive semi-definite.
– Tr((F − Y )TU(F − Y )) is a quadratic form in F with U positive semi-

definite.
Thus, the subproblem is convex in F . Minimizing this subproblem with
respect to F yields Ft+1 such that:

J(Ft+1,Wt, St) ≤ J(Ft,Wt, St).

2. Convexity with respect to S: For fixed F and W , consider the subproblem
with respect to S:

min
S

n∑
i=1

‖WT (Xi − XSi)‖2 + β

n∑
i=1

‖Ri ⊗ Si‖2.

Each term in the subproblem is convex in S:
– ‖WT (Xi − XSi)‖2 is quadratic in S.
– ‖Ri ⊗ Si‖2 is quadratic in S.

Thus, the subproblem is convex in S. Minimizing this subproblem with respect
to S yields St+1 such that:

J(Ft+1,Wt, St+1) ≤ J(Ft+1,Wt, St).

3. Convexity with respect to W : For fixed F and S, consider the subproblem
with respect to W :

min
W

‖XT W − F‖2 + αTr(WT DwW ) +
n∑

i=1

‖WT (Xi − XSi)‖2 +Tr(WT XXT W − I).

Each term in the subproblem is convex in W :
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– ‖XTW − F‖2 is quadratic in W .
– αTr(WTDwW ) is a quadratic form in W with Dw positive semi-definite.
– ‖WT (Xi − XSi)‖2 is quadratic in W .
– Tr(WTXXTW − I) is quadratic in W .

Thus, the subproblem is convex in W . Minimizing this subproblem with
respect to W yields Wt+1 such that:

J(Ft+1,Wt+1, St+1) ≤ J(Ft+1,Wt, St+1).

Combining the results from the above steps, we have:

J(Ft+1,Wt+1, St+1) ≤ J(Ft+1,Wt, St+1) ≤ J(Ft+1,Wt, St) ≤ J(Ft,Wt, St).

This shows that the sequence {J(Ft,Wt, St)} is monotonically decreas-
ing. Additionally, since the objective function J(F,W, S) is non-negative and
bounded below, the sequence {J(Ft,Wt, St)} converges.

3.5 Time Complexity Analysis

The algorithm time complexity analysis involves examining operations for updat-
ing each optimization variable. Updating F , which involves matrix multiplica-
tions and inversions with dimensions n × c, m × n, and m × c for F , X, and W ,
respectively, has a time complexity of O(n3). Updating S similarly, with dimen-
sions n × n and n × c for S and Y , yields O(n3). Likewise, updating W requires
operations with dimensions m × m, resulting in O(m3). Considering iterative
operations until convergence, denoted by k iterations, the total time complexity
is O(k · (n3+m3)), with n, m, and c as the number of samples, feature, and class
respectively.

4 Experiments

The effectiveness of the proposed AGMLGS algorithm is validated through com-
parisons with seven state-of-the-art algorithms. AGMLGS operates as a unified
model, similar to FME, while the other comparison algorithms follow a two-
phase process. Initially, these algorithms perform feature selection, choosing ten
percent of the overall features. Classification is then conducted using Binary Rel-
evance Support Vector Machine (BRSVM) [12] in a semi-supervised setting with
10%, 30%, and 50% labeled data. Unlike these methods, AGMLGS and FME do
not predefine the percentage of top-ranked features. Instead, both unified algo-
rithms employ sparse learning to inherently identify the top features, which can
then be adjusted to the desired number. Additionally, since AGMLGS functions
as a unified model, feature selection and classification are integrated within the
same algorithmic framework.
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4.1 Comparing Algorithms

Below is a detailed description of the state-of-the-art algorithms used for com-
parison.

1. MDFS1 (Manifold regularized discriminative feature selection for multi-label
learning) is a supervised embedded multi-label feature selection method with
manifold regularization that incorporates l2,1-norm regularization [17].

2. JMI2 (Simple strategies for semi-supervised feature selection) is a semi-
supervised approach that uses specific prior knowledge of the domain in situa-
tions where labels are not randomly missing. This simple approach accurately
captures the dynamics of feature selection [18].

3. SRCFS3 (Unsupervised feature selection with multi-subspace randomiza-
tion and collaboration) is an unsupervised feature selection method that uses
multi-subspace randomization and collaboration which demonstrates its effi-
ciency and robustness on high-dimensional datasets. This approach integrates
Laplacian scores from balanced random subspaces to enhance feature selec-
tion performance [19].

4. EUFS4 (Embedded unsupervised feature selection) is an innovative unsuper-
vised feature selection algorithm that seamlessly integrates feature selection
into a clustering algorithm through sparse learning, avoiding the need for
label information transformation [20].

5. DUFS (See Footnote 4)(Pairwise dependence-based unsupervised feature
selection) uses mutual information to capture feature dependence, enhances
regression-based feature selection and results in a compact feature set that
effectively eliminates redundancy [21].

6. FME5 pagination(Flexible Manifold Embedding: A Framework for Semi-
Supervised and Unsupervised Dimension Reduction) a unified manifold learn-
ing framework that employs a linear regression function to map new data
points while integrating label fitness, manifold smoothness, and a flexible
penalty term on the regression residue. This framework effectively utilizes
label information from labeled data and the manifold structure from both
labeled and unlabeled data [22].

7. LC-GODR(see footnote 5) (The Locality Constrained Graph Optimization
Dimensionality Reduction) algorithm addresses the limitations of traditional
graph-based dimensionality reduction methods by combining graph optimiza-
tion and projection matrix learning into a unified framework. Unlike conven-
tional methods, LC-GODR adaptively updates the graph during the dimen-
sionality reduction process, ensuring it accurately reflects the underlying data
structure. Additionally, the inclusion of locality constraints helps preserve
local information, distinguishing LC-GODR from other graph optimization-
based dimensionality reduction techniques [8].

1 https://github.com/jiazhang-ml/MDFS.
2 https://github.com/sechidis/2018-MLJ-Semi-supervised-feature-selection?tab=read

me-ov-file.
3 https://github.com/huangdonghere/SRCFS.
4 https://github.com/CAU-AIR-Lab/DUFS.
5 https://github.com/ml-lab-sau/AGMLGS/tree/main/function.

https://github.com/jiazhang-ml/MDFS
https://github.com/sechidis/2018-MLJ-Semi-supervised-feature-selection?tab=readme-ov-file
https://github.com/sechidis/2018-MLJ-Semi-supervised-feature-selection?tab=readme-ov-file
https://github.com/huangdonghere/SRCFS
https://github.com/CAU-AIR-Lab/DUFS
https://github.com/ml-lab-sau/AGMLGS/tree/main/function


462 R. Rastogi and M. B. Lamsal

4.2 Database Description

Table 1 discusses the microarray datasets where features are more than 1500
except Pro_can and DNA. Specifically, the datasets Alon, Gravier, Breast_can,
Globun, Sing_pro, and Lung_can are sourced from [23–28], while the remaining
datasets are obtained from the Kaggle database. Majority of the data are cancer
related, except for one dataset, which is DNA data.

Table 1. Dataset Description.

Dataset No of Instances No of Features No of Classes Type

Endo_can 42 1771 7 Endocrine Cancer
Breast_can 49 7129 2 Breast Cancer
Alon 62 2000 2 Colon Cancer
Globun 72 7129 2 Lukemia
Pro_can 102 338 2 Prostrate Cancer
Sing_pro 102 12600 2 Prostrate Cancer
Gravier 168 2905 2 Breast Cancer
Lung_can 181 1626 2 Lungs Cancer
DNA 3186 180 3 DNA Data

4.3 Convergence Analysis

The convergence behavior of the proposed algorithm is evaluated through graph-
ical representation, depicted in figures mentioned in Fig. 1. This evaluation
focuses on three distinct datasets: Alon with 10% labeled data, Pro_can with
30% labeled data, and Lung_can with 50% labeled instances. The convergence
graph is constructed with parameters are fixed at α = 0.9 and β = 0.3. The
graphs indicate that the proposed algorithm achieves convergence within a few
iterations, typically fewer than five. This suggests the convex nature of the opti-
mization framework, facilitating rapid convergence and hence efficient for real
world datasets.

Fig. 1. Convergence plots
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Similarly, convergence plots as shown in Fig. 2 are generated for compari-
son algorithms MDFS, SRCFS, EUFS, DUFS, and LC-GODR on the Pro_can
dataset to showcase the effectiveness of the proposed AGMLGS algorithm. Con-
vergence plots for FME and Semi_JMI are excluded as they follow single-step
process. Comparing these plots, proposed AGMLGS and LC-GODR demon-
strate rapid convergence, while EUFS and DUFS require more iterations to
converge, and SRCFS converges after more than 20 iterations. MDFS achieves
convergence in seven iterations. We can conclude that the proposed AGMLGS
algorithm as well as LC-GODR converges faster compare to other algorithms.

Fig. 2. Convergence Plot of Comparing Algorithms on the Pro_can Dataset

4.4 Parameter Sensitivity Analysis

Parameter sensitivity analysis was conducted on parameters, α and β, with
respect to the average precision and the number of selected features. Figures
in Fig. 3 and Fig. 4 illustrate the sensitivity analysis for α and β, respectively,
across three datasets representing 10%, 30%, and 50% labeled samples. In the
analysis, β was held constant at 1 while α was varies from [10−3, 103], and similar
for the second analysis. The optimal choice of the parameters affects the average
precision which is also dependent on the number of selected features.

Fig. 3. Parameter Sensitivity Test for α with (a) 10% labeled Pro_can dataset, (b)
30% labeled Lung_can dataset, and (c) 50% labeled Alon dataset
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Fig. 4. Parameter Sensitivity Test for β with (a) 10% labeled Breast_can dataset, (b)
30% labeled Alon dataset, and (c) 50% labeled Endo_can dataset

4.5 Experimental Results

Table 2 presents the average precision achieved by various algorithms using differ-
ent percentages (10%, 30%, and 50%) of labeled data. The experiment employs
five-fold cross-validation and was conducted on a standalone system running
Windows 11, equipped with an Intel Core i7-8700 CPU at 3.20GHz, and 16GB
of RAM. The best results are indicated in bold. Table 3 displays the average
execution time for each algorithm. Cells marked with “OM” indicate that the
algorithm encountered “Out of Memory” issues on the specified computer con-
figuration.

The Fig. 5 illustrates the change in Average Precision with respect to
selected features for all algorithms, including the proposed AGMLGS algorithm.
AGMLGS and FME perform feature selection based on the sparsity of the
learned projection matrix W , while other algorithms, involve feature selection
followed by the semi-supervised classifier BRSVM for average precision calcula-
tion.

4.6 Result Analysis and Discussions

Table 2 reports the average precision scores obtained from seven different algo-
rithms and proposed algorithm (AGMLGS) across nine diverse datasets. With
10%, 30% and 50% labeled instances, AGMLGS exhibits superior performance
in most of the datasets.

Table 3 presents the average execution times for each algorithm across nine
datasets. AGMLGS demonstrates varying performance in terms of processing
time compared to other methods. AGMLGS consistently proves to be a com-
petitive or superior choice in terms of processing efficiency across a range of
datasets.

In the plots depicted in Fig. 5 (5a and 5b), it becomes apparent that the num-
ber of relevant features contributing varies depending on the chosen dataset. Tra-
ditional methods of identifying the appropriate number of features can present
challenges, often requiring extensive testing with different feature selections,
which can be quite time-consuming. However, employing the proposed algorithm
and maintaining a proper threshold for sparsity in the learned projection matrix
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Table 2. Average Precision with Different Percentages of Labeled Data

Dataset
Proposed Comparing Methods

AGMLGS MDFS SRCFS Semi_JMI EUFS DUFS FME LC-GODR

Endo_can

10%0.69 ± 0.01 0.55 ± 0.05 0.62 ± 0.04 0.42 ± 0.04 0.64 ± 0.07 0.56± 0.04 0.56±0.05 0.62±0.05
30%0.74 ± 0.03 0.65 ± 0.04 0.57 ± 0.06 0.50 ± 0.02 0.61 ± 0.03 0.57 ± 0.06 0.64±0.05 0.54±0.07
50%0.75 ± 0.05 0.65 ± 0.04 0.63 ± 0.08 0.51 ± 0.02 0.62 ± 0.02 0.67 ± 0.03 0.64±0.05 0.62±0.07

Breast_can

10%0.81 ± 0.01 0.73 ± 0.03 0.78 ± 0.03 0.74 ± 0.03 0.75 ± 0.04 0.78 ± 0.04 0.71±0.02 0.73±0.025
30%0.82 ± 0.01 0.79 ± 0.05 0.81 ± 0.04 0.74± 0.03 0.74 ± 0.03 0.75 ± 0.05 0.77±0.03 0.78±0.03
50%0.85 ± 0.01 0.79 ± 0.04 0.82 ± 0.04 0.74 ± 0.03 0.73 ± 0.04 0.75 ± 0.04 0.76±0.03 0.76±0.03

Alon

10% 0.83 ± 0.01 0.86 ± 0.02 0.84 ± 0.06 0.82 ± 0.03 0.85 ± 0.04 0.85 ± 0.01 0.82±0.03 0.69±0.04
30% 0.85 ± 0.03 0.86 ± 0.02 0.81 ± 0.02 0.82 ± 0.04 0.84 ± 0.02 0.82 ± 0.01 0.82±0.03 0.82±0.03
50% 0.87 ± 0.01 0.90± 0.02 0.84 ± 0.01 0.82 ± 0.04 0.84 ± 0.03 0.85 ± 0.01 0.82±0.03 0.82±0.03

Globun

10%0.93 ± 0.02 0.77 ± 0.05 0.74 ± 0.04 0.69 ± 0.03 0.84 ± 0.03 0.87 ± 0.02 0.85±0.05 0.79±0.05
30%0.91 ± 0.02 0.81 ± 0.04 0.81 ± 0.03 0.70 ± 0.04 0.83 ± 0.04 0.90 ± 0.02 0.77±0.04 0.77±0.04
50% 0.92 ± 0.02 0.87 ± 0.04 0.83 ± 0.04 0.75 ± 0.04 0.87 ± 0.030.93 ± 0.01 0.77±0.04 0.77±0.04

Pro_can

10%0.86 ± 0.01 0.76 ± 0.02 0.77 ± 0.02 0.76 ± 0.03 0.80 ± 0.03 0.85 ± 0.03 0.73±0.01 0.76±0.01
30%0.91 ± 0.01 0.76 ± 0.02 0.77 ± 0.02 0.76 ± 0.03 0.79 ± 0.03 0.86 ± 0.03 0.73±0.03 0.73±0.03
50%0.90 ± 0.01 0.84 ± 0.03 0.77 ± 0.01 0.78 ± 0.03 0.78 ± 0.02 0.85 ± 0.03 0.77±0.02 0.77±0.02

Sing_pro

10%0.90 ± 0.01 0.83 ± 0.04 0.83 ± 0.02 0.76 ± 0.02 0.84 ± 0.02 0.86 ± 0.03 0.80±0.043 OM
30%0.93 ± 0.02 0.86 ± 0.01 0.81 ± 0.02 0.76 ± 0.02 0.89 ± 0.02 0.85 ± 0.03 0.73Âś0.03 OM
50%0.93 ± 0.01 0.86 ± 0.01 0.84 ± 0.01 0.77 ± 0.03 0.91 ± 0.03 0.89 ± 0.02 0.70±0.01 OM

Gravier

10%0.83 ± 0.01 0.75 ± 0.03 0.71 ± 0.01 0.67 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 0.83±0.018 0.77±0.04
30%0.86 ± 0.01 0.80 ± 0.02 0.75 ± 0.01 0.67 ± 0.02 0.69 ± 0.02 0.69 ± 0.02 0.83Âś0.03 0.81±0.03
50%0.85 ± 0.02 0.80 ± 0.03 0.81 ± 0.02 0.68 ± 0.02 0.78 ± 0.03 0.76 ± 0.02 0.83±0.02 0.81±0.03

Lung_can

10% 0.92 ± 0.02 0.96 ± 0.01 0.94 ± 0.02 0.91 ± 0.01 .94 ± 0.01 0.95 ± 0.01 0.91±0.03 0.75±0.09
30%0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.93 ± 0.03 0.96 ± 0.01 0.96 ± 0.01 0.91±0.01 0.84±.07
50%0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 0.91 ± 0.02 0.97 ± 0.01 0.91±0.01 0.91±0.01

DNA

10%0.93 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.00 0.72±0.01 0.56±0.01
30%0.94 ± 0.01 0.82 ± 0.03 0.74 ± 0.02 0.74 ± 0.03 0.72 ± 0.01 0.72 ± 0.00 0.72±0.002 0.59±0.04
50%0.95 ± 0.00 0.93 ± 0.00 0.88 ± 0.02 0.85 ± 0.00 0.92 ± 0.00 0.72 ± 0.00 0.72±0.002 0.72±0.002

Table 3. Average Run Time in seconds

Dataset AGMLGS MDFS SRCFS Semi_JMI EUFS DUFS FME LC-GODR

Endo_can 0.70 0.65 2.34 4.32 1.37 136.45 0.13 65.87
Breast_can 1.93 19.21 35.17 16.66 1.34 2231.41 3.74 3.74
Alon 0.97 1.17 5.05 5.11 0.28 179.18 0.16 31.87
Globun 29.30 27.72 62.00 18.67 1.76 2289.01 3.72 0.77
Pro_can 0.02 0.02 0.97 0.94 1.55 30.98 0.09 0.39
Sing_pro 140.61 111.10 4.93 34.77 13.34 3753.96 15.97 OM
Gravier 2.58 2.15 28.74 9.47 1.57 395.50 0.44 114.48
Lung_can 0.64 0.57 1.30 5.14 0.97 124.03 0.12 166.03
DNA 2.91 20.52 36.94 7.23 7.81 164.56 0.67 0.71

can lead to optimal performance without the necessity for manual feature selec-
tion and testing. In the Globun dataset, the highest average precision is achieved
with 200 feature selections, while in the Sing_pro dataset it is attained with 50
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Fig. 5. Average Precision achieved by various algorithms relative to the chosen features
with 10% labeled Information.

feature selections. This performance is reported as the best average precision
when compared to all other algorithms under consideration.

5 Conclusions and Prospective

The paper presents a novel approach to gene selection using semi-supervised
adaptive graph manifold learning (AGMLGS). AGMLGS operates within a uni-
fied model, unlike most feature selection algorithms that typically involve sep-
arate phases for feature selection and classification. Unlike conventional algo-
rithms, which rely on empirical feature selection, AGMLGS dynamically learns
the graph and selects optimal features during operation via a feature weights
matrix and considering its L2,1 norm.

To explore data relationships, we utilize a similarity graph that is recon-
structed in each iteration. Our evaluation encompasses multiple datasets and
comparisons with seven state-of-the-art algorithms. Consistently, the results
demonstrate that our proposed algorithm outperforms others in terms of average
precision while maintaining reasonable execution speed across the majority of
scenarios. These findings highlight the effectiveness and efficiency of our novel
gene selection approach.
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Although our current research focuses on one specific area, combining data
from various domains, especially in multi-omics scenarios, poses a challenge that
we can explore in future studies. Investigating this fusion could provide valuable
insights and enhance the practical applications of our approach.
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